Formal A

Fm Methods (‘J
O & Too'io University of Twente
Enschede - The Netherlands

University of Twente
Faculty of Electrical Engineering, Mathematics & ComputerScience
Formal Methods and Tools

Graph-Based Semantics of the
NET Intermediate Language

by
N.B.H. Sombekke

May, 2007

Graduation Committee: dr. ir. A. Rensink (1st supervisor)
ir. H. Kastenberg
ir. T. Staijen

Abstract

The semantics of a programming language are often describeid a natural language. Such de-
scriptions are often ambiguous and hard (or even impossib)eto construct in a precise way. To
tackle these problems one could specify a formal descriptioof the semantics by using a mathe-
matical model. In this report such a mathematical model is presented for the .NET Intermediate
Language (IL) in the form of graphs and transformations to these graphs.

In order to be able to perform transformations on graphs, we eed a start graph. The .NET In-
termediate Language generates bytecode and cannot supplysh a start graph. Therefore we have
constructed a translator that translates an arbitrary IL pr ogram into a so called Abstract Syntax
Graph (ASG). The ASG is the start graph to which we now can apply graph transformations.

Central in this report are graph production rules that we have speci ed in order to describe
the semantics of .NET IL instructions. These production rules are used for transforming graphs,
and by applying them to the (intermediate) graphs repeatedl it is possible to simulate a program.

Although further research is necessary, we believe this piect provides a promising basis of
representing the semantics of the .NET Intermediate Language in an intuitive and formal way.

Contents

1

Introduction

1.1 Problem Statement

1.2 Approach

1.3 OVerVIEW o

The .NET Framework

2.1 Overview of NET
2.1.1 Common Language Runtime
212 BaseClassLibrary
2.1.3 Common Type System and Common Language Speci cation
2.1.4 TYPES . .
2.1.5 Portable Executables. o oo
2.1.6 Virtual Execution System
2.1.7 Code Management
2.1.8 Garbage Collection

2.2 The Intermediate Language e
2.2.1 Directives e
2.2.2 Modules and Assemblies L oo Lo
2.23 NAmMESPACES v e e
224 Methods e
2225 ThellLInstruction Set
226 GENEIICS e
2.27 Name Resolution e

2.3 Our Work

24 Summary

Graphs and Graph Transformations

3.1 Graphs

3.1.1

The Pacman Example

3.2 Graph Production Rules . . .
3.2.1 The Pacman Example - Productionrules
3.3 Graph Production System . .
3.3.1 The Pacman Example - Graph Transition System.

3.4 Graph Transformation Tool

3.4.1 The Pacman Example-GROOVE
35 Summary

Translating IL Programs to Graphs

4.1 Translator

4.2 Meta-Model Abstract Syntax Graph o L oo
4.2.1 High-level structure
4.2.2 TYPES . . . e e

~N o o O

4 CONTENTS
4.2.3 Attributes 31
424 InStruCtions e e 31
4.3 Design DecCisions e 33
4.3.1 Classnames and NAamesSPaces v v v v vt e e e 34
4.3.2 Method signatures 36
4.3.3 Identiers e 37
4.4 Translating C#and VB.NETtoIL. 37
45 Example: ILtO ASG e e 39
4.6 SUMMANY o o e e e e e e e e e e e e e 39
5 Specifying IL Semantics with Graph Transformations 41
5.1 Static Analysis 41
5.2 Control Flow Analysis 42
5.3 Modelling the runtime environment oL 44
5.3.1 Meta-model of the Frame Graph 44
5.3.2 Meta-model of the Value Graph. 48
5.3.3 Stack 49
5.3.4 Method Frame Representation and Transferring Argumats 51
5.4 Productionrules 54
5.4.1 Starting Execution 54
5.4.2 Object Creation 55
543 Callingmethods e 58
5.4.4 Common Instructions 60
545 Limitations 61
5.5 Simulation Examples e 62
5.5.1 Example: Fibonacci 62
5.5.2 Example: Calculator 64
5.6 Performance. e 67
5.7 SUMMArY e 68
6 Conclusion 69
6.1 DISCUSSION e e e e e 69
6.1.1 Implementation 69
6.1.2 GROOVE 70
6.1.3 Approach 0
6.2 Related Work e e 70
6.3 Future Work e 71
Appendices 75
A IL programs side to side 77
B Calculator Example: IL Code and ASG 81
C Production Rules - Simulation 87

Chapter 1

Introduction

Probably everybody has experienced a time that a communicabn problem between two persons
appeared. For example, when your mother asked you to get a beal from the bakery and that
when you were at the bakery you did not know what bread to take.

Formally speaking, executing the task can have a di erent result than the person who gave
the task had in mind. Something similar holds for the meaningand behaviour (semantics) of
programming languages. When describing the semantics of pgramming languages in a natural
language (such as English), this can lead to ambiguity. Furhermore, by using a natural language
to describe semantics of a programming language it is hard foeven impossible) to present the
semantics in a precise way. It is also easy to introduce mistes or forget details. Take for example
an instruction which adds two values. It is easy to forget spei c details of where these two values
can be found, or where the result of this operation should betsred.

To tackle these problems, one should specify the semantica ia formal way. This speci cation
is represented in the form of a mathematical model and can sege as a basis for understanding
and formal reasoning about the behaviour of programs. It is &0 useful for precisely de ning the
meaning of program constructions. When giving a formal desdption, details that are normally
easily overseen will be unrevealed and made explicit, leawg no space for ambiguity. Another
advantage of using a mathematical model is that it opens posbilities for analysis and veri cation.

There are several formal languages for expressing semargiof a programming language. The
Structural Operational Semantics (SOS) approach, introduced by Plotkin[20] in 1981, has been
very popular. SOS generates a transition system by using ldgal rules. Due to these logical rules,
SOS can be hard to grasp for persons unfamiliar with logic. Ado see [1, 27] for more information
about SOS.

A more recent technique of giving a formal description of serantics is by using graphs and
applying transformations to these graphs. A graph is used to model a state of a program,ral
the graph transformations are an intuitive, easy to understand, and a clear way to express the
behaviour of the program in a rule-based way, just as with SOSUsing graphs is especially useful
for representing object-oriented programs because the stes of these programs mainly depend
on a set of reference values. Furthermore, graph transforntins lend themselves for describing
dynamic changes to such states. To be able to work with graph&nd graph transformations, a
tool is needed to construct graphs and perform transformatbns to these graphs. There exist quite
some tools on this, but in this work we use the GROOVE tool set].

The Graphs for Object-Oriented Veri cation (GROOVE) project aims at using graphs to model
the structure of object-oriented programs and using graph tansformations to model operational
semantics[9]. As part of the GROOVE project, a tool set has ben developed. Among others, this
tool set consists of an editor that can be used to construct gaphs and graph transformation rules
(which we also callproduction rules). The tool set also contains a simulator that is able to apply
production rules to graphs. Each time a production rule is aplied, a new graph is constructed.
When we use graphs as a representation of states, and the apgtion of production rules as
transition between these states, we can uses these graphsdproduction rules to construct a

6 Introduction

transition system. In such a transition system states are rpresented by nodes, and transitions
between states are represented by edges.

This thesis shows that graph transformations can be used fothe speci cation of the semantics
of a programming language, in particular the .NET Intermediate Language. We have chosen the
.NET Intermediate Language because this is a low-level intamediary language which covers all
other .NET languages. The relation of the .NET Intermediate Language and the other .NET
languages can be explained using the analogy of an interpret that translates Russian and Dutch
to English. Here, English is analogous to the Intermediate language, and Russian and Dutch
to the other .NET languages. If you are able to understand Engjsh, you will also be able to
understand the other languages when talking via the interpeter.

1.1 Problem Statement

The semantics of programming languages described by usingatural languages can be ambiguous,
meaning that a text can easily be open for multiple interpretations. On the other hand, pictures
in the form of graphs and graph transformations are often moe clear and less ambiguous than
natural languages. Also, it is possible to reason about grams and graph transformations thanks
to their formal background [25]. Another motivation to use a graph-based representation is that
graphs are a convenient way to represent the structure of a ppgram, and graph transformations
are a good technique to represent object-oriented behaviau

Our interest is that we want to describe the semantics of an ofect-oriented programming
language using graph transformations. We have chosen for 8h.NET Intermediate Language (IL)
because all .NET languages are compiled to IL, which makes iattractive to do our research on
IL instead of other .NET languages individually.

The main question now is: how can we describe the semantics tfie .NET IL by using graph
transformations? Therefore, the goal of this research prajct is the development of a graph-based
speci cation of the semantics of the Microsoft .NET IL.

1.2 Approach

To accomplish the graph-based representation, we decidedtconstruct a set of graph production
rules specifying the semantics of the IL. When modelling thesyntax and states of IL programs as
graphs accordingly, we can apply the rules to those graphs, €. simulate the program. Figure 1.1
contains an overview of these two steps.

.NET Intermediate Language
Translator Program

Parsing & Static Analysis

Abstract Syntax Graph
Graph

Production
Rules Static Analysis & Simulation

Execution Graph ﬂ

Figure 1.1: From program to simulations, an overview.

This gure shows that a translator translates a .NET Interme diate Language program into
the Abstract Syntax Graph, to which graph production rules are applied. Both the translator
and the graph production rules do not exist yet and need to be constructed by us. The followig
paragraphs provide a description of these components.

1.3 Overview 7

Translator ~ We need a translator to construct a graph from an arbitrary IL program. This

graph is an abstract syntax representation of the IL program and therefore is called an Abstract
Syntax Graph (ASG). The ASG contains the structure of the program, the instructions that have

to be executed and the syntactic order of these instructions During the static analysis phase,
we enrich the ASG by creating and adding method signatures, ransforming namespaces, and
resolving identi ers.

Graph Production Rules Although static analysis is mostly performed in the translator, a
minor part of static analysis will be performed by using a grgh production rule in order to provide
some intuition of what happens during static analysis. Thisinvolves merging of labels having the
same identi er. Furthermore, the ASG contains implicit control ow information. A decision has
to be made whether or not to make this control ow explicit by u sing a control ow analysis phase.

The major goal of this project is the speci cation of the semantics of the .NET Intermediate
Language by graph transformations. We aim at specifying thesemantics with one or two transfor-
mation rules per instruction. These graph production rulestransform a graph, which in fact is the
Abstract Syntax Graph delivered by the translator, into another graph. Each time a production
rule from this graph transformation system is applied, a so alled Execution Graph is created.
Such a graph is a representation of a system state. Thus by apying the whole graph transforma-
tion system to the Abstract Syntax Graph, we can simulate the IL program. By simulating the
program a transition system is constructed, which consists of Execution Graphs (statesand the
applied production rules (transitions) to these Execution Graphs .

1.3 Overview

This thesis is organized as follows: First, some backgrounthformation will be provided. There-
fore, Chapter 2 presents an overview of the .NET framework ad its most important parts; among
others, the common language runtime, common type system, fyes and garbage collection. Chap-
ter 2 also contains a brief introduction into the .NET Interm ediate Language and its instructions.
Graph transformations and their use are described in Chapte 3. In this chapter we will also tell
something about the GROOVE tool set. Chapter 4 discusses themplementation of the trans-
lator and some problems that are encountered. The specicdon of the graph transformation
rules, which represent the semantics of the Intermediate Laguage, is elaborated in Chapter 5.
This chapter also includes an explanation of the encounter@ design problems and their solutions.
Finally, a discussion about the project and the conclusionsare presented in Chapter 6.

Chapter 2

The .NET Framework

In the year 2000 Microsoft launched the .NET (pronounced:dot net) initiative. The .NET Frame-
work is a development and runtime infrastructure that can be used for the development of appli-
cations for the Windows platform.

The framework is designed to ful | the following objectives [16]:

To provide a consistent object-oriented programming envionment whether object code is
stored and executed locally, executed locally but Internetdistributed, or executed remotely.

To provide a code-execution environment that minimizes sdfvare deployment and versioning
con icts.

To provide a code-execution environment that promotes safeexecution of code, including
code created by an unknown or semi-trusted third party.

To provide a code-execution environment that eliminates tre performance problems of in-
terpreted or scripted environments.

To make the developer experience consistent across widelyawying types of applications,
such as Windows-based applications and Web-based applidans.

To build all communication on industry standards to ensure that code based on the .NET
Framework can integrate with any other code.

This chapter contains an introduction to the .NET Framework and the Intermediate Language.
First we will present an overview of the .NET Framework, what it contains and how it works.
After that, more will be explained about the Intermediate Language. Most gures presented in
this chapter are derived or based on gures from [19] and [6].

2.1 Overview of .NET

A .NET program is written in a programming language that usesthe .NET runtime as its execution
environment. That is, the sources of this program are compid, using a language compiler for
the speci c programming language, to an intermediate forma called the Common Intermediate
Language (CIL) or just Intermediate Language (IL). The inte rmediate format is accepted by the
Common Language Runtime which uses just-in-time (JIT) complation to compile the intermediate
format to CPU speci c code (also called native machine code) After this, the CPU speci ¢ code
can be executed. A schematic overview of this principle is gen in Figure 2.1.

10 The .NET Framework

(o | (venet [pern | [..]

® ® ® ©
N

Intermediate Language
+

Metadata

Common Language
Runtime

Native Code

Figure 2.1: Overview of Languages, Intermediate Languageral Common Language Runtime

2.1.1 Common Language Runtime

The Common Language Runtime (CLR) is the runtime environmert in which .NET applications
are executed. Consider the CLR to be comparable to the Java Yiual Machine (JVM) (see [11]).
Like JVM uses an intermediate language representation of Jea (called bytecode), the CLR uses
IL. IL code is sometimes referred to asmanaged codebecause the CLR manages its lifetime and
execution [24]. To do this, the CLR provides necessary coreesvices such as memory and thread
management and strict type safety. Code that does not targethe runtime is known as unmanaged
code Unmanaged code is for example native code (i.e. machine cejl

The CLR uses a just-in-time (JIT) compiler to compile the IL c ode, which is stored in a so
called Portable Executable le, into native (platform-specic) code. After this conve rsion, the
native code is executed. This means that .NET code is alwaysompiled not interpreted. The
usage of IL code and JIT compilation ensures that code is pogble as well as e cient.

2.1.2 Base Class Library

The Base Class Library (BCL), sometimes also referred as .NE Framework Class Library (FCL)
[24], is a library containing all important types (i. e. classes) of the .NET Framework. The BCL is
language independent, meaning that it does not depend on thased .NET language. Furthermore,
the BCL is available for all languages using the .NET Framewak. The class library encapsulates a
number of common functions such as le reading and writing, retwork programming and graphic
rendering.

2.1.3 Common Type System and Common Language Speci cation

When di erent languages must cooperate with each other, sora kind of agreement must exist
on how this is accomplished. Therefore, theCommon Type System(CTS) is de ned within the
CLR, making it a fundamental part of the CLR. It de nes the ent ire set of types that can be used
with many di erent language syntaxes and makes it possible ér two di erent .NET languages
to use each other's objects. Language compilers targetinghe CLR must generate code that is
conformant to the CTS. The CTS performs the following functions [16]:

Establish a framework that helps enable cross-language iegration, type safety, and high
performance code execution.

Provide an object-oriented model that supports the complee implementation of many pro-
gramming languages.

2.1 Overview of .NET 11

De ne rules that languages must follow, which helps ensurehtat objects written in di erent
languages can interact with each other.

It is possible for one language to allow a construct supporteé by the CTS, while another
language does not. This can be a barrier for cross-languagetégration. Therefore, the Common
Language Speci cation (CLS) is developed, which is a subset of the CTS. The CLS is a sof
of basic language features needed by many languages[17]. iticludes language constructs often
required by many software developers, but is small enough fanost languages to be able to support
it.

Figure 2.2: Common Type System and Common Language Speci ¢@n

For more information about the CTS and the CLS, see [6].

2.1.4 Types
The CLR distinguishes betweenvalue typesand reference types[6, 19, 26].

Value types are used to describe values. Values are instances of valueptys. They are directly
stored at the memory address on the method stack assigned byheir variable, or inside an object
in case of a eld of an object. Value types must always containsome data and thus cannot be
null. When passing value types as argument to a function, a cpy of the value is made prior to
function execution. Thus, when executing the function, the copy of the value is used and can be
changed, but the original value persists.

Reference types contain references to heap-based objects and can be null. feeence types in-
clude classes, interfaces and arrays. When reference typaege passed as an argument to a function,
the pointer to the object is passed (unlike in case of the vala types where a copy of the object is
passed). Thus, passing by reference means that changes wilk made to the original object.

In Figure 2.3 a diagram containing the di erent value and reference types is presented. Here
it is clear what the prede ned value and reference types are ad what kind of user-de ned types
can be created. What we omitted up to now is that it is also posgle to create a reference type
of a value type by a technique called boxing. For more inform#éon about boxing, we refer to [6].

The list of prede ned types is shown in Table 2.1. The table catains a description of the type,
a mapping to the .NET class library and whether or not the type is supported by the CLS.

2.1.5 Portable Executables

Compiling a .NET program results in one or more les containing IL code and metadata. .NET
programs are stored in a binary format that is compatible with the Windows binary format PE

12 The .NET Framework

CLR Type System
Value Types Reference Types

[Predefined] [User-defined] [Predefined j [User-defined j

[Records (structs)
[Enumerations

[Integer numbers Managed pointers] Interfaces]

[Floaling—point numbers Unmanaged pointers j Classes j

Characters & Strings
Typed references

Method pointers j Arrays j

Delegates

Figure 2.3: Types supported by the CLR

Table 2.1: Prede ned Types

CIL Name CLS Name in BCL Description
Type?
bool X System.Boolean| 1 byte: 0 (= false), 1-255 (= true)
char X System.Char 16-bit Unicode character
string X System.String Unicode character string
oat32 X System.Single | IEEE 32-bit oating-point number
oat64 X System.Double | IEEE 16-bit oating-point number
int8 System.SByte | Signed 8-bit integer
intl6 X System.Int16 Signed 16-bit integer
int32 X System.Int32 Signed 32-bit integer
int64 X System.Int64 Signed 64-bit integer
unsigned int8 X System.Byte Unsigned 8-bit integer
unsigned int16 System.UInt16 | Unsigned 16-bit integer
unsigned int32 System.UInt32 | Unsigned 32-bit integer
unsigned int64 System.UInt64 | Unsigned 64-bit integer
native int X System.IntPtr Machine-dependent signed integer number
(2's-complement)
native unsigned int X System.UIntPtr | Machine-dependent unsigned integer number
object X System.Object | Managed pointer to object on heap
typedref System. Pointer plus exact type
TypedReference|

PE File

PE/COFF Header |

[
[

CLR Header]

CLR Data
[IL Code][Metadata]

[Native Data and Code]

Figure 2.4: Portable Execution File

(Portable Executable). A PE le is not executable by itself, it is the CLR that compiles PE les
into native code. The layout of a typical .NET PE le is shown i n Figure 2.4.
The sections have the following meanings:

The PE/COFF header is loaded by the operating system. It indicates the type of le:

2.1 Overview of .NET 13

Graphical User Interface (GUI), Character-based User Inteface (CUI) or Dynamic-Link
Library (DLL). One of the components stored in the header is atimestamp indicating when
the le was built. Furthermore, the PE/COFF header contains references to other contents
within the PE le. For modules targeting the CLR there is info rmation available allowing
the runtime to seize control.

The CLR header indicates that the PE le is a .NET executable. The most important

components of the CLR header are the required version of the (R, some ags, and possibly a
description of the entry point method of the executable. Theruntime header, which contains
all of the runtime-speci ¢ data entries and other informati on, should reside in a read-only,
shareable section of the image le.

The CLR data section containsmetadata and IL code. The metadata section contains two
parts: tables that describe the types and members de ned in he source code, and tables
that describe the types and members referenced by the sourceode. The Intermediate
Language codeis created by the compiler that compiled the source languageThis IL code
will eventually be compiled into native machine code by the Q.R.

The Native Data and Code section contains native code, for example precompiled C++ b
machine code.

Although the PE le contains di erent sections, we are only i nterested in the IL Code section.
The IL Code section contains the IL program that is eventually simulated.

2.1.6 Virtual Execution System

In the CLR, program execution is performed by a number of compnents interoperating under
the name Virtual Execution System (VES). The VES is also known as the Execution Engine. An
overview of the VES is presented in Figure 2.5. The VES is, amug other things, responsible for
loading a PE le (containing the IL program), the translatio n from IL into machine code, and for
its execution.

‘ .NET PE Files (Metadata and IL) ‘

Virtual Execution Engine

‘ Class Loader ‘

JIT Compilation

‘ Verifier ‘
'
‘ JIT Compiler ‘

T
v

Execution Support and Management
Garbage collector, security engine, code manager,
exception manager, thread support, etc.

Figure 2.5: Overview of the Virtual Execution System (VES)

This thesis is restricted to the simulation of execution by the code manager. The rest of the
VES falls outside the scope of this project.

14 The .NET Framework

2.1.7 Code Management
Stack and Heap

A stack is a data structure that works according the Last In First Out (LIFO) principle. Values
can be respectively put on pushed and pulled from the top of the stack (popped. It is not
possible to store or retrieve values of the stack, other tharthe top value. Additionally it is not
possible to just read the top-of-stack value, without pulling it from the stack.

The Common Language Runtime is stack-based. This means thathe CLR uses a stack to
store intermediate values on. This stack is not addressablby other methods and is initially empty
on each method call. On leaving a method, the stack only contims a return value (if available).

The heap is a dynamic storage area in which objects of classes and ags can be stored.
References to objects in the heap are stored by means of poers on the stack. It is also possible
that objects in the heap contain references to other objects

An instance of a value type has its value stored on the stack (oin a containing object in the
heap), meaning that a piece of memory is reserved for their dae. Instances of reference types
have a reference to heap-based objects allocated on the skadnstances of reference types can be
null.

Memory Management

When a method is called, amethod state(which contains the information captured in an invocation
stack frame) is created. A method state contains all informadion about the environment within
which a method executes. It contains an instruction pointerthat points to the next IL instruction
to be executed within the current method. It also contains anevaluation stack that is entirely local
to the method, and thus cannot be accessed by other methods. e contents of the evaluation
stack are preserved across call-instructions.

Both Input parameters (i.e. the arguments of the method) and local variables are sired in
ordered lists that are addressable via an index. The valuesfdoth input parameters and local
variables are preserved across method calls.

The local memory pool is used for dynamic allocation of storage space which is noréed by
the garbage collector. The storage space will be reclaimechanethod exit [19]. The local memory
pool is used to allocate objects which type or size is not know at compile time and which the
programmer does not wish to allocate in the managed heap [6].

Method Descriptor ‘ Security Marks | Return-
state

Evaluation Stack Handle Predecessor’s state

Local Variables

Arguments Instr.

Pointer .
Local Memory Pool Current Instruction

Figure 2.6: Method state

When a method is called, the new method state is appended to t# end of a list of method
states (method or procedure stack) and linked to its predecssor. The caller method is stored in
the return-state handle When returning to the caller method, the results of the method that is
exited must be copied to the stack of the caller method and themethod state must be removed
from the list of method states because it is no longer neededThe return-state handle is used
to restore the method state on return from the current method [6]. This corresponds with the
dynamic link compiler terminology.

2.1.8 Garbage Collection

Garbage collection is the process of identifying and cleang up unused data in the managed heap
to reclaim memory. The garbage collector automatically deects and removes objects that are not
longer referenced.

2.2 The Intermediate Language 15

By default, garbage collection takes place when the systemuns out of memory and no space
is available to create new objects. At such a moment the garbge collector starts running. The
garbage collector is responsible for suspending all activthreads and marking all objects in the
heap as garbage. After that, the garbage collector builds a gaph for all objects reachable from
the roots of the program. The roots of the program identify storage locations that refer to objects
on the heap or to objects that are set to null. Once all roots hae been checked (the graph
contains only the objects reachable from the program's roat), the objects not contained in the
graph are considered garbage. The memory space used by thegbjects now can be freed and
non-garbage objects are shifted down in memory to remove gaqin the heap. Because objects now
are positioned on other memory addresses, the pointers to #se objects now become invalid and
must be updated by the garbage collector with the new memory ddress. Once these pointers are
updated, the suspended threads can be restarted and the gaage collection phase is nished.

In Figure 2.7 an example of the heap before and after garbagetiection is presented. The heap
prior to garbage collection (Figure 2.7(a)) contains unretrenced objects (Object C and Object
E), which are deleted during garbage collection resultingm the heap displayed in Figure 2.7(b).

Roots Heap Roots Heap
— Object A — Object A
— ObjectB — Object B

Object C > ObjectD o
— | Object D Object F u
Object E E—
Object F
(a) Before (b) After

Figure 2.7: Example representation of the heap before and &dr garbage collection

The advantage of garbage collection is that objects are cleged up automatically and thus do
not have to be tidied up manually (which causes memory leaks tven forgotten). The main disad-
vantage of garbage collection is that it introduces a perfomance hit and also that the execution
of all active threads must be suspended in order to apply garage collection.

For more information about garbage collection we refer to [3, 19].

2.2 The Intermediate Language

The .NET Framework uses language compilers that target the @mmon Language Runtime. For
instance, Microsoft provides C#, J#, VB .Net, Jscript .Net, and C++ compilers. Furthermore,
there are third-party compilers that target the CLR, such as an Ei el, Cobol or Perl compiler.

As mentioned before, the source code of a .NET supported lange is compiled to an inter-
mediate format called the Intermediate Language (IL). The IL includes instructions for loading,
storing, initializing and calling methods on objects, as wdl as instructions for arithmetic and
logical operations, control ow, direct memory access, exeption handling and other operations
[16].

Together with the produced IL, metadata is generated. Metadita contains, among other data,
a description of the types in the code, their members, and cog references. The IL and metadata
are contained in a so calledassembly The assembly is constructed using the portable executable
(PE) le format that is based on and extends the published Microsoft PE and common object
le format (COFF) used for executable content. The PE letyp e accommodates IL, native code
and metadata. The presence of metadata in the le, along withthe IL, enables written code
to describe itself. The runtime locates and extracts the regired metadata from the le during
execution [16, 18, 15].

16 The .NET Framework

2.2.1 Directives

Directives are bits of metadata representing the componerg which compose our program. They are
are not actual IL instructions representing code [5]. Diredives can ask the runtime-environment
to perform some task and can be recognized in IL as production starting with a period (.).
For example, a method containing directive .maxstack n means that at most n stack slots are
required. For a complete list of directives we refer to the CL Speci cation [6].

2.2.2 Modules and Assemblies

Modules are single les (PE- les, see Section 2.1.5) that cotain executable code targeting the
Virtual Execution System (VES). As stated above, a module catains type de nitions and IL
code.

One or more modules can be embedded in an assembly. An assemli$ a logical unit of
functionality, containing one or more modules. Thus, a .NET application can be packaged into
assemblies, which respectively are called a single- le asmbly and a multi- le assembly. The latter
can also contain resources as images or sounds. In Figure 28th a single- le assembly and a
multi- le assembly are represented.

assembly MFA |

{| .module MFA.exe | | .module M1.netmodule |
S — : Al manifest || | metadata |
: assembly SFA [metadata I] IL code |
{| .module SFA.exe| | | IL code
_ .module M2.netmodule |
g § § [metadata Ik
 (fileimggif) |l IL code ||
(a) Single- le assembly (b) Multi- le assembly

Figure 2.8: Dierence between a single and multi- le assembies and its modules

Note that the multi- le assembly contains multiple modules (which are physical les) and that
one of these modules contains ananifest. The manifest contains information for nding all the
de nitions of an assembly, which is important for loading and running the other modules within
the assembly. Also note that the multi- le assembly can contain images (le img.gif) and sounds
(le snd.wav).

To simplify this research project we only use single- le asesmblies.

2.2.3 Namespaces

The namespace concept is used to group functionality withinunigue names. The name of the
namespace is often the same as the name of the le in which theotle exists, but it is also possible
to have multiple namespaces in one single le or to have a nangpace that spans over multiple
les. To prevent equally named namespaces colliding with eeh other, they are contained within
assemblies.

The Intermediate Language has no distinct concept ofcurrent namespace A type is always
referred to by its full name, relative to the assembly in whid it is de ned.

2.2.4 Methods

Operations associated with a type or with instances of a typeare called methods. There are
two types of methods, namely static methods (class methodsand instance methods. The major
di erence is that static methods are not connected to an objet and cannot access any object

2.2 The Intermediate Language 17

methods or attributes. A static method thus is only associaed with the type itself, instead
of with an instance of that type. Static methods do not have aninstance pointer (this). The
arguments of static methods are indexed, starting with 0.

Instance methods are methods that are associated with an innance of a reference type, and
can be virtual and nonvirtual. Virtual methods are those that can be replaced and overridden by
subclasses, whereas nonvirtual methods cannot. Instanceeathods have access to théhis pointer
as unlisted rst argument at index 0, which they can use to acess public, private and protected
instance members of the enclosing type. When an instance miedbd is called, the stack must
contain the arguments preceded by the instance pointer.

A method is identi ed by its name, class type, and signature. When calling a static method,
the type of the class is needed. And when calling an instance ethod, an instance of a class
type needs to be provided. The signature exists of the returrtype of the method, the number of
arguments and the argument types. When a method is called, ta CLR searches for a method
containing the same name, type and signature as provided inhe call. As soon as a matching
method is found, the arguments (which should be placed on thestack prior to calling) are copied
from the stack to an array that holds the passed arguments.lfthe init directive is present, the
local variables are initialized to the type's default value. For example a variable of value type
int32 is initialized to the value 0. If the init directive is not present, is deemed unveri able in a
security check performed by the CLR [15]. After initialization of the local variables, the method's
evaluation stack is empty and the execution of the rst instruction can start.

When the method reaches the last instruction, which is theret statement, the return value (if
available) needs to be on the evaluation stack, and the methd state transfers control to its caller.

2.2.5 The IL Instruction Set

The IL instruction set provided in Partition Il of the CLI Sp eci cation [6] is partitioned into two
sections, called base instructions (e.g. addition and sulsaction) and object model instructions.
There are over 220 instructions. A full documentation of the IL instruction set can be found in
the CLI speci cation [6].

Most IL instructions perform their actions by using the evaluation stack that is associated to
each method state (see Figure 2.6). For example an add exprasn that adds two valuesvaluel
and value? yields aresult. What happens in IL is represented in Figure 2.9. The two vales are
pushed on the stack by using theldc instruction. Subsequently an arithmetic operation (add) is
executed, which pops the two values from the stack and replaes them with the resulting value.
Note that valuel value2 and result represent actual values.

value2
‘ ‘ valuel valuel result
Idc.i4 valuel Idc.i4 value2 add

Figure 2.9: Execution of instructions on the stack

The .NET Intermediate Language contains instructions that are completely independent of
the type of their arguments [19]. For example, it is possibleto use the same instruction to load a
value of a local variable on the stack for both an integer and aoating-point number. The reason
for this design decision is that Microsoft wanted the creatbn of source-to-IL compilers to be as
easy as possible, in order to extend multi-language support

Sometimes IL instructions are used with an e cient encoding. For example, for loading an
argument onto the stack, it is possible to either use the instuction Idarg <num> (for which an
intl6 number represents the index), or the instructionsidarg.0 , Idarg.1 , Idarg.2 and Idarg.3
which are encodings for the most often used arguments of a miedbd. The rst instruction needs
an extra two bytes of memory for the index, while the other indructions have the index encoded in

18 The .NET Framework

the instruction. Furthermore, the CLR does not need to read the instruction argument, resulting
in some performance gain. For indices 4 to 255 it is also po$de to useldarg.s followed by an
int8 number representing the index, which is called a short form.

The IL instruction set can be categorized further than the previously mentioned categories
base instructions and object model instructions, as presdrd in the following sections. For a full
and detailed list of instructions, we refer to [6].

Load and store instructions

These are instructions used to load values or references antthe stack and retrieve them from
the stack to store them at their home locations. Typical exanples of such instructions areldarg ,
Idloc , Idobj and their counterpart instructions, being starg , stloc and stobj .

Arithmetical, logical and type conversion instructions

To be able to support arithmetical operations, IL contains typical arithmetic instructions such as
add, sub, mul and div . IL also supports logical instructions (called bitwise ingructions in the IL
speci cation[6]) like not, and and or. An example of a type conversion instruction isconv, which
is available to convert the value on top of the stack to the spei ed type.

Branching instructions

In IL there are a number of instructions that are used to control the ow of execution. We distin-
guish conditional and unconditional branch instructions. Conditional branch instructions either
take one value from the stack (and check whether a condition jgeci ed by the used instruction
is true) or they compare two values on the stack. Depending orthe outcome of the condition a
branch follows. For example, the instruction brfalse adjusts the control ow if the value on the
stack isfalse . Another example is the instruction beq which stands for “branch on equal'. In this
case the control ow is adjusted to a target if the top two values on the stack are equal. In both
cases, the program does not branch and continues executingpé next instruction if the condition
is not satis ed.

Unconditional instructions are instructions that do not de pend on a condition. An example of
such an instruction is br, that unconditionally branches to a speci ed target.

Miscellaneous instructions

Beside previously mentioned instruction types, IL also comains instructions like calls and a return
instruction.

There are di erent types of call instructions in the IL. call is used for calls to static methods of
which the destination is xed at compile-time, while callvirt uses the class of an object (known
at runtime) to determine the method to be called. The callvirt instruction is used for both
instance methods.

The return instruction ret , which is used to return from a method, is performed without any
condition. The value that is on the evaluation stack, if there is any, is copied to the evaluation
stack of the caller and control is transferred to the caller.

2.2.6 Generics

Generics allows de ning a class or method without a speci ¢ type. The de ned item can then be
reused with several types. Generics provides type safety atompile-time.

The generics concept is introduced in version 2.0 of the .NETFramework, but is not imple-
mented in our translator.

2.3 Our Work 19

2.2.7 Name Resolution

Names in the IL exist of a simple name or of a composition of simple names with connection
symbols such as a dot. For exampleSystemand Object are simple names, whileSystem.Object
is a composite hame. A composite hame is also calleddotted name

The common pre xes of full class namesare called namespaces The full name of a class is a
dotted name. The last simple hame of the dotted name is the clss name. For example the dotted
name System.Object . Here Object is the class name andSystemis the namespace.

[Mscorlib]System.Object:: ToString()

Assembly Dotted name Method
A

Class Class
(namespace)

Figure 2.10: A method call, referenced by its assembly and dted name.

A class is scoped to a particular namespace, and a namespace scoped to the provided
assembly. If no assembly is provided, the namespace is scap® the current assembly.

2.3 Our Work

In the rest of this report { especially in Chapter 4 and Chapter 5 { we treat the .NET concepts
that we have implemented. These cover the implementation ofa stack representation, support
for integer types and object types, and the ability to instantiate objects and call both static and
instance methods. The instructions we treat are involved wih arithmetical operations as well as
instructions that do comparing and branching. We also implanented support for instructions that
are used to explicitly load and store values from and to argurants, elds, locals, and the stack.

2.4 Summary

In this chapter we have introduced the Microsoft .NET Framework. We have recalled what Mi-
crosoft's objectives are for developing the .NET Frameworkand which components the framework
consists of. We have explained that the Common Language Ruinne is the environment in which
.NET applications are executed. It uses IL code as input and empiles this to native code, prior
to executing it. This process is called JIT compiling. Besias the execution of IL by the CLR, we
have introduced the Common Type System and Common Languagefci cation.

Furthermore, we told something about how IL is stored in a binary format in a so-called
Portable Executable le. This le is loaded by the Virtual Ex ecution System, which is part of
the CLR. We also have introduced some aspects of code managent, which covers the usage
of a stack and heap. The stack is used by the CLR to store interradiate values and references
on. The heap is a dynamic storage area in which objects of class and arrays can be stored.
When executing a program, each method gets a method state agmed. A message state contains
information about the environment within which the method e xecutes, like an instruction pointer
and lists of input arguments and local variables.

The Intermediate Language was also introduced in this chaptr. We have told something about
directives, which are commands that ask the runtime-envirmment to perform a task, as well as
about modules and assemblies. Modules are physical les thiacan be embedded in an assembly,
which is a logical unit of functionality. The IL also uses namespaces, which can be used to group
functionality within unique names. We also mentioned methads, which are operations associated
with a type, and what happens when they are called. There arewo type of methods, namely
instance methods and static methods.

The IL instruction set contains over 220 instructions that can, among others, be used to load
and store values or references on the stack, perform arithntieal or logical operations, do type
conversions, and adjust control ow. Furthermore we have ako mentioned how names and name
resolution look like in IL.

Chapter 3

Graphs and Graph
Transformations

Graphical structures like charts and diagrams, are often ued to represent complex data and
structures in an intuitive way. A graph is such a graphical structure, and is applied in di erent
areas like route planners, electric circuits, job schedulig and train-networks.

Den HelderT

Leeuwarden Groningen

Hengelo
Rotterdam

.
Roosendaal '

O Eindhoven

Vlissingen()

Maastricht O

Figure 3.1: A graph representation example

Figure 3.1 is an example of a graph. It represents a number ofoad connections between cities
in The Netherlands, the nodes representing cities and the egkes being the roads. The cities contain
labels with the name of the city. In this example we omitted the labels on the edges. However,
edges could be labelled with names (of the roads) or values dpresenting distance, fuel usage,
travel time, travel expenses, etcetera).

In this research project, we use graphs to model the compil&éme and run-time structures of
a program. A compile-time structure can be a concrete or abstct syntax representation of an
arbitrary program. The run-time structures of a program are state snapshots of the program while
being executed. Graphs are useful for this because they haweformal background, are intuitive
and can be used for modelling many di erent application area. We think that graphs are useful
for representing the compile-time structure of a program, & well as the run-time behaviour of a
program involving dynamic (de)allocation of storage spaceand dynamic method invocation. The
behaviour of software programs is simulated by (repeatedlytransforming one graph into another.
To transform one graph into another graph we usegraph production rules Production rules are
described in Section 3.2.

22 Graphs and Graph Transformations

Throughout this chapter we use Pacman examples to explain dérent concepts. These exam-
ples are based on the examples presented in [8].

3.1 Graphs

A graph is a mathematical structure. We use edge-labelled giphs de ned over a setLab of labels,
as follows [12]:

De nition 3.1 (Graph). A graph Gis a tuple N od; Edgi where
Nod is a nite set of nodes;
Edg Nod Lab Nod is a (nite) set of edges.

The graphs we use are directed graphs, i. e. for each edge westiliguish between itssource and
target node. Furthermore, as follows from the de nition, edges hae a label and nodes can not.
It is possible to create an edge with the same source and targ@ode, i. e. self-edges of a node.
Self-edges can be considered as a way of labelling nodes. Adeocan have multiple self-edges and
thus multiple labels. In this setting, it is not possible to have more than one edge with the same
source, target and label, i. e. parallel edges.

3.1.1 The Pacman Example

An example graph, bases on the Pacman game, is given in Figui2. In the graph a number of
nodes are shown, namely the dots, and the gures of Pacman, # ghost and the apple. The grid
of dots and the edges between them represent the elds to whitPacman, the ghost and the apple
are bound. The normal behaviour would permit both Pacman andthe ghost to be able to move
over the grid. To keep this example simple, we assume the ghtssto be xed to a speci ¢ node in
the grid. For simplicity, we also omitted the labels on the edyes.

.

Figure 3.2: Graph representation of Pacman

»

3.2 Graph Production Rules

To transform a graph (source graph) into another graph (target graph), we use graph transforma-
tion rules. Graph transformation rules are also calledgraph production rules

A graph production rule p has the formp: L ! R, in which L represents the left hand side
(LHS) graph and R the right hand side (RHS) graph.

A match for p: L ! R in some graphG is a total morphismm :L ! G, i.e. the occurrence
of p's LHS in G. Applying rule p means nding a match of L in the source graphG and replacing

3.2 Graph Production Rules 23

L by R, leading to the target graph of the graph transformation[7, 8]. This replacement is not
complete, because the structure is preserved wherever the and R overlap[13].

Application of a production rule can be written as G 1™ H, meaning that graph G is trans-
formed into graph H by using production rule p at matching m. It is possible that p has multiple
matchings of its LHS in graph G, but also that multiple rules are applicable to the same grah.

Production rules can be extended withnegative application conditions (NACs, see [7, 10]). A
negative application condition limits the applicability o f a rule by extending the rule's LHS. A
rule p will only be applied to a source graphG when the LHS matchesG and if that matching
cannot be extended to a matching of any NAC of that rule.

3.2.1 The Pacman Example - Production rules

An example of a production rule in the context of the Pacman gane is presented in Figure 3.3.
According to this rule, called move, Pacman moves to a new position by removing the edge between
Pacman and a noden (e. g. the left node in the rule below), and placing an arrow béveen Pacman

and the neighbour node ofn.
s» o<7

Figure 3.3: Production rule to move Pacman

Of course it is also possible to simulate the behaviour of a gbst eating Pacman, or Pacman
eating an apple. See for example, Figure 3.4.
eat T

XL T] [X
A co &

(a) Rule of Ghost killing Pacman (b) Rule of Pacman eating an apple

Figure 3.4: Two additional production rules

In Figure 3.5 the application of a production rule is displayed. For this example, we use the
already introduced production rule for moving Pacman and the graph representing Pacman and
the grid of nodes. (For space reduction, we have presented gna part of this graph.)

In this example, we have a production rulep consisting of left hand sideL and a right hand
sideR and a transition betweenL and R. There is a matchingm betweenL and the source graph
G. This is indicated with the dashed and dotted arrows. Now tha there is a matching m of
rule p, it is allowed to transform graph G by replacing the matched nodes ofL by the nodes of
R, resulting in a graph H. Note that the arrow in graph G, denoting the position of Pacman, is
deleted and that in graph H a new arrow is constructed. Thus, Pacman has been moved fronne
position to another.

As mentioned before, production rules can be extended with RCs. In Figure 3.6 we extended
the previously introduced rule to move Pacman from one node @ another (see Figure 3.3) with a
NAC. In this example, Pacman may only move to a node when therds not a ghost positioned at
that same node.

To execute this rule, a matching m between the LHS of the rule and the source graph must
exist. Furthermore, the elements of the NAC must be excludedfrom the source graph. If this is

24 Graphs and Graph Transformations

Left Hand Side () Right Hand Side R)

- ~o ~
¢ RO SS
_-7 A N
p: L—R S N
. —_— . ~
. ~ \
N ~ \
- _ N ‘\\ \
- B ~ I
L~ 8 NI
. N
8 ~
- ~ /N
_ — . _ _
- .
_ —
- I

Production Rule

Application of production rule

+

Graph G Graph H

Figure 3.5: Example application of production rule

T
K

Figure 3.6: Production rule to move Pacman, containing Negéve Application Condition

the case, the NACs are satis ed and the rule can be applied by eplacing the matched elements
of the LHS by the elements of the RHS of the rule.

3.3 Graph Production System

A graph production system(GPS) consists of a set of graph production rulefR and a start graph
I. The GPS can be used to generate a (possibly in nite) state spce by applying production
rules p 2 R to the graphs, starting with graph I. All the resulting graphs can be seen as state
shapshots (states), and the application of the rules as tragitions between the states. The set of
graphs and transitions between these graphs, we call graph transition system (see also [14]). A
graph transition system always contains an initial state. Furthermore, it can have intermediate
states and a nal state if the state space is nite.

3.3.1 The Pacman Example - Graph Transition System

In the context of the previously introduced Pacman example, we present an explanation of a
graph transition system. For this example, we have taken thegraph presented in Figure 3.2
as start graph. When applying the rules from Figure 3.3 fnove) and Figure 3.4 (kill and eat)
whenever possible, we get the graph transition system displyed in Figure 3.7.

Note that a state can have transitions from one state to anotter (and possibly back). Each
transition represents the application of a production rule (move, eat or kill). The two highlighted
states match with the source and target graph themove production rule as explained in Figure 3.5.
Furthermore, we can see that once the apple has been eaten,dfe is no way back to a state having
an apple positioned at the grid. Also, we can see that once Pasan has been killed by a ghost,
there are no applicable rules left.

3.4 Graph Transformation Tool 25

Start state ————

-~
e
1
\ | @
N
N
N
/
/
.
-

!
move move move | @)
—= \ /
/
State State State / N ~ e
0

move move move move move \\ -

\
/ 1 \
]

kil ~move move eat move move

|
\ /
N /
State State State AN e
No actions \\\\\ T
available move move move -

kil move move move move

oo

Figure 3.7: Transition system of Pacman example

3.4 Graph Transformation Tool

The tool we use for performing graph transformation is GROOWE [22]. GROOVE stands for
GRaphs for Object-Oriented VEri cation. With this tool it i s possible to specify graphs and
production rules. It can also execute these production rule, which results in a graph transition
system.

In GROOVE, graphs are represented by blocks for nodes and aows for edges. Self-edges are
represented as an arrow with the same start and end node, or aa label on a node (inside the
rectangle).

Furthermore, GROOVE o ers the LHS, RHS, and the NACs of a production rule to be rep-
resented in a single graph. To accomplish this, the productin rules used by GROOVE consist of
four di erent types of nodes and edges, each having di erentshapes and colours [21, 13]:

reader-elements are elements that occur in both LHS and RHS. They hee to be present in
the source graph to match the LHS and are preserved in the targt graph. Reader-elements
are represented by thin solid black arrows and rectangles.

eraser-elements are elements that occur in the LHS but not in the RHS They have to be
present in the source graph to match the LHS, but are deletedn the target graph. Eraser-
elements are represented by thin dashed blue arrows and reagles.

creator -elements are elements that do not occur in the LHS but do ocauin the RHS. They
have to be absent in the source graph in order to be introducedh the target graph. Creator-
elements are represented by thick solid green arrows and remngles.

embargeelements are elements that prohibit the application of therule when they exist in
the relating matching in G. Embargo-elements are making up he NACs and are represented
by thick red dashed arrows and rectangles.

3.4.1 The Pacman Example - GROOVE

An example production rule used in GROOVE is displayed in Figure 3.8. In this gure, which
is based on the rule presented in Figure 3.6, it can be seen thahis rule only is applicable if
Pacman and two adjacent nodes are available in the source gph. Pacman also must be at the
node the eraser-element points to. If this is the case, the ebargo-elements are checked. The
embargo element for this rule states that no Ghost may be posioned at the node adjacent to the

node Pacman is positioned at. If so, the rule can be executedhe eraser-element is deleted and
the creator-element is created.

26 Graphs and Graph Transformations

Qineighhuur

pusﬁiun position position

[Pacman] $Ghost 2

Timunr

Figure 3.8: Example production rule in Groove

3.5 Summary

This chapter introduced the concepts of graphs and graph trasformations. We have told that our
graphs contains nodes and labelled edges. Furthermore, weate mentioned that it is not possible
to have parallel edges. A (source) graph can be transformeadhio another graph (the target graph)
by using graph production rules. A graph production rule canbe applied to a source graph when
the left hand side of the production rule has a matching in the source graph, but only when
negative application condition are satis ed.

Furthermore, we have provided a brief description of the grghical notation of graph transfor-
mations in the GROOVE tool set. There, we distinguish four types of nodes and edges, namely:
reader, eraser, creator, and embargo elements.

In this research project graphs are used to model compile4tne and run-time structures of a
program, while graph transformations are used to representhe behaviour of the program.

Chapter 4

Translating IL Programs to
Graphs

Before introducing the developed graph production rules inthe next chapter, we focus on the start
graph to which the graph production rules are applied. This gart graph is an abstract model of
the IL program to be simulated. Because the .NET language coipilers generate IL bytecode, and
the GROOVE tool set needs a graph as input, a translator is deeloped that translates arbitrary
IL programs into a graph representation of that program. Sud a graph is called an Abstract
Syntax Graph (ASG).

This chapter starts with a description of the translator. We will introduce the structure of the
translator, what its input is and which operations are performed on this input. In Section 4.2 a
meta-model of the ASG is shown and discussed.

In Section 4.3, we propose a representation for namespacedMe also discuss how method
signatures are calculated, how they are represented in thergph, and how existing method signa-
tures are resolved. Additionally, Section 4.3 contains a dscription of the static analysis process
performed by the translator.

After discussing static analysis, we present an example in hich we translate two equivalent
programs written in di erent .NET languages (i.e. C# and VB. NET) to the .NET IL. In this
example, we will show that both programs will result in two IL programs having comparable
semantics. Furthermore, we will provide an example of the tanslation of an IL program to an
ASG.

4.1 Translator

The translator uses a textual IL program as input. This textual IL program is obtained by
disassembling a Portable Executable le (see Section 2.1)5using the disassembler calledidasm .

The tool ildasm is incorporated in the .NET Framework SDK 2.0, which is freely available from
the Microsoft website!. Because we are disassembling a program that has already bedype

checked by the compiler that created the PE le, we can assumehat the program is type correct.

Note that this only applies to type errors detectable at comgle-time and not at run-time (such

as explicit type casting of objects). Because we assume thadrograms are correctly typed, we do
not perform any type checking in neither the translator nor the production rules.

During the translation phase, a textual IL program is read and transformed into a graph
representation of this program. To do this, we could implemet our own translator from scratch
or use a compiler generation tool that creates one for us. Imlementing a translator from scratch
would involve a lot of work. Therefore we have chosen to use aoenpiler generator tool called
ANTLR[2]. ANTLR uses grammar speci cations as input and automatically generates a translator

1 Download .NET Framework SDK 2.0 from: http://msdn2.microsoft.com/en-us/netframework/aa731 542.aspx

http://msdn2.microsoft.com/en-us/netframework/aa731542.aspx

28 Translating IL Programs to Graphs

according to this speci cation. We obtained a grammar for a NET Intermediate Language parser
(written by Pascal Lacroix) from the ANTLR website, which ha d to be modied due to non-
determinism. The grammar le for the tree walker is our own implementation. The generated
translator consists of alexer, a parser, and atree walker.

Lexer The lexer scans the input le (i.e. an IL program) and chops it into pieces called tokens.
These tokens are sequenced into a stream { called a tokenstie { and sent to the parser.

Parser The tokenstream is used as input for the parser which createan Abstract Syntax Tree
(AST). An Abstract Syntax Tree is a tree-shaped abstract representation of the program. The
AST can be used to transform and order program information. Rirthermore, it is used to omit
syntactic information from the original program without lo sing its semantics. This makes it easier
to process it further by the tree walker.

Tree walker A tree walker is used to visit all nodes in the AST and to createa new structure
in the form of an Abstract Syntax Graph.

An overview of the translation process is presented in Figue 4.1. The rectangles represent the
input and output of the di erent parts of the translator. The labels on the edges denote the parts
of the translator that are responsible for translating an input into an output.

Translator Textual
.NET Intermediate Language
Program

Lexer

Token Stream

Parser

Abstract Syntax Tree

Tree Walker

Abstract Syntax Graph

Figure 4.1: Overview of the translator

The result of the translator, the Abstract Syntax Graph, is used as GROOVE's start graph
for simulation using graph transformations. This is explained in Chapter 5.

4.2 Meta-Model Abstract Syntax Graph

In order to formalize and give an overview of the structure ofthe ASG, a meta-model has been
designed. Because this meta-model is too large to t in one gre, it is spread over multiple
gures, which are Figure 4.2 to Figure 4.5. Together, these gures describe the concepts that are
used in the ASG, and the relations between these concepts.

4.2.1 High-level structure

We start with a meta-model containing the overall structure of the ASG. This model is shown in
Figure 4.2.

4.2 Meta-Model Abstract Syntax Graph 29

name 1

methods

— M 4|Embly

contains *
|_Meth0d |
Program ()
1 body
* contains * 0.1
contains 1 type Local MethodBody
1 next 0.1
Type e
instruction directive
returnType
type 1
P Instruction | | entrypoint
next 0.1
0.1 1 has
< Class
extends %
parameters * callConv
fields 0.1 next
w Paranilew‘_l— CallConv
* next 0..1]
name 0.1
Identifier
1 name
attribute
attribute
N Attribute k
attribute
next 0.1

Figure 4.2: Meta-model of the Abstract Syntax Graph

The rest of this section contains a description of the concefs presented in the meta-model
presented in Figure 4.2. Note that this contains twoldenti er nodes. Bothldenti er nodes represent
the same concept of an identi er and were put in the model for peventing too many crossing lines.

Program The Programconcept is the root of the graph and represents a parsed IL prgram. A
Programcan contain Namespacg, Types and Assemblg.

Namespace A Namespaceepresents the logical grouping of the names used within a mgram.
They can be nested in an IL program, but we choose to represerthis in a non-nested man-
ner, because classes are always referenced by its fully quetl name. For more information see
Section 4.3.1. ANamespacean contain Types, in the form of Clases.

Assembly The Assemblyconcept represents a logical unit that can holdClasgs andNamespace.
Furthermore, an Assemblyis identi ed by a nameand can haveAttributes. We use theAssembly
concept (at this moment) only to determine whether or not classes from the .NET Class Library
are called.

Type The Type concept represents types like classes and value types. Seecson 4.2.2 for more
information.

Class The Classconcept is a subtype of theType concept and represents a class declaration. A
Classcan extend another Class has aname (which is identi ed by its Identi er) and can contain
Fields and Methods.

30 Translating IL Programs to Graphs

Signature The Signaturenode is used to represent method signatures. A method signate
contains the method's return type, the calling convention, and the method's parameter types in
an ordered way. The signature is determined by the parser; hw this is done will be explained in
Section 4.3.2.

Method The Method node represents a method declaration. A method declaratiomlways has
a Signatureand must have aMethodBody.

MethodBody MethodBodyrepresents the method's implementation.

Instruction Instructions are denoted by the Instruction concept. Section 4.2.4 discusses the
individual instructions.

Identi er The Identi er node represents a name that is used to name an element.

CallConv CallConvrepresents the calling convention of a method. The calling anvention de-
notes whether or not the call is to a static method.

Parameter The Parameterconcept represents a formal parameter in a method signaturand
describes variables which are accepted by a method?arametes are of a certainType, may have
a name(identi ed by the Identi er concept), and are contained in the methodSignature

Field The Field node represents the declaration of a eld. AField has aname (identi ed by
Identi er), attributes (denoted by Attribute), and has atype relationship to the Type to denote its

type.

Local The Localconcept represents the declaration of a local variable. A.ocalcan have aname
(identi ed by Identi er), and has a relationship to the Type to denote its type.

Init The Init concept is used to denote that theLocal variables of a MethodBody must be ini-
tialized to their default values.

Attribute The Attribute concept represents available attributes. It is further exdained in Sec-
tion 4.2.3.

Entrypoint The entrypoint concept denotes the start point of executing aProgram

4.2.2 Types

This meta-model (see Figure 4.3) describes the types that & available in the ASG. The following
types are supported in our ASG and production rules.

bool The bool concept represents the type bool (i. e. boolean) of which thealues can be either
a true (non-zero) or false (zero).

char A value of type char can hold a single Unicode character.

string The string concept represents the type string. An instance of type stmg is a sequence of
characters.

4.2 Meta-Model Abstract Syntax Graph 31

—| int8

int16

Class |

char
string int32

float32 int64

float64 void

Figure 4.3: The types in the ASG meta-model.

oat32, oat64 The concepts oat32 and oat64 represent oating-point types (which describe
oating-point values). Note that this concept is not used (yet), because GROOVE does not
support oating point values.

int8, intl6, int32, int64 These nodes represent integer types of di erent sizes (reggtively
1, 2, 4, and 8 bytes). We do not distinguish between these typeduring run-time simulation using
production rules, because we do not have a notion of memoryizes.

void The conceptvoid is only used as a return type, indicating that a method does nbreturn
a value.

Class The Classnode represents a class type which can contaifields and Methods. See Fig-
ure 4.2.

4.2.3 Attributes

The meta-model presented in Figure 4.4 contains a descriptin of the di erent kinds of attributes
available. These attributes are at this moment not used in the production rules, but we have put
them in the graph for possible future extension.

Attribute

/\

ParamAttribute | |ImpIAttribute | |MethodAttribute | |CIassAttribute | |AssemnyAttribute | |FieIdAttribute

Figure 4.4: The attributes in the ASG meta-model.

Examples of well known attributes are private , public , static , and abstract . For all the
di erent types of attributes, we refer to the ECMA speci cat ion [6].

4.2.4 Instructions

The instructions denoted by this meta-model are the .NET IL instructions that a method body
can hold. The instructions we support are given in Figure 4.5

Although we have presented all supported instructions in the meta-model, we do not discuss
all instructions individually. However, we would like to hi ghlight a few important and interesting
instructions. Note that IL instructions have a strong resemblance to instructions in assembly
languages.

32 Translating IL Programs to Graphs

has

- 1 name
0.1 methodName
target 1 Identifier
ceq 1 string
o L e] ,
1 methodSignature
Constant Idc >|| Signature
value 1
typeSpec
N [T N e]
1
type 1
ret callvirt
Idnull Idfld f
nop Idsfld ;

Figure 4.5: The instructions in the ASG meta-model.

Instruction See Section 4.2.1.

Label The Labelconcept denotes a label that is used to tag an instruction, wich can be used
as a target to branch to. In this project a label always is repesented by anldenti er.

ceq, clt, cgt The ceq clt, and cgt instructions stand for compare if equal, less than, and greter
than. When executing these instructions, two values on the tack are popped, compared, and
the result of this evaluation is pushed back on the stack. Theresult is 1 (of type integer) if the
evaluation yields true, otherwise 0.

add, sub, div, mul, rem These arithmetical nodes represent arithmetic instructions, namely
addition, subtraction, division, multiplication and rema inder (modulo).

Idc The instruction Idc loads aConstantvalue on the stack.

call, callvirt, newobj The concepts call and callvirt represent static and dynamic calls, re-
spectively. The instruction newobjrepresents the creation of a new object. All three instructons
are related to the Signaturenode, representing the signature of the method to call. In cae of
the newobjinstruction this is the constructor's Signature Furthermore, the instructions use an
Identi er representing the name of the method to call. Also, they are related to a type which
represents the class of which the method must be called, or {ni case of thenewobjinstruction {
of which an object must be instantiated.

4.3 Design Decisions 33

ret The ret instruction is used to return from a method to its caller. In t his project we assume
that a method is always ended with aretinstruction. In IL there are other possibilities to termina te
a method, i. e. with throw or jmp, but these are not supported yet.

ldd, std The Id d instruction is used to load a value from an instance eld to the stack, and
the std instruction is used to store a value from the stack to an instance eld. Both the Id d and
std instructions use an edge with labeltypeSpecto refer to the type of the instance of which the
eld that the value that is loaded or stored is an instance. The nameedge points to an identi er
representing the name of the eld. Furthermore, the instructions have an edge calledype to a
speci ¢ Type to indicate the type of the eld.

Idarg, starg The instructions Idarg and starg are used to load the value of an argument on the
stack and store a value from the stack to an argument, respeotely. The argument is indicated
by a Constantvalue representing theindexof the argument.

Idloc, stloc The Idloc and stlog instructions are used to load a value from the stack to a local
variable, and vice versa. The used local variable is indicad by its Constantvalue representing
the index The typeSpecedge indicates the type of which the object is an instance ofThe name
of the eld is referred to by an Identi er node.

br, bne, blt, bgt, beq, brfalse, brtrue These instructions represent branch operations.
The instruction br represents an unconditional branch to an instruction boundto a specic
Labetepresenting its target. The other instructions depend on he evaluation of a condition.
If the evaluation yields true , then the control should branch to the target-instruction r epresented
by the Label Otherwise, the control is transferred to the next instruction.

Type See Section 4.2.2.
Identi er See Section 4.2.1.

Signature The Signatureconcept represents a method signature and is used to locateraethod
implementation.

Constant The Constantconcept stands for GROOVE's way of representing an actual vlue of
a speci ¢ type, which can only be integer, boolean or string.

4.3 Design Decisions

Implementing the translator came along with a number of prodems. Decisions about the rep-
resentation of namespaces, classnames, signatures andntlers had to be made. These design
decisions are discussed in this section.

Furthermore, we do not only discuss the representation of tlese concepts, but also describe
the process of static analysis in this chapter. During this $atic analysis phase, namespaces and
classnames are transformed in order to meet their speci edapresentation to be able to use them in
graph production rules. We also describe how method signates that are not explicitly available
in the program are computed and stored in the nal graph. Furthermore, the process of resolving
identical string values of identi ers is part of static anal ysis.

34 Translating IL Programs to Graphs

4.3.1 Classnames and namespaces

In the IL it is possible to have nested namespaces, which we Wiexplain on the basis of the
example code of Listing 4.1. We have left out the details in tlis pseudo code in order to emphasise
the namespace structure.

The example shows that it is possible to have a nhamespacA.B, which stands for a nested
namespaceB in namespace A. Furthermore, a namespace is nested in a hamespac® to create
the nested namespac®.E. Also, classes can be declared in a namespace. Clas3e¥, and Z in
the example are declared in the namespacd3and D.F, respectively.

.namespace A {
/I This is namespace A

}

.namespace A.B {
/I This is namespace A.B

}

.namespace A.C {
/I This is namespace A.C

}

.namespace D {
/I This is namespace D

.class X {
/I This is a class with the full name D.X
}

.namespace E {
/I This is namespace D.E
}

.namespace F {
/I This is namespace D.F

.class Y {
/I This is a class with the full name D.F.Y

}

.class Z {
/I This is a class with the full name D.F.Z

}
}
}

.namespace G.H.l {
/I This is namespace G.H.|

}
Listing 4.1: Namespace IL example

A useful namespace representation in the ASG is needed in oed to use namespaces in pro-
duction rules. Therefore, we propose three alternatives.

Alternative |. Nested namespaces (Figure 4.6(a))

For the rst alternative we use a real nested structure as onecan encounter in a program. Each
namespace node represents one single name of the full namaesp. Thus, as present in our example,
the namespaceA.B would consist of a namespace nodA as child from Program, and a namespace
node B as child from namespace nod@& The advantage of this representation is that we maintain

the nesting structure. On the other hand, using this represatation, it is quite hard to directly

4.3 Design Decisions 35

resolve a nested namespace by its full name. For example, irhis representation resolving the
namespaceA.B by using production rules would involve multiple production rules to resolve each
(sub)namespace.

Alternative II. Flat nested namespaces (Figure 4.6(b))

This representation also uses a nested structure of nhamespa nodes, but this time with dotted
name. This has as advantage that it preserves the nested stature, and that it is possible to resolve
namespaces directly by their full name. For example, in Lising 4.1 we declare a namespads.H.I ,
without using the namespacesGand G.H

Alternative IIl. Flat namespaces (Figure 4.6(c))

This representation uses dotted names for the namespacesérelates them directly to the Program
node. Thus, nesting information is not explicitly available. This is not a problem because in IL
no relative names are used without using a fully quali ed name. This representation is easier to
implement, because every namespace node can simply be atterl to the Program node.

Program

Program

v] [#8] [ac] [og] [oF

(a) Single names, nested (b) Dotted namespaces, nested

Program

'Ac| | D | |DE|

(c) Dotted namespaces, attached to Program

Figure 4.6: Namespace representation proposals.

We have chosen for the third alternative and will represent ramespaces in the ASG by using
dotted names, attached to the Program node. To get this result in the ASG for an arbitrary
program, the translator must transform the namespaces and lasses to this representation into full
names (in case these names are not already in this represetitan).

The translation of the namespaces and classes is performed ithe parsing phase (Section 4.1).
When the translator encounters a namespace declaration, ifooks if a higher-level namespace
was already declared (i.e. if the namespace is nested withianother namespace) and stores a
combination of the higher-level namespace (if available) ad the new one both in memory and
in the Abstract Syntax Tree. The same holds for classnames. Wen the parser encounters a
classname, it looks if a namespace was already declared foni$ scope. This means that the
classname is nested within a namespace and that the classnarhas to be combined with the
namespace.

36 Translating IL Programs to Graphs

Transforming the code of Listing 4.1, results in the graph reresented in Figure 4.7. Note that
this still is a stripped down graph, merely to explain what the namespace structure looks like.

— Py
| \ | \ Namespace
I I I
hame name hame hame contains hame hame contains contains hame
¥ ¥ I3
A AB AC D DE DF GHI
Identifier Identifier Identifier Identifier Identifier Identifier Identifier
name hame name

Figure 4.7: ASG of Listing 4.1.

What we did not mention up to now is that classnames and namesgaces are stored in the
Abstract Syntax Tree in order to be able to create method sigratures (as described in the next
section). Method signatures are used for resolving methodatls during the simulation phase.

4.3.2 Method signatures

A signature of a method is de ned by its calling convention, its return type, and the number, order,
and types of the parameters. Note that a method signature in L does not contain the name of
the method. This is for example in contrast to Java, where thesignature contains the name of
the method along with the number and types of the parameters &nd their order). Methods are
compatible when they share the same signature. But when a mébd is called, the method lookup
is performed by using the method name combined with the correponding signature as speci ed
in the call.

Our solution is to create uniqgue method signature nodes, andeferences to these nodes, by the
translator. After determining the signature, a lookup is performed on a set containing references
to existing signatures. If the signature already exists, anedge is created to the node representing
this signature. If the signature does not exist, we create tle nodes representing the signature,
store it in the set of signatures, and create an edge to the naalrepresenting the signature.

CallExample name -Class
Identifier

method typeSpec

name —{"1ENUMeT L ethodName] Instruction
print call

methodSignature
has

first, parameters

type

Figure 4.8: Graph representation of a referenced signatute

4.4 Translating C# and VB.NET to IL 37

Figure 4.8 contains an example of how signatures look like ahhow they are referred by method
calls. The class, namedCallExample, contains a method with the nameprint . For this method, a
signature is created with void as return type. Furthermore, the signature shows that the mehod
print accepts a string as parameter. The gure also contains a calinstruction that calls the
method print of classCallExample with a specic signature, namely the method with return
type void and a parameter of typestring . Now that the signatures are resolved, it is possible to
nd the correct method implementation during simulation.

4.3.3 Identiers

Identi ers values, such as names, are represented by one nedor each unique denotation. Thus
when two labels have the same name, this is represented by twiabel nodes both pointing to one
single node with the identi er name as its label. This is accanplished by generating a key from
the identi er name and determining if, according to this key, the identi er is already known. If it
is unknown, the node representing the identi er is created. Otherwise the existing node is used.
For example, instructions can contain labels (which are egivalent to identi ers) and can
target to labels. When these labels have the same name, they ust point to the same node (see

Figure 4.9).

has target
name name

Identifier
labelName

Figure 4.9: Relation of labels to identi ers

The idea of this representation is that in the code of the progam physically two labels are
present, but they both contain the same name. Thus, in our repesentation we use two label
nodes, but only one single name node. During static analysisith production rules, these labels
are resolved. O course, it is possible to identify the labe$ (instead of their identi ers) in the
translator, but we have chosen to use graph production rulesn order to provide more intuition in
what happens during this process.

4.4 Translating C# and VB.NET to IL

In the introduction we claimed that when we cover semantics 6 the IL instructions, it should be
possible to simulate programs written in every .NET language. To support this idea, we have
written two simple programs. The rst is written in C#, the se cond in VB.NET. Both programs
were compiled to an executable and disassembled. For the C#nqogram, we used the following
command line options:

csc /t:exe /optimize+ program_name.cs
ildasm /text /out=program_name_cs.il program_name.exe

And for the VB.NET program we used:

vbc /t:exe /optimize+ program_name.vb
ildasm /text /out=program_name_vb.il program_name.exe

38 Translating IL Programs to Graphs

We expect to get two IL les having comparable semantics, butwith slightly di erences in
the used instructions. The C# and VB.NET programs that we have used as input are shown
in Listing 4.2 and Listing 4.3. Because the output of the creded IL code is relative large, two
excerpts are provided that are used to compare with each othe For the interested reader we
disposed the IL code of the metadata and provided the method&n Appendix A.

class Example {
static int theResult;
static int Fibonacci(int x) {
if (x == 0 || x == 1) {
return Xx;

return Fibonacci(x-1) + Fibonacci(x-2);

}

public static void Main() {
theResult = Fibonacci(4);

}
}

Listing 4.2: Fibonacci Example in C#

Module Example
Dim theResult As Integer
Function Fibonacci(ByVal x As Integer) As Integer
If (x = 0 Or x = 1) Then
Return x
End If
Return Fibonacci(x-1) + Fibonacci(x-2)
End Function

Sub Main()
theResult = Fibonacci(4)
End Sub
End Module

Listing 4.3: Fibonacci Example in VB.Net

In this example we use the series of Fibonacti From the generated IL code, we can see that
the body of both the Fibonacci instructions are identical to a large extent. There are a few
di erences that depend on the used compiler. One di erences for example the usage of di erent
comparison strategies for the evaluation part in the if-staement of the body of the Fibonacci
method. The if -statement in line 4 of Listing 4.2 is compiled to the code preented in Listing 4.4,
while the if -statement in line 4 of Listing 4.3 is compiled to the IL code pesented in Listing 4.5.
The C# compiler generates IL code that is slightly more optimized than the IL code generated
by the VB.NET code.

Although we mentioned that di erent .NET languages are compilable to IL, we must emphasise
that for this research project only C# programs were compiled and disassembled to IL.

2 The n™ number of Fibonacci is calculated according to:

Fib(0)=0
Fib(1)=1
Fib(n)= Fib(n 2)+ Fib(n 1), forn> 1

Thus the series is: 0;1;1;2;3;5;8;:::

4.5 Example: IL to ASG 39

IL_0000: Idarg.0 /I Load X
IL_0001: brfalse.s IL_0007 /I Return x if x =0
IL_0003: Idarg.0 /I Load X
IL_0004: |Idc.i4.1 /I Load 1

IL_0005: bne.un.s IL_0009 /I Do not return x if x != 1,
) /I otherwise return x
IL_0007: Idarg.0

IL_0008: ret
Listing 4.4: IL excerpt obtained from C# compiler
IL_0000: Idarg.0 /I Load X
IL_0001: Idc.i4.0 /I Load O
IL_0002: ceq /I Push 1 if x==0, otherwise push 0
IL_0004: Idarg.0 /I Load X
IL_0005: Idc.i4.1 /I Load 1
IL_0006: ceq /I Push 1 if x==0, otherwise push O
IL_0008: or /I Perform bitwise or on two pushed values

IL_0009: brfalse.s IL_000d

IL_000b: Idarg.0
IL_000c: ret

Listing 4.5: IL Excerpt obtained from VB.NET compiler

4.5 Example: IL to ASG

Now that we explained what an ASG is, how it looks like (using ameta-model), and what our
translator does, we present an example of translating an IL pogram to an Abstract Syntax Graph.
We have taken the IL program presented in Listing A.3 of Apperdix A. Translation of this IL
code yields the Abstract Syntax Graph presented in Figure 410.

In general cases, we are not interested in the entire ASG butni particular in the simulation
results. That is, the executed production rules (presentedn the LTS) and the simulation elements
of the generated graphs. This is the topic in the next chapter

4.6 Summary

This chapter started with an introduction of the translator that is implemented to generate an Ab-
stract Syntax Graph from arbitrary IL programs. We have described the di erent parts (i. e. lexer,
parser, and tree walker) of the translator and their purpose Furthermore, a description of the
ASG is presented in the form of meta-models. All nodes and thie relationships to other nodes
are described.

Also, the design and representation decisions are presertén this chapter. These are decisions
with respect to the representation of classnames and nameapes, calculation and representation
of method signatures, and representation of identi ers.

We have closed this chapter with a small example of a transldbn from C# and VB.NET to
the Intermediate Language. In this example we show that the sed instructions of the resulting IL
code are identical to a large extent. Furthermore, we have pesented an Abstract Syntax Graph
of this IL code to demonstrate how such a graph looks like.

40

Translating IL Programs to Graphs

contains
[Namespace ”m'

extends

instruction

b

callComy, first

retumType

next

TaAttibite
rivate

felds, first

attribute, first

T o]
MethodAttrib ot
=

oy atrnie AT
attribute type. e attribute S
[MethodAttribute| attribute, first- Mett o
i
name: has

returnType,

IL_0006
igentifier

directive, first

instruction

instruction
instruction e
ret

next

has type has

attribute\ gittribute, first _name

e il
DX rethodName
e
has (darg
st
methossinatwee [0 N,
name first, instruction \
scton. ,
[MethodBody |
st
" instruction L
(Sinature], ethodSipmature) [——
‘methodSignature e
f—-

s, patameters oo
@/ ” neX—finsiuction
e R e o
i ot
[t e s value
o varne [Cbel

name

:

Figure 4.10: ASG of Fibonacci example.

Lal

g

value 50

[Tabe] Label name

iL_0009
identifier
nstructi

instruction

nstruction
instruction’

instruction
instruction

instruction’

Instruction
c:

has.

=

Chapter 5

Specifying IL Semantics with
Graph Transformations

This chapter describes how we use graph transformations (gxained in Chapter 3) to specify the
IL semantics. In order to be able to perform graph transformaions, we need a start graph. This
graph is generated by the translator described in Chapter 4 ad is the Abstract Syntax Graph
(ASG) of an arbitrary IL program.

We start this chapter by describing how static analysis is peformed by using graph production
rules. Furthermore, the ASG implicitly contains control o w information. This control ow
information can be made explicit by performing control ow analysis. Then, production rules
for control ow analysis should enrich the graph with speci ¢ control ow nodes and edges. The
decision whether or not to make this control ow information explicit is discussed in Section 5.2.

Section 5.3 introduces what we call the Frame Graph (FG). TheFG is used to decorate the
start graph with runtime concepts for being able to simulate the execution of a program. In this
section we provide a meta-model to describe the FG and discgsimplementation alternatives and
decisions for some of the concepts present in the Frame Graphin this section we also describe
the Value Graph (VG). The VG describes the relation between the Frame Graph and values.

The production rules describing the semantics for IL instructions are presented in Section 5.4.
In general, we use one or two production rules for each instretion. However, this is not always
possible because some instructions start a sequence of axts which must be put into e ect.

Then, having production rules describing the semantics of anumber of IL instructions, it is
possible to simulate a program using the GROOVE Simulator. h Section 5.5 we will show this
by simulating two example programs.

5.1 Static Analysis

In Chapter 4 we explained that static analysis is partly performed by the translator. There, we
have explained that identical string values of identi ers are represented by one singlddenti er
node. We have chosen to resolve identi ers having identicastring values in the translator because
comparing two strings by using production rules is more di cult. For example, matching two
Identi er nodes (having a pointer to one single node containing a strig) is easier than comparing
two string nodes for an equal string value. Furthermore, it is hard and costly to use production
rules to, for example, determine the signature of a method cataining a number of parameters {
which can di er per signature { and create a unique node for this. Creating the unique signature
node in the translator phase is easier.

Although most of the static analysis is performed in the translator, a (small) part of the static
analysis is done with graph transformations. At the moment, this only involves resolving di erent
labels with the same identi er in order to be able to branch to an instruction with the same label

42 Specifying IL Semantics with Graph Transformations

within the same method body. By using a graph production rulethe user may get more intuition
of what is happening during static analysis.

Labels were already uniquely matched by the string represeation of the label names during
the translation from IL to graph (see Section 4.3.3). Howeve, in the graph there can be two (or
more) labels with the same identi er. In this case, these latels need to be identi ed, respecting
their scope. This means that labels are only resolved to oneirgyle label nhode when the labels are
both within the same method body.

The production rule that is used for this is displayed in Figure 5.1.

instruction instruction
has target

name name

S

Figure 5.1: Label identi cation

This production rule acts as follows: a matching of this rulecan be found if the graph has a
MethodBodycontaining at least two Instructiors of which onelnstructiorhas alLabeland the other
targets another (i. e. distinct) Label while both have the sameldenti er. If a matching of this rule
is found in the graph, the target Labelmust be merged with the Label of the target instruction.
The old target Label and its edge are removed. This way, we regesent that target Labek can be
resolved to one node, just as it is done during static analysiin a compiler.

5.2 Control Flow Analysis

Because ow control information is implicitly available in the program, there are two possibilities
to handle control ow: making it explicit by performing cont rol ow analysis, or using the im-
plicit control ow information during simulation and deter mine where control should go to after
executing an instruction.

Separating control ow from simulation has advantages, sut as that the production rules for
simulation are becoming slightly smaller. This can make theproduction rules for both control
ow analysis and simulation easier to specify and debug. Howver, separating control ow from
simulation means that for each instruction at least one addiional production rule must be de ned.

In Figure 5.2 two production rules for the Idarg instruction are presented in order to demon-
strate the possible di erences between having implicit vesus explicit control ow information in
the graph. This example represents executing an instructia for which the control ow is trans-
ferred to syntactically the next instruction, which is the c ase for the majority of the IL instructions.
In Figure 5.2(a) no explicit control ow is available in the g raph. If the Idarg instruction is exe-
cuted, the instruction pointer simply needs to be moved to the next instruction which happens to
be syntactically the next. When having explicit control ow information { for which an example
is presented in Figure 5.2(b) { the rule has to match a owNext edge in order to know to what
node the instruction pointer needs to be moved. In this caseadding the owNext edge o ers no
bene t because the semantics of this edge is already represed by the next edge from the ASG.
Thus, for these kind of instructions, adding explicit control information involves extra work which
does not pay o .

5.2 Control Flow Analysis 43

vaiue ’q I ’L’—Kl
A A
index inex

has

has

“top. next “top next

(a) Implicit control ow information (b) Explicit control ow information

Figure 5.2: Implicit versus explicit control ow for the Idarg instruction

For an instruction containing non-trivial control ow beha viour, such as the \branch on equal"
instruction presented in Figure 5.3, one may expect more gai of having explicit control ow. But
when comparing the two rules in the gure, we can see that thisis not the case. In Figure 5.3(a) the
production rule containing implicit control ow is present ed. This rule determines the instruction
to branch to on basis of the target label. When making the contol ow explicit, the target
instruction is determined by performing control ow analysis. Then, the production rule for
the beq instruction could be as presented in Figure 5.3(b). In our opnion, adding control ow
information involves more work { for both specifying the rules and applying the rules to the graph
{ than simply resolve the target instruction by matching one extra node.

eq

next
!

top ‘@%i: - -value - -)D(—I]

nezxt next
(a) Implicit control ow information (b) Explicit control ow information

Figure 5.3: Implicit versus explicit control ow for the beq instruction

Based on the existence of these typical comparisons and thenkwledge that most instructions
considered in this work are similar to these, we have chosenot to have a separate production
system for the generation of a control ow graph because thell instructions are of such a format
that the ow of control can easily be determined at run-time. Besides, we believe that de ning
additional production rules in order to specify the control ow for each instruction is not worth
the extra work. Nevertheless, we are convinced that perforimg separate control ow analysis
provides more insight and intuition.

44 Specifying IL Semantics with Graph Transformations

5.3 Modelling the runtime environment

In order to be able to simulate the run-time behaviour using production rules, the Abstract Syntax
Graph will at run-time be enriched with additional elements describing run-time concepts. The
Frame Graph contains concepts such as a stack (which is usea tstore intermediate values) and
method frames (holds context information about the methodsbeing executed). We also describe
the Value Graph (VG) which represents the objects with their instance elds and data values.
The VG also describes the relation between values and argumis, local variables, and cells in the
stack. The Frame Graph together with the Value Graph form an Execution Graph (see Section 1.2)
representing a run-time state of the system.

This section starts with a formalization and overview of the FG in the form of a meta-model.
We also present a meta-model and description of the Value Giah. After that, we describe the
decisions and representation of how the stack and method fraes are being modelled.

5.3.1 Meta-model of the Frame Graph

Here, we present the meta-model describing the Frame GraphEach subsection contains a part of
the model because presenting the meta-model as a whole woule disorderly.

5.3.1.1 High-level structure

Figure 5.4 contains the overall structure of the FG. Each comept present in the meta-model is
discussed by providing a short description.

calledFrom 1

0.1 calledFrom
From ASG L
___________ . _l
|
|
|
|
|
Me(hodFrame] lProgramFrame l l Instantiator l |
|
executesl
! >{ Program
|

1

Figure 5.4: Meta-model of the frame graph

The conceptsProgram and Instruction come from the ASG and are discussed in respectively
Section 4.2.1 and Section 4.2.4. The other nodes in the modékve the following meaning:

Frame The concept Frame is used for context awareness. There are three dierent kindof
Frames, namely ProgramFrame MethodFrame and Instantiator.

ProgramFrame The ProgramFrameholds context information of the program being executed.
This Frameis created at the moment the simulation of the program is stated and indicates that
the program represented by the ASG is being simulated. AProgramFramecan have dierent
self-loops as represented in Figure 5.5.

These self-loops are used to control the di erent phases sicframes can be in. The meaning
of the edges is:

locateEntrypoint indicates that the entrypoint(see Section 4.2.1) needs to be located to start
execution.

5.3 Modelling the runtime environment 45

0.1

locateEntrypoint

executes

finished

Figure 5.5: Self-loops containing status information

executes used to indicate that the program is being executed.

nished: indicates that program execution has been nished.

Stack The Stacknode represents an evaluation stack, which is a run-time casept used to store
intermediate values. The Stack contains Celk, of which only the top Cell is referenced. This is
indicated by the top pointer. In Section 5.3.3 we discuss the representation oftie stack in more
detail.

Cell The conceptCellrepresents a cell of the run-time stack. EaclCellcan have a relation fiext)
to another Cell making it a stacked representation. Furthermore, aCell may hold a Value (see
Section 5.3.2).

MethodFrame MethodFramecontains information about a method being executed. See Sec
tion 5.3.1.2.

Instantiator The Instantiator concept guides the instantiation of new objects QObjectVal), prior
to executing the body of the constructor. See Section 5.3.3.

5.3.1.2 MethodFrame
This section provides a description of theMethodFrameand its related concepts.

create

0.1 class
0.1
0.1 parameters
Class [L’
lookup
type 1 name signature O
Signature
N Identifier _
From ASG 1L 1
S S/ U S
name 0.1 metho(]
ﬁ MethodFrame
[0.9
[N
0.. init executes
* * MethodBody
Lo% Argu% O..lI
has has f
0.1 nextindex
targetindex |
Constant
0.1 I

i index 1
Figure 5.6: Meta-model of the methodFrame

The conceptsMethod, MethodBody, Signature Parameter Identi er, Constantand Classcome
from the ASG and are discussed in Section 4.2.1.

46 Specifying IL Semantics with Graph Transformations

MethodFrame This node represents a method frame (also known as method g& in IL-
terminology). A method frame contains context information for a method being executed. As
presented in the model of Figure 5.4MethodFramehas acalleredge to anotherFramerepresenting
the Frame from which a the MethodFrameis called. MethodFramecan have acalledFromedge
indicating which Instruction caused the creation of this frame. Thecaller and calledFromedges
are used to transfer control back to the callerFrameand Instruction, when the current frame has
nished execution. MethodFrame may have an instruction pointer (ip, see Figure 5.4) pointing to
the Instructionto be executed. TheMethodFramedoes not have acalledFromedge to aninstruction
in case it was created by aProgramFrame because theProgramFramecreates the MethodFrame
directly and not by executing an Instruction

The relations to other nodes depend on the type of call. In cas of acall instruction, the
method frame has a relation with the called Method because this method is already resolved
statically (i.e. at compile-time). In case of a callvirt instruction, the Method needs to be
resolved on the basis of thesignature name and classof the called method. Performing this
method lookup procedure results in a relation of theMethodFramavith the called Method.

In Figure 5.4 we could see that aMethodFramealso has a relation with the Stackto perform its
operations on, the callerFrameand the Instruction the method is called from. The MethodFrame
always has a relation to the Signaturenode to be able to determine if there areArgumenst that
need to be transferred, or to perform a method lookup. The meltanics behind a method frame
and transferring arguments is explained in detail in Sectim 5.3.4 and Section 5.4.3.

Local Local represents a local variable of aMethod. A Local has anindex a type, a name
Furthermore, a Local can have avalue which will be further explained in Section 5.3.2.

Argument The Argument concept represents an argument of a method.Argument nodes are
created according to the number ofParameternodes attached to Signature This process is ex-
plained in Section 5.3.4. Argument also has anindex a namein the form of an Identi er, and a
type. Also, Argument are assigned avalue (see Section 5.3.2) during the simulation of a method
call by production rules. This is further explained in Section 5.3.4.

Constant Although the Constantconcept originates from the ASG, it needs some further expla
nation for its use in the Frame Graph where it represents a costant value used for indexing the
Locak and Argumens contained in a MethodFrame We use the Constantconcept in the Frame
Graph to make it possible to directly addressLocak and Argumens. The edgesnextindexand
targetindexare used to direct the creation of argument nodes { and their mique index value {
attached to the MethodFramenode.

The meta-model also contains ecreateedge toParameterwhich is used to create theArgument
nodes according to the number of parameters. This process fsirther explained in Section 5.3.4.
The init edge pointing to Localis used to initialize the local variables of a method.

The MethodFrameconcept also contains a number of self-edges { similar t&rogramFrame{
that are used to control the di erent phases aMethodFramecan be in. Only one of these edges can
be attached to a MethodFrameat the same time. These self-edges are represented in Figube7
and have the following meaning:

locateArg The locateArgedge is used to locate if there are any arguments to be transfieed.
This is done according to the number of parameters in the metbd's Signature

createArgs If the Signaturecontains Parameternodes, then thecreateArgsedge is created in
order to create Argumentnodes attached to theMethodFrame

transferArgs When all Argument nodes are created, the actual argument values must be
transferred from the Stack This is accomplished by creating thetransferArgsedge.

5.3 Modelling the runtime environment a7

0.1

MethodFrame

locateArg

createArgs

transferArgs

lookup

locateLocals

initLocals

execute

Figure 5.7: Self-loops containing status information

lookup The lookup edge is used to indicate that the implementation of a method nust be
resolved by traversing the class hierarchy.

locateLocals locateLocalsis used to indicate that the frame has to locate the rst local
variable (if available).

initLocals If locals are available,initLocalsindicates that these need to be initialized.

execute The executeedge indicates that the method's body is executed.

5.3.1.3 Instantiator

The Instantiator part of the meta-model is responsible for the allocation of ew objects and the
initialization of its InstanceField (see Section 5.3.2). The related concepts trfistantiator are shown
in Figure 5.8.

From ASG |

Instantiator
0.1 ascendedFrom

1 |

class

fields

|
|
S :
|
[
I

1 self

\J‘ Value

init

value

0.1

Figure 5.8: Meta-model of the instantiator

The conceptsClassand Field come from the ASG and are discussed in Section 4.2.1.

Instantiator The Instantiator concept is used for context awareness and guides the process
instantiating a new object (ObjectVa). The selfedge to the abstract conceptValue is during
simulation always an edge toObjectVal which represents an instance ofClass This is further
explained in Section 5.3.2. For convenience, we have added dassedge to the Classof which
ObjectValis an instance. This edge is used to easily ascend in the clakirarchy to initialize the
elds (called InstanceField) of ObjectVal The init edge to the Field concept is used during the
initialization process of these elds. In case of ascendinthe class hierarchy, theascendedFroredge
indicates from which Classis being ascended andaller (see Figure 5.4) indicates thelnstantiator
node which calls for ascending. Thelnstantiator also contains acaller and calledFromedge (see
Figure 5.4) to indicate from which Frameand Instructionthe object has been created.

Value The abstract Valueconcept comes from the Value Graph and can be either &onstantor
an ObjectVval This concept will be explained further in Section 5.3.2.

48

Specifying IL Semantics with Graph Transformations

Instantiator

Figure 5.9: Self-loo

0.1

ascend

descend

locateField

initFields

ps containing status information

Furthermore, Figure 5.9 shows self-loops { similar toProgramFrameand MethodFrame{ that
are used to control the di erent phases anlnstantiator can be in. Such an edge has one of the

following labels:

ascend During object instantiation, the ascendedge is used to ascend to the top of the class

hierarchy in order to locate the elds

locateField The locateFieldedge is
eld (if available).

initFields If elds are available, initFi

descend When no (more) elds are

of a class.

used to indicate that the frame has to locate the rst

eldsindicates that these need to be initialized.

available, descendis used to descend one class in the

class hierarchy in order to locate other elds.

5.3.2 Meta-model of the Value G

raph

During simulation nodes representing values are created. fie sub-graph containing these nodes
is called the Value Graph (VG). This section describes the cocepts used in the VG by using a

meta-model.

From FG | | From AsSG

lll

Cell

| Constant
\nstanceofl
Objectval ! Class
4
has |
0.1
|
1 type

name

Figure 5.10: Meta-model of the value graph

The conceptsidenti er, Type, and Classcome from the ASG and are discussed in Section 4.2.1.
The conceptConstantalso comes from the ASG and is discussed in Section 4.2.4. Tlo¢gher nodes

in the model have the following meaning:

Value
Constantor an ObjectVal

Value is an abstract concept which is used to denote a value, whicham be either a

5.3 Modelling the runtime environment 49

ObjectVal The concept ObjectVal represents an object, which is an instance of &€lass An
ObjectVal may contain InstanceField.

InstanceField An InstanceFieldepresents a eld of a class instance@bjectVal), and has aname
and atype. The init self-edge may be used to denote that thénstanceFieldnust be initialized to
its default value. Furthermore, an InstanceFieldnay contain a Value which can be aConstantor
an ObjectVal

The conceptsLocal and Argumentcome from the Frame Graph (Section 5.3.1.2).Cell also is
discussed in the Frame Graph (Section 5.3.1.1) and can contaa Value Note that Cell does not
require to contain a Value This is a design decision and will be further discussed in $tion 5.3.3.

5.3.3 Stack

During the execution of a method, an evaluation stack is needd on which instructions can store
their (intermediate) values. This section discusses decigns with respect to the representation and
implementation of this stack.

5.3.3.1 Representation

Normally, the stack contains a pointer to the top element on the stack. This pointer is increased
when new items are pushed on the stack, and decreased whenrite are popped, i. e. removed from
the stack.

[cell—value—»{ |

next

top
[stack |—top —»{Cetl|—value—»{ | value—» |

(@) (b) Stack containing one element (c) Stack containing two elements

Empty
stack

Figure 5.11: Example stacks containing zero, one and two it&(s).

Figure 5.11 contains a possible representation for the stightforward implementation of an
evaluation stack. What can be seen here is that we could use @tack node without a top -pointer
to represent an empty stack. A Stack node can point to a Cell node that may contain a value
(i. e. can have aValue edge to a node) and can have a relation with anotheCell node. However,
this representation introduces several problems.

The most important problem is that there is no top-pointer available when the stack is empty
(Figure 5.11(a)) and there is a top-pointer if at least one item is placed on the stack (Fig-
ure 5.11(b)). This means that for every instruction that pushes values on the stack, at least
two rules should be needed: one for the case the stack is empand there is no top-pointer { then
the top-pointer and the cell containing a value must be creaed { and another for the case that the
stack is not empty. In the latter case, the top-pointer needsto be moved to the next cell, which
a value is assigned to. The same is valid for instructions thepop values from the stack. These
kind of instructions need to check whether the value to be poped from the stack is the last value
or not. Because if it is, the combination of valug Cell and the top-pointer must be removed. If
it is not the last value, then both the value and the cell must be removed, and the top-pointer
must be moved. This means that the number of production rulesfor simulating instructions that
perform actions on the stack are at least doubled.

In the remainder of this section we propose two solutions to his problem and explain our
choices.

50 Specifying IL Semantics with Graph Transformations

Alternative I: Top pointer to empty cell One way of solving this problem is that each
method frame has its own evaluation stack for which the top-minter always points to the rst
empty cell. When a value is pushed to the stack, a new empty ckis created and the top-pointer
targets that new cell. When a value is popped from the stack, he value is removed from the
secondmost top node, which then becomes empty. After that, tte top cell (i. e. the rst empty
cell) is removed and the top-pointer is positioned to the cdlbelow the old top cell.

MethodFrame

has

top cell

next

Iue—){]

next

[Cem}—vatue>{]

Figure 5.12: Alternative | { Top-pointer points to empty cel I.

In this approach, no additional production rules are necesary in order to create a stack of a
speci ¢ size. However, the production rules for simulatinginstruction behaviour become a little
bit more complex, because they need to add or remove the adddnal empty cell. The major

disadvantage of this approach is that always having an emptycell at top of the stack may be
misleading and unintuitive.

Alternative 1l: Top pointer to cell holding a value Another approach, which resembles
the previous alternative, is that each method frame has its avn evaluation stack for which the
top-pointer points to the last non-empty cell.

A problem now arises when having an empty stack. What should w do with the top-pointer
at that moment? In Figure 5.13 we propose two possible solutins for having a stack containing no
values. The rst alternative is to have the top-pointer point to the stack itself, contradicting with
the fact that the top-pointer always should point to a cell. Since this is semantically incorrect,
this is not a realistic possibility.

Cell
top
[Stack|—top—>{cell]

(@) Top-pointer (b) Top-pointer to
to self empty cell

Figure 5.13: Example stacks containing no items.

The second alternative we discuss is that we let the top-poiter point to an empty cell, and
create new cells containing values on top of this empty cell. Although this may not be com-
pletely semantically correct, we think this is a reasonablesolution. If we apply this approach, the
representation of a stack containing two values then would ok like represented in Figure 5.14.

The advantage of this representation is that the top-pointer always points to the last non-empty
cell, when the stack contains values. Therefore, the produ®n rules use normal stack represen-
tations, having a top-pointer to a cell having a value. This is in contrast to the representation
proposed in alternative I. A disadvantage of this represenation is again, that there is always an
empty cell at the bottom of the stack, which is not entirely according the semantics. We prefer this
representation of a stack over alternative Il because this epresentation results in more intuitive
production rules.

5.3 Modelling the runtime environment 51

has
S —or e >]

next

nueﬂ

next

Cell

Figure 5.14: Alternative Il { Top-pointer points to non-emp ty cell.

5.3.3.2 Shared Stack

In the previous section we proposed two alternatives for theepresentation of the stack, for which
we preferred the second alternative of having a top-pointempointing to a non-empty cell in case
the stack is not empty. Using this representation of the sta& would involve creating a stack (with
an empty cell and top-pointer) for each method frame. This ha several consequences: arguments
need to be transferred from one stack to the other when a metha is called, and { for each method
call { additional empty cells are created in the graph. Also, when returning from a method, the
return value(s) must be transferred back from one stack to tre other.

As simpli cation, we propose to use one single stack for all fested) methods frames. When
sharing a stack, no additional empty cells are created and naadditional rules are needed to
deal with transferring arguments or return values from one sack to the other. There is only
one production rule responsible for creating the stack, nanaly the production rule for starting
execution of the method containing the entrypointdirective.

[MethodFrame |—has -] Stack |—top—» alue —»{_|
P 3

has next

MethodFrame alue —>|:|
next

Iue =]

next

Cell

Figure 5.15: Two method frames sharing one stack

We have to mention that when having parallel processes, mulple stacks are needed. In this
case, each process should have its own stack. This is not takdnto account in this research
project.

Based on the advantages described above, we have chosen teuhis representation, because
then we can keep the production rules as simple as possible,hile having few overhead in the
graph.

5.3.4 Method Frame Representation and Transferring Argume nts

This section discusses the method frame, which is our represtation of what in the .NET Frame-
work is called method state Method state is an abstract model that contains information about
the environment in which an IL method executes. It consists 6 information about the method's
arguments, local variables, local allocation, and operandtack. The implementation of the method
state can be di erent as long as it preserves its semantics.

52 Specifying IL Semantics with Graph Transformations

In the MS .NET CLR implementation, there is only one continuous stack, containing all this
information. If we display this by using a method frame, we gé the representation as shown in
Figure 5.16. This solution uses one large stack containingestions where the arguments, local
variables, and local allocations (omitted in Figure 5.16) ae stored. It also contains a section for
the operand stack, where the intermediate values of operargland the return value (if any) is
stored. The operand stack can grow and shrink when executingnstructions. The advantage of
this approach is that it gets as close as possible to the actuamplementation used in the CLR.
A major drawback of this representation is that it is not possible to access the arguments and
local variables by its index in one single production rule. This means that additional production
rules need to be created to nd the argument or local variablecorresponding to an index. These
production rules must be executed every time we access an arment or local variable. Thus, in a
graph transformation setting, this way of addressing the aguments introduces a lot of overhead.

[Framo}—has—»{Stac—top

Arguments |

Figure 5.16: Representation with locals and arguments on a@inuous stack

We choose a representation as presented in Figure 5.17. Thisolution uses a model of the
method state, as proposed by the CLI speci cation [6]. In this solution, the method frame contains
links to arguments and local variables. Each argument and loal variable is directly addressable
by its index. The disadvantage of this approach is that the vdues of the arguments need to be
transferred from the stack to the method frame. On the other hand, this only needs to be done
one single time after each creation of the method frame. Aftethat, both the arguments and local
variables are directly addressable by their indices.

hastu,..ﬂg_,D Operand Stack |

alue—> | Locals :

alue—>{_| Arguments |
index_)m i
index—){ﬂ

Figure 5.17: Representation with indexed locals and argumes separated from stack

Transferring the values of the arguments from the stack to the method frame, requires more
than just one or two production rules, because the argumentsre placed on the stack in a low-to-
high order. The last argument (say arg n) is placed on top. To transfer this last argument and
give this argument an index value, we must know how many argurants there are. This however is
not known at that moment. So, we rst create the argument nodes and their indices. After that,
we walk backwards along the arguments while transferring tke values from the stack.

This approach will now be explained with an example. Imaginethat a method with 3 formal
parameters is called. Prior to the method call, the values othe arguments are placed on the stack.
We have depicted three integer values 2, 14 and 42 for respeéetly argument 0, argument 1 and

5.3 Modelling the runtime environment 53

argument 2. Furthermore, we assume that a frame has been créad that knows the signature of
the method and has a pointer to the top element of the stack cotaining the arguments. This is
represented in Figure 5.18.

Arg. 2= 43
top
Arg.1= 14 values
@—-{ Stack Arg.0= 2

Signature
._'..

Figure 5.18: Start situation prior to transfer of arguments

next

next

The problem is that the values of the arguments must be addresed directly by an index (for
example by using the instruction Idarg 1). At this moment this is not possible by a simple
production rule. In order to make the arguments directly addressable, we need to give them an
index. Furthermore, we want to transfer the values of the argiments from the evaluation stack to
the MethodFramenode. This is not directly possible, because the last argum# is on top of the
stack and we do not know the index of the last argument (yet). Therefore, we identify the number
of arguments by visiting the parameters described by the sigature. The arrows in the gure
represent the direction in which the parameters are visitedand for which arguments are created.
Each time we encounter aParameter we create a newArgumentnode related to the MethodFrame
node and give this new node an index. This is represented in Gure 5.19.

Arg. 2 = 43
Arg.1= 14 values
Arg.0= 2

Signature

[
[P

Figure 5.19: Create indexed argument nodes without a value

next

next

At the moment that all arguments of the signature have been viited, and thus all arguments
are assigned an index value, we can assign values to the argenmts. This is done by traversing the
arguments of the MethodFramein a backwards manner and transferring the values from the sick
to the arguments. Figure 5.20 represents how this is done. Tdé arrows in the gure represent
the direction in which values are removed and assigned. Fitsthe value of the last argument is
transferred from the stack to the argument node with index 2. After that, the next argument
(with value 14) will be assigned to the argument node with index 1. And nally the last argument
value will be assigned to the argument node with index 0.

Now we have achieved that the values of the arguments are distly accessible by addressing
them using an index. For example, when using the earlier membned instruction Idarg 1, a
reference will be placed on top of the stack to the value of thargument with index 1. Furthermore,
we have omitted information about the local variables in this example. Local variables have
a representation similar to the representation of the argunents. However, initializing the local
variables works in a di erent, less complex way.

In our opinion, the solution with having the arguments and local variables separated from the

54 Specifying IL Semantics with Graph Transformations

top Arg. 1= 14
values
Arg.0= 2
Signature
| v
[e

next

next

Figure 5.20: Transferring values from stack to argument no@s

stack is more clear than having one continuous stack containg a frame holding the arguments and
local variables. In spite of the fact that we need more prodution rules to transfer the argument
values, we think this approach has advantages that justify he use of it for the rest of the production
rules, because both the arguments and the stack are now easi® address.

5.4 Production rules

The main goal of this research project is the construction ofa set of production rules that describe
the semantics of IL instructions in a formal graph-based fomalism. In general, we have developed
one or two rules for each instruction. However, in some casdbis was not doable and additional
rules were needed to specify the behaviour. For example, dalg a method involves more than
just transferring control to the method and executing the method's body: arguments need to
be transferred, and in case of dynamic method calls, the methd needs to be resolved and local
variables must be created and initialized.

This section starts with a description of production rules used for the simulation of starting
the execution of a program, creating a new object, and callig a method. After that, a number of
common instructions are presented.

5.4.1 Starting Execution

The process of starting the execution of a program is represged in Figure 5.21. The rectangle
in this gure represents an intermediate state. The edges rpresent the application of the rule
corresponding to the label of that edge.

®

| program

locate |
entrypoint

methodframe_entrypoint

1
1
PR ——

Figure 5.21: Starting program execution with production rules.

As shown in Figure 5.21, the execution of a program starts by pplying the program rule (see
Figure 5.22(a)). This rule creates aProgramFramehaving a locateEntrypointedge.

Locate Entrypoint When the ProgramFramecontaining a locateEntrypointself-loop is present
in the graph, this indicates that the body of the method containing the entrypoint must be located
in order to start the execution of that method. This happens only one time during the simulation
of a program and is accomplished by the rulemethodframe entrypoint . By applying this rule,

5.4 Production rules 55

AL
Frame =

Lemm MethodFrame =
IucateEmrwoim IIIIIIIIII__[IIIIIIIIIIV
B R _§
- , executes
il A ™ 4 =
=pr e Sunnuexecutesmmn _ /\F :
T T rame MethodBody directive—)_ﬂﬁﬁm
execules |prggramFrame
executes first, instruction

caller executes [Instruction |

\

Frame
locateLocals MethodFrame has up

ProgramFrame

locateEntrypoint

(a) program (b) methodframe _entrypoint

Figure 5.22: Starting execution

further execution is achieved by creating aMethodFrameto represent and control the execution of
a method. Furthermore, as described in Section 5.3.3, also 8tack with the initial con guration
needs to be constructed to perform stack operations on.

5.4.2 Object Creation

The process of object creation is represented in Figure 5.23gain, as in Figure 5.21, the rectangles
in this gure represent intermediate states, while the edges represent the application of a rule.

' instr_newobj class_ascend
ERREEEEEE » ascend
class_initialize o
init_fields_next
locate init_fields_locate_first init
N ! .
field fields
class_descend init_fields_none init_fields_last
— descend

instantiator_constr

-« - - -

Figure 5.23: Creating a new object with production rules.

Object creation starts with the execution of the newobj instruction, which results in the allo-
cation of a new object and execution of the body of the constrator. First, we are going to explain
the creation and initialisation of new objects. We start with the execution of the production
rule presented in Figure 5.24(a) {nstr _newobj). This rule ensures that a new instance of the
class referenced by thenewobj Instruction is created. Furthermore, a node calledinstantiator is
created, which is used to ascend and descend in the class haechy, initializing the Fields. The

56 Specifying IL Semantics with Graph Transformations

production rules used for object creation, class initialiation, and class ascending and descending,
are displayed in Figure 5.24.

asceni

class [I
- [Class | class
self Objectval f=instanceOf|
ascendedFrom

ascend Instantiator | Class extends caller

caller calledrom tyneSpec class—]| Instantlator |-self 3 Objectval |
- J" \
m ________ I Instruction '
newobj ascend
(a) Creation of new object (b) Ascend class
Ides‘cenq
.
e A,
ZClass - -class - - Instantiator . - seif.- -
“x“' locateField T :
E ascendedFrum i i
extends extends -7 caller ,
. i

' B

[Class le—class self class 4‘|n751antlator [-seif»] Oh]ect\.-‘al |

ascend locateField

(c) Initialize class (d) Descend class
Figure 5.24: Object Creation

We will now describe the di erent states and possibilities.

ascend This state is used during the process of ascending the classehnarchy of an object. As
long as we are not at the root of the class hierarchy, the ruleclass _ascend (Figure 5.24(b)) is
applied. When reaching the top of the class hierarchy the rut class _initialize (Figure 5.24(c))
is applied, meaning that we can start with the initializatio n of elds. Therefore, the rst eld (if
available) must be located.

locate eld Atthe moment a Classcontains Fields, these must be initialized. If aClasscontains
a Field the rule init _fields _locate first (Figure 5.25(b)) is applied which causes initialization
of the available Fields. If a Classdoes not contain aField the rule init _fields _none (Fig-

ure 5.25(a)) is applied, causing thelnstantiator to descend in the class hierarchy or to call the
objects constructor.

init elds The initialization of the Fields is processed by another set of rules which is presented
in Figure 5.25. The rule shown in Figure 5.25(a) is used when &lassdoes not have anyFields,
and thus no Fields have to be assigned to the object. If this is the case, it is re@ssary to descend
further (if possible) in the class hierarchy. However, whenthere is a Field available, as displayed
in Figure 5.25(b), it is necessary to initialize that Field

The actual initialization is started by applying the rules p resented in Figure 5.25(c) and Fig-
ure 5.25(d). The rst rule is used when there are other elds that must be initialized and the
second rule is used when this is the last eld to be initialized. Initializing the elds with a value
is accomplished by adding aninit edge to that Field and delegate the actual initialization of the
Field to another rule (see Appendix C, Figure C.1) having a higher piority.

5.4 Production rules 57

F
initFields

class Class

I descend

;
' locateField

locateField \) re"’s first s felds first
. -
:
(a) No elds (b) Locate rst eld
descend
Instantiator Ohjec‘t\r‘a |
class -
. self Objectval class
initFields ' T o
| G N
' initFields as
I e '
: : name —{Fela—tyve
i i
- ' init type
! name
Class ([Y .
b
</ \stts— o]
- —init unllin
Foi}—felds ————— Shie:
(c) Init eld and locate next (d) Init last eld

Figure 5.25: Initialization of elds

descend If possible, i.e. there is anascendedFronedge, the Instantiator must descend further
in the class hierarchy so that other availableFields are initialized. This is accomplished by the
rule class _descend (Figure 5.25(b)). When the Instantiator returns from ascending the class
hierarchy and cannot descend further, all theFields of the object are initialized and the constructor
must be called. The Instantiator cannot descend further when there is nascendedFronedge. A
lookup for the constructor's method implementation is not necessary, because the .NET compilers
automatically provide such an implementation. In order to call the constructor, a MethodFrame
is created to which the created object is assigned as the0 Argument The rule that is used to
accomplish this isinstantiator ~ _constr and is presented in Figure 5.26.

" lnstantiator r-- == - - --s-o-s-oooooooooo seff ------------omooo oo
descend ST T Ty calledFrom----------+
ascendedFrom |
‘.‘\\- caller _ _| Instruction
o calledFrom | hewobj typeSpec
'lll'
methodSignature methodMame
[Identifier | [Class |«-instanceof value
A |
caller has name method
Method
signature A
|
Frame method
MethodFrame . _l nrgumem mdex)@

d has
locatefirg Sl _nextlndex—)m

Figure 5.26: Calling the constructor after allocating and initializing an object

Note that a MethodFrameis created. Calling and executing the constructor of an objet works
according to the same principle as calling a regular method.The rules that are responsible for

58 Specifying IL Semantics with Graph Transformations

this are shown and discussed in Section 5.4.3.

When returning from the newobj instruction, i.e. after executing the constructor, a pointer
to the new initialized object must be pushed back on the stack The problem is that this new
initialized object is not on the stack of the constructor and thus can not be returned by the ret
instruction.

Also, because the new initialized object is the ! argument, connected to theMethodFrameof
the constructor, cleaning up this MethodFramecauses the pointer to the new initialized object to
be lost. Therefore, we must transfer the pointer to the objet before cleaning up theMethodFrame

It is impossible to solve this problem by simply adding an exta pointer to the newly created
object prior to calling the constructor and immediate after allocating the object, because then the
pointer to this object may be placed on top of the arguments fo the constructor.

The solution we propose is that we have a special rule for theet instruction when the calling
instruction is newobj. This rule is presented in Figure 5.27 and is responsible foplacing the
object reference on top of theStack and removing the MethodFrame

o o {F) . >
top .

next

Cell : "
has caller — _____. calledFrom - - - - - {newohj|
:

X 'Frame : . -
value t--------aMethodFrame """ ip------- Irlz‘tructmn

has
Objectval (- ------ value - ------ - Argument

Figure 5.27: Return new object from constructor

5.4.3 Calling methods

In IL, it is possible to have statically and dynamically bound calls Statically bound calls use the
call instruction and the corresponding implementation is boundat compile time. We implemented
the production rules for the call instruction in such a way that we use the method provided by
the call instruction. Dynamically bound calls, on the other hand, use thecallvirt instruction,
The implementation of the method that is called is determined at run-time by performing a lookup
starting from the run-time type of the provided object. If th e class provides an implementation of
a non-static method that matches the method that is searchedthe lookup is nished. Otherwise,
the lookup process continues searching by checking other ba classes in the class-hierarchy.

For both call and callvirt instructions, the attribute instance can be provided. If the
attribute instance is provided, a pointer to an object must be available on the sack prior to
assigning it to the method frame as the @ argument. In case of a constructor call, the pointer to
the newly allocated object is already attached to the methodframe by the rules that take care of
the allocation and initialization of the new object.

In Figure 5.28 the process of calling di erent kinds of methals is presented. Each rectangle
describes an intermediate state for which one of the di erem rules is enabled. We describe the
di erent states and possibilities. The graph production rules can be found in Appendix C.

Locate arguments This state describes the point in time, after creating aMethodFrame That
is the moment at which parameters, if available, must be locged from the Signature In this state

5.4 Production rules 59

. A 4
locate_args_first locate locate_args_none
arguments

locate_args_instance

create_args_next transfer_args_previous
create create_args_last transfer transfer_args_newobj | execute |
arguments arguments| transfer_args_last_static._method

PP |

transfer_args_last_dynamic

callvirt_propagate

callvirt_resolve

lookup

Figure 5.28: Processing a method call with production rules

there are three possibilities:

1. The Signature of the method contains Parametes, meaning that additional locations for
Argumens need to be created at theMethodFrame This results in the execution of rule
locate _args first , and can be the case for both static and object methods (caltig con-
vention contains the instance attribute).

2. The signature of the method does not contain parameters, bt the call is to an object
method (instance attribute). In this case, the MethodFramealready contains a location for
an Argumentfor the 0" index, but the object needs to be transferred from the stack.The
production rule locate _args _instance is used for this.

3. The Signatureof the method does not contain parameters and the called methd is declared
static. Then, the method to be called is known and no argumens need to be transferred.
The rule locate _args _noneis executed.

Create arguments At the moment the Signaturecontains Parametes, the MethodFramemust
be prepared by adding empty Argument nodes and edges to them. The rulereate _args _next
creates newArgumentnodes until the last Parameteris reached in theSignature in which case the
rule create _args _last is executed. EachArgumentnode that is created has its ownindexvalue,
meaning that these Argumentnodes are directly addressable by thédarg and starg instructions.
In Section 5.3.4 we have discussed the process of creatingdatransferring Argumens in more
detail.

Transfer arguments When all Argumentnodes attached to theMethodFrameare created, the
values of the arguments need to be transferred from theStack to these Argument nodes. The
number of arguments to transfer, determine the rule that is executed next: if there is more than

60 Specifying IL Semantics with Graph Transformations

one argument that needs to be transferred from the stack, therule transfer _args_previous is
executed. This is repeated until a pointer reaches the ® Argumentattached to the MethodFrame
after which either one of three rules is executed.

1. In case of a constructor call, the & argument already contains a value. This value is the
object instantiated by the newobj instruction. When the 0" argument already contains a
value, no arguments are left to be transferred and theransfer _args_newobj is applied.

2. When performing a statically bound method call (call instruction), the method to be called
is already known. If the 0" Argumentdoes not contain avalueyet { which is the case for
methods calls using theinstance attribute { the last value for the last Argumentmust be
transferred from the stack. This is accomplished with thetransfer _args _last _static rule.
Immediately after applying this rule, we can proceed with the statically bound method call.

3. If the 0" argument does not contain a value, and the method to be calleds not yet known
(used instruction for the method is callvirt), the transfer _args_last _dynamic rule is
executed. This rule is responsible for transferring the vale of the last argument from the
stack to the Argumentnode. After applying the transfer _args _last _dynamic rule a lookup
for the implementation of the called method is performed.

Lookup When a dynamically bound call to a method is done, the call to he method needs
to be resolved. This is accomplished by matching thenameand Signatureof the Method to the

type of the speci ed object. If a Method with a matching name and Signatureis found in the

Class the rule callvirt _resolve is executed. Otherwise, we must ascend the class hierarchyd

check again for a matchingnameand Signature This is done by the rule callvirt _propagate .

Notice that looking up Method su ces, because aMethod always has aMethodBody containing

the implementation of the method.

Execute method This represents the concept of executing a method and is fallved by creating
local variables and executing the method's body. We have ontted explaining these rules by the
gure, because these rules are related with executing a methd rather than calling a method. The
rules can be found in Appendix C.

5.4.4 Common Instructions

This section discusses a number of common instructions usedr branching and arithmetic oper-
ations.

Branch Instructions

Branch operations are used to direct control ow. As mentioned before, IL contains conditional and
unconditional branch operations. Conditional branch opeiations only branch when an evaluation
yields true, and continue to the next instruction if the evaluation yields false. Unconditional
branch operations always branch.

A branch operation always refers to a target, which in IL can be a label or an o set from
the beginning of the instruction. If we want to use an o set, the sizes of the other instructions
must be known in order to be able to branch to instruction corresponding to the speci ed o set.
Furthermore, in our graph formalism there is no notion of menory, let alone memory addresses,
which is why it is impossible to use the o set as a target. Theefore, we are only using labels
to branch to. These labels are resolved during static analyis, which means that it is possible to
adjust control ow to an instruction with that particular la bel.

In Figure 5.29 the production rule for an unconditional branch is presented. It is easy to see
that the instruction pointer is adjusted to the instruction containing the same label as the target of
the instruction br, meaning that the control ow is adjusted to the target of the branch operation.

5.4 Production rules 61

------ R
target
i
has

Figure 5.29: Unconditional branch instruction

A conditional branch operation has similar behaviour as an unconditional branch operation but
depends on the result of an evaluation. If the evaluation yiéds true , control ow is adjusted to
the target of the branch operation. If the evaluation yields false , the control ow simply branches
to the next instruction. Therefore, two production rules are needed to specify the semantics of
the conditional branch. Take, for example, the production rules for the instruction blt (\branch
on less than") which is presented in Figure 5.30. When assumg that there are two comparable
values on the stack and an instruction pointer pointing to the instruction blt , one of these rules
can be applied. Therefore, the two values from the top of the &ck are compared and removed.
If the second most top value is less than the topmost value, teB comparison yields the boolean
value true and the rule of Figure 5.30(a) is applicable. This results inhaving a branch (changing
of the instruction pointer) to the instruction having the sa me label as the target label of theblt
instruction. If however, this comparison yields false , the rule of Figure 5.30(b) is applicable and
the instruction pointer is changed to the next instruction.

WethodFrame] - - - - - - n----- WethodFrame |- - - - - - [
bit arget bt
ip in next
has
has has

----- top----»iCell. __ yalue.-- M Je—1

_____ top -~ 3 CAT -t
3 po e a1 t—>{false]
next next

ton Coll’ - -value - 3 _J&——0 tan (el - -value - - »_J€——0
IS A

ngm nozxt
(a) blt yielding true (b) blt vyielding false

Figure 5.30: Conditional branch instruction

Other conditional branch instructions (beq, bne, bgt, brtrue and brfalse) are speci ed anal-
ogously and can be found in Appendix C.

Arithmetic Operations

The implemented arithmetic instructions are add, sub, mul, div and rem In Figure 5.31 the
production rule for the add instructions is presented. The other arithmetic instructions work
according to the same principle and can be found in Appendix C The add production rule works
as follows. When the instruction pointer points to the add instruction, the two top values on the
stack are both removed and the result of the operation is plaed on the stack.

5.4.5 Limitations

The Intermediate Language contains instructions that perform operations on integers for which
an over ow may occur. These instructions contain the term .ovf (e.g.add.ovf). It is however,
impossible to implement these instructions because the GROVE tool set cannot perform these
kinds of operations (yet). For the same reason, we cannot o esupport for bitwise instructions

(and, or, xor, and not).

62 Specifying IL Semantics with Graph Transformations

MethodFrame | -- - - - - ip----- Instruction
add
i next

has

————— top--- —){f_:;‘“_:- - - value- - 3 e—1

top néxt
!
e 3 Je—add
I
I
- - - -value - -)'| |(—U

Figure 5.31: Add instruction

5.5 Simulation Examples

This section provides two examples of using an ASG together ith the set of production rules in
order to simulate the program modelled by the ASG. We do not ceer all available production
rules during these examples, but we will demonstrate di eret concepts.

In the rst example, the ASG of the Fibonacci IL program (see Section 4.5) is used and
simulated by using production rules. This demonstrates theway static calls are processed.

The second example is based on a program of which the buildinglocks (i. e. the classes) are
structured using inheritance. When simulating that program we have to deal with object creation,
method resolving, parameter passing, etcetera. For this exmple a simple C# program is written,
compiled and disassembled to IL, which on its turn is translded to an ASG by our translator. This
ASG is used as starting point for our simulation. The resultsof this simulation will be discussed.

Simulating a program yields a Labelled Transition System (LTS), which was already brie y
introduced in Section 3.2. A LTS is a graph containing nodes ad edges. Each edge stands for the
application of a production rule and each node represents argph. Such a graph can be seen as a
state { or snapshot { of the system at run-time.

5.5.1 Example: Fibonacci

For this example, we have taken the ASG of Figure 4.10 as the art graph and applied our
production rules to this graph repeatedly. The resulting LTS is presented in Figure 5.32.

According to the IL code (shown in Appendix A, Listing A.3) and the ASG (Section 4.5),
executing this program would involve a method call to the Fibonacci method, which may result
in a number of recursive method calls. The call to theFibonacci method is indicated in the
LTS with the dashed rectangle with number 1. An example of a reursive call and returning from
that recursive call is indicated with numbers 3 and 4, respetively. The execution of a series of
instructions in a method body is indicated with number 5, and returning from the rst method
call to the Fibonacci method is indicated with number 2.

Recall from Section 4.4 that the Fibonacci series looks as fows:

0;1;1;2;3,5;8;13;:::, starting at index 0

According to the IL code, we asked for the & number of the Fibonacci series, which is the
number 3.

Now, will the end result be as expected? The graph presentechiFigure 5.33 shows the nal
state of the LTS (i. e. the node in the LTS containing the label nal). If we look at the highlighted
part in this graph, the Field with name TheResult contains this value, which indicates that the
end result indeed is what we expected.

5.5 Simulation Examples

63

<static_analysis.resolve_labels>abels>| <instr_bne_true>

<static_analysis.resolve_labels»s>

<prograrm>

<methodframe_entrypoint>

<init_locals_nones

<instr_ldc>

<instr_call>

<locate_args_first>

<create_args_last>

Method Call

<init_locals_none>

<instr_ldarg>

{1

<instr_brfalse_false>

{1«

-

<instr_bne_true>

{1

<instr_ldarg>

{1

<instr_ld

_,
]
v

1=

<instr_sub>

1k

<instr_call>

<k

<locate_args_first>

{1

<create_args_last>

{1

<transfer_args_last_static>

{1«

<init_locals_nones

{1

<instr_ldal

<k

<instr_brfalse_false>

Lk

<instr_ldarg=>

<transfer_args_last_statlc>

<instr_ldc>

Recursive

<ihstr_ldarg>

<ihstr_ldc>

w

<instr_call>

il

<locate_args_first>

il

<create_args_last>

Tk

<transfer_args_last_static>

il

<init_locals_none>

il

<instr_ldarg=>

il

<instr_brfalse_false>

i

<instr_ldarg>

i

A
i
a
=
=
g
W

Sl

<instr_bne_true> <in:

s

il

<instr_ldarg=>

il

A
5
a
=
=
b
W

Sl

<t

3

T_sub>

i

<instr_call>

il

<locate_args_first>

il

<create_args_last>

il

<transfer_args_last_static>

i

<init_locals_none>

i

<instr_ldarg>

il

<instr_brfalse_false>

il

<instr_ldarg=>

A
i

o

v

<instr_bne_false>

Figure 5.32:

<instr_ret>

<instr_ldarg>

<ihstr_ldc>

i

<instr_sub>

n

<instr_call>

s

<locate_args_first>

.

<create_args_last>

]
.

<init_locals_none>

n

<instr_ldarg>

<instr_hi

2

alse_true>

il

ransfer_args_last_static>

<instr_ldarg> <instr_ldc>

<instr_ret> <instr_bne_false>

ally
ally

<instr_add> <instr_ldarg>

ally
ally

<instr_ret> <instr_ret>=

iy
iy

<instr_ldarg> <instr_ldarg>

ol
iy

<instr_ldc> <instr_ldc>
<instr_sub: <instr_sub>

ally
- le

<instr_call> <instr_call>

iy
ally

<locate_args_first> <locate_arys_first>

ally
ally

<create_args_last> <create_args_last>

- le
iy

<transfer_args_last_static> <transfer_args_last_static>

51

1 Je
I

<init_locals_none> |

|
<instr_ldarg> <init_locals_nones 1 g
o
1= |
ﬁ Etl S >
g <instr_ret> <instr_ldarg> = _8 <instr_ldarg> |
=
B = 1
g g
& = <instr_add> <instr_bne_false<instr_brfalse_false> <instrll O S dnstr_bifalse_true> |
o= - e | c o
e 4 1= I
E o) |] 13 . 1
o < <instr_ret> <instr_ldarg> o = <instr_ldarg>
Eg - = —_)
X |
£E= |i|)
S
z <instr_ldarg> <instr_ldc> | <instr_ret> |
<instr_ldc> <instr_bne_true> <instr_add>
<instr_sub> <instr_ldarg> <instr_ret>
<instr_call> <instr_ldc> = <instr_add>
instr_call instr_ld instr_add:
68— —y— — o
=L 2
c -8 |
<locate_args_first> <instr_sub> 1 S < <instr_ret>
B ‘(]_l_)l — — o
x=
<create_args_last> <instr_call> <instr_stsfld>

i

<transfer_args_last_static>

i

<init_locals_none>

il

<instr_ldarg>

il

<instr_brfalse_false>

il

<instr_ldarg>

<ihstr_ldc>

i

<locate_args_first> <instr_ret_program>

i

<create_args_last>

ally

<transfer_args_last_static>

iy

<init_locals_none>

i

<instr_ldarg>

<instr_brfalse_false>

LTS of the Fibonacci Example

64 Specifying IL Semantics with Graph Transformations

*\m
value

name

ldentifier

theResult

Figure 5.33: Result of the Fibonacci Example

5.5.2 Example: Calculator

In this example we demonstrate a simple calculator programlhat has to deal with object creation,
method-lookups, method overriding, and parameter passing The class-diagram in Figure 5.34
shows the structure of the program. In this model we show thatthree di erent classes (CalcAdd,
CalcDiv, and CalcMean inherit from the base classCalc. The base class contains a virtual
(i. e. overwritable) method apply , which provides a default implementation. ClassCalcAdd does
not overwrite this method, but the classesCalcDiv and CalcMeando.

returna + b;

Calc _

+apply(in a:int, in b :int) : int | g

CalcAdd CalcDiv CalcMean

+apply(ina:int, in b :int) :int +apply(ina:int, in b :int) :int
T T

| |
1 1

return a/b; Calc tmpCalc = new CalcDiv;
' return (tmpCalc.apply(base.apply(a,b),2));

Figure 5.34: UML model of the Calculator Example

The C# program displayed in Listing 5.1 is an implementation based on the presented model.
In the main method of classTest three instances are created, one of each child-class. Fora@a
instance, we call theapply method and store the return value of the method in a global eld.

Compiling and disassembling this C# program yields IL code,which is translated to an ASG.
Both the IL code and the ASG are not presented here, but the inerested reader can nd them in
Appendix B.

The ASG is used as start graph for our production system. Appying the production rules
yields the LTS presented in Figure 5.35.

In this LTS a number of things are worth mentioning. One of these things is object creation.
From the code, the Main method instantiates three objects CalcAdd, CalcDiv, and CalcMean
and the apply method in classCalcMeanalso creates an object of typeCalcDiv . Object creation
is indicated in the LTS by the execution of the instr _newobj rule. For example, see the dashed
rectangles numbered 1 and 8 (the rst rule) which representghe creation of the objects of CalcAdd
and CalcDiv , respectively. The object creation of number 1 is followed § the object instantiation
(2), which involves ascending and descending in the classdrarchy in order to initialize the elds
of the parent classes, if available. After object instantigion is nished, the constructor of the
instantiated object is executed (indicated with 3). During execution of the constructor of the class

5.5 Simulation

Examples

65

<Progra

3
v

Lk

<meth

E

dirame_entrypoint>

Lk

<init_locals_locate_first>

1

<init_locals_next>

Lk

<init_locals_next>

H{k

A
=
=
g

cals_last>

A

I
S E
g — §

-

<instl

=
o
v

<|nsl slluc>

Object Creation
= 2
E

1

ﬂ*

<instr_newobj>

i

LN

<class_ascend> |

Lk

eturn from Parent Constructor

| <class_ascend> |

&.

<class_i

<class_descend> |
I
| <init_fields_none> |
|
| <class_descend> |
|
none> |
3
antiator cnnstrr

Iucme_args_mﬂan[:e

<|ransfer ams Iasun

1K

lize>

lc e

o
1§ I

o

S

€ <init_fields_none>
| g || 14
| g |I<|nslr

-

Q

o

o)

0

ﬂ*ﬂ*

| O iinst

COY‘IS[I’UC[OI’

ki

ﬂ*

<init_locals_none>

<instr_ldarg>

4
:ins|r_call_ins|am:er

locate_args_instange>

transfer_args_last fstatic>

Parent Constructor Call

<init_locals_none>

<instr_ldarg>

5

<instr_call_system|_object>

instr_ret_}

o
g o
@

a

£

Q i —

¢}

c

o

=R

@

=

c

o]

g

[} i

c

|=
S
n
1=
v

1K

iy &
s H
a 2
S =
E E
g g
& &
Y ¥

iy
E
53
&
)
z
g
v

ﬂ«

<instr_calkirt>

&.

<locate_args._first>

1k

<create_args_next>

% D

<create_args_last>

1k

<transfer_args_previous>

1k

<transfer_args_previous>
T
<}
T % sfer_args_last_tynamic>

e

2 :caanJropagate>|

1k

[o}
0
lo |
hd
<callirt_resofve> |
51 <init_locals_none>
rat>|

<instr_ldarg>

b

&
=
a

r_ld;

&

rg>

e

&
Hi
El
-]
£
=
v

1k

&
=

str_ret>

1k

i)
E
2
2
2
2
H
¥

<D(.

<instr_newobj>

1k

<class_ascend>

& |

<class_ascend>

1k

<class_initialize>

1k

<init_{

=

elds_none>

1k

<class_descend>

& l

=

<init_fields_none>

1k

<class_tescend>

1k

<init_{

=

elds_none>

1k

<instantiator_constr>

U

<locate_args_instance>

<transfer_args_last_newohj> <class_ascend>

I
<D(.

<init_locals_none> <class_initialize>

e
Lk

<instr_ldarg>

2l
1=

I<instr_call_instance> <class_descend>

Lk

=

<locate_args_instance> <init_fields_none>

Lk

<transfer_args_last_static> <class_descend>

&.

=

<init_locals_none> <init_fields_none>

L

<instr_ldarg> <instantiator_constr>

1=

<instr_call_system_ohject> <locate_args_instance>

Lk

<instr_ret> ransfer_args_last_newohj>

L
Lk

<instr_ret_newohj> <init_locals_none>

L
T

ﬂ

<instr_stloc_new_value> <instr_ldk

&

rg>

-k
Tk

F
=
2
£
)
a
v

<instr_call_instance>

s

&
=
El
E
g
a
v

<locate_args_instance>

L

E3
H
z
E
g
a
v

<transfer_args_last_static>

<class_ascend>

e
e

3
S

2
2
3
v

cal <init_locals_none>

T
>

<locate_args_first> <instr_ldarg>

Lk
Lk

<create_args_next> <instr_call_system_object>
<create_args_last> <instr_rat>

L
Lk

<transfer_args_previous> <instr_ret_newobj>

0
I

<transfer_args_previous> <instr_stloc_new_value>

¥
{k

&
Hi
El
£
g
&
v

<transfer_args_last_dynami¢>

L
-

&
=
2
=4
g
&
v

<callvirt_resohwe>

L
-

3
=
2
£
g
5]
v

<init_locals_none>

Lk
Lk

&
=

3
!i
=

2

2
g
=
v

r_ld:

<in

2
=
v

L
1M

A
H
2

r_ld <locate_args_first>

]
=
v

e
L

&
=
2
=
$

<create_arys_next>

<D(I

E
=
2
g
v

<create_args_last>|

Lk

2
H

2
4
2
=
v

<transfer_args_previous>

i
Lk

<instr_newohj> <transfer_args_previous>

U

ransfer_args_la

<calhirt_resohve>
<init_locals_locate_first>
<init_locals_last>
gl
<instr_newobj> |

<class_ascend> |

<class_ascend> I

3l

<class_initialize>

<init_fields_none> I

=

1k

<class_tescend>

L

<class_descend>

@

T RE B Jes B lJes [IE [(s Lo b 1

1k

xecution of constructor

‘instantiator_ constr>|

1k

nzale_args_mslam:er

isfer_args_| IasLnaw.nhp

amm{:'v:“ <instr_call_i

<init_locals nune>1

instr_call_instances

ﬂ*ﬂ*

<instr_ldarg=>

kg

|

: |

| <locate_args_instance>

|

Ftransfer_ams_last_stalia
|

|

| <init_locals_none>

|

| <instr_ldarg>

|

kinstr?callfsyslemfnhielcu

Instantiation CaIchv object and e

1k

| <instr_ret>

| <instr_ret_newohj>

<instr_stloc>

<instr_ldloc

=

1k

<instr_ldarg>

Figure 5.35: LTS of the Calculator Example

<locate_args_first>

| |
| |
<creale_args_nexl>l
I

|
|
|

sfer_args J]rmlil]l15>

create_args_last>

A

sfer_args, JJreMim15>

sfer_args Iasl_sla]ic>

‘init_locals m]ne>|

calf to Calc.apply

Static Bound Metho
D l D

4
i
2
'z
5
g
]

—a
d

ﬂ*

&
i
'5
=
S
g
7

-3
i
23
=
]
-
=
v

{ e

r
&
=
El
g
v

iy
4
:
5 P
=3
5
v

1K ,ﬂ«

<locate_args_first>

L

<create_args_next>

slam:e>|

ﬂ*

<create_args_last>

Lk

<transfer_args_previous>

Lk

<transfer_args_previous>

L

<transfer_ai

@

gs_last_dynamic>

L

<callvirt_resohe>

i

<init_locals_none>

Y A
a2
2 i
£ D‘E €
= =
s s

{x

E
=
2
=
3

{k

&
H
E)
g
v

O

<instr_stsfld>

<instr_ret_programs

66 Specifying IL Semantics with Graph Transformations

class Calc {
public virtual int apply(int a, int b) {
return a + b;
}
}

class CalcAdd : Calc {
}

class CalcDiv : Calc {
public override int apply(int a, int b) {
return a / b;
}
}

class CalcMean : Calc {
public override int apply(int a, int b) {
Calc tmpCalc = new CalcDiv();
return (tmpCalc.apply(base.apply(a,b),2));
}
}

class Test {
private static int x
private static int y
private static int z

0;
0;
0

public static void Main() {
int a 10;
int b 2;

Calc calc = new CalcAdd();
x=calc.apply(a, b);
/I x = 12

calc = new CalcDiv();
y=calc.apply(a, b);
/'y =5

calc = new CalcMean();
z=calc.apply(a, b);
Il z = 6;

Listing 5.1: Calculator Example in C#

CalcAdd, the constructor of its parent-class is called. This is indcated with number 4. After the
parent' s constructor has been executed, control ow is trarsferred to the constructor of CalcAdd
(5). Immediately after the return from the parent-class, the constructor of CalcAdd has nished
executing and returns (6), leaving the new instantiated obpct of type CalcAdd on the stack. From
this object, the method apply is called, which propagates the method call to its base classThis
is displayed by the rules executed in the rectangle with the nmber 7.

As mentioned earlier, number 8 also indicates the creation foan object. In fact, it represents
the allocation of the tmpCalc object { of type CalcDiv { as part of the method body of the apply
method of classCalcMean The rectangle with number 8 visualizes the initialization of an object
(i.e. the resolving of elds) and that the execution of the constructor. The last production rule
represents the return instruction at the end of the construdor, which causes the new created object
to be left on the stack. The execution of the production rulesindicated by 9 represent a method
call to the apply method of the classCalcDiv. This method is statically bounded (i.e. call
instruction) and overrides the virtual apply method of classCalc.

5.6 Performance 67

Figure 5.36: Final Graph of the Calculator Example

Now that we have seen which production rules are applied, we ant to make sure that the
result of our simulation is the same as expected. That is, theelds x, y, and z should yield 12,
5, and 6, respectively. In contrast to the previous examplewe present only the part of the nal
graph containing these elds and their values in Figure 5.36 Again, we can see that the values
indeed correspond with what we expected.

5.6 Performance

Although we have not performed any explicit performance teting during this research project, a
few words must be said about our experiences during simulatin of the examples. In the program
used for the Fibonacci example we requested the' number of the Fibonacci series. Simulating
this example with a linear exploration strategy was not a prdblem for the simulator, which came
up with a LTS consisting of 136 states and 135 transitions wihin a few seconds. When calculating
the 8" number of the series, the LTS consists of 973 states and 972ansitions. However, when
trying to look at the graph representing the last state, a list of errors with respect to the layout
algorithm appeared. Thus, it was impossible to check whetheor not the simulation yields the
correct result.

When performing the same test (i. e. calculating the 8 number of the Fibonacci series) with
the generator tool, we obtain the following output:

Statistics: States: 972
Explored: 1
Transitions: 971

Time (ms): 19485
Matching: 610 3.1%
Transforming: 3718 19.1%
Iso checking: 14986 76.9%
Building GTS: 77 0.4%
Measuring: 62 0.3%
Space (kB): 270513

From this output we can read the number of yielded states and tansitions. It also contains
the distribution of the time over the di erent performed tas ks during the simulation.

However, when trying to have the generator output the LTS to a le, it crashes with a null-
pointer exception and the resulting LTS was never written. This means that we were still not

68 Specifying IL Semantics with Graph Transformations

able to determine if this simulation was performed correcty. Furthermore, the fact that we have
1 state and 1 transition less than we had in the simulator is cafusing. The exact reason for this
is unknown.

Simulating the Calculator example by using the simulator did not cause any problems and
resulted in a LTS consisting of 184 states and 183 edges withia few seconds. When performing
the same test with the generator, this yields the following aitput:

Statistics: States: 184
Explored: 1
Transitions: 183

Time (ms): 2640
Matching: 45 1.7%
Transforming: 1938 73.4%
Iso checking: 626 23.7%
Building GTS: 16 0.6%
Measuring: 0 0.0%
Space (kB): 68731

Trying to output the LTS to a le yields the same problem as described for the Fibonacci
example.

5.7 Summary

Although static analysis is partly performed by our translator, we have developed one production
rule that is responsible for static analysis with production rules. This production rule involves
resolving target Labes to the Labelof an Instruction

Furthermore, we have discussed whether or not to perform owgraph analysis, and concluded
that introducing a separate ow graph analysis phase does nbpay o. The reason for this is
that the syntactic order of appearance of instructions is inmost cases equal to the semantic order
of execution. Performing separate ow graph analysis wouldinvolve specifying extra production
rules, while there is almost no added value.

A meta-model of the Frame Graph (FG) is presented and discussd in Section 5.3.1. The FG
is the ASG extended with run-time information, such as a sta& and method frames. We also
provided a meta-model of the Value Graph (VG) which describe values and their relation to the
FG and ASG. This is discussed in Section 5.3.2.

We have discussed decisions about modelling the runtime emenment in Section 5.3. This
involved an approach of representing the stack and the methd state, but also discusses transferring
arguments from stack to method frame.

Finally, after discussing implementation decisions, we pesented and explained a number of the
developed production rules in Section 5.4. We concluded tlsi chapter by simulating two example
programs. This is accomplished by applying a set of productn rules to the ASG of each program,
resulting in a Labelled Transition System (LTS). Such a LTS represents the (intermediate) graphs
as nodes and applied production rules as edges between thasedes. For these two examples, we
have provided a few comments on the performance of the GROOVHEooI set.

Chapter 6

Conclusion

Using graphs and graph transformations to specify the IL serantics o ers advantages. First,
representing the semantics in a graphical way is both intuitve and non-ambiguous. And second,
the formal background of graph transformations opens the pesibility to use formal veri cation
techniques.

In this project we aimed at a graph-based representation of he semantics of the .NET Inter-
mediate Language. This resulted in a tool and a set of produdbn rules describing IL semantics.
The tool is a translator that is able to transform an arbitrar y IL program into an Abstract Syntax
Graph, which is used as start graph to which the production rdes are applied. By applying the
production rules we can simulate the behaviour of the origimal IL program.

The graph transformations that we developed describe the smantics of the IL instructions,
meaning that each instruction needs to be speci ed only once Changes to an IL program only
in uences the start graph (ASG), but not the production rule s themselves. The production rules
that we have constructed cover techniques such as object caon, method calling, and inheri-
tance. Furthermore, we have constructed production rules hat are able to perform arithmetical
operations, branching operations, and load and store opet@ns.

At the end of this project we have presented the simulation oftwo example programs containing
di erent (object-oriented) language concepts. The applied production rules are presented in the
generated Labelled Transition Systems of these simulation Furthermore, we have shown that
simulating the programs yields correct results.

We have demonstrated some encouraging results and believédat we have provided a solid
base for future research on using graph transformations to mecify the semantics of the .NET
Intermediate Language, and possibly other languages too.

6.1 Discussion

In this section we will evaluate choices and decisions with @spect to our implementation. Fur-
thermore, we will brie y discuss our experiences with the GROOVE tool set and give our opinion
about the used approach.

6.1.1 Implementation

Method signatures are dealt with in the translator; the tran slator is responsible for matching and
merging identical signatures. An alternative of doing this in the translator would be doing it
by using graph production rules. However, using graph prodation rules for signature creation
and signature matching is dicult. This is because determining the method signature would
involve determining the parameters (and their order) of a mehod. After determining the method's
signature, a check must be performed if this signature doesat already exist. If so, the two
signatures must be merged to one single (and unique) signata. The last step of comparing and

70 Conclusion

merging two signatures with production rules may prove to bevery di cult, because comparing
structures is quite hard.

Furthermore, we have mentioned that when acall instruction is used, we call the method
provided by that instruction. This is not entirely accordin g to the IL semantics. Normally a
lookup to the implementation of the called method should be performed by traversing the class-
hierarchy, but in our rules we assume that the implementation of the called method can always be
found at the destination provided with the call instruction. We do this because we are almost
certain that IL programs obtained from the C# compiler alway s refer to the implementation of a
method in case of acall instruction.

6.1.2 GROOVE

During this project we have intensively worked with the editor, simulator and imager of the
GROOVE tool set. Installing the tool set is easy, and working with the tools is very intuitive.

While GROOVE provides us a nice set of tools, the developmenbf these tools went on during
our project. Although this resulted in a quick response to bugs that were found, it also resulted
in the introduction of new bugs. Due to this, every now and then we had to determine whether
or not a problem concerned our production rules, or if it was amere bug in the GROOVE tool
set. Sometimes, this was very time consuming.

6.1.3 Approach

Designing and implementing the translator proved to be moredi cult than expected. For creating
the translator with ANTLR we used an existing parser grammar le * that turned out to contain
some non-deterministic rules. These had to be corrected. Wh hindsight, we must say that it
would have been better to determine a subset of the Intermedite Language and write a translator
for this subset only. This would have considerably decreaskthe complexity of the language to be
translated.

With respect to the approach of using graphs and graph transérmations in order to specify the
semantics of a dynamic language, we would like to state that & believe that using this approach
has proved to be working. We were able to specify the operatital semantics of a number of IL
instructions by using graph production rules. Furthermore, we were able to represent run-time
state snapshots by using a graph, while transitions betweernwo graphs { which are obtained by
applying production rules { represent run-time changes duing simulation. Although graphs and
graph transformations are very useful for representing thesemantics, we think it also has some
shortcomings. One of these is that it is (at this moment) impassible to implement instructions
that depend on memory locations (for example loading the addess of a local variable). Another
shortcoming is that sometimes a trick had to be applied in orcer to get something working. An
example of such a trick is our used representation of the stac

6.2 Related Work

Work that is related to ours is by Corradini et al.[4]. They use graph transformations to formalize
a large fragment of Java. In their proposal, one rule is geneted for each method, making the
rules dependent on the program. Our work is more general thartheirs, because we are able to
simulate the behaviour of the individual instructions, instead of just the result of the execution of
a method.

Kastenberg et al.[13] present operational semantics of a Bede ned imperative, object-oriented
language (called TAAL). They use graph transformation rules to extend a at abstract syntax
graph with control ow information, which again is used as the start graph for simulation. In our
solution, we do not extend our abstract syntax graph with exgicit control ow information, but
instead use the implicit control ow information that is alr eady available.

1 The grammar le was written by Pascal Lacroix and can be obtai ned from http://www.antlr.org

6.3 Future Work 71

Arends[3] presents work that involved the implementation d a translator that produces graph
production rules from Java bytecode. Templates with varialle labels are used to build a production
rule for each situation by inserting the right labels. This di ers from our approach, because we use
generic production rules which do not have to be generated aording to the executed program.

6.3 Future Work

Both the translator and the created production rules need futher extension. At this moment we
are only able to process single- le assemblies. This shoulde expanded to multi- le assemblies.
Also, not implemented are the concepts that deal with { amongothers things { exception handling,
threads, boxing and unboxing, generics, and type conversia Furthermore, bitwise instructions,
the switch statement, and instructions directly addressing memory locations are not implemented.
This is all left for future work.

It may be interesting to research if it is possible to executegraph transformation rules controlled
by some other means, for example the CLR. The start graph therdoes not have to represent the
program to be simulated (as in case of the ASG), but only a few untime concepts such as a stack.
Simulation then may be achieved by executing a program step ¥ step and call a production
rule for each instruction, rather than rst create an Abstra ct Syntax Graph and perform graph
transformations to this ASG. If this works, translating an | L program is not necessary any more
and it is su cient to just have a set of graph production rules describing the semantics of the IL
instructions.

With respect to GROOVE we must mention that not all of the inst ructions are represented by
graph transformation rules because the GROOVE tool set doesot provide support for all kinds
of operations and types. For example, GROOVE does not suppdrthe bitwise operations, oating
point types and unsigned integers. To support these instrutions, adjustments to the GROOVE
tool set are necessary.

What we miss in the simulator and editor is a good layouting agorithm. Especially when
graphs are becoming large, layouting this graph { which mosly must be performed by hand {
is a time-consuming and unpleasant process. Furthermore, aen applying a production rule to
a graph with hidden nodes and edges, the whole graph becomessible again. It would be very
helpful if only the part of the graph that was not hidden would stay visible, along with the newly
added nodes and edges. It might also be good to give the userdlpossibility of colouring nodes
and edges in a graph, so that they can be quickly found during imulation. Another suggestion
is to introduce some way of grouping nodes and edges in ordeotmake the graph more orderly.
Also, the larger a graph gets, the slower the user interfacesigoing to work. We suggest that this
is a problem that should be dealt with.

Furthermore, we would like to emphasise that we have mainly sed the simulator in order to
test and debug our production rules, which proved to be very lelpful. However, as mentioned in
Section 5.6, we accounted problems with layouting a large LS. Furthermore, the generator was
not able to export the LTS to a le. In our opinion, these probl ems need to be solved.

Bibliography

[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural operati onal semantics, 1999.
[2] ANTLR website. http://www.antlr.org/

[3] Mark Arends. A simulation of the java virtual machine using graph grammars. Master's
thesis, University of Twente, November 2003.

[4] Andrea Corradini, Fernando Lus Dotti, Luciana Foss, and Leila Ribeiro. Translating java
code to graph transformation systems. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-
Presicce, and Grzegorz Rozenberg, editor$CGT , volume 3256 ofLecture Notes in Computer
Science pages 383{398. Springer, 2004.

[5] Joe Duy. Professional .NET Framework 2.0. Wiley Publishing, Inc., April 2006.

[6] ECMA International. Ecma international, Common Langua ge Infrastructure (CLI), Standard
ECMA-335. http://www.ecma-international.org/publications/stan dards/Ecma-335.htm, June
2005.

[7] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabrie le Taentzer. Fundamentals of
Algebraic Graph Transformation. Springer-Verlag, 2006.

[8] Hartmut Ehrig, Reiko Heckel, Martin Kor, Michael Lewe , Leila Ribeiro, Annika Wagner,
and Andrea Corradini. Algebraic approaches to graph transbrmation - part ii: Single pushout
approach and comparison with double pushout approach. In Reenberg [25], pages 247{312.

[91 GROOVE website. http://groove.sourceforge.net/

[10] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Gph grammars with negative appli-
cation conditions. Fundam. Inform., 26(3/4):287{313, 1996.

[11] Java technology website.http://java.sun.com/

[12] Harmen Kastenberg, Anneke Kleppe, and Arend Rensink. B ning object-oriented execution
semantics using graph transformations. In R. Gorrieri and H Wehrheim, editors, Proceedings
of the 8th IFIP International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS'06), volume 4037 ofLecture Notes in Computer Science pages
186{201. Springer-Verlag, 2006.

[13] Harmen Kastenberg, Anneke Kleppe, and Arend Rensink. Bgineering object-oriented se-
mantics using graph transformations. CTIT Technical Report 06-12, University of Twente,
March 2006.

[14] Harmen Kastenberg and Arend Rensink. Model checking dyamic states in GROOVE. In
A. Valmari, editor, Model Checking Software (SPIN) volume 3925 ofLecture Notes in Com-
puter Science pages 299{305. Springer-Verlag, April 2006.

[15] Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft Press, Redmond, WA, USA,
2002.

74 BIBLIOGRAPHY

[16] Microsoft Corporation. Overview of the .net framework Retrieved June 28, 2006, from

http://msdn2.microsoft.com/en-us/library/a4t23ktk.a spx, 2003.

[17] Microsoft Corporation. Common language speci cation Retrieved December 24, 2006, from
http://msdn2.microsoft.com/en-us/library/12a7a7h3.a spx, 2006.

[18] Microsoft Corporation. Microsoft Portable Executable and Com-
mon Object File Format Specication. Retrieved July 4, 2006, from
http://www.microsoft.com/whdc/system/platform/firmw are/PECOFF.mspxMay 2006.

[19] Hanspeter Messenbeck, Wolfgang Beer, Dietrich Birrgruber, and Albrecht Woess. .NET
Application Development: With C#, ASP.NET, ADO.NET, and We b Services Pearson
Addison Wesley, 2004.

[20] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN{19, Computer Science Department, Aarhus University, Aarhus, Denmark, September
1981.

[21] Arend Rensink. The GROOVE simulator: A tool for state space generation. In John L.
Pfaltz, Manfred Nagl, and Boris Behlen, editors, AGTIVE , volume 3062 ofLecture Notes in
Computer Science pages 479{485. Springer, 2003.

[22] Arend Rensink and Harmen Kastenberg. GRaphs for ObjecOriented VEri cation (groove).
Retrieved Apr 1, 2006, from http://groove.sourceforge.net , April 2006.

[23] Jerey Richter. Garbage collection: Automatic memory management in the microsoft .net
framework. MSDN Magazine November 2000.

[24] Jerey Richter. Applied Microsoft .NET Framework Programming. Microsoft Press, Red-
mond, WA, USA, 2002.

[25] Grzegorz Rozenberg, editorHandbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scienti c, 1997.

[26] Thuan Thai and Hoang Q. Lam. .NET Framework Essentials. O'Reilly, 2nd edition, February
2002.

[27] G. Winskel. The formal semantics of programming languagesThe MIT Press, 1993.

Appendices

Appendix A

IL programs side to side

This appendix contains the resulting IL code after compiling two identical programs to the Inter-
mediate Language. The two input programs are written in the NET languages C# and VB.NET
and are presented in Listing A.1 and Listing A.2.

Compiling (and disassembling) these two programs yields tw les containing IL code. We
only present the most interesting part of the IL les. That is , metadata and other super uous
methods are omitted. The resulting IL code can be found in Lising A.3 and Listing A.4.

class Example {
static int theResult;
static int Fibonacci(int x) {
if (x == 0 || x == 1) {
return Xx;
}

return Fibonacci(x-1) + Fibonacci(x-2);

}

public static void Main() {
theResult = Fibonacci(4);
}
}

Listing A.1: Fibonacci Example in C#

Module Example
Dim theResult As Integer
Function Fibonacci(ByVal x As Integer) As Integer
If (x = 0 Or x = 1) Then
Return x
End If
Return Fibonacci(x-1) + Fibonacci(x-2)
End Function

Sub Main()
theResult = Fibonacci(4)
End Sub
End Module

Listing A.2: Fibonacci Example in VB.Net

78 IL programs side to side

.class private auto ansi beforefieldinit Example
extends [mscorlib]System.Object
{

.field private static int32 theResult
.method private hidebysig static int32

Fibonacci(int32 x) cil managed
{

/I Code size 27 (0x1b)
.maxstack 8

IL_0000: Idarg.0

IL_0001: brfalse.s IL_0007

IL_0003: Idarg.0
IL_0004: Idc.i4.1
IL_0005: bne.un.s IL_0009

IL_0007: Idarg.0
IL_0008: ret

IL_0009: Idarg.0

IL_000Oa: Idc.i4.1

IL_000b: sub

IL_000c: call int32 Example::Fibonacci(int32)
IL_0011: Idarg.0

IL_0012: Idc.i4.2

IL_0013: sub

IL_0014: call int32 Example::Fibonacci(int32)
IL_0019: add

IL_00la: ret

} /I end of method Example:: Fibonacci

.method public hidebysig static void Main() cil managed
{

.entrypoint

/I Code size 12 (Oxc)

.maxstack 8

IL_0000: Idc.i4.4

IL_0001: call int32 Example::Fibonacci(int32)
IL_0006: stsfld int32 Example::theResult
IL_000b: ret

} /I end of method Example ::Main

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed
{

/I Code size 7 (0x7)
.maxstack 8
IL_0000: Idarg.0
IL_0001: call instance void [mscorlib]System.Object::.c tor()
IL_0006: ret
} /I end of method Example::. ctor

} /I end of class Example

Listing A.3: Fibonacci C# Example in IL

79

.class private auto ansi sealed Example
extends [mscorlib]System.Object
{

.custom instance void [Microsoft.VisualBasic]Microsoft
CompilerServices.StandardModuleAttribute::.ctor() = (

.field private static int32 theResult

.method public static int32 Fibonacci(int32 x) cil managed
/I Code size 31 (0x1f)
.maxstack 3
.locals init (int32 V_0)
IL_0000: Idarg.0
IL_0001: Idc.i4.0
IL_0002: ceq
IL_0004: Idarg.0
IL_0005: Idc.i4.1
IL_0006: ceq
IL_0008: or
IL_0009: brfalse.s IL_000d
IL_000b: Idarg.0
IL_000c: ret
IL_000d: Idarg.0
IL_000e: Idc.i4.1
IL_000f: sub.ovf
IL_0010: call int32 Example::Fibonacci(int32)
IL_0015: Idarg.0
IL_0016: Idc.i4.2
IL_0017: sub.ovf
IL_0018: call int32 Example::Fibonacci(int32)

IL_001d: add.ovf
IL_00le: ret
} /I end of method Example:: Fibonacci

.method public static void Main() cil managed

{
.entrypoint
.custom instance void [mscorlib]System.STAThreadAttrib
00)
/I Code size 12 (0Oxc)

.maxstack 8
IL_0000: Idc.i4.4

IL_0001: call int32 Example::Fibonacci(int32)
IL_0006: stsfld int32 Example::theResult
IL_000b: ret

} /I end of method Example ::Main

} /I end of class Example

.VisualBasic.
01 00 00 00)

ute::.ctor() = (01 00 00

Listing A.4: Fibonacci VB.NET Example in IL

Appendix B

Calculator Example: IL Code and
ASG

/I Microsoft (R) .NET Framework IL Disassembler. Version 2. 0.50727.42
/I Copyright (c) Microsoft Corporation. All rights reserve d.

/I Metadata version: v2.0.50727
.assembly extern mscorlib

{
.publickeytoken = (B7 7A 5C 56 19 34 EO 89) Il .z nV.4..
.ver 2:0:0:0
}
.assembly calc_inheritance
{
.custom instance void [mscorlib]System.Runtime.Compile rServices.
CompilationRelaxationsAttribute ::.ctor(int32) = (01 00 08 00 00 00 00 00)
.custom instance void [mscorlib]System.Runtime.Compile rServices.
RuntimeCompatibilityAttribute::.ctor() = (01 00 01 00 54 0 2 16 57 72 61 70 4
E 6F 6E 45 78 //T..WrapNonEx 63
65 70 74 69 6F 6E 54 68 72 6F 77 73 01) /I ceptionThrows.
.hash algorithm 0x00008004
.ver 0:0:0:0
}

.module calc_inheritance.exe

/I MVID: f ASA6DEF5 33D0 4757 B3EB 4E3A503588D2 g
.imagebase 0x00400000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 /I WINDOWS _CUI

.corflags 0x00000001 /I ILONLY

/I Image base: 0x02E90000

|| —————= CLASS MEMBERS DECLARATION —— ==

.class private auto ansi beforefieldinit Calc
extends [mscorlib]System.Object

{
.method public hidebysig newslot virtual
instance int32 apply(int32 a,
int32 b) cil managed
{

/I Code size 4 (0x4)
.maxstack 8
IL_0000: Idarg.1
IL_0001: Idarg.2
IL_0002: add
IL_0003: ret
} /I end of method Calc::apply

82 Calculator Example: IL Code and ASG

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed
{

/I Code size 7 (0x7)
.maxstack 8
IL_0000: Idarg.0
IL_0001: call instance void [mscorlib]System.Object::.c tor()
IL_0006: ret
} /I end of method Calc::.ctor

} /I end of class Calc

.class private auto ansi beforefieldinit CalcAdd
extends Calc

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

/I Code size 7 (0x7)
.maxstack 8
IL_0000: Idarg.0
IL_0001: call instance void Calc::.ctor()
IL_0006: ret
} /I end of method CalcAdd::. ctor

} /I end of class CalcAdd

.class private auto ansi beforefieldinit CalcDiv
extends Calc
{

.method public hidebysig virtual instance int32
apply(int32 a,
int32 b) cil managed

{

/I Code size 4 (0x4)

.maxstack 8

IL_0000: Idarg.1

IL_0001: Idarg.2

IL_0002: div

IL_0003: ret
} /I end of method CalcDiv::apply

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

/I Code size 7 (0x7)
.maxstack 8
IL_0000: Idarg.0
IL_0001: call instance void Calc::.ctor()
IL_0006: ret
} /I end of method CalcDiv::. ctor

} /I end of class CalcDiv

.class private auto ansi beforefieldinit CalcMean
extends Calc

.method public hidebysig virtual instance int32
apply(int32 a,
int32 b) cil managed

/I Code size 22 (0x16)

.maxstack 4

.locals init (class Calc V_0)

IL_0000: newobj instance void CalcDiv::.ctor()
IL_0005: stloc.0

IL_0006: Idloc.0

83

}

IL_0007: Idarg.0
IL_0008: Idarg.1
IL_0009: Idarg.2

IL_000Oa: call instance int32 Calc::apply(int32,

IL_000f: Idc.i4.2

int32)

IL_0010: callvirt instance int32 Calc::apply(int32,

IL_0015: ret
} /I end of method CalcMean:: apply

.method public hidebysig specialname

int32)

rtspecialname

instance void .ctor() cil managed

{
/I Code size 7 (0x7)

.maxstack 8
IL_0000: Idarg.0

IL_0001: call instance void Calc::.ctor()

IL_0006: ret
} /I end of method CalcMean::. ctor

/I end of class CalcMean

.class private auto ansi beforefieldinit Test

{

extends [mscorlib]System.Object

.field private static int32 x
.field private static int32 y
.field private static int32 z
.method public hidebysig static void

{

.entrypoint

/I Code size 63 (0x3f)

.maxstack 3

.locals init (int32 V_0O,
int32 Vv_1,
class Calc V_2)

IL_0000: Idc.i4.s 10

IL_0002: stloc.0

IL_0003: Idc.i4.2

IL_0004: stloc.1

Main() cil managed

IL_0005: newobj instance void CalcAdd::.ctor()

IL_000Oa: stloc.2
IL_000b: Idloc.2
IL_000c: Idloc.0
IL_000d: Idloc.1

IL_000e: callvirt instance int32 Calc::apply(int32,

int32)
IL_0013: stsfld int32 CalcMain::x
IL_0018: newobj instance void CalcDiv::.ctor()
IL_001d: stloc.2
IL_00le: Idloc.2
IL_001f: Idloc.0
IL_0020: Idloc.1
IL_0021: callvirt instance int32 Calc::apply(int32,

int32)
IL_0026: stsfld int32 CalcMain::y
IL_002b: newobj instance void CalcMean::.ctor()
IL_0030: stloc.2
IL_0031: Idloc.2
IL_0032: |Idloc.0
IL_0033: Idloc.1
IL_0034: callvirt instance int32 Calc::apply(int32,

int32)
IL_0039: stsfld int32 CalcMain::z
IL_003e: ret

} /I end of method CalcMain ::Main

84 Calculator Example

. IL Code and ASG

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

/I Code size 7 (0x7)
.maxstack 8
IL_0000: Idarg.0
IL_0001: call instance void [mscorlib]System.Object::.c
IL_0006: ret
} /I end of method CalcMain::. ctor

} /I end of class CalcMain

Listing B.1: IL code for Calculator Example

tor()

85

Figure B.1: ASG Calculator Example

Appendix C

Production Rules - Simulation

Figure C.1: 1.init_eld _int

Figure C.2: 1.instr_call_systemobject

88

Production Rules - Simulation

Figure C.3: l.instr_ret_newobj

Figure C.4: callvirt _propagate

Figure C.5: callvirt _resolve

89

Figure C.6: classascend

Figure C.7: classdescend

Figure C.8: classinitialize

Figure C.9: createargslast

90

Production Rules - Simulation

Figure C.10: createargs next

Figure C.11: init_elds last

Figure C.12: init_elds _locate_ rst

91

Figure C.13: init_elds _next

Figure C.14: init_elds _none

Figure C.15: init_localslast

Figure C.16: init_localslocate._rst

92

Production Rules - Simulation

Figure C.17: init_locals.next

Figure C.18: init_localslocate_.none

93

Figure C.19: instantiator constr

Figure C.20: instr_add

Figure C.21: instr_beqg false

94

Production Rules - Simulation

Figure C.22: instr_beqg true

Figure C.23: instr_bgt_false

Figure C.24: instr_bgt_true

95

Figure C.25: instr_blt _false

Figure C.26: instr_blt true

Figure C.27: instr_bne false

96 Production Rules - Simulation

Figure C.28: instr_bne_true

Figure C.29: instr_br

Figure C.30: instr_break

Figure C.31: instr_brfalse_false

97

Figure C.32: instr_brfalse true

Figure C.33: instr_brtrue _false

Figure C.34: instr_brtrue _true

98

Production Rules - Simulation

Figure C.35: instr_call

Figure C.36: instr_call_instance

99

Figure C.37: instr_callvirt

Figure C.38: instr_cegfalse

Figure C.39: instr_ceqtrue

100 Production Rules - Simulation

Figure C.40: instr_cgt_false

Figure C.41: instr_cgt_true

Figure C.42: instr_clt false

101

Figure C.43: instr_clt_true

Figure C.44: instr_div

Figure C.45: instr_dup

102 Production Rules - Simulation

Figure C.46: instr_ldarg

Figure C.47: instr_ldc

Figure C.48: instr_ld d

103

Figure C.49: instr_ldloc

Figure C.50: instr_lds d

104 Production Rules - Simulation

Figure C.51: instr_ldstr

Figure C.52: instr_mul

Figure C.53: instr_newobj

105

Figure C.54: instr_nop

Figure C.55: instr_pop

Figure C.56: instr_rem

106 Production Rules - Simulation

Figure C.57: instr_ret

Figure C.58: instr_ret_program

Figure C.59: instr_starg

107

Figure C.60: instr_starg_-new_value

Figure C.61: instr_std

108 Production Rules - Simulation

Figure C.62: instr_std _new.value

Figure C.63: instr_stloc

109

Figure C.64: instr_stloc_new_value

Figure C.65: instr_sts d

110 Production Rules - Simulation

Figure C.66: instr_sts d _new.value

Figure C.67: instr_sub

Figure C.68: locateargs. rst

Figure C.69: locateargsinstance

111

Figure C.70: locateargsnone

Figure C.71: methodframeentrypoint

112 Production Rules - Simulation

Figure C.72: program

Figure C.73: transfer.argslast_.dynamic

Figure C.74: transfer.argslast_newobj

113

Figure C.75: transfer.argslast_static

Figure C.76: transferargsprevious

	Introduction
	Problem Statement
	Approach
	Overview

	The .NET Framework
	Overview of .NET
	Common Language Runtime
	Base Class Library
	Common Type System and Common Language Specification
	Types
	Portable Executables
	Virtual Execution System
	Code Management
	Garbage Collection

	The Intermediate Language
	Directives
	Modules and Assemblies
	Namespaces
	Methods
	The IL Instruction Set
	Generics
	Name Resolution

	Our Work
	Summary

	Graphs and Graph Transformations
	Graphs
	The Pacman Example

	Graph Production Rules
	The Pacman Example - Production rules

	Graph Production System
	The Pacman Example - Graph Transition System

	Graph Transformation Tool
	The Pacman Example - GROOVE

	Summary

	Translating IL Programs to Graphs
	Translator
	Meta-Model Abstract Syntax Graph
	High-level structure
	Types
	Attributes
	Instructions

	Design Decisions
	Classnames and namespaces
	Method signatures
	Identifiers

	Translating C# and VB.NET to IL
	Example: IL to ASG
	Summary

	Specifying IL Semantics with Graph Transformations
	Static Analysis
	Control Flow Analysis
	Modelling the runtime environment
	Meta-model of the Frame Graph
	Meta-model of the Value Graph
	Stack
	Method Frame Representation and Transferring Arguments

	Production rules
	Starting Execution
	Object Creation
	Calling methods
	Common Instructions
	Limitations

	Simulation Examples
	Example: Fibonacci
	Example: Calculator

	Performance
	Summary

	Conclusion
	Discussion
	Implementation
	GROOVE
	Approach

	Related Work
	Future Work

	Appendices
	IL programs side to side
	Calculator Example: IL Code and ASG

