Verifying Concurrent Programs using Separation Logic
extended with Histories

Twan Coenraad
University of Twente
P.O. Box 217, 7500 AE Enschede
the Netherlands

t.coenraad@student.utwente.nl

ABSTRACT

Recently, an extension to separation logic has been pro-
posed to make it simpler to verify the correct functioning
of concurrent programs. Until now, one usually checks
whether data races are absent using for example the de
facto standard Owicki-Gries. However, verifying absence
of data races does not scale, moreover functional proper-
ties cannot be verified. Therefore, histories are added to
a program to take its state into account. Histories are up-
dated if values are modified. Using this information, it can
be verified that a method behaves as specified. In this pa-
per, this proposed method is used to verify with VerCors
some larger concurrent examples to find out if it is as sim-
ple as typically used techniques for data race checking are,
while being able to verify even functional requirements of
a method. It turns out that verifying those examples is
doable, but at this moment not trivial. In the future this
will be improved.

Keywords

separation logic, histories, concurrency, verification, Ver-
Cors

1. INTRODUCTION

Typically, created software will have unwanted behaviour
during development and even when in production, often
referred to as bugs. There are mainly two methods to cope
with this. One is to create tests to make sure that, within
set boundaries, the program works as expected. This is
a straightforward approach which will work as long as it
is accepted that any unforeseen state will have probably
detrimental behaviour. It can be fine grained to every ex-
tent. By trying to cover most occurring edge cases, this
could be sufficient and work well. In most programming
languages there is also large support for this approach.
However, by nature some edge cases will be missed and
unpredictable behaviour will occur in those circumstances.
This can be unwanted if this happens in software where
life-threatening situations or financial risks are covered.
The other approach to handle these bugs is to verify that
the program works as intended. This is typically a more
complex approach, given that you have to formalize the
features a program should have, instead of testing specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

23”” Twente Student Conference on IT June 22“, 2015, Enschede, the
Netherlands.

Copyright 2015, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

behaviour in specific situations. Also, it is often less adapt-
able to a changing environment than tests are and requires
thus more maintenance. Tool support for this is still un-
der development, however the DSL! is improving and tool
support is extended. Tools for verifying sequential pro-
grams are of production quality, e.g. CodeContracts® and
OpenJML3. For concurrent programs, verification tools of
beta quality exist, e.g. VerCors® and VeriFast®.

For sequential programs, both solutions have been worked
out and can be used in a professional context, albeit that
verification is not as widely deployed as tests are. Until
separation logic was developed, verification of programs
running multiple threads did not scale, since every new
thread had to be verified again together with the existing
ones. This could be done by using for example de facto
standard Owicki-Gries’” method [6]. Next to this, most
approaches focus on proving data-race freedom in a pro-
gram [3]. This guarantees that critical sections are not
hit simultaneously, but does not prove that the behaviour
of the program is as intended. At any moment within a
thread a shared variable can be modified by another one,
therefore nothing can be guaranteed about the outcome.
Verification is done modularly with separation logic and
given every module is verified, scaling is not a problem any
more. By taking also histories (which records all modifica-
tions in the history of a program) into account [8], scaling
and guarantees about the outcome are taken care of.

In this paper, the history-based approach is reviewed to see
whether it is as simple as claimed in [8] to verify concur-
rent programs. VerCors is a tool with support for these
histories, but it is not yet known to what extent it can
be used to verify complicated pieces of (concurrent) soft-
ware. Therefore, we will use VerCors as our verification
tool. We start by taking a basic counter to show how to
decorate and annotate code with separation logic and his-
tories. This example is then extended to show what is
possible with this technique. For example, it can be tried
to make the example include loops and to make it work
concurrently. These are relatively simple programming
structures that can be used to compose more complex pro-
grams. After verifying both, some simple (sorting) algo-
rithms can be validated. All of this will be documented
as a handbook on how to verify programs with separation
logic and histories using VerCors.

1.1 Related work

'"Domain Specific Language

2See https://github.com/Microsoft/CodeContracts.
3See http://openjml.org/.

“See http://fmt.ewi.utwente.nl/puptol/
vercors-verifier/.

5See http://people.cs.kuleuven.be/ bart. jacobs/
verifast/.

https://github.com/Microsoft/CodeContracts
http://openjml.org/
http://fmt.ewi.utwente.nl/puptol/vercors-verifier/
http://fmt.ewi.utwente.nl/puptol/vercors-verifier/
http://people.cs.kuleuven.be/~bart.jacobs/verifast/
http://people.cs.kuleuven.be/~bart.jacobs/verifast/

Some similar case studies have been done for other veri-
fication tools and techniques. For Owicki-Gries’ method
a systematic exploration has been done and published by
Apt [1]. For VeriFast Jacobs tested and proved [5] that it
verifies programs and structures like a chat server, linked
list and iterator, composite, a JavaCard applet and a Game-
Server. In another published paper by Philippaerts, the
Belgian Electronic Identity Card and Policy Enforcement
Point for Network Admission Control scenarios were ex-
tensively validated [7]. Also, for VeriFast a tutorial is writ-
ten that explains in detail how it is used [4]. For VeriFast
this were all verifications on sequential programs. This
paper focuses on verifying concurrent programs using sep-
aration logic extended with histories, written as a small
step-by-step guide.

2. RESEARCH OBJECTIVES

It is expected in that separation logic requires the same
effort to verify a program as for data race checking [8].
The first method does not state anything about the result
it has, though the latter method can be used to make
guarantees about the functional behaviour. It is however
unknown how difficult it is to specify and verify a program
with this approach. Therefore, this research will focus on
the ease of use of the latter method.

How well can one, within a few weeks and without knowl-
edge on separation logic, verify several real life examples
using VerCors with permission-based separation logic ex-
tended with histories?

2.1 Research questions

1. How does one specify and verify loops in VerCors?

2. How does one specify and verify a concurrent pro-
gram in VerCors?

(a) ... that is deterministic?

(b) ... that is non-deterministic?

3. How does one specify and verify a sorting algorithm
in VerCors?

3. BACKGROUND INFORMATION

3.1 Permissions

To reason about the partial correctness of the behaviour in
(concurrent) programs, permission-based separation logic
is used [8]. Code is separated in atomic blocks. When
a shared memory location is accessed, a fractional per-
mission (denoted as m € (0,1]) is required. To write, a
permission of 1 has to be held, otherwise the method is
read-only and a fraction of the permission is taken, thus
making it impossible for other methods to write that lo-
cation.

3.2 Actions

Actions are used to describe changes of values, which are
observed by the environment as events happening at once,
thus atomically. A history is used to record these actions.
This history is shared between concurrent threads.

3.3 Example

In a sequential context, no histories are needed to prove
that a counter is incremented by exactly 1. However, when
used in a concurrent context, histories are needed to reason
about the outcome, to take interleavings into account. To

verify a specification in VerCors, a language based on JML
5 is used. Similar to JML, annotations are used to specify
blocks of code. How both are applied to Listing 1 is shown
below.

void doIncr() {
X =x + 1;

—

M)

3 |}

Listing 1. Simple counter example

3.3.1 Definitions

First, definitions have to be declared to describe any method
with a minimal set of actions and processes. Actions are
abstract methods that only describe behaviour, processes
do have implemented behaviour (albeit that they both are
using keyword process in VerCors). Listing 2 declares x
as an integer, which makes it possible to reason about a
certain x.

1 | int x;

Listing 2. Declaration of a variable

Next, in Listing 3 a process is declared which prescribes
the behaviour of the incr () method.

1 |modifies x;
2 |ensures x == \old(x) + 1;
3 |process incr();

Listing 3. Process incr()

3.3.2 Decorating

Now all is set to decorate Listing 1 and to specify its be-
haviour for verification with VerCors.

1 |given process p;

2 |given frac q;

3 |requires Hist(h, q, p);

4 |requires Perm(h.x, 1);

5 |ensures Perm(h.x, 1);

6 |ensures Hist(h, q, p * h.incr());

Listing 4. Pre and post conditions doIncr()

Firstly, we explain the pre and post conditions in List-
ing 4. Given a certain state and fraction (as explained in
Section 3), we start by requiring a certain history to add
actions on (line 3). Next to that, a write permission (thus,
the whole fraction) is needed (line 4). Afterwards, the per-
mission must still hold and the history must be extended
(using the * operator) with a incr() action (line 5).

Now the method’s body can be annotated”.

void doIncr(History h) {
{
//@ action h, q, p, incr(Q);
X =x+1;

}

o oA W N e

Listing 5. doIncr()

Within the body of doIncr() a block is defined (lines 2—5),
with an @ action comment, making it an action block for

5 Java Modelling Language

"At this moment it is needed to add a history to the
method’s signature as shown in line 1 of Listing 5, but
this is likely to be removed in the future.

the verifier. The action that is defined, can be read as
given a history, permission and process, one single incr()
is added to the history. The only execution line is 4, where
x is incremented by 1.

Combining all listings above, the program can be success-
fully verified using VerCors.

4. RESEARCH

Given the simple counter as build in Section 3.3, we now
continue building new structures. In the end we will have
all structures available to combine them into one program.
That program will have two concurrent threads, modifying
one single variable, which is protected with a lock. This
example will be fully verifiable by VerCors.

4.1 Loops

Verifying a simple assignment once is now done, but re-
peating such statements is a common programming pat-
tern. Those loops are usually build with for or while key-
words and a corresponding block. To verify that a loop
is correct, a loop invariant has to be found that is valid
before, during and after the loop. This, together with an
action that alters the history within the loop, makes it
possible to ensure that a loop is working correctly.

4.1.1 Example

Instead of incrementing i once, we now do it n times, see
Listing 6.

void doIncrLoop(int n){
int i = 0;
while (i < n){
x =x + 1;
i=1i+1;

N e ook W N

Listing 6. doIncrLoop()

To start, the header of the previous example can be reused,
with an added requires in the top and a replaced ensures
at the bottom.

1 |requires n >= 0;

2 | (... pre and post conditions as doIncr()
)

3 |ensures Hist(h, q, p * h.loop(n));

Listing 7. doIncrLoop()’s pre and post conditions

A requirement about n is added (line 1). Also, the post
condition on history is changed, since history is extended
with loop(n) (line 3). loop() is a new process that alters
the history n times with an incr() step, which results in z
incremented by n.

modifies x;

requires n >= 0;

ensures x == \old(x) + n;

process loop(int n) = n > 0 ? loop(n - 1) *
incr() : empty(Q);

AW N e

Listing 8. loop()

As stated before, a loop invariant has to be declared, which
is evaluated after each iteration of the loop. Typically it
limits the iterator and ensures that after each iteration the
state is changed accordingly. In this example, 0 < i < n
holds (thus including the case that ¢ == n). Next to this,

the ensures statement holds, till the i*" step. Both are
concatenated by using the *x operator.

1 |loop_invariant O <= i ** i <= n ** Perm(h.x,
1) ** Hist(h, g, p * h.loop(i));

Listing 9. loop invariant

At last, history needs to be changed. The action that
states this reads as: given a history, permission and pro-
cess extended with loop(i), one single incr() is added to
the history.

1 |action h, g, p * h.loop(i) , h.incr();

Listing 10. Loop invariant

The complete annotated code can be found in the source
code published together with this paper [2]. VerCors ver-
ifies this code successfully. Unfortunately, at this time of
writing, for loops are not supported. However, this can
be ignored since every for loop can be rewritten to an
equivalent while loop.

4.2 Threads with deterministic and separated
behaviour

4.2.1 Example

We now start by observing an example that uses threads
with deterministic behaviour. We define two workers that
increment both their own counter.

public class Worker extends Thread {
private int input;
public Worker(int input) {
this.input = input;
}
public void run() {
output = input + 1;
X
public int getOutput() {
return output;
X
}

© ® N o o A W N o=

= e
Vo= O

Listing 11. Worker class

The workers defined in Listing 11 can be run by code de-
scribed in Listing 12.

1 |int 1 = 0; int j = 1;

2 |Worker wl = new Worker(i);
3 |Worker w2 = new Worker(j);
4

5 |wl.start();

6 |w2.start();

7

8

try { wil.join(); w2.join(); } catch (
InterruptedException e) {}

Listing 12. main()

This code is verified by VerCors in several steps. At this
moment, some Java syntax is unsupported, so we have to
drop the try/catch block and add the exception to the
throws block in the method’s declaration.

As explained in Section 3, verification is done modularly.
After all modules are created, we compose them such that
the above-mentioned example can be verified. Therefore,
some workarounds have been made. We start by adding
pre and post conditions to threads on the Worker, named

preFork() and postJoin(). These are roughly equivalent
to the requires and ensures as were given in the previous
examples 3.3.

1 |public resource preFork(frac p) = Value(input
) ** p != none ** Perm(output, p);

2 | public resource postJoin(frac p) = Value(
input) ** p != none ** PointsTo(output, p
, input + 1);

Listing 13. Resources

Using this syntax, preFork() and postJoin() can be inher-
ited and applied to instances of Worker as we will see in
the next section. The precondition preFork() tells us that
we have a read permission on input. Value(z)® ensures
that we have read permission over p. When the method
is called, a fraction p is given. This should not be empty
and it should give us permission to work on output. Af-
terwards, the post condition postJoin() tells that, given
a permission on fraction p, output = input + 1 using the
PointsTo() shorthand®.

The constructor of Worker needs a post condition with
the statement that given permission to write to input,
input is set. Also, a preFork(1) is ensured to have enough
permissions to fulfil the precondition of start(), as ex-
pected by Thread.

1 | //@ ensures preFork(1l) ** Value(input) *x*
this.input == input;
public Worker(int input){
this.input = input;
//@ fold this.preFork@Thread(1);
//@ fold this.preFork@Worker (1) ;

[N]

3

Listing 14. Thread example’s worker’s constructor

Within the constructor, two folds of Thread and Worker
are done to tell the verifier that it substitutes the right-
hand side of preFork() with the left-hand side. This is
needed to comply to the post condition and the preFork()
of Thread is needed as Worker depends on it.

The run() method only needs an wunfold (replacing the
left-hand side by its right-hand equivalent) of preFold on
Worker to be able to verify the increment line. preFold
gives the sufficient permission to alter output based on
input. Thread requires then to have a postJoin() on
Thread, which depends on Worker to be postJoin()ed as
well and thus are both folded (replacing the right-hand
side by its left-hand equivalent).

//@ unfold preFork@Worker(1);
output = input + 1;

//@ fold this.postJoin@Thread(1);
//@ fold this.postJoin@Worker(1);

AW N e

Listing 15. Thread example’s worker’s run()

We start by running just one Worker in the main() method.

At this moment, because of technical limitations, the try/catch

block of the main() method needs to be removed and ex-
ceptions are thus elevated by a throws declaration. After
start() and join() have run, the join event is also added
for program’s verification.

1 ‘w.join()/*@ with { p = 1; } @*/;

8Value(x) =3 frac p * Perm(x, p)
9PointsTo(x, frac, value) = Perm(x, frac) ** x ==
value

//@ assert w.output == 7;

//@ open w.postJoin@Worker(1);
//@ unfold w.postJoin@Worker(1);
//@ assert w.output == 8;

[N I

Listing 16. Post join specifications

First, we fill the parameter p (in Listing 16, line 1), that
is specified in Thread. The two asserts check that the
behaviour of the worker is as intended. In between there
are an open and an unfold action. open limits the scope
of Worker'®, to make it possible to unfold it and reason
about the output state, see listing 13.

The advantages of the modular technique now become vis-
ible. To extend this example and reason about two work-
ers, working simultaneously, we only need to double the
asserts, open and unfolds in main() as follows and it just
verifies as well.

1 |Worker wl = new Worker(7);

2 |Worker w2 = new Worker(8);

3 |//@ assert wl.input == 7;

4 |//@ assert w2.input == 8;

5 |wl.start();

6 |w2.start();

7 |wl.join()/*@ with { p = 1; } @*/;
s |w2.join()/*@ with { p = 1; } @x/;
9

//@ assert wl.input == 7;

//@ assert w2.input == 8;

//@ open wl.postJoin@Worker(1);
//@ open w2.postJoin@Worker(1);
//@ unfold wl.postJoin@Worker(1);
//@ unfold w2.postJoin@Worker (1) ;
//@ assert wl.output == 8;

//@ assert w2.output == 9;

I e~ S S S
o o A W N = O

Listing 17. Thread example’s main()

4.3 Using a lock
4.3.1 Example

Regarding the goal set, locks are needed to make sure a
variable is not modified at the same time. Typically this
looks like the code in Listing 18'*.

1 |Lock lock = new ReentrantLock();
2 | lock.lock();

3

4 |try {

5 x = 35; // critical section

6 |} finally {

7 lock.unlock();

s |}

Listing 18. Lock example

A template implementation for locks is given. Now, we will
show how this is incorporated into the previous threading
example. At first, the Worker is extended. We use a
SubjectLock object which contains a shared variable and
is a lock at the same time. SubjectLock is derived from

OTnheritance makes it possible for w to be a Worker or
one of its potential subclasses at runtime. Predicates are
extended by inheritance and not overridden by subclasses,
as is usual for e.g. methods. By using open, predicates
are not extended by possible subclasses that w can be at
runtime, but limited to the specified class, i.e. Worker.
" As try/finally blocks are not supported yet in VerCors,
the re-entrant lock is replaced by a simpler variant.

LockTemplate which is part of VerCors’ source code. pre-
Fork() and postFork() from Listing 13 have to be altered.

1 |resource preFork(frac p) = p == write **

Value(this.1l) ** Value(this.l.subject) **
Value(this.s) ** this.l.subject == this.

s ** [1/4] (this.l.valid());

2 |resource postJoin(frac p) = p == write *x*

Value(this.1l) ** Value(this.l.subject) x**
Value(this.s) #** this.l.subject == this.

s **x [1/4] (this.l.valid(Q));

Listing 19. Lock example’s resources

Both methods do now need a write permission to preFork()
and to postJoin(). Next to that, we are going to alter s,
therefore we need permission on [, l.subject (which is s) s
itself and make sure that [.subject equals s. At last, a % is
given as argument'? on valid() as is required later on by
lock(). Every value for p is okay, as long as its total sum
(i.e. amount of threads - p) is less or equal to 1.

Then the constructor’s pre and post conditions are altered
likewise. What it specifies speaks for itself.

1 |//@ requires Value(l.subject) ** l.subject ==
s *x [1/4]1 (1.valid(Q));
//@ ensures Value(this.l) ** this.l == 1;
//@ ensures Value(this.s) ** this.s
//@ ensures preFork(1);
public Worker(Subject s, SubjectLock 1) {
this.1l = 1;
this.s = s;
//@ fold this.preFork@Thread(1);
//@ fold this.preFork@Worker(1);

1]
n

© 0 N o o A W N

}

[
o

Listing 20. Lock example’s constructor

In the run() method two Lock() /unfolds and unlock()/folds
are added respectively above and below the critical section
to have the right to alter s’s value (stored as s.z).

//(... folds as in threads example...)
1.lock()/*@ with { p=1/4; count=0; }@x*/;

//@ unfold 1.inv();
//@ unfold 1l.subject.inv();

s.x = 35; // critical section

© o N O o A W N =

//@ fold 1l.subject.inv();
//@ fold 1.inv();
1.unlock()/*@ with { p=1/4; count=1; }@x*/;

= e
v o~ O

//(... unfolds as in threads ezample...)

[
w

Listing 21. Lock example’s worker’s run()

l.subject.inv() refers to the invariant resource inv() =
Perm(x, 1) to be able to alter z’s value. As ! is a wrapper
for subject, l.inv() refers to a simple resource inv() =
Value(subject) ** subject.inv(), thus giving us per-
mission to get the invariant on subject.

Then, main() is altered similarly. Also here folds and
unfolds are applied to subject and lock.

1 | Subject s = new Subject();
2 |//@ fold s.inv();
3 | SubjectLock lock=new SubjectLock(s);

12 [plPerm(x, q) == Perm(x, p*q)

//@ fold lock.inv();
lock.commit () ;

Worker wl = new Worker(s, lock);
//(... see code in threads ezample ...)
//@ unfold w2.postJoin@Worker (1) ;

© 0 N o o &

10
11 |lock.uncommit () ;

12 | //@ unfold lock.inv();
13 |//@ unfold s.inv();

Listing 22. Lock example’s main()

The added commit() and uncommit() are required by
SubjectLock and ensure that within Worker, lock() and
unlock() can be called.

4.4 Combining histories, threads and locks
Although we now have incorporated locks into our (sin-
gle, yet threaded) example, nothing can be asserted about
Subject’s s in the post condition after uncommit(). This
is because of the lose of full control, the very moment
uncommit() takes place. Therefore, histories are added,
very similar as done in Section 3.

Again, we alter the needed resources.

1 |resource preFork(frac p) = p == write *x
Value(this.l) ** Value(this.l.subject) *x*
Value(this.s) #** this.l.subject == this.
s ** ([1/2]this.1l.valid()) ** Hist(s,
1/2, empty);

2 |resource postJoin(frac p) = p == write *x*
Value(this.l) ** Value(this.l.subject) *x*
Value(this.s) ** this.l.subject == this.
s ** ([1/2]this.1l.valid()) ** Hist(s,
1/2, s.incr(1));

Listing 23. Combined example’s resources

Both pre and post conditions are extended with a history.
As before, preFork() indicates that we start with an empty
history which is filled with an incr() action afterwards in
postJoin().

Now the constructor is changed to receive a History as if
it were a Subject in the previous example. Moreover, the
pre condition requires to start with an empty history.

1 |//@ requires Value(l.subject) #** 1l.subject ==
s *x ([1/2]1.valid()) ** Hist(s, 1/2,
empty) ;
//@ ensures Value(this.l) ** this.l == 1;
//@ ensures Value(this.s) ** this.s == s;
//@ ensures preFork(1);
public Worker(History s, SubjectLock 1) {
this.1l = 1;
this.s = s;
//@ fold this.preFork@Thread(1);
//@ fold this.preFork@Worker(1);

© ® N O o A W N

-
)
“

Listing 24. Combined example’s constructor

Next, the critical section is extended to write to history as
well. Nothing new is introduced here.

//@ assert Hist(s, 1/2, empty);

{
//@ action s, 1/2, empty, s.incr();
s.Xx = s.x + 1;

}

L N

6 |//@ assert Hist(s, 1/2, s.incr(1));

Listing 25. Combined example’s worker’s critical
section in run()

At last program’s main() is extended to have a History
as argument for both Workers and have that history be
shared equally.

History s = new History();

s.x = 35;

//@ create s;

//@ split s, 1/2, empty, 1/2, empty;
//@ fold s.inv();

SubjectLock lock = new SubjectLock(s);
//@ fold lock.inv();

lock.commit();

© o N o o A W N =

Worker wl = new Worker(s, lock);
Worker w2 = new Worker(s, lock);

[
o

-
-

-
S

//(... see code in threads exzample ...)

[
w

-
IS

//@ unfold s.inv();

//@ merge s, 1/2, s.incr(1), 1/2, s.incr(1);
//@ destroy s, s.concurrentIncr(l, 1);

//@ assert s.x == 37;

e =
o N o o

Listing 26. Combined example’s main()

On line 3 of main() a history is created, to split it in
half (on line 4) and give it as argument to both workers.
On split, it is specified how the split histories look like.
Here they are both (still) empty. After unfold histories
are merged and thereafter history is destroyed to push all
changes into s. An assertion is set optionally to show
that the right behaviour was captured by VerCors and
processed.

modifies x;

requires n >= 0 && m >= 0;

ensures x == \old(x) + n + m;

process concurrentIncr(int n, int m) = incr(
n) incr(m);

AW N e

Listing 27. concurrentIncr()

When destroying the history, concurrentIncr() is invoked.
This is a small process, that like incr() increments a vari-
able, yet then concurrently using the || operator.

Also, this example fully verifies in VerCors.

S. RESULTS AND DISCUSSION

Earlier, the following questions were formulated:

How well can one, within a few weeks and without knowl-
edge on separation logic, verify several real life examples
using VerCors with permission-based separation logic ex-
tended with histories?

5.1 Research questions

1. How does one specify and verify loops in VerCors?

2. How does one specify and verify a concurrent pro-
gram in VerCors?

(a) ... that is deterministic?

(b) ... that is non-deterministic?

3. How does one specify and verify a sorting algorithm
in VerCors?

One of the main issues of this research was the understand-
ing of the new technique. It turned out that separation
logic with histories is on a high level quite simple to un-
derstand. With only a few insights on how it should be
applied, one can grasp this technique quite simply. Also,
to see what advantages this new technique has over Owick-
Gries’ one are apparent. The modular, scalable way of
composing programs works quite intuitively and as shown
in the last example (see Section 4.4), almost no customiza-
tion is needed to comply to the requirements of VerCors.

Specifying and verifying loops in VerCors turned out to be
as well quite simple and can be found in Section 4.1. The
examples found in the source code, together with some
tinkering made it very clear on how the verifier does its
job on this very small example. Some additional ques-
tions towards the author of this VerCors were asked to
learn about the exact workings. It stand out that, at this
moment, VerCors is a tool that needs a lot to know about
what is going on in the program, next to the program it-
self. This results into a need to know lots about the inner
working of VerCors. Given little domain knowledge, this
is undesirable and could be largely improved by deriving
most of now manually defined actions from source code. A
smaller footprint in specifications makes it not only better
to get a grasp on VerCors, but also removes the need to
write lots of boilerplate code.

Specifying and verifying concurrent programs turned out
to be unsupported by VerCors at moment of beginning
research. Support for it was built quiet quickly. How-
ever, some breaking syntax changes were made, resulting
in a redo of e.g. the loop example in Section 4.1. This
frustrated making great strides forward, although at the
same time some some boilerplate code became superflu-
ous, as it was already derived from source code, which re-
lieved. At this moment, some common programming pat-
terns (e.g. for loops, try/catch blocks) are not supported.
This made it necessary to alter execution code, to make
it verifiable for the tool. Altering does not take a lot of
time, but should be unnecessary. With this take in mind,
it was possible to verify a deterministic program as shown
in Sections 4.3 and 4.4. Unfortunately, non-deterministic
programs or sorting algorithms were not specified and ver-
ified in VerCors at all.

In the future, the above-mentioned programming patterns
will likely be added. Now, the current lack of a library
in VerCors obscure what user code is and what tool code
is. This makes it difficult to learn yourself how to use
VerCors. It would be easier to use VerCors when you
only have to comply to some (common) method contracts.
At this time, a lot of tool knowledge is required to verify
larger structures. This makes it difficult to come up with a
verification statement yourself. Addition of a library could
most certainly fix this. That library should be documented
well, as it makes it possible to not have to rely on given
examples, but to reason about the problems and come up
with your own solution.

6. CONCLUSION

In this research, separation logic extended with histories
was examined. We wanted to see if this technique is sim-
ple enough to understand when you have little domain
knowledge. We have seen that the technique itself is sim-
ple enough to understand. However, the verification tool
VerCors that has support for this approach is more diffi-

cult to get to get the hang of. It was found that the small
examples that do come with VerCors are a good starting
point. Based on these examples, it is doable to find out
yourself how the tool works in these situations by tinkering
and extending them eventually a little bit. However, when
trying to verify more complicated, yet common program-
ming patterns, it turns out that some of theses patterns
are not fully supported at this moment. In some cases
this was fixed by applying small workarounds and rewrit-
ing code. It is difficult to say how well real programs are
supported. In a way, all examples described in this pa-
per do verify using VerCors. On the other hand, what is
shown is just the tip of the ice berg and in the future even
more difficult structures must be be verified. Moreover,
the program lacks proper documentation at this moment.
This makes it hard to find out yourself how you should
decorate a program to verify it. By adding all commonly
used patterns, the tool will probably be experienced as
developer friendly and thus usable for people who do not
have great knowledge of permission-based separation logic
and histories. Then the advantages of using separation
logic with histories are clear.

7. FUTURE WORK

We have seen how to verify loops with histories and how
to verify threads that run simultaneously on different vari-
ables. Thereafter, locks were introduced, which were use-
ful in an example where one variable was altered simulta-
neously by two different threads. Moreover, all has been
documented how all is built from scratch and how the li-
brary parts of the source code are incorporated into our
own code.

In future work this example can be extended even fur-
ther. For example, a producer consumer example can be
build, beginning with one producing thread that puts its
output in a shared (un)bounded queue or stack and an-
other consuming thread that pops values. At first, this
can be done in a busy-waiting fashion, but it would be
even better to use the wait/notify pattern. Also other
common concurrent structures like conditions, barriers
and volatiles can be verified. Later, more producer and
consumers can be added and if all is set-up right, this
should be a formality, like the example in Section 4.4)
showed us. Piece by piece all common patterns in multi-
threaded software should be elaborated and documented
as well. Next to these specific concurrent structures, also
ordinary try/catch blocks, exception handling and others
should be added to the tool kit. It is acceptable when
much boilerplate is needed at first, as long as it is reduced
later on. When all common programming patterns are
supported and documented well, it will be much easier to
verify any multi-threaded program using the separation
logic extended with histories.

8. REFERENCES

[1] K. R. Apt, F. de Boer, and E.-R. Olderog.
Verification of Sequential and Concurrent Programs.
Springer Publishing Company, Incorporated, 3rd
edition, 2009.

[2] S. Blom and T. Coenraad. Source code belonging to
Verifying Concurrent Programs using Separation
Logic extended with Histories. http:

//fmt .ewi.utwente.nl/education/bachelor/230/.

[3] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In Proceedings of the 17th ACM SIGPLAN
Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’02,
pages 211-230, New York, NY, USA, 2002. ACM.

[4] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels,

W. Penninckx, and F. Piessens. Verifast: A powerful,
sound, predictable, fast verifier for ¢ and java. In
Proceedings of the Third International Conference on
NASA Formal Methods, NFM’11, pages 41-55,
Berlin, Heidelberg, 2011. Springer-Verlag.

[5] B. Jacobs, J. Smans, and F. Piessens. A quick tour of
the VeriFast program verifier. In K. Ueda, editor,
Programming Languages and Systems, volume 6461 of
Lecture Notes in Computer Science, pages 304—-311.
Springer Berlin Heidelberg, 2010.

[6] S. S. Owicki. Aziomatic Proof Techniques for Parallel
Programs. PhD thesis, Ithaca, NY, USA, 1975.
AAI7612884.

[7] P. Philippaerts, J. T. Miihlberg, W. Penninckx,

J. Smans, B. Jacobs, and F. Piessens. Software
verification with VeriFast: Industrial case studies.
Science of Computer Programming, 82(0):77 — 97,
2014. Special Issue on Automated Verification of
Critical Systems (AVoCS’11).

[8] M. Zaharieva-Stojanovski, M. Huisman, and S. Blom.
Verifying functional behaviour of concurrent
programs. In Proceedings of 16th Workshop on
Formal Techniques for Java-like Programs, FT{JP’14,
pages 4:1-4:6, New York, NY, USA, 2014. ACM.

http://fmt.ewi.utwente.nl/education/bachelor/230/
http://fmt.ewi.utwente.nl/education/bachelor/230/

	Introduction
	Related work

	Research objectives
	Research questions

	Background information
	Permissions
	Actions
	Example
	Definitions
	Decorating

	Research
	Loops
	Example

	Threads with deterministic and separated behaviour
	Example

	Using a lock
	Example

	Combining histories, threads and locks

	Results and discussion
	Research questions

	Conclusion
	Future work
	References

