
Design of a Scalable Hash Table on a GPU
Thomas Neele

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
t.s.neele@student.utwente.nl

ABSTRACT
We investigate the scalability of an existing lockless hash
table when it is implemented on a GPU. This lockless hash
table is an essential part of a model checker, a tool that can
be used to prove the correctness of software that performs
critical tasks. We show that our implementation of the
hash table on a GPU is scalable and that a GPU can
lookup twice as much per second as a CPU when running
the same OpenCL implementation. We also propose a
design for integrating our implementation with a model
checker. We argue that this design will lead to better
performance of the model checker.

Keywords
GPU, OpenCL, hash table, model checking, scalability

1. INTRODUCTION
The research field of formal methods not only focuses on
mathematical proofs, but also on automated model check-
ing. Staticmodel checkers, like LTSmin [8] and DiVinE [3],
check algorithms for possible deadlocks and other unwanted
states that are defined by safety properties. To find these
problems, a model checker explores the graph of all states
the program can reach. A state is represented by a large
vector and for each state in this graph, the safety proper-
ties are evaluated. Performing the state space exploration
requires many computation steps and since the introduc-
tion of multi-core processors, large parts of the model
checkers are optimized for multi-core systems.

To ensure that every state in the graph is visited exactly
once, the exploration algorithm needs to store informa-
tion about the visited states. The database that is used
to store all those states is often implemented as a hash ta-
ble. Because it will be accessed every time a new state is
visited, the hash table is a critical part of a model checker
and has a significant influence on its performance. To
increase performance on multi-core systems, Laarman et
al. [7] proposed a lockless hash table, which is designed
with the specific requirements of model checking in mind.
The hash table only supports the find or put operation,
which finds a state in the database or adds it when it is
not found. Because the implementation is not based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

20th Twente Student Conference on IT January 24
th

, 2014, Enschede,
The Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

locks, it is scalable: even when many threads are storing
items in the hash table, the performance of each individual
thread does not decrease significantly. The hash table was
later improved to a tree database [9]. The tree database
combines the performance of a hash table with reduced
memory usage.

The performance of a model checker not only depends on
its implementation, but also on the hardware it is exe-
cuted on. Traditionally, all general computational tasks
are performed by a CPU. While graphical processing units
(GPUs) are aimed at rendering graphical scenes, in re-
cent years they are also being employed for more general
tasks. NVIDIA’s CUDA, released in 2006, and Khronos
WG’s OpenCL, released in 2008, provide an easy way to
program GPUs. Since GPUs provide huge parallelism and
memory bandwidth, they can offer a speedup of multiple
magnitudes. Model checkers can benefit from the perfor-
mance of GPUs, as shown by Barnat et al. [2].

We combine the scalability of Laarman’s hash table with
the massive parallelism of GPUs. The hash table already
proved to be scalable up to 48 threads on an x86 CPU [11];
we evaluate this scalability further by implementing the
hash table in OpenCL and running it on a GPU. We
will show how scalable this GPU implementation is and
whether the GPU can provide better performance when
storing states in the hash table.

2. RESEARCH QUESTIONS
Our main research question is: “How scalable is a lockless
hash table on a GPU?”. In order to optimize the scalabil-
ity, we have identified the following subgoals.

• How should the lockless hash table be stored in GPU
memory?

• How can the workload of storing state vectors effi-
ciently be divided between GPU threads?

We also investigate whether the performance of our im-
plementation is better on a CPU or on a GPU. This is
an important aspect when considering the application of
GPUs in model checking.

3. BACKGROUND

OpenCL.
OpenCL (open computing language) is a standard devel-
oped by Khronos Working Group [6]. It aims to provide
an easy way to develop parallel applications for many dif-
ferent devices. The code that runs on the parallel device,
called a kernel, is programmed in OpenCL C, a variant of
C99. Kernels and devices can be managed by the host,

host

device

state space exploration

duplicate detection

i+1i i+2

i i+1

possible double exploration

Figure 1. The host (CPU) offloads the duplicate detection to the OpenCL device (GPU). An empty
horizontal timeline indicates that the device is idle.

usually a CPU, via a C or C++ API. Kernels can be ex-
ecuted on one or more work groups, which consist of one
or more work items. The amount of work items and work
groups can be set when calling the kernel. GPUs have
a single-program-multiple-data (SPMD) architecture: all
work groups execute the same code. Additionally, each
work group has a single-instruction-multiple-data (SIMD)
architecture: all work items within a work group always
execute the same code path. The performance of a work
group is determined by the performance of the work item
that handles the worst case.

The OpenCL standard defines different address spaces that
have their own characteristics. The global memory is
shared across all work items, but on most devices it is
relatively slow. All work items within one work group
share local memory. Finally, each work item has its own
memory space called private memory. When designing
and implementing an algorithm in OpenCL, it is impor-
tant to consider which address space will provide the best
performance for a specific application.

CUDA is a similar technology developed by NVIDIA. It
supports some advanced features like dynamic memory al-
location. However, programs written in CUDA can only
run on NVIDIA GPUs.

Lockless hash table.
The lockless hash table proposed by Laarman et al. [7] is
optimized for multi-threaded use by using compare-and-
swap operations instead of locks. Another optimization is
linear probing: buckets of the hash table are aligned with
cache lines of the processor. Making optimal use of the
cache reduces cache synchronization between processors,
thus increasing the performance.

The tree database [9] uses the same underlying hash table,
but stores states in a memory efficient way. The compres-
sion technique is based on the observation that successive
program states often differ for only a small part. Each
state vector is saved as a balanced binary tree; subtrees
that are already entered in the hash table will not take any
extra space. The scalability of the uncompressed hash ta-
ble and the tree database proved to be similar. Because
of time constraints, our research is based on the lockless
hash table.

4. RELATED WORK
Barnat et al. already showed that GPUs can provide a sig-
nificant speedup when used for static model checking [2].
For the model checker DiVinE, they implemented a suc-
cessor finding algorithm and property checking algorithm

in CUDA. The implementation of the state database was
done on the CPU, however. The algorithm was similar to
the lockless hash table of Laarman et al. These integrated
algorithms proved to be scalable on a variable number of
CPUs.

GPUs also proved to be beneficial to the performance of
probabilistic model checkers. Bošnački et al. extended
the model checker PRISM with a CUDA implementation
that calculates the transition probabilities [4]. Their im-
plementation provides a speedup of 15 to 18 times when
compared to a sequential implementation. The scalability
of their algorithms on GPUs was not investigated.

Many kinds of data structures can benefit from the par-
allelism of GPUs, as proved by Misra et al. [10]. They
provide an extensive analysis of the performance of their
data structures. However, a scalability analysis was not
performed.

An alternative to the tree database is a reconstruction
tree [5]. In contrast to a tree database, a reconstruction
tree can contain state vectors of variable width and also
supports the deletion of state vectors. The delete opera-
tion enables additional optimizations to graph exploration
algorithm. However, a reconstruction tree proved to be
less scalable than a tree database or lockless hash table.

The hash table proposed by Alcantara et al. [1] also pro-
vides access times of O(1). Like the lockless hash table and
the tree database, it does not support vectors of variable
width. The implementation of this hash table in CUDA
proved to perform well. Experiments with regard to the
scalability were not performed.

5. DESIGN

Memory.
The hash table can either be stored in global memory or
in local memory. Storing the hash table in local memory
affects the distribution of work load across work groups.
Each work group stores its own part of the table, vectors
destined for a certain part of the table have to be stored
by the associated work group. This may lead to an un-
even distribution of the work load. An uneven work load
may harm efficiency, because other threads will wait for
the worst case to finish, due to the SPMD architecture of
a GPU. Besides that, local memory is also too small to
store a large hash table, which would lead to local mem-
ory ‘spilling over’ into the global memory. To avoid these
issues, we placed the hash table in global memory. Global
memory is slower than local memory, but it can be ac-
cessed by all work items.

Work division.
We propose the following design for integrating the hash
table with a model checker. To achieve good performance,
an efficient division of the work between the CPU and
the GPU is needed. In our design, the graph exploration
algorithm runs on the CPU; performing duplicate detec-
tion is done on the GPU (figure 1). The CPU should
run a breadth first search (BFS) algorithm to explore the
state space. Whenever the CPU is done exploring a cer-
tain amount of states, a round of duplicate detection is
needed. This work will be sent of to the GPU, by copy-
ing the array of state vectors to the GPU global memory.
While the GPU is working on the duplicate detection, the
CPU can continue to run the BFS exploration. At that
time, the BFS exploration is not aware of any information
about duplicate states (indicated in figure 1 by shading).
Therefore, several states may be explored multiple times.
We believe that this double exploration is a benign data
race, because it is better to perform an exploration with
outdated information than to not do any exploration at all.
When the GPU is done with its duplicate detection, it will
update the BFS explorer with the new information. This
cycle will continue until the state space is fully explored.

In our case, duplicate detection on the GPU is imple-
mented as a hash table. When the GPU receives an array
of state vectors, it will compute the hashes of these vectors
and store each hash in the database. Because this leads
to unpredictable access of the memory, the memory local-
ity is not optimal. Sorting the array of hashes and then
storing them increases the memory locality, which may
also improve performance. The increase of performance
depends on the amount of cache a GPU has and on the
amount of overhead that is caused by sorting the array.

6. IMPLEMENTATION
Our implementation is largely based on the implementa-
tion of the hash table that is part of LTSmin. The specifi-
cation of OpenCL C has some limitations when compared
to ANSI C, but there were no significant changes needed to
the find or put algorithm. However, the OpenCL C stan-
dard does not define atomic operations on data types of 16
bits. Therefore, we have written our own implementation
that depends on the standard atomic operations.

Data: thread id, num threads, database D
Input: State[]

1 num vectors ← length(State) / num threads;
2 offset ← num vectors * thread id;
3 forall the i: offset ≤ i < offset + num vectors do
4 find or put(D, State[i]);

Algorithm 1: State lookup kernel

The kernel that executes the find or put algorithm in par-
allel is outlined in algorithm 1. The only argument of the
kernel is an unsorted array of state vectors that are gen-
erated by the host. These vectors are equally distributed
among the work items that execute the kernel. Each work
item computes the offset based on its thread id. The work
items will then start storing the elements in the database
in a sequential way. We have not implemented the pro-
posed integration with a model checker or an algorithm
that sorts the hash values of the state vectors.

7. RESULTS
To evaluate the scalability of our implementation, we have
created a benchmarking program. This program stores

1 4 16 64 256 1,024 4,096

101

102

103

work items

ti
m
e
(m

s)

AMD R9 270X

NVIDIA GTX 770

Intel Core i5 3350P

Figure 2. Runtime of executing find or put for 1M
vectors

1 4 16 64 256 1,024 4,096

1

10

100

1,000

work items

re
la
ti
v
e
sp

ee
d
u
p

AMD R9 270X

NVIDIA GTX 770

Intel Core i5 3350P

Figure 3. Relative speedup when compared to the
runtime of one work item

1 million random 32-bit vectors in the database. The
database has a size of 225 elements and each element takes
6 bytes, resulting in a memory usage of about 192 MB. The
vectors are generated by the CPU and then transferred to
the GPU. The GPU threads then store these vectors in
the database. We measured the time it takes for the GPU
to complete the storage operations for different amounts
of work items. The runtime was measured by using the
profiling functions in the OpenCL API; the benchmarks
were executed once. Because each work group consists of
one work item, the amount of work groups is equal to the
amount of work items.

To execute the benchmark, we used an AMD Radeon R9
270X and an NVIDIA GTX 770. These GPUs have 1280
and 1536 shader processors respectively. The AMD GPU
was clocked at 1000 MHz and its memory was clocked at
5.6 GHz. The NVIDIA GPU was clocked at 1046 MHz and
its memory was clocked at 7 GHz. In order to compare
these GPUs to a CPU, we also ran the OpenCL kernel on
an Intel Core i5 3350P quad-core CPU clocked at 3.1 GHz;
the main memory was clocked at 1333 MHz.

8. ANALYSIS
Figure 2 shows the time it takes to store 1 million random
state vectors into the hash table. The runtime is measured
in milliseconds, for different amounts of work items. Fig-
ure 3 shows the same results relative to the speed of one
work item.

These results show that our implementation is scalable up
to a certain amount of work items. When running the
benchmark on the AMD GPU, 1024 work items still pro-
vide a speedup relative to 256 work items. The NVIDIA
GPU has reached its maximum performance at 256 work
items. A possible explanation is that the NVIDIA GPU is
fully utilized when a kernel is assigned 256 work items. A
single work item of the NVIDIA GPU is faster than one of
the AMD GPU (figure 2). When run on 1024 work items,
the AMD GPU is faster by 33%.

While a single core of the CPU is significantly faster, the
CPU does not scale beyond 4 work items. By then, all four
cores are fully loaded. Both GPUs perform better when
the kernel is executed on a high number of work items.

9. CONCLUSION
The results of our benchmarks show that the hash table
designed by Laarman [7] can certainly benefit from the
massive parallelism a GPU has to offer. Even when run
on 256 work items, the relative increase in performance
is 72% of the theoretical maximum (a relative speedup of
256) for AMD and 47% for NVIDIA. When the possible
optimization of sorting the array of hashes is implemented,
this may lead to even better use of caches in the GPU, thus
increasing scalability.

Our benchmarks also show that GPUs perform better at
looking up vectors than a CPU. Therefore, model check-
ers can benefit from this speedup offered by GPUs. We
proposed a design for integrating our OpenCL implemen-
tation of the lockless hash table with a model checker. By
offloading the duplicate detection to the GPU and exploit-
ing benign data races, the CPU only has to run a graph
exploration algorithm. We believe this will improve the
overall performance of model checkers.

While these results are promising, the amount of memory
on a GPU is severely limited. Even the most expensive
GPUs have a memory size of only 12 GB, whereas a high
end server may have more than 100 GB of main memory.
The potential of a model checker largely depends on the
amount of memory it can allocate. When more memory
is available, the model checker can explore larger state
graphs and check larger models.

10. FUTURE WORK
Further research into the practical applications of our im-
plementation is needed. By implementing our design from
section 5, the hash table can be integrated with a model
checker. Then, it is possible to run real-world benchmarks
against the hash table. An optimization that may improve
the scalability of the hash table on a GPU is the sorting of
hashes before inserting them in the database, as discussed
in section 5.

Future work also needs to focus on the memory limita-
tions of GPUs. A tree database [9] is much more efficient
with memory, while it still provides similar scalability as
a lockless hash table. Another possible solution is the ap-
plication of a multi-GPU system. While this requires the
hash table to be split across the devices, the total amount
of memory bandwidth is increased.

11. REFERENCES
[1] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sen-

gupta, M. Mitzenmacher, J. D. Owens, and
N. Amenta. Real-time parallel hashing on the GPU.
ACM Transactions on Graphics, 28(5):154:1–154:9,
2009. doi: 10.1145/1618452.1618500.

[2] J. Barnat, P. Bauch, L. Brim, and M. Češka. Design-
ing fast LTL model checking algorithms for many-core
GPUs. Journal of Parallel and Distributed Comput-
ing, 72(9):1083–1097, Sept. 2012. doi: 10.1016/j.jpdc.
2011.10.015.

[3] J. Barnat, L. Brim, V. Havel, J. Havĺıček, J. Kriho,
M. Lenčo, P. Ročkai, V. Štill, and J. Weiser. Di-
VinE 3.0 – An explicit-state model checker for multi-
threaded C & C++ programs. In Computer Aided
Verification (CAV 2013), volume 8044 of LNCS,
pages 863–868. Springer, 2013.

[4] D. Bošnački, S. Edelkamp, D. Sulewski, and A. Wijs.
Parallel probabilistic model checking on general pur-
pose graphics processors. International Journal on
Software Tools for Technology Transfer, 13(1):21–35,
Oct. 2010. doi: 10.1007/s10009-010-0176-4.

[5] S. Evangelista, L. Kristensen, and L. Petrucci.
Multi-threaded explicit state space exploration with
state reconstruction. In Automated Technology for
Verification and Analysis, volume 8172 of Lecture
Notes in Computer Science, pages 208–223. Springer
International Publishing, 2013. doi: 10.1007/
978-3-319-02444-8 16.

[6] Khronos OpenCLWorking Group. OpenCL specifica-
tion, 2013. URL http://www.khronos.org/opencl/.

[7] A. W. Laarman, J. C. van de Pol, and M. We-
ber. Boosting multi-core reachability performance
with shared hash tables. In Proceedings of the
10th International Conference on Formal Methods in
Computer-Aided Design, Lugano, Switzerland, pages
247–256. IEEE Computer Society, October 2010.

[8] A. W. Laarman, J. C. van de Pol, and M. Weber.
Multi-core LTSmin: Marrying modularity and scal-
ability. In Proceedings of the Third International
Symposium on NASA Formal Methods, NFM 2011,
Pasadena, CA, USA, volume 6617 of Lecture Notes
in Computer Science, pages 506–511. Springer Ver-
lag, July 2011. doi: 10.1007/978-3-642-20398-5 40.

[9] A. W. Laarman, J. C. van de Pol, and M. Weber. Par-
allel recursive state compression for free. In Proceed-
ings of the 18th International SPIN Workshop, SPIN
2011, Snow Bird, Utah, volume 6823 of Lecture Notes
in Computer Science, pages 38–56. Springer Verlag,
July 2011.

[10] P. Misra and M. Chaudhuri. Performance Evaluation
of Concurrent Lock-free Data Structures on GPUs. In
2012 IEEE 18th International Conference on Paral-
lel and Distributed Systems, pages 53–60, Singapore,
Dec. 2012. IEEE. doi: 10.1109/ICPADS.2012.18.

[11] F. I. van der Berg and A. W. Laarman. SpinS: Ex-
tending LTSmin with Promela through SpinJa. In
11th International Workshop on Parallel and Dis-
tributed Methods in verifiCation, PDMC 2012, Lon-
don, UK, volume 296 of Electronic Notes in The-
oretical Computer Science, pages 95–105. Elsevier,
September 2012. doi: 10.1016/j.entcs.2013.07.007.

