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Abstract

Graphs can be used to model a variety of things, not only in computers but also in
real-world settings. What we model with graphs, we would then like to check in some
capacity, verifying its correctness. We do this with graph transformation tools, of which
there are many and each has its own unique features. Groove is the graph transformation
tool developed by the Formal Methods and Tools group of the University of Twente, and
this project focuses on extending Groove with additional functionality.

Groove currently supports the scheduling of graph transformation rules using an im-
perative control language. In this Master’s Thesis we theoretically work out a method to
further control not only when graph transformation rules are scheduled but also where, by
parameterising the rules in order to both get information from the host graph into the con-
trol structure as well as vice versa, telling Groove where to apply rules. We have also done
the theory of letting users input constants directly from the control language, instead of
having to write rules with hardcoded attributes in them. Both of these ideas have been
implemented into the tool.

Using these new features, we reduce the amount of meta-information required in the
rules as well as the underlying graph, instead keeping it where we think it belongs - together
with the other control information. We show a number of examples which benefit from each
of these new features.
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Chapter 1

Introduction

1.1 Motivation

As software engineers, we do not just want to make software, we also want to somehow be sure
that this software performs what it was designed to do - to verify that it meets the requirements.
As software itself is often hard to test automatically, either because it is too complex or because
automating tests is difficult, we use models of the software to verify the actual software. Soft-
ware can be modeled in different ways using various specification methods, each with its own
goals. When we have a model, we can use this model verify that it correctly implements all the
requirements by using a verification method (model checking).

Graph transformation can be used as an approach to model the working of a software system,
by modelling the initial state of the software as a graph and generating graph transformation
rules for the various changes the software can make to its initial state. Naturally, we will want to
be as expressive as possible in this, specifying rules that do exactly what we want, rather than
doing several more general things and discarding the incorrect results. The Formal Methods
& Tools group at the University of Twente develop a graph transformation tool called Groove,
which is the tool we used for this project.

Because we generally do not want to be able to apply all of the rules we have generated on
every state of the system, there is often some control structure involved, be it a simple global
priority system between rules or something more complex. Groove uses an imperative control
system, allowing us to write simple programs indicating which rules should be applied in which
order. There is no provision in the control system however, for specifying where in the graph
a rule should be applied, should several options be possible. We can get around this by having
rules add meta-information to the host graph (like a special edge to indicate where a rule should
apply, which can then be tested for by other rules), thus adding control information to both the
host graph and the transformation rules instead of having it all in the control system.

As this approach requires the user to add logic to both the host graph (which should model
the system state) and the transformation rules (which should model changes to the system
state), it is suboptimal and we would like to improve it. We propose that a way to obtain
information about where a rule was matched and using this information to restrict subsequent
matches will help us in decoupling this functionality and moving more of the control information
to the control structure. The research question we will try to answer therefore becomes “Can we
remove control information from the graph transformation rules and host graph and move it into
the control program by using parameterised rules?”

1.2 Overview

The structure of this report is as follows.

• In chapter 2, we will explain how Groove worked before this project began. We will talk
about the models describing graphs, graph transformation rules, automata and the control
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2 CHAPTER 1. INTRODUCTION

language, and in section 2.6 we will explain some of the mathematical notations used later
on in the report;

• Chapter 3 contains some of the possible extensions to the control language we developed,
with examples how they could be used. We used these as a basis to decide which extensions
were to be implemented;

• In chapter 4 we work out the first extension, basic input and output parameters. We show
how the models presented in chapter 2 are modified to accomodate the added functionality
and give examples on how this benefits the decoupling of control and transformation;

• Chapter 5 details the second extension we worked on, which adds attribute parameters
(both literal and as variables) to the control language;

• In chapter 6 we explain how we implemented both of these extensions;

• In chapter 7 we show some examples where our added functionality helps in decoupling the
transformation and the control information;

• Finally, in chapter 8 we discuss whether the goals we set out for ourselves have been
obtained. We also have a comparison of how some of the other graph transformation tools
handle control and what kind of work could be done on the Groove control language in the
future to further the work we did in this project.



Chapter 2

Definitions and current state of the art

This research deals with extending Groove [12], the GRaphs for Object Oriented VErification
tool developed by the Formal Methods and Tools group of the University of Twente. It consists of
a set of tools to edit graphs and graph grammars as well as simulation tools to explore production
systems and verify Computation Tree Logic formulas. These tools come in both graphical and
command-line versions and are written in Java so as to allow them to be run on a variety of
platforms. The GUI versions work on any operating system that has a Java Virtual Machine
implementation and the command-line version ensures that complex state-space explorations
that would exhaust the resources of a desktop PC or a laptop can be run on a computing cluster.

Added by Tom Staijen [13] is an expression language to constrain the applicability of rules
beyond the mechanisms that were already in the tool before he began work on it, and to reduce
unnecessary control-complexity in the rules by moving it to the control language. Extending the
functionality of this language is the main focus of this research.

Note that other work has been done in the area of adding control to rule-based systems, this
work will be detailed in section 8.2.

In this first chapter you will find explanations and definitions of all the concepts that are used
in the rest of this report (and which need explaining). All of these concepts have been illustrated
with examples.

2.1 Graphs

Groove is a graph production tool which facilitates graph transformation through the use of graph
transformation rules. Before the actual transformation rules can be explained, it is necessary to
detail a few key terms which are used in graph transformation. The first one of these is the
concept of a graph itself.

Graphs are the main mathematical structure used in Groove. They are a very broad topic in
mathematics and can be used to model many things; however, only the parts relevant to Groove
and this report will be explained here.

In Groove, the graphs used are directed edge-labelled graphs. This means that they consist of
nodes and edges, with the edges having a direction and only the edges having labels. While nodes
can not have labels, self-edges (an edge with equal source and target) are generally displayed as
node-labels for convenience. We denote the set of all possible labels by Labels.

Definition 2.1.1 (graph) A graph is a tuple G = (V,E) where
• V is a set of vertices;

• E : V × Labels× V is a set of edges.
We use VG as the set of vertices of G and EG as the set of edges of G.

Example 2.1.1 An example graph G1, can be found in figure 2.1. This graph depicts (part of)
the state of an ant hill simulation called AntWorld [20], with a “home” (the AntHill node) and
two places ants could visit to look for food (neither actually has food on it at this time). It also

3
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AntHill

Node

Node Ant

out

next

at

out

1

2

3

4

Figure 2.1: An example graph

contains one ant which is at one of the two places. Note that the numbers next to the nodes are
not part of the graph, these can be considered the “internal” numbering of the nodes (without them
we would have no way to identify the vertices in the formal definition). This graph is formally
defined as:

G1 = (V1, E1, L1)
V1 = {1, 2, 3, 4}
L1 = {Ant,Anthill, at,next,Node, out}
E1 = {(1,Anthill, 1), (1, out, 2), (1, out, 3), (2,Node, 2), (2,next, 3),

(3,Node, 3), (4,Ant, 4), (4, at, 3)}

2.2 Morphisms

As graph transformation rules are a combination of graphs and morphisms, we will now explain
what a morphism is, along with an example.

In mathematics, a morphism is a mapping between two structures, which in this report will
be graphs. A morphism f is defined on its domain (or source) X and codomain (or target) Y .

In graphs a morphism is a tuple of two functions:

Definition 2.2.1 (graph morphism) A morphism f over two graphs G1 and G2 is a tuple
(fV , fE) where:
• fV : VG1 → VG2 maps the vertices in G1 to the vertices in G2;

• fE : EG1 → EG2 maps the edges in G1 to the edges in G2.

• {u, v} ∈ EG1 =⇒ {fV (u), fV (v)} ∈ EG2

We write f : G1 → G2.

We speak of a full morphism when for every element in X there is a corresponding element
in Y (note that several elements in X may still map to the same element in Y ). If this is not
the case, we are dealing with a partial morphism. Both are used in the application of graph
transformation rules.

Example 2.2.1 An example of a morphism is provided in figure 2.2. Note that several other
morphisms also exist between the left and the right graphs, as there are for instance two nodes
labelled ‘ant’ in the right graph. As the middle node in the left graph does not have a label, it can
be mapped to any node that adheres to the other requirements (has an incoming edge with label
‘at’ and an outgoing edge with label ‘out’).

Isomorphism An isomorphism is a special morphism in which each vertex and edge in the
domain has a bijective image in the codomain and vice versa. Thus an isomorphism between two
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Figure 2.2: An example morphism, the dashed red lines indicate mappings.

graphs means that they are the same ‘looking’ graph, laid out differently. This notion is used in
Groove to reduce the state space by not exploring isomorphic graphs more than once. Formally,
an isomorphism is a morphism f : X → Y for which f−1 ◦ f = idX and f ◦ f−1 = idY (where id
is the identity function).

2.3 Graph transformation rules

Groove’s functionality is centered around having one or more graph rules which can be applied
to modify a graph. The combination of all of the rules is usually called a graph rewriting system.

We say that a rule is scheduled (regardless of whether it is actually applicable) when in the
current system state this rule is allowed to be matched. By default, Groove will schedule all rules
in every state.

Definition 2.3.1 (graph transformation rule) A graph transformation rule P is a tuple
(LHS ,RHS , r,NACs) in which:
• LHS is a graph representing the left-hand side of the rule;

• RHS is a graph representing the right-hand side of the rule;

• r : LHS → RHS is a partial morphism (called the rule morphism) from LHS to RHS;

• NACs is a set of tuples (NAC , n) in which:

– NAC is a graph representing a negative application condition;
– n : LHS → NAC is a morphism from LHS to NAC .

The rule can be applied to a host graph G if and only if:
• ∃f : LHS → G

• ∀(NAC , n) ∈ NACs : @g : f = g ◦ n

As this research only concerns itself with restricting which rules are applicable at which times
and not with how rules are applied, a description of the application of a rule is beyond the
scope of this report, but a detailed description can be found in for instance [3]. An example rule
application is presented on page 7.
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a

c

(a) NAC

a

(b) LHS

b

(c) RHS

Figure 2.3: A very simple graph transformation rule

a

b

c

Figure 2.4: The Groove representation of the rule in figure 2.3

Example 2.3.1 Consider a rule that looks for two nodes with an a-labelled edge between them,
which do not have a c-labelled edge between them. It then deletes the a-labelled edge and creates
a new b-labelled edge. The graphical representation of this can be found in figure 2.3.

2.3.1 Graph rules in Groove

In Groove, graph transformation rules are depicted a little differently. Rather than having a
separate LHS, RHS and NAC view, all these are combined into one graph with different color
markings. These markings are as follows:
• Black nodes and edges are part of the LHS and must be matched for the rule to be appli-

cable.

• Blue (dashed) nodes and edges are also part of the LHS, but will be removed by applying
the rule. As such, in the normal representation these would be present in the LHS but not
in the RHS.

• Green (bold) nodes and edges are newly created by applying the rule and as such are
present in the RHS but not in the LHS.

• Red (bold dashed) nodes and edges are part of a NAC and must not be matched for the
rule to be applicable.

Figure 2.4 shows the same rule as in figure 2.3 using Groove’s notation.

Attributes A more complex rule can be found in figure 2.5. This illustrates a rule from the
AntWorld case1, which depicts the situation where an ant can move to a field one level further
away from the anthill (ants start at the center and every node further away from the center is
connected through an edge with the out label) if that field contains food. As before, the blue
dashed edge will be deleted and replaced with the green edge. The new elements mean the
following:
• The round node without a label is an attribute node, which means it can have any attribute

value in the host graph (though the way it is used in conjunction with an integer and the
eq operation implies that it must be an integer itself in order for this rule to match). It
denotes the amount of food currently on the field.

• The diamond node is a product node, which is a tuple of data nodes.

• The oval node with the 0 label is an integer literal.

1AntWorld[20] is a case study designed as benchmark. It defines some simple rules which ants use to traverse
a grid in search for food, returning and leaving pheromones behind when they find food.
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Ant

true

0

at

food

at

π1

gt

π0

out

Figure 2.5: A rule from the Antworld case in Groove notation

Node
food = 0

AntHill

Node
food = 0

Node
food = 50

Node
food = 0

Node
food = 0

Node
food = 0

Node
food = 0

Ant

Node
food = 0

next

next

out

out

out

out

out

next

at

nextnextnext

out

out

next

out

next

Figure 2.6: An example graph to which the rule in figure 2.5 can be applied

• The two edges labelled π0 and π1 are the arguments to the product node.

• The edge labelled gt is the operator edge for the product node, which selects which operator
will be used. In this case gt means that it will check whether the first argument is greater
than the second.

• The oval node labelled true is a boolean literal, which indicates that the result of the
product node should be true.

An example result of the application of this rule to the graph in figure 2.6 is in figure 2.7.

Quantified rules Rules in Groove can also contain quantified nodes, indicating that the trans-
formation this rule specifies should be applied to all nodes that match. There is also functionality
in place to specify that a node must be matched at most once or at least once. The advantage
of this is that things that are often repeated many times for a number of nodes can be combined
into one rule-application, reducing the LTS; although in some cases it allows us to express things
that were otherwise not possible, see for example [15].

Example 2.3.2 Figure 2.8 shows a rule using a quantified node (∀). This rule specifies that for
each Node in the host graph, the pheromones attribute should be multiplied by 0.9, indicating that
pheromones left behind by an ant should decay over time. Had we done this without quantification,
we would have many rule applications, one for each node. Additionally, we would have to keep
track of which nodes had their pheromones reduced already and which have not.
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Node
food = 0

AntHill

Node
food = 0

Node
food = 50

Node
food = 0

Node
food = 0

Node
food = 0

Node
food = 0

Ant

Node
food = 0

next

next

out

out

out

out

out

next

nextnextnext

at

out

out

next

out

next

Figure 2.7: The result of the application of the rule in figure 2.5 to the graph in figure 2.6

∀

int 0.9

Node int

at

pheromones

at

π1

at

mul

at

pheromones

π0

Figure 2.8: An example rule using a quantified node

2.4 Automata

When we combine the rule system with a start graph, we can generate a transition system which,
when fully explored, will have all the possible reachable transformed versions of the start graph
after scheduling every rule in every state (note that this transition system might be infinite in
size, in which case Groove can not generate the full state space without applying some restrictions
first). This type of transition system, with the states being graphs and the transitions having
labels indicating which rule is applied and where, is called a system automaton. In order to
explain this term, we will first define a general automaton.

Definition 2.4.1 (automaton) An automaton A is a tuple (Q,Σ,→, q0, S) where:
• Q is a finite set of states;

• Σ is a finite alphabet, which may include the special symbol λ;

• → ⊆ Q× Σ×Q is a set of transitions;

• q0 ∈ Q is the start state;

• S ⊆ Q is a set of success states.
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Transitions can be labelled with λ to indicate that they are internal transitions, e.g. transitions
which perform no observable action. A is called deterministic if for all q ∈ Q and ` ∈ Σ, q −`→ q1
and q −`→ q2 implies q1 = q2 and ` 6= λ.

System automata A system automaton is a specific automaton in which every edge has a
rule name and an application identifier (the match morphism) as its label. The states represent
graphs, and any transition from a state G to another state G′, denoted G −P,i−→ G′ means that
the underlying graph can G from the first state can be transformed into the underlying graph G′

of the target state by applying rule P using application identifier i as the match morphism. By
including these application identifiers, we artificially remove any possible nondeterminism (see the
paragraph on determinism below for a description) from the system automaton, while still keeping
it visible in the automaton (the transitions can still have the same rule name, but the combination
of a rule name and application identifier will always be unique for a given state). Thus, we can
still check the properties we want to check in the nondeterministic system automaton. The
system automaton should only have nondeterminism if this was in the modelled system. If it has
such nondeterminism, hiding it would change the meaning of the system automaton.

We use Id to denote the set of all possible application identifiers and Rule to denote the
collection of rules.

Definition 2.4.2 (system automaton) A system automaton is an automaton with Σ =
(Rule × Id) ∪ {λ}, such that every q ∈ Q has an associated graph dq ∈ Data, satisfying the
following consistency properties:

q −λ→ q′ :⇔ dq = dq′

q −r,i−→ q′ :⇔ dq −r,i−→ dq′ .

Determinism Determinism in the context of automata means that for every state, given an ob-
servation of inputs, one transition and subsequently one target state can be determined. Because
in Groove a rule can possibly be matched on several locations on a single graph, the resulting
transition system would be nondeterministic. To counter this, we include the match morphism in
the transitions. The combination of a rulename and a morphism makes the transitions outgoing
from a single state unique and as such the system automaton will be deterministic.

Example 2.4.1 Consider the start graph G1 in figure 2.9a, with the very simple rule P (which
adds a p-labelled edge between any two distinct nodes (the NAC-edge with the equals sign denotes
that the two nodes cannot be the same) if there is no such edge already) from figure 2.9e. It
is apparent that this rule can be applied to G in two ways through transitions G −P,1−−→ G1 and
G −P,2−−→ G3, both resulting in a different graph. These two graphs are shown in figures 2.9b and
2.9c respectively. The resulting system automaton from this is one where the start state represents
G1 and has two successor states, G2 and G3. After the rule has been applied it can be applied
again, which ends us in state G4 (figure 2.9d). The system automaton is shown in figure 2.10.

B

A

(a) G1

B

A

p

(b) G2

B

A

p

(c) G3

B

A

pp

(d) G4

= pp

(e) P

Figure 2.9: The four states of the example system automaton and the production rule P
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G1

G2 G3

G4

(P,1)

(P,2)

(P,2)

(P,1)

Figure 2.10: The system automaton generated with the start graph G1 and rule P

Rule priorities Note that a system automaton is obtained from the rule system and start
graph without control over which rules are scheduled when - all rules are scheduled in every
state. In order to limit the amount of rules that are scheduled in each state, we can assign a
priority to each rule. When we assign priorities, Groove will divide the rules into groups of the
same priority. It will then for each state first schedule the rules of the highest priority group,
and check if any of these rules match in that state. If no rule from a priority group has a match,
it will schedule all the rules from the priority group below it and it will keep doing so until at
least one rule from a priority group matches, or no more priority groups exist (in which case the
state is considered a final state).

2.5 Control language in Groove

In order to apply more control as to which rules are scheduled than just using priorities (or no
control at all), Tom Staijen [13] has built a mechanism for Groove which allows us to schedule
specific rules using a simple expression language. We will now review the state of this control
language as it was when this project started. The syntax of the control language can be found in
figure 2.11. Note that both this form of control as well as the priorities explained in the previous
section can also be expressed through a normal grammar without these augmentations. However,
in many cases this is highly non-trivial and probably not a good idea. Groove without control
is Turing-complete, but implementing even simple control in a graph grammar requires a lot of
effort. The added forms of control are a convenience which allows us to concisely describe the
intended behaviour rather than write rules with really large NAC portions to make sure other
rules cannot be applied.

The expressions written in this language are transformed into a control automaton. Groove
then takes the product of this control automaton with the system automaton produced by the
grammar without any control to generate the product automaton, which will be used to “run”
the grammar.

An example problem modelled with and without control will now be presented. Note that
this example is quite trivial but should still show how control can move complexity from the rules
to an expression. The example is a very small subset of what a game of Ludo [18] would look
like. We have modelled only which actions a player takes in his turn in order to show that this
sort of complexity can be described either by the rules or by the control language.

The no-control version of this has three rules and a starting graph (figure 2.12):
• The throw_die rule (figure 2.13a) will let the player with the current-labelled self edge

throw the dice (not modelled here) and then move the at-labelled edge to the ‘Move pawn’
node, if the current player has an at-labelled edge to the ‘Throw die’ node;

• the move_pawn rule (figure 2.13b) will let the current player move his pawn (also not
modelled here) if she has an at-labelled edge to the ‘Move pawn’ node, and will then
remove this edge as there are no more actions to perform this turn;
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• rule schedules the execution of a single rule (named rule);

• true behaves like a rule that is always successful and does not change the underlying
structure;

• P1|P2 is the non-deterministic choice of P1 and P2;

• P1;P2 is the sequential composition of P1 and P2;

• P∗ (the Kleene closure) schedules P an arbitrary number of times;

• P+ schedules P one or more times (short for P ;P∗);
• alap P (as long as possible) schedules P until it fails;

• try P1 else P2 schedules P1 first, and schedules P2 in case P1 fails;

• function F{P} declares a function F with body P .

• f , where f is the name of a function calls that function, effectively inlining its body
in the control program.

Figure 2.11: The syntax of the control language

4
Player

Move pawnThrow die

3
Player

1
Player
current

2
Player

next

next

next

at

next

Figure 2.12: The starting graph for the no-control version of Ludo

• the next_player rule (figure 2.13c) will remove the current-labelled self-edge from the
player and add it to the next player in turn.

Move pawnThrow die

Player
current

atat

(a) throw die

Move pawn

Player
current

at

(b) move pawn

PlayerPlayer

Throw die

current

atat

next

current

(c) next player

Figure 2.13: The rules in the no-control version of Ludo

In this way of modelling the game, control information is in the host graph as well as in the
rules, while the rules should only be concerned with how a move is performed (e.g. generating
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4
Player

3
Player

1
Player
current

2
Player

next

next

next next

Figure 2.14: The starting graph for the control version of Ludo

a random number, choosing which pawn to move and moving it, removing any other pawns on
the target location, et cetera). If we add a control program such as the one in listing 2.1, we can
trivialize the throw_die and move_pawn rules (this is because not everything has been modelled.
In the real model of the game, these rules would be much larger but the control information
would still be removed). The next_player rule would lose the NAC that states there cannot be
a player who is doing something. The new start graph would be as in figure 2.14.

1 alap {
2 throw dice ;
3 move pawn ;
4 nex t p l aye r ;
5 }

Listing 2.1: Ludo control program

The control automaton can express more than just the application of a rule. It can also
express the observation that a certain set of rules is not applicable, called a failure caused by
optional rules in the control expression, such as try{a;}. In this case, if a is applicable it will be
applied, if not the system will still continue while observing that a is not applicable. Note that
for a state, outgoing edges with a failure set can only contain rule names that are on outgoing
edges for normal transitions too (in other words, we cannot test for the non-applicability of rules
that have no transition if they are applicable).

We use Fail = 2Rule to denote the set of all possible failure sets. Failures are denoted by
enclosing them in square brackets.

Definition 2.5.1 (control automaton) A control automaton is an automaton where Σ =
Rule ∪ Fail, such that:
• For all q ∈ Q, q −F−→ with F ∈ Fail only if ∀a ∈ F : q −a→.

• For all q ∈ S, a ∈ Rule, F ∈ Fail there is no transition q −a→ or q −F−→.
We use JEK to indicate the control automaton generated from a control expression E.

The latter criterion indicates that there are no outgoing transitions from a final state, which
makes the composition easier.

Example 2.5.1 We present an example of a simple control program with the associated control
automaton. The control program is in listing 2.2, with the corresponding control automaton in
figure 2.15.

1 try { r u l e o n e ; } else { ru l e two ; }
2 alap { r u l e t h r e e ; }
3 r u l e f o u r ;

Listing 2.2: Example control program
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s0 s1 s2

s3

s4

s5

rule one

[rule one] rule two

rule three[]

[rule three]

rule four

Figure 2.15: The control automaton corresponding to the control program shown in listing 2.2

c0 c1

c2 c3

c4
(a,0)

(c,1)

a,b

[b]

c

a

(a,0)

λ

(c,1)

(a,0)

Figure 2.16: Example of a nondeterministic product where the two inputs are deterministic

2.5.1 Product of system automaton and control automaton

To generate the product of a system automaton and a control automaton, Tom Staijen has
defined a new automaton whose states are tuples of states of the two original automata. The
result is an automaton like the system automaton, but constrained by the control automaton on
which rules can be applied in which states.

Definition 2.5.2 (product) The product of a system automaton A and a control automaton
C is defined as A× C = (QA ×QC ,ΣA,→, (q0,A, q0,C), SA × SC), where the transition relation is
defined by the following rules:

qA −n,i−→A q′A qC −n→C q′C
(qA, qC) −n,i−→ (qA, q′C)

qC −F−→C q′C ∀n ∈ F, k ∈ Id : qA 6−n,k−−→A
(qA, qC) −λ→ (qA, q′C)

qA −λ→A q′A
(qA, qC) −λ→ (q′A, qC)

2.5.2 Determinism

The resulting automaton from this product can be nondeterministic, even if both the system
automaton and the control automaton are deterministic. An example of this can be seen in
figure 2.16. The system automaton on the left and the control automaton in the middle (cor-
responding to the control expression choice {try{a; c;}}or{try{b; c;}else{a;}}) are both
deterministic (note that the observation of [b] is not a λ-transition), while the product automaton
on the right is not; the rule application (a, 0) occurs twice, after which on one branch the rule
application (c, 1) may occur and on the other it may not.

Introducing this kind of nondeterminism in the product automaton is not a desirable effect,
due to the fact that the control automaton is meant to restrict the system automaton rather
than introduce nondeterminism that was not there in the first place. While nondeterminism in
the system automaton (and possibly even the product automaton) is fine when it is present in
the modelled system, introducing it due to the way the automaton is constructed is not. Thus
we adapt the control automaton into a guarded control automaton. The product of a system
automaton with a guarded control automaton is always deterministic[13].
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Even though a determinized automaton is generally (much) larger than its nondeterministic
counterpart, we choose to determinize the control automaton as removing nondeterminism from
the product automaton tends to be a lot more work; control expressions are generally quite simple
and as such their corresponding automata will be relatively small (< 100 states), while product
automata can be many orders of magnitude larger.

In this automaton, every transition consists of a rule name and two sets of rules, one of which
acts as a negative guard and one as a positive guard. A transition is only enabled if all rules in
the positive guard are applicable and all rules in the negative guard are not. We use q −[F |A]n−−−−→ q′

to denote a transition with guards, where A is the positive guard, F is the negative guard and
n is the rule that will be applied to get from q to q′. To denote an empty positive guard we use
q −[F ]n−−→ q′ and when both guards are empty we use q −n→ q′.

Definition 2.5.3 (guarded control automaton) A guarded control automaton is an automa-
ton with Σ = Fail × 2Rule × Rule and S ⊆ Q × Fail. Transitions should satisfy the following
constraints for all q ∈ Q:

1. q −[F |A]n−−−−→ implies F ∩A = ∅

2. q −[F1|A1]n−−−−−→ and q −[F2|A2]n−−−−−→ implies F1 ∪A1 = F2 ∪A2

3. q −[F |A]n−−−−→ implies ∃q −[F∪A]n−−−−→.

Note that success states are now also guarded, meaning that a success state has an optional
set of rules that must fail before we consider it to be an actual success state. We define a way to
generate this guarded control automaton from a normal control automaton; for this we will need
the failure dependency function fd. This function returns the union of all possible failures that
lead to a state where n is allowed.

Definition 2.5.4 (failure dependency) The failure dependency in a set of states qs for a rule
n is defined by:

fd(qs, n) =
⋃
{Fi | ∃q ∈ qs : q −F1...Fn−−−−→ q′ −n→}

The determinisation of the control automaton is then given by a function det :

Definition 2.5.5 (control automaton determinisation) Given a control automaton C,
det(C) is an automaton with Q = 2QC \ ∅, q0 = {q0,C},

S = {(q,∪iFi) | ∃qC ∈ q : qC −F1...Fn−−−−→ q′C ∈ SC},

and → is defined by:

F ⊆ fd(q, n) A = fd(q, n) \ F
q −[A|F ]n−−−−→ {q′C | qC ∈ q −F1...Fn−−−−→−n→ q′C , F1 ∪ . . . ∪ Fn ⊆ F}

The states in the guarded control automaton are sets of states from the original control
automaton. The target state of a transition q −[F |A]n−−−−→ q′ is the set of states that could be reached
in the original automaton with the failures in F followed by a rule named n. The positive guard
A contains the rules that are not in F but are in fd(q, n). A success state is a set of tuples
consisting of states and failures (these failures can be empty, in which case the success state is
unconditional).

An example of a guarded control automaton can be found in figure 2.17. This is the deter-
minized version of the control automaton in the middle part of figure 2.16.

In order to combine a guarded control automaton with a system automaton to form a new
product automaton, we define the guarded product. In this definition, the function enabled is
a function which returns the set of rules which are enabled in a system state qA or any state
reachable from qA after any number of λ’s.
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{c0}

{c1, c3}, {c}

{c1} {c4}

[b]a

[|b]a

b

c

c

Figure 2.17: Determinized version of the control automaton from figure 2.16

(s0, {c0}) (s1, {c1, c3}), {c} (s2, {c4})
(a,0) (c,1)

Figure 2.18: Example of a guarded product

Definition 2.5.6 (enabled rules) Given a system automaton A, the function enabled : QA →
2Rule is defined as:

enabled(qA) = {n ∈ Rule | ∃i ∈ Id : qA =
(n,i)
==⇒A}

Definition 2.5.7 (guarded product) Given a system automaton A and a guarded control au-
tomaton G, the product A×G is a system automaton, with Q ⊆ QA ×QG, q0 = (q0,A, q0,G), and
→, S are defined by:

qA −(n,i)−−→A q′A qG −[F |A]n−−−−→G q′G F ∩ enabled(qA) = ∅ A ⊆ enabled(qA)

(qA, qG) −(n,i)−−→ (q′A, q
′
G)

qA −λ→A q′A
(qA, qG) −λ→ (q′A, qG)

qA ∈ SA (qG , F ) ∈ SG F ∩ enabled(qA) = ∅
(qA, qG) ∈ S

A transition with rule n in G can ‘synchronize’ with rule applications in A when none of the
rules in F are applicable in qA and all of the rules in A are applicable in qA.

Proposition 2.5.8 (guarded product automaton determinism) Given a guarded control
automaton Gand a deterministic system automaton A, G × A is deterministic.

As an example, the product of the guarded control automaton from figure 2.17 with the
system automaton on the left side of figure 2.16 is in figure 2.18.

2.6 Mathematical notations

This section contains explanations of some uncommon notations used in this report.

2.6.1 Function composition

A composed function is a function which is obtained by applying two functions in succession. The
notation for this is f = g ◦ h, which means f is obtained by applying g to h. In a more concrete
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example, V ◦ iVars : idx → N is a function mapping indices to nodes, constructed by applying
V : Var → N (which is a valuation function mapping variables to nodes) to iVars : idx → Var
(which maps indices to variables).

2.6.2 Function overriding

We can restrict a function f by limiting its domain to d by writing f |d. This is used for the
following notation:

In order to override certain valuations of a function (and to add new valuations to it), we
use a notation of the form v′ = v[w]. What this means is that we let v′ be all the mappings
from v after removing dom(w) from dom(v); we then add all mappings in w to v′. In short:
v′ = v |dom(v)\dom(w) ∪w = v[w].

2.6.3 Subfunction

We use the notation f v g to denote that f is a partial subfunction of g. This holds if:
1. dom(f) ⊆ dom(g) and

2. ∀x ∈ dom(f) : f(x) = g(x)



Chapter 3

Possible extensions to the control
language

This chapter details some of the extensions to the control language we have thought of that could
benefit the functionality of the Groove control language. Not all of these are equally useful, and
we will explain the advantages and disadvantages of each extension here.

While the control language already takes some work and complexity away from the graphs
and rules, several extensions can be conceived that will further this effort. While all of them will
have to be used carefully, in the right place these extensions would benefit rule makers in being
able to write their rules more concisely and putting the complexity where it belongs (note that
this location is not always the control language). Thus, the “requirements” for an extension are
as follows:

1. reduce the complexity of rules and the amount of data required in the host graph which
would normally be used to limit where rules can be applied;

2. better separation of concerns. Control information does not belong in the host graph and
is better left to the control program;

3. reduce the state space for the combined system and control automaton thus allowing for
faster verification and/or verification of bigger systems;

4. maintain backward compatibility. Existing grammars should still work with the extension
in place.

While the last requirement could result in improved speed for Groove since fewer matchings
have to be considered and it provides a starting point when looking for a match, the former two are
what we are really after in this research. Being able to record complexity in a concise way in the
control language is a good thing in most cases, such as where (transformation-)state information
is kept in the host graph between applications of the rules. Care must be taken though, that the
combination of the rule system and the control language remains understandable. If we move
all the complexity to the control expression, we might end up with a perfectly working system
which uses rules that cannot be understood properly. The opposite is also true; if we embed all
the complexity in the host graph and do not use the control language at all, we are putting the
complexity in the wrong place as graph transformation rules should be used to transform the
graph, not schedule themselves at the appropriate time.

3.1 Basic input and output parameters

The first extension would be to add basic input (“match this node”) and output (“return the
matched node”) parameters to the control language, allowing us to remember which nodes have
been matched between rule applications and controlling which nodes a rule can be applied to.
This extension fulfills the first two requirements stated at the start of this chapter; using input
parameters will make it easier to specify rules that have to match on certain nodes (rather

17
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1 node cur rent ;
2 g e t f i r s t p l a y e r (out cur rent ) ;
3 alap {
4 throw die ( cur rent ) ;
5 move pawn ( cur rent ) ;
6 nex t p l aye r ( current , out cur rent ) ;
7 }

Listing 3.1: Control program for Ludo with variables

than placing control “tokens” on the host graph) thus fulfilling the first requirement, while
both input and output parameters together will work in fulfilling the second requirement. This
extension does not automatically reduce the state space, but it will not make it larger either.
Backwards compatibility can be maintained by allowing usage of graph transformation rules
without parameters too.

Example 3.1.1 (Ludo with variables) Consider again the Ludo example presented in section
2.5. Instead of keeping track of the current player in the graph and the rules, we could parame-
terise this (note that we are not claiming that this is a good thing per se, but it will be an option
with this extension). In order to do this, we will need to first capture the node that contains the
current player in a variable and subsequently update this variable to reflect each new player in
turn. The corresponding control program can be found in listing 3.1 (variable names with out
prepended to them are output variables, without a prefix they are input variables) and the new
rules in figure 3.1. The start graph is the same as in the example with control from the aforemen-
tioned section, without the current-labelled self-edge on Player 1. Note that this method has the
added value of having a random player be the first player. In this very trivial example the first
three rules look exactly the same, but bear in mind that in a full implementation each of these
rules would do something with the host graph.

Player
$1

(a)
get first player

Player
$1

(b)
throw die

Player
$1

(c)
move pawn

Player
$1

Player
$2

next

(d) next player

Figure 3.1: The rules in the variables version of Ludo

Deleted nodes If an input variable to a rule tries to match a node that has been removed
from the graph by another rule application, one of two things can happen:

1. The rule application can fail, thus blocking the program;

2. the input parameter can be ignored and treated as a “don’t care” variable.
We think the former option is the better one as this would provide the most predictable

results. The user of the control language will have to keep track of which rules affect which
variables and consequently not use variables that point to nodes that have been deleted as input
variables.

3.2 Function parameters

As functions in the Groove control language are called in the same way as rules, it would stand
to reason that they should also receive parameters. However, care needs to be taken for output
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parameters, which can be handled in different ways. We recognise five ways to handle output
parameters for functions:

1. Ignore them completely.
2. Bind them to the first matching in which they are used, but use it as a free variable

afterwards (i.e. return the first match but don’t save it within the function).
3. Require that the function uses its output parameters only once.
4. Bind them to the last matching in which they are used.
5. Bind them to the first matching in which they are used and subsequently use these bindings

within the function.
Option #1 can clearly not be considered as there are more useful ways to handle output

variables. Of the remaining four, we believe option #5 to be the most viable since it most
closely resembles the way variables are handled in the previous section. Having as little difference
between the way these variables are handled in the various places of the program improves clarity
when using the program, which can only be seen as something good.

Input variables can be used in the same way as they are used for single rules, namely that
they are bound when the function is called and will be used in every their every instance in the
function.

The fulfillment of the extension requirements for this is the same as the basic input/output
parameters. It extends on that functionality, making it usable in more places.

3.3 Quantified parameters

As quantified parameters can match zero, one or more nodes, they will need to be treated
differently from normal nodes. There is a more distinct difference between input parameters and
output parameters in this case.

3.3.1 Output parameters

When a quantified node is used as an output parameter, it might not return just one value. As
such, if we want to use quantified nodes as output parameters we will need to make provisions for
this. The logical thing to do seems to save all the returned nodes into a list, which requires extra
syntax for iterating over lists and possibly other list operations, like unions and intersections of
two lists or adding and removing nodes from lists manually.

3.3.2 Input parameters

If a variable is being used as an input-parameter to a quantified node, not much special happens.
The node can be regarded as a single node rather than a quantified node. However, when we
want to use the output from a quantified parameter as the input for another node, we might end
up trying to use a list of zero or more than one value where only one value is expected. In this
case, three things can happen:

1. The node it is matched to is a universal quantification node (∀), in which case the rule will
be applied while matching the node to each item of the list. If no items exist in the list,
this rule will be skipped.

2. The node it is matched to is an existential quantification node (∃), in which case there will
be several possible applications for the rule, one for each value in the list (if any). If no
items exist in the list, this rule can be skipped.

3. The node it is matched to is a normal node, in which case the same happens as in the second
case except at least one match will have to be found else this rule cannot be applied. As
such, this rule will block and if there are no other branches the program will end.

This extension can, like the previous two extensions, fulfill all of the requirements set at the
start of this chapter. The third requirement once again requires the user to use the extension in
a way that fulfills it however.
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1 node cur rent ;
2 int counter ;
3 counter = 0 ;
4 g e t f i r s t p l a y e r (out cur rent ) ;
5 alap {
6 throw die ( cur rent ) ;
7 move pawn ( cur rent ) ;
8 counter = counter +1;
9 nex t p l aye r ( current , out current , counter , out counter ) ;

10 }

Listing 3.2: Mensch ärgere dich nicht with variables and attributes

3.4 Arithmetic expressions in control language

The next step, after implementing input and output parameters, could be to also incorporate
arithmetics into the control language. This would allow us to manipulate attribute nodes directly
from the control language, rather than using rules to do so.

Suppose we want to keep track of how many turns have been taken in our Mensch ärgere dich
nicht program. Using a counter in the host graph and incrementing this counter in rules would
enable us to do this, but it is quite tedious to do so; there will have to be a counter variable kept
in the host graph and in each rule that needs to increment this counter you will need at least:
• a static integer value of 1;

• a procedure node;

• a reference to the counter node;

• a reference to the old value of the counter node;

• an attribute node to take new value for the counter node.
It would certainly take a lot less space to put most of this in the control language as an integer

variable and just use this variable as an input whenever the value of the counter was needed in
the host graph. Care must be taken that we do not move too much complexity from the rules
to the control language, such that the rules will become incomprehensible. As this cannot be
decided unanimously for all cases, the decision on where to put the complexity would remain
with the user of the program.

Example 3.4.1 (Ludo with arithmetic expressions) Consider again the example from sec-
tion 3.1. Suppose we want to add a counter to every player, keeping track of how many turns they
have already played. We could, as described above, implement this by incrementing the counter
in the next_player rule, but this would require a lot of added complexity to this rule.

Instead here is how we could do it using the control language. We initialize the counter to zero
as the first time we increment it, no turns have passed yet. In each of the loops which represents
a turn, we first increment the counter, then assign it to the current player and while getting the
next player we also get its associated counter variable. The control program for this can be found
in listing 3.2 and the new next_player rule as well as the new start graph in figures 3.2a and
3.2b respectively.

As the requirements from the beginning of this chapter go, this extension can clearly fulfill
the first one. It can also fulfill the third one depending on how this feature is implemented, and
the fourth one (this extension adds syntax, it does not invalidate the old syntax). The second
requirement is a different story however, as this extension moves complexity from the host graph
and the graph transformation rules to the control program, but does not necessarily separate the
concerns; some complexity might best be left in the rules else it will be unclear what a rule does
without looking at the control program. With this extension it is possible to specify complexity
in the control program that would most likely be more fitting in the graph and rules.
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Player
$1

int
$3

int
$4

Player
$2

next

turns turns

(a) next player

Player
turns = 0

Player
turns = 0

Player
turns = 0

Player
turns = 0

next

next

next

next

(b) start graph

1 boolean entered ;
2 try {
3 e n t e r p a s s e n g e r +;
4 entered = true ;
5 } else {
6 entered = f a l s e ;
7 } ;
8
9 i f ( entered == true ) {

10 c l o s e d o o r ;
11 }

Listing 3.3: An example of boolean expressions in the control language

3.4.1 Boolean expressions

Boolean expressions are a special case of arithmetic expressions. With these we would be able
to set and compare booleans and make entire blocks of the control program conditional. While
we can do that now, this would allow us to be even more expressive in this respect.

It could for instance be nice to be able to constrain the execution of a certain rule based
on whether another rule had previously been executed. This could be done by adding boolean
variables to the language. The boolean literal true is already in there, but if we add false and
allow conditional statements to use these variables, we could have this feature.

This feature was also described by Michiel Hendriks of the AMPLE project as something he
would have liked in his usage of Groove.

An example can be found in listing 3.3. This program tries to apply the rule enter_passenger
as often as possible (but at least once). If this succeeds it sets the boolean variable entered to
true, if not it sets it to false. It then applies the close_door rule but only if at least one
passenger had entered.

3.5 Choosing the extensions for the project

We have chosen the extensions to be implemented in this project with consideration of how well
each of them fulfills the requirements set at the start of this chapter, as well as the time available
for the project.

For the first extension we chose basic input/output parameters, which will be detailed in
chapter 4. We chose this both because it fulfills all of the requirements and because the other
extensions require this extension to be present in order to work.

For the second extension we considered both the function parameters as well as attribute
parameters. As we only had time for two extensions in total, and one extension was already
spoken for, we could only choose one of these. We decided on attribute parameters as one of the
members of the committee, Selim Ciraci, saw a possible application for this in a project he had
worked on. Attribute parameters are worked out in chapter 5.





Chapter 4

I/O Parameters

In chapter 2 we have described the control language in Groove as it was before this project
started. We will now tackle the extension to this with basic input and output parameters as
suggested in section 3.1. For this purpose, we first extend the theory. Both the syntax and the
semantics of the control language should be adapted, as well as nearly all the models for the
various automata and the graph transformation rules we have.

While we worked out the theory for this chapter, we found that the required adaptations to the
models from chapter 2 became more complex than we anticipated and that the implementation
of them would cause this project to severely extend its timeframe. To remedy this, we have
imposed some restrictions which we will explain near the end of the chapter in section 4.7.

4.1 Modified control language syntax

In order to extend the control language, the first thing that needs to change is the syntax. The
various models will then be changed in order to support the new semantics of this syntax. For
the extension with I/O parameters, these things have changed in the syntax:

1. Node variables will need to be declared;

2. Rules have a parameter list, with input and output parameters combined.
We have chosen to combine input and output parameters into one list when calling a rule.

As both are represented in the same graph when looking at the rule, this is the clearest solution.
Output parameters will be prepended by the keyword out, while input parameters do not have
any prefix. The rest of the syntax follows Java as closely as possible whenever possible. The
full new syntax in EBNF notation thus becomes the one shown in listing 4.1, with the bold lines
being added. Note that rules can be used either with or without parameters (as per the call
rule in the syntax), but if parameters are used the number of parameters must be the same as
the amount specified by the rule itself. We will call the language produced by this syntax Lang.

In this chapter, Var will be used to denote the set of possible variables, which as can be seen
in listing 4.1 consist of identifiers made up of letters, numbers and a couple of special characters
(identifiers have to start with a letter). ⊥ will be used to indicate dummy variables (e.g. “don’t
care” variables, or _ in the control language) wherever applicable. Also, each variable (except
⊥) may be used as output only once in a single control expression (Cytron et al.[4] explain that
any program that has multiple assignments to one variable can be converted into a form where
each variable is only assigned to once, called Static Single Assignment form). The reason for this
restriction will be explained in section 4.6.

4.1.1 Examples

Some examples of expressions in the extended control language can be found in listings 4.2 and
4.3.

23



24 CHAPTER 4. I/O PARAMETERS

1 program : ( func t i on | statement )∗
2 func t i on : ’ funct ion ’ i d e n t i f i e r ’ ( ’ ’ ) ’ b lock
3 block : ’{ ’ statement ∗ ’} ’
4 cond i t i on : c o n d i t i o n l i t e r a l ( ’ or ’ c ond i t i on )?
5 statement :
6 | ’ alap ’ b lock
7 | ’ whi le ’ ’ ( ’ c ond i t i on ’ ) ’ ’ do ’ ? block
8 | ’ un t i l ’ ’ ( ’ c ond i t i on ’ ) ’ ’ do ’ ? b lock
9 | ’ do ’ b lock ’ while ’ ’ ( ’ c ond i t i on ’ ) ’

10 | ’ try ’ b lock ( ’ e l s e ’ b lock )?
11 | ’ i f ’ ’ ( ’ c ond i t i on ’ ) ’ b lock ( ’ e l s e ’ b lock )?
12 | ’ cho ice ’ b lock ( ’ or ’ b lock )∗
13 | exp r e s s i on ’ ; ’
14 | v a r d e c l a r a t i o n ’ ; ’
15 c o n d i t i o n l i t e r a l
16 : ’ true ’
17 | c a l l
18 exp r e s s i on : expr e s s i on2 ( ’ or ’ e xp r e s s i on )
19 expre s s i on2
20 : express ion atom ( ’+ ’ | ’∗ ’ ) ?
21 | ’# ’ express ion atom
22 express ion atom
23 : ’ any ’
24 | ’ other ’
25 | ’ ( ’ e xp r e s s i on ’ ) ’
26 | c a l l
27 var declaration : ’node ’ ident i f ier ( ’ , ’ ident i f ier )∗ // item 1
28 ca l l : ident i f ier ( ’( ’ var l i s t ’) ’)? // item 2
29 var l i s t : variable ( ’ , ’ var l i s t )? // item 2
30 variable : ’out ’? ident i f ier | ’ ’ // item 2
31 i d e n t i f i e r
32 : ( ’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ ) ( ’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ − ’ | ’ ’ | ’ . ’ ) ∗

Listing 4.1: The new syntax for the control language

1 node n1 , n2 , n3 ; // d e c l a r a t i o n o f th ree node v a r i a b l e s
2 a ; // r u l e a p p l i c a t i o n without parameters
3 b(out n1 ) ; // r u l e a p p l i c a t i o n with 1 ( output ) parameter
4 b(out n2 ) ;
5 c ( n1 ) ; // r u l e a p p l i c a t i o n with 1 ( input ) parameter
6 d( n1 , n2 ) ; // r u l e a p p l i c a t i o n with two input parameters
7 e ( n1 , n2 , out n3 ) ; // input and output can a l s o be combined

Listing 4.2: An example showing the usage of the new syntax

4.2 Graph transformation rules

In order to accomodate parameters, graph transformation rules require a slight adaptation in
their definition. Every rule will have a list of parameters which map to nodes of the left hand
side or right hand side. Some of these parameters can be input parameters, some can be output
parameters and some can be both. This is determined as follows:
• Parameters in the LHS that also appear in the RHS can be either input or output param-

eters;

• Parameters in the LHS that do not appear in the RHS (deleted nodes) can only be input
parameters;

• Parameters that appear only in the RHS (created nodes) can only be output parameters.
Nodes in the NACs or in nested subrules (which occur when quantified nodes are used) can

never be parameters.
Graph transformation rules thus become defined in definition 4.2.1.
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1 node n1 , n2 , n3 , n4 ;
2 a (out n1 ) ; /∗ n1 now has a value in a l l subsequent c o n t r o l
3 l o c a t i o n s u n l e s s the node i t po in t s to has
4 been de l e t ed ∗/
5 try {
6 b(out n2 ) ; // n2 has a value f o r the remainder o f t h i s b lock
7 } else {
8 b(out n3 ) ; // n3 has a value f o r the remainder o f t h i s b lock
9 }

10
11 /∗ n2 and n3 now both have no value anymore because the statements
12 on l i n e s 6 and 8 are not both executed ∗/
13
14 alap {
15 b(out n4 ) ;
16 }
17
18 /∗ while n4 may be as s i gned to mul t ip l e t imes during execut ion ,
19 t h i s statement i s a l lowed because i t i s only as s i gned to
20 once s y n t a c t i c a l l y . ∗/

Listing 4.3: An example showing variable scopes

Definition 4.2.1 (graph transformation rule with parameters) A graph transformation
rule P is a tuple (LHS ,RHS , r,NACs, IV,OV ) in which LHS, RHS, r, NACs are the same
as in definition 2.3.1 and:
• IV ∈ V ∗LHS is a list of nodes from the LHS which form the input parameters of this rule;

• OV ∈ V ∗RHS is a list of nodes from the RHS which form the output parameters of this rule.
Note that r ◦ IV and OV may have some overlap. We defined them as separate lists to more
easily generate the product of the system automaton and the control automaton later on.

The matching of rules is the like in definition 2.3.1, but with the addition of input parameters.
For each of the input parameters that have a value other than ⊥ in the control program, the rule
must match the node specified by the control program in order to obtain a valid match.

Rule application then proceeds as usual, with any output parameters being bound to the nodes
they matched.

When calling a rule from the control program, the rule will only be enabled if the values of
the input parameters used by the control program match the values of the input parameters in
the rule.

Consider for example the rule presented in figure 4.1, once again with the numbers in red
next to the nodes being the node identities for this rule. This rule looks for an node labelled
A with a b-edge to a node labelled node B. It then deletes this node labelled B (and the edge
pointing to it) and creates a new node labelled C and a c-edge. It only does this, however, if no
node with a Stop label exists. The two lists of parameters for this rule are as follows: IV = [2, 4]
(the nodes with parameters which appear in the left-hand side), OV = [2, 3] (the nodes with
parameters which appear in the right-hand side).

4.3 System automaton

In the following definitions, the system automaton defined in section 2.4 will be extended to allow
for input and output parameters. To facilitate the creation of the product of the parameterised
system automaton and the parameterised control automaton, two lists have been added to each
element of Σ:

Definition 4.3.1 (parameterised system automaton) A parameterised system automaton
is a tuple (Q,Σ,→, q0, S) where Q, →, q0 and S are the same as in definition 2.4.2 but with a
transition now being denoted dA −n,i,p,c,I,O−−−−−−→A d′A where:
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Stop

A
$1

C
$3

B
$2

c

b

1

2

3

4

Figure 4.1: An example rule with parameters

• p is the production morphism, that is the morphism from dA to d′A;

• c is the comatch, that is the morphism from the RHS of the rule to d′A;

• I = i◦IV n is a list of the matchings for all the input parameters for the rule in a transition;

• O = c ◦ OV n is a list of the matchings for all the output parameters for the rule in a
transition.

n and i are unchanged; as in definition 2.4.2 they are the rule name and application identifier
respectively.

The production morphism is required to construct the product of this automaton with the
parameterised control automaton later on. Note that I and O may have some overlap. An
example can be found in figure 4.2. The starting graph is in 4.2a (with the node identities in red
numbers next to the nodes), the single rule r in 4.2b and the parameterised system automaton
in 4.2c.

BA C
21 3

(a) starting graph

$2
A
$1

=

(b) rule r

s1

s0

s2

s3

r,[1,3],[3]

r,[1,2],[2]

r,[1,2],[2]

r,[1,3],[3]

(c) parameterised system automa-
ton

Figure 4.2: An example parameterised system automaton

4.4 Control automaton

In order to allow for parameters, the control automaton also receives a few modifications. First,
each state will contain a set of the identifiers of the variables that are bound in that state. Second,
each transition will gain two lists of parameters, input and output separated. Furthermore, we
will use three new notions for rules with parameters and failures with parameters to shorten
our definitions. DVar = Var ∪ {⊥}, which indicates the variables combined with the ⊥ character
which we use to denote dummy variables. PRule = Rule×{T, F}DVar∗ indicates a rule with input
parameters and PFail = 2PRule indicate all sets of rules with input parameters to be used as
failures.
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1 node n1 , n2 ;
2 r ; // no parameters used
3 r ( , ) ; // two dont care parameters
4 r (out n1 , ) ; // one output and one dont care parameter
5 r (out n2 , n1 ) ; // one output and one input parameter
6 r ; // once again with no parameters

Listing 4.4: Control program corresponding to the automaton in figure 4.3

Definition 4.4.1 (parameterised control automaton) A parameterised control automaton
is a tuple (Q,Σ,→, q0, S) with Q, q0 and S the same as in definition 2.5.1. Σ = (PRule ×
DVar∗) ∪ PFail.

Additionally, transitions will now be denoted dC −n,iVars,oVars−−−−−−−−−→C d′C in which:

• iVars ∈ ({T, F}DVar)∗ : a list of length |IV n| of expressions over input variables. Each
index on the list contains an expression which mentions which variables must match and
which must not match on this position. Initially these expressions will only consist of a
single variable which must match (or ⊥), but in the determinisation preprocessing phase
more variables will be used. For displaying this in the automaton we will use x to indicate
variable x must match on a certain position and !x to indicate variable x must not match,
combining these subexpressions using ∧;

• oVars ∈ DVar∗ : a list of length |OV n| of output variables. Each index on the list can
either contain a dummy variable or the name of a unique variable (no variable may be used
more than once in the output of a single rule application).

As failure transitions will have different inputs for different rules and output is irrelevant in the
case of failure, failure transitions will be denoted dC −F−→C d′C in which F ⊆ PFail is a set of
rule names and expressions over input parameters as defined above. The notion of failure will
thus be extended to include the condition that a failure will be recorded if a set of rules with the
current values of the input parameters cannot be applied, rather than just the set of rules not
being applicable.

Definition 4.4.2 (correct parameterised control automaton) A correct parameterised
control automaton C = (Q,Σ,→, q0, S) is a parameterised control automaton for which the
output variables of any transition t ∈→ do not contain duplicate variables (except ⊥, which can
occur any number of times).

From a parameterised control automaton, we can derive a function B which maps all states
in the automaton to sets of variables which are bound at those states.

Definition 4.4.3 (bound variables) Given a parameterised control automaton (or one of its
derived automaton types) C = (Q,Σ,→, q0, S), BC is the smallest available function such that:

BC(q) =
{ {

x ∈ Var
∣∣ ∀t ∈ iBuq :

(
x ∈ iVars(t) ∨ x ∈ B(src(t))

)}
ifq 6= q0

∅ otherwise

iBuq = {x ∈→ | x = (q′, a, I, O, q)}

iBuq is the input bundle for q, that is the set of transitions that end in q.
An example parameterised control automaton can be found in figure 4.3. The corresponding

control program is in listing 4.4. A more involved example, where some states have multiple
incoming or outgoing transitions, is in listing 4.5, with the resulting control automaton in figure
4.4. Note that in the final state n2 is not bound because it was only bound in one of the
predecessor states. r is a rule that takes two parameters, the first of which can be either input
or output and the second of which can only be input.
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q7
[n1, n2]

q3

q5

S1
[n1, n2]

q6
[n1]

q4

r

r

r[ , ][ ]

r[ , ][n1]

r[ , n1][n2]

Figure 4.3: An example parameterised control automaton

1 node n1 , n2 ;
2 r (out n1 , ) ;
3 choice {
4 r ( n1 , ) ;
5 } or {
6 r (out n2 , ) ;
7 r ( n1 , ) ;
8 }

Listing 4.5: Control program corresponding to the automaton in figure 4.4

S1
[n1]

q6
[n1]

q3

q10
[n1, n2]

r[n1, ][ ]

r[ , ][n2]

r[n1, ][ ]

r[ , ][n1]

Figure 4.4: Another example parameterised control automaton

4.5 Product automaton

The product of the parameterised system automaton and the parameterised control automaton is
constructed in a similar way as before (see section 2.5), while adhering to the added constraints of
the input parameters and saving the output parameters. To keep track of the parameter values,
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every state of the product will have a valuation map V ∈ Val, where Val is the set of valuations,
i.e. the space of all partial functions Var → N . We use V∅ to indicate the empty valuation
function ∅ → N .

The product automaton is defined by the following rules, an adaptation of definition 2.5.2.

Definition 4.5.1 (parameterised product) The product of a parameterised system automa-
ton A and a parameterised control automaton C is defined as A × C = (QA × QC × Val,ΣA,→
, (q0,A, q0,C , V∅)), where the transition relation is defined by the following rules:

qA −n,i,p,I,O−−−−−→A q′A qC −n,iVars,oVars−−−−−−−−−→C q′C I = v ◦ iVars

(qA, qC , v) −n,i−→
(
q′A, q

′
C , (p ◦ v)[O ◦ oVars−1]

)
qA −λ→A q′A

(qA, qC , v) −λ→ (q′A, qC , v)

qC −F−→C q′C ∀(n, iVars) ∈ F : (¬∃I w v ◦ iVars : qA −n,i,I,O−−−−→A′)
(qA, qC , v) −λ→ (qA, q′C , v)

Several notations will require some explanation, namely:
• Any function that can contain ⊥ is considered to be undefined for those parts of the domain;

• we are allowed to use (p◦v)[O◦oVars−1] due to the fact that oVars is injective by definition
(see definition 4.4.1) and does not have ⊥ in its domain;

• we apply p to v in the construction of the new valuation function because nodes might get
new identities in case nodes are added or removed. This way the variables still point to the
correct nodes. Note that this is only done for the nodes in v that are not overridden by the
notation explained in the previous point, as these are taken from O they already have the
new identities;

• v ◦ iVars : N→ N becomes undefined for indices where iVarsi = ⊥.
Originally, states in the product automaton were considered equal if their underlying host

graphs were isomorphic and they corresponded to the same state in the control automaton.
However, now that variables are introduced, these need to be included in the isomorphism notion.

Definition 4.5.2 (equality on states of a parameterised product) Two states s and s′ of
a parametrised product automaton are considered equal if and only if:

1. There exists an isomorphism m between the underlying host graphs of s and s′;

2. s and s′ are both considered to be in the same control state;

3. m ◦ vs = v′s

Since the second condition requires that both states correspond to the same control state,
both states will also have the same variables so we do not have to check whether all variables
exist in both states.

4.6 General determinisation

When trying to determinize the parameterised control automaton in the same way as presented in
chapter 2.5.1, we are faced with a problem in that a state can have multiple outgoing transitions
with the same rule name but different input or output parameters. In the case of different output
parameters, this results in a nondeterministic control automaton. In the case of different input
parameters, it will also result in a nondeterministic control automaton if the parameters used
point to the same nodes. In order to cope with this, we will perform a preprocessing step of deter-
minizing such transitions in order to end up with an automaton that can be determinized using
the previously described mechanics. We will discuss output and input parameters separately.
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1 choice {
2 a (out x ) ;
3 b( x ) ;
4 } or {
5 a (out y ) ;
6 c ( y ) ;
7 }

Listing 4.6: Sample (partial) control expression with output parameters

4.6.1 Preprocessing - output parameters

A special situation occurs when a state has several outgoing transitions with the same rule name
but different output parameters. The effect of either transition will be the same except for which
parameter will get a value, as in for example figure 4.5a (generated from the expression in listing
4.6). We will call this “determinism through output parameters”. In such cases we will replace
the parameters with a compound parameter that will be substituted for each of the parameters
from then on. The determinisation process will later collapse the two transitions that become
identical. We will illustrate this by using an example. In the example we use the notation x+y
to denote “x ∨ y”, which is shown in figure 4.5b.

[x] [y]

[y][x]

a[][x] a[][y]

b[x][] c[y][]

(a) before preprocessing

[x+y]

[x+y] [x+y]

[x+y]

a[][x+y]a[][x+y]

b[x+y][] c[x+y][]

(b) after preprocessing

Figure 4.5: The control automaton corresponding to listing 4.6

In order to further ease this preprocessing step, we also impose a restriction on the control
expressions in that they are allowed to syntactically only use a variable as output once. Imposing
this restriction enables the assumption that since each variable only occurs as output at most once,
we can rename it in the entire automaton without consequence. We do this because renaming
a variable in an entire automaton is a much simpler task than deciding in which states we need
to rename it. See for instance figure 4.6. In this figure, there exists nondeterminism because the
transitions from state 3 to 4 and from state 3 to 5 are the same modulo output variables. We
could only rename x and y to x+ y in the transitions which introduce the nondeterminism and
every transition and state following these, but things will quickly get complicated. Thus we only
allow control expressions that generate automata following this definition:

Definition 4.6.1 (unique occurence control automaton) A unique occurence control au-
tomaton is a control automaton (Q,Σ,→, q0, S) in which ∀t, t′ ∈→: ∀v ∈ oVarst : v /∈
oVarst′ ∨ t = t′.

We also define a variable renaming operation on control automata:

Definition 4.6.2 (control automaton variable renaming) Given a parameterised control
automaton C = (Q,Σ,→, q0, S) and a variable renaming function f : Var → Var, R(C, f) =
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[x]

[x,y]

[x] [x]a[][x]

b[][x]

a[][y]

a[][x]

a[][x]
1 2 3

4

5

Figure 4.6: Example automaton that requires variable renaming

(Q,Σ,→′, q0, S) is a renamed control automaton. →′= {(srct, nt, f ◦ iVarst, f ◦ oVarst, tgt t) |
t ∈→}. Note that f must be defined for all v ∈ {iVarst | t ∈→}.

Now we can begin our renaming process.

Definition 4.6.3 (output parameter preprocessing) Given a unique occurence control au-
tomaton C = (Q,Σ,→, q0, S) and a variable renaming function f such that in odet(C) = R(C, f) =
(Q,Σ,→′, q0, S) the following holds:
∀q ∈ Q, a ∈ Rule : ∀b, b′ ∈ Buq,a : b = b′ ∨ oVarsb = oVarsb′
(where Buq,a = {x ∈→ | q =⇒ q′ −a,I,O−−−→ q′′}). odet(C) = R(C, f) then is an automaton in which
no nondeterminism through output variables exists.

Proposition 4.6.4 A function f as described in definition 4.6.3 exists for all unique occurence
control automata.

Proof 4.6.5 The function can be obtained from an automaton by, whenever a state has multiple
outgoing transitions with the same rule name and input variables, unifying the variables for each
spot in the output variable list. Thus, if for instance if a state has several of these transitions with
output parameter lists {[a, b,⊥], [⊥, c, d], [⊥,⊥, e]}, {a 7→ a, b 7→ x, c 7→ x, d 7→ y, e 7→ y} will be in
f (x and y were randomly picked, these should be variable names that were not in the original
automaton). �

Proposition 4.6.6 (renaming correctness) Given a unique occurence control automaton C,
odet(C) is a correct parameterised control automaton as in definition 4.4.2.

Proof 4.6.7 Because in a unique occurence control automaton (see definition 4.6.1) every vari-
able may only appear as output on one transition, and given the fact that the renaming function
used in the output parameter preprocessing only renames several variables to the same name if
they are used in the same bundle and on the same position in the output parameter list, it will
never happen that the list of output variables of a transition contains duplicates (except for ⊥).�

4.6.2 Preprocessing - input parameters

As with output parameters, another special situation occurs when a state has several outgoing
transitions with the same rule but different input parameters.

As an example, suppose we have an arbitrary rule a which takes one parameter. We also have
three rules named b, c and d which do not have parameters (or no parameters are used with them
in this example). Consider the control automaton in figure 4.7 (generated by the expression in
listing 4.7). If while constructing the product x1 and x2 have different values there is no problem,
but if they have the same value we will have introduced nondeterminism because the transitions
will now be identical (we will call this “nondeterminism through input parameters”). As we
do not know which of these two cases will occur at the time of the construction of the control
automaton, we cannot simply rename the variables as we did with output parameters. We will
instead solve this by taking the subsets of all variables involved and creating transitions for those
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a[x1][]

c

[a[x1],a[x2]]

b

a[x2][]

d

Figure 4.7: An example parameterised control automaton

1 try {
2 choice {
3 a ( x1 ) ; b ;
4 } or {
5 a ( x2 ) ; c ;
6 }
7 } else {
8 d ;
9 }

Listing 4.7: Sample (partial) control expression with input parameters

instead of the ones currently in the automaton. The new transitions will lead to sets of states
from the old automaton. In this section, we use the notation a[x1∧!x2] to indicate that rule a
can be applied with parameter x1 but not with parameter x2.

Formally this preprocessing is defined as follows.

Definition 4.6.8 (input parameter preprocessing) Given a parameterised control automa-
ton C = (Q,Σ,→, q0, S), idet(C) = (Q′,Σ′,→′, q0, S′) is another parameterised control automa-
ton, with:

Q′ = {tgt(t) | ∀q ∈ Q, a ∈ Σ : t ∈ Tq,a} ∪ {q0}
Σ′ = (PRule× DVar∗) ∪ PFail

→′ = {(P, a, I,O, P ′) | P ∈ Q′ ∧ ∃(q, a, I, O, P ′) ∈ Tq,a : q ∈ P}

Tq,a =
{

(q, a, iV,O, targetsiV,q,a)
∣∣∣ iV ∈ {fi ∈ Pi,q,a}1≤i≤|iV (a)| ∧ targetsiV,q,a 6= ∅

}
targetsiV,q,a = {tgt(b) | b ∈ Buq,a ∧ iVars(b) ⊆ iV }

S′ = {s ∈ Q′ | ∃s′ ∈ s : s′ ∈ S}

Pi,q,a = {T, F}Xi,q,a

Xi,q,a = {iVarsi(b) | b ∈ Buq,a} \ {⊥}

Buq,a = {x ∈→ | q =⇒ q′ −a,I,O−−−→ q′′}
A ⊆ B ⇔ ∀i ∈ {x ∈ R | 0 ≤ x ≤ |A|} : ∀a ∈ Ai : Bi(a) = T

Proposition 4.6.9 If C is a parameterised control automaton, odet(C) is a parameterised control
automaton in which no nondeterminism through input variables exists.

The preprocessed version of the automaton from figure 4.7 is in figure 4.8. Note that there
is no outgoing transition with the label a[!x1∧!x2] because there is no transition in the original
automaton to match this.

This preprocessing step will obviously explode the state space of the control automaton rather
quickly when more than two variables are in use or when there are multiple parameters per rule-
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c

a[!x1ˆx2]

b

c

a[x1ˆx2][]

b

d

a[x1ˆ!x2]

[a[x1ˆx2],[a[x1ˆ!x2],a[!x1ˆx2]]

Figure 4.8: The automaton from figure 4.7 after the pre-pass

call, but it should still provide less complexity than other determinisation methods. In most cases
many of the combinations of variables will not actually be applicable so they will not appear in
the product.

After this preprocessing phase we end up with a preprocessed control automaton with pa-
rameters. In this automaton, a state will never have two outgoing transitions with the same rule
name and input parameters or the same rule name and output parameters.

Definition 4.6.10 (quasi-deterministic control automaton with parameters) A quasi-
deterministic control automaton with parameters C is a control automaton with parameters which
satisfies the following property: q −n,I,O−−−→ q′ ∧ q −n,I,O−−−→ q′′ =⇒ q′ = q′′

Proposition 4.6.11 Given a control automaton with parameters C, idet(odet(C)) is a quasi-
deterministic control automaton with parameters.

4.6.3 Determinisation

After the preprocessing phase determinisation can commence. Every transition will still have a
failure set and an applicability set, however these sets are now not only sets of rule names but
sets of rule names combined with input parameters. Thus each rule name might appear more
than once in either set, with distinct input parameters. The application of the rule will also
affect the value of certain variables, so output parameters will be added to the transitions as
well. Each transition will thus be denoted q −[F |A]n,I,O−−−−−−→ q′ where F and A are sets of pairs (r, I)
in which furthermore r is a rule name and I is a list of input parameters corresponding with the
rule. n is the rule name to be applied in the transition and O is a list of variables corresponding
to the output parameters of the rule (note that some positions in both the I and O lists can be
empty to indicate “don’t care” parameter positions).

Definition 4.6.12 (guarded control automaton with parameters) A guarded control au-
tomaton with parameters is an automaton with Σ = PFail × PFail × (PRule × DVar∗) and
S ⊆ Q× PFail. Transitions should satisfy the following constraints for all q ∈ Q:

1. q −[F |A]n,I,O−−−−−−→ implies F ∩A = ∅

2. q −[F1|A1]n,I,O−−−−−−−−→ and q −[F2|A2]n−−−−−→ implies F1 ∪A1 = F2 ∪A2

3. q −[F |A]n,I,O−−−−−−→ implies ∃q −[F∪A]n,I,O−−−−−−−→

Given the new notion for failure as described in definition 4.4.1, the definition for the failure
dependency set does not change (see definition 2.5.4), though it will take the new notion of
failure into account. Consequently, the definition for control automaton determinisation does
not change either, it merely uses the new failure dependency.
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Definition 4.6.13 (parameterised control automaton determinisation) Given a prepro-
cessed parameterised control automaton C, det(C) is a deterministic control automaton with
Q = 2QC \ ∅, q0 = {q0,C}, S = {(q,∪iFi) | ∃qC ∈ q : qC −F1...Fn−−−−→ q′C ∈ SC}, and → is defined
by:

F ⊆ fd(q, n) A = fd(q, n) \ F
q −[A|F ]n−−−−→ {q′C | qC ∈ q −F1...Fn−−−−→−n→ q′C , F1 ∪ . . . ∪ Fn ⊆ F}

Constructing the product of the guarded parameterised control automaton and the parame-
terised system automaton will now need to apply the new failure rules. Rather than checking if a
set of enabled rule-names is contained within the set of all enabled rule-names, it is now required
that the every rule in A is applicable using the specified input parameters. The definition for the
guarded product (definition 2.5.7) can remain the same if we adapt the definition for enabled
rules:

Definition 4.6.14 (enabled rules with parameters) Given a parameterised system au-
tomaton A, the function enabled : QA → Rule× 2Node is defined as:

enabled(qA) = {(n, in) ∈ Rule× 2Node | ∃i ∈ Id : qA =
(n,i,in)
====⇒A}

The guarded product definition can then be used as before.

4.7 Restrictions imposed upon control expressions

During the course of this research we found that the scope kept expanding due to the fact that
we wanted to allow all possible control expressions to be used. This is illustrated in the following
sections. In order to reduce the scope, we decided to impose a restriction on the expressions we
allow. In short, we reject all expressions that specify nondeterminism when using parameters.

We propose that this does not adversely affect the working of Groove as this type of nonde-
terminism is seldom needed. We back this empirically by noting that all of the inspected related
tools (see section 8.2) do not allow nondeterminism in their control structures at all. Groove
does currently allow this, but for now we will disallow the specification of nondeterminism in the
control language when parameters are used.

Some expressions that contain nondeterminism can easily be rewritten in a determin-
istic way. For example, the expression choice{a; b;}or{a; c;} can be rewritten as
a; choice{b;}or{c;}. For other expressions, such as the one presented in figure 2.16
(choice {a; c;}or{try{b; c;}else{a;}}), a deterministic version can not be constructed.
We can approximate the same behaviour but the language described will always be different.
This is because to properly determinize this expression we would need to be able to specify rules
that must be applicable in order to take a certain transition - as is described in section 2.5.

So, even though not all nondeterministic expressions can be written deterministically, we re-
strict Groove control expressions with parameters to deterministic ones. Formally this restriction
is specified in definition 4.7.1.

Definition 4.7.1 (accepted parameterised control automata) An accepted parameterised
control automaton is a (Q,Σ,→, q0, S) such that:
∀q, q′, q′′, v, v′ ∈ Q, r ∈ Rule : (q ⇒ q′ −r→ v, q ⇒ q′′ −r→ v′) =⇒ q′ = q′′ ∧ v = v′, where a ⇒ a′

denotes that a path exists from a to a′ consisting of zero or more failure transitions. Note that
this includes q = q′ and q = q′′.

We define whether each control statement can terminate instantly in definition 4.7.3. This
is required to correctly define the list of initial actions for a given control statement in defi-
nition 4.7.5, which we then use to determine whether an expression will generate an accepted
parameterised control automaton.
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As conditions can be either rules or true, we first define a predicate that will tell us whether a
condition is the former or the latter, to be used in the definition of instantly terminating control
expressions.

Definition 4.7.2 (condition is a rule) Given a condition C of a control expression, isRule(C)
defines whether this condition is the expression true or a rule-application (or a composite of rule
applications). isRule(C) holds if and only if C 6=“true”.

Definition 4.7.3 (instantly terminating control expressions) The predicate IT (E) de-
fines whether an expression E can terminate instantly, meaning it is possible that it will not
apply a graph transformation rule.

IT(alap A) = true

IT(while C do A) =
{
IT (C) if isRule(C)
false if ¬isRule(C)

IT(until C do A) =
{
IT (C) if isRule(C)
true if ¬isRule(C)

IT(do A while C) =
{
IT (A) ∧ IT (B) if isRule(C)
false if ¬isRule(C)

IT(try A) = true
IT(try A else B) = IT(B)

IT(if C then A) =
{
IT (C) if isRule(C)
IT (A) if ¬isRule(C)

IT(if C then A else B) =
{
IT (B) if isRule(C)
IT (A) if ¬isRule(C)

IT(choice A or B) = IT(A) ∨ IT(B)
IT(var declaration) = true

IT(rule) = false
IT(rule+) = IT(rule)
IT(rule*) = true

IT(#rule) = true
IT(rule | rule2) = IT(rule) ∨ IT(rule2)

IT(A; B) = IT(A) ∧ IT(B)
IT(nil) = true

IT(true) = true
IT(any) = false

IT(other) = false

Proposition 4.7.4 Given a control expression E, if JEK = (Q,Σ,−→, q0, S), then IT (E) if and
only if ∃q ∈ S : q0 ⇒ q.

Using definition 4.7.3, we can now define the multiset of initial actions for a control expression.

Definition 4.7.5 (initial actions) The initial actions for a control statement E, init(E), are a
multiset of rule names which can occur as the first action of the statement, after any non-rule-
application actions have occurred. We split this up as follows:
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init(alap A) = init(A)

init(while C do A) =

 init(A) if ¬isRule(C)
init(C) if isRule(C) ∧ ¬IT (C)
init(C) + init(A) if isRule(C) ∧ IT (C)

init(until C do A) =
{
∅ if ¬isRule(C)
init(C) if isRule(C)

init(do A while C) =

 init(A) if ¬isRule(C)
init(A) if isRule(C) ∧ ¬IT (A)
init(C) + init(A) if isRule(C) ∧ IT (A)

init(try A) = init(A)
init(try A else B) = init(A) + init(B)

init(if C then A) =

 init(A) if ¬isRule(C)
init(C) if isRule(C) ∧ ¬IT (C)
init(C) + init(A) if isRule(C) ∧ IT (C)

init(if C then A else B) =

 init(A) if ¬isRule(C)
init(A) + init(C) if isRule(C) ∧ ¬IT (C)
init(B) + init(C) if isRule(C) ∧ IT (C)

init(choice A or B) = init(A) + init(B)
init(var declaration) = ∅

init(rule) = [ rule ]
init(rule+) = [ rule ]
init(rule*) = [ rule ]

init(#rule) = [ rule ]
init(rule or rule2) = [ rule, rule2 ]

init(A; B) =
{
init(A) if ¬IT (A)
init(B) + init(A) if IT (A)

init(true) = ∅
init(nil) = ∅

init(any) = Rule
init(other) = ∅

Proposition 4.7.6 Given a control expression E, if JEK = (Q,Σ,−→, q0, S) then ∃q ∈ Q : q0 ⇒
q −a→ if a ∈ init(E).

Following from this we define acceptable control expressions as follows:

Definition 4.7.7 (accepted control expressions) An accepted control expression E is one in
which for every s ∈ statementsE , init(s) contains no duplicate rule names.

Proposition 4.7.8 Given a control expression E, if Eis accepted in the sense of definition 4.7.7,
JEK will always be accepted in the sense of the definition 4.7.1 and can be used by Groove without
extra determinisiation.

Proof 4.7.9 This can be verified by checking that for each of the statements listed in definition
4.7.5, if the initial actions have no duplicates the resulting automaton for this statement can never
contain nondeterminism. Given propositions 4.7.4 and 4.7.6, and as all possible statements are
listed, we can prove using induction that if an expression Esatisfies definition 4.7.7, JEK will
also satisfy definition 4.7.1. �

Example expressions that become invalid with this constraint are for instance
try{a;} else {a;} and choice{a}or{choice{b;} or {a;}} and so on. We do this to prevent
having to handle the exceptions that have been mentioned earlier in this chapter. While solutions
for these occurrences of nondeterminism have been detailed, we will start by implementing the
more restricted case.
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4.8 Collapsing failure transitions

As we now only allow control expressions which result in a deterministic control automaton, we
have no further need for failure transitions. We can instead collapse these with the rule-applying
transitions that follow them, resulting in an automaton that for every transition applies exactly
one rule.

Example 4.8.1 We examine control expression E = try { a; } b; #(c); r;. JEK is shown
in figure 4.9a. After performing this collapse step, we end up with the automaton in figure
4.9b. The path q0 −[a]−→ q2 −b→ q6 has been replaced by one transition q0 −[a]b−−→ q6. Similarly,
q6 −[c]−→ q7 −r→ S1 has been replaced by q6 −[c]r−−→ S1. Because q7 is now unreachable, this state has
been removed along with its outgoing transition to S1.

q7

q2

S1

q0

q6
c

[c]

r

a

[a]

b

(a) before rewriting

q2

q0

S1

q6
c

[a] b a

[c] r

b

(b) after rewriting

Figure 4.9: Example showing control automaton rewriting

While in the example the automaton reduced in size by this change, it will in most cases
make the automaton blow up exponentially, because every failure transition will be replaced by
any number of new transitions. We accept this because it makes the execution of the automaton
easier. In the implementation before this project started, the exploration could be in one of
several control states at once, known as a control location (see section 2.5.2). We had to check
whether we were in one of the states of this set and then find out where a transition would lead,
also resulting in a set of states. We reduce the amount of operations done by ensuring we will
always be in one uniquely identifiable control state instead of a set of control states.

Formally, this transformation is implemented as in definition 4.8.1

Definition 4.8.1 (failure-collapsed control automaton with parameters) Given a pa-
rameterised control automaton (see definition 4.7.1) C = (Q,Σ, −→, q0, S), C′ = coll(C) =
(Q′,Σ′, −→′, q0, S′) is a control automaton, such that:
• Q′ = {tgt t | t ∈ −→′} ∪ q0
• Σ′ = PFail× (PRule× DVar∗)

• −→′= {q −[fail(p)]n,I,O−−−−−−−−→ q′ | ∀p ∈ pathsC : trans(p) = q −n,I,O−−−→ q′}

• S′ ∈ Q′ × 2Rule = {q ∈ Q′, F | q =F=⇒ q′ ∧ q′ ∈ S}

• pathsC = {q =F=⇒ q′ −n,I,O−−−→C q′′ | q −F1−→−F2−→ . . . −Fk−→ q′, F =
⋃
i Fi}
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• trans(p) = q′ −n,I,O−−−→ q′′, where p = (q =F=⇒ q′ −n,I,O−−−→ q′′) ∈ pathsC

• fail(p) = {F | p = q =F=⇒ q′ −n,I,O−−−→ q′′}
pathsc is the set of possible paths q =F=⇒ q′ −n,I,O−−−→ q′′ where q =F=⇒ q′ indicates a path with only
failure transitions from q to q′, failing on the rules in F in some order. trans(p) is then the
transition part of a path p (i.e. the tail of the path) and fail(p) are the failures of a path p, i.e.
the failures on all transitions except the tail of p.

We then call C′ a failure-collapsed control automaton with parameters.

Proposition 4.8.2 Given an accepted parameterised control automaton C, coll(C) is a control
automaton where for every transition (q −[F ]n,i,O−−−−−→ q′) ∈ −→′ exactly one rule n is applied, and each
transition is guarded by zero or more rules F , all of which may not be applicable in order to take
the transition. Additionally, final states (q, F ) ∈ S are now also guarded by zero or more failures
F , indicating that q is only considered a final state if all of the rules in F are not applicable.



Chapter 5

Attribute Parameters

As an extension to the basic input and output parameters described in the previous chapter, we
now extend the theory to allow the usage of attribute nodes as variables. This allows us to input
attributes directly from the control program, thus improving the expressiveness even further. We
also allow attribute values to be used as input and output parameters just like ordinary nodes
were used in the previous chapter. Formerly, attributes could only be inserted by editing the rules
or changing the host graph, while it is desirable to be able to use arbitrary values for attribute
nodes directly from the control language.

5.1 Problem description

Rules in Groove can perform operations on integers, real numbers, booleans and strings. These
are done by specifying a product node, one or more attribute nodes as arguments and a target
attribute node. While usually the values of all these nodes are static, it may sometimes be
desirable to be able to input their values directly, rather than having to go into the rule editor
to change the rules.

Let us consider a game of Pac-Man[19], in which the player has to eat pills while avoiding
ghosts that hunt her. The pills are worth points which are added to the score every time a pill
is eaten. We could imagine a graph transformation rule that allows the player to eat a pill in
an adjacent square, adding 100 points, like in figure 5.1. (Note that the edge that connects the
two squares has the label nextTo|-nextTo. This is a regular-expression label which indicates
that this edge should match an edge in the host graph with the nextTo label, or an edge in the
opposite direction with the same label.)

If we also have other rules which modify the score of a player when similar events occur (for
instance, when the player eats fruit instead of a pill, or runs over a blue ghost), we will have the
scoring system divided over several rules. While this is not a problem per se, if we wanted to

PillSquare Square

Player

100

nextTo|-nextTo on

score

add

π1
π0

atat

score

Figure 5.1: The eat pill rule, which makes the player eat a pill on an adjacent square and adds
100 points to the score

39
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Player $1score

Figure 5.2: The set score rule could be used to initialize the player’s score

for instance double the worth of every eaten object, we would have to edit each of these rules to
reflect the new value.

We can solve the problem by parameterizing attributes similarly to how we parameterized
nodes. That would still not allow us to input the values for each of the eaten objects in Pac-Man
from the control program though, since we would have to get them from the graph into a variable
first.

However, while we can not “create” nodes in the control program since we do not know
their identity, it is possible to directly write the values of attributes since they are derived from
primitives and their identity does not change. Thus we will also allow attribute parameters to
be input the same way as primitives in Java. We could then for instance write eat_pill(200);
to have the player eat a pill and add 200 to her score. Several problems arise with this approach
that have to be dealt with:

1. Rules can currently specify that they expect an attribute somewhere, without stating what
type of attribute it should be. This could pose problems, since while the rule itself might
not fail due to an attribute of the wrong type being passed, subsequent rules might expect
a value of a specific type to be there. For instance, if we were to apply the set_score rule
from figure 5.2 and passing it a string parameter, there would be no problem. If we then
try to apply the eat_pill rule again, it would not match because it can not add an integer
to a string.

2. Groove does not currently allow arbitrary nodes to be parameterized. Particularly, if we
have an isolated attribute node (an attribute node that has no matching edges, only creator
edges), that node must have a concrete value - not a parameter. The way Groove currently
implements attribute nodes is that they are virtually always present; this means that if
we try to match an attribute node without specifying a value, it could potentially match
anything. However, we do want to be able to use attribute nodes without a concrete value,
which will get a value when the rule is matched in combination with a control program.

To address the first problem, we could either ignore the problem (and have programs end
in a semi-unexpected manner) or not allow attribute parameters to match arbitrary attribute
types. Instead, when writing a rule with attribute parameters, the user should specify the type
of parameter that is expected. We choose to use the latter approach in having the user explicitly
define the desired behaviour.

The solution to the second problem has more to it however. If we want to allow isolated
attributes to be used as parameters, we will have to ensure they always have a value when the
rule is applied. This has two implications:

1. The parameter can never be used as output;

2. The parameter must be present when this rule is used. As such, whenever the rule is used
in a control program, this parameter must be present. Additionally, this means that the
rule will be invalid when no control is used (without control, all rules are scheduled at all
times).

We can solve both these implications, while maintaining backward compatibility. Users who
do not use attribute parameters will not notice the difference, but users who do want to use them
can do so.

5.2 Solutions

To solve the problems stated in the previous section, we will make modifications to both the
rules and the control language. Combined, these will allow both direct input of attributes from
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the control language and getting attributes as variables and re-using them later.

5.2.1 Rule modifications

In order to solve the problem of not being able to use isolated attribute nodes as parameters,
we ask that the user specifies these nodes as required-input nodes. To this end, we will include
additional keywords for specifying parameters to be restricted to input or output, namely parin:
for input-only parameters and parout: for output-only parameters (par: is used to indicate
parameters that may be used as both input and output). If parin: is used on a parameter that
can only be output (i.e. a node that only occurs in the RHS), an error will be raised. The same
goes for using parout: on nodes that are only in the LHS. An error will also be raised if a control
program attempts to use a parameter in a way that was specified to not be available in the rule.

Additionally, using parin: will make that parameter required. This means that Groove will
consider the rule system invalid if it has (active) rules which require input parameters but no
control is present. It also means that if control is present and it calls rules that have required
input parameters, there will be an error if these input parameters are not provided. These effects
allow us to remove the condition that there are no isolated attributes in rules, replacing it with
the condition that there are no isolated attributes that are not required input parameters, thus
ensuring correct functionality.

To ensure that a control program can only provide an attribute of a proper type, we require
that users who want to make attribute parameters type these, using the bool:, int:, real:
or string: keywords rather than attr: which is used for general (unparameterized) attributes.
While this adds some extra effort and explicitness, we conjecture that attribute nodes are rarely
if ever used for multiple types so it will not affect the expressiveness of Groove.

5.2.2 Control language modifications

While the control syntax itself does not change much to incorporate attribute parameters, its
semantics do. Type checking has been added for attribute parameters and the control parser
now checks for required inputs. The new features in the control language are as follows:
• Variables can now not only be declared as node, but also as bool, int, real and string,

matching their relevant typed attribute nodes;

• These new variable types can be used as input or output parameters in rules that allow
this. As such, we can obtain the values of attribute nodes from the host graph by using an
output parameter and subsequently re-use it as an input parameter;

• We can use literal attributes as input parameters much like in programming languages
such as Java. Rules that expect a bool variable will accept verb—true— or false, rules
that expect an int will take values such as 1337 or -187, rules that expect a real will
accept 3.1415, .5, 10. and so on, and rules which expect a string will accept anything
that has been put between double quotes and does not contain unescaped double quotes or
backslashes. Examples of this are "Hello, world!" and "I say: \\n\"Good day!\"";

• The syntax checker will verify that types are used correctly by checking the types that
rules expect for every parameter, as well as checking that input parameters are not used
for output-only nodes and vice versa;

• The syntax checker will also verify that if a rule is used that has required input parameters,
the rule should is not used without parameters and the required parameters are present.

The changes in the syntax can be found in figure 5.3 (where ~X means “anything but X”).
Additionally it should be noted that a real number may not consist of just a period; there should
be digits before it or after (or both). The new control automaton is in definition 5.2.1.

Definition 5.2.1 (parameterised control automaton with attributes) A parameterised
control automaton with attributes is a tuple (Q,Σ,→, q0, S) with Q, →, q0 and S the same
as in definition 4.4.1. Σ =

(
Rule× ({T, F}(DVar∪Attr))∗×DVar∗

)
∪
(
Fail× (({T, F}(DVar∪Attr))∗

)
.
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1 v a r d e c l a r a t i o n : var type i d e n t i f i e r ( ’ , ’ i d e n t i f i e r )∗
2 var type : ’ node ’ | ’ bool ’ | ’ int ’ | ’ r ea l ’ | ’ s t r i ng ’
3 v a r i a b l e : ’ out ’ ? i d e n t i f i e r | ’ ’ | l i t e r a l
4 l i t e r a l
5 : b o o l l i t e r a l | i n t l i t e r a l | r e a l l i t e r a l | s t r i n g l i t e r a l
6 b o o l l i t e r a l : ’ true ’ | ’ f a l s e ’
7 i n t l i t e r a l : number+
8 r e a l l i t e r a l : number∗ ’ . ’ number∗
9 s t r i n g l i t e r a l : quote s t r i n g c h a r ∗ quote

10 quote : ’ ” ’
11 s t r i n g c h a r : ˜( quote | backs la sh )
12 | backs la sh ( quote | backs la sh )
13 number : ’ 0 ’ . . ’ 9 ’
14 backs la sh : ’\ ’

Figure 5.3: The (partial) syntax for the control language extended with attribute parameters

1 setCounter ( 5 ) ;
2 while ( reduceCounter ( 1 ) ) do {
3 // some loop here
4 }

Listing 5.1: Example control program with literal attribute parameters

Additionally, transitions will now be denoted dC −n,iVars,oVars−−−−−−−−−→C d′C in which:

• iVars ∈ ({T, F}(DVar∪Attr))∗ is the same as in definition 4.4.1, with the addition of the Attr
element, signifying that input parameters can now also be attribute values;

• oVars is the same as in definition 4.4.1.
We use Attr to signify “any literal attribute value”, i.e. a string, boolean, integer or real

attribute.

The definitions for rules, system automaton and product automaton do not change.

5.3 Example usage

Using the modified rules and control language syntax, we can use attribute values straight from
the control language. Properties such as the number of iterations to do on a certain rule (provided
the rule keeps track of how many iterations it has done, by for instance reducing a counter) can
thus be provided straight from the control language.

5.3.1 Actual attribute parameters

The simplest way to use attribute parameters is to type them in as literals. For instance, if we
wanted to loop a certain rule five times, we would have a program like in listing 5.1, with the
setCounter rule (figure 5.4) taking one input parameter which initializes a counter to a certain
value and the reduceCounter rule (figure 5.5) reducing this counter by a number specified as
another input parameter. We can change the initial value of the counter and the amount by
which it is decreased from the control program, without touching the rules or the host graph. In
both of the rules the parameters need to be specified as input-only, as explained in the previous
section.

5.3.2 Formal attribute parameters

We can also get the value for the counter from some other rule rather than inputting it ourselves,
as in listing 5.2. Here we first declare an integer variable, which we then initialize using the
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Properties
int
$1

counter

Figure 5.4: The setCounter rule initializes the counter to a given value

0 Properties int

false int
$1

int π1

π0counterπ1

π0 sublt

counter

Figure 5.5: The reduceCounter reduces the value of the counter by a given value, as long as this
would not reduce the counter to a value < 0

1 int loopCounter ;
2
3 // some r u l e s which modify the host graph , one o f which
4 // in t roduce s an i n t e g e r a t t r i b u t e node somewhere
5
6 getCounter (out loopCounter ) ;
7 setSecondCounter ( loopCounter ) ;
8
9 while ( reduceCounter ( 1 ) ) do {

10 // some loop here
11 }

Listing 5.2: Example control program with attribute parameters

getCounter rule (figure 5.6). This rule matches some nodes, one of which is an integer attribute
node the value of which will be saved in the loopCounter variable. We then pass this variable
to the setSecondCounter rule (figure 5.7) as in the previous example.

Note that this time we did not have to specify the attribute parameter in getCounter to only
be an input parameter, because it has an incoming edge in the left-hand side (and in fact we
are using it as an output parameter, so Groove would have given us an error if we had specified
it as parin:). While we can use this parameter as input, it would not do much except check
that the Properties-node actually has a counter -edge to the supplied attribute node. In the
setSecondCounter rule however, we do have to specify the attribute parameter with parin:, for
the same reason as described in the previous example - it is not bound by the rule so it must be
bound by the control program.

int
$1

Properties counter

Figure 5.6: The getCounter rule takes the counter from the host graph
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int
$1

Properties counter2

Figure 5.7: The setSecondCounter sets the value of a second counter value



Chapter 6

Implementation

The details of the implementation of the new features in GROOVE are explained in this chapter.
We implemented and tested the input/output parameters and attribute parameters separately.
Dividing the work like this, rather than implementing all the changes at once, allowed us to focus
work on one thing, making testing easier. This chapter however, contains a description of the
finished work.

The implementation consists of several parts, each with their own functionality, which when
combined implement the new features:

• A control parser, syntax checker and determinism checker;

• An automaton builder;

• A system for deciding which rules to match and finding matches;

• A system to apply the rules and generate the new states.

In the following sections, we will discuss each of these parts individually.

6.1 Parser and checker

In order to generate a control automaton from a control expression, we have made a parser
that turns text into an abstract syntax tree. Note that part of this functionality was already
implemented by Tom Staijen.

This part consists of four sub-parts, each of which transforms or checks the tree, all imple-
mented using ANTLR [10]:

• The lexer turns the textual representation into a stream of tokens;

• The parser takes a token stream and turns it into an abstract syntax tree;

• The syntax checker takes this syntax tree and checks it for valid syntax. This checks
whether:

– Whether variables are declared at most once;

– Whether variables are declared before they are used;

– Whether variables are initialized before they are used as input;

– Whether variables are only assigned to once (see definition 4.6.1);

– Whether variables are used in the scope they are declared in (or a lower scope).

• A determinism checker then takes the tree again and checks whether it describes a deter-
ministic automaton as per definition 4.7.1.

After these steps have been performed, we have an abstract syntax tree which describes our
control automaton. This tree must then be transformed into the actual automaton.

45
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S1
[v1]

q7

q8
[v1]

q3

a[ ][v1]

[a,b[v1]]

c

b[v1][ ]
a[ ][v2]

Figure 6.1: An intermediate control automaton

6.2 Automaton builder

When we are sure to have an AST which meets our requirements, we can transform it into a
control automaton. For this, we once again take several steps:

1. We have one more ANTLR tree walker which takes the tree produced by the determinism
checker and uses methods from the AutomatonBuilder class to generate an automaton;

2. The AutomatonBuilder then optimizes the automaton by performing the step described in
definition 4.8.1, collapsing failure transitions with the ‘real’ transitions they precede.

In the first step, simple rule-calls are transformed into states and transitions with the name
of the rule and any parameters on the label. More complex statements, like for instance
a(out v1); try { choice {a(out v2);} or {b(v1);} c; } require more complex solutions
(figure 6.1, the [a,b[v1]] label indicates that the a-rule does not have any matches and the b-rule
do not have any matches with the input parameter list [v1]), though these are all combinations
of the basic building blocks (in this case, a try, choice, some rule calls and two sequential
compositions).

The second step is implemented as follows:
1. We construct a map which shows for every state in the control automaton, the states from

which this state is reachable through only failure transitions, keeping track of the paths
required to reach this state;

2. For every non-failure transition, we make transitions from all states which can reach the
source state to the target state, preserving the original failures as negative guards;

3. We remove the failure transitions;

4. We remove the unreachable states (some states are now unreachable due to the previou
step);

5. We mark states that used to be able to reach a success state with only a failure transition
as conditional success states.

A class diagram (with only the relevant information for this report) of the control automaton
structure built by the AutomatonBuilder can be found in figure 6.2. ControlStates keep track
of which variables are initialized, so that we can later find the values for these variables (as
product states only remember the values, not the names).

6.3 Match finder

For any state of the exploration, zero or more matches will be enabled for certain rules. Which
rules these are is determined by the ControlState the simulation is in as well as the host graph
(which contains the values for any variables that are relevant in the state). We use a state cache
to keep track of a state and its transitions, called RuleEvents, with their targets in the LTS.
Matching then occurs as follows:
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Figure 6.2: Class diagram for the control automaton structure

Figure 6.3: Class diagram for the matching structure

1. The state cache asks the control state which rules are to be scheduled, given that no rules
have been matched yet and providing the values for the variables in the current graph state;

2. The control state returns a set of rules which can be applied without any failures and with
the given variable values;

3. The state cache tries to match each of the rules and keeps track of which rules matched
and which did not;

4. The state cache asks the control state which rules are to be scheduled, telling it which rules
have already matched and which have not, also reporting with which input parameters
these rules have matched and failed;

5. The control state returns a set of rules which should be scheduled based on the given failures
(excluding rules which have already been matched).

Steps 3, 4 and 5 are repeated until step 5 returns an empty set. Using this strategy, we can
ensure a minimal number of rules will be checked for matches. Another partial class diagram for
this part can be found in figure 6.3.
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6.4 Rule application

To get the matches for a rule in a given state, we must take care to apply the input parameters to
these matches. We do this by constructing a partial match morphism out of the input parameters
(in which attribute parameters always map to the same node and node parameters map to their
values in the host graph) and then checking whether we can find one or more matches using this
partial morphism as a base. For each of these matches we can then create a target state to add
to the LTS - if it does not already exists in the LTS. These target states are created as follows:
• We apply the rule to the host graph, using the match morphism we found while checking

for matches;

• If the source state had variables, we apply the comatch morphism to them to get the new
values for these variables since nodes can get new identities through the rule application;

• If the transition has output-parameters, we find the nodes which these parameters map to
by using the match-morphism to find them in the host graph, and we save these variable
values in the target state.

We then end up with a target state which may be a new state, or may be a state that already
exists in the LTS. To check whether this is the case, we have to know three things:

1. Whether the host graphs of both states are isomorphic;

2. Whether both states are ‘in’ the same ControlState;

3. Whether the values of the variables in both states point to identical nodes.
For the third step we use a method to get a canonical representation of a node, so that two

nodes that are “identical” but do not have the same identity will still get the same value. This
way we can compute whether two states are the same state modulo node identities.

If the target state is considered to be identical to a state already in the LTS, we do not add
the target state and instead add a transition to the existing state. If the target state is considered
to be a new state, we add it as a new state and add a transition to it.

6.5 Testing

Apart from manually trying to use the new features after every iteration, we wrote JUnit1 tests
cases to test the implementation. We tested the control automaton generation separately from
the exploration of grammars, running these tests regularly to ensure new functionality was not
breaking old functionality.

Control automaton generation To test the control automaton generation, we wrote a num-
ber of control programs using the various features of the language. We then let Groove generate
a control automaton out of these and compared the resulting automata to automata we con-
structed by hand, checking for isomorphism. The source code for these tests can be found in the
class groove.test.ControlTest.

Grammar exploration To test the exploration of grammars using control programs with
variables, we wrote two more JUnit test cases; one for node parameters and one for attribute
parameters. Inside these test cases we used a default grammar containing rules with one, two and
three parameters and a number of control programs using each of the features we implemented.
We then let Groove generate a control automaton and a state space out of these, and verified
that the number of control states- and transitions as well as the number of LTS states- and
transitions equalled the numbers we obtained by running the explorations manually (and verifying
that the exploration was done correctly). The exploration tests can be found in the classes
groove.test.ControlVariablesTest and groove.test.ControlAttributeParametersTest.

1See http://www.junit.org

http://www.junit.org


6.6. ALTERNATIVE IMPLEMENTATION: ENCODING PARAMETERS IN GRAPH
RULES 49

6.6 Alternative implementation: encoding parameters in graph rules

As an alternative approach to implementing input and output parameters directly, we considered
making copies of the called graph transformation rule with the parameters encoded into them.
For example, a call like r(out a); would put a special node-label like var a on the host graph
where the first parameter was matched. The call would then be replaced by a normal rule without
parameters, called r_out_a;.

Similarly, input parameters would be encoded as follows. A call like r(a); would be replaced
by r_a;, with the rule r a looking for a node label var a and matching on that.

This approach has the benefit that the implementation of the matching and application of
rules would not have to change. However, it would generate a large number of extra rules (one
for each rule application with parameters in the control program) which need to be shown in the
program. We would also have to somehow remove variables that go out of scope from the host
graph, which in turn makes the control automaton more complex.

Selim Ciraci used an adaptation of this approach in his work[2], where he preprocessed the
rules outside of Groove in order to achieve the same result. However, we have decided not to go
with this as the amount of changes to the GUI and the control automaton and the amount of
extra rules created outweigh the benefits of not having to adapt the matching and application
of rules with parameters. Additionally, the changes to the host graph would be the opposite of
what we were trying to do initially - which was to move complexity from the host graph and
rules into the control program.





Chapter 7

Examples

This chapter contains examples of the new usage of the Groove control language, showing how the
new features can be used to reduce the amount of control information in the graph transformation
rules and the host graph.

7.1 AntWorld - end after n turns

As the AntWorld[20] case defines an infinite production system which simulates ants following
predefined behavior to explore a grid and find food. As computers can not explore infinitely large
transition systems, it is desirable to have an end-condition to prevent the LTS from growing larger
than we want.

The way this is done in the current implementation is by way of having a simple rule that
checks whether a set number of turns has passed and having the control program stop the
exploration when this rule matches. An example of this rule can be found in figure 7.1 (this
rule detects whether 10 turns have passed) and the relevant parts of the corresponding control
program are in listing 7.1. Even though the rule is very simple, there is no way to make the
exploration go to 5 or 20, or any other number of turns without adding extra rules and changing
the control program.

With the extensions done in this project, we can change this situation by specifying a single
rule (figure 7.2) and specifying the amount of turns to run for in the control program (see listing
7.2 for an example which once again ends after 10 turns). With this new combination of the end
rule and the control program, we only have to change one value in the control program if we
want to change the number of turns to simulate.

10Properties turns

Figure 7.1: The rule for the AntWorld case which checks whether 10 turns have passed

1 until ( end 10 ) do {
2 // see i f new ants should be c rea ted
3 // perform ant moves / a c t i o n s
4 // see i f g r i d should be expanded due to ants being
5 // at the outer edge o f the g r id
6 }

Listing 7.1: Control program for AntWorld which ends after the end 10 rule has been applied

51
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Properties
int
$1

turns

Figure 7.2: The rule for the AntWorld case which checks whether a specified number of turns
have passed

1 until ( end ( 1 0 ) ) do {
2 // see i f new ants should be c rea ted
3 // perform ant moves / a c t i o n s
4 // see i f g r i d should be expanded due to ants being
5 // at the outer edge o f the g r id
6 }

Listing 7.2: Control program for AntWorld which ends after 10 turns

1 while ( s e l e c t a n t ) do {
2 try { take food ; } else {
3 try { move home ; } else {
4 try { drop food ; }
5 try { move to pheromones ; } else {
6 move random ;
7 }
8 }
9 }

10 mark ant done ;
11 }

Listing 7.3: Control program snippet to handle ant movements

7.2 AntWorld - Ant selection

Continuing from the AntWorld example, suppose we have a loop that selects an ant that has not
moved yet in this turn, and then performs the appropriate action for this ant. The way we could
do this without parameters is by adding a marking, or flag, to the selected ant and try to apply
the rules that deal with handling ants to it.

Consider the partial control program in listing 7.3. The control program tries to perform
each of the specified actions and then falls back to a lower priority action if the tried action can
not be applied. At the end, the ant is marked as having moved this turn (figure 7.3c). The way
ant selection occurs is by adding a special label to one of the ant nodes, such as in figure 7.3a.
The other rules then test for the presence of this label to ensure the same ant is always the one
taking the actions (such as for instance the move_home rule in figure 7.3b).

The way we could write this control program with parameters is shown in listing 7.4. The
new versions of the rules are in figure 7.4. In this new version we do not add the current label
to our host graph, thus moving the control information to the control program. The difference is
not big in this case, but it allows for more versatility. For instance, we can now use the individual
rules from the loop outside the loop as well if we wanted to write a different control program -
with the old rules this was not possible because the current edge would not be present.

7.3 Control flow generation

As an assignment for the Modelling and Analysis of Concurrent Systems 21 course, students were
asked to write two rule system - one that allows generation of a control flow graph and another
that allows ‘execution’ of this control flow. The execution of the control flow graph can be seen

1See http://fmt.cs.utwente.nl/courses/macs2/

http://fmt.cs.utwente.nl/courses/macs2/


7.3. CONTROL FLOW GENERATION 53

Ant

current

has moved

(a) select ant

Node

Ant
current
has food

Node

outat

at

(b) move home

Ant

current

has moved

(c)
mark ant done

Figure 7.3: The ant movement rules without parameters

1 node cu r r en t an t ;
2 while ( s e l e c t a n t (out cu r r en t an t ) ) do {
3 try { take food ( cu r r en t an t ) ; } else {
4 try { move home ( cu r r en t an t ) ; } else {
5 try { drop food ( cu r r en t an t ) ; }
6 try { move to pheromones ( cu r r en t an t ) ; } else {
7 move random ( cur r en t an t ) ;
8 }
9 }

10 }
11 mark ant done ( cu r r en t an t ) ;
12 }

Listing 7.4: Control program snippet to handle ant movements with control

Ant
$1

has moved

(a) select ant

Node

Ant
has food
$1

Node

outat

at

(b) move home

Ant
$1

has moved

(c)
mark ant done

Figure 7.4: The ant movement rules with parameters

as a stack machine; execution follows the flow labels on the graph and places information on a
stack for some nodes, whereas other nodes consume information from the stack.

In this example we will focus on the rule system that generates the control flow graph. In all
the pictures pertaining to this example, bold node labels are node types. The node labels -Type
and +Type indicate that a rule changes the type of a node, removing the type with the - and
adding the type with + in front of it.

Given the start state in figure 7.5, we can use several rules to modify the states to generate a
control flow, eventually ending up with a representation of a computer program, such as the one
in figure 7.6. The (pseudo-)code for this flow chart is in listing 7.5. We generate the control flow
graph by sequentially specializing the Elem nodes into other types and then specializing those
further. Some of these specialization rules add new Elem nodes, allowing the program to grow.
A partial type graph for this grammar, containing only the node types relevant for this example,
can be found in figure 7.7.
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ElemStart flow

Figure 7.5: The start state for the control flow generation grammar
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false

condition
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flow
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Figure 7.6: The target state for the control flow generation grammar

As the grammar describes an infinite state space, we need to use control (using a control
program or by manually selecting matches) to get to the control flow graph that we want to
have. We can generate our flowchart using the control program from listing 7.6. Each rule
modifies the current control flow chart as follows:
• the elem_proc (figure 7.8a) rule adds a proc to the control flow;

• the proc_stat (figure 7.8b) rule specializes a proc into a statement;

• the stat_fork (figure 7.9) rule indicates a fork in the program, where a new thread should
be created and both the flow and arg arrows are to be followed by a thread;

• the elem_stop (figure 7.8c) rule indicates that the flow should end at this node;

• the elem_pred (figure 7.10) rule replaces a program element with a predicate, adding a
condition and new elements for whether the condition evaluates to true and false;

• the cond_const (figure 7.8d) rule indicates that this condition will be a constant (true or
false);

• the const_true (figure 7.8e) and const_false rules give a constant node a value;
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Figure 7.7: The partial type graph for the control flow graph grammar

1 f o rk
2 { e x i t ; }
3 {
4 i f ( t rue ) {
5 i f ( ! f a l s e ) {
6 e x i t ;
7 } e l s e {
8 e x i t ;
9 }

10 } e l s e {
11 e x i t ;
12 }
13 }

Listing 7.5: Pseudocode for the automaton from figure 7.6

1 e lem proc ;
2 p r o c s t a t ;
3 s t a t f o r k ;
4 e lem stop ;
5 e lem pred ;
6 cond const ;
7 c o n s t t r u e ;
8 e l em stop ;
9 e lem pred ;

10 cond unop ;
11 cond const ;
12 c o n s t f a l s e ;
13 e lem stop ;
14 e lem stop ;

Listing 7.6: First attempt at the control program to generate a control flow

• the cond_unop (figure 7.11) rule adds a unary operator to a condition node, effectively
negating the condition. It also moves the condition edge from the containing predicate to
the unary operator node instead of the condition node it was pointing to.
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Figure 7.8: The simple rules for the control flow generation grammar
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Figure 7.9: The stat fork rule for the control flow generation grammar
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Figure 7.10: The elem pred rule for the control flow generation grammar

Using the aforementioned control program generates the desired control flow, however it also
generates three other control flow charts (such as the one in figure 7.12, which corresponds to
listing 7.5 but with the true and false parts of the if statement on line 4 switched around). This
is because some of the rules have several matches: the elem_stop rule on line 4 of the control
program can match in two places, as can the one on line 8 (two matches for each of the on line
4 generated branches). This is because there are several Elem nodes in the host graph when
Groove encounters this rule, and we have no way of telling it which one we want to match. This
same effect could happen for any case where several matches exist for a rule. The way we have
constructed our control program in this case ensures that it only happens twice, but had we for
instance delayed the calls to const_true and const_false to the end, the first of these calls
would also have two matches. The only feasible way to solve this without using parameters is to
manually select the proper matches. Generating rules which add tokens to the host graph and
other rules which consume them would work for small examples, but the larger the program we
want to generate, the more rules have to be added - it would be easier to just draw the desired
resulting graph instead.

With parameters however, this problem is easily solved. If rules which add Elem nodes are able

CondPred

UnOp

flow

condition

condition

argflowflow

Figure 7.11: The cond unop rule for the control flow generation grammar
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Figure 7.12: Another possible end state for the control flow grammar

to return these nodes as parameters, we can then tell rules that operate on an Elem node which
one we want to match. For this example, the rules we have to change are stat_fork, elem_stop
and elem_pred, though in a less contrived example it would make sense to add parameters to
more rules.

The new rules can be viewed in figure 7.13 and the new control program is in listing 7.7.
Note that we have chosen to explicitly define the order in which the Stop nodes on lines 14 and
15 are created. This was not required in this case to reach the same result, but in other cases it
might have been. With the new control program, we have an entirely linear LTS with no choices
between rule applications, thus we always end up in the same state - which is what we wanted
in the first place.
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(a) stat fork
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Figure 7.13: The replaced rules for the control flow grammar with parameters
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1 node forkArg , predTrue , predFalse , pred2True , pred2False ;
2 e lem proc ;
3 p r o c s t a t ;
4 s t a t f o r k (out forkArg ) ;
5 e l em stop ( forkArg ) ;
6 e lem pred (out predTrue , out predFalse ) ;
7 cond const ;
8 c o n s t t r u e ;
9 e l em stop ( predFalse ) ;

10 e lem pred (out pred2True , out pred2False ) ;
11 cond unop ;
12 cond const ;
13 c o n s t f a l s e ;
14 e lem stop ( pred2True ) ;
15 e lem stop ( pred2False ) ;

Listing 7.7: The control program which uses parameterized rules

1 function addStructuralFeature ECLASS (){
2 addConverterClass ECLASS ;
3 implementCanConvert ECLASS ;
4 checkConverted ECLASS ;
5 addGraphNode ECLASS ;
6 addStructuralFeatureIterator ECLASS ;
7 addNameSet ECLASS ;
8 }

Listing 7.8: A control program from Selim Ciraci’s thesis

7.4 Computer-supported design idiom verification

As mentioned in section 6.6, Selim Ciraci used a form of parameters in his thesis work [2]. He
wrote rulesystems to verify design idioms [16], which we will not go into here but in which several
rules use string constants which are to be specified after the rule has been specified. These rules
are quite complex, but contain single string attributes which have to match certain values from
a control program. The approach Mister Ciraci used to tackle this in his thesis was to use a
special syntax in the control program and mark the attributes with an @-prefix. He then used
a self-written preprocessor to make copies of the rules with the literal attribute values from the
control program for these attribute nodes, replacing the @-attributes.

An example control program from this approach can be found in listing 7.8. In this program,
ECLASS stands for the part that is to replace the @-attributes in the rules that are called. An
example of one of these rules can be found in figure 7.14. As can be seen, these rules can get
quite big, but the important part for this example can be seen in the upper left corner of the
figure. The attribute node with the label "@ClassName" will need to be adapted for every copy
made of this rule, to reflect the value from the call in the control program.

As we have to make copies of each of the rules that contains a variable, the rulesystem quickly
becomes cluttered with nearly-identical rules. To alleviate this we can use attribute parameters
in the rules and then use the literal attribute parameter feature discussed in chapter 5 to change
these values from just the control program. The control program could then be rewritten like in
listing 7.9, with the adapted rule in figure 7.15.

One thing to note here however, is that we would still need to write a new
addStructuralFeature_NAME function for every value of the parameter we wish to use, as we do
not currently support parameters in functions. Working out and implementing the ideas from
section 3.2, we would be able to make this example even better, by using a function parameter
to allow us to only have to specify the value once. An example of this can be found in listing
7.10. Regardless, replacing the literal node with an attribute parameter saves us from having to
copy the rules for each valuation of the parameters, thus resulting in a smaller rulesystem which
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Figure 7.14: The addConverterClass rule from the idiom verification ruleset

1 function addStructuralFeature ECLASS (){
2 addConverterClass (”ECLASS” ) ;
3 implementCanConvert (”ECLASS” ) ;
4 checkConverted (”ECLASS” ) ;
5 addGraphNode (”ECLASS” ) ;
6 addSt ruc tu ra lFea tu r e I t e r a t o r (”ECLASS” ) ;
7 addNameSet (”ECLASS” ) ;
8 }

Listing 7.9: The same control program with attribute parameters
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Figure 7.15: The addConverterClass rule from the idiom verification ruleset, with attribute
parameter

is easier to understand.
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1 function addStructura lFeature ( string value ){
2 addConverterClass ( va lue ) ;
3 implementCanConvert ( va lue ) ;
4 checkConverted ( va lue ) ;
5 addGraphNode ( va lue ) ;
6 addSt ruc tu ra lFea tu r e I t e r a t o r ( va lue ) ;
7 addNameSet ( va lue ) ;
8 }

Listing 7.10: The same control program with attribute and function parameters





Chapter 8

Conclusions, related work and future
research

This chapter contains the final word on this research. We will discuss whether we have attained
the goals we set at the start and discuss ways to continue. We also have a comparison of other
graph transformation tools, focusing on how they handle control.

8.1 Conclusions

Looking back on this research project, we can now decide what the answer to our research question
(“Can we remove control information from the graph transformation rules and host graph and
move it into the control program by using parameterised rules?”) is.

During this project, we first defined a number of possible extensions to Groove which could
be used to answer this question, then we worked two of these extensions out mathematically.
By far the most work was put in the first extension, basic input/output parameters (chapter 4),
due to the complications involved with nondeterminism. It is because of this that we eventually
decided to disallow nondeterminism altogether. We then built on this extension with input/out-
put parameters by mathematically explaining how we can use attributes as input and output in
graph transformation rules and how we can input these as literal values from a control program,
in chapter 5.

With the exception of allowing nondeterministic control expressions, we have implemented the
ideas from chapter 4 and the ideas from chapter 5 and used them in the examples from chapter
7. These examples show that with some care, we can reduce the amount of control information
we have to write in graph transformation rules and our host graph by moving it to the control
program.

The AntWorld examples show that we can now do with one rule what previously required
several nearly identical rules, and that we can reduce the amount of context-information from the
host-graph. The former rules all did the same thing with one minor modification - an attribute
node has a different value in each of the rules. We have condensed all these rules into one by
requiring the user to input the value for the attribute node from the control program instead.

The control flow generation example from section 7.3 shows that, in addition to reducing
the amount of rules we need and the information we store in the host graph, we can actually
make our grammars more expressive. While the results from this example (a fully linear LTS)
could have been achieved without parameters, we would have had to add several one-use rules to
make it possible. For bigger examples the amount of rules to add increases even more, making a
solution without parameters unfeasible.

The example from section 7.4 finally shows us that not only do our extensions have a benefit
in contrived examples, but also in real-world cases, as the rule and the control program presented
in this example were taken from a case study by Selim Ciracy, which is presented in his PhD
thesis [2].
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Each of the examples shows that our extensions of the control language makes grammars
easier to work with and makes the rules and graphs used more clear. We have done this without
adversely affecting existing grammars - backwards compatibility is maintained, so grammars
which were written before our extensions were made will still work; some grammars may be
optimized using the new functionality however.

To conclude, while we have made some concessions as to which part of the theory we worked
out was eventually implemented, we think we have made a worthwhile contribution to Groove,
making it easier to express certain things in the control language that would otherwise involve
extra work in the graph transformation rules and host graph.

8.2 Related work

Groove is not the only graph transformation tool available; several other groups are working
on their own implementations of the graph transformation formalism. This section contains a
survey of some of the other graph transformation tools out there, focusing on what types of control
structures they support. We have obtained this information from a case study paper[14] about
graph transformation tools, a paper on practical applications of Groove [6] and the information
each of these tools presents publicly on the web.

8.2.1 VIATRA2

While VIATRA2 (VIsual Automated model TRAnsformations)[1] is officially a model transfor-
mation tool rather than a graph transformation tool, the models are expressed as graphs (or
trees); as such it can be used for graph transformation as well.

In VIATRA, models are expressed in the VIATRA2 Model Space, which is a model man-
agement framework more expressive than MOF[8] and EMF[5]. It extends EMF by allowing
things like navigating references in both directions and enumerating all instances of a metamodel
element. Currently, there are importer plugins for UML2, BPEL and other model descriptions.

The transformation language consists of declarative and imperative features and is built upon
graph transformation and abstract state machines. VIATRA2 uses an advanced imperative
control language to control the rule scheduling.

8.2.2 FuJaBa

FuJaBa[9], or From Uml to Java And Back Again, is a tool developed originally by the University
of Paderborn in 1997. In 2002 it has been redesigned as a plugin system, with Eclipse integration
added in 2006. FuJaBa is being used extensively for educational purposes, both at the University
of Kassel and in highschool courses for beginners.

FuJaBa’s core modeling features consist of UML class diagrams and story diagrams, which are
a combination of UML activity diagrams with the Story Pattern graph transformation language.
The graph transformation rules look like UML class diagrams with transformation patterns sim-
ilar to those in Groove.

Control in FuJaBa is done through the story diagrams, which link rules together by making
transitions marked [success] and [failure], indicating which rule to apply based on these
conditions.

8.2.3 GReAT

GReAT[17], or Graph Rewriting And Transformation, is a tool for building model transforma-
tions using graph transformation techniques. Transformations are built by first specifying the
metamodels of the input and target models, through UML class-diagrams.

Transformation is then specified by writing graph transformation rules which rewrite a part
of the input model into a part of the target model. Rules consist of a pattern, a guard and a
set of actions that modify the model. Matches are computed starting from specific nodes, called
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pivots, in order to limit the search. These pivots can be passed down to subsequent rules; as
such the control flow is partially established inside the rules.

The rule execution is written by sequencing these rules, with some control structures such as
conditionals and loops. The “output pivots” of one rule are the “input pivots” of the next rule,
with the initial input pivots being selected manually from the input model. This type of control
is called a dataflow paradigm.

8.2.4 AGG

AGG[7] (Attributed Graph Grammar System) is a tool developed by the graph grammar group at
the TU Berlin. It supports graph transformations with rules being explicitly written in separate
graphs: the left-hand side, the right-hand side and possible negative application conditions. As
such, morphisms between these will also have to be specified, but the tool has mechanisms in
place to assist the user with this by guessing the correct morphism.

The main difference though, is that in AGG most things can be attributed with Java language
features. Graphs may be attributed with Java objects and types, and rules may be attributed
by Java boolean conditions to indicate preconditions as well as Java expressions which will be
evaluated during the application of rules.

AGG supports control of rule scheduling through the use of global rule-priorities. The user
can select which rules have precedence over others, in the same way as Groove supports this.

8.2.5 PROGRES

PROGRES[11] (PROgrammed Graph REwriting Systems) has been under development since
the late 1980s, making it one of the eldest graph rewriting tools. It can transform directed,
attributed, node and edge labeled graphs, transforming these with two types of rules: simple and
combined.

Simple rules are similar to graph transformation rules in Groove, consisting of a left-hand
side, a right-hand side. The left-hand side may contain negative edges and nodes as well as
set-valued nodes (akin to quantified nodes in Groove). Combined rules on the other hand consist
of multiple rules with a textual control structure, similar to Groove’s control language.

8.3 Future work

We have added functionality to Groove in this project which allows us to move complexity from
the rules and host graph to the control program. Still, there are more ways conceivable of
achieving even more decoupling, or otherwise adding functionality to the control language that
it does not currently have.

The first idea would be to extend the input and output parameters to functions. Functions
are currently in-lined; that is, the call to a function is essentially replaced with the statements
in that function. We would need to find a suitable semantics for function calls with parameters
and implement it, this extension should not be too difficult to do as most of the functionality
for scopes, inuput and output parameters already exists elsewhere. The example from section
7.4 would benefit from this functionality as it would allow us to only have to enter values once
instead of in several calls.

Secondly, we could add functionality to the control language which is not directly visible in
the host graph. For instance, we could allow manipulation of attributes in the control language
directly, instead of only letting the user input them. Manipulating an attribute in a graph
transformation rule (for instance to add 1 to an integer) requires several nodes, but in the
control language it could be as simple as var++;. It would allow us to keep track of attribute
values in the control program instead of the host graph; for instance, we could keep track of the
number of turns that have passed in a game simulation without placing this information in the
host graph. As such statements would not show up on the LTS at all, this might be a dangerous
development, but when used properly it could add value.
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As we can now change attribute values directly in the control program we can modify pa-
rameters easily, but we can not do this when using the command-line LTS generator of Groove
since this does not have an editor (though we could of course use a text editor to edit the control
program). In the simulator we can choose from one of several saved control programs, but the
generator does not currently allow us to do this; it only uses the control program we selected last
in the simulator. One way to solve this would be to accept a command-line argument specifying
the name of the control program to be used.

Another way to solve it, which could also be usable in the simulator, is to add special markings
in the control program for “run-time attribute parameters”, much like the markings in the graph
transformation rules are used as control parameters. We could then write control statements
such as until( end(${how many turns?}); ) do { // loop }, and provide a number for this
value in the command-line arguments. The question we entered could be used by the simulator
to have Groove ask the user for a value (rather than “enter an integer” it would specify what
the integer the user enters would be used for). For the generator it could be used to generate a
“how to use”, i.e. a listing of all arguments and their meanings.

Lastly, while we have introduced some restrictions in chapter 4, it might be worth some
attention to try and alleviate these. For instance, the restriction that each variable can only be
used as output once could be solved by allowing variables to be used as output as many times
as the user likes, and then converting the resulting automaton to static single assignment form
using the methods described in [4] (using the Φ-function), thus allowing for a more convenient
way of specifying control programs. The other restriction we introduced, where nondeterminism
in control programs is no longer allowed, could also be removed if we implement the ideas that,
for a large part, we already worked out in the aforementioned chapter. This would likely require
more implementation work than has been done in this project, so an analysis of the possible
benefits would first have to be conducted.
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