UNIVERSITY OF TWENTE.

MASTER THESIS

Runtime assertion checking of
multithreaded Java programs

An extension of the STROBE framework

Author: Supervisors:
Jorne Kandziora dr. M. Huisman
dr. C.M. Bockisch

M. Zaharieva-Stojanovski, MSc

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science

in the

Formal Methods and Tools group,
Department of Computer Science,
Faculty of Electrical Engineering, Mathematics and Computer Science.

August 29, 2014

Abstract

It is important that software is correct, and there are many different techniques to guarantee the
correctness of a program. One such technique is runtime assertion checking: a technique that
evaluates properties of a program during execution. This particular technique scales well, and
can therefore be used to check the behaviour of large pieces of software.

Many runtime assertion checkers are only built for sequential programs and do not guarantee
correct behaviour if they are used in a multithreaded environment. We will show that runtime
assertion checkers in a multithreaded environment can sometimes report errors that do not exist
in the program or fail to detect problems that exist, both of which is problematic.

To solve this problem, we build an extension to the STROBE framework. STROBE is
built to accelerate runtime assertion checking with the use of asynchronous assertions: checks
that are executed in parallel to the program itself. This framework performs this checking
correctly with the use of snapshots, that efficiently save the previous states of a program. We
extend the STROBE framework into the e-STROBE framework, that uses these snapshots in
a multithreaded program, to protect the program from unwanted interference during runtime
assertion checking.

We apply the snapshots in the e-STROBE framework to OpenJML, to show that existing
runtime assertion checkers can be modified to work correctly in a multithreaded environment.
We will give several examples to show that our solution works, and gives the expected results in
both single-threaded and multithreaded programs.

Contents

[Abstractl
(1__Introduction!

(1.1 Runtime assertion checking| Lo Lo
(1.2 Multithreaded programs|

12 Problem analysis|

[3.1 Introducing the STROBE framework|
[3.2 Using the STROBE framework|
[3.3 Semantics of snapshots|. oo
[3.4 Implementation|. L

4.4 Extended semantics of snapshots| L.
[4.5 Tmplementation|
[4.6 Testing snapshots in multithreaded programs|

5 OpenJMI]
[p.1 The Java Modeling Language|
(5.2 Writing a JML specification| L o
[5.3 Translating a JML specification with OpenJML|.
[5.4 Using OpenJML in multithreaded programs|

5

|6 Multithreaded OpenJML,|

6.1

rotecting Open

with snapshots| 0L

6.2 Implementation|

6.3 Testing the implementation| 0oL

6.4 Conclusionl

7 Conclusion

|A Compiling and installing the e-STROBE framework|

2

|A.1 Installing from source]

sing the framewor

63
63
67
69
70

73
73
73
74

77
7
78

79
79
79

81

Chapter 1

Introduction

We want our software to behave correctly, but it is often hard to describe what correct be-
haviour of a program exactly means, and when a program behaves as it should. Therefore, many
techniques have been designed to describe, check and verify correct behaviour, including unit
testing, static checking and the technique that we will explore in this thesis: runtime assertion
checking. All these techniques have their different uses: unit testing tests the different modules
of a program with a pre-defined set of test cases, static checking proves that the software be-
haves correctly for all possible inputs and runtime assertion checking tests the program during
a specific execution.

All these techniques require a description of the correct behaviour of a program, and provide
a means to check if the program behaves in a way that meets this description. We will call such
a description the specification of a program.

1.1 Runtime assertion checking

A simple way to check if the program executes correctly according to its specification is by adding
extra code to a program to check this. This technique is called runtime assertion checking.
Programming languages often have some native support for assertion checking. Furthermore,
standalone systems exist to aid the user in the writing and checking of assertions.

Runtime assertion checking only checks the correct behaviour of a program during a particular
execution of the program, and, unlike static checking, does not guarantee the overall correctness
of the program. Therefore, a different execution of the same program might not behave correctly
according to its specification. A runtime assertion checker will only detect such an error if the
incorrect behaviour actually occurs during an execution of the program.

However, runtime assertion checking is scalable and easy to implement. Therefore, this
technique is widely used, and can quickly be used to test large pieces of software.

1.1.1 OpenJML

In this thesis, we will demonstrate runtime assertion checking for Java programs using a stan-
dalone runtime assertion checker, called OpenJML [16]. This tool processes specifications that
are written in a separate specification language, called the Java Modeling Language (JML) [22].
OpenJML can translate such a specification into the necessary statements to check if the pro-
gram executes correctly according to its specification, and automatically adds these statements
to the program.

1.2 Multithreaded programs

Nowadays, programs no longer execute one task at the time, but run several independent tasks
concurrently. Programs that do so, are called multithreaded programs. However, tasks that are
executed in parallel can interfere with each other. Therefore, incorrect behaviour of a program
is no longer solely caused by the task that is executed, but can also be caused by the incorrect
behaviour of another task of the program.

1.2.1 Runtime assertion checking in multithreaded programs

The specification of a program changes if we have to account for multiple threads that influence
each other. We can no longer just check the current state of the program, but we have to account
for all ways in which the program can influence a specific task of the program. However, the
principles of runtime assertion checking remain mostly the same: instead of executing checks
during the execution of one task, we now have to insert checks for all the tasks that we perform,
and check that all tasks have thus far behaved correctly. A runtime checker will still only check
a particular execution of the program.

A multithreaded program can also influence the results of the runtime assertion checker code
itself. This can lead to a situation where the runtime assertion checker does not detect a problem
that it should have detected, or reports a problem that is not present in the program. If this
happens, we can no longer trust the results of the runtime assertion checker: the reporting of
a problem does not necessarily mean that the behaviour of the program is incorrect. Likewise,
interference during runtime checking might cause the runtime assertion checker to miss an error
in the program, that could have been detected. We will show an example of both in Section [4.2]

and (.4

1.2.2 Asynchronous assertions in the STROBE framework

Runtime assertion checking is performed during the execution of the program, and thus slows
down the program. The STROBE framework |7] uses an alternative checking mechanism called
asynchronous assertions, that executes these checks in parallel, minimizing the time that is spent
on assertion checking.

Asynchronous assertions are executed as independent tasks in a program, and the outcome
of the checks can thus be influenced by the program itself when it continues its execution. The
STROBE framework prevents this from happening by executing asynchronous assertions against
a copy of the memory, called a snapshot. These snapshots ensure that an assertion is evaluated
against a state of the memory that does not change during the evaluation. In this way, the
asynchronous assertion can safely check the behaviour of the program, while the execution itself
continues.

The STROBE framework focuses on the efficient execution of checks. The behaviour of asyn-
chronous assertions is primarily checked for the execution of single-threaded programs. However,
the framework can be used to perform checks in multithreaded programs. We will examine the
behaviour of asynchronous assertions in such programs in Chapter

1.3 Contribution

Snapshots are an efficient method to ensure the correct execution of checks in a multithreaded
program. We will therefore present the e-STROBE framework, as an extension to the STROBE

framework. The e-STROBE framework will not only support snapshots in asynchronous asser-
tions, but will also provide an interface to use snapshots during the synchronous assertion check-
ing of programs. Supporting synchronous assertions will ease the integration of the e-STROBE
framework in existing runtime assertion checking.

We will show that the e-STROBE framework can be used to write checks in multithreaded
programs, and execute them safely against a copy of the memory. We will also show how the
checks that are performed with snapshots can be moved around, allowing a runtime assertion
checker to perform checks on state transitions that could previously not be checked. We will
provide examples of snapshots in both single-threaded and multithreaded programs, and test
that the e-STROBE framework provides the specified protection to assertions in Java.

We will show that some of the checks in OpenJML can not be trusted in multithreaded
programs. We will provide a solution to this problem using the snapshots in the e-STROBE
framework, and modify OpenJML in such a way that the checks that are performed by this
runtime assertion checker automatically use snapshots. We will give examples of single-threaded
and multithreaded programs in OpenJML, and show how the e-STROBE framework is integrated
in OpenJML to ensure the correct behaviour of checks in these examples. We will test the
provided solution, both through decompilation and by means of a multithreaded program that
will deterministically trigger failures in assertions if the e-STROBE framework is not used in
OpenJML.

1.4 Outline

The work that is performed in this project consists of two main contributions: the extension
of the STROBE framework and the modification of OpenJML. Both contributions require an
introduction to the original piece of software, followed by a discussion of the changes that are
made in this project. Before we discuss these tools, we will give an exact description of the
problem at hand, and provide the necessary terminology in Chapter

Chapter [3] will introduce the STROBE framework. We will explain how this framework im-
plements assertion checking, and show that there are some limitations to the use of the STROBE
framework in multithreaded programs.

We will introduce the e-STROBE framework in Chapter We will describe a snapshot
interface that can be used without asynchronous assertions, and show how this interface can be
used to overcome the limitations that we discussed in Chapter

Chapter [5| will discuss the current state of OpenJML. We will describe the use of the Java
Modeling Language to create specifications, and explain how OpenJML uses these specifications
to create checks for a program. Finally, we will show how OpenJML checks in a multithreaded
program can sometimes have an unexpected result.

Chapter [6] discusses our changes to the OpenJML runtime assertion checker, allowing Open-
JML to use the e-STROBE framework to ensure the expected result of its checks in multithreaded
programs. We will give examples of this integration, and test that our implementation behaves
as intended.

Chapter [7] will give a summary of the results of this thesis, and evaluates the choices that
were made. We will discuss the limitations of the provided solutions, and suggest possible
improvements and future work.

10

Chapter 2

Problem analysis

This chapter will give a detailed analysis of the problem that is solved in this thesis. It explains
the different programming concepts that are used and introduces the terminology that is used in
the rest of the thesis. We will end this chapter with the research question, that defines the goal
for this research.

2.1 Faults and failures

Programming a piece of software will seldomly be flawless. Faults will be introduced during the
programming of software: program statements that contribute to the incorrect behaviour of a
program. If these faults are not found during the testing of a program, they will eventually lead
to a failure: undesired behaviour of the program, visible to the user. A faulty program often runs
for a long time before a failure manifests. This makes it hard to detect the fault that eventually
leads to the failure of the program.

2.2 Assertions

One way to pinpoint the location of a fault in a program is to annotate it with expectations
about the state at a certain point in the program. Satisfying these expectations increases the
confidence in the correctness of the program up to that point. Expectations can be written in
the form of assertions: boolean expressions that we expect to be true at a certain point in the
program.

Assertions are originally designed as a means to reason about the correctness of the pro-
gram. |19,/28] The original proposals were to use assertions as a form of documentation and
to aid in the construction of a deductive proof of the correctness of a program. Modern lan-
guages have often incorporated assertions in the language, to monitor the correct behaviour of
the program during execution. Java uses the assert statement for this purpose.

If a language lacks the support, or the expressiveness needed to express assertions, a pre-
processor or alternative compiler can be used to translate assertions into executable program
code. The complete system that is responsible for the compilation, execution and monitoring of
assertions is called a runtime assertion checker.

11

2.2.1 Specification of a program

Programs are structured in blocks of statements, that are built to perform a certain task, e.g.
executing sequentially or conditionally using respectively if and while statements. Many pro-
gramming languages offer some form of procedures: blocks of statements that can be invoked
repetitively. Object-oriented languages offer methods and classes to add even more structure to a
program. Assertions are often used to reason about the task performed by a block of statements.

Assertions that are used to reason about the state of a program before a block of code is
executed are called preconditions. Assertions that reason about the state of a program after the
execution of a block are called postconditions. When an assertion should hold in every state
of a program, we call this assertion an invariant of the program. Loop invariants are used to
describe properties that should hold before and after every iteration of the loop body and class
invariants hold whenever the instance of a class is used in the program.

We can use assertions to construct a full description of the behaviour of an entire program.
Such a description is called the specification of a program. Specifying a program using precon-
ditions, postconditions and invariants is better known as the Design by Contract method [23].
This method was originally developed for the Eiffel programming language and later adopted by
other programming languages and runtime assertion checkers.

2.2.2 Assertion violations

When an assertion is false during a certain execution of a program, we call this an assertion
violation. The reporting of an assertion violation by a runtime assertion checker will often be
caused by code that behaves incorrectly according to its specification. Sometimes, the specifica-
tion itself is incorrect. We call an assertion violation that is caused by an incorrect specification
a false positive.

A badly written runtime assertion checker might incorrectly report an assertion violation
assertion while the assertion itself is true. The programmer cannot solve such a problem, as the
program behaves correctly according to its specification. Burdy et al. [14] define that we expect
a runtime assertion checker to be trustworthy: “every assertion violation must be a report of an
assertion that is false.”

2.2.3 Transparency

Burdy et al. also state that a runtime assertion checker should be transparent: the execution of a
program without assertions must behave exactly the same as the execution of the same program
with assertions enabled, apart from timing and space consumption. To ensure this transparency,
we require assertions to be pure: the execution of an assertion must not have any side-effects on
the execution of the program.

2.2.4 Further reading

While the previous introduction to assertions gives the reader a sufficient understanding of the
concepts that are used in this thesis, the interested reader is encouraged to learn more on the
subject in the work of Clarke et al. |15] on the history of runtime assertion checking.

2.3 Multithreaded programs

Programs consist of threads: independent code executions that are running in parallel. A program
with one thread is called single-threaded, while a program with multiple threads is multithreaded.

12

The execution of a single-threaded program is deterministic: the result of the program de-
pends only on the external input of the program. The state of a multithreaded program is not
only affected by its input, but also by the timing of the program: the statements of thread A can
be executed before the statements of thread B during one execution of the program, while the
statements of threads A and B alternate, or even execute simultaneously, in another execution.

Threads can share the resources of a program, such as files on the file system or objects that
are created in the same program. Threads in Java have shared access to the heap: a section of
the memory that contains all objects that are created by the program.

2.3.1 Interference

Concurrent modification of the same resource can lead to unpredictable behaviour in a program.
Consider thread A changing a field of an object, and thread B making a change immediately
afterwards. Thread A might expect its own value in the field, while it is actually the value
written by B, which might lead to a failure in the program. Such unwanted interaction between
program threads is called interference.

We can assign a direction to the interference of two threads. Interference will always be
caused by a thread (e.g. B) writing to the heap, while the results of an unexpected change of the
heap will be seen by a thread (e.g. A) reading this value. A thread will be subject to interference
if the heap modification of another thread causes unexpected behaviour to the thread. A thread
is causing interference if its actions result in another thread behaving unexpectedly.

An operation in a multithreaded program is atomic if the rest of the program can consider
the execution of the operation as if it happens instantaneously. Interference can occur before or
after, but not during the execution of an atomic operation. Most statements and expressions
in Java are not executed atomically. The programmer should therefore be aware that a thread
accessing the heap can be subject to interference and a thread modifying the heap can cause
interference with another thread of the program.

2.3.2 Assertion interference

Assertions are often written in the form of expressions that are executed by the program. These
expressions can be subject to interference if they are executed in a multithreaded program: heap
modification in thread B can occur during the execution of an assertion in thread A, possibly
causing a false assertion violation. The execution of an assertion should never cause interference:
the evaluation of assertions should be transparent, and should therefore never modify parts of
the heap that are visible to the rest of the program.

We define program interference as the interference in a multithreaded program that causes
unexpected behaviour in a thread that is currently executing normal program statements. Asser-
tion interference is defined as the interference during the evaluation of an assertion, that causes
an assertion to behave unexpectedly.

2.4 Problem statement

Assertion interference can cause a runtime assertion checker to report an assertion violation in
a program, or miss an assertion that could have been detected. We will show in Chapter []
that these situations can happen when the behaviour of the program is correct according to its
specification. A runtime assertion checker that is subject to assertion interference may therefore
no longer be trustworthy. This leads us to our research question:

13

Can we create an environment in which we can perform runtime assertion checking
in multithreaded programs without the risk of assertion interference?

This research will focus on a solution in the Java programming language. We will search for
a way to stop assertion interference. Chapters [3] and [4 will discuss the possibility to execute
assertions as if they happen atomically. Chapters [B] and [6] will use the results of these chapters
to modify OpenJML, an existing runtime assertion checker for Java.

2.5 Related work

A lot of research on multithreaded runtime assertion checking is focused on the prevention of
both program interference and assertion interference.

Rodriguez et al. [27] define a syntax to specify locks and other non-interference properties
in the Java Modeling Language. Aurujo et al. |9] discuss the use of safepoints in a program:
specific points where the program itself must guarantee protection against assertion interference.
A program can acquire the locks that it needs to ensure this protection before it enters this safe
point.

Separation logic [25] and fractional permissions [13] specify tokens that a thread must hold
before it accesses a field of an object. These tokens allow only a single process at the time to write
to the field, but allow multiple processes to read simultaneously. While the concept of separation
logic are applicable to runtime assertion checking, this technique is currently primarily used in
static checking.

14

Chapter 3

The STROBE framework

Assertion interference occurs when threads in a multithreaded program concurrently modify the
shared heap. An obvious solution for this problem would be to temporarily stop all threads of the
program during the evaluation of an assertion, except for the thread that executes the assertion
itself. If all threads wait for the assertion to finish, they can not modify the shared heap and thus
cannot change the outcome of the assertion. Such a solution requires an assertion to communicate
with all other threads and request them to pause their work. This will change the timing of the
program considerably. Furthermore, threads will finish their current operation before pausing,
possibly preventing program interference that would normally occur in the program.

An alternative would be to hook the runtime assertion checker into the Java virtual machine
and use this environment to suspend the threads of the program. Java has deprecated this thread
functionality and marks the suspension and stopping of threads unsafe [4]:

“Thread.suspend is inherently deadlock-prone. If the target thread holds a lock on the
monitor protecting a critical system resource when it is suspended, no thread can ac-
cess this resource until the target thread is resumed. If the thread that would resume
the target thread attempts to lock this monitor prior to calling resume, deadlock
results. Such deadlocks typically manifest themselves as ”frozen” processes.”

Deadlocks certainly change the behaviour of the program, breaking the transparency of the
runtime assertion checker.

Instead of suspending the threads, we can try to prevent the program from making modifica-
tions to the shared heap of the program while it is being used by the assertion. We could supply
a copy of the entire heap to the assertion and perform our checks on this copy, while the other
threads work on the “live” version of the heap.

The challenge in this solution is making the actual copy of the heap. This has to be done
atomically: it is impossible to guarantee safety from assertion interference if a thread modifies the
heap during the copying process. Making such a copy is a costly process: almost the entire state
of a Java program is saved on the heap. Making a copy would double the memory consumption
of the program. Heap writes from other threads will temporarily lock while this copy is being
made, potentially freezing the program for some time.

There has been more research into the prevention of changes on the heap. Particularly, the
research on the STROBE framework [7] shows many similarities with our research problem.
This research proposes a strategy to speed up the time spent on assertion checking, by executing
assertions in parallel of the running program. The framework schedules the assertions in the
program to be executed on checker threads: threads that are designed to mimic the heap to

15

reflect a certain state of the program. The concurrently executed assertions in this framework
are called asynchronous assertions.

The regular program threads in the STROBE framework will continue their execution while
asynchronous assertions are executed on the checker threads. This will potentially expose asyn-
chronous assertions to assertion interference from the program threads. The STROBE framework
does not make a full copy of the heap to prevent this. Instead, it uses a copy-on-write strategy
to preserve a certain state of the program: the framework only makes a copy of objects for the
assertion if a program thread modifies the objects on the heap. These copies are saved in a
snapshot: a special part of the heap, designed to keep track of the copies of an object that are
needed to preserve a certain state of the heap.

The STROBE framework seems to provide a good solution for the prevention of assertion
interference. We need to have a good understanding of the framework to evaluate if the framework
can be used to modify existing runtime assertion checkers for the safe evaluation of assertions
in multithreaded programs. This chapter will give a description of the STROBE framework and
the underlying principles that ensure the correct evaluation of asynchronous assertions. We will
discuss the possibilities and the limitations of the current framework, in order to determine what
work needs to be done to use the framework for the interference free evaluation of assertions in
multithreaded programs.

3.1 Introducing the STROBE framework

The STROBE framework provides a platform, designed on top of JikesRVM |[8], to execute the
assertions of a program on separate threads. JikesRVM is a Java Virtual Machine (JVM) that
is almost completely written in Java. JikesRVM is designed for the research community, to aid
in the experimentation with new language designs and implementation techniques. The virtual
machine is extensible and is, among other things, used for the development of new garbage
collection policies [11] and runtime optimization strategies [24]. STROBE uses the extensibility
of JikesRVM to implement snapshots of the heap.

Asynchronous assertions in STROBE are wrapped in futures to schedule them on a separate
thread. The framework uses snapshots to ensure a consistent state for these futures during the
parallel execution of the assertions.

3.1.1 Futures

When a program starts the evaluation of an asynchronous assertion, the STROBE framework
immediately returns a handle (often called a future). This future will eventually hold the result
of the assertion. The assertion itself is scheduled for parallel execution. The program can use
the future to request the result of its assertion execution. The future will return this result if the
evaluation of the assertion is finished, and block until it has if this is not the case. In this way,
a program can continue its normal execution as long as the results are not needed. We define
the execution of the program between the start of the future and the joining point between the
program thread and the future as the continuation of the future.

The first proposals for futures are for MultiLisp [20]. These futures were meant to speed up
sequential code without any side effects to the program itself: the programmer should be able
to use a future to execute a block of code as if it was executed sequentially. The Java language
supplies futures in the java. util .concurrent package [1]. These futures enable parallel execution of
code, but do not guarantee the interference free execution of either the future or its continuation.
We would like to use the safety property that MultiLisp provided for asynchronous assertions

16

in Java: the observed result of a sequential assertion Ay is equal to the observed result of an
asynchronous assertion A, that is scheduled in its place.

Welc et al. [30] formalized a safety property for futures in Java, that allows for the execution
of futures in place of their sequential counterpart, based on the Bernstein conditions |10]:

“(1) an access to a location ! (either a read or a write) performed by a future should
not witness a write to [performed earlier by its continuation, and (2) a write operation
to some location ! performed by a future should be visible to the first access (either
a read or a write) made to ! by its continuation.”

They propose a solution to maintain this safety property by keeping track of changes in the
memory. A future is executed on a separate process. It can be restarted if it reads a location
that is later modified by the continuation. The continuation can similarly be re-evaluated if a
future modifies the shared state.

The pureness of assertions eases the safety properties of the futures that are needed to check
asynchronous assertions. Futures should still provide safety property (1), but property (2) is
automatically ensured by the fact that assertions will never change the state of the program. We
therefore never need to restart the evaluation of the continuation: assertions will not modify any
part of the state that is visible to the continuation.

3.1.2 Snapshots

The STROBE framework introduces a versioning system to objects on the heap. Every mutation
of an object is seen as a new “version” of that object. The STROBE framework keeps track of
the multiple versions of an object.

Asynchronous assertions are implemented using this versioning system. The STROBE frame-
work keeps track of a global version number for the entire heap. It will save a snapshot of the
program when an asynchronous assertion is scheduled. This will save the current version number
of the heap.

When a snapshot is active, the STROBE framework saves the old version of an object as soon
as the program tries to modify it (copy on write). Asynchronous assertions will use the version
of this object that was present on the heap when the future was scheduled.

An asynchronous assertion uses snapshots to witnesses the state of the program at the time
it was scheduled. We will call this state the snapshot projection of an asynchronous assertion.
Every object access will be transparently rerouted to an access to the snapshot version of the
object that belongs to the asynchronous assertion. In this way, asynchronous assertions satisfy
part (1) of the safety property described in the previous section.

3.2 Using the STROBE framework

We will demonstrate the asynchronous assertions using the Node class of a linked list with an
addNode method, as shown in Figure The addNode method inserts the given node as a new
successor of the current node and attaches the current successor to the given node. The list in
this example is not allowed to contain the same node twice: this will create a cycle.

Figure 3.1] shows this method with standard assertions: the assert statement at line 5 acts
as the precondition of this method and checks that the given node is not yet in the list. The
statement at line 10 verifies that the execution of the method resulted in the node being part
of the list. The contains method is used to check if a node is already in the list. The assertions

17

public class Node {
private Node next;

public void addNode(Node node) {
assert !this.contains(node);

node.next = this.next;
this.next = node;

© 00 O Ui W~

W WWWNNIRNDNDNDDNDDNDNDNDN & == = =
WNHOOWTDU R WNHEO WO U i WwN~O

assert this.contains(node);

}

@ConcurrentCheck

public boolean contains(Node node){
if (this.next = null)

return false;

else

return this.next
this.next.contains (node);

public static Node createTestList (){
Node a = new Node() ;
Node b = new Node() ;
Node ¢ = new Node() ;

a.addNode(c);
a.addNode(b) ;

return a;

Figure 3.1: addNode example with asynchrnous assertions

== node

18

© 00U WN -

= e
W = O

public void addNode(Node node) {

}

CHAFuture precontains =

new CHAFuture(new ContainsAssert(node));

precontains.go();

node.next = this.next;
this.next = node;

CHAFuture postcontains =

new CHAFuture(new ContainsAssert(node));

postcontains.go();

assert !precontains.get();
assert postcontains.get();

private class ContainsAssert

}

implements CHATask {
private Node appendNode;

public ContainsAssert(Node node){
appendNode = node;

@ConcurrentCheck
public boolean compute() {
return contains (appendNode) ;

}

Figure 3.2: addNode example with asynchronous assertions

19

next

®© ® © @/\@ @00

) Start state a.addNode(c) (c) a.addNode(b)

Figure 3.3: Building a list using createTestList

in this method are expensive. The insertion itself executes in constant time, but the assertions
recursively check every node in the list to check if the list contains the given node.

The createTestList method creates a list with 3 elements: a, b and ¢ (in that order). The
creation of this list is shown in Figure

Figure [3.2] shows how we can check the preconditions and postconditions of the addNode
method with the use of asynchronous assertions. We replace the assert statement at line 5 of
Figure with a future on line 2-4. This future will notify a checker thread of the asynchronous
assertion that needs to be checked and schedules it for parallel execution. The asynchronous
assertion itself is defined in the compute method of the CHATask class, at line 27 of Figure
The future immediately returns a handle and an asynchronous checker thread is used to calculate
the requested result while the method continues its execution. Finally, the handle is used on
line 13 to query the future for the result of the asynchronous assertion.

Figure [3.4) shows the states of the list during the execution of the createTestList method, with
asynchronous assertions enabled. States [3.4a] [3.4c| and [3.4€] correspond to the states of the
memory, as observed in the method body of createTestList. These states are equal to the states
observed during the execution of createTestList with synchronous assertions.

States [3:4b] and [3.4d] correspond to the state of the memory after the execution of line 7 of
addNode in Figure[3.2] At this point, the addNode method has added the given node as its successor,
while a snapshot of the previous version of the object is preserved for the asynchronous assertion.
In state the asynchronous assertion (Figure lines 2-4) will observe nodes (ag, bo, co) as
the state of the program, while the program thread itself will observe the states (a1, bo,co).
In this way, the asynchronous assertion observes that the program is in state [3.4a] while the
program itself is operating on state The snapshots are marked for garbage collection when
the execution of the asynchronous assertion is completed. State is similar to state the
assertion uses state while the program itself operates on [3.4¢]

3.3 Semantics of snapshots

The introduction of snapshots changes the heap layout used by a program. This section will
provide the semantics needed to reason about a heap with snapshots.

3.3.1 Single snapshot

The goal of a snapshot is to preserve the state of the heap as it was when the snapshot was
taken. We first consider a program with a single snapshot. We look at the heap after a snapshot
was taken, but before any modifications have taken place. The live state of the program will be
equal to the snapshot state of the heap as long as this is the case. Therefore, no object needs to
be copied.

When the program modifies an object to the heap, the live state after this modification will no
longer be the same as the snapshot. Therefore, if the object is not yet preserved in the snapshot,
a copy of the object will be made for this purpose.

20

4

1
1 snapshot next next
) Start state a.addNode(c) ¢) snapshot cleanup
next
@
' ’
'Isnapshot | snapshot

v

. next next @ next @ next @

(d) a.addNode(b) (e) snapshot cleanup

Figure 3.4: Building a list using createTestList

When an asynchronous assertion attempts to read the value of an object field in a snapshot,
the STROBE framework will check if a copy of the object has been made for this snapshot. The
STROBE framework will return this copy if it exists. Otherwise, the live state is not modified
and is used.

3.3.2 Multiple snapshots

A program can have multiple asynchronous assertions, which can run simultaneously. In this
case, the STROBE framework maintains a snapshot for each asynchronous assertion. Consider
a program with an active snapshot (snapshot 1), when another snapshot (snapshot 2) is taken.

At this moment, the STROBE framework will contain a copy of all objects that were modified
after snapshot 1 was taken, associated with snapshot 1. When the program tries to modify an
object to the heap, the STROBE framework will now check both snapshots to see if the snapshot
already contains a copy of this object, and otherwise save a copy.

3.3.3 Global versioning

The heap modification strategy described above will quickly become expensive when many snap-
shots are active: the framework needs to check for every snapshot if it either needs or already
has a copy of an object. A global epoch counter E is used to solve this problem. The counter
will be initialized to 0 when the program is started and increments for every snapshot that is
taken.

For every object on the heap, the STROBE framework saves the epoch in which the object is
last modified. Object access in a snapshot can now check this epoch to see if it needs to access
the live version of an object, or its snapshot: if the epoch of the live snapshot is equal to the
epoch of the snapshot, the live version can safely be used.

The epoch is also used when the program tries to modify an object on the heap. A snapshot
only needs a copy of the object if the object was last modified before the snapshot was taken.
Therefore a snapshot might need a copy of an object if the epoch of the object is smaller than
the global epoch of the program. Similarly, copying can be skipped if the epoch of an object is

21

4

"snapshot
® OO
(a) Start state) Node b = new Node() (c) a.addNode(b

Figure 3.5: Building a list using createTestList

equal to the current epoch of the program. Figure [3.4] shows the epoch counters for the nodes
in the linked list.

3.3.4 Guarantees

The snapshot strategy described above guarantees that a snapshot will always see the heap in
the state that was present when the snapshot was made, while objects are only copied when
necessary. Object copies are made atomically: when an object is read by a snapshot, it cannot
be written, and when an object is written, an asynchronous assertion has to wait before the
object can be read.

Snapshots will have the same object reference as the live version of the object. This means
that the program is unaware of the use of snapshots: it treats every object in a snapshot as if
it is a normal object. As a result, the references to an object do not need to be changed when
a snapshot is taken for the object: the framework transparently reroutes object access to the
snapshot.

3.3.5 Creating new objects

A program thread can create new objects after a snapshot has been taken. These new objects
can not be reached by the snapshot: they were not part of the heap when the snapshot was taken.
This reachability property can be verified by looking at the reachability of a newly created object.
Consider the following program, that uses the linked list of Figure

Node a = new Node () ;

CHAFuture contains = new CHAFuture(new ContainsAssert(node));
contains.go();

Node b = new Node () ;

a.addNode(b);

Figure [3.5] shows the different states of this example. The object b on the heap can only
be reached 1f another object refers to it. As soon as the program tries to store a reference to
this newly created object in an object a, a copy ag will be made of the object a. The checker
threads work with this snapshot copy, that does not contain the reference between a and the
newly created object b. Therefore, b can not be reached in the snapshot.

The reachability property of newly created objects in a snapshot allows for an optimization:
the STROBE framework does not need to keep a snapshot copy of newly created objects in the
forwarding array. The epoch counter provides this optimization automatically: snapshots only
copy objects that were modified before the snapshot was taken, and the epoch counter of the
newly created object is the current epoch, so none of the current snapshots will maintain a copy
for this object.

22

The heap separation works both ways. An asynchronous assertion can create new objects, to
save its intermediate results. These objects are completely separated from the reachable heap of
the program thread, as the live heap does not contain any reference to this newly created object.

3.4 Implementation

3.4.1 Barriers

The STROBE framework monitors for write actions when a snapshot is active. It uses object
barriers in JikesRVM to do so. These barriers are special blocks of code that are used to perform
extra work when the virtual machine reads from or writes to the heap [12]. Barriers can either be
substituting or non-substituting. Substituting barriers are compiled in place of the heap action,
and are therefore responsible for the correct execution of the heap operation. Non-substituting
barriers are compiled before and/or after the heap operations, wrapping the operation with
barrier code, but not replacing the operation itself. Write barriers are always substituting, while
read barriers can be either substituting or non-substituting. STROBE only uses substituting
barriers.

The STROBE framework uses write barriers to create a copy of an object, if a snapshot
needs such a copy to maintain its state. This can result in multiple copies of an object: the
STROBE framework creates a copy for every available checker thread, if necessary. Copies are
shared between snapshots if the snapshot state is the same for that object.

A method annotated with the @ConcurrentCheck annotation will be compiled with substituting
read barriers. Object access in such a method is preceded by a snapshot lookup. If the current
thread is operating on a snapshot, the snapshot copy of the object is returned instead of the
object itself.

The STROBE framework will only compile the read barriers into methods that are annotated
with a @ConcurrentCheck annotation. This means that the contains call on line 28 of Figure |3.2
will actually fail to produce the correct result. This bug in our example is fixed by annotating
the contains method on line 14 of Figure with a @ConcurrentCheck annotation. The need to
explicitly annotate every method used in assertions limits the usefulness of assertions: we can
not use built-in Java classes, such as java. util . ArrayList, as these classes can not be annotated
with the @ConcurrentCheck annotation.

3.4.2 Object headers

Every object in the JikesRVM consists of an object header and a set of fields. The object
header contains meta information about the object, such as an identifier, type information and
the lock state of the object. This object header can be extended with custom fields, that can
be accessed from the virtual machine. The STROBE framework creates a custom field that is
used to maintain a forwarding array of snapshot copies of the object. This forwarding array
contains references to the snapshots that are made for this object. The write barriers update
this forwarding array if snapshots are active. The read barriers in turn use the array to return
a reference to a snapshot version instead of the object itself, as described in Section [3.3]

3.4.3 Checker threads

When a program thread schedules an asynchronous assertion, the work is delegated to a separate
checker thread. The STROBE framework uses a dedicated pool of checker threads, allowing for
multiple assertions to run in parallel. The maximum number of checker threads is limited, and

23

can be configured when the virtual machine is started. Each checker thread has its own checker
identifier, saved in an instance of the CheckerThread class.

When an asynchronous assertion is scheduled, it searches for a free checker thread, or waits
until a thread is finished with its work. The checker identifier of the selected checker thread is
then used to create the snapshot for the assertion. The future that contains the asynchronous
assertion is saved in the CheckerThread instance of the checker thread, and the thread is activated.
Figure shows the process of waking up a checker thread in pseudo-code.

The checker thread will start the execution of the assertion when it wakes up, by calling
the compute() method of the asynchronous assertion. The STROBE framework will recognize
the @ConcurrentCheck annotation of this method and executes this method against a snapshot
projection of the heap. The result of the assertion (success or failure) is then saved in the
associated CHAFuture, giving the program access to this result. Afterwards, the checker thread
switches back to the live state of the heap, wakes up any program threads that are waiting for
the result, and waits for the next asynchronous assertion to execute. Figure [3.6b| shows the
pseudo-code for this checking process.

3.5 Limitations

3.5.1 Native and reference types

The current implementation only enables barriers for object reference types. The framework does
not place barriers around the access of native typed fields. While this is inconvenient, a program
using native types can be easily modified to use object references, by explicitly using the boxed
version (e.g. Integer) of a native type. This only needs to be changed at the declaration of a
variable. Java will automatically box any native values that will be assigned to this variable.

3.5.2 Static fields

Every class in a Java program can contain instance fields, that are associated with an instance of
the class, and static fields that are associated with the class itself. The amount of memory that
is needed for these static fields is known at the start of the execution of program. Therefore,
JikesRVM saves these fields in a special part of the memory, called the JTOC register. The
current implementation of the STROBE framework does not enable snapshot barriers for static
fields. Creating these static barriers would require a strategy that differs from copying objects:
either the entire JTOC register needs to be copied for the snapshot, or each static field needs to
have its own forwarding array to keep track of the copies.

3.5.3 Assertion interference in multithreaded programs

Figure shows an asynchronous assertion that checks if two nodes are equal. This asyn-
chronous assertion is used in the equalsTest method in Figure [3.7a] to compare the result of
getNext() with itself. This assertion in this method will always pass in a single-threaded program:
the getNext() method returns the same result twice and the asynchronous assertion will report
that these nodes are equal to each other.

In a multithreaded program, a second program thread may be able to access the Node, while
the equalsTest method is executed. This second program thread can change the Node, to let the
next instance variable point to a different Node. The assertion will fail if this happens between
the two getNext() calls on line 11. The STROBE framework will not provide protection against
this form of assertion interference: the snapshot that is used for the future is created after the

24

© 00Uk W+

0O ULk WN =

public void startMe(CHAFuture future)

{

// wait for a checker to become available;
CheckerThread checker =
waitForFreeChecker () ;

// assign asynchronous assertion
checker.checkToDo = future;

// initiate assertion
Snapshot.initiateProbe (checker.checkerld);

// wake up checker thread
checker.wakeUp() ;

(a) Waking up a checker thread

public void run(){
while (true) {
// wait for the nexzt task
waitForAsynchronousAssertion () ;

// compute assertion
checkToDo . result = checkToDo.compute () ;

// clean up snapshot
Snapshot.completeProbe (checkerId);

// motify waiting program threads
checkToDo . notify All () ;

// prepare for the next assertion
checkToDo = null;

(b) Executing an asynchronous assertion

Figure 3.6: Executing an asynchronous assertion

25

0O Utk WN

OO U W

== e e e
DU WD~ OO

public class Node {
private Node next;

private Node getNext (){
return next;

}

public void equalsTest () {
CHAFuture equalsFuture =
new CHAFuture(new EqualsAssert (
this.getNext (), this.getNext ()

))s
equalsFuture.go () ;
assert equalsFuture.get();

}
}

(a) Skeleton of the Node class

private class EqualsAssert
implements CHATask {

private Node a;
private Node b;

public EqualsAssert(Node a, Node b){
this.a = a;
this.b = b;

}

@ConcurrentCheck

public boolean compute() {
return a = b;

}

(b) Asynchronous assertion

Figure 3.7: Initializing an asynchronous assertion task

26

0O ULk W=

public class Timer {
private Integer time = O0;
public int getTime(){ return time; }

public void increase (){
Integer oldTime = this.getTime();

time = time + 1;
assert this.getTime() > oldTime;
}
}

Figure 3.8: Assertions on state transitions

initialization of the CHATask that will execute the assertion. The framework only protects the
execution of the asynchronous assertion, not its creation. The programmer is responsible for the
prevention of assertion interference during the creation of futures.

3.5.4 State transitions

Assertions can check state transitions by comparing two different states of the program with each
other. Typically, the program state before the execution of program code (pre-state) is compared
to the program state after the execution. Runtime assertion checkers normally only have access
to the current state of the program, and will therefore pre-calculate the parts of the pre-state
that are required to execute such an assertion. The assertion itself is placed in the postcondition,
and uses the pre-calculated information instead of the actual pre-state of the program.

The Timer class in Figure |3.8] gives an example of an assertion on a state transition. The
timer has the property that its value will only increase during program execution. The increase
method checks this property. The method pre-calculates the timer value in the pre-state at line 8.
The assertion itself, on line 12, reads the current value of the timer and compares it with the
pre-calculated value.

Asynchronous assertions are executed on a single state of the program. It is therefore not
possible to protect both the pre-state and the post-state against assertion interference. Figure(3.9
shows an implementation of the Timer class with an asynchronous assertion. The pre-state is still
pre-calculated, and passed to the asynchronous assertion at initialization. The assertion itself
is evaluated after this initialization. This kind of pre-calculation is therefore still subject to
assertion interference, as we have shown in the previous section.

3.6 Conclusion

The STROBE framework allows us to evaluate asynchronous assertions on a specific state of
a program. The framework protects assertions against interference: the STROBE framework
provides the statements of an assertion with a projection of the heap as it was when the assertion
was scheduled.

Assertions in the STROBE framework are written in specialized objects, that are scheduled
for execution on a different thread. The framework does not provide protection against assertion
interference during the initialization of these objects.

27

© 00 O Ut W~

public class Timer {
private Integer time = O0;

@ConcurrentCheck
public int getTime(){ return time; }

public void increase (){
CHAFuture increasingFuture =
new CHAFuture(new IncreasingAssert(this.getTime()));

time = time + 1;

increasingFuture.go();
assert increasingFuture.get();

}

private class IncreasingAssert implements CHATask {
private Integer oldTime;

public IncreasingAssert(Integer oldTime){
this.oldTime = oldTime;

}

@ConcurrentCheck
public boolean compute() {
return getTime () > oldTime;

}

Figure 3.9: Assertions on state transitions

28

In this research, we search for a solution to safely perform runtime assertion checking for mul-
tithreaded programs. Such a solution requires protection from assertion interference during the
complete evaluation of assertions. In the case of asynchronous assertions, this means protection
during both the creation and the execution of asynchronous assertions.

The current STROBE framework therefore does not provide a complete solution for our
research problem, but can be modified to suit our needs. We will discuss our modifications in
the next chapter.

29

30

Chapter 4

The Extended STROBE framework

The STROBE framework will prevent assertion interference during the execution of the assertion.
The framework does not prevent assertion interference during the initialization: initialization of
an asynchronous assertion is done before the snapshot for the assertion is taken. A multithreaded
program is therefore not completely protected against assertion interference.

We can prevent assertion interference during the complete evaluation of assertions if the
statements for both the initialization and the execution of the asynchronous assertion use the
same snapshot projection of the heap for their execution.

The current STROBE framework encapsulates the creation of snapshots in the CHAFu-
ture.go() method call, which is used to schedule the asynchronous assertion. This disables the
possibility to switch to a snapshot projection of the heap during the initialization of the asyn-
chronous assertions. Exposing the snapshot creation and modification to the programmer would
allow us to switch to a snapshot earlier, and perform the initialization of an asynchronous asser-
tion on the snapshot projection of the heap.

This chapter will discuss the Extended STROBE framework (e-STROBE): our extension to
the STROBE framework that exposes the snapshots directly to the program. Programmers will
get the ability to choose whether statements in a program are executed on the live state of the
program or on a snapshot projection of the heap. We will show how this ability can be used to
completely protect assertions against assertion interference.

The e-STROBE framework enables programs to protect both synchronous and asynchronous
assertions from assertion interference. The focus in this research will be on the use of snapshots
for the protection of synchronous assertions, but the e-STROBE framework will still support
asynchronous assertions. This allows us to run the benchmarks of the STROBE framework
against our e-STROBE framework, and allows programmers to choose between the simplicity of
synchronous assertions and the performance gains of asynchronous assertions.

Build and usage instructions for the e-STROBE framework can be found in Appendix [A]
This appendix also contains the location to the source code and binaries for this framework.

4.1 Exposing snapshots to the program

The STROBE framework executes the asynchronous assertions against a snapshot projection of
the heap. The framework uses the checker identifier to create a snapshot for the checker thread
that is going to execute the asynchronous assertion. The snapshot is directly coupled with the
checker thread that uses it, only allowing snapshots to be used by checker threads.

31

The e-STROBE framework decouples the snapshots from checker threads, allowing program
threads to create and use snapshots in their own code. The framework uses snapshot identifiers
to keep track of the snapshots that are active in the program. The framework will associate a
free snapshot identifier with the snapshot upon creation, and return this identifier to the caller.
A snapshot can be initialized using the following statement:

snapshotld = Snapshot.initiateProbe();

The checker threads in the STROBE framework use the checker identifier of their CheckerThread
instance, in conjunction with the @ConcurrentCheck annotation of the compute method, to decide
that heap access should reflect the snapshot projection of the heap. This strategy limits the use
of snapshots to checker threads.

The e-STROBE framework has a snapshot identifier field in the RvMThread class: a class in
JikesRVM that is used to save extra information for the thread of the program. Every thread
has an RVMThread associated with it. A thread in a program can gain access to its RVMThread
instance using the RVMThread.getCurrentThread() method. The snapshot identifier in the RVMThread
is public. Changing this identifier allows a thread to switch to the execution of statements on a
snapshot projection of the heap:

RVMThread currentThread = RVMThread. getCurrentThread () ;
currentThread .snapshotld = snapshotld;

Changing the snapshot identifier to the value —1 changes the thread back to normal execution,
against the live state of the heap:

currentThread .snapshotld = —1;

Programs in the e-STROBE framework have the responsibility to destroy their own snapshots.
Destroying a snapshot will trigger the cleanup of all snapshot copies that were made for the
snapshot projection of the heap, and recycles the snapshot identifier for future use. A program
can destroy a snapshot using the following statement:

Snapshot.completeProbe (snapshotld);

Figure shows how the snapshot interface described above can be used to protect the pre-
conditions and postconditions of the addNode method in Figure [3.1] against assertion interference.
The assertions at point A and C' of the method will both be executed against a snapshot of the
program, taken at respectively line 4 and line 16.

The example shows that a thread can create multiple snapshots, but it can use only one
snapshot projection at the time. The explicit switching between snapshots allows us to identify
regions of the program that are executed against a snapshot projection of the heap. We define
statements in these regions within the scope of the associated snapshot. Statements outside
a snapshot scope are in the live scope of the program. Figure [£.] shows statements that are
executed in 3 different scopes: assertions A and C' executed in the scope of their respective
snapshot and the normal method body B executed in the live scope of the program.

The snapshots scopes in this research are used to encapsulate assertions, and ensure that they
are executed free of assertion interference. Therefore, we will always start and end a snapshot
scope in the same method. The e-STROBE framework does not restrict snapshot scopes to this
use: a program can switch to a snapshot in method A, call method B, and switch back to the live
scope in method B. We discourage such use of snapshot scopes, as this practice is not necessary
for the protection of assertions and makes programs harder to understand.

32

0O ULk W=

@ConcurrentCheck
public void addNode(Node node) {

int preconditionld = Snapshot.initiateProbe ();
RVMThread currentThread = RVMThread. getCurrentThread () ;
currentThread .snapshotld = preconditionld;

assert !this.contains(node); // A

currentThread.snapshotld = —1;
Snapshot.completeProbe (preconditionId);

node . next
this.next

this.next; // B
node; // B

int postconditionIld = Snapshot.initiateProbe ();
currentThread.snapshotld = postconditionld;

assert this.contains(node); // C

currentThread .snapshotld = —1;
Snapshot.completeProbe (postconditionId);

Figure 4.1: Assertion checking with the e-STROBE framework

4.2 Using snapshots in multithreaded programs

We have stated in Section 2.4l that assertion interference can cause a runtime assertion checker to
report an assertion violation in a program while the behaviour of the program is correct according
to its specification. We will give an example of a correct program that triggers such behaviour
using a Timer and Display class, shown in Figure [£:2] The Timer class simulates a timer, counting
from 1 to 10,000. The display class uses this timer to return the current value of the timer to
the user. A single timer is tied to two displays in the testDisplay method. The timer is started in
a separate thread. The testDisplay method will then assert that both displays will always display
the same value.

In a single-threaded program, the assertion on line 35 of Figure will always be true:
both displays return the time from the same timer. This result can change in a multithreaded
program, as the assertion is not executed atomically. The timer can increment its value between
the method calls d1.getTime() and d2.getTime(), leading to the report of an assertion violation by
the runtime assertion checker. This is a false report, caused by assertion interference: the two
displays will reflect the same timer state in every state of the program.

Figure [£:3]shows the use of snapshots in the testDisplay method of the Display class to eliminate
this interference. The method will now execute the assertion on line 15 in a snapshot scope,
causing both the di.getTime() and d2.getTime() method calls to be executed on the same state of
the Timer. Therefore, the incrementing value of the timer in the live state of the program can no
longer cause an assertion violation.

Assertion interference can also mask an assertion violation in a program. We create such a
situation using a broken display, shown in Figure [£:4] This broken display will always return
its time, minus one. Therefore, the two displays will never show the same value. However,
the assertion on line 15 might pass when the value of the timer gets incremented between the
execution of di.getTime() and d2.getTime(). Again, placing the assertion in a snapshot scope will
remove this assertion interference. This will correctly trigger an assertion violation in every
execution of the program.q

33

1 public class Timer extends Thread {
2

3 private Integer time = O0;

4

5 @ConcurrentCheck

6 public int getTime(){ return time; }
7

8 @Override

9 public void run(){

10 for(int i = 0; i < 10000; i++){
11 this.time = this.time + 1;

12 1

13 }

14 }

15

16 public class Display {

17 private Timer timer;

18

19 public Display (Timer timer){

20 this.timer = timer;

21 }

22

23 @ConcurrentCheck

24 public int getTime () {

25 return timer.getTime () ;

26 }

27

28 public static void testDisplay (){
29 Timer t = new Timer(barrier);
30 t.start ();

31

32 Display dl = new Display (t);

33 Display d2 = new Display (t);

34

35 assert dl.getTime() = d2.getTime();
36}

37}

Figure 4.2: Timer and Display class

34

© 00U W

—
O O 00U WN

e e el el
0O Utk WK

@ConcurrentCheck

public static void testDisplay (){
Timer t = new Timer () ;
t.start ();

Display dl = new Display (t);
Display d2 = new Display (t);

RVMThread currentThread = RVMThread. getCurrentThread () ;

int snapshotld = Snapshot.initiateProbe();
currentThread .snapshotld = snapshotld;

assert dl.getTime() = d2.getTime();

currentThread .snapshotld = —1;
Snapshot.completeProbe (snapshotld);

Figure 4.3: Using snapshots for assertions

public class BrokenDisplay extends Display{
public BrokenDisplay (Timer timer){ super(timer); }

//@ConcurrentCheck

public int getTime () {
return super.getTime() — 1;
}

public static void testDisplay (){
Timer t = new Timer () ;
t.start ();

Display dl1 = new Display (t);
Display d2 = new BrokenDisplay(t);

assert dl.getTime() = d2.getTime();

Figure 4.4: Creating a false negative with a broken display

35

public class Timer extends Thread {
private Integer time = O0;

@ConcurrentCheck
public int getTime(){ return time; }

@ConcurrentCheck
public void increase (){
RVMThread currentThread = RVMThread. getCurrentThread () ;

int preld = Snapshot.initiateProbe();
currentThread .snapshotld = preld;

Integer oldTime = this.getTime(); // A

currentThread .snapshotld = —1;
Snapshot.completeProbe (preld);

time = time + 1;

int postld = Snapshot.initiateProbe();
currentThread .snapshotld = postld;

assert this.getTime() > oldTime; // B

currentThread.snapshotld = —1;
Snapshot.completeProbe (postId);

Figure 4.5: Pre-calculation before execution

4.3 State transitions

4.3.1 Pre-state calculation

We will revisit the Timer example that was used in Figure 3.8 The STROBE framework could
protect the assertion in this example from assertion interference with the use of asynchronous
assertions, but we were unable to provide the same protection to the pre-calculation of the timer
value.

The e-STROBE framework allows for the use of multiple snapshot scopes in the same method.
This allows us to use the local variables of a method to transfer intermediate results between
snapshots. The e-STROBE framework will not create snapshot copies for these local variables:
they can only be used by the method itself, and will not be shared between threads.

Figure[L.5]shows an implementation of the Timer with snapshots to protect the state transition
assertion. The value of the timer is calculated in the snapshot scope at A and saved in the local
oldTimer variable. The assertion itself is executed in the snapshot scope at B, after the timer
has been incremented. The value of the oldTimer variable is still available in this scope and is
compared to the value of the post-state copy of the timer.

We do not have to calculate the pre-state immediately after we take the snapshot: snapshots
remain valid until they are destroyed by the program. This fact is exploited in Figure[L.6]to create
an alternative implementation of the increase () method of the Timer. This version increments the
timer first, and saves the oldTimer value afterwards. The snapshot scope ensures that a snapshot
copy of the timer from the pre-state is used in the calculation of the oldTimer value, and the

36

0O ULk W=

public class Timer extends Thread {
private Integer time = O0;

@ConcurrentCheck
public int getTime(){ return time; }

@ConcurrentCheck
public void increase (){
RVMThread currentThread = RVMThread. getCurrentThread () ;

int preld = Snapshot.initiateProbe();
time = time + 1;
int postld = Snapshot.initiateProbe();

currentThread.snapshotld = preld;
Integer oldTimer = this.getTime(); // A

currentThread .snapshotld = postld;
assert this.getTime() > oldTimer.getTime(); // B

currentThread .snapshotld = —1;
Snapshot.completeProbe (preld);
Snapshot.completeProbe (postId);

Figure 4.6: Pre-calculation after execution

assertion will therefore still be evaluated correctly.

It is important to pay attention to the types of local variables that are used to transfer state
between snapshot scopes. We can safely use native typed local variables: their values will be
directly associated with the variable. However, we have to be careful if a local variable contains
an object reference.

Figure [£.7] shows an implementation of the increase method that does not pre-calculate the
value of the timer at point A. Instead, the oldTimer variable contains a reference to the Timer
object itself. This reference is used in the snapshot scope at B, but the timer that is referenced
is an object on the heap. In fact, this and oldTimer will point to the same timer object on the
heap, and the evaluation of this assertion will lead to an assertion violation. In this case, the
program could have made a copy of the timer in the pre-state, manually saving the state of Timer
object for use in the post-state.

4.3.2 Evaluating the result of a method

Snapshots allow us to evaluate of statements against a previous state. This allows us to write a
new type of assertion, that we could previously not evaluate with a runtime assertion checker.
Figure extends the Node class in Figure [3.1] with a removeNode method and a getNode
helper method. The removeNode method removes the given node from the list and returns its
index, observed from the node on which the method was called. This method contains two
assertions, similar to the assertions in addNode: the assertion on line 4 of Figure [£.8] checking
if the node is present in the list and the assertion on line 15, checking if the node was deleted
from the list. Note that node removal is subject to program interference. We will only consider

37

O~ O Ui W

NN NNRFRRFR R BB B2
BWNFRF OO UUR W~ OO

© 00 O Ut W

[N I N N B N R R e e e e e e
B WNFOOWOTIO U WN~O

25
26
27

public class Timer extends Thread {
private Integer time = O0;

@ConcurrentCheck
public int getTime(){ return time; }

@ConcurrentCheck

public void increase (){
RVMThread currentThread = RVMThread. getCurrentThread () ;
int preld = Snapshot.initiateProbe();
time = time + 1;

int postld = Snapshot.initiateProbe();
currentThread.snapshotld = preld;
Timer oldTimer = this; // A

currentThread .snapshotld = postld;
assert this.getTime() > oldTimer.getTime; // B

currentThread .snapshotld = —1;
Snapshot.completeProbe (preld);
Snapshot.completeProbe (postId) ;

Figure 4.7: Incorrect use of object references in state transitions

// Removes a node from the list

// and returns the index

public int removeNode(Node node) {
assert this.contains(node);

int index = 1;

Node nodeToCheck = this;

while (nodeToCheck. next != node){
nodeToCheck = nodeToCheck. next ;
index = index + 1;

nodeToCheck . next = nodeToCheck.next.next;
node.next = null;

assert !this.contains(node);

return index;

}

// returns the nth entry in the list
@ConcurrentCheck
public Node getNode(int index){
if (index = 1)
return this.next;
else
return this.next.getNode(index — 1);

Figure 4.8: Node removal

38

© 00U WN -

CON N NN DNNDNDNDNDN S = =
QOO0 U R WNFE OO U kW =O

// Removes a node from the list
// and returns the index
@QConcurrentCheck

public int removeNode(Node node) {

assert this.contains(node);

int snapshotld = Snapshot.initiateProbe();

int index = 1;
Node nodeToCheck = this;
while (nodeToCheck . next != node){

nodeToCheck = nodeToCheck.next;
index = index 4+ 1;

nodeToCheck.next = nodeToCheck.next.next;
node.next = null;

assert !this.contains(node);
RVMThread currentThread =

RVMThread . get CurrentThread () ;
currentThread .snapshotld = snapshotld;

assert this.getNode(index) = node;

currentThread .snapshotld = —1;
Snapshot.completeProbe (snapshotld);

return index;

Figure 4.9: Node removal with snapshots

39

—_ =

= O © 000 Uk Wk -

RVMThread currentThread = RVMThread. getCurrentThread () ;

int snapshotA = Snapshot.initiateProbe();
currentThread .snapshotld = snapshotA ;

int snapshotB = Snapshot.initiateProbe();
currentThread.snapshotld = —1;

Snapshot.completeProbe (snapshotA);
Snapshot.completeProbe (snapshotB);

Figure 4.10: Nested initialization of snapshots

node removal for single-threaded programs, as this is sufficient to demonstrate this new type of
assertion.

We want to write an assertion that checks if the value that we return at the end of this method
pointed to the index of the removed node. We should examine this index in the preconditions
of the method, as the execution of the method will ensure that the node is no longer in the list.
The index, however, is only available after the execution of the method.

Figure [£.9] shows a version of the removeNode method that uses a snapshot to delay the eval-
uation of the assertion until the index that we need is available. The program takes a snapshot
at line 7, and then performs the deletion. The desired assertion on the index of the executed
Node is performed on line 24, inside the snapshot scope of the pre-state. The index of the deleted
object is available at this point, and is used by the assertion.

4.4 Extended semantics of snapshots

The snapshots in the e-STROBE framework will inherit the semantics of the STROBE frame-
work, described in Section [3:3] However, the snapshot interface introduced in Section [£.1] makes
it possible to break the isolation of the execution of snapshots, that is present during the exe-
cution of asynchronous assertions. This section describes the extended semantics of snapshots
with a description of our new snapshot interface, and describe the behaviour of a program that
accidentally accesses object in snapshots scope that are not in the associated snapshot projection.

4.4.1 Initializing snapshots

Initializing a snapshot will trigger the e-STROBE framework to begin with the incremental
preservation of the state of the heap at the moment of creation. The initialization of a snapshot
is atomic, and happens transparently: the observed behaviour of the heap outside of snapshot
scopes of this snapshot before the initialization of the snapshot is identical to the observed
behaviour after the initialization.

Initializing a snapshot will always trigger the preservation of the live state of the heap.
Initializing a snapshot within a snapshot scope, as shown in Figure will result in a snapshot
that includes the modifications that were made by all threads during the execution time that
passed between the initialization of the snapshot on line 3 and 6.

40

4.4.2 Destroying snapshots

When a snapshot is destroyed, the program will stop the incremental preservation of its heap
state. All objects copies that were preserved for the snapshot projection will no longer be
associated with the snapshot. The e-STROBE framework will garbage collect these copies,
unless they are still in use to preserve the heap state of another snapshot. The identifier of the
snapshot is no longer valid after the destruction of the snapshot.

Just like initialization, the destruction of a snapshot is atomic, and happens transparently: the
observed behaviour of the heap outside of snapshot scopes of this snapshot before the destruction
of the snapshot is identical to the observed behaviour after the destruction.

4.4.3 Sharing snapshots between threads

Snapshots will preserve a snapshot projection of the heap as it was at the time of initialization.
This projection is not bound to a certain thread: it is valid in all threads of the program.
Snapshot identifiers can therefore be shared between the threads of the programs.

Asynchronous assertions are implemented using the sharing of snapshot identifiers. A snap-
shot is initialized in the program thread that requests the execution of the asynchronous assertion,
and used by the checker thread to execute the asynchronous assertion in a snapshot scope.

4.4.4 Snapshot lifetime

A snapshot identifier is valid from the moment of initialization until the destruction of the
snapshot. We define this period as the lifetime of a snapshot. Snapshot scopes of the associated
snapshot are only valid within the lifetime of the snapshot. All snapshot scopes must therefore
start after the creation of a snapshot, and finish before the snapshot is destroyed.

The e-STROBE framework does not check if a snapshot identifier is still in use when a
snapshot is destroyed. The program is responsible for creating, using and destroying snapshots
in the correct order.

4.45 Snapshot scopes

The e-STROBE framework uses a snapshot projection of the heap inside the snapshot scope. The
framework guarantees that all accesses to objects that exist in this projection will be redirected to
a version of the object that represents the state of the object at the time of snapshot initialization.

Objects that are created after the initialization of a snapshot are not included in the snapshot
projection. Snapshot scopes will use the live state of these objects. These objects can therefore
change during the evaluation of the snapshot scope, making assertions that use them subject to
assertion interference.

A program thread executing on a snapshot scope is not allowed to change objects that exists
in its snapshot projection, but the e-STROBE framework will not check this. Changing these
objects will not change the version of the object that is in the snapshot projection, but will
update the live state of an object, leading to unpredictable behaviour in the program. Making
such changes is not necessary: assertions are transparent, and should therefore not make any
changes that are visible to the rest of the program.

It is allowed to create new objects from within a snapshot scope. These new objects are
created after the initialization of a snapshot, and are therefore not included in the snapshot
projection. In this case, there is no risk of assertion interference: at the time of creation, the
current thread is the only thread with a reference to the newly created object. The newly created

41

0O Uk WN

RVMThread currentThread = RVMThread. getCurrentThread () ;

Node a = new Node() ;
Node b = new Node() ;
Node ¢ = new Node() ;
a.addNode(b) ;
b.addNode(c) ;

int snapshotld = Snapshot.initiateProbe ();

? ;

b.removeNode (¢
d = new Node ()
d.addNode(b) ;

currentThread .snapshotld = snapshotld;

assert d.next.next = a.next.next;

currentThread.snapshotld = —1;
Snapshot.completeProbe (snapshotld);

Figure 4.11: Assertion checking on an invalid program state

next

next next next next
(a) Initial list (b) b.removeNode(c) (c) d.addNode(b)

Figure 4.12: List modification

object can therefore only be accessed by the current thread, ruling out any possibility of assertion
interference.

4.4.6 Using local variables

Local method variables can give a program executing a snapshot scope access to new objects that
are created outside of the snapshot scope. These objects are also not included in the snapshot
projection. Using these local variables enables a program to execute statements that use objects
from both the snapshot projection and the live state of the program. In that case, the e-STROBE
framework can no longer guarantee that such a statement is evaluated against a valid state of
the program.

To illustrate this, Figure shows a program that contains an assertion that is evaluated
against an invalid state. The program uses the Node class described in Figure[f.1] and [3.1] to create
a list with three Nodes: a and b and c¢. The programmer intended to modify the list by replacing
Node a with Node d. He makes a mistake, and also removes ¢ from the list. The correctness of
this faulty replacement is checked by an assertion, that is executed in the scope of the previously
taken snapshot.

Figure shows the several states of the list during the execution of the program. Fig-

42

. next @ . next .
($
next

"' snapshot ‘ 1 snapshot
@ next @ next @ . next . next ‘
(a) Initial list (b) b.removeNode(c)) d.addNode(b)

Figure 4.13: List modification with snapshots

ure [£.13] shows the same states, including the snapshot copies that are made by the e-STROBE
framework. The nodes that are included in the snapshot projection are highlighted. Nodes a

and b and ¢ are included in the snapshot projection, while d is not. Therefore, the assertion on
line 17 of Figure will observe the following lists:

. next . next @ next @ next @

This representation of the list that starts with element d does not correspond to any state
of the program, and is only visible when objects outside of the snapshot projection contain
references to objects that are in the projection, creating the illusion of a combined state.

The assertion in Figure [£.11] tries to compare the list d in the post-state with the list a in
the pre-state. The e-STROBE framework does not give any protection against such an incorrect
combination of states. The program itself is responsible for maintaining the correct state if
objects are used that are not in the snapshot projection. A program can do this either through
the pre-calculation of results or through the copying of objects, as described in Section

4.5 Implementation

4.5.1 Snapshots

The STROBE framework associates snapshots with checker threads and uses their identifiers to
initialize and use the different snapshots that can co-exists in the framework. The framework
uses the Snapshot class to keep track of the snapshots that are active in the program, and uses
this information in the object barriers of JikesRVM to check if an object should be copied to
preserve its state.

The e-STROBE framework does not associate a snapshot with a checker thread, but uses
separate snapshot identifiers to keep track of the active snapshots in the program. These identi-
fiers are generated by the framework when a snapshot is initialized. The e-STROBE framework
keeps track of these identifiers in an array, allowing programs to use 1000 snapshots simultane-
ously. When a snapshot is destroyed, the identifier is deactivated and can be re-issued by the
e-STROBE framework for a future snapshot. The limit of 1000 snapshots is chosen arbitrarily.
The e-STROBE can be compiled with a different limit if needed.

All objects in the e-STROBE framework will maintain a forwarding array for their snapshot
copies, just like the STROBE framework. The e-STROBE framework uses a forwarding array
that can contain up to 1000 object copies (one for every snapshot), compared to 12 (one for every
checker thread) in the STROBE framework. Therefore, it will consume a little more memory
per object.

43

For every snapshot, the framework keeps a list of objects that have a snapshot copy for the
snapshot. This list is used to remove the copies from the forwarding array when a snapshot
is destroyed, preventing that the copies are associated with a new snapshot when the snapshot
identifier is re-issued, and allowing the garbage collector to clean up the copies that are no longer
used.

452 Barriers

Like the STROBE framework, the e-STROBE framework uses the object barriers in JikesRVM to
select the correct object copy when a field of an object is read, and to check if an object copy has
to be made when an object is modified. The e-STROBE framework uses the snapshot identifiers
instead of the checker identifiers to perform this check. The rest of the barrier implementation
is unchanged.

The object read barriers in the STROBE framework are only used for methods with the
@ConcurrentCheck annotation that are executed by checker threads, and are therefore not enabled
for other threads in the program. The e-STROBE framework still uses this annotation, but
enables the read barriers for methods with the @ConcurrentCheck annotation on all threads in the
program.

4.5.3 Asynchronous assertions

Checker threads in the e-STROBE framework have both a checker identifier and a snapshot
identifier. The checker identifier is no longer used to identify the snapshot, but is still maintained
for logging purposes.

The evaluation of an asynchronous assertion is modified to make use of the new snapshot
identifiers. Evaluation is performed in two steps: the program thread prepares the asynchronous
assertion for execution and wakes the checker thread, then the checker thread executes the
assertion.

The program thread will initialize the snapshot during the preparation and receives its snap-
shot identifier. It then switches the checker thread to the scope of the snapshot that was just
created, and wakes up the checker thread. Figure shows this process of waking up a checker
thread in pseudo-code.

The checker thread executes the assertion, and switches back to the live scope afterwards.
The result of the assertion is then saved in the CHAFuture, giving the program access to the
result. The snapshot is destroyed and the checker thread wakes up the program threads that are
waiting for the result. Figure shows the pseudo-code for this checking process.

4.6 Testing snapshots in multithreaded programs

The previous sections of this chapter describe how snapshot scopes in the e-STROBE framework
are used to protect assertions against assertion interference. We give an example of an assertion
that is protected against interference in Figure We did not observe an assertion violation
during repeated execution of this program in the e-STROBE framework, but this does not prove
that the framework works for multithreaded programs: the framework might affect the timing
of the program in such a way that assertion interference does not occur during the execution of
the testDisplay () method.

Therefore, we test the behaviour of the e-STROBE framework in multithreaded programs
with a program that synchronizes two threads in such a way that it ensures assertion interference

44

N O U WN -

© 00U WN -

e
W =OoO

public void startMe(CHAFuture future)

{

CheckerThread checker = waitForFreeChecker () ;
checker.checkToDo = future;

checker.snapshotld = Snapshot.initiateProbe ();
checker .wakeUp() ;

(a) Waking up a checker thread

public void run(){
while (true) {
waitForAsynchronousAssertion () ;
checkToDo.result = checkToDo.compute () ;

int snapshotld = this.snapshotld;
snapshotld = null;

Snapshot.completeProbe (snapshotld);
checkToDo. notify All () ;
checkToDo = null;

(b) Executing an asynchronous assertion

Figure 4.14: Executing an asynchronous assertion

in the program. We can check that the framework behaves as we specified if this interference
does not occur if we execute the same assertion in a snapshot scope.

Figure and [£.16]show a new version of the Timer and Display classes that uses a CyclicBarrier
to synchronize the Timer and Display thread in such a way that the timer is incremented during
every execution of the getTime() method of the Display class. This method is used twice by the
assertion on line 24 of Figure [£.16] ensuring that an assertion violation occurs if the assertion is
evaluated in the live scope of the program.

This assertion violation is not observed when the assertion is placed in a snapshot scope, as
shown in the example. This demonstrates that snapshot scopes correctly preserve the associated
snapshot projection of the heap in multithreaded programs.

Similarly, the BrokenDisplay class in Figure [£.4] will never trigger an assertion violation if the
timer in Figure is used. However, this display is obviously broken. Again, adding a snapshot
scope to the testDisplay method, as shown in Figure [£.17] removes the assertion interference and
causes the assertion to fail every time.

The snapshot tests in this section use assertions that are not pure: the Timer will behave
differently in a program executed with assertions and a program executed without them. We
normally do not allow assertions to change the behaviour of the program. However, this incorrect
use of assertions gives us an easy way to check that snapshot scopes in the e-STROBE framework
will indeed protect assertions against assertion interference.

45

OO U W

public class Timer extends Thread {

private Integer time = O0;
private CyclicBarrier barrier;

public Timer (){

barrier = new CyclicBarrier (2);
}
@ConcurrentCheck
public int getTime () {
try {
barrier.await(); // start timer
barrier .await (); // wait for timer to finish
return time;
} catch (InterruptedException e) {
System.out.println (”Barrier interrupted.”);
} catch (BrokenBarrierException e) {
System.out.println (”Barrier broken.”);
}
return 0;
}
@Override
public void run(){
try {
barrier.await (); // wait for Display.getTime()
this.time = this.time + 1;
barrier.await (); // notify Display.getTime()
barrier .await (); // wait for Display.getTime()
this.time = this.time + 1;
barrier .await (); // notify Display.getTime()
} catch (InterruptedException e) {
System.out.println (”Barrier interrupted.”);
} catch (BrokenBarrierException e) {
System.out.println (” Barrier broken.”);
}
}

Figure 4.15: Timer synchronized with cyclic barriers

46

© 00Uk WN

public class Display {

private Timer timer;
public Display (Timer timer){

this.timer = timer;
}

@ConcurrentCheck
public int getTime(){ return timer.getTime(); }

@ConcurrentCheck

public static void testDisplay (){
Timer t = new Timer () ;
t.start ();

Display dl1 = new Display(t);
Display d2 = new Display (t);

RVMThread currentThread = RVMThread. getCurrentThread () ;

int snapshotld = Snapshot.initiateProbe();
currentThread .snapshotld = snapshotld;

assert dl.getTime() == d2.getTime();

currentThread .snapshotld = —1;
Snapshot.completeProbe (snapshotld);

Figure 4.16: Display class with synchronized getTime() calls

47

public class BrokenDisplay extends Display{
public BrokenDisplay (Timer timer){ super(timer); }

@ConcurrentCheck
public int getTime(){ return super.getTime() — 1; }

@ConcurrentCheck

public static void testDisplay (){
Timer t = new Timer();
t.start ();

Display d1
Display d2

new Display (t);
new BrokenDisplay(t);

RVMThread currentThread = RVMThread. getCurrentThread () ;

int snapshotld = Snapshot.initiateProbe();
currentThread.snapshotld = snapshotld;

assert dl.getTime() = d2.getTime();

currentThread .snapshotld = —1;
Snapshot.completeProbe (snapshotld);

Figure 4.17: Deterministically creating a false negative with a broken display

4.7 Limitations

The e-STROBE framework has some limitations, that prevent the use of the framework in certain
situations. The limitations on the use of native types and static types are directly inherited from
the STROBE framework, while the limitations regarding initialization and state transitions,
described in Section and are solved by the e-STROBE framework. The other known
limitations are described in this section.

4.7.1 The ConcurrentCheck annotation

The STROBE framework makes use of the @ConcurrentCheck annotation to determine whether
read barriers should be compiled into a method. If a checker thread will use a method with this
annotation, object access uses the snapshot projection associated with the assertion, instead of
the live state of the heap.

Every method that wants to use a snapshot projection therefore needs a @ConcurrentCheck
annotation. This limits the use of the framework: as soon as a method call is made to a method
without this annotation, the results are no longer defined.

While the STROBE framework clearly defined the methods that used snapshots, our frame-
work allows for every method on every thread to create snapshots and switch freely between
them. We have therefore tried to replace the @ConcurrentCheck annotation with a different strat-
egy to determine whether read barriers should be enabled when a method is executed. This
strategy enables read barriers if:

e The VM is running (not compiling)

48

e The current thread is not a daemon thread (e.g. the garbage collector) or:

e The current thread has a checkerld of 0 or more (the thread is an asynchronous checker
thread)

Our implementation of this new strategy broke several locking techniques that are used in
Java. Locking is important in multithreaded programs, and not supporting this would conflict
with the goal of this research. The @ConcurrentCheck annotation is therefore still used in the
e-STROBE framework. A different barrier selection strategy will be left as future work.

4.7.2 Supporting Java 7

The STROBE framework does not support Java 7. OpenJML, the runtime assertion checker that
we selected for our case study in the next section, only supports Java 7 and higher. JikesRVM
is therefore patched to ignore the version number of Java 7 programs and treat them as if they
were Java 6 programs. This change allows the programs that we use to run fine, but users of the
e-STROBE framework need to be aware that they may encounter problems if their programs use
Java 7 features.

4.8 Conclusion

The e-STROBE framework allows programs to evaluate statements against a snapshot projec-
tion of the heap, protecting both synchronous and asynchronous assertions against assertion
interference. Furthermore, it allows a program to combine snapshots, providing the protection
for assertions that evaluate properties on state transitions. The framework gives programs the
freedom to postpone the evaluation of snapshots to a later time in the program, allowing the
use of the post-state of the program during the evaluation of the pre-state. This extends the
expressiveness of assertions in a program.

With the e-STROBE framework, the program itself is responsible for the management and
use of snapshots. Protecting assertions in a multithreaded program is therefore significantly more
work, than writing assertions in a single-threaded program. The next chapters will explore the
possibility to use this framework to enhance an existing runtime assertion checker for Java to
automatically make use of snapshots, allowing programs to write assertions in a multithreaded
program with the same ease as writing them in a single-threaded program.

49

50

Chapter 5

OpenJML

The e-STROBE framework creates an environment in which we can evaluate assertions without
the risk of assertion interference. However, manually creating and using snapshots in a multi-
threaded program requires a lot of work, compared to the simple assertions that we can write for
single-threaded programs. We will therefore explore the possibility to have a runtime assertion
checker automatically encapsulate assertions in snapshot scopes.

We have developed such a strategy for a Java runtime assertion checker named OpenJML [2].
Assertions for this assertion checker are written in the Java Modeling Language (JML) [22].
OpenJML uses its own Java-compiler that translates assertions written in JML to Java expres-
sions, and compiles them into assertions in the Java program.

This chapter will give an overview of JML, and show examples of assertions written in JML
for both single-threaded and multithreaded programs. We will show how OpenJML compiles
these assertions into a program, and how these compiled assertions are subject to assertion
interference.

We will modify the OpenJML runtime assertion checker to use snapshots from the e-STROBE
framework in Chapter [6} and show that these snapshots can be used to automatically rule out
assertion interference in a multithreaded runtime assertion checker.

5.1 The Java Modeling Language

JML provides a separate specification language for Java programs, that can be used to describe
the behaviour of a program. Specifications for this language are placed in special annotations,
written on a line that start with //@ or enclosed in a block that starts with /+@ and ends with
@x/. A normal Java compiler will treat these annotations as comments, but a JML runtime
assertion checker will recognize them as parts of a JML specification, and can compile them into
assertions that check the correct use of the program. JML specifications are based on the Design
by Contract style |23] and can be used for many purposes besides runtime assertion checking,
such as documentation and static verification. Burdy et al. [14] provide an extensive description
of the many different tools and applications of JML.

A JML runtime assertion checker does not require a specification to describe all aspects of
an the entire program. An assertion checker will check the parts that are described by JML and
execute the rest of the program as is. This enables an assertion checker to perform checks on
programs that make use of libraries without a JML specification, and therefore without any JML
assertions.

51

JML can be used as a specification language for both single-threaded and multithreaded
programs. The specification of a multithreaded program has to account for program interference.
In general, this means that the program can guarantee less: a timer that is used by one thread
can guarantee that its value is increased by exactly one after incrementation, while a timer that
is incremented by multiple threads can only guarantee that its value is increased.

The Java Modeling Language is a large language, that contains features to specify the entire
Java language. The feature set of JML is partitioned into language levels. Level 0 defines the
basic features of JML, such as preconditions, postconditions, invariants and model variables. All
tools that claim to support JML should supported these features. Higher levels define features
that are used less frequently, and can be implemented by a JML tool afterwards.

The OpenJML runtime assertion checker that we use in this thesis implements all level 0
features and a large part of the features of other language levels. Our changes will only support
method specifications of language level 0. We will therefore only describe the features of this
basic language level in this chapter.

5.2 Writing a JML specification

We will describe the basic functionality and syntax of JML by means of two examples: a JML
specification for the Node class in Figure [3.1] and a specification of the Timer class in Figure [3.8
These specifications are shown in respectively Figure[5.1]and Figure The Node class contains a
specification that is only correct for single-threaded executions, while the specification of the Timer
describes the behaviour of the timer in both single-threaded and multithreaded environments.

5.2.1 Preconditions and postconditions

The behaviour of a method can be described in JML with preconditions and postconditions, using
the requires and ensures keywords. These conditions are written as expressions in the normal
Java syntax, with some specific JML extensions. Figure[5.1]shows preconditions on lines 9 and 20
and postconditions on lines 10, 11, 12 and 21.

JML defines extra operators that can be used in JML expressions. The \old operator in
postconditions, for example, is used to evaluate part of the expression in the pre-state of the
method. The result of a method is available in the postcondition through the \result keyword.
The Node class uses the \old operator on line 11 and the \result keyword on line 21.

5.2.2 Public and private specifications

A JML specification can be checked in the method itself and when the method is called. How-
ever, a method caller can only check the parts of the specification that are visible in its scope.
Therefore, method specifications in JML will by default have the same scope as the method they
specify, making the specification visible to both the method itself and its caller. A specification
can not use features of the class that are not visible in this scope.

Sometimes, a private variable is needed in the public specification of a method. For this
purpose, JML allows a private variable to be declared spec_public. This addition will allow the
variable to be treated as a private variable by the implementation, but as a public variable in
the specification of the program. The next property has this annotation, and is used in the
specification of the contains method of the Node class.

52

0O Uk WN =

public class Node {

}

private /*@Q spec_public nullable x/ Node next;

//@ public model int length;
//@ represents length <— getLength();

//@ public ghost Integer calculatedLength

/%@ requires !contains(node);
@ ensures contains (node);

@ ensures length = \old(length) + 1;
@ ensures calculatedLength = length;
Qs /
public void addNode(Node node) {
node.next = this.next;
this.next = node;
//@ set calculatedLength = next = null ? 1
/+*@ requires node != null;
@ ensures \result = (next = node) ||
@ (next != null <> next.contains(node));
@x/
public /+@Q pure %/ boolean contains(Node node){
if (this.next = null)
return false;
else
return this.next = node || this.next.contains(node);
}
public Integer getLength (){
return next = null ? 1 : next.getLength() + 1;
}

Figure 5.1: JML specification of the Node class

53

next.calculatedLength + 1;

5.2.3 Pure methods

We stated in Chapter [2| that assertion should be transparent: a program that is executed with
assertions must behave exactly like a program that is executed without. To ensure this trans-
parency, OpenJML restricts the use of method calls in its specifications to pure methods. Such
methods can be defined in JML by adding the /«@ pure %/ annotation to a method declara-
tion. The contains method in Figure has this annotation, and can therefore be used in the
specification of the addNode method.

5.2.4 Null value

The /*@ non_null x/ annotation in a field declaration is used to indicate that a field is not allowed
to have the null value assigned to it. OpenJML enables this annotation by default, disallowing
null values for all class and instance fields. The /+@ nullable x/ annotation is used to indicate
that the next property may be null. The next field on line 2 of Figure has this annotation.
Otherwise, we would not be able to end the linked list.

5.2.5 Model and ghost fields

Model fields are used to define extra fields in a class that are only used for specification. These
fields are declared using the model keyword. The value of this field is specified with the represents
clause. This clause is used to assign an expression to the model field, that will be used to calculate
its value. Lines 4 and 5 of Figure [5.1] specify the model field length representing the length of the
list, including the node that calculates it.

A different way to specify extra properties in a class, is through the use of ghost fields. These
fields are declared with the ghost keyword, and are also only used in specifications. These fields
act as normal instance fields. They are initialized with a value, and can be updated with the
set clause, placed in a JML comment. Figure defines the length of a list in a ghost field,
on line 17. Note that ghost values are set programmatically, and therefore do not automatically
represent the correct value. In fact, the calculatedLength field can incorrectly represent the length
of the list if the following list is built:

Node a = new Node () ;
Node b = new Node() ;
Node ¢ = new Node() ;
a.addNode(b);
b.addNode(c);

The calculatedLength field of Node a will now (incorrectly) report a length of 2, while the list
has a length of 3. As ghost fields are updated programmatically, it is the responsibility of the
programmer to ensure that ghost fields correctly represent the property they model.

5.2.6 Invariants and constraints

Class invariants define properties of a class that are true throughout the execution of the program.
These properties are defined with the invariant keyword. The Timer in Figure[5.2] like most timers,
will never have a negative time value. This property is specified by the invariant on line 4.
History constraints specify how a class changes during the execution of the program, using
a constraint clause. Every modification of the class must satisfy the constraint defined by the
expression in this clause. A constraint will typically use a combination of two states: one for
the state before a modification and one for the current state of the program. The \old keyword

54

0O ULk W=

public class Timer {
private /+#Q spec_public @«/ Integer time = O0;

//@Q public invariant time >= 0;
//@Q public constraint time >= \old(time);

/*@Q ensures \result >= \old(time) && \result <= time;
Qx/
public /+#@Q pure @x/ int getTime(){ return time; }

@ ensures getTime() > \old(getTime());
@/
public void increase (){
time = time + 1;
}

public static void main(String [] args){
Timer timer = new Timer () ;
timer.increase () ;
timer.increase () ;
timer.getTime () ;

}

Figure 5.2: JML specification of the Timer class

is used in these expressions to refer to the state before the modification of the class. Line 5 of
Figure defines a constraint on the Timer class, that specifies that the time of this timer may
only increase during the execution of the program.

5.3 Translating a JML specification with OpenJML

The OpenJML compiler translates the JML specification of a program into assertions that check
if the program behaves according to its specification. In this section we will describe how this
translation is performed, and which checks are added to the program by OpenJML. We will
describe the OpenJML compiler using the specification of the Node and Timer classes that we
have given in the previous section.

The OpenJML User Guide [17] gives an overview of the use of OpenJML. However, the
translation that is performed by the OpenJML compiler is not completely described in this
document. The translated programs given in this section are therefore obtained with the use of
CFR [3] a Java decompiler. The programs in Figure and are simplified for readability.

5.3.1 Preconditions and postconditions

OpenJML checks the preconditions and postconditions of a method respectively before and after
executing the statements of the method body. The requires clauses of a method specification
are translated into assertions that are executed at the beginning of the method and the ensures
clauses are translated into assertions at the end of the method. The requires clause on line 9 of
Figure 5.1} for example, is translated to the assertion on line 7 of Figure [5.3] and the ensures
clause on line 10 of Figure [5.1]is translated into the assertion on line 13 of Figure[5.3
OpenJML checks the specification of a method twice: in the method itself and in the method
body of the caller. This enables OpenJML to check properties on libraries that are not compiled

95

0O~ Uk W~

public class Node {

}

public Node next;
public Integer calculatedLength = 1;

public void addNode(Node node) {
int oldLength = _JML$model$length();
assert ! _JML_METHODEF__contains(node) ;

node.next = this.next;
this.next = node;
calculatedLength = next = null ? 1 : next.calculatedLength + 1;

assert _JML_METHODEF__contains(node) ;

assert _JML$model$length () = oldLength + 1;
assert calculatedLength = _JMLS$model$length();
}
public boolean contains(Node node){
assert node != null;

boolean result;

if (this.next = null)
result = false;
else
result = this.next = node || this.next. JML.METHODEF__contains(node) ;
assert result = (next == node) ||
(next != null = next._ JML_.METHODEF__contains(node)) ;
return result;

}

private boolean _JML_METHODEF__contains(Node node) {
assert node != null;

boolean result = contains(node);
assert result =— (next = node)
|| (next != null = next._.JML.METHODEF__contains(node)) ;
return result;
}
public Integer getLength (){
return next = null ? 1 : next.getLength() + 1;
}

public int _JML$model$length () {
return getLength ();

}

Figure 5.3: Translated JML specification of the Node class

56

with the OpenJML compiler. OpenJML builds a wrapper method for the checks in the class that
calls the method. This wrapper will first check the preconditions, then execute the method, and
then execute the postconditions. A wrapper of the contains method of the Node class is shown on
line 32 - 40 of Figure[5.3] All method calls to the contains method are replaced by a method call
to this wrapper, except for one actual method call that is done by the wrapper.

The \result keyword in the postcondition of a method represents the return value of a method.
All return statements in the method are therefore replaced by a local result variable, followed
by a jump to the end of the method. The \result keyword in the postconditions is replaced by
a reference to this local variable during the translation of the postcondition expressions. This
process is shown in Figure [5.3] on line 21, 23 and 25.

An \old expression is used in OpenJML in an expression that checks the state transition
between the pre-state and the post-state of a method. OpenJML calculates these expressions
like we did manually in Section [£.3.1} the \old expression is pre-calculated in the pre-state of the
method, and the result of this precalculation is saved in a local variable. The \old expressions
in the postcondition are then replaced by a reference to this variable. This process transfers the
relevant parts of the pre-state to the postcondition, allowing OpenJML to check the properties
of the state transition that is caused by the execution of the method.

5.3.2 Public and private specifications

The OpenJML compiler will treat class fields with a spec_public annotation as public fields, and
compiles them as such. This allows every part of the specification to access these variables. Both
the next field of the Node class and the time field of the Timer class are therefore public after
compilation.

5.3.3 Model and ghost fields

The OpenJML compiler replaces model fields with the expression that is given in the represents
clause. Therefore, every use of the length field in Figure is replaced by a getLength() method
call. Ghost fields, on the other hand, are translated into normal fields. The set statements that
modify the values of ghost fields become assignments in the compiled program.

5.3.4 Pure methods

Pure annotations are used by the syntax checker of OpenJML. The OpenJML compiler adds a
@Pure annotation to these methods, but does not check the pureness of a method at runtime.

5.3.5 Invariants and constraints

Class invariants must hold in every visible state of the program. OpenJML chooses to check
these invariants whenever preconditions or postconditions are checked. This not only results in
invariant checks for the increase method of Figure on line 18 and 25, but also for invariant
checks when the getTime() method is called, on line 20.

History constraints must also hold between two consecutive visible states of a program. Com-
plex constraints can be invalidated by every modification of any class. However, checking all
history constraints in a program after every modification is impossible. OpenJML therefore
treats these constraints as extra postconditions, and checks them whenever the postconditions
of a method are checked.

o7

© 00 O Uk W~

29

public class Timer {
public Integer time = O0;

public int getTime () {

assert
Integer

Integer
assert
assert

assert

return

}

time >= 0;
oldtime = time;

result = time;
time >= oldtime;
time >= 0;
result >= oldtime && result <= time;

result ;

public void increase (){

assert
Integer

time >= 0;
oldtime = time;

int oldgetTime = _JML_.METHODEF__getTime() ;

time =

assert
assert
assert

}

time + 1;

getTime () > oldgetTime;
time >= 0;
time >= oldtime;

public int _JML_METHODEF__getTime (){

assert
Integer

time >= 0;
oldtime = time;

int result = getTime();

assert
assert
assert

return

time >= oldtime;
time >= 0;
result >= oldtime && result <= time;

result ;

Figure 5.4: Translated JML specification of the Timer class

58

5.4 Using OpenJML in multithreaded programs

Section showed an example of a Timer that is simultaneously displayed on two Displays.
This example is subject to assertion interference: the program behaves exactly as specified,
but modification of the Timer during assertion checking leads to the false report of an assertion
violation. We will show in this section that the same situation can occur when we use the
OpenJML runtime assertion checker in a multithreaded environment.

Figure [5.5| shows a JML annotated Timer and Display. The two Displays in this example are
attached to the Timer using the DisplaySet class, instead of the testDisplay method. The assertion in
the testDisplay has been converted to the JML postcondition on line 33 of Figure OpenJML
will translate this specification to assertions in the method body. According to the previous
section, this will result in the following (simplified) translation:

public DisplaySet (Timer t){
assert t != null;
dl = new Display (t);
d2 = new Display (t);
assert dl.getTime()

}

=— d2.getTime() ;

The Timer can increase its value during the execution of the assertion, leading to an asser-
tion violation similar to the assertion violation that we encountered in the testDisplay method
in Figure As we have seen in Section the assertion violation is caused by assertion
interference, and does not represent a fault in the program. The OpenJML runtime assertion
checker is therefore not trustworthy if it is used for the checking of multithreaded programs.

Analogous to Section[4.2] OpenJML might fail to detect an assertion violation if the DisplaySet
is initialized with the BrokenDisplay on line 48 of Figure [5.5

/*Q requires t != null;
@ ensures dl.getTime() = d2.getTime();
@x/

public DisplaySet (Timer t){
dl = new Display (t);
d2 = new BrokenDisplay(t);

}

The assertion violation in this example is present in every possible state of the program, and
OpenJML should therefore report it in every execution of the programE

5.5 Implementation of the runtime checker

The next chapter will use the e-STROBE framework to prevent assertion interference in the
OpenJML runtime assertion checks. This solution requires modifications to the OpenJML com-
piler. We will therefore describe the design of this compiler and explain how it adds the associated
assertions to the parts that we will modify: method specifications and method calls.

5.5.1 Design of the OpenJML compiler

OpenJML is built on top of the OpenJDK Java compiler |5]. This Java compiler is built in Java,
and contains the standard components of a compiler [29]: a scanner and parser for syntactical

IThe execution of this example failed, due to an error in OpenJML: super.getTime() — 1 was wrongfully
compiled into this.getTime() — 1. This error has been reported to the OpenJML developers.

59

0O Uk WN

public class Timer extends Thread {
private Integer time = O0;

public /+#@Q pure %/ int getTime (){
return time;
}

@Override
public void run(){
for (int i = 0; i < 10000; i++){
time = time 4+ 1;
}

}

public class Display {
private Timer timer;

public Display (Timer timer){
this.timer = timer;
}

public /+#Q pure %/ int getTime (){
return timer.getTime();
}

}

public class DisplaySet {
private /*Q spec_public %/ Display dl;
private /x@Q spec_public %/ Display d2;

/+*@ requires t != null;
@ ensures dl.getTime() = d2.getTime();
Q@sx /

public DisplaySet (Timer t){
dl = new Display (t);
d2 = new Display (t);

}

public static void main(String [] args){
Timer t = new Timer () ;
t.start ();
DisplaySet d = new DisplaySet (t);

}

}

public class BrokenDisplay extends Display {
public BrokenDisplay (Timer timer){
super (timer) ;

public /+#@Q pure %/ int getTime (){
return super.getTime() — 1;
}

Figure 5.5: JML specification that is subject to assertion interference

60

analysis, several compilation cycles that perform step-by-step contextual analysis on the abstract
syntax tree (AST), and a code generator that desugars the decorated abstract syntax tree into
the bytecode for the .class files of the program. These components are built in such a way that
the behaviour of the compiler can be modified through the extension of the associated Java
classes.

OpenJML uses this extensibility to modify several components of the compiler [18]. The scan-
ner is extended with rules to recognize JML comment blocks. The parser converts these blocks
into JML specification nodes in the abstract syntax tree (AST). These nodes are then visited
by the JML tree parser during contextual analysis, and translated to the associated assertion
statements in the decorated AST. These assertion statements are regular Java statements, and
will be converted into bytecode by the OpenJDK code generator.

5.5.2 Adding specifications to the AST

OpenJML extends the lexical scanner and parser with the ability to recognize JML comment
blocks. The scanner parses extra keywords within these blocks to support the JML syntax,
including requires, \old and ensures. Parsing these comment blocks will produce subtrees that
can be added to the abstract syntax tree of the program.

The JML specifications are added to the node that they describe: preconditions and post-
conditions are added to the method that they belong to, and invariants, model fields and history
constraints are added to the class that they are defined for. The OpenJDK abstract syntax tree
does not provide the possibility to add these extra nodes to the methods and classes. Therefore,
the OpenJML compiler extends the OpenJDK nodes with its own version that provides the pos-
sibility to collect these specifications. A method declaration, saved in the JCTree.JCMethodDecl
node in OpenJDK is specialized in OpenJML into a JMLTree.JMLMethodDecl, and a class, saved
in the JCTree.JCClassDecl is specialized into a JMLTree.JMLClassDecl.

5.5.3 Converting the specification to assertions

OpenJML inserts an extra step into the context analysis compilation phase of OpenJDK that
translates the OpenJML AST nodes into the program statements that are needed to check the
specification. This step will use a tree walker to visit the entire syntax tree, collect all the
specifications that apply to a certain part of the program, and build the statements that check
this specification.

When a JMLTree.JMLMethodDecl is visited, the tree walker will collect all the preconditions,
invariants and \old expressions and insert them as extra statements at the beginning of the
method, as described in Section [5.3] Similarly, postconditions, invariants and history constraints
are inserted at the end of the method.

A method call, identified by the JMLTree.JMLMethodInvocation node, is replaced by a method
call to a newly created method that is placed in the caller’s class. This method will wrap the
actual method call into precondition and postcondition checks, as described earlier in Section [5.3]

5.6 Conclusion

JML allows a program to reason about the behaviour of the program, instead of the checks that
are needed to check that behaviour. The OpenJML runtime checker automatically compiles a
JML specification into statements that check if the execution of a program behaves correctly
according to its JML specification, and report if it behaves differently.

61

OpenJML checks the correct execution of a method by means of statements that are placed
at the beginning and at the end of the method body. These statements check that a method is
called under the right circumstances, and that the execution of the method body produces the
correct result.

JML specifications can be used in both single-threaded and multithreaded programs. Open-
JML checks in multithreaded programs, however, are subject to assertion interference.

Chapter [4] provides a solution for assertion interference that requires assertions to be placed
in snapshot scopes. We need to place these scopes around the OpenJML checks to have the
same protection in OpenJML. The next chapter will extend the OpenJML compiler to use these
snapshot scopes for the checking of method specifications.

62

Chapter 6

Multithreaded OpenJML

OpenJML converts specifications into assertions, allowing the user to focus on the behaviour
of the program, instead of on the checking. The conversion, however, does not take assertion
interference into account. This makes OpenJML untrustworthy for multithreaded programs: the
runtime assertion checker might not detect an assertion that could have been detected, or might
report an assertion violation for a failure that is not in the program.

This chapter will discuss the integration of snapshots in OpenJML. The e-STROBE frame-
work will be used to protect OpenJML assertions from assertion interference. The integration
will be done in the OpenJML compiler, and requires no changes to the specification. We will
present this integration as a proof of concept. Therefore, we will only use it to protect the checks
that are performed in the pre-state and post-state of a method. However, the techniques that
are used in this proof of concept will be universal, and can be applied to the rest of OpenJML
in a future project.

We will begin this chapter with an analysis of the OpenJML assertions that need to be
protected. We will discuss when snapshots need to be taken and which statements should be
executed in a snapshot scope. We will show that the use of snapshot scopes will not change the
behaviour of OpenJML assertions, apart from the exclusion of assertion interference,

We will then present the changes that we made to the OpenJML compiler. We will check
that these changes will indeed protect the OpenJML assertions, both through decompilation
and through the execution of a program with locks, that deterministically triggers assertion
interference.

Finally, we will discuss to what extend we have protected OpenJML from assertion interfer-
ence, and give an overview of the limitations of our solution, and the work that still needs to be
done.

Build and usage instructions for the e-STROBE OpenJML extensions can be found in Ap-
pendix [B] This appendix also contains the location to the source code and binaries for these
extensions.

6.1 Protecting OpenJML with snapshots

OpenJML checks the behaviour of a method by placing checks at the beginning and end of a
method. Section [5.3] shows that these checks are not limited to the preconditions and postcon-
ditions of the method, but will also contain invariants and history constraints. All these checks
can use objects on the heap, and are therefore subject to assertion interference in multithreaded
programs.

63

public void addNode(Node node) {
RVMThread currentThread = RVMThread. getCurrentThread () ;

int preld = Snapshot.initiateProbe();
currentThread.snapshotld = preld;

int oldLength = _JMLS$model$length();
assert !_JML_METHODEF__contains(node) ;
currentThread.snapshotld = —1;
Snapshot.completeProbe (preld);

node.next = this.next;
this.next = node;
calculatedLength = calculatedLength + 1;

int postld = Snapshot.initiateProbe ();
currentThread .snapshotld = postld;
assert _JML_METHODEF__contains(node) ;

assert _JML$model$length () = oldLength + 1;
assert calculatedLength =— _JMLS$model$length();
currentThread .snapshotld = —1;

Snapshot.completeProbe (postId);

}

Figure 6.1: Protecting OpenJML checks with snapshots

We have modified OpenJML to use snapshots to protect these checks. We have done this
by placing snapshots scopes, as explained in Section one scope around all the OpenJML
generated statements in the pre-state of a method and one around all the statements in the post-
state of a method. Figure demonstrates the use of snapshots to protect the addNode method
in Figure[5.3] The snapshots that we use in OpenJML are always created in the statement before
entering a snapshot scope, and destroyed in the statement after switching back. We will discuss
the placement of these snapshot scopes and check if all possible uses of local variables satisfy the
constraints that we described in Section [£.4.6]

6.1.1 Placement of snapshot scopes

In this prototype, we will consider preconditions, postconditions, invariants, history constraints,
model fields and ghost fields. The expressions of preconditions, postconditions, invariants and
history constraints can all contain instance fields. These fields may be accessed by all threads, and
the accesses to these fields in OpenJML thus needs to be performed inside of a snapshot. Note
that all these expressions in OpenJML are pure. Therefore, these statements can be executed in
a snapshot scope. Placing these statements in a snapshot scope does not change the behaviour,
apart from the assertion interference that might have occurred otherwise.

Model fields in OpenJML are replaced by the code they represent. This code is therefore
executed in the snapshot scope. The expression that represents a snapshots scope is pure, and
we can therefore safely execute it in the snapshot scope.

Ghost fields use two types of JML clauses: the initialization of the field and the set statements
to update the field. Both the initialization and the set statements are not executed in the pre-
state or post-state of a method: the initialization is performed when the object is created and the
set statements are placed inside the method bodies of a class. These statements are therefore not
evaluated in the snapshot scopes of the pre-state or post-state. However, the expressions of both
set statements and the initialization of the field are pure, and we can evaluate them atomically

64

0O ULk W=

public class ArrayExample {
private /+#Q spec_public */ Integer [] someArray;

public ArrayExample () {
someArray = new Integer [2];
someArray [0] 1;
someArray [1] 4;

}

//@Q ensures \old(someArray[\result]) = 4;
//@Q ensures \old(someArray[\result].intValue()) = 4;
//@Q ensures \old(someArray[\result] + 2) = 6;
//@Q ensures \old(someArray[\result]) + 2 = 6;
public int someMethod (){
return 1;
}

public static void main(String [] args){
ArrayExample example = new ArrayExample();
example . someMethod () ;

}

Figure 6.2: JML specification of the Node class

if we place them in snapshot scopes, removing the need of locking around these statements.
Exploring this possibility, and discussing the correctness of it, is left for future work.

6.1.2 State transitions in OpenJML

Our snapshot implementation for OpenJML will always take a snapshot, and immediately switch
to it. Therefore, the local variables that are used in a snapshot scope will never be changed
between taking a snapshot and entering the associated snapshot scope.

The only state transitions in OpenJML that are within the scope of this project, are \old
expressions. The evaluation of these expressions is placed in the snapshot scope of the pre-state,
while the result of this expression is used in the post-state.

The \old expression is evaluated before the creation of the local variables of the method
body, and can therefore not use these variables. Therefore, the only local variables that are
used in a snapshot scope are in the post-state, and contain the pre-calculated result of the \
old expressions. The snapshot of the post-state is created after the last modification of these
variables. This particular use of local variables in snapshot scopes is therefore correct, and will
not change the behaviour of the checks or the program, apart from the timing.

A special local variable that is used in the program itself, and in the snapshot scopes is the
result of the method. This variable is only changed during the execution of the program, and
is only valid after the execution of the program body. However, the use of this keyword in \old
expressions can trigger the use of this field in the pre-state, as shown in Figure|6.2] This example
contains an array, and uses the \result keyword to check the value of a particular element in the
array. The assertions on line 11 and 12 of this example will trigger an assertion violation, but
the assertions on line 10 and 13 are correct. OpenJML detects the combination of array access
and the \result keyword, and saves a copy of the entire array. The array element that the old
expression represents is then selected in the post-state. A simplified OpenJML translation of the
method is as follows:

65

public int someMethod () {
RVMThread currentThread = RVMThread. getCurrentThread () ;
int result;
int preld = Snapshot.initiateProbe();
currentThread .snapshotld = preld;
Integer old2 = someArray[result].intValue();
Integer old3 = someArray[result] + 2;
Integer [|] arrayClone = someArray.clone();
currentThread .snapshotld = —1;
Snapshot.completeProbe (preld);

result = 1;

int postld = Snapshot.initiateProbe();
currentThread .snapshotld = postld;

assert arrayClone[result] = 4;
assert old2 = 4;

assert old3 = 6;

assert arrayClone[result] + 2 =— 6;
currentThread .snapshotld = —1;

Snapshot.completeProbe (postId);

return result;

Figure 6.3: JML specification of the Node class

public int someMethod (){
int result;
Integer o0ld2 = someArray|[result].intValue();
Integer old3 = someArray[result] + 2;

Integer [] arrayClone = someArray.clone();
result = 1;

assert arrayClone[result] =— 4;

assert old2 — 4;

assert old3 =— 6;

assert arrayClone[result] + 2 = 6;
return result;

This shows us why two of the postconditions of someMethod fail: these expressions do not
match the specific pattern of an array access with the result as the index, and do not trigger
this specialized translations. Therefore, old2 and old3 will have the values 1 and 3, instead of the
expected values 4 and 6.

Figure [6.3] shows the snapshot scopes that we place around the OpenJML statements in the
pre-state and post-state of someMethod. Two additional local variables are now used in snapshot
scopes: arrayClone and result. The result variable is only changed by the program itself, and will
never be changed inside the snapshot scopes. Therefore, the use of snapshot scopes will not
change the behaviour of these expressions. The arrayClone variable is created in the pre-state,
and used in the post-state. The snapshot projection of the post-state includes the arrayClone
array. Therefore, the use of snapshots does not change the behaviour of expressions that use this
array copy.

66

0O ULk W=

protected JCVariableDecl createAndGoToSnapshot(DiagnosticPosition
preferredPosition , ListBuffer <JCStatement> stats) {
JCExpression snapshotExpression =
methodCallUtilsExpression (preferredPosition ,” createSnapshot”);

Name n = names. fromString (Strings.strobeSnapshot + (++4count));

JCVariableDecl vd = treeutils.makeVarDef(snapshotExpression.type, n,
methodDecl.sym, snapshotExpression);

stats.add(vd);

JCExpression ex = treeutils.makeldent(methodDecl.pos,vd.sym) ;
JCStatement switchCall =

methodCallUtilsStatement (preferredPosition , ”"switchToSnapshot”, ex);
stats.add(switchCall);

return vd;

(a) Creating and immediately switching to a snapshot

protected void switchBackAndDestroySnapshot(DiagnosticPosition preferredPosition ,
JCVariableDecl vd, ListBuffer<JCStatement> stats) {

// switch to live
JCExpression ex = treeutils.makeldent(methodDecl.pos,vd.sym) ;
JCStatement createCall =

methodCallUtilsStatement (preferredPosition , ”switchToLive”, ex);
stats.add(createCall);

// destroy smnapshot
ex = treeutils.makeldent (methodDecl.pos,vd.sym);
JCStatement switchCall =
methodCallUtilsStatement (preferredPosition , ”destroySnapshot”, ex);
stats.add(switchCall);

}

(b) Switching to the live state, and destroying the snapshot
Figure 6.4: AST utility methods for snapshots

6.2 Implementation

Implementing snapshots for OpenJML does not add any syntax to the JML specifications, and
therefore only needs changes to the contextual analysis of the OpenJML compiler. During this
phase, OpenJML will insert the extra statements that evaluate the preconditions and postcon-
ditions of methods.

We will first discuss the helper methods that are added to the compiler to ease the insertion
of snapshots in the code. We will then discuss the use of these methods to protect the checks in
the method itself, and in the method caller.

6.2.1 Creating helper methods for snapshots

In our OpenJML snapshot implementation, the start of a snapshot scope will always occur
immediately after the creation of a snapshot. Therefore, we wrote a helper method, that created
the AST nodes to add both these statements to a program. This helper method is shown in

67

TUk W N = Tk W N~ TUk W N~

Tk W N =

public static int createSnapshot (){
if (RVMThread. getCurrentThread () . snapshotld != —1)
return —1;
return Snapshot.initiateProbe ();

}

(a) Creating a snapshot

public static void switchToSnapshot(int snapshotid){

if (snapshotid = —1)
return;
RVMThread . getCurrentThread () . snapshotld = snapshotid;

}

(b) Switching to a snapshot

public static void switchToLive(int snapshotid){

if (snapshotid = —1)
return;
RVMThread . getCurrentThread () . snapshotld = —1;

}

(c) Switching back to the live state of the heap

public static void destroySnapshot(int snapshotid){

if (snapshotid = —1)
return;
Snapshot.completeProbe (snapshotid);

}

(d) Destroying a snapshot

Figure 6.5: Runtime utility methods for snapshots

Figure The helper method will return an AST node for the snapshot identifier, that will
be used when the program switches back and destroys the snapshot. These two statements are
also executed consecutively, and are combined in the switchBackAndDestroySnapshot helper method,

shown in Figure

OpenJML expressions can contain method calls. These called methods can themselves contain
snapshot scopes, resulting in the creation of new snapshots, inside snapshot scopes. Section |4.4]
explains that this will lead to the creation of a new snapshot of the live state of the heap. This
will not lead to the intended behaviour of the method call: the statements should be executed
on the same snapshot projection as the outer snapshot scope. The nested snapshot calls are
therefore unnecessary: heap access is already protected by the outer snapshot scope. We have
created four extra snapshot methods, that prevent this nested snapshot switching. These helper
methods are shown in Figure 6.5

With these helper methods, the initialization of a nested snapshot scope will not create a snap-
shot, and instead return snapshot id —1. This identifier is used in the subsequent switchToSnapshot
and switchToLive methods, to prevent the snapshot scope switching that would normally occur.
Finally, calling the destroySnapshot method with the —1 identifier prevents snapshot destruction
of the non-existent snapshot.

68

6.2.2 Using snapshots in a method declaration

We can now use the helper method in Figure [6.4] to insert our snapshot statements around the
OpenJML checks.

OpenJML uses the addPrePostConditions method in the JMLAssertionAdder class to convert a
specification into the checks that are executed in a method body. This method will collect the
OpenJML statements in three lists of statements, that are inserted into the method: preStats,
ensuresStats and exsuresStats. preStats contains all OpenJML code that is executed in the pre-state
of the method, while ensuresStats and exsuresStats contain the statements that are executed when
the method finishes respectively normally, or exceptionally. We will insert our snapshot creation
statements directly after the initialization of these lists, using the previously described helper
methods:

JCVariableDecl preVariable = createAndGoToSnapshot (methodPos, preStats);

JCVariableDecl ensuresVariable = createAndGoToSnapshot(methodPos,
ensuresStats) ;

JCVariableDecl exsuresVariable = createAndGoToSnapshot(methodPos,
exsuresStats);

This will place our snapshot code before any checks that are generated by OpenJML. The
addPrePostConditions method is a method that processes all JML specifications that apply to a
method, and adds all the checks that OpenJML performs at the beginning and end of a method.
All these check are collected in the three lists, and inserted into the AST of the method body at
the end of the addPrePostConditions method. We will add our snapshot destruction statements to
this list, just before this insertions takes place:

switchBackAndDestroySnapshot (methodPos, preVariable, preStats);
switchBackAndDestroySnapshot (methodPos, ensuresVariable, ensuresStats);
switchBackAndDestroySnapshot (methodPos, exsuresVariable, exsuresStats);

These extra statements ensure that the snapshot statements are inserted into the method at
the positions that are described in Section [6.1

6.2.3 Using snapshots in a method call

OpenJML adds its checks when a method is called. We also protect these checks with snapshot
scopes. The statements in this method are not built in the addPrePostConditions method, but in
the applyHelper method of the JMLAssertionAdder class. Again we insert the snapshot statements
at the beginning and the end of the JML statement blocks, analogous to our method body
implementation.

6.2.4 Using @ConcurrentCheck annotations

The e-STROBE framework needs @ConcurrentCheck annotations to activate the snapshot scopes
in a method. Our implementation will not insert these statements to the methods that use
snapshots. Therefore, these statements need to be added manually, when the program is written.
Automatically adding these statements to the program should be trivial, but is left as future work.

6.3 Testing the implementation

We have tested our implementation in two ways. First, we have decompiled our examples, to
verify that our implementation places the snapshots at the places that we specify in Section [6.1

69

Second, we created examples of multithreaded programs that deterministically trigger assertion
interference, as we did before in Section

6.3.1 Decompiling

The correct placement of the snapshot statements is tested by decompiling the OpenJML exam-
ples in this thesis, and checking them by hand. We have decompiled the examples in Figure [5.1}
and using the CFR Java decompiler [3|. This shows us that the JML checks are
indeed protected from assertion interference in the way that we described in Section 6.1} De-
compilation shows that the snapshots scopes that we added in the applyHelper method are not
only used for the checking of method calls, but also add other checks to the code, such as checks
on runtime exceptions. These checks are therefore also protected by our changes. On first sight,
putting these checks in a snapshot scope looks valid, and the correct execution results of our
examples seem to support this. However, more testing is needed to confirm the correctness of
these scopes.

6.3.2 Testing a multithreaded program

We test the correct operation of snapshots in multithreaded programs with a CyclicBarrier, like
we did earlier in Section [£.6] We will use the Timer and Display example in Figure (.5 as a
basis for our test. Just as in Section we use the CyclicBarrier in such a way, that each getTime
method call will trigger an incrementation of the timer. The modified Timer class for this test is
shown in Figure

The execution of the checks in this program triggered an assertion violation, if the program is
compiled with the normal OpenJML compiler. It no longer triggers this violation if the program
is compiled with snapshots and executed in the e-STROBE framework. Similarly, using the
BrokenDisplay as described in Section [5.4] should always trigger an assertion violation. However,
we could not test this, due to the bug in OpenJML that we described in Section [5.4

6.4 Conclusion

We have successfully used the e-STROBE framework to protect the OpenJML method checks
against assertion interference. We did this in a transparent way: snapshots are added in the
OpenJML compiler. Therefore, end users do not need to make any changes to their specifications.

The protection of the method checks in OpenJML has shown that the e-STROBE frameworks
protects the assertions of OpenJML. We have created the basis for the safe use of this runtime
assertion checker in multithreaded programs. This protection can be extended to the entire
OpenJML runtime assertion checker, using the same principles that we used to protect the
method checks. We will leave this as future work.

The integration of e-STROBE with OpenJML shows us that snapshots can be encapsulated
in a runtime assertion checker, shielding the e-STROBE framework from the user. We have
used OpenJML as a proof of concept; other runtime assertion checkers can use the e-STROBE
framework for a similar protection of their checks against assertion interference. Therefore, the
e-STROBE framework is a generic platform to protect multithreaded runtime assertion checking
against assertion interference.

70

0O ULk W=

public class Timer extends Thread{
private Integer time = 0;
private CyclicBarrier barrier;

public Timer (){

barrier = new CyclicBarrier (2);
}
@QConcurrentCheck
public /+@Q pure %/ int getTime () {
try {
barrier.await(); // start timer
barrier.await (); // wait for timer to finish
return time;
} catch (InterruptedException e) {
System.out.println (”Barrier interrupted.”);
} catch (BrokenBarrierException e) {
System.out.println (” Barrier broken.”);
}
return 0;
}
@Override
public void run(){
try {
barrier.await(); // wait for Display.getTime()
this.time = this.time + 1;
barrier.await(); // notify Display.getTime()
barrier .await (); // wait for Display.getTime()
this.time = this.time + 1;
barrier.await(); // notify Display.getTime()
} catch (InterruptedException e) {
System.out.println (” Barrier interrupted.”);
} catch (BrokenBarrierException e) {
System.out.println (” Barrier broken.”);
}
}

Figure 6.6: Timer with cyclic barriers in a JML annotated program

71

72

Chapter 7

Conclusion

7.1 Summary

We have shown that the evaluation of assertions in multithreaded Java programs can give un-
expected results due to assertion interference, caused by the changes that are made by other
threads. Assertion interference makes runtime assertion checkers no longer trustworthy: the
reported assertion violations do not necessarily resemble faults in the program.

We developed the e-STROBE framework, as an extension to the STROBE framework, to
prevent assertion interference. The STROBE framework provided asynchronous assertions to
speed up assertion checking in programs. These asynchronous assertions used snapshots to save
the state of the program that was used by the assertion. However, the use of these snapshots
was limited to asynchronous assertions, preventing the easy integration of snapshots in runtime
assertion checking.

The e-STROBE framework allows statements to be executed in snapshots scopes, that redirect
heap access in such a way that the program acts as if the statements are executed on the
snapshot. We show that snapshots not only can be used to evaluate a single state, but also can
be combined to protect state transition checks from assertion interference. Finally, we tested
that our implementation works as specified.

We applied these snapshots to OpenJML, to protect the checks that this runtime assertion
checker generates against assertion interference. We provide this protection to the assertions
that are evaluated in the pre-state and post-state of a method. However, the concepts that are
used in this proof of concept are universal, and can be extended to support other features of
OpenJML. The full integration of the e-STROBE framework with OpenJML is left as future
work.

7.2 Evaluation
We began this research with the following research question:

Can we create an environment in which we can perform runtime assertion checking
in multithreaded programs without the risk of assertion interference?

We conclude that such an environment can indeed be created. The application, however, is
still limited: the e-STROBE-framework is built on top of JikesRVM, and can therefore not be

73

used in every Java environment. Therefore, protection against assertion interference in a different
virtual machine might require a completely different technique.

The e-STROBE framework is still a prototype, and only implements snapshots for non-
static object reference fields. However, this limitation can easily be overcome, by implementing
snapshot barriers for the other field types.

The integration of the e-STROBE framework with OpenJML uses this safe environment in
such a way that the programmer does not need to worry about snapshots. The programmer can
therefore write his specifications in JML, while the protection against assertion interference is
completely shielded by the OpenJML compiler.

The applicability of the e-STROBE framework is not limited to OpenJML. The framework
can be used without OpenJML, to protect assertions by hand, or to protect other runtime
assertion checkers.

The snapshot technique that we used in this framework is not only applicable to Java. A
similar framework can be built for other programming environments, if the environment can
be modified in such a way that copies of previous heap states are available to the assertion
framework. Such a situation can be created with snapshots, but also through other techniques,
such as byte code instrumentation.

7.3 Future work

During this research, we encountered several topics that would be interesting to explore, but
were outside the scope of this project. We will list these topics in this chapter. Furthermore, we
will list some minor improvements in Section which do not need extensive research, but
primarily take time to implement.

7.3.1 Using snapshots in any Java virtual machine

The e-STROBE-framework is built on top JikesRVM. We can therefore only prevent assertion in-
terference in programs that run in this virtual machine, restricting the usability of our framework
to this specific virtual machine. However, other virtual machines, like OpenJDK [5], currently
do not provide the means to modify the memory model in the way that is required for both the
STROBE and e-STROBE framework.

It would therefore be useful to create a snapshot framework that is not based on the object
barriers in JikesRVM, but on a different technique to redirect heap accesses. Such a technique
might be based on reflection or byte code instrumentation, techniques that are widely available
in different virtual machines.

7.3.2 Detecting possible interference in multithreaded programs

The behaviour of multithreaded programs no longer only depends on its input, but can be
influenced by the timing of a program. Timing errors are often hard to detect, and will only
occur in some executions of the program. This makes it more difficult to detect these errors.

We therefore want to control the timing of a program in such a way, that the timing errors in
a program can be reproduced. It would be even better to integrate such a technique with a tool
like CalFuzzer |21], that analyses a program and executes it with timings that will likely cause
interference in a program.

74

7.3.3 Supporting separation logic in OpenJML

Interference in a program can be removed entirely when separation logic |26] and fractional
permissions |13] are used to specify the intended behaviour of a multithreaded program. Adding
support for these techniques in OpenJML would remove interference entirely, and therefore
remove the need to prevent interference during assertion checking.

7.3.4 Minor improvements

The current e-STROBE framework is still a prototype, and does not protect every heap access
of a program. The biggest limitation is probably the @ConcurrentCheck annotation, that must be
placed above all methods that execute code in a snapshot scope. This prevents the use of the
framework to check external libraries, that will most likely not contain these annotations. The
framework can be improved by activating snapshots for all methods in the program. Such an
implementation must be built with caution, as our attempts to do so had a serious impact on
the locks of a program.

The e-STROBE framework does not yet protect native typed fields and static fields. Im-
plementing barriers for these fields will probably be straightforward. The biggest challenge will
be to prevent recursive barrier calls. The snapshot code in the barrier uses native types for
its properties, and should be rewritten to use a specialized field access, that does not trigger
barriers.

The snapshot support in OpenJML is built as a proof of concept, and only applies snapshots
to the checks on the pre-state and post-state of a method. Apart from the necessary modifications
in OpenJML, extending this support to the entire feature set of OpenJML requires an analysis
of all features, to determine which generated code should be executed in a snapshot and which
code should be executed on the live state of the program.

75

76

Appendix A

Compiling and installing the e-STROBE

framework

This appendix describes the installation and use of the e-STROBE framework. It contains the
instructions for installation from source and for the use of a precompiled version, that has been
tested on a Debian Linux (Wheezy) system.

A.1 Installing from source

The e-STROBE framework has been built using a Debian Linux (Wheezy) system with the
following packages:

e openjdk7
e build-essential
e ant

The sources of the project can be obtained by sending an e-mail to the author, or downloading
them from:

http://www.dnd.utwente.nl/~jorne/e-strobe/e-strobe-source.tar.gz

A.1.1 Compiling the framework

The files can be compiled with the buildit script, provided by JikesRVM. Go to the RVM folder
and use the RVM build tool to compile the project:

bin/buildit —clear—cache —j /usr/lib/jvm/java—1.7.0—openjdk—i386/
localhost production

This build script will place the compiled RVM in the /dist/production_ia32—linux/ folder. More
information about this script can be found on the JikesRVM website:

http://jikesrvm.org/Using+buildit

T

http://www.dnd.utwente.nl/~jorne/e-strobe/e-strobe-source.tar.gz
http://jikesrvm.org/Using+buildit

A.2 Using the framework
A pre-compiled version of the e-STROBE framework is available at:
http://www.dnd.utwente.nl/~jorne/e-strobe/e-strobe-linux.tar.gz

We will presume that the framework is installed in the e—strobe/ folder.
RVM does not ship with a compiler. Programs must be compiled using a standard Java
compiler. Add rvmrt.jar to your build path to use the STROBE features in a program:

javac —cp .:e—strobe/rvmrt.jar Node.java

The rvm command is used to run a program:

e—strobe/rvin Node

78

http://www.dnd.utwente.nl/~jorne/e-strobe/e-strobe-linux.tar.gz

Appendix B
Compiling and using OpenJML

This appendix describes the installation and use of OpenJML in the e-STROBE framework. We
provide both the changes to the OpenJML source and a compiled version of OpenJML, that can
be directly used with the e-STROBE framework.

B.1 Building OpenJML with STROBE extensions

The OpenJML build process uses the Eclipse editor. [6] Build instructions for this project can
be found on the OpenJML website [2].

The changes for the e-STROBE framework can be applied afterwards, using the following
patch:

http://www.dnd.utwente.nl/~jorne/e-strobe/openjml-e-strobe.patch

The e-STROBE extensions require the JikesRVM runtime libraries. Therefore, the following
libraries should be copied from the e-STROBE framework into the OpenJML/otherlibs/ directory

® jksvm.jar
® rvmrt.jar

OpenJML can now be built using the normal build process, described on the OpenJML
website.

B.2 Running OpenJML with STROBE extension

The compiled sources for OpenJML are available in either a .zip or .tar.gz archive:

http://www.dnd.utwente.nl/~jorne/e-strobe/openjml-e-strobe.zip
http://www.dnd.utwente.nl/~jorne/e-strobe/openjml-e-strobe.tar.gz

The e-STROBE OpenJML library can be used in the same manner as the normal OpenJML

library. The examples in this thesis were compiled with the following options:

java —jar ~/openjml—original/openjml.jar —rac —no—internalspecs x*.java

79

http://www.dnd.utwente.nl/~jorne/e-strobe/openjml-e-strobe.patch
http://www.dnd.utwente.nl/~jorne/e-strobe/openjml-e-strobe.zip
http://www.dnd.utwente.nl/~jorne/e-strobe/openjml-e-strobe.tar.gz

80

Bibliography

1]
[2]

[12]

[13]

JSR166: Concurrency Utilities. https://www.jcp.org/en/jsr/detail?id=166, 2004.

OpenJML - formal methods tool for Java and the Java Modeling Language (JML) . http:
//openjml.org/, December 2013.

CFR - another java decompiler. http://www.benf .org/other/cfr/, August 2014.

Java Thread Primitive Deprecation. http://docs.oracle.com/javase/8/docs/
technotes/guides/concurrency/threadPrimitiveDeprecation.html, August 2014.

OpenJDK. http://openjdk.java.net/, August 2014.
The Eclipse Editor. http://www.eclipse.org/, August 2014.

Edward E Aftandilian, Samuel Z Guyer, Martin Vechev, and Eran Yahav. Asynchronous
assertions. In Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications - OOPSLA 11, page 275, New York, New
York, USA, 2011. ACM Press.

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink,
D. Grove, M Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and
M. Trapp. The Jikes Research Virtual Machine project: Building an open-source research
community. IBM Systems Journal, 44(2):399-417, 2005.

Wladimir Araujo, Lionel C. Briand, and Yvan Labiche. Enabling the runtime assertion
checking of concurrent contracts for the Java modeling language. In Proceeding of the 33rd
international conference on Software engineering - ICSE ’11, page 786, New York, New
York, USA, 2011. ACM Press.

Arthur J Bernstein. Analysis of programs for parallel processing. IEEE Transactions on
Electronic Computers, (5):757-763, 1966.

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and water? high
performance garbage collection in java with mmtk. In Proceedings of the 26th International
Conference on Software Engineering, ICSE '04, pages 137-146, Washington, DC, USA, 2004.
IEEE Computer Society.

Steve Blackburn, R Garner, and D Frampton. MMTk: The Memory Management Toolkit.
2006.

John Boyland. Checking interference with fractional permissions. Static Analysis,
2003(9984681), 2003.

81

https://www.jcp.org/en/jsr/detail?id=166
http://openjml.org/
http://openjml.org/
http://www.benf.org/other/cfr/
http://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://openjdk.java.net/
http://www.eclipse.org/

[14]

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of jml tools and applications. Int.
J. Softw. Tools Technol. Transf., 7(3):212-232, June 2005.

Lori A. Clarke and David S. Rosenblum. A historical perspective on runtime assertion
checking in software development. SIGSOFT Softw. Eng. Notes, 31(3):25-37, May 2006.

David R. Cok. OpenJML: JML for Java 7 by Extending OpenJDK. In Proceedings of the
Third International Conference on NASA Formal Methods, NFM’11, pages 472-479, Berlin,
Heidelberg, 2011. Springer-Verlag.

David R Cok. OpenJML User Guide. 2013.

David R. Cok. OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. FElectronic Proceedings in Theoretical Computer Science, 149:79-92, 2014.

H.H. Goldstine and J. Von Neumann. Planning and Coding of Problems for an Electronic
Computing Instrument. Report on the mathematical and logical aspects of an electronic
computing instrument. Institute for Advanced Study, 1947.

Robert H. Halstead, Jr. MULTILISP: A Language for Concurrent Symbolic Computation.
ACM Trans. Program. Lang. Syst., 7(4):501-538, October 1985.

Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen. Calfuzzer: An extensible
active testing framework for concurrent programs. In Proceedings of the 21st International
Conference on Computer Aided Verification, CAV 09, pages 675—681, Berlin, Heidelberg,
2009. Springer-Verlag.

Gary T Leavens and Yoonsik Cheon. Design by Contract with JML, 2006.
Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40-51, October 1992.

Jeffrey Palm, Han Lee, Amer Diwan, and J. Eliot B. Moss. When to use a compilation
service? SIGPLAN Not., 37(7):194-203, June 2002.

Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. ACM SIGPLAN
Notices, 2005.

John C Reynolds. Separation logic: A logic for shared mutable data structures. In Logic
in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on, pages 55—74.
IEEE, 2002.

Edwin Rodriguez, Matthew Dwyer, Cormac Flanagan, John Hatcliff, Gary T Leavens, et al.
Extending jml for modular specification and verification of multi-threaded programs. In
ECOOP 2005-Object-Oriented Programming, pages 551-576. Springer, 2005.

Alan M Turing. Checking a Large Routine. In Report of a Conference on High Speed
Automatic Calculating Machines, pages 67—-69, 1949.

David Anthony Watt and Deryck F Brown. Programming language processors in Java:
compilers and interpreters. Pearson Education, 2000.

Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for java. In ACM
SIGPLAN Notices, volume 40, pages 439-453. ACM, 2005.

82

	Abstract
	Introduction
	Runtime assertion checking
	Multithreaded programs
	Contribution
	Outline

	Problem analysis
	Faults and failures
	Assertions
	Multithreaded programs
	Problem statement
	Related work

	The STROBE framework
	Introducing the STROBE framework
	Using the STROBE framework
	Semantics of snapshots
	Implementation
	Limitations
	Conclusion

	The Extended STROBE framework
	Exposing snapshots to the program
	Using snapshots in multithreaded programs
	State transitions
	Extended semantics of snapshots
	Implementation
	Testing snapshots in multithreaded programs
	Limitations
	Conclusion

	OpenJML
	The Java Modeling Language
	Writing a JML specification
	Translating a JML specification with OpenJML
	Using OpenJML in multithreaded programs
	Implementation of the runtime checker
	Conclusion

	Multithreaded OpenJML
	Protecting OpenJML with snapshots
	Implementation
	Testing the implementation
	Conclusion

	Conclusion
	Summary
	Evaluation
	Future work

	Compiling and installing the e-STROBE framework
	Installing from source
	Using the framework

	Compiling and using OpenJML
	Building OpenJML with STROBE extensions
	Running OpenJML with STROBE extension

	Bibliography

