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Talk: An Eclipse-based Debugger for Embedded Systems Software

Abstract

The identification of software failures in embedded systems software has been recognized as
tremendously important activity due to the fatal consequences caused by erroneous software.
The focus of this talk addresses debugging as technique for the localization and correction of
failure causes.

I will discuss different approaches for embedded systems debugging and in the following
introduce the embedded systems debugger that has been developed in the context of this
diploma thesis. The ESD debugger does not only provide support for standard execution con-
trol capabilities such as breakpoints and single-stepping, but more importantly also supports
reverse execution. Allowing to run execution backwards to previous moments in time is a
very powerful concept and helps to localize defects with more comfort and less time.

While debugging allows to reason about known failures it provides no support to guarantee
system correctness. Model Checking on the other hand is a formal verification technique
that allows to prove system correctness, however, existing model checkers usually provide
insufficient support for counterexample analysis. The ESD debugger creates synergies be-
tween both techniques and allows to analyse model checking counterexamples. The talk is
concluded by a tool demonstration that presents the capabilities of the ESD debugger in more
detail.
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1
Introduction

The extensive and increasing use of embedded systems across industries designates an evo-
lution in science and technology. They are integrated into everyday products, spanning con-
sumer electronics such as mobile phones or digital cameras, transportation systems including
automobiles, trains or airplanes, and medical equipment like MRI scanner or radiation ther-
apy machines. Embedded systems are information processing systems that are embedded
into larger products and that are normally not directly visible to the user [Mar06]. They con-
sist of both hardware and software and are designed to perform a dedicated function. The
dedicated task often comprises of controlling the embedding system and requires frequent
interaction with the physical environment. Embedded systems are most often associated with
the employment of microcontrollers, however, viable hardware also includes Digital Signal
Processors or Programmable Logic Controllers.

An integral part of the design and development of embedded systems consists of validating
the system under study. System validation describes all activities that can be employed to
make sure that the developed system satisfies the given requirements. The respective require-
ments have been determined at an earlier point in the development process, and are are usually
captured by natural language descriptions. It is of uttermost importance for the manufacturer
to perform the validation task with great care to make sure that a shipped product does not
exhibit failures. A failure thereby corresponds to a system behaviour that violates the spec-
ification. Failures which are detected after shipment often cause a large economic burden
and in extreme cases may even lead to the manufacturer’s ruin. For safety-critical embedded
systems, such as flight control systems or airbag control units, the economical consequences
are secondary in case the erroneous system behaviour has consequences on human health or
life.

1
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One approach to system validation is described by the activity of testing. Here, the system
under study is stimulated with certain inputs and the resulting execution is analysed whether
the shown system behaviour satisfies the specification. The total number of existing program
executions usually exceeds the number of tested executions by several orders of magnitude.
The difficulty is then to choose the inputs in a way that a broad range of possible execution are
observed, including rare corner cases. A further technique concerned with system validation
is described by the method of simulation. Simulation follows a similar approach as testing
and analyses the system behaviour with respect to specific input. In contrast to testing, a
simulation study does not work on the system itself, but instead on a system model.

The objective of testing and simulation is the detection of erroneous system behaviour. How-
ever, neither activity provides help to reason about failure causes. The main focus of this work
addresses debugging as technique for the localization and the correction of failure causes. Al-
though incorrect system behaviour can be caused by both erroneous hardware and software,
the focus of this work is limited to software problems. Before we continue with an intro-
duction of source-level debugging, it is important to discuss the terminology associated with
the concept of failure as the respective terms, such as bug, defect, error, fault or infect, are
used in a non-consistent manner across literature. Following the terminology introduced by
Kowalewski [Kow06] we will use the term defect to denote an incorrect part within the pro-
gram code. By this means the term defect is used synonymously with failure causes. Defects
may go unnoticed in case the incorrect code is not executed but usually result in a fault, that
is, an incorrect program state. Faults are internal to the program being executed and similar
to defects may go unnoticed for a long period of time. The moment the program’s behavior
observably violates the specification we speak of a failure. The connection between the in-
troduced terms can be summarized by the following cause-effect chain: Defect → Fault →
Failure. Debugging can then be rephrased as activity which is concerned with the localization
and correction of defects for known failures. An emphasis is on the adjective known, because
debugging is not concerned with detecting failures in the first place.

The localization of software defects can be achieved by manual inspection of the source code
and is, for example, successfully applied in the pair programming technique to prevent the
introduction of defects during the development phase. However, in following development
stages, a manual source code inspection promises only little success to locate defects. This
is primarily because the programmer is required to construct a hypothesis with respect to the
current program state but has no possibility to verify his conception. Instrumenting the source
code with print statements to output the values of key variables can partially make up for this
problem. But at the same time the usage of print statements has the disadvantage that the
programmer has to specify what to display before executing the program. If one realizes that
key information is missing, the program has to be edited to add additional print statements
and then recompiled and restarted. Trying to output as much information as possible usually
makes things worse, as considerable time is necessary to make sense of the output.
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1.1 Source-level debugging

The approach to debugging we are interested in is characterised by the employment of a spe-
cial tool, that is, a source-level debugger. Embedded systems software is usually developed
in a low-level programming language such as C and/or assembly and is compiled to machine
code in a subsequent step. The resulting machine code has little resemblance with the original
code, but as developers think in terms of their source code it is essential that the debugger
is able to provide the illusion that the developed code is directly executed on the target. De-
buggers that possess this ability are referred to as source-level debuggers, henceforth just
debuggers. The responsibility of the debugger is to control the execution of the considered
program, and to provide information about the current program state once execution is sus-
pended. Instead of executing the program until the system crashes or the program terminates
the developer is able to employ breakpoints to suspend execution whenever specified condi-
tions are met. While the program remains in suspended state the developer is able to inspect
provided program context information, such as the current source line, variable values, or the
program call stack. The listed context information target the program’s source-level view.
The provision of architecture specific information, such as the values of existing registers, the
memory content or the current machine instruction is important to receive a complete picture
of the current program state. In order to continue execution, a debugger usually provides
at least two possibilities: An unconditional resume, resumes the program’s execution until
either another breakpoint is hit or the program terminates. Single-stepping allows to exe-
cute the program step-wise, whereas the granularity of a step usually varies between a single
machine instruction or a statement in the source program. An advanced execution control
concept is described by the possibility to reverse execution. It frequently happens that during
debugging the programmer lets execution pass beyond a particular interesting point. Reverse
execution is a powerful concept and allows the programmer to resume backwards to reach the
interesting point without the necessity to restart the program.

1.2 Approaches for Embedded Systems Debugging

Debugging is an activity that is not restricted to embedded systems software but can be per-
formed on other types of software as well. However, debugging embedded systems software
is more difficult than debugging software written for general purpose computers. This is
because embedded systems face tight resource constraints and are usually not able to host
a debugger. Even if the embedded system has sufficient resources to run a debugger, the
situation is complicated further because typically there does not exists a conventional way
to control the debugger, for example, with a keyboard and a monitor. The solution to this
problem is to host the debugger’s user interface on the machine used to develop the program
and either remotely control the target system or simulate the system in software. In the fol-
lowing we will discuss three possible approaches to embedded systems debugging. The first
two approaches remotely connect to the system under study and rely on modified or addi-
tional hardware to provide debugging functionality. The third approach is software-based
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Figure 1.1: In-Circuit Emulator Block Diagram

and employs an instruction-set simulator.

1.2.1 In-Circuit Emulator

An In-Circuit Emulator (ICE) replaces the microcontroller on the target system with an em-
ulation processor, that takes over the tasks of the original microcontroller. The emulation
processor is located on the in-circuit emulator, which is connected to the target hardware
with special adapters. A software frontend, which runs on a host system, is the developer’s
handle to the ICE. The ICE provides full visibility and access into the inner workings of the
emulated microcontroller. Besides the support for standard debug features like run-control,
break- and watchpoints, most ICEs provide additional high-end debug features such as com-
plex triggers, trace memory or performance analysis. Complex triggers support the detection
of complex events such as a write access to a specific memory location in conjunction with
a particular value that is written. With the help of a trace memory component it becomes
possible to record all or specific instructions.

The emulation of a microcontroller is a complex task and is oftentimes realized by using a
special version of the microcontroller, a so-called bond-out device. The term bond-out refers
to the fact that some of the internal signals are brought out to external pins to provide access
to internal data registers, program memory and peripherals. Bond-out devices are expensive
to produce because they basically require a complete redevelopment of the original processor.
The usage of Field Programmable Gate Arrays (FPGA) has been considered as less expensive
alternative to bond-out devices. However, FPGAs will not run as fast as bond-out devices or
emulate analog circuitry such as Digital to Analog Converters.

1.2.2 On-Chip Debugger

On-Chip Debuggers also represent a hardware-based approach to embedded systems debug-
ging but in contrast to in-circuit emulators the debug circuitry is integrated into the target
MCU. The on-chip debug circuitry typically interfaces to the outside world via a serial inter-
face, with JTAG being the most popular standard used. (JTAG, stands for Joint Test Action
Group, the name used for the IEEE 1149.1 standard titled Standard Test Access Port and
Boundary-Scan Architecture). The user’s PC interfaces to the target via an adapter device.
In the case of a JTAG connection this adapter device corresponds to a JTAG Emulator which
provides a JTAG interface and a USB/Ethernet connection to the host PC. The on-chip debug
solution implies a trade-off between the power of the debug logic and the cost for producing
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this additional functionality. As consequence on-chip debuggers provide only limited de-
bug features, typically only run-control and simple breakpoints are supported. From a user
standpoint of view, both approaches, that is on-chip debugging or the usage of a in-circuit
emulator are quite similar. Differences can be found in the price to pay and the powerfulness.
Commercial product names sometimes add an additional burden when trying to distinguish
between these approaches; the AVR JTAG ICE [Atm09] for example is not an in-circuit em-
ulator but rather an on-chip debugger. Nevertheless, because of the problems with emulating
high speed processors, the choice is usually not between on-chip debugging and in-circuit
emulation. The choice is between on-chip debugging and nothing.

1.2.3 Instruction-Set Simulator

A different approach to embedded systems debugging employs an instruction-set simulator
(ISS) that creates a virtual representation of the target system. This software-based approach
allows developers to compile the program code for the target microcontroller but then exe-
cute the resulting machine code on their workstations. The instruction-set simulator provides
insight into the target microcontroller and allows fine grained execution control. Depending
on the simulator’s complexity, it is possible to keep track of the machine cycle count and also
maintain caching and pipelining behaviour of the target microcontroller. A strong point in
favor of the software-based approach is the fact that an ISS may exist prior to actual hard-
ware availability. This makes it possible to integrate debugging much earlier into the design
and development process. In contrast to a hardware-based approach and the typical resource
limits introduced by the high costs of the adapter or emulation devices, the software-based
approach allows multiple developers to work simultaneously without additional costs. An
ISS also eases retargeting, as much of the simulator’s code base can be reused and only ar-
chitecture specific parts must be redeveloped to support a different target system. Despite the
advantages, the usage of an ISS for embedded systems debugging faces difficulties not found
in the former setting. The target system operates in an environment which greatly affects
its behaviour and in order to make meaningful statements about application code executed
within the ISS it becomes necessary to additionally model the target environment. This addi-
tional effort often proves to be very useful as the availability of a microcontroller simulation
model together with an environment model can not only be used for debugging application
code but also allows for formal verification techniques, such as Model Checking.
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1.3 Model Checking

As embedded systems are oftentimes employed in environments where failure is unaccept-
able, the need for validation strategies to prove or disprove the system’s correctness is ob-
vious. The above mentioned validation strategies, that is testing and simulation, are able to
show the existence of failure, however, they are not able to prove their absence. Model Check-
ing on the other hand, is a validation strategy that is able to prove the correctness of systems
and has been successfully applied to embedded systems software. Model checking operates
on a model of the system and verifies it against temporal logics specifications. In case the
model violates a specification a counterexample is generated that exhibits a failure. The anal-
ysis of counterexamples is an important part of the model checking process, but unfortunately
this importance is not reflected in existing model checking tools. A minor objective of this
work is to study how source-level debugging can improve the analysis of counterexamples.

1.4 Contribution

We have developed a source-level debugger for embedded systems software based on an ex-
isting instruction-set simulator, namely the NIPS VM. The working title of the developed
debugger is ESD and stands for Embedded Systems Debugger. The employed NIPS VM is
a virtual machine for state space generation and runs a custom-designed bytecode language.
Transforming an input program to a NIPS bytecode program assigns an operational seman-
tics and is a prerequisite for a subsequent program simulation. Our decision to employ a
software-based approach to debug embedded systems software has primarily been made to
study the symbiosis between debugging and model checking. The NIPS VM supports this
aim as it provides integrated model checking capabilities on top of the state-space generation
functionality.

Integrating both activities, that is debugging and model checking, as close as possible into the
development process has been a further goal of this project. Building on an integrated devel-
opment environment is the best conceivable approach in our opinion. The Eclipse platform
is a precision fit candidate and has been chosen due to its high market share, acceptance and
participation in industry and its support for custom tool integration [Ecl10b].

The ESD debugger does not only provide support for standard execution control capabilities
such as breakpoints and single-stepping, but more importantly also supports reverse execu-
tion. Allowing to run execution backwards to previous moments in time is a very powerful
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Figure 1.4: Embedded systems debugger screenshot

concept and helps to localize defects with more comfort and less time. Despite the unques-
tioned advantages of being able to resume backwards, only few existing debuggers provide
support for reverse execution.

With respect to program context information, our debugger provides source-line information,
values of variables and the program call stack. Context information is also provided for
the machine-level and includes disassembly information, values of registers and memory
contents. A screenshot of the running ESD debugger is depicted in Figure 1.4.

1.5 Organization of the thesis

The thesis is organized as follows:

Chapter 2 (Using the Nips VM as Instruction-Set Simulator) – introduces the NIPS VM and
presents the toolchain for building a NIPS bytecode program. This includes an overview
of an example microcontroller architecture, that is, the architecture of the AVR ATmega16
microcontroller, followed by an explanation how a particular microcontroller architecture is
represented within the virtual machine.

Chapter 3 (Eclipse) – gives an overview of the Eclipse platform and its underlying architec-
ture. The focus is thereby on the mechanisms required for custom tool integration. Addition-
ally we will also discuss the platform’s support for building custom debuggers.

Chapter 4 (Embedded Systems Debugger) – presents the high-level architecture of our debug-
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ger and introduces the existing functionality with respect to controlling the program’s execu-
tion and inspecting program context information.

Chapter 5 (LTL Model Checking) – states the model checking problem for finite transition sys-
tem and the logic LTL and presents an explicit state algorithm based on a nested depth-first
search. Afterwards we will study the connection between debugging and model checking.

Chapter 6 (Case Study) – exemplifies the described content by provision of a case study. The
example program gives a good intuition of the challenges one is faced when trying to locate a
defect. At the same time the case study demonstrates the powerfulness of the ESD debugger.

Chapter 7 (Technical Realization) – provides details regarding the implementation of the ESD
debugger and discusses the developed components including their dependencies. A focus
is thereby on the debug protocol which establishes a connection between debugger and de-
buggee.

Chapter 8 (Related Work) – presents work that is related to this project.

Chapter 9 (Summary and Perspective) – summarizes the described content and discusses
open issues.



2
Utilizing the NIPS VM as

Instruction-Set Simulator

Debugging embedded systems by the use of an instruction-set simulator provides several ad-
vantages compared to a hardware-based approach. Nevertheless, the efficient implementation
of such a simulator is a complex task. This is especially true, if the simulator should be re-
targetable and provide support for different microcontrollers. In this context, different refers
less to similar members of a microcontroller family and more to microcontrollers of different
architecture and vendor. Matters get complicated further, if we take into account that software
for embedded systems does not exist in a uniform representation but can be found in various
forms and language levels. Languages include low-level programming languages such as C
or assembly but also high-level modeling languages such as UML.

The existing NIPS VM [WS05] is not only able to simulate embedded systems, but more
importantly is retargetable and supports embedded systems software in different input lan-
guages. Taking into account that its capabilities also includes model checking, we decided to
employ the NIPS VM as instruction-set simulator for the ESD debugger. The introduction of
the NIPS VM is topic of the following section.

2.1 NIPS Virtual Machine

The development of the NIPS VM has been motivated by the fact that most model checkers
are monolithic and as such do not provide a separation between model, state space generation
and verification algorithms. This makes it cumbersome and most often even impossible to
extend their functionality by integrating additional verification algorithms or to reuse exist-

9
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ing models with different tools. In this context the NIPS VM has been developed as virtual
machine for state space generation which is easily embeddable into custom tools. For the ap-
plication in this work it is important to point out, that possible tools do not only include model
checkers but also simulators. Embedding the NIPS VM into a custom tool requires minimal
work due to the provided simplistic interface. The NIPS VM is implemented as a successor
function and an embedding tool interacts with the machine by requesting the generation of
successor states for a given machine state and by attending callbacks from the machine when
a successor state is produced. Integration into a host application yields a modular architecture
with a clean separation between model, state space generation and algorithms working on top
of the state space. Besides the achievable modular architecture, the NIPS VM is also de-
signed to be language-independent: It runs a simple bytecode which captures the operational
semantics of a high-level modeling or programming language. The bytecode language has
been developed as an abstraction layer between high-level input language and tools and its
generality allows the translation of arbitrary high-level languages. The support for embedded
systems software in various languages and levels is therefore fulfilled. A high-level overview
of a NIPS-based tool interacting with the NIPS VM is shown in Figure 2.1.

Design

The design of the NIPS VM has been influenced by an initial aim to allow the execution
of PROMELA models. From a user’s perspective this influence can be recognized in the
virtual machine’s support for executing concurrent processes that communicate with each
other through channels. At implementation level this influence is manifested in the virtual
machine’s state representation, which corresponds to a state in the model’s state space. It has
been ensured that this representation and the means to operates on it are general enough to
not only support PROMELA, but to allow the execution of arbitrary high-level modeling and
programming languages.The virtual machines state representation is depicted in Figure 2.2
and consists of a global variable space, a set of processes and a set of channels.

The global variable space is of fixed size and cannot be changed during the execution of a
bytecode program. Variables in the global variable space can be identified by their offset and
size in a corresponding byte array.

As already mentioned the NIPS VM supports the dynamic creation of processes. Processes
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have access to the global variable space and additionally may contain process-local variables
in their local variable space. Each process is identified by a numeric process id and further
contains a program counter which holds the address of the bytecode instruction that the pro-
cess will execute next. At any moment a single process will be active and allowed to execute
an atomic process step. A process step is not identical with a single bytecode instruction but
is explicitly defined by two delimiting Step instructions. All bytecode instructions between
those two Step instruction are executed by a process while the remaining processes have no
possibility to interrupt. The active process can rely on a temporary operand stack and tem-
porary registers for expression evaluation. After a process step is finished, the choice which
process will be active next is either resolved by global non-determinism or is already deter-
mined by the fact that the current process is privileged to execute until it decides to release
this exclusive execution right.

The NIPS VM also supports inter-process communication by the use of channels. Channels
can be dynamically created by processes and exists in two variants for synchronous as well
as asynchronous communication.

At this point we have seen, that the NIPS VM enables the execution of high-level modeling
and programming languages but until now we have not discussed how the microcontroller
hardware is represented by the virtual machine. In the following we will provide an overview
of the ATmega16 microcontroller as example for a typical microcontroller used in embed-
ded systems. Subsequently we will investigate how the microcontroller architecture can be
captured by the NIPS VM.

2.2 The ATmega16 microcontroller

The ATmega16 is a CMOS 8-bit microcontroller manufactured by Atmel [Atm05]. The mi-
crocontroller is part of the AVR microcontroller family and based on an enhanced RISC
architecture. The instruction-set contains 131 instructions, and with only a few exceptions
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these instructions execute in a single clock cycle. The ATmega16 is typically used to control
sensors and actuators in industrial control systems.

Memories

The ATmega16 contains 16K bytes of in-system programmable flash memory for program
storage. Flash memory is non-volatile, meaning memory contents are retained when micro-
controller power is lost. Since all instructions are 16 or 32 bits wide, this memory component
is organized into 8K locations, with 16 bits at each location. For addressing these 8K program
memory locations, the ATmega16 features a 13 bit program counter. The ATmega16 is ad-
ditionally equipped with 512 bytes of byte-addressable EEPROM for the storage of data that
must be retained during a power failure or reset. Examples for this kind of data include log-
ging data, fault data or system parameters. While this memory component is also non-volatile
it is too slow to allow efficient computations. The ATmega16 therefore features 1120 byte of
volatile SRAM, which consists of 32 general purpose working registers GPRi (0 ≤ i ≤ 31),
64 I/O registers IORi (0 ≤ i ≤ 63) and 1024 bytes of internal data. During program exe-
cution, the internal data section is used to store global variables, support dynamic memory
allocation of variables, and provide a location for the stack. Addressing the SRAM memory
is supported by five different addressing modes: Direct, Indirect, Indirect with Displacement,
Indirect with Pre-decrement, and Indirect with Post-increment. The general purpose registers
26 to 31 feature the indirect addressing pointer registers. These addressing registers are each
implemented as two 8-bit register and are named X, Y and Z.

Status register

The Status register which is located in IOR63 is updated after an arithmetic operation and
contains information about the result of the executed operation. This information includes
flags which indicate a zero or negative result or a carry or half carry. The status register
additionally contains the Interrupt Enable Flag I and the Bit Copy Storage Flag T.

Stack and stack pointer

A stack is used by the ATmega16 for storing temporary data, for storing local variables and
most importantly for storing return addresses after function and interrupt calls. The stack is
implemented in the SRAM data space and grows from the highest memory location to lower
memory locations. A stack pointer is used to locate the top of the stack and is implemented
as IOR61 and IOR62 in I/O space.

Digital input/output

The ATmega16 is equipped with four 8-bit digital I/O ports designated PORT A to D. Each
port has three registers associated with it: the Data Direction Register (DDRx) is used to set
a specific port pin to either output (1) or input (0). The Data Register (PORTx) allows to
write output data to the port or alternatively control the activation of pull-up resistors in case
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the port pin is configured as input. Lastly, reading the actual value of the port is supported
by the Input Pin Address (PINx). Besides the input/output functionality, most port pins have
additional functionality.

Timer and Counter

The ATmega16 features two 8-bit timers (Timer 0, Timer 2) and one 16-bit timer (Timer 1)
to perform tasks, such as the generation of a pulse width modulation signal or the counting of
external events. The operation of these timers relies on a number of registers which we will
discuss in the following.

Each timer possesses a Timer Counter Control Register TCCRi which allows to specify the
operational mode the timer should operate in. Modes of operation include Normal operation,
Clear Timer On Compare Match, Phase Correct PWM and Fast PWM mode. Additionally,
the control register is used to select the source of the timer clock. Besides the possibility to
choose the internal system clock or an external clock as timer clock, a prescaler can be used.
A prescaler allows to divide the system clock frequency by a factor of 8, 64, 256 or 1024.
The current value for each timer unit is stored in the Timer/Counter Register TCNTi and the
Output Compare Register OCRi allows to specify a user-defined value that is continuously
compared with the timer value kept in the former register.

As already mentioned, the timers can be used in different operational modes. In Normal mode
the timer will continuously count from 0 to the highest possible value. Whenever the timer
register value is reset to 0, the Timer Overflow Flag TOVi will be set. The Output Compare
Flag OCFi is set when the timer value is equal with the value found in the compare register.
Together with the Timer/Counter Interrupt Mask Register TIMSK these flags can be used to
trigger internal interrupts. In Clear Timer on Compare Match (CTC) mode the value of the
compare register defines the highest possible timer value

Interrupts

A typical requirement for embedded systems is the ability to react to planned but unscheduled
events. The requirement usually manifests itself in an interrupt system, that provides means
to execute certain actions with the occurrence of a specific event. The specific set of actions
assigned to an event is known as an interrupt service routine. The ATmega16 features an an
interrupt systems that contains 21 different interrupt sources. Three of these interrupt sources
are external interrupts that are triggered by the occurrence of a specific event, for example,
a rising or falling edge on a specific port pin. The remaining 19 interrupt sources support
the operation of the peripheral subsystems and include various timer and counter events.
The activation of an interrupt source is controlled by an individual enable bit in combination
with the Global Interrupt Enable bit located in the Status Register. The assembly language
instructions SEI and CLI allow to easily change the global status of the interrupt system, and
activate or deactivate the interrupt system by modifying the Global Interrupt Enable bit. In
case the interrupt system is enabled, the microcontroller will check the occurrence of possible
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interrupt events before executing a normal instruction. If an enabled interrupt is triggered,
the corresponding interrupt service is executed. When entering an interrupt service routine
the ATmega16 globally deactivates the interrupt system to prevent the occurrence of nested
interrupts.

Sleep Modes

The ATmega16 features six different sleep modes (Idle, ADC Noise Reduction, Power-down,
Power-save, Standby or Extended Standby) that can be utilized to minimize the microcon-
trollers power consumption. The utilization requires the selection of a specific sleep mode
and a global activation by employing the Sleep Mode Select Bits and Sleep Mode Enable Bit
located in the MCUCR register (IOR63). The microcontroller is placed into the selected
sleep mode by using the SLEEP assembly instruction and awakened with the occurrence of
an enabled interrupt. The microcontroller then executes the interrupt handler and resumes ex-
ecution from the instruction following SLEEP. Differences between the existing sleep modes
can be found in the associated interrupt sources that cause the microcontroller to awake.

2.3 Toolchain

Previously, we have stated that the instruction-set-based simulation of a microcontroller pro-
gram in the NIPS VM requires the translation of the application program to NIPS bytecode.
This translation step is an essential part of the simulation process, as it not only has to pre-
serve the semantics of the application program, but also creates a mapping between the mi-
crocontroller state and the NIPS VM state. For a specific microcontroller and an associ-
ated instruction-set the creation of a translation component is a one-time effort. However,
this approach does not provide much flexibility and trying to simulate a different microcon-
troller would require the redevelopment of the translation component. This issue has been has
been addressed by Rohrbach in the Model Checking Embedded Systems Software (MCESS)
project [Roh06] and resulted in the design of a domain-specific language for microcontroller
specification. The project further demonstrated the capabilities of the NIPS VM as state space
generation component for custom tool development: a model checker for embedded systems
software has been established. Relevant for this work is the availability of an existing tool
chain to utilize the NIPS VM as an instruction-set simulator for embedded systems software.

While software for embedded systems may exists at various levels and languages it is a widely
known fact that C- and/or assembly code is used in nearly every embedded systems software
project at some point. We have therefore decided to concentrate our development effort to
embedded systems software written in C and/or assembly code. Instead of trying to directly
translate C source code to NIPS bytecode, it was decided to compile it with an off-the-shelf
C compiler first. From the generated binary executable it is then possibly to extract assembly
code which is translated to NIPS bytecode in a further step. This way we can not only process
C and Assembly code in one go but also find software defects introduced by the used C
compiler. The toolchain for utilizing the NIPS VM as instruction-set simulator is depicted in
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Figure 2.3: Toolchain for utilizing the NIPS VM as instruction-set simulator

Figure 2.3. Besides the mentioned assembly code, the translation unit that is responsible for
generating NIPS bytecode, takes a microcontroller specification and environment abstractions
as input. The following sections will introduce the last two artifacts in more detail.

2.4 Domain-specific language for microcontroller specification

The domain-specific language for microcontroller specification (RTL-DSL) allows to de-
scribe the characteristics of a microcontroller state and the semantics of its assembly in-
structions. An excerpt from the RTL-DSL specification for the ATmega16 is depicted in
Listing 2.1. The specification begins with a description of the microcontroller’s memory lay-
out. This section includes the number of general purpose registers, a detailed description of
the special purpose registers and the size of the SRAM. Additionally it is possible to declare
mappings which assign a symbolic name to two successive registers. The ATmega16 for
example contains a symbolic register X, which allows to access the GPR26 and GPR27 as
a single value. The memory layout information is usually available from the vendor’s de-
scription and can be taken from there. In addition to the memory layout information it is
necessary to provide details about the peripheral subsystems, for example the interrupt sys-
tem or informations about the timers. The specification file is concluded by a description of
the instructions semantics. The Register Transfer Language is employed for this purpose.

2.5 Microcontroller Environment

A microcontroller does not work in isolation but rather interacts with a given environment.
Environment interactions can manifest themselves for example as pressing of a push-button
which is connected to a port pin and which results in an external interrupt being triggered.
More complex interactions are possible by employing the functionality of the various periph-
eral subsystems, such as the Serial Peripheral Interface, the USART or the Two-wire Serial
Interface. Independent of the complexity of a particular environment interaction, every in-
teraction can be observed at a specific memory location. When an application program for
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GPRS
32

SPRS
_TWBR "Two-wire Serial interface Bit Rate Register";
_TWSR _TWS7 [...] __ _TWPS1 _TWPS0 248;
_TWAR _TWA6 [...] _TWA0 _TWGCE 254;
io _TWDR "Two-wire Serial Interface Data Register" 255;
i _ADCL "ADC Data Register Low Byte";
i _ADCH "ADC Data Register High Byte";
[...]

SRAM
1024

MAPPINGS
_X 26 27 "X register";
_Y 28 29 "Y register";
_Z 30 31 "Z register";
_SP 93 94 "stack pointer"

ADD Rd, Rr;
Rd =. Rd + Rr;
C = Rd(7) & Rr(7) | Rr(7) & !R(7) | !R(7) & Rd(7);
Z = !R;
N = R(7);
V = Rd(7) & Rr(7) & !R(7) | !Rd(7) & !Rr(7) & R(7);
S = N ˆ V;
H = Rd(3) & Rr(3) | Rr(3) & !R(3) | !R(3) & Rd(3)

BREQ K;
if (Z == 1) then PC = PC + K + 1

Listing 2.1: Excerpts from the RTL-DSL specification for the ATmega16
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example reads the value of an port pin connected to a push-button, the value solely depends
on the button’s state. To achieve a deterministic program execution it is not sufficient to
model the microcontroller and to keep track of its state. For a deterministic execution it is
also necessary to provide a model of the environment and to keep track of the environment’s
state. In case a model of the environment and the contained devices is not provided, the state
of the environment has to be regarded as non-deterministic. This means that when requesting
data from the environment, every possible value has to be assumed. Although there is only
a single execution path in reality, there may exist multiple execution paths when simulating
the microcontroller application, due to the non-determinism introduced by the missing envi-
ronment state. On the level of the NIPS VM the existence of multiple execution paths can be
recognized by the fact that some NIPS states have multiple successors.

In the existing toolchain the interaction between microcontroller and environment is covered
by additional NIPS bytecode which is executed on access to specified memory locations. A
first but minor purpose of these additional instructions is to figure out whether a memory
access infers an environment interaction. If an environment access is detected the code can
either use encoded information about the environment to return a single data value or other-
wise rely on the NIPS local non-determinism to create successor states for all possible data
values. The information which memory locations need further specification is stated in the
memory layout section of the RTL-DSL specification. Prefixing a register byte or bit with the
i modifier indicates the necessary execution of abstraction code on read access. The code for
a read access has to write the value which corresponds to the value of the memory location to
the temporary NIPS stack. The o modifier can be used in case of a write access. In this case
the value to be written is already on the NIPS stack, and it is required by the abstraction code
that this value is deleted after execution. It is also possible to use both modifiers at the same
time. The abstraction code is not located in the RTL-DSL specification but in a separate file.

As an example to demonstrate the use of abstraction code for modeling environment inter-
actions we will refer to the PINA register. The execution of abstraction code is required for
both read and write access to each port pin. On read access the abstraction code has to check
whether the accessed pin is configured as input or output pin by inspecting the corresponding
bit in the Data Direction Register DDRA.

SPRS
. . .
PINA i o PINA7 i o PINA6 i o PINA5 i o PINA4 . . .
. . .

In case the port pin is set as input the abstraction code is responsible for representing the state
of the external device and the current value has to be written on the stack. If this information
is not available the abstraction code can use local non-determinism to create two successors
for the possible values 0 and 1. If the port pin is configured as output, the value to be written
is deterministic and can be read from the corresponding bit on PORTA.
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Figure 2.4: Microcontroller state in the NIPS VM

2.6 Microcontroller state in the NIPS VM

At this point we have examined the toolchain for employing the NIPS VM as instruction-
set simulator and discovered how to specify the microcontroller, the associated instruction-
set and the given environment. The purpose of this section is to explore how the state of
the microcontroller can be captured within the NIPS VM. As the microcontroller’s state is
completely specified by the state of its memories a mapping of the specified memory layout
to NIPS memory space is required. There are actually two possible locations for storing the
memory layout, namely the global variable space and the local variable space of a process.
Considering the design decision to model the main program and the interrupt handlers in
separate processes the decision was in favor of the global variable space to allow an easy
access by all processes. As indicated by Rohrbach [Roh06], modelling the main program
and the interrupt handlers in separate processes has advantages with respect to static code
analysis.

Figure 2.4 gives an overview of this situation and depicts how a microcontroller state is
mapped to a NIPS state. The main program and interrupt handlers are mapped to NIPS pro-
cesses, whereas the general purpose registers, special purpose registers and the SRAM are
stored in the global variable section of the NIPS state. Furthermore, the global variable space
contains an interrupt stack to keep track of the currently active interrupt handlers. This infor-
mation is necessary to decide which process (main program or interrupt handler) is privileged
to execute a process step. The FORCE-Byte is used to make sure that once an interrupt han-
dler returns, the interrupted process is able to execute at least one instruction before another
interrupt may occur.

At this point we would like conclude this chapter and continue with an introduction of the
Eclipse platform. More detailed information about the NIPS VM and the MCESS project is
available in [WS05] and [Roh06], respectively.
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Eclipse

An important aim of this project is to integrate embedded systems debugging closely into
the development process. An integrated development environment is a natural fit for this
purpose. As indicated in the introductory we have found all our requirements fulfilled by
the Eclipse platform. This chapter gives an overview of the Eclipse platform and discusses
aspects required for custom tool integration.

3.1 History and Overview

The development of Eclipse started in November 1998 at OTI and IBM. Besides the need for
a tool platform to consolidate existing products build at various labs, it was IBM’s aim to stop
the fragmentation of Java tools in the competitive ecosystem within Java space, and advance
with respect to Microsoft. In November 2001, the Eclipse consortium consisting of nine
initial members was established and Eclipse 1.0 was released as open-source platform under
the Eclipse Public License. The portal eclipse.org was created at the same time to serve as
communication medium for developers all over the world dedicated to Eclipse development.
Nevertheless, with the release of version 2.1 in March 2001, public perceived Eclipse as an
IBM controlled effort and major vendors were reluctant to make strategic commitment. This
situation changed when in February 2004 a non-profit organization named Eclipse Foundation
was created to make Eclipse vendor independent. This strategy proved to be very successful
and a dramatic growth in members at all levels combined with a deeper commitment has been
the result. Currently, Eclipse has reached version 3.5 and the Eclipse Foundation hosts over
50 projects which build on or extend the Eclipse platform.

19
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Figure 3.1: Eclipse Architecture

3.2 Architecture

One of the most important design goals when building the Eclipse platform was to allow a
seamless integration of tools to support the full software development life-cycle. This aim
led to an architecture that can be characterized best as plugin architecture. The Eclipse plat-
form is basically just a small core which provides functionality for discovering, integrating
and running modules called plugins. While the functionality provided by the platform is very
generic, plugins provide additional functionality and allow to focus the generic functional-
ity to something specific. The Java development tools (JDT) for example are a collection of
plugins that add the capabilities of a full-featured Java IDE to the platform. The major com-
ponents of the Eclipse platform that help to achieve this design are pictured in Figure 3.1. In
order to get a better understanding of how this architecture has been realized from a technical
point of view our discusssion will begin with the first component above the Java Runtime
Environment, namely the OSGi Service Platform.

3.2.1 OSGi Service Platform

The OSGi Alliance is an industry consortium founded in 1999 which provides the OSGi Ser-
vice Platform specifications. This set of specifications essentially defines an open framework
for building component-based and service-oriented applications with Java. The OSGi frame-
work is divided in a number of layers whereas the service registry, the life cycle layer and
the module layer are the most important ones. These layers build the environment for the
OSGi components, the so-called bundles in OSGi terminology. A bundle is the smallest log-
ical unit in the OSGi framework and consists of Java code in a JAR (Java archive) library, a
manifest file for configuration information and most often also additional resources such as
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images and help texts. When exploring different means to evolve the Eclipse 2.1 architecture
it was discovered that the OSGi framework not only fulfills all requirements posed by the
Eclipse platform, but also provides a number of advantages compared to the proprietary for-
mat used in version 2.1. Eclipse 3.0 adopted the OSGi framework as a foundation, evolving
and improving its own architecture accordingly. It is necessary to point out, that the OSGi
framework is solely a specification. The project that represents the framework implementa-
tion found in Eclipse has become known as the Equinox project. The following sections will
introduce the individual layers of the OSGi framework and also mention differences between
the specification and the Equinox implementation.

Module layer

The module layer is responsible for the static structure of the OSGi framework and defines
a bundle as unit of modularization. The module layer introduces the possibility to explicitly
model bundle dependencies on a Java package level. A bundle explicitly imports the Java
packages that it needs but does not itself define. Conversely, a bundle may export some Java
packages that it defines. The dependency information is stored in the bundle manifest.

Life cycle layer

While the module layer provides the static aspects of the OSGi framework, it is the respon-
sibility of the life cycle layer to introduce dynamic aspects. The life cycle layer adds the
functionality to dynamically install, start, stop, update and uninstall bundles. Figure 3.2 de-
picts all possible states a bundle can acquire during its life-cycle in the OSGi framework.
After deployment a bundle is in the Installed state and represents a candidate for execution.
Before the execution of the bundle can be started, it becomes necessary to resolve bundle
dependencies. Only if all dependencies can be resolved, it becomes possible to start the bun-
dle. A started bundle transitions through the Started state and reaches the Active state after
initialization. Active bundles are fully operational and will move again to the Resolved state
when stopped.

Service Registry

The two previous sections explained the static and dynamic structure of OSGi bundles. Bun-
dles have been introduced as unit for modularization that add custom functionality to a sys-
tem, but work quite independently of other bundles. Typically, the situation is quite different
and bundles rely on other bundles to achieve their purpose. Bundle dependencies can be
specified at the Java package level, however, creating collaborative models within this en-
vironment poses difficulties. The concept of services and the service registry component in
the OSGi framework leverage the design of bundles that collaborate. A service within OSGi
is a plain Java object and is identified through its Java interface. A bundle can use the ser-
vice registry to publish created service objects, and also find and bind services registered by
other bundles. The mechanism is highly dynamic and an active bundle is able to register or
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Figure 3.2: OSGi bundle life-cycle

unregister services at any time.

3.2.2 Extension Concept and Extension Registry

Although Equinox provides a full implementation of the service layer specification, currently
almost all Eclipse plugins realize collaboration with the complementary concepts of extension
points and extensions. These concepts have been a feature of Eclipse from its beginning and
introduce tension as both collaboration models overlap. At the same time the concepts of
services and extensions are different enough to make a merge impractical.

Extension points can be used by a plugin to allow other plugins to extend or customize por-
tions of its functionality. The extension point declares a contract, typically a combination
of XML markup and Java interfaces, that extensions must conform to. Plugins that want to
connect to a particular extension point must implement that contract in their extension. The
plugin which is extended has no information about the connected plugin apart from the data
specified in the extension point contract. The information how a plugin extends the platform,
what extensions it publishes itself, and how it implements its functionality is stored in the
plugin.xml manifest file.

The extension registry is an important component within the Eclipse Core Runtime and man-
ages plugin contributions. After a bundle is installed and enters the Resolved state, it is
queried for its contributions to the extension registry. The extension registry is used by plu-
gins to find out what extensions are provided for its extension points. An important result
of this design is the fact that it becomes possible to obtain manifest information from the
extension registry without activating the contributing plugin or loading any of its code.

3.2.3 Workbench

The Workbench is a fundamental component of the Eclipse architecture and not only provides
the Eclipse UI personality but also supplies the structures for the interaction of the user and the
tools [RW04]. The workbench is synonymous with the main window the user sees when the
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platform is running. The screenshot of the ESD debugger as depicted in Figure 1.4 provides
an example of the Eclipse workbench. The workbench consists of a few basic building blocks,
being Views, Editors and Perspectives which we will discuss in the following.

Editors allow the user to open, edit and save documents or input objects adn follow an open-
save-close life-cycle much like system tools. Active editors can contribute actions to the
workbench menus or tool bar. While a standard text editor is provided by the platform, more
specific editors are contributed by other plugins.

Views provide information about an object the user is working with in the workbench. They
often work in close combination with an editor to show additional information, but at the same
time follow a simple life-cycle, i.e., modifications are generally made persistent immediately
and the changes are reflected immediately in other related parts of the UI.

Perspectives are a workbench concept that determine the visibility and layout of editors, views
and also menus and toolbars. Typically, there exist multiple perspectives in a workbench
window, however, only one is active at a time. The user can switch perspectives to work on a
different task and also customize perspectives to better suit a particular task.

The workbench API and implementation are build from two general UI toolkits, namely the
Standard Widget Toolkit (SWT) and JFace. Both toolkits have been developed to support the
Eclipse platform UI implementation, but can also be used outside the Eclipse framework. The
importance of SWT manifests itself in the fact that in order to achieve a tight workbench inte-
gration of custom UI components, i.e. Views and Editors, these must be build by using SWT.
To understand the contribution of SWT it is necessary to explain that a perennial issue in
widget toolkit design is the tension between portable toolkits and native window integration.
When SWT was developed in 2001 there already existed two Java UI toolkits: the Abstract
Window Toolkit (AWT) and Swing.

Both toolkits both follow a rather extreme approach concerning the mentioned issue. The
AWT provides low-level widgets such as list, fields and buttons but no high-level widgets
such as trees or tables. AWT widgets are implemented directly with native widgets on the
underlaying window system. Building a UI on top of AWT means programming for the least
common denominator of all supported OS window systems. The Swing toolkit addresses
this problem by emulating widgets like trees, table, and rich text. However, the emulated
widgets invariably lag behind the look and feel of the native widgets. It is therefore difficult
to compete with applications developed specifically for a particular native window system.

The Standard Widget Toolkit tries to find a better balance between the former approaches and
relies on the emulation of widgets only in rare occasions. The developer is supplied with a
common API for UI development on different window systems, and is able to achieve a native
look and feel to the greatest extend possible. Despite the advantage of a consistent program-
ming model in different environments, relying solely on SWT might be tedious at times. This
is where JFace starts to shine, as it was developed as additional layer on top of SWT and
provides helper classes to develop more complex UI features. Developing UI components
with JFace allows a developer to make a clean separation between the data representation and
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the data itself, as JFace introduces the Model-View-Controller paradigm.

3.2.4 Plugin Development Environment

Another reason for the success of the Eclipse platform is its good plugin development support
that is provided by the Plugin Development Environment (PDE). The PDE provides a man-
ifest editor which simplifies extension point creation and usage. Developer documentation
regarding individual extension points can be written and read in the PDE as well. A check
of the static plugin structure is carried out at compile time. When developing with PDE, the
Eclipse platform is not only used for the development of plugins but also for plugin execution.
This requires a distinction between the host instance and the runtime instance, whereas both
instances can have a different configuration and particularly host different plugins.

3.3 Debugging Support

In the first part of this chapter, we gave a general overview of the Eclipse platform and pro-
vided details concerning its architecture. This section leaves these general observations be-
hind and concentrates on the facilities and mechanisms provided by Eclipse that support the
integration of custom debuggers. The platform’s debugging support goes beyond the Java-
centric capabilities and is claimed to be language independent. All work regarding Eclipse’s
debugging support is contained in the Debug Project [Ecl10a]. The debug project itself, con-
sists of two sub-projects: Platform Debug and JDT Debug. The Platform Debug project
is concerned with the provision of language independent debug facilities, whereas the JDT
Debug relies on the platform debug project to provide Java debugging capabilities within
Eclipse.

The implementation of a debugger does not only require work on the target side. A substan-
tial amount of resources is also necessary for the provision of the debugger’s user interface
and mechanisms that allow user interaction with the debuggee process. The availability of
a generic debugger implementation which is easily customizable to support a specific envi-
ronment and which comprises both debug target and frontend is ultimately what developers
of debuggers are looking for. But the desired debug target implementation is not only de-
pendent on the hardware architecture chosen for executing the application but also on other
influence factors, such as an existing operating system, an interpretation environment or vir-
tual machine, or employed compilers. This fact makes the existence of a generic debug target
implementation which actually saves development time and is not just a completely abstract
construct very unlikely, probably even impossible. The situation is different though for the
graphical user interface: On this level debuggers have more in common and the necessity to
display program context information and to provide means to control the debuggee process
results in a similar set of views and control bars across different debug targets.

This observation has been and still is the motivation for the Platform Debug project and its
main goal to provide a language and architecture independent debugger user interface. The
project’s contribution is referred to as debug framework. An important part of this framework
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is a generic debugger user interface that can be customized and enhanced with features spe-
cific to a particular debugger. The user interface is realized as separate perspective, namely
the debug perspective, and includes views to display program context information and a tool-
bar and menu bar for execution control. The user interface is complemented by an abstract
debug model which is realized as collection of Java interfaces and serves as presentation
model for the individual user interface elements. From a high-level view the debug model is
the intermediary between user interface and debug target and makes them independent from
each other. Although the debug model makes no statement about the debug target’s tech-
nical realisation, it does make a statement about certain artifacts that have to be known by
the program under debug. These debug artifacts include threads, stack frames, variables, and
breakpoints. The complete set of artifacts in total makes up the debug model and defines an
abstraction level which corresponds to imperative programming languages such as Java, C or
Python. By this means the debug framework simplifies the development of a debugger’s user
interface in case of imperative programming languages. For programming languages that
fall out of the imperative programming paradigm, such as functional or logic programming
languages, the prospective benefit by using the framework seems doubtful.



4
Embedded Systems Debugger

At this point we would like to introduce the established Embedded Systems Debugger (ESD)
and start out with an overview of its architecture. In the subsequent examination we will then
base our discussion on the two fundamental capabilities of a debugger: the ability to control
the program under debug and the provision of program context information.

4.1 Architecture

During the initial design phase of this project we have been concerned with the development
of a software architecture for our prospective debugger. Before we discuss related work on
debug architectures and subsequently present our results, it is necessary to go one step back-
ward and shed more light on the foregone requirement analysis. We have already discussed
two major requirements in the introductory chapter, namely the debugger’s integration into a
development environment and the employment of an instruction-set simulator. By means of
the Eclipse platform and the NIPS VM we have introduced and chosen two elements which
are well suited to fulfill these requirements. At this point we would like to introduce two
further requirements with respect to the simulation component:

The instruction-set simulator is an important element of our architecture and has a big influ-
ence on the debugger’s performance due to its responsibility to run the program under debug.
A performance evaluation between different simulators is a reasonable measure to optimize
the debugger’s over-all performance at a later stage. This step requires careful planning to
make sure that the debugger is not tied to a particular simulator, but is build on a modular
architecture that allows an easy integration of different simulators. Missing support for a
particular microcontroller or discontinued development effort by the simulator’s vendor are

26
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further arguments which may introduce the necessity to employ a different simulator. In other
words, we require the prospective debug architecture to be independent from the employed
instruction-set simulator.

A further requirement becomes apparent when we take into account that the NIPS VM has
primarily been chosen because of its ability to verify the system’s correctness by means of
the model checking technique (see Chapter 5 for details). Whereas the performance and
space resources of a modern desktop computer are sufficient to simulate the microcontroller’s
execution, this fact does not generally hold for the mentioned verification task. Executing the
NIPS VM on more powerful hardware, probably a computer cluster, might become necessary.
Our debugger must consider this fact by allowing to execute the instruction-set simulator on
a remote system.

Before we present our established debug architecture we shall consider existing work on
debug architectures and discuss whether these approaches fulfill our requirements and can be
reused.

Related work

Published work on debug architectures is limited to a few resources only. The first work we
would like to review has been made by Rosenberg and is described in chapter two of [Ros96].
The work by Aggarwal [AK02] follows an almost identical direction and the following dis-
cussion therefore applies to both approaches. Rosenberg’s and Aggarwal’s work focuses on
compiled environments, that is, applications which have been compiled to native code and
directly execute on the target CPU. The described architecture is centric to the hardware and
operating system the target application runs on and the resulting debugger strongly depends
on the debugging support provided by those artifacts. Hardware, operating system and the
operating system’s debug support make up the three bottom layers of the final architecture.
These layers are complemented by the debug kernel which controls the process under debug
with help of the operating system and extracts debug information from the executable file.
The final layer consists of various user interface components that present different views on
the program being debugged and provide the user’s handle to the debugging task. The ar-
chitecture implicitly assumes that the debugger as well as the target application run on the
same system and makes no statement whether a remote execution is possible. Considering
the fact that our focus is on applications which are firstly compiled to an intermediate form
and are then interpreted (a mixed-mode environment so to speak), the sketched solution does
not apply to our circumstances and requirements.

Another source of information regarding debug architectures exists in form of the Java Plat-
form Debug Architecture (JPDA) [Ora10] which is a multi-tiered architecture to debug Java
applications. JPDA has been a minor inspiration for this work, as it makes the development
of a debugger platform-independent and also allows to debug applications running on remote
systems. The main contribution of JPDA is the provision of three interfaces, namely the
Java Virtual Machine Tools Interface (JVMTI), the Java Debug Interface (JDI) and the Java
Debug Wire Protocol (JDWP). JVTMI specifies the functionality a virtual machine, or to be
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more precise, a Java Virtual Machine must provide for debugging, whereas JWDP defines
the format and semantics of messages transfered between the process being debugged and
the debugger. JDI defines a high-level view of the program being debugged and simplifies
the development of debuggers. What makes JPDA important in the context of this work is its
clear separation between the component which executes the application to be debugged and
the component which is concerned with the user interface.

Embedded Systems Debugger

Under consideration of the given requirements and related work on debug architectures we
created a two-tier, a so-called client-server architecture, as foundation for our desired embed-
ded systems debugger. In the context of this work we do not use the term client and server but
refer to both components by the name debugger and debuggee. The architecture is depicted in
Figure 4.1 and consists of the mentioned debuggee and debugger component and furthermore
a communication channel which connects both components. In the following, we will present
these components in more detail.

Debuggee

The debuggee (or debug target) is responsible for executing the target application, that is, the
application the user wishes to debug. This is achieved by employment of an instruction-set
simulator, more precisely the chosen NIPS VM. As mentioned in section 2.1 the NIPS VM
operates on a bytecode file that corresponds to the target application and which has to be
created from the program sources in a preliminary step. Access to the virtual machine is
provided by means of a simple API, however, implementing the functionality required for
debugging on top of this interface will become a tedious task. For this reason we created an
embedding component, namely the trace manager, which controls the virtual machine and
builds an intermediary layer between backend and virtual machine. The backend is respon-
sible for processing requests from the debugger and for communicating the response to these
requests back to the debugger. The backend relies on the trace manager for those requests
that require a state change, or alternatively employs the state analyser when the provision of
program context information is of concern. The state analyser extracts program context infor-
mation from the current program state and for this task requires debug information captured
within the bytecode as well as the original binary executable.

Communication Channel

The communication channel establishes the connection between debugger and debuggee and
is realized by two separate channels, namely a command and an event channel. Commands
are employed by the debugger to control the application under debug and to retrieve informa-
tion about its execution state. Communication by means of the command channel is carried
out in a synchronous manner: the debugger sends a command to the debuggee and then
waits to receive a reply message. This is contrasted by the event channel, that is used by the
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Figure 4.1: Embedded Systems Debugger Architecture

debuggee to inform the debugger about state changes. Events are sent in an asynchronous
fashion. A complete list of existing commands and events and an example communication
scenario is given in Section 7.2.

Debugger

The debugger is a handle to the application under debug and is integrated within the Eclipse
platform. The debugger is not responsible for executing the application the user wishes to
debug but delegates this task to the debuggee component. The launch, that is, the creation
of the debuggee is therefore one of its first responsibilities. The debugger provides various
user interface components that allow to control the debugging process and provide program
context information such as the function call stack, variable and register values or the micro-
controller’s memory state. The user interface components rely on the ESD Debug Model for
the provision of all necessary information with respect to the program under debug.

ESD Debug Model

The ESD Debug model is an implementation of the abstract debug model as part of the plat-
form’s debug framework and defines a view of the program under debug. Our debug model
furthermore extends the abstract model to support the retrieval and display of disassembly in-
formation and to cater for debug targets that allow to record the application’s execution during
debugging. The most important elements of our debug model are depicted in Figure 4.2. The
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ESVariable

+getName() : String
+getValue() : ESValue

ESFrontend

+sendCommand(cmd : Cmd) : CmdResult
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ESDebugElement

+getFrontend() : Frontend
+getTarget() : ESDebugTarget

ESDebugTarget

+getThreads() : ESThread[]
+getTraceElements() : TraceElement
+getDisassembly() : ESDisassembly

ESThread

+getStackFrames() : ESStackFrame[]

+getTopStackFrame() : ESStackFrame

ESStackFrame

+getVariables() : ESVariable[]
+getLineNumber() : int

ESTrace

+getTrace() : ESTraceElement[]

+saveTrace(file : Ifile)

ESDisassembly

+getDisassembly(frame : ESStackFrame)   : 
ESDisassemblyBlock

Figure 4.2: Excerpt from the ESD Debug Model

central element is the ESDebugTarget which represents the target application being executed
in debug mode. The ESDebugTarget consists of a set of ESThread objects, which are rep-
resentations for parallel executions contexts. Single-threaded target architectures, such as
the ATmega16 are represented by a debug target which contains a single thread object only.
ESThread objects have a name attribute and contain a number of stack frames, more precisely
one stack frame for every currently active function or interrupt handler. Stack frames are rep-
resented by ESStackFrame objects and feature a name, for example a function name including
argument names or the name of an interrupt handler. Associated with each stack frame object
is also a set of variables, that is ESVariable objects, which are visible within the particular
stack frame. The mentioned elements are complemented by the ESDisassembly and ESTrace
element: Both elements are associated with a debug target object and whereas the first ele-
ment is responsible for the retrieval of disassembly information, the second element provides
support for targets that allow to record the application’s execution.

4.2 Controlling Execution

A fundamental requirement of a debugger is to control the execution of the application being
debugged. This section gives an overview of the functionality provided by the ESD debugger
regarding this aspect.
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Figure 4.3: Launch Dialog

4.2.1 Launching

A prerequisite for execution control is the instantiation of the debuggee component. The
debuggee is not only responsible for controlling the simulator, hence the executed program,
but makes execution possible in the first place. One of the first tasks of the debuggee is to
initialize the virtual machine and load the bytecode program derived from the original source
code to prepare for the upcoming execution. A further prerequisite consist of creating the
debugger component, more precisely the instantiation of an ESDebugTarget object, in order
to represent the started debuggee within the Eclipse user interface. The mentioned activities
characterise the start process of our debugger. In the following we would like to examine this
process more closely, both from the user and from the technical perspective.

Eclipse refers to the activity of starting a new process by the term launching and provides a
collection of APIs, internally known as the launch framework, to support implementors with
the user interface as well as the behavioral aspects of this task. Although the framework is
part of the platform debug project [Ecl10a] the provided launch capabilities are not restricted
to debugging but apply to regular execution or profiling as well. A certain program type,
such as a Java program or an embedded systems program, that should be launchable within
the platform is described by a LaunchConfigurationType. A launch configuration type de-
termines what domain-specific information is necessary for launching and also specifies the
behavioral aspects of launching by reference to a launch delegate. The domain-specific at-
tributes necessary for performing a specific launch are actually not explicitly described by a
launch configuration type, but are instead assigned to individual launch configurations.

Before we continue with the behavioral aspects of launching, let us firstly examine the
launching-related UI. Most important in this context is the launch dialog, that is provided by
the framework and allows users to create, manage, launch and delete launch configurations
of any type. The launch dialog, a screenshot is depicted in Figure 4.3, is horizontally divided
into two parts. Its left side consists of a tree showing all currently defined launch configura-
tions, grouped by configuration type. For a better identification of the different configuration
types it is possible to assign an icon by registering with the launchConfigurationTypeImages
extension point. The dialog’s right side contains a tabbed folder which allows to insert or edit
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Figure 4.4: Debug View

the domain-specific information of the currently selected configuration, that is, the configu-
ration selected on the left. We contributed to the launchConfigurationTabGroups extension
point to specify the content of the tabbed folder when an embedded system application is
selected.

The behavioural aspects of our contributed launch configuration are specified within the
ESLaunchDelegate class which implements the ILaunchConfigurationDelegate interface and
overrides the required launch() method. The job of the launch method is to extract the
domain-specific attributes from the passed launch configuration and then act upon this infor-
mation. In our case, the most important information to extract from the passed configuration
object is the path and name of the NIPS bytecode file which is input to the simulator. In
order to employ replay debugging (see Section 4.2.3 for details) further information may in-
clude name and path of a previously saved trace file. Acting upon the information contained
within the launch configuration generally results in the creation of system processes and the
additional creation of debug targets for those applications to be launched in debug mode. A
subsequent objective of the launch method is to register the created processes and/or debug
targets with an ILaunch object, which is passed as further argument to the launch method.
The launch object represents the launched session and is used as handle on the created arti-
facts. The user’s handle to the launched sessions is established by a user interface component
referred to as Debug View. A screenshot of the debug view showing two launched embed-
ded systems applications (highlighted as 1 and 2) is given in Figure 4.4. Items 3 and 4 are
referenced in a later section of this chapter (see Section 4.3.2).

Once the launching process is completed, the debuggee is executing the considered program.
At this point we shall consider what functionality exists to actually control the program exe-
cution.

4.2.2 Breakpoint Handling

Breakpoints are the basic mechanism used to control the execution of the target program
and provide a way to suspend program execution at a user-specifiable location or upon a



CHAPTER 4. EMBEDDED SYSTEMS DEBUGGER 33

specified condition. Being able to suspend program execution at user-specifiable conditions
is a prerequisite for inspecting the program context. Breakpoints exists in various forms,
including Line breakpoints, Run-to-Line breakpoints and Watchpoints. Line breakpoints are
capable of suspending execution when a specified source code line is reached. They can
only be set on the executable lines of code, whereas comments, declarations of variables and
methods, and empty lines are not valid locations. Run-to-Line is a breakpoint concept which
is similar to line breakpoints as it allows to advance execution to a specified line of code. But
in contrast to a permanent line breakpoint, which requires an explicit setting and unsetting
by the user, a Run-to-Line breakpoint is temporary. Once execution is suspended temporary
breakpoints are removed. Watchpoints, or sometimes called data breakpoints, can be used
to suspend execution whenever a specific location or region in memory is modified, without
having to predict a particular place where this may happen.

The first step toward understanding how the ESD debugger handles breakpoints is to ex-
plore how breakpoints are supported and represented by the Eclipse platform. The actual
breakpoint capabilities are not provided by the platform, but instead by the underlying debug
architecture. For a complete overview it is therefore necessary to discover how breakpoints
are implemented within the debuggee component.

To utilize the platform’s breakpoint facilities the developer needs to contribute an extension
to the org.eclipse.debug.core.breakpoint extension point for each breakpoint type supported
by the underlying debug architecture. Our provided extension to support line breakpoints is
shown as an example in Appendix A.1.2. Breakpoints of the contributed type are represented
as instances of a class implementing IBreakpoint. The full name of the particular class is
a mandatory attribute of the extension, namely the class attribute. The task of the specified
class is to store the information required to install a breakpoint in a specific architecture.
From a technical standpoint this task is realized by having each breakpoint associate a re-
source marker. Resource markers allow to associate information about a resource in form
of named attributes. By this means, the breakpoint implementation can make use of all the
existing marker functions, such as persistence and display in editors. Knowledge of this
implementation detail is also necessary at the specification level. When contributing a new
breakpoint type the developer is required to specify an associate marker type by means of the
markerType attribute. The associated marker type has to be contributed by another extension
to the org.eclipse.core.resources.markers extension point. Again, the extension of the marker
type associated with our breakpoint type contribution is depicted in Appendix A.1.3. At this
point we have discovered the platform’s mechanism for breakpoint representation. In the
following we will investigate the question of how breakpoints are installed in the debuggee
process.

The debug target, being the root element of the debug element hierarchy, is responsible for
breakpoint installment. For this purpose the debug target works in close collaboration with the
breakpoint manager, which is the central authority over all breakpoints within the workspace.
The breakpoint manager is informed when breakpoints are added, removed or changed in the
workspace and passes this information to registered listeners, such as the debug target. When
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the debug target receives change notification from the breakpoint manager it has to decide
whether it is responsible for the breakpoint and possibly carry out necessary actions. Besides
reacting to change notification, the debug target has to take care of all relevant breakpoints
existing prior to launch time. For this reason, the debug target suspends the debuggee process
right after startup before it processes any instruction. It then queries the breakpoint man-
ager for all relevant breakpoints and resumes the debuggee process only after these initial
(deferred) breakpoints have been installed.

In our case, the logic for breakpoint installment is not kept in the debug target but rather within
each IBreakpoint implementation representing a breakpoint type. When a breakpoint is set,
the corresponding IBreakpoint instance registers as debug event listener with the frontend
and issues a set-breakpoint command to the debuggee process. The breakpoint attributes
necessary for installment are retrieved from the associated resource marker and passed as
part of the set-breakpoint command.

The way the debuggee process or the backend implements breakpoints depends on the break-
point type. For line breakpoints the backend first of all utilizes the debug information com-
ponent to resolve the instruction address corresponding to the file name and line number of
the breakpoint. The backend manages line breakpoints by a map-like data structure and after
resolution a new entry is created. The key of this entry consists of the instruction address,
whereas the value is represented by an object wrapping the breakpoint’s attributes. When
the debuggee process is resumed, the backend is able to determine if a breakpoint was hit by
checking whether the current instruction address exists in the map.

When a breakpoint is hit the debuggee backend notifies the debugger, or to be more precise
the frontend, by sending a corresponding breakpoint event. The frontend passes the received
information to the registered debug event listeners, including the installed breakpoints. A
particular breakpoint instance will react to such a notification by validating if its marker’s
attribute values correspond to the attributes values found in the notification. If this is the case,
the respective breakpoint will update its hit count and notify the thread.

4.2.3 Resuming Execution

Knowing how to suspend program execution under user-defined conditions via breakpoints
is important due to the possibility to inspect program context information during suspension.
Nevertheless, chances are slim that the information retrieved at the first suspension is suf-
ficient to discover the causes of a failure or to gain a better understanding of the software
system. The ability to resume execution is therefore equally important as suspending because
it is a necessity to inspect context information at different moments in time. The ESD debug-
ger features different possibilities to resume execution including functionality for forward but
also reverse continuation. User access to this functionality is provided by the debug view’s
toolbar which is depicted in Figure 4.5.

Concerning forward execution, the user is able to carry out an unconditional resume which
continues program execution until either another breakpoint is hit or the program terminates.
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Figure 4.5: The debug view’s toolbar for execution control

Another possibility is provided by a source-level step which allows to resume program execu-
tion until the next source line is reached. Our implemented step functionality obeys function
calls found within the current source line. In this case the debugger steps into the function
and suspends execution at the first executable source line found. Sometimes the granular-
ity provided by source-level stepping is too coarse and the user wishes to advance program
execution at the level of single machine instructions. We have provided a toggle button,
which is part of the mentioned toolbar, to switch between source- and instruction-level step-
ping. When instruction-stepping is enabled the step action will advance program execution
not until the next source-line but instead until the next machine-level instruction is reached.
Whereas machine-level steps are atomic and cannot be interrupted, this fact does not hold for
source-level steps. In case of a source-level step, execution may be suspended sooner due to
an instruction-level breakpoint.

Reverse execution

Reverse execution complements the mentioned possibilities to resume execution by allowing
to run backwards and return to previous states in the program’s execution history. Many
software defects are hard to detect as they do not cause failures immediately but show their
effect later in a program execution. As a consequence software developer often miss the
occurrence of defects during a debugging session and let execution advance to a point where
the failure is visible but its cause cannot be inferred anymore. Developers commonly react
to this problem by restarting the program and then try to suspend execution earlier to find
out what causes the failure. The approach is problematic as difficult to find defects often
arise from timing problems or due to special conditions in the microcontroller’s environment
and the failure is typically difficult to reproduce. Even if it is possible to reproduce the
failure in following executions it may still take several restarts to locate its cause. In either
case a severe impact on developing time results as consequence. The ability to continue
execution backwards is an often requested feature in debuggers as it provides a better solution
to the problem. Instead of restarting the debuggee process and being forced to re-execute non
relevant parts of the program, the user is able to advance execution backwards to examine
program states before the detected fault. Similar to the initial forward execution, users might
overlook defects when executing backwards. By alternating between reverse and forward
execution the user is able to quickly pinpoint the cause of a failure.

The reverse execution functionality provided by the ESD debugger consists of an uncondi-
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tional resume, which runs execution backwards until either a breakpoint is hit or the pro-
gram’s beginning is reached. This is supplemented by backwards stepping, either on source-
or instruction-level. Just like the forward counterpart, backwards stepping will consider func-
tion calls and bring execution either to the function’s last executable source line or to its return
instruction.

4.2.4 Trace Management

The trace management facilities provided by the ESD debugger play an important role con-
cerning the execution control of a debuggee process. In contrast to the two former sections,
where execution control centered on the ability to suspend and resume program execution,
the focus is now on choosing between possible paths of program continuation. The abil-
ity to control process evolvement in this spirit is seldom found in debug architectures and
stems from the requirement to resolve non-determinism introduced by possible environment
abstractions. Furthermore, the trace management is responsible for recording the microcon-
troller’s execution states while debugging a program.

The trace management functionality is pro-

Figure 4.6: Trace View

vided by two separate components. The trace
manager is implemented as part of the de-
buggee component (see Figure 4.1) and has
a direct handle to the simulator, whereas the
trace element is part of of the debug element
hierarchy (see Figure 4.2). Both work in close
collaboration to establish the required func-
tionality. The user’s handle to the trace man-
agement facilities is provided by a third com-
ponent, namely the trace view, and is depicted
in Figure 4.6.

The trace view consists of two vertically stacked components, namely a trace and a succes-
sor component. Both components are implemented as JFace table viewers and rely on the
trace element to control and provide the underlying data model. When the debug target is
suspended, the upper trace component gives an overview of the microcontroller’s execution
history by showing a list of states, whereas each state corresponds to a particular microcon-
troller state. At any time, a single state will be selected and marked by a special selection
pointer ( ). The selected state is responsible for the program context shown in all other de-
bug views, for example the registers view or the memory view (see Section 4.3 for further
information concerning context information).

The successor component below complements these context information by displaying all
possible successor states for the selected trace state. The presence of multiple successor states
for the selected trace state indicates the existence of different ways of program continuation
and as mentioned is caused by environment abstractions which introduce non-determinism. A
simple example for this situation can be described by a program which contains an interrupt
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handler for an external interrupt. The programmer decided to abstract from the external
device which triggers the interrupt and only provided an abstraction. As consequence the
occurrence of the external interrupt is non-deterministic. In all program states where both the
microcontroller’s interrupt system and the particular interrupt are enabled, the debugger has
to resolve the question whether the interrupt has occurred or not. A positive answer requires
execution to continue with the interrupt handler, whereas a negative answer lets execution
continue normal. Trace states where the interrupt system and the particular external interrupt
are both enabled therefore contain at least two successors, one for each possibility. The basic
purpose of the successor component is to provide means to let the programmer explore all
possible ways of continuation. The user can iteratively select successor states to analyse the
particular effect on the microcontroller’s state, for example the program counter, register and
variable values, and more. Again, the selection pointer is used to signal that the program
context shown in all other debug views then depends on the selected successor state.

At some point the programmer has sufficiently analysed the current program state and possi-
ble ways of continuation and wants to resume execution. Forward execution techniques such
as an unconditional resume or stepping acknowledge the chosen successor state for process
evolution. The execution of a single machine instruction corresponds to appending another
state to the current trace list. In case an instruction-level step is issued, the chosen successor
becomes the new tail element and execution is suspended again. However, an unconditional
resume or source-level step usually requires many machine instructions to be executed until
execution is suspended again. In those cases a multitude of states have to be appended to
the trace list. As some of these states might allow multiple paths of continuation the ques-
tion arises how the debugger resolves non-determinism when execution has passed beyond
the chosen successor. The default approach to handle the occurrence of a program state with
multiple successors is to suspend execution and pass responsibility for making the choice to
the user. In many cases tough, the necessary user interaction in this default mode will be too
high to advance execution at a suitable pace. For this reason the trace view’s toolbar provides
the possibility to select a successor selection strategies. Currently implemented selection
strategies include two random strategies. The CompletlyRandomStrategy selects a successor
state by random choice over all successors whereas the AvoidInterruptsStrategy restricts the
eligible successors to those that avoid interrupt handlers and then randomly chooses one of
them.

To summarize, when debugging an application program with the ESD debugger an execution
trace is recorded. In case the program’s execution is deterministic the trace is build without
any further intervention by the debugger. Alternatively a specific trace is created by either
employing manual user choice, a successor strategy or a combination of the former two op-
tions. Independent of the fact whether program execution is characterised by an execution
tree or a single path the ability to replay a recorded trace or parts thereof is beneficial for a
better understanding of the program and the detection of possible anomalies. For this reason,
the above mentioned trace component allows the unrestricted selection of states and the user
can thus choose a previous state in the history list. When execution is then resumed, the de-
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bugger will work in replay mode and rerun the already existing trace by default. The user can
employ the same set of breakpoints to suspend execution at identical locations. In most cases
though the usage of a different set of breakpoints and stepping behaviour is advantageous to
analyse specific aspects of the recorded execution. It is therefore possible to deactivate the
replay mode by utilizing the corresponding toggle button in the trace view’s toolbar. When
this is done and execution is resumed from a previous state in the trace list the trace future is
open again.

In many cases the detection of software failures does not go hand in hand with the defect
localization process. Typically, there is a time difference between both activities. In large
software projects there is often also a difference in the personell responsible for each activity.
Bug tracking systems, such as Redmine, Bugzilla or Mantis highly support the software de-
velopment process by providing a platform to keep track of software failures. Keeping failure
information of software applications within such a system helps to coordinate the debugging
process. An important information which should be provided by a failure report is the de-
scription of how the failure can be reconstructed. In our case this information has implicitly
been captured by the trace management via recording the visited program states. For later
reuse, for example as attachment to a failure report, the trace view allows to save the trace to
a user-definable file. Truncating the trace before the save operation is carried out is possible
by employing the truncate trace button. The saved trace can be loaded at a later time and
replayed by the ESD debugger.

4.3 Inspecting Program Context

In the former sections we explained different means for controlling program execution. How-
ever, execution control is not the primary goal of a debugger but rather a necessity to provide
the most important information the user needs during debugging: program context informa-
tion. Program context can include several types of information such as the current source
code line, a function call stack, variable and register information, a memory dump, and more.
These information can be used answer various questions, including ’Where is the program?’,
’How did the program get here?’ or ’What are the values of variables?’. Being able to an-
swer these questions results in an in-depth understanding of the program and lets programmer
reason about possible failure causes. Before we continue with a detailed description of the in-
formation that in total make up the program context, and how these information are presented
by our debugger it is first of all necessary to shed more light on the toolchain for executing
an embedded system application within the NIPS VM.

4.3.1 Debugging Information

The toolchain as depicted in Figure 2.3 is responsible for the translation of a high-level C
source code program to a NIPS bytecode file. The process is quite complex but essentially
involves recasting the high-level source into simpler and simpler forms until eventually the
result is a sequence of operations that the NIPS VM understands. Information which is not
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necessary for execution, such as source line information, variable names and types, function
names, etc. is discarded during these transformation steps. However, these information are a
prerequisite for source-level debugging and are required for the provision of important pro-
gram context information. The preservation of this data, henceforth debugging information,
is an absolute necessity.

Various debugging data formats, such as stabs, DWARF, COFF, IEEE-695 and Program
Database have been developed in the past as storage format for debugging information col-
lected by a compiler. For the first four formats the debugging information is stored within the
resulting object files or executable file. Whereas COFF and IEEE-695 have been designed for
a specific object file format, stabs and DWARF support different object file formats. In case
the stabs or DWARF format is used, the concrete representation of the debugging information
also depends on the particular object file format. This is contrasted by the Program Database
debug format where debugging information is stored in separate files. The format is used by
compilers shipped with the Microsoft Visual Studio development environment.

As described in Section 2.3 the first element within our toolchain consists of an open-source C
compiler, namely the GNU C compiler. The mentioned compiler supports multiple debugging
data formats, including stabs and DWARF. Although the output of debugging information is
not enabled by default, additional parameters can be set to include debugging information
in the resulting executable file. By this means the provided debugging information create a
connection between the high-level program and the generated microcontroller machine code.
However, the final result of our toolchain is not the binary executable file but instead a NIPS

bytecode file which is created in a further transformation step (see Section 2.3). The de-
bugging information required by our debugger has to create a link between elements of the
high-level source language and the resulting NIPS bytecode file. In order to support the re-
trieval of disassembly context information (see Section 4.3.4 for further details) a connection
between the NIPS bytecode file and the disassembly information extracted from the binary
executable is additionally required.

In the following we will discuss the debugging information capabilities of the NIPS bytecode
format, that can be employed to create the above mentioned connections between source
code, machine instructions and bytecode. Independent of these yet unknown capabilities, the
usage of the debugging information provided by the C compiler will be necessary in any case.
This paragraph is therefore succeeded by an overview of the debugging data format of our
choice. We decided to focus on the stabs debugging data format as it foremost provides full
support for C programming language elements and furthermore allows for a resource-efficient
information processing implementation due to its simple structure.

Stabs

The Stabs format has initially been developed by Kessler to provide debugging information
support for the Pascal programming language [MKM93, SM04]. The support has later been
extended to include other languages such as Cobol or Fortran 77. However, it is the compre-
hensive support for C which makes stab interesting for this project. Stabs stands for symbol
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table entries, referring to the fact that debugging information was originally placed in the
symbol table of an object file. But the starting point for this overview should not be an object
but instead a source file. The first step towards an executable file is carried out by the com-
piler which transforms the source file into an assembly language representation. The result
is used by the assembler to produce an object file, which the linker combines with possible
other object files and libraries to create an executable file. So far we have described the basic
process for machine-code compilation. However, the resulting executable file will not con-
tain debugging information. For this purpose, compilers that support stabs can use specific
assembly directives to place debugging information into the generated assembly file. The
information contained within these directives will be processed by the assembler and stored
in the object file. In the last step the linker has to make sure that stabs information is passed
to the resulting binary executable.

The usage of stabs assembly directives allows compilers to preserve information necessary
for source-level debugging. A further analysis of these instructions is necessary to understand
the capabilities of the stabs debug format. The stabs format defines two assembly directives,
namely a .stabs (string) and a .stabn (number) directive with the following format:

.stabs "string", type, other, desc, value

.stabn type, other, desc, value

The difference between both instructions manifests itself in the possibilty to attach an
variable-length string to the .stabs instruction. The type attribute is a numeric value and
specifies what type of information the stab represents. Stabs types exists to describe source-
line information, local and global symbols, type information, function descriptions, lexical
blocks and more (cf. Table 4.1). The interpretation and possible values for the remaining
attributes, that is, other, desc and value depends on the particular stabs type.

Source line information, for example, can be described by the N SLINE stab type. The desc
attribute contains the line number and the value field contains the instruction address for
the start of that source line. The instruction address is not an absolute value but is relative
to the function in which the N SLINE symbol occurs. The specification of source-line infor-
mation is supported by the .stabn directive as there is no need for a variable-length string
value. This situation changes when we consider function descriptions - they make use of the
variable-length string value provided by the .stabs directive to store the function name and
references to previously defined type information for parameter and return value. Whereas
the value field contains an absolute instruction address to describe the beginning of the
function’s translation, the source line is provided in the next N SLINE stab.

As indicated by the mentioned examples the placement of stabs directives can not take place
in random fashion but must conform to a specific organization. The first stab for each source
file has to be of type N SO and specifies the name of the source file. This information is
proceeded by directives that describe the types of variables, parameters or function return
values. Since the stabs format does not include any predefined types, the compiler has to
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Stab type
(symbolic constant)

Description

N SO Source code filename
N SLINE Source code line number
N FUN Function name
N GSYM Global symbol
N LSYM Stack variable or type information
N LBRAC Beginning of a lexical block
N RBRAC End of a lexical block

Table 4.1: Several common stab types (excerpt from [MKM93])

describe every type used in the program by means of the N LSYM stabs type. The string
value is used in this case to store the type name and further information such as the size,
maximum value and minimum value. The following directive for example defines the char
type as allowing values from 0 to 255:

.stabs "char:t(0,2)=r(0,2);0;255;", N LSYM, 0, 0, 0

Besides function return values and parameters, the defined type information is also neces-
sary for variable information. Global variable descriptions are for example supported by the
N GSYM stab type. Whereas the variable name and type can be inferred from the "string"
field, the address is not part of the stabs directive and has to be retrieved from the external
symbol for the variable. For a complete list of stab types and their usage we refer to [MKM93]
and [SM04].

By concentrating on the stabs assembly directives we have introduced the stabs debug format
from the compilers point of view. We shall now focus on the debugger’s perspective and
consider the question, where debugging information is stored within the resulting executable
file. There is actually no straight answer to this question as the storage location is dependent
on the executable file format used. For the a.out format, the first executable file format to
support stabs, debugging information is stored in the executable file’s symbol table. Each
stabs directive contained in the assembly file results in a fixed-length entry in the symbol
table. The variable-length character sequence contained in a .stabs directive is not stored
in a symbol table entry but is saved in the executable file’s string table. Symbol table en-
tries corresponding to a .stabs directive refer to their string attribute by an offset value
targeting the string table. Executable file formats with support for custom section, such as
ELF, SOM or COFF, do not store stabs directives in the symbol or string table. Instead the
stabs debugging information is stored in two special sections, namely a .stabs and a .stabstr
section. Similar to the concept above, the .stabs section contains a fixed length structure for
each stab directive, whereas the .stabstr section contains all the variable length strings that
are references by stabs in the .stab section.

At this point we would like to conclude our discussion on the stabs debug format and continue
with an introduction of the debugging information capabilities provided by the NIPS bytecode
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format.

Debugging Information for NIPS

The NIPS instruction-set features two annotations which can be used to store additional in-
formation within a NIPS bytecode file:

!srcloc line column

!strinf tag keyword name

The !srcloc annotation allows to mark a sequence of bytecode instructions with the cor-
responding source line from which the code sequence has been created. The !strinf an-
notation can be employed to save structure information and consists of three parameters. The
keyword and name attribute may contain arbitrary string values, whereas the tag parameter
is either begin or end. Structure information can be used to save further information about
code sequences. For example, that the currently executed code corresponds to the transla-
tion of an if-construct in the source language or at what locations the translation of functions
and processes begin or end. However, the described abilities to store information about the
source program within a NIPS bytecode file have not been designed to specifically cater for
the needs of source-level debugging but as stated in [WS05] rather provide means to support
subsequent bytecode optimizations. The featured debugging information capabilities are not
sufficient to allow source-level debugging as, for example, the storage and later extraction
of type, variable or register information is not supported. It is therefore necessary to discuss
possibilities to cope with the limited debugging information functionality.

The approach we would like to present first, is based on the fact that although the provided
annotations are not able to capture the connection between high-level source and NIPS byte-
code, the situation is different with respect to a possible connection between microcontroller
machine code and NIPS bytecode. On the machine code level the original source code has
taken a greatly simplified form and the annotations described above allow to establish a con-
nection between machine code instructions and NIPS instructions. During the execution of
NIPS process steps, it is then possible to infer from which microcontroller instructions the
NIPS instructions originated. The bytecode file then supports the retrieval of disassembly in-
formation, however, elements of the source file, such as function names or type information,
can not be accessed directly. This ability can be provided by keeping the binary executable
and the stabs debug information stored within. The resulting dependency is a small disadvan-
tage but is compensated by low development costs. More serious is the fact that the storage
location within a NIPS state for elements such as global variables is not made explicit. The
information can be retrieved by reverse engineering the compiler which is responsible for
the machine code to bytecode translation, however, this contradicts the idea of debugging
information.

The limited support of the NIPS bytecode format regarding the description of debugging in-
formation has been topic of the work done by van Roozen [vR07]. The objective of this work
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was to create the possibility to describe the information contained within the NIPS byte-buffer
states to allow source-level debugging. A result of this work has been the development of the
Static Debugging Information (SDI) language which allows to extract source-level artifacts,
such as variables, names and types from the states generated during execution. SDI comes
with a textual as well as graphical representation. The author points out that SDI is designed
to describe debugging information for modeling languages such as Promela. But currently,
SDI does not provide support for programming languages. We have therefore decided to
continue with the previously described approach.

4.3.2 Program Call Stack

At this point we shall continue our discussion on program context information and focus on
the individual elements it consists of. We would like to start out with an element that helps to
answer the question ”How did the program get here?” when execution is suspended. Before
we introduce the program call stack, or call stack for short, let us point out that we already
presented a component that provides information to reason about the above mentioned ques-
tion. As explained in Section 4.2.4, the trace manager and its corresponding user interface,
namely the trace view, not only allow to control program execution but also provide infor-
mation to figure out how the current program location was reached. The trace management
records every microcontroller state seen during execution and by looking at the instruction
address contained within each state, the user gets a precise understanding of the program
flow. The information contributed by the call stack to reason about the program flow is less
accurate, however, it is sufficient to analyse a single state.

The call stack is a data structure kept in the microcontroller’s memory that stores information
about the currently active functions and interrupt handlers. Active in this context means that
the function or interrupt handler has been called but has not yet returned. The existence of
such a data structure arises with the need to store the instruction addresses at which execu-
tion should continue once a called function has finished execution. These so-called return
addresses are an integral part of the call stack, however, there is usually more information,
such as the values of local variables and function arguments, stored on the call stack. All
data associated with an active function is stored as contiguous block, a so-called stack frame.
A stack frame, or frame for short, is created on the stack once a function is entered and de-
stroyed on exit. From a high-level view, the call stack can be seen as a list of frames, whereas
the top frame corresponds to the currently active function. Access to the stack is often real-
ized by a designated register, namely the stack pointer, which points to the current top of the
stack. On most architectures, access to the frame structure is simplified by a separate register,
often termed frame pointer, which points to some fixed location within the top frame such as
first local variable or the location of the return address. A section of an example call stack is
sketched in Figure 4.7 to exemplify the described content. The example stack grows from the
highest to the lowest memory address and the selected section shows the last inserted frames
including the current frame and stack pointer. A new frame is currently build for a forthcom-
ing function call and parameters have already been stored on the stack. The return address
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Figure 4.7: Program call stack

will be written on the stack once the corresponding Call instruction has been issued.

The focus of this section is on the question, how information can be extracted from the call
stack to let users know about the active functions and interrupt handlers. The standard ap-
proach to this problem is to start out with the top stack frame and then continue analysis
backwards until the bottom of the stack is reached. The greatest difficulty with this task, also
known as stack unwinding, is due to the fact that there is no uniform stack layout. The stack
layout rather depends on the architecture and compiler in question. Information about the em-
ployed procedure calling conventions, that is, the rules which dictate how the stack is build
and where the various pieces of data, such as the return address, lie within each frame, are
in most cases only informally described in the reference manual for the targeted architecture
or employed compiler. Due to the described problems we decided to first of all concentrate
our development effort on the ability to retrieve the most important contained on the stack,
namely the return addresses. The existence of a frame pointer decreases the development
effort in some cases. Relevant is not just the availability of a frame pointer register, but more
important is whether and how the frame pointer is used by the machine code generated by
the compiler. The example stack given in Figure 4.7 describes a scenario where the present
conditions simplify the desired stack unwinding algorithm. Whenever a new frame is created
the value of the frame pointer register is saved on the stack. This is done after the return
address is written but before the frame pointer register is modified as consequence of the new
frame’s initialization. The storage location is at a fixed offset from the return address. The
frame pointer register itself points to the location of the stored frame pointer within the last
created frame, that is, the top frame. By this means, it is possible to unwind the stack by
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simply following the chain of frame pointers. For the retrieval of the desired return addresses
it is then only necessary to add a fixed-size offset to the respective frame pointer locations.

Although the targeted ATmega16 microcontroller does not feature a designated frame pointer
[Atm05], the AVR GCC compiler employs the Y-register for this purpose. Similar to the
situation above the value of the Y-register is stored on the stack whenever a new frame is
created. However, the register value does not point to the location of the stored frame pointer,
but instead, to the first local variable. This means that there is a variable size offset between
the location referred to by the Y-register and the stored frame pointer or the return address.
Knowing about the frame pointer has only little value in this case as an implementation based
on the frame pointer still has to know about the procedure calling conventions to determine
the size of this offset for each frame.

Independent of the question whether the stack unwinding algorithm can be based on the frame
pointer or not, it is generally not a good idea to do so. This is because changing the compiler
or targeting a different architecture will most likely break the algorithm. A better solution
to this problem is to stay with the generated machine code and let the algorithm find out for
itself how the stack was build. Although the initial development effort of this approach is quite
high and also requires assembly programming experience it proves to be robust with respect
to compiler changes and requires only minor changes to support different architectures. But
again, due to the complexity involved we have decided to limit our development effort on the
retrieval of the return addresses to manage in time.

Our algorithm is based on the fact that immediately after a Call instruction is executed the
last value written on the stack is the return address. Thereby, the stack pointer is decremented
and points to the next free address, that is the address right after the return address. If we keep
track of modifications to the stack pointer between the function call and its return instruction
we are able to specify a numeric offset for each instruction address in this range. The offset
should reverse all stack pointer modifications made by instructions following the CALL in-
struction until the address under consideration. Adding this offset to the current stack pointer
then gives the address of the return address. Regarding possible modifications of the stack
pointer we can distinguish between two cases, namely implicit and explicit modifications.
Implicit modifications are characterized by the fact that they occur automatically as side ef-
fect of certain instructions, such as the PUSH or POP instruction. The PUSH instruction for
example stores the content of the parameter register on the stack and decrements the stack
pointer by 1 afterwards.

Explicit modifications are described by those instructions whose primary target is to change
the stack pointer value, either by direct or indirect addressing. The OUT instruction for exam-
ple uses direct addressing and is able to modify the stack pointer because it writes the value
of a given register to a specified I/O location1. Handling implicit modifications requires a
small development effort only and a simple forward scan can be employed for the task at
hand. Explicit modifications in contrary require a substantial larger amount of work to be

1The stack pointer of the ATmega16 is implemented as IOR61 and IOR62 in I/O space
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Figure 4.8: Eclipse Source Lookup Model [Wri04]

taken care of. The job includes detecting whether the current instruction writes to the stack
pointer, retrieving the value to be written and also verifying that no arbitrary value is written
but that just an offset is added or subtracted. The forward search has been extended to cater
for detecting the corresponding instructions, whereas an additional backward search has been
introduced to take care of the last mentioned tasks.

The results of our stack unwinding effort can be noticed in the debug view as shown in
Figure 4.4 on page 32. The second application under debug is currently suspended and items
3 and 4 display the active functions which have been found on stack.

4.3.3 Source-Level View

We have explained in previous sections how programmers can answer the question “How
did the program get here?” by using context information provided by the recorded trace or
the program call stack. This ability is very important and allows programmers to confirm
or refute their intuition about program execution. However, interest in the question “Where
is the program” almost always comes first when execution is suspended. “Users think in
terms of their source code” is a statement made by Heisenberg [Ros96] and indicates which
information programmers are interested in to answer the last mentioned question. When
execution is suspended, a source-level debugger is at least required to highlight the current
source line or statement. However, the ability to analyse code prior or after the current source
line is effectively mandatory for modern debuggers. In the following we will describe how the
provision of source code, henceforth source code lookup, is realized by the ESD debugger.

We based our implementation on the source lookup framework which is available since
Eclipse 3.0. Particular beneficial about this framework is the fact that the context for source
lookup does not manifest itself in a suspended debug target but rather in the debug target’s
selected stack frame. Therefore it is not only possible to analyse source code corresponding
to the current instruction address as provided by the top stack frame but also view source code
for function calls or triggered interrupt handler routines in stack frames below.

Before we continue our discussion of the source lookup functionality we would like to refer
to Figure 4.8 as a first overview. Each launch object has a source locator object associated
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Figure 4.9: Source code and corresponding disassembly

with it which is responsible for locating the source element for a specific stack frame. The
source locator can either be manually instantiated by the launch delegate or is automatically
installed by the framework by contributing to the source locator extension point as employed
for the ESD debugger. The first step carried out by source locator is to map the stack frame
to a filename and then search for the corresponding file in a given source path. The source
path thereby consists of a set of source containers, such as workspace folders, projects, file
system directories or archives. By means of a source lookup tab which is added to the launch
configuration tab group, the programmer is able to configure and modify the source lookup
path. Alternatively a programmatically specified or default lookup path is used when the user
has no choice or makes none.

Once the source element for a stack frame has been retrieved it is the job of the debug model
presentation object to map the source element to an editor input and editor id. This infor-
mation is used by the framework to open the corresponding editor, display the source code
and position the editor to the line specified by the stack frame. Furthermore, two instruction
pointers are employed for highlighting; either to denote the source line corresponding to
the current instruction address or in case the source information context is determined by a
stack frame selection below the top frame. The above stated requirements concerning source
context information are therefore completely fulfilled by our debugger.

4.3.4 Disassembly

For certain difficult to find bugs – a concrete example is provided in our case study in Chapter
6 – the high-level source will be too imprecise to determine failure causes. In these cases,
the defect localization requires to analyse execution at a more fine-grained level, that is, to
examine executed or future machine instructions. The requirement has been addressed by
other state-of-the-art debuggers as well: The GNU debugger, for example, provides means
to display machine instructions by means of the disassemble command [gdb09]. The cur-
rent version of the platform debug model provides no support for disassembly retrieval and
display. Thus we integrated a custom disassembly framework within the ESD debug model.
Identical to source lookup, the context for disassembly retrieval is characterised by the de-
bug target’s currently selected stack frame. In contrast to the source lookup, the necessary
information for further processing is not already contained in the stack frame and has to be
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Figure 4.10: Variables and register view

retrieved from the backend by means of a corresponding command. Given filename and first
line number of the stack frame’s function, the backend is asked to retrieve the machine in-
structions that implement the function. The programmer is enabled to access the retrieved
information by means of the disassembly view, which is depicted in Figure 4.9 on the right
side next to the source view.

The NIPS VM does not actually execute machine instructions of the target processor but
rather simulates their effect by translation to a NIPS bytecode program. Once this compilation
has finished it is not possible anymore to infer the microcontroller machine instructions from
the established NIPS instructions. The retrieval of disassembly therefore either relies on
debug information provided by the NIPS bytecode file or otherwise employs the disassembly
extracted from the binary executable which has been used for the bytecode translation in the
first place.

4.3.5 Variables and Registers

Being able to inspect the values of variables used in the program’s source code is an important
feature of every source-level debugger. For embedded systems the ability to inspect register
values is equally important. Figure 4.10 shows the variables and registers view. They are
provided by the debug project and operate on the ESD debug model to display the existing
variables and register values.

4.3.6 Memory

An in-depth view of the current microcontroller state can be obtained by inspecting the mi-
crocontroller’s memories. Inspecting the microcontroller state on such a low level allows,
for example, to determine the precise layout of stack frames or to retrieve values of saved
registers or local variables stored within these frames. Although many microcontrollers face
severe restrictions concerning memory size, the complete memory content is usually still too
large for programmers to handle as a whole. For effective memory examination the debugger
is therefore required to allow programmers to concentrate on certain sections of the memory.

So far, we focused our motivation for memory examination entirely on the targeted microcon-
troller. In fact, most users of our debugger will show no interest in the underlying NIPS VM
which simulates the microcontroller and runs the microcontroller application. The ability to
debug their program is all they are looking for. For these users the motivation for memory
examination does not go beyond what is mentioned already. However, for certain users, such



CHAPTER 4. EMBEDDED SYSTEMS DEBUGGER 49

as developers of the NIPS VM or users interested in virtualization technology, the underlying
NIPS VM does matter. In this case the user will benefit from and therefore also require the
ability to inspect the NIPS VM’s memory state during program execution. As discussed in
Section 2.1 a NIPS state obeys to a specific structure featuring a global variable space, pro-
cesses and channels. Providing the capabilities to analyse the NIPS memory state in a raw
byte fashion is benefitial, but being able to reflect the mentioned structure in the memory
representation adds additional value. Before we continue with the description of the memory
exploration capabilities of the ESD debugger let us first summarize the three most important
requirements:

1. Ability to inspect both microcontroller- and NIPS VM memory state
2. Skill to focus on certain sections (either by address or name)
3. Provision of different representation formats

The support for memory retrieval and examination as provided by the ESD debugger is based
on the debug facilities supplied by the debug project, namely the memory framework and the
memory view. The central concept of these facilities is referred to by the term memory block
and represents a section of memory. A memory block constitutes an element of the debug
element hierarchy and in its simplest form is determined by a start address (also know as base
address) and a length value. More complex debuggers, including our own implementation,
furthermore allow to specify memory blocks by custom expressions. Although the debug
target element is the authority when it comes to the creation of new memory block instances, it
is the memory block element itself that is responsible for the retrieval of memory information
from the debuggee process. With respect to the Model-View-Controller architectural pattern
[BMR+96], the memory block element takes the role of the model. Consequently, a memory
block does not make any statement about how the contained information is represented to
the user. Instead, the task of representing memory information falls to an entity known as
memory rendering which is responsible for displaying a memory block in a specified data
format. The platform provides four default renderings which all display memory in a table
layout but differ in the actual byte representation: It is either Hex, ASCII, unsigned integer or
signed integer. However, as demonstrated by our implementation custom memory renderings
can be contributed that display information in a completely different format.

Programmer’s access to the memory functionality, for example adding a new memory block
or inspecting the information contained within, is provided by the memory view. The user in-
terface component does not actually use the term memory block but refers to them as memory
monitors instead. The memory view is depicted in Figure 4.11 and consists of three panes:
The Monitors pane on the right lists all memory monitors that are currently installed in the
current debug session and provides means to add or remove memory monitors. The two panes
to the left are called rendering panes and display the memory information contained within
the selected memory monitor from the Monitors pane. When the programmer wants to add
another memory monitor he is requested to insert necessary information via a corresponding
dialog. As the underlying NIPS VM is of interest for a restricted number of users only, our
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Figure 4.11: Memory view displaying the current NIPS VM memory state

primary support targets the microcontroller. Providing a start address and an optional length
value therefore creates a memory monitor for the specified section of the microcontroller’s
memory. If a length value is not provided the resulting monitor will cover the complete
memory from the given start address to the highest possible address. Alternatively the dialog
allows to choose the predefined ”NIPS VM Memory State” entry in order to create a memory
monitor for those users interested in the NIPS VM memory.



5
LTL Model Checking

Validation approaches such as testing or simulation are able to show the existence of failures,
however, they are not able to prove their absence. As embedded systems are oftentimes
employed in environments where failures are unacceptable the need for verification strategies
to prove or disprove the system’s correctness is obvious. One approach to this verification
problem is described by a method called model checking. Its introduction and the connection
between debugging and model checking is the topic of this chapter.

Model checking operates on a model of the considered system and is not employed on the
system directly. For a given system model and a specification the model checking problem
consists of the decision whether the model satisfies the specification. The model checking
algorithm solves this decision problem by exhaustive search of the model’s state space, and
under assumption of sufficient memory and time resources always terminates with a yes or no
answer. In either case, that is a positive or negative answer, the result of this analysis concerns
the model and not yet the actual system. The implication that from the model’s correctness
one can infer the system’s correctness is only true in case the model is a so-called system
abstraction. This means that all execution paths defined by the system are captured by the
model as well. A weakness of the model checking technique is found in the circumstance,
that a formal proof of this property is not possible in general. Advantageous about model
checking is the fact that the underlying process is automatic and requires no user interaction
with exception of the result analysis. In case a given specification is not satisfied by the model
a counterexample is generated which gives insight about possible system design errors. It is
necessary to distinguish between feasible and infeasible counterexample; a feasible coun-
terexamples describes an erroneous behaviour that also exists in the original system, whereas
the failure captured by an infeasible counterexample exists in the model only.

51



52 5.1. MODELING

In the following, we would like to focus on the three elements of model checking, namely,
modeling, specification and the actual verification algorithm. We will introduce Kripke struc-
tures as formal and mathematical precise representation of system models and analyse the
Linear Temporal Logic (LTL) as specification language. Regarding the verification algorithm
we will discuss the automata-theoretic approach to model checking and introduce the Nested
Depth First Search.

5.1 Modeling

The correctness of an embedded system depends on its behaviour over time. The system
model, which is a prerequisite for model checking, must provide means to capture the sys-
tem behaviour in a precise and unambiguous way. At the same time, the model must omit
all information that is not necessary to verify the considered specifications. Kripke struc-
tures have proven to be a suitable formalism for the modeling job at hand, and provide an
intuitive way to capture the behaviour of systems. A Kripke structure consists of a set of
states, a set of transition between states, and a function that labels each state with a set of
atomic propositions. States contain information about the system at a certain moment of its
behaviour, whereas transitions describe how the system evolves from on state into another.
Atomic propositions express known facts about the states of the system and by this means
abstract from the complete information captured within a state.

Definition 5.1 Kripke structure
Let AP be a set of atomic propositions. A Kripke structure M over AP is a four tuple
M = (S, sI , R, L) where

• S is a finite set of states,

• sI ∈ S is the initial state,

• R ⊆ S × S is a transition relation that must be total, that is, for every state s ∈ S there
is a state s′ ∈ S such that (s, s′) ∈ R,

• L : S → 2AP is a function that labels each state with the set of atomic propositions
true in that state.

Whereas the behaviour of the original system is defined by its possible executions, the equiv-
alent in the model consists of paths through the Kripke structure.

Definition 5.2 Path
A path in the Kripke structure M is an infinite sequence of states π = s0s1s2 . . . such that
s0 = sI and (si, si+1) ∈ R holds for all i ≥ 0.

The specification language we are interested in does not directly refer to the states of a path,
but instead considers the atomic propositions that are observed. The following definition of a
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trace simplifies the introduction of the specification language.

Definition 5.3 Trace

Let M be Kripke structure and π a path in M . The trace of π is defined as trace(π) =

L(s0)L(s1)L(s2) . . .. For σ = trace(π) we define σ[j . . .] = L(sj)L(sj+1)L(ss+2) . . . to
be the suffix of σ starting with L(sj).

5.2 Specification

The Linear Temporal Logic (LTL) extends classical propositional logic with a set of tempo-
ral operators and allows to make statements about system executions. Despite the adjective
temporal, LTL does not introduce time explicitly but instead specifies the relative order of
events.

Definition 5.4 Syntax of LTL

LTL formulae over the setAP = {p1, . . . , pn} of atomic propositions are inductively defined
as follows:

• pi is formula

• If ϕ and ψ are formula, then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ.

• If ϕ and ψ are formula, then so are Xϕ, Fϕ, Gϕ, ϕUψ

Definition 5.5 Sematics of LTL over Paths and Traces

Let M be a Kripke structure and ϕ be a LTL-formula over AP. A path π of M satisfies
ϕ, denoted π |= ϕ, if and only if the corresponding trace σ = trace(π), satisfies ϕ. The
satisfaction relation for trace σ is thereby inductively defined as follows:

• σ |= p iff p ∈ L(s0)

• σ |= ¬ϕ iff not σ |= ϕ, similarly for ∧ and ∨

• σ |= Xϕ iff σ[1 . . .] = L(s1)L(s2)L(s3) . . . |= ϕ

• σ |= Fϕ iff ∃j ≥ 0: σ[j . . .] |= ϕ

• σ |= Gϕ iff ∀j ≥ 0: σ[j . . .] |= ϕ

• σ |= ϕ1 U ϕ2 iff ∃j ≥ 0: σ[j . . .] |= ϕ2 and σ[i . . .] |= ϕ1, for all 0 ≤ i < j

Definition 5.6 Satisfaction of LTL formulae by Kripke structures

A Kripke structure M satisfies a LTL formula ϕ over AP , denoted M |= ϕ, if all paths of M
satisfy ϕ.



54 5.3. VERIFICATION ALGORITHM

By using Kripke structures as formalization for system models and LTL as specification lan-
guage the informal description of the model checking problem can be reformulated:

Definition 5.7 LTL Model Checking Problem

Given a Kripke structure M and a LTL formula ϕ over AP decide whether M |= ϕ.

5.3 Verification algorithm

The algorithm which is presented here to solve the model checking problem is based on the
automata-theoretic approach suggested by Vardi and Wolper [VW86]. The key idea of this
approach is that, given an LTL formula ϕ, it is possible to construct a Büchi automaton Aϕ

that accepts precisely all computations that satisfy ϕ. The language of infinite words accepted
byAϕ is denoted by L(Aϕ). The Kripke structure M which represents the system model can
also be given as Büchi automatonAM and the corresponding language is denoted by L(AM ).
Then, the model M satisfies the specification ϕ iff

L(AM ) ⊆ L(Aϕ) (5.1)

that is, each infinite word accepted by the model automaton is also accepted by the specifi-
cation automaton. If L(Aϕ) = Σω − L(Aϕ) denotes the complement language of L(Aϕ),
equation (5.1) can be rewritten as

L(AM ) ∩ L(Aϕ) = ∅ (5.2)

As Büchi automata are closed under complementation it is possible to obtain L(Aϕ) by com-
plementing Aϕ. In practise, however, it is simpler to complement the specification and use
the negated formula ¬ϕ as starting point for the automata construction. Thus, the model
checking problem for Kripke structures and LTL can be reduced to checking the emptiness
of Büchi automata.

Nested Depth First Search

The algorithm we would like to introduce to solve the emptiness problem of Büchi automata
employs two interleaved depth-first searchs. The Nested DFS algorithm was originally pro-
posed by Courcoubetis et al. [CVWY92]. The basic idea is to perform a first depth-first
search (blue search) to encounter all accepting states. This is complemented by employing a
nested, second depth-first search (red search), to search for a cycle once an accepting state has
been fully expanded by the blue search. A modification of the algorithm suggested by Holz-
mann et al. [HPY96] improves the algorithm’s memory efficiency and is used in the SPIN

model checker. Gastin et al. proposed a further variant in order to find counterexamples faster
[GMZ04]. Schoon and Esparza [SE05] developed yet another version which outperforms the
former variants concerning both time and space. The version we would like to present here
has been introduced by Gaiser and Schwoon [GS09] and is known as the currently best per-
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1 procedure new dfs() 15 s.colour := red
2 call dfs blue(s0); 16 else if s ∈ A then

17 call dfs red(s);
3 procedure dfs blue(s) 18 s.colour := red
4 allred := true; 19 else
5 s.colour := cyan; 20 s.colour := blue
6 for all t ∈ post(s) do
7 if t.colour = cyan
8 ∧ (s ∈ A ∨ t ∈ A) then 21 procedure dfs red(s)
9 report cycle; 22 for all t ∈ post(s) do

10 else if t.colour = white then 23 if t.colour = cyan then
11 call dfs blue(t); 24 report cycle
12 if t.colour 6= red then 25 else if t.colour = blue then
13 allred := false; 26 t.colour := red;
14 if allred then 27 call dfs red(t)

Listing 5.1: Nested Depth First Search Algorithmus

forming Nested DFS algorithm. It improves the previous algorithm of Schwoon et al. by
avoiding certain unnecessary initiations of the red search.

The algorithm builds on the existing successor function post(s) that calculates all successor
states of s. Furthermore, the algorithm requires two bits for each generated state and by this
means assigns one of the following colors to each state:

• white: A state that has been created by a call to post but has not been considered by the
blue search.

• cyan: A state whose blue search has not yet terminated. It is on the search stack of the
blue search.

• blue: A state that has finished its blue search and has not yet been reached in a red
search

• red: A state that has been considered in both the blue and the red search.

The algorithm from [GS09] is stated in listing 5.1. The algorithm starts the first depth-first
search with the initial state s0. Every state the blue search dfs blue is invoked upon is colored
cyan to denote that the state is now part of the current search path. The blue search can
terminate and report a counterexample in line 9 without entering the red search. This situation
occurs in case the considered successor state t is on the current search path and either the
current state s or t is an accepting state. If the successor has just been generated, its color is
thus white, the blue search continues.

If during backtracking an accepting state is found which has at least a single not red colored
successor, the red search is invoked upon this state. A state found during backtracking that
has none or only red colored successors is colored red itself to indicate that this state cannot
be part of a counterexample and to make sure that this state is not touched by a future red
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Figure 5.1: Model Checking Status View

search. Alternatively, the current state is colored blue as the blue search has finished with
this state. For the first mentioned case the red search then tries to detect a cycle by searching
for a cyan colored state. This is either the state the red search has been invoked upon or a
state further up the blue search’s current search path. In both cases a counterexample can
be reported in line 24 once a cyan colored state has been found. The red search considers
only blue states when continuing its search and colors them red to make sure that they are not
considered during future invocations of the red search.

In case the algorithm finishes in line 9 or 24 an accepting cycle has been found and the
counterexample can be generated from the blue search’s and red search’s search path.

5.4 Debugging Counterexamples

Within the MCESS project, Rohrbach developed a model checker for embedded systems
software on top of the NIPS VM [Roh06]. By integrating the developed model checking
capabilities into the Eclipse platform we have been able to integrate model checking much
closer into the development process. Being able to verify a developed application against
user-defined specifications from within Eclipse greatly enhances the methods acceptance as
the majority of programmers will not accept the necessity to switch from their development
environment to another tool. Despite this advantage our effort has primarily been made to
create the foundation for studying the benefits that can be obtained by allowing developers to
analyse counterexamples by means of a source-level debugger.

Analysing and understanding counterexamples is a complicated and time-intensive task in
practise. Existing model checkers for embedded systems software such as the MCESS model
checker only provide insufficient support for this task and require the user to iterate over all
states the counterexample consists of. It is not uncommon that counterexamples consists of
multiple thousands states and iterating over each state one by one is very tedious. The ability
to analyse counterexamples with the ESD debugger, that provides advanced run-control pos-
sibilities such as stepping, breakpoints and reverse execution, allows developers to manage
this task with greater efficiency and comfort. The Model Checking Status View as depicted in
Figure 5.1 is the starting point for launching the ESD debugger on a generated counterexam-
ple. The mentioned status view gives information about currently running or finished model
checking operations. For those specifications the model checking algorithm terminated with a
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negative result the developer can start a trace analysis on the generated counterexample. Sim-
ilar to a user-recorded trace (see Section 4.2.4) the ESD debugger loads the counterexample
and allows to advance execution by means of stepping, continuing to the next breakpoint or
selecting states in the trace view. In combination with the ability to inspect various program
context information (see Section 4.3) our evaluation has shown that the capability to inspect
counterexamples by means of a source-level debugger reduces the time to locate the defect
by an order of magnitude.



6
Case Study

Although hands-on experience is the best way to become acquainted with the ESD debugger
we would like to present a case study to give a first impression at least. The program that we
have chosen for this purpose violates a particular safety property.

The example program is shown in listing 6.1 and consists of a main function and an interrupt
handler for the external interrupt 2. It is the port pin B2 which serves as interrupt source.
The first part of the main function is concerned with initialization tasks, amongst others the
activation of the external interrupt. The initialization code is succeeded by the program’s
main loop. By means of the contained iteration loop a program is simulated which features
an information exchange between main program and interrupt handler. The integer variable
i serves as simple example for information to be exchanged. It is iteratively incremented and
also reset in the main program but is not modified by the interrupt handler. Whenever the
interrupt handler is entered the measure to be undertaken solely depends on the value of i.
The interrupt handler distinguishes between three cases, whereas the first two cases, namely
i < 150 and 150 ≤ i ≤ 300 correspond to the specified program behaviour. The third case
marks an erroneous system behaviour. On first sight, every possible value of i that can be set
in the main program is covered by the first two cases and and the Failure in line 27 should be
unreachable.

However, if we employ the program in an production environment, we will eventually find
out that this assumption is wrong and that the failure can occur. Independent of the failure
consequence, the developer needs to debug the program to locate and correct the existing
defect. A difficult part at the beginning of the debugging process consists of reconstructing
the failure. In our example the task is to search for a program execution where the interrupt
handler is entered and variable i is greater than 300. A starting point might be the test
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1 #include <avr/io.h> 15 i++;
2 #include <avr/interrupt.h> 16 }
3 #include <avr/signal.h> 17 i = 0;
4 18 }
5 volatile int i=0; 19 }
6 20
7 int main (void){ 21 SIGNAL (SIG INTERRUPT2){
8 DDRA = 0xFF; 22 if (i < 150)
9 PORTA = 0xFF; 23 PORTA = 0x00;
10 GICR = GICR | (1<<INT2); 24 else if (i <= 300)
11 sei(); 25 PORTA = 0x55;
12 26 else
13 while (1){ 27 FAILURE;
14 while (i<300){ 28 }

1 #define q ({i} >= 0) && ({i} <= 300)
2 ![] (interrupt18 entered -> q)

Listing 6.1: Source code and specification of the case study

whether variable i is reset once a value of 300 is reached. The developer can, for example,
set a watchpoint to suspend execution when i reaches 299 and then use source-level stepping
to advance execution. As expected the variable is reset to 0. A conceivable idea is then
to trigger the interrupt and inspect the variable value after the interrupt handler is entered.
Again, we would like to carry out this test when the value of i is 299.

In this particular program we could make use of the already existing watchpoint and issue
a forward resume operation. This would bring us to the same program state that has been
observed earlier. While this possibility exists in the simple example program, this is usually
not true for real-life programs. There we would have to restart the program and navigate
to the desired program state. Fortunately this is not necessary when using the ESD debug-
ger debugger; instead of restarting the program we can navigate backwards by employing
reverse stepping or a reverse resume operation. Having reached the desired program state
we can make use of the trace view’s successor component (see Section 4.2.4) to explicitly
trigger the interrupt and inspect the variable value after the interrupt handler has been en-
tered; as expected it is still 299. The program is behaving as it is supposed to and we do not
known yet, how the failure can occur. At least, the developer might have realized that the
source-code level view is not sufficient to reason about the failure and its causing defect. The
machine-level or more particularly the disassembly view, which shows the executed machine
instructions, should be in focus of our analysis next.

A good starting point for this investigation is probably the increment instruction in line 15.
We can summarize the knowledge the user gains by inspecting the provided disassembly in-
formation by stating that the ATmega16 implements a value assignment on an integer variable
by using two sts instructions. However, the technical details of how the increment operation
is realized on the machine instruction-level is more important than just a summary and we
need to discuss this aspect more throughly. The assembly code that corresponds to the i++
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operation is therefore listed below:

c8: 80 91 60 00 lds r24, 97

cc: 90 91 61 00 lds r25, 98

d0: 01 96 adiw r24, 1

d2: 90 93 61 00 sts 98, r25

d6: 80 93 60 00 sts 97, r24

The first two instructions load the current value of i from SRAM in the register pair R24
and R25. In the following the value contained in the register pair is incremented by one
using the ADIW instruction. Register R24 and R25 then hold the new value of variable i.
The last step includes storing this value back to SRAM which is achieved by the mentioned
sts instructions. The first sts instruction saves the high-order byte whereas the second
instruction saves the low-order byte.

Although the increment operation appears to be atomic on the source-level, it consists of
several operations on the instruction-level. In the given example program an interrupt can
occur between any two of these instructions. In case the interrupt occurs after the first sts
instruction, the high-level byte of the integer variable might have been modified, whereas
the low-level byte has not been updated yet. If variable i has a value of 299 = 0x012B
the situation is not dramatic; if the interrupt is triggered between the sts instructions, the
interrupt handler is entered, and i still has a value of 299 = 0x012B. However, the situation
is different when i has a value of 255 = 0x00FF. Here the increment instruction must alter
the high-order byte to 0x01 and then reset the low-order byte to 0x00, resulting in a value
of 256=0x0100. In case the instruction sequence is interrupted after the high-order byte has
been written to SRAM, the interrupt handler is entered and then finds a value of 511=0x1FF
for variable i.

While understanding the failure and its cause is very difficult, the solution is quite simple: It
is only necessary to deactivate all interrupts before the increment operation is executed and
activate them later one. This can be done by using the cli() and sei() assembly instruc-
tions. We have seen that the ESD debugger greatly supports the debugging process and lets
developers concentrate on the information they need. The developer is able to quickly move
forward and backwards in an execution trace and also explore alternative path for program
continuation. But the success of the debugging activity depends, for the most part, on the
experience and endurance of the developer. More problematic is the fact, that the debugging
activity is usually started too late, that is, once the failure has been observed in the production
environment.

Fortunately, we are able verify the program’s correctness by means of the model checking
method. The specification from Listing 6.1 states that every time the interrupt handler is
entered the value of variable i is in the range from 0 to 300. As we already known the ex-
ample program violates this specification and the model checking algorithm terminates with
a counterexample. Understanding the failure and localizing its cause is greatly simplified
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Figure 6.1: Using the ESD debugger to locate the failure cause

when failure information exists in form of a generated counterexample. The ESD debug-
ger is able to load the counterexample and the contained execution trace is displayed in the
trace view. It is advisable to jump to the last state and from there on navigate backwards
to localize the defect. In the example program it is sufficient to employ backwards stepping
to locate the defect, as the location of the failure and its cause are quite close to each other.
In real-world examples the developer can also consider the use of breakpoint to analyse the
counterexample. Figure 6.1 gives an impression of how this analysis is done with the ESD
debugger.

The strength of our debugger is to bring the programmer to the point where he understands
the failure causes and is able to come up with possible corrections. Equally important is the
connection to a verification tool such as the employed model checker, as the debugger is not
able to verify program correctness.



7
Technical Realisation

This chapter presents implementation aspects of the embedded systems debugger. The ESD
debugger has been developed in the JavaTM programming language and consists of a set of
plugins for integration into the Eclipse platform. Besides being the target environment for
our tool, Eclipse has also been used as environment for plugin development. In particular
the Plugin Development Environment (PDE) has been employed to create and edit the con-
figuration files associated with each plugin. In order to achieve a separation between user
interface specific aspects and underlying business logic the functionality of the ESD debug-
ger is contributed by two separate plugins, namely the es.debug.core and es.debug.ui plugin.
The complete system consists of 19 interfaces, 198 classes and has a size of more than 10000
lines of code. The exact distribution between both plugins is given in Table 7.1.

A high-level overview of the system architecture is given in Figure 7.1. The diagram is an
intermediary between UML component and package diagram and we believe that this form is
well suited to allow readers an intuitive perception of our implementation. The functionality
within each plugin is divided into smaller units and is kept together as Java packages. The
complete package name is made up from the plugin name (e.g es.debug.core) and the pack-
age identifiers as specified in Figure 7.1. The following paragraphs will analyse the system
architecture in more detail. The outline of our presentation is based on the plugins and the

Plug-in Interfaces Interfaces % Classes Classes % LOC LOC %

es.debug.core 15 78% 123 62% 7321 71%

es.debug.ui 4 22% 75 38% 2967 29%

Table 7.1: ESD plugins: Interfaces, Classes and Lines of code
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Figure 7.1: ESD - Plugins, Packages and Dependencies (Arrows)

contained packages.

7.1 Core Plugin

Model The ESD Debug Model as described in Section 4.1 is implemented by the classes
contained in the model package. The debug model elements define a view of the program
under debug.

Execution The execution package is concerned with implementation aspects focusing on exe-
cution control. As most of the respective business logic is provided by debug model elements
this package has been designed as gathering place for items that do not fit into the model pack-
age. These items include classes that implement breakpoints and also the ESLaunchDelegate
class which takes care of launching the debuggee.

Context The purpose of the context package is to hold all business logic that is affiliated with
the provision of program context information but is not covered by debug model elements.
More precisely, the context package takes care of the source lookup mechanism and provides
a source locator which is employed to map stack frames to file names (see section 4.3.3). The
implemented source locator does not take care of the stack frame to file name mapping itself
but delegates this task to a so-called lookup participant. The source locator is able to manage
multiple lookup participant and by this means provides support for environments that contain
different kind of stack frames. The technical details for mapping a stack frame to a file name
might differ for each frame type and by this means is encapsulated within a particular lookup
participant. The ability to manage multiple frame types is, for example, required by multi-
language environments. Section 9.1 will give an outlook why multi-language debugging
becomes important in the context of this work.
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Debuggee The implementation of the debuggee component is established by the debuggee
package. Classes of primary importance are the Backend, TraceManager, StateAnalyser and
DebugInformationProvider class.

The main task of the Backend class is to communicate with the frontend and to make sure
that necessary steps are taken whenever a request is received. Requests can be divided into
two types and are either concerned with controlling the program’s execution (1) or target the
retrieval of context information (2). The backend delegates the work necessary to handle
requests to either the TraceManager or the StateAnalyser. Requests of the first type are
transmitted to the TraceManager whereas the second type is forwarded to the StateAnalyser.
A minor job of the backend consists of several initialization tasks including the creation
of a TraceManager and StateAnalyser object for later use. Furthermore, the initialisation
procedure comprises the generation of the simulator component, that is, the NIPS VM. The
NIPS VM is implemented in the C programming language and is contributed to our project
as native, that is platform-specific, library. Access to a native library from a Java environment
is not possible in an ad-hoc manner but requires the development of a Java Native Interface
(JNI) layer [Lia99]. The MCESS project has been required to concentrate on this aspect at
an earlier point in time and the results of this effort can be found in the nipsvm package. We
have been able to reuse the existing JNI layer in our work. This also explains the dependency
to the nipsvm package.

The TraceManager class is the counterpart to the trace element included in the debug model
and implements the business logic required for execution control. The trace manager pro-
vides complex functionality such as source-level stepping, breakpoints, or reverse execution
on top of the NIPS VM. The NIPS VM itself provides very limited capabilities with respect
to execution control and only permits the calculation of direct successors for a given input
state. For the time being we can ignore the state format used by the virtual machine and
refer to these states as microcontroller state representations. From this view point a direct
successor corresponds to the microcontroller state obtained from the input state by execut-
ing a single microcontroller machine instruction. Implementing high-level execution control
in this environment can either be achieved by enhancing the NIPS VM with more complex
control capabilities or by simulating the required functionality. Simulation in this case means
that successor states are repeatedly generated until a certain stop condition such as hitting a
breakpoint is met. This approach infers a severe performance penalty caused by the overhead
for running a continuous state analysis. An enhancement of the NIPS VM to support high-
level execution control internally is presumably a better choice with respect to the debugger’s
overall performance. However, the necessary enhancements require substantial modification
to the NIPS VM implementation. An initial effort estimation indicated that the required de-
velopment time would violate the time frame given by this project and we decided to base
our implementation on the simulation approach. The TraceManager implementation is there-
fore characterised by making intensive use of the NIPS VM successor function. Generated
successor states are examined by means of the StateAnalyser to inspect whether the state gen-
eration process should be interrupted due to a satisfied condition such as the completion of a
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source-step operation or hitting a breakpoint. A list data structure is used to keep track of the
established execution trace. The list does not contain complete states but rather state identi-
fiers which are calculated up-front. The usage of state identifiers is important with respect to
an efficient exchange of trace date between the debuggee and debugger component.

The StateAnalyser is responsible for providing access to the internal of a microcontroller state
including the current instruction address, values of variables and registers or the program call
stack. For this task the StateAnalyser requires information about the microcontroller’s mem-
ory layout and its mapping to a NIPS byte-buffer state. The necessary information is provided
by memory layout classes, for example the ATmega16MemoryLayout class, contained in the
microcontroller sub-package. The provided functionality is requested by the TraceManager
to decide whether further successor states need to be generated. It is also required by the
Backend for the retrieval of program context information. The most complex operation car-
ried out by the StateAnalyser is unwinding the call stack as described in Section 4.3.2. Being
a non-trivial task from the start, it has been further complicated by the fact that the semantics
of interrupt calls are not completely preserved by the toolchain responsible for generating
the NIPS bytecode. In case an interrupt handler is called the stack pointer is correctly decre-
mented, however, the value of the return address is not written on the stack. A first version of
our implementation solves this problem by referring to the interrupt stack (see Figure 2.2) as
provided by a NIPS state. We are able to determine the missing return addresses by iterating
over the interrupt stack and retrieving the current instruction address for the NIPS processes
found on the interrupt stack.

The main task of the DebugInformationProvider class is to extract and manage the debug
information contained in the executable file (see Section 4.3.1 for background information).
The DebugInformationProvider does not directly work on the executable but instead on the
output produced by the tool objdump. The objdump tool is able to display various infor-
mation about executables and has been used by the MCESS toolchain (see Section 2.3) as
disassembler to view the executable in assembly form. Our motivation for using the obj-
dump tool lies in its ability to extract the required debug information sections, namely the
stabs and stabstring section. The parser which has been developed to extract the contained
stab instructions is provided by the stabs sub-package. During the initialization of the de-
buggee, the DebugInformationProvider iterates over the stab instructions provided by the
parser and stores the obtained information into internal data structures. Due to the already
existing dependency to the executable or rather the objdump output we decided to extract
further information provided by this file, that is disassembly information. The processing
of stabs directives that hold information about existing functions therefore includes the re-
trieval of the associated machine instructions. The instruction are at this point in plain text
format which is fine for presenting disassembly information in the user interface. However,
analysing the machine code with respect to the stack unwinding preprocessing step is simpli-
fied if instructions exists in as Java class representation. The Avrora project provides a Java
API for analysing assembly code written for AVR microcontrollers and has been employed
for mapping the plain text instructions to Java objects.
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Jobs The primary functionality of the jobs package is to provide the ability to launch model
checking operations. Responsibility for this task lies with the ModelCheckingJob class which
integrates model checking algorithms that are supplied by the ltlmc package. The ltlmc pack-
age is part of the MCESS project and implements algorithms such as the discussed NFDS
algorithm or Couvreurs algorithm (see section 5.3). As discussed by Clayberg in [EC08]
long running jobs should be executed in the background so that the user interface stays re-
sponsive. For this reason we have based our implementation on the Eclipse Jobs API which
presents a guideline for creating, managing and displaying background operations. The jobs
package is complemented by the ability to save and load execution traces. This capability
allows users to analyse executions at a later time but simultaneously is also a prerequisite to
allows our debugger to operate on model checking counterexamples.

7.2 Communication Protocol

The ESD debugger’s communication protocol is currently implemented as collection of Java
classes which are contained in the protocol package of the core plugin. As discussed in
Section 4.1 our communication protocol distinguishes between commands and events. Com-
mands are used by the debug model elements to control the execution of the debuggee or
to retrieve program context information. The necessity to issue commands originates at a
different place, namely the user interface. As result of a user interaction, such as selecting
a previous state in the trace view or by clicking the resume button in the debug view the
user interface interacts with a corresponding debug model element to change the status of the
debuggee. Alternatively, upon receiving notice about a status change, the user interface com-
ponents update and consequently use the debug model elements as intermediary to retrieve
the required program context information. Communication by means of commands is carried
out in a synchronous manner. This means that after a particular debug model element has
issued a command it blocks and waits to receive the debuggee’s reply message.

This is fine for all commands asscociated with the retrieval of program context information, as
the respective operations take an insignificant amount of time. However, for those commands
concerned with execution control, for example, a step or a resume command, the time neces-
sary to complete the operation is unknown. In the worst case the required operation will not
finish at all. As consequence, the user interface becomes unresponsive for a certain amount
of time or even completely freezes. To solve this problem we have designed the already men-
tioned event channel. Instead of having the debug model element wait until the particular
control operation finishes, commands targeting execution control are acknowledged immedi-
ately so that the user interface remains responsive. Events describing the current status of the
debuggee are send asynchronously to keep the debug model elements and consequently the
user interface components informed.

In the following, we will give a short overview of the existing commands and events that make
up our debug protocol. Afterwards we will give an example how the individual elements, that
is user interface, debugger and debuggee interact.
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7.2.1 Execution control commands

The following commands instruct the debuggee process to change its current execution state.
They return immediately and do not wait until the corresponding operation is finished.

Suspend [all | thread id] Suspends execution of the debuggee or a selected thread.

Resume [all | thread id] Resumes execution of the debuggee or a selected thread.

Terminate Instructs the debuggee to terminate.

Step [thread id] [level] [direction] [successor id] Distinguishes between forward and back-
ward stepping as well as source-level and instruction-level stepping. Executes the next
source- or machine-instruction or reverses the last source- or machine-instruction.

SetBreakpoint [source file] [line] Sets a breakpoint on the given line.

ClearBreakpoint [source file] [line] Clears any breakpoint on the given line.

InsertTraceState [trace index] [state id] Inserts the given state identifier after the specified
index in the execution trace.

SelectTraceState [trace index] Selects the execution state at the specified index within the
current execution trace.

7.2.2 Context information retrieval commands

The commands listed below are employed to retrieve specific program context information.
For most of these commands a corresponding helper class is exists that can be instantiated to
hold the information to be returned. These classes are contained in the results package.

Thread Retrieve the name and identifier of all existing threads.

Stack [thread id] Retrieve a list of stack frames for the given thread identifier.

Frame [thread id] [frame id] Get frame information for the given thread and frame identifier.

StackDepth [thread id] Query the debuggee for current frame count.

Trace [trace index] Retrieve the execution trace (list of state identifiers) starting from the
given index.

Sucessors [state id] Returns the successor states (their identifiers) for the specified state.

Disassembly [frame id] Retrieves disassembly information for the given frame.

Memory [start] [length] Queries the debuggee for the microcontroller’s memory content.

RegisterGroups Asks for existing register groups such as GPR or SPR.

Registers [group id] Returns a list of registers (name and identifier) for the given register
group.

Register [register id] Get the value for given register.

Variables [frame id] Retrieve the existing variables for the given frame.

Variable [variable id] Return the value for the specified variable.
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7.2.3 Other commands

SaveTrace [file path] Instructs the debuggee to save the current execution trace.

RemoveTraceFuture [trace index] Removes the execution trace starting at the given index.

7.2.4 Events

Started The debuggee started event is generated once the initialization tasks are successfully
completed. The start of a new thread is communicated by means of the thread started event.

Resumed Either a single thread or all threads resumed execution.

Suspended A single thread or all threads are suspended.

Terminated The debuggee or a single thread terminated.

TraceChanged The execution trace changed.

7.2.5 Communication Example

The interplay between the user interface, the debug model elements and the debuggee com-
ponent is best explained by an example. We have choosen the step operation for this purpose.
Before we go on, we would like to encourage our readers to have a look at the sequence
diagram of the step operation as depicted in figure 7.2.

When the user issues a step action, either by clicking on the corresponding button or by se-
lecting a successor state in the trace view, the user interface retrieves the correct ESThread
object and informs it about the required step operation. In the following, the ESThread object
communicates with the ESTrace object to retrieve the currently selected trace index and suc-
cessor state. The ESThread object takes further parameters such as the step-level or the step-
direction (forward vs. backwards) into account and then issues a particular Step command
with help of the Frontend. The command is immediately acknowledged by the Backend to
make sure that the user interface stays responsive. A resume event is sent shortly after receiv-
ing the Step command to let the debug elements, particularly the specific ESThread object,
know that the debuggee has resumed execution. The event is actually not directly sent to
the debug model elements but instead to the Frontend. The Frontend informs all registered
listeners, amongst others the particular ESThread object. The ESThread object will then fire
an internal event to inform the user interface components about the debuggee’s status change.
At some point later the step operation finishes and an suspended event is sent. Again, the
ESThread object receives a message from the Frontend and informs the user interface com-
ponents. Upon notice about the debuggee’s suspension, further action is required by the
ESTrace object: A Trace command is send to receive information about all state identifiers
that have been added to the execution trace. After the ESTrace object has updated its internal
data structure a message is send to the trace view to trigger an refresh.
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ESThread ESTrace Frontend Backend

prepareStep()

StepCommand()

Event: resumed
resumed()

Event: suspended
suspend()

TraceCommand()

fireSuspendEvent()

fireResumeEvent()

affects UI

affects UI

affects UI

UI: Step

Figure 7.2: Sequence Diagram: Step Operation

7.3 User Interface Plugin

Views The views package complements the debug view implementations that are part of the
debug project and provides the trace view and disassembly view implementation. Further-
more, it includes the implementation of the model checking status view.

Actions The user interface components rely on the classes contained in the actions package
to employ functionality provided by the debug model elements.

Editor A C source code editor is included in the editor package.

Launch The launch package contributes the user interface required for launching embedded
systems applications.



8
Related Work

8.1 NanoEsto Debugger

The development of the NanoEsto Debugger by Chun and Lim [CL06] takes place in the con-
text of designing and validating wireless sensor networks. A wireless sensor network consists
of multiple sensor nodes that cooperatively monitor physical or environmental conditions and
as states by Dyer [Dye07] can be regarded as an example of a distributed embedded system.
Sensor networking applications are typically developed on top of a special operating sys-
tems, whereas TinyOS [HSW+00] is probably the most popular platform being used. Being
unsatisfied with the existing platforms the Electronics and Telecommunications Research In-
stitute (ETRI) has developed an OS named NanoQPlus and an Eclipse-based development
environment named NanoEsto to support the development of NanoQplus applications. An
important aspect of the NanoEsto development environment is the provision of an embedded
systems debugger based on the on-chip debugging approach as discussed in Section 1.2.2.
The debugger’s architecture is depicted in Figure 8.1 and consists of three components, that
is the host system, an JTAG emulator and the target system which runs the application to
be debugged. The debugger’s user interface is based on the CDT project (C/C++ Develop-
ment Tools) 1 and works against the debugging engine. The debugging engine is build on the
GNU debugger and employs the JTAG debugging agent in order to translate GDB commands
to JTAG instructions. The resulting instructions are transfered to the JTAG emulator via an
USB connection and are converted to corresponding JTAG signals. The generated JTAG sig-
nals establish the connection to the target system. The described JTAG emulator is an internal
development based on the ATmega16, whereas the target system is a sensor board featuring

1http://www.eclipse.org/cdt/
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Figure 8.1: Architecture of the NanoEsto Debugger [CL06]

an ATmega128. Unfortunately the authors do not provide a case-study and as most of their
research is contributed in Korean we have not been able to follow their work in more detail.

8.2 Model Checking with the GNU debugger

In contrast to our work where an existing model checking framework, namely the NIPS VM,
is used to build a source-level debugger the work by Mercer and Jones [MJ05] follows the
opposite direction. They present a model checker for embedded systems software which
employs the GNU debugger as state-space generator. In principle it does not matter whether
the debugger works against the native hardware or an instruction-set simulator, however, the
employment of native hardware is generally more difficult as we will see shortly.

The model checking process is started by passing the binary executable that corresponds
to the program of interest to the debugger. The debugger is then responsible for executing
the program and eventually stops to let the model checker read the current microcontroller
state. An advantage of this approach lies in the fact, that the state generation granularity is
flexible: The debugger can be told to return new states after every source statement, machine
instruction, user-defined breakpoints or a combination of the former possibilities. While
reading the current program state with the help of the debugger is quite simple this does hold
for writing a microcontroller state. Writing a microcontroller state becomes necessary in case
the model checking algorithm starts backtracking or an environment interaction is evaluated.
It is the existence of read-only registers (counter values) and clear-on-write registers (interrupt
flags) that makes this task an additional burden. In case the debugger works on a simulator
the problem can be solved by modifying the simulator in order to make read-only and special
control registers writable. This approach is not possible though when the debugger runs on
the native hardware. Instead the microcontroller state has to manipulated with great care to
achieve the desired result. Setting an interrupt flag, for example, cannot be done directly as
it is automatically cleared. Instead the model checker needs to create a state that causes the
interrupt to fire, for example, by toggling the external interrupt pin.

By using the GNU debugger as state generator Mercer and Jones have been able to build a
model checker that considers the targeted hardware. The implemented verification algorithm
is limited to general properties such as stack overflow or read-only violation and does include
the verification of temporal logic formulas.



9
Summary and Perspective

In this work we have developed a source-level debugger for embedded systems software
based on a virtual machine for state-space generation, namely the NIPS VM. We have used
the toolchain created by the MCESS project [Roh06] to translate the source program to a
required NIPS bytecode program and also discussed how debug information create a connec-
tion between both artifacts. Considering the fact that the toolchain takes a processor model
specified in a hardware description language as input our debugger supports different hard-
ware architectures. By integrating the debugger into the Eclipse platform we have achieved a
seamless integration into the software development process.

The debugger’s functionality concentrates on the ability to control the program’s execution
and to inspect program context information. Execution control includes means to suspend
execution at the occurrence of user-specified conditions and to continue execution step-wise,
either on the source- or the instruction-level. Being able to reverse execution to an earlier
point in time is a more advanced execution control concept provided by the ESD debugger
and is based on the its ability to record the program’s execution. Inspecting program context
information is possible on two levels, that is, the source- and/or the instruction-level. Pos-
sible information includes the current source statement, the current machine instruction, the
program call stack, variable and register values and memory content.

We discussed that debugging is concerned with the localization and correction of known fail-
ures but does not make a statement about system correctness. Model checking on the other
hand is able to prove or disprove system correctness by exhaustive state-space exploration.
We have combined an existing model checker for embedded systems software with our de-
bugger to reason about counterexamples. Our experience shows that this is a very powerful
combination, especially when both activities, that is, debugging and model checking are in-
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tegrated closely into an development environment.

9.1 Open Issues and Future Work

Tracing

The ability to record the microcontroller’s execution is one of the greatest strength of the
ESD debugger and builds the foundation for reverse execution. However, the mechanism for
program recording is at an early development stage and requires improvements. Currently, the
recording mechanism is set to record the microcontroller state after every machine instruction.
Although this fine granularity is beneficial with respect to a successive trace analysis, it results
in a performance penalty and also high memory requirements. A first improvement should
include the ability to record less information, for example, to record the microcontroller state
only on method entry and exit, access to specified I/O or memory locations or other user-
specifiable conditions. Additionally, the recording mechanism should be able to remove the
oldest recorded program states on demand to manage with existing memory limitations. An
in-depth discussion of possibilities to improve program recording functionality can be found
in [Lew03]. A large amount of research on program monitoring or recording, respectively,
has also been invested by the runtime verification community. A good introduction to this
research can be found in the work by Watterson [WH07] or Havelund [Hav08].

At the same time, the recorded trace information are not used to the full extend yet. Further
improvements target both trace visualisation and trace navigation. Regarding further trace
visualisation capabilities, it should be possible, for example, to employ a time-series analysis
for specified variables, memory locations or I/O locations and inspect how their values evolve
during program execution. When the developer hovers over a trace state a balloon help could
present identifying information such as the respective source line and machine instruction.
Furthermore, the balloon help could be complemented by highlighting the differences to the
previous state.

Navigating the recorded trace could be further improved by providing a trace query language,
which allows to query for interesting events, such as read or write access to a variable or
memory location, and lists all program location that apply.

Microcontroller Environment

The behaviour of the program under study depends heavily on the environment the embedded
system operates in. In the current setting it is possible to specify additional NIPS bytecode
snippets which are executed on access to specified memory locations and by this means sim-
ulate the environment (see Section 2.5 for details). However, the development of an environ-
ment model is quite tedious in the current setting and improvements are in order. Changing
the specification language from the low-level NIPS instructions to a powerful scripting lan-
guage such as JavaScript or TCL would simply the specification process to a great extend.
An inspiration might also be the work by Schlich et al. [BSK08] that investigates the usage
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of finite automata as possible formalism for environment specification.

Multi-Layer Debugging

So far we have concentrated our development effort on the perspective of an embedded sys-
tems application developer and his need for validating and debugging a particular application.
We have employed an existing virtual machine, namely the NIPS VM as instruction-set sim-
ulator to execute the application under study and to provide debugging as well as model
checking functionality. Until now we have implicitly assumed that the NIPS VM as well as
the featured toolchain correctly define the program’s operational semantics. Although the
NIPS VM as well as the toolchain have been extensively tested, chances are that both compo-
nents still contain defects that might become apparent when debugging an embedded systems
program. A first step to support the maintainer of the NIPS VM and the featured toolchain
with the task of localizing defects is to provide means to inspect the executing program at
a deeper level, that is, the NIPS bytecode level. Displaying the executed NIPS bytecode,
highlighting the current NIPS instruction with an instruction pointer and providing a special
visualisation of the current NIPS byte-buffer state describes this step in a more explicit way.
The visualisation of the current NIPS byte-buffer state has been mentioned in Section 4.3.6
and resulted in the provision of special memory rendering.

Further insight into the virtual machine’s operation can be obtained by providing support for
stepping on the level of individual NIPS instructions and displaying the temporal operand
stack. Both, the inner workings of the virtual machine and it’s interface would require major
changes to support instruction-level stepping. The functionality described so far will give a
better understanding of the executed NIPS bytecode, however, provides no help with defects
that manifest themselves at the virtual machine’s implementation level or the Java interface
layer. Essentially we are looking at the task of debugging a mixed-mode application con-
sisting of Java, C and JNI code. A good starting point is the work by Chauvin [Mar07] or
Jancewicz [Nic06].
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A
Appendix

A.1 Selected Extensions

A.1.1 Launch configuration type

1 <extension
2 point="org.eclipse.debug.core.launchConfigurationTypes">
3 <launchConfigurationType name="Embedded System Software"
4 id="es.debug.core.ESLaunchType"
5 modes="debug"
6 delegate="es.debug.core.launcher.ESLaunchDelegate">
7 </launchConfigurationType>
8 </extension>

A.1.2 Line Breakpoint

1 <extension point="org.eclipse.debug.core.breakpoints">
2 <breakpoint
3 class="es.debug.core.breakpoints.ESLineBreakpoint"
4 name="ES Line Breakpoints"
5 markerType="es.debug.core.markerType.lineBreakpoint"
6 id="es.lineBreakpoint"/>
7 </extension>
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A.1.3 Marker type

1 <extension point="org.eclipse.core.resources.markers"
2 id="markerType.lineBreakpoint"
3 name="ES Line Breakpoint Marker">
4 <super type="org.eclipse.debug.core.lineBreakpointMarker"/>
5 <persistent value="true"/>
6 </extension>
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