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Preface

The Thesis that lies before you is a Final Project report. The Final Project is a project (30EC) which is
completed as the last step to receiving a master’s degree. In this case, the sought after master degree is
the Computer Science - Formal Methods and Tools degree as taught at the University of Twente in the
Netherlands. Prior to this Final Project the Research Topics project (10EC) has been completed which aims
to identify the contents of the Final Project. In the Research Topics project the goals of the Final Project
where determined. Research was done under the broader title of "Comparing LTSmin and NuSMV". Soon
it was determined that the comparison would be between their respective symbolic reachability tools. The
main focus of the Research Topics project was to figure out how to compare the LTSmin and NuSMV tools
as they do not support the same input languages and thus cannot be run on the same input models in order
to compare their execution times. As a reaction to this question it was determined that the chosen method
of comparison would be the creation of automatic translations between their respective input languages.
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Chapter 0

Introduction

Today’s life standards entail that the average human depends more and more on safety-critical systems.
Verification of such safety-critical systems keeps the quality of those systems high as to prevent major
disasters or other disruptions of daily life. One such verification technique is called model checking which
attempts to create a model of the safety-critical system such that the model can be checked for its correct-
ness. Any faults found in the model are investigated to see if the fault also exists in the modelled system.
Model checking tools are able to check if certain properties hold on the created model or not. The analysis
of models is often costly in time. Comparing model checking tools and explaining the obtained results
might provide insight on how to increase the performance of the model checking tools.

NuSMYV, a symbolic model checker, and LTSmin, a symbolic model checker toolset both have tools that
can compute the reachable state space of a model. We have chosen to compare NuSMV and LTSmin’s
reachability analysis tools as reachability analysis is an important part of any model checking activity. The
NuSMV and LTSmin reachability tools are currently incomparable as they do not support the same input
languages. mCRL2 is one of the modelling languages supported by LTSmin and NuSMV supports the SMV
language. Comparing the performance of the NuSMV and LTSmin reachability tools is interesting because
they both use different techniques: NuSMV uses “conjunctive paritioning” and LTSmin uses “disjunctive
paritioning” (both techniques are explained in the preliminaries chapter). Another important difference is
that NuSMV uses an input language that directly represents the needed transition relation whereas LTSmin
has to learn the transition relation from a description that is not a direct representation. The research
described in this Thesis attempts to compare the NuSMV with the LTSmin reachability tool by providing
automatic translations from the SMV language to the mCRL2 language and experimentally executing the
original and translated models on their respective platform.

A multitude of possible automatic translations were identified that translated both from languages that
are supported by LTSmin to the SMV language (the input language of NuSMV) and the other way around.
An existing translation from PROMELA (an LTSmin input language) to SMV was identified to be available
in the P2B and S2N tools [2, 18]. Later, in the continuation of the project it was determined to focus on
translations from SMV to LTSmin languages as no research was found on such translations. mCRL2 was
chosen as an appropriate LTSmin input language as it supports language constructs that enable convenient
translations from SMV models to mCRL2 models.



In order to translate from SMV to mCRL2 a two phase approach was adopted: SMV is first translated
into SMV-flat, which is a flattening translation as is also used in the SMV toolset. The SMV to SMV-
flat translation translates any SMV model with an arbitrary number of modules (synchronous modules,
asynchronous modules) into one big synchronous SMV model. This makes translation to mCRL2 easier as
all SMV models are first translated to this flattened format. Having an SMV-flat model, we translate to
mCRL2 in one of two ways, the first being the All-in-1 translation which translates each state in an SMV
model to a single state in the translated mCRL2 model. The second translation is called 1-by-1 which has
multiple mCRL2 states for each single SMV state.

Going back to the bigger picture, in this thesis we:
e Provide automatic translations from SMV to an LTSmin input language.
e Formalize and prove these translations to be correct.
e Use the translations to translate several SMV models to mCRL2 models and execute them on SMV
and LTSmin in order to obtain experimental results.
e Explain the results by using the theory behind the NuSMV and LTSmin reachability tools.

The rest of this document is divided into several chapters: Chapter 1 explains the theory behind the
SMV and LTSmin reachability tools. Chapter 2 focusses on the created and implemented translations,
the formalization of the input languages and the formalization and correctness proofs of the translations.
Chapter 3 analyses possible SMV models to use, shows the results of their execution on the reachability
tools and explains those results using the theory described in Chapter 1. Chapter 4 reports on the main
conclusions and advising on future work. Chapter 5 concludes the report with a short description of the
developed translation tool.



Chapter 1

Preliminaries

This chapter discusses the theoretical background of this project. It discusses what model checking is,
how it is performed and what model checking algorithms are used by LTSmin and NuSMV. It discusses
both sequential as symbolic model checking and possible techniques to partition the transition relation.
This chapter also explains about LTSmin’s special features and which features are used by the NuSMV
toolset. The difference between synchronous and asynchronous models and the way they handle parallel
composition is also described.

1.1 Model checking

The problem solved by model checking has a model and a property as its input. The output of the problem
is a yes or no answer with possibly a counterexample to the question: “Does the property hold is this
model?”. A model defines a number of data variables together with a descriptions of how those data
variables may change called next state valuations. The data variables are denoted x1,...,zN, with N the
number of variables defined in the model. Each possible assignment of values to all data variables amounts
to a single valuation of those data variables called a “state”. The individual values of the data variables
x1,..., Ty for a certain state are denoted vy, ..., v,. Models are described by transition systems:

Definition 1 (Transition System)
A transition system (TS) is a structure (S, R, s°), where S is a set of states, R C S x S is a transition relation
and s C S is the initial state [5]. The set of next states of a state s, is defined to be {s’ € S | R(s,s)}.

Model checking for invariants, such as “Property x may never hold”, boils down to a reachability
analysis of the state space of the transition system. This reachability analysis will either find a state in
which property x holds, or conclude that such a state does not exist. The reachability problem has as input
a set of initial states and a transition relation. The solution of the problem is a description of all reachable
states, that is: states that can be reached by applying the transition relation zero or more times to one of
the initial states as defined in definition 2.
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Definition 2 (Reachable States)
Given a transition system TS = (S, R, "), The set of reachable states is V = {s € S | s"R*s}. A state
s € S is reachable if s € V' [5]. R* stands for the application of R zero or more times.

1.1.1 Enumerative model checking

When using enumerative model checking the state space is searched one state at a time. If a state is
found then all its successors are computed and put in a list that signifies that they are new and should be
investigated later. There is also a list of visited states which is used to find out if the new states are not
investigated already in order to detect loops and prevent unnecessary work and a never ending search. The
paper by Blom and van de Pol (2008) provides a simple algorithm in Table 1 [5], reproduced here:

proc reach ()
v o= {9
L :=V
while L # 0 do

L := {y|3xeLl:xzRy}
L :=L\V
V := VUL

end

return V

end

Figure 1.1: A pseudo-code algorithm for a breadth-first search for all reachable states.

This algorithm describes a breadth-first search for all reachable states starting from state s°. The al-
gorithm starts by adding the initial state to the set of visited states V and by also adding the initial state
to the set L of states that have been discovered but not yet expanded (their successors have not yet been
investigated). Then we enter a while loop that first expands all states in L by sequentially expanding each
state in L. Expanding a state means that all successor states of that state are discovered by applying the
transition relation R. After all states in L have been expanded, all states in V are subtracted from the
set L. This is done in order to detect loops in the transition system. If a loop is present, then we do not
want to expand states that already have been expanded as we would then enter an infinite loop. The last
statement in the while loop makes sure that the visited set is updated for this round. The while loop stops
when there are no more new states to be expanded, in other words, no new states where found in the last
round and we have thus explored all reachable states which are now recorded in set V.

The storage requirements for the list of visited states is a major drawback of enumerative model checking.
Often advanced hash tables, such as Bloom filters [12], and Cleary tables [11], are used to keep the storage
requirements of the list of visited states to a minimum. A problem with these advanced hash tables is that
these methods often sacrifice completeness. Other solutions are available that do not have such a drawback
[14]. Enumerative model checking also has the drawback that it has to look at each state separately when
expanding a group of states, which is costly in time.

1.1.2 Symbolic model checking

Symbolic model checking is a solution to these storage requirements and time problems. The core of
symbolic model checking is a data structure called a Binary Decision Diagram (BDD). The advantage of



BDDs is that a set of states (or a transition relation) can be represented in a compressed form. An even
bigger advantage is that a BDD representing a set of states or a transition relation can be used in set
operations without decompressing the information first. Information compression by BDDs does not incur
any kind of information loss. [1, 7] give descriptions on BDDs. [17] gives a mathematical description of the
symbolic model checking process using BDDs; [5, 8] give a more practical explanation.

Binary Decision Diagram

A BDD [1] is a directed acyclic graph (DAG) with zero or more internal nodes, and special leaf nodes. The
special leaf nodes in the diagram and are depicted by squares with the labels “1” and “0”, representing
true and false respectively. The internal nodes represent boolean variables. Each internal node has two
outgoing edges, one normal and one dashed edge respectively called the true, and the false edge. One node
of the BDD is seen as the root of the BDD. This root node has no incoming edges. A path in the BDD
staring at the root node and ending at one of the special leaf nodes defines a valuation over all variables in
the BDD. The path also tells us whether the valuation represented by this path is in the represented set or
not. If the path ended in a leaf labelled “0”, then this valuation is not in the set represented by the BDD.
If the path ended in a leaf labelled “1”, then this valuation is in the set represented by the BDD. Let us
clarify the idea of a valuation by giving a definition:

Definition 3 (Valuation)
A valuation over a set of boolean variables, denoted v, ..., vy, is an individual assignment of one of the
values {0,1} to each of the boolean variables. A set of x boolean variables has 27 different valuations.

/
/
/

/
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/ / /
/ / / /
/ / / /

0 0 0 1 0 1 0 1

/

Figure 1.2: An example of a BDD [7].

Let us look at an example. Figure 1.2 shows a BDD that has three internal nodes labelled z1, x2 and
x3, and multiple leaf nodes labelled 0 and 1. The nodes z1, 2 and z3 represent three boolean variables.
The paths through this BDD from the root node x; to the leaf nodes {0,1} represent whether certain
valuations over the variables z1, 2 and z3 are in the represented set or not. For example, the valuation
x1 = false,xo = false and x3 = false is not in the set. We can see this by traversing the corresponding



path in the BDD: Staring at the root node x; we see that the choice of 1 = false leads to the left x5 node
(by following the dashed edge). The choice that variable x5 is also false leads to the leftmost x5 node and the
choice that x3 is false leads to a special leaf node 0. As the path belonging to valuation x1,zo,x3 = false
leads to a special leaf node labelled 0, this valuation is not in the set represented by the BDD. If we however
change the valuation to assign true to variables x5 and 3, then the traversal of the BDD changes as we
now choose the normal (non-dashed) edge in node z2 and afterwards do the same in node z3 with the effect
that we end up in a special leaf 1. This indicates that the valuation x1 = false, xs, x3 = true is in the set
represented by this BDD.

BDDs are used in symbolic model checking to represent sets of states and or the transition relation.
Normally a state consists of a number of data variables, with types such as boolean, integer, string etc.
BDDs only work with boolean variables and therefore variables with another type must be represented
by multiple boolean variables. In general this is always possible as computers themselves also represent
all data with “boolean” variables: the “bit”. Recursive data types however present problems as they can
become arbitrary large. Regardless researchers have been able to find ways to symbolically represent such
recursive data types [5].

Once all variables have been transformed to boolean variables it becomes clear how BDDs can be used
to represent for example the set of visited states: Say that a models state can be described by N boolean
variables. Then each possible state of the model (reachable or not) is represented by a single valuation over
this set of boolean variables. If we create a BDD that has a path for each possible valuation, we can encode
the set of visited states into this BDD by lettings paths representing visited states reach the special “17 leaf
node. Paths that represent states that have not been visited are going to the 0 leaf node indicating that
they are not in the set of visited states. Formally we define the relation between the BDD representation
and the set of visited states as follows.

Relation 4 (Relation Between a BDD and its Represented Set)

Let D denote a BDD. Let M be a model who’s states are described by n boolean variables denoted x1,...,z.,.
Let state s have a valuation vy, ...,v, € {0,1}. Then s is in the set of visited states represented by D iff D
has a path constructed by following the corresponding true or false edge to valuation v; for node x1,..., v,
for node x,, which leads to a special leaf node 1.

The reason why BDDs and symbolic model checking is used in practice is three fold. Firstly BDD
representations of a set of states generally use much less memory then an explicit list of the states. The
reason for this is that in a BDD lots of valuations can share data, whereas an explicit list would record the
same data multiple times. Data sharing in BDDs is enforced using multiple BDD simplification methods
which transform an ordinary BDD into a Ordered Binary Decision Diagram (OBDD) [7] which effectively
removes redundant data. Figure 1.2 can also be simplified. The simplified version is shown in Figure 1.3
which essentially represents the same information but uses much less nodes (check the paths in the BDDs
to see the equivalence between the two BDDs). The absence of a node means that the valuation of that
variable along the current path is irrelevant. Both a true and false evaluation have the same effect on the
continuation of the path. For example, if variable x1 is evaluated to true, then the valuation of variable x2
does not matter. For both possible valuations of variable 2 we need to look at variable x3 to see if this
valuation is in the represented set or not.



Figure 1.3: An OBDD representation of Figure 1.2.

Secondly, BDDs can be used with boolean set operations without decompressing the information first.
It is possible to compute the boolean AND of a BDD representation of a set of visited states with a
BDD representation of a transition relation without decompressing either BDD data structures, and thus
effectively computing the next state function (explained in the next section). Thirdly, BDD operations are
set operations, meaning that all operations compute their operation over the complete set of valuations
represented by the BDDs at once. The next section describes how the reachability analysis works using
BDDs.

Reachability analysis with BDDs

BDDs can be used in model checking by having one BDD that represents the visited set, and one BDD
that represents the transition relation. The variables used in the visited set are boolean representations of
all variables that describe a single state. The vector of variables used to describe a single state is denoted
x, with © = 1, ...z, and is called the “state vector” The visited set BDD is denoted V(x), and essentially
represents the set of states that have already been determined to be reachable. The transition relation is
denoted R(xz,2’). Both z and 2’ denote the boolean variables used to describe a single state. State sl has
a transition to s2 if the combination of the valuations of the variables representing sl and s2, denoted v1
and v2, is present in the transition relation, denoted as follows: R(v1,v2).

Reachability analysis is done by an iterative process that keeps on finding new reachable states until
no more reachable states can be found. The difference with enumerative model checking is that as BDD
operators are set operators we do not look at each state separately but instead compute the next states for
all currently known states at once. This gives rise to the idea of levels: Starting with the set of initial states,
the next level can be computed by computing all reachable states from the set of initial states. The result
is then used in an iterative process to compute the next level which amounts to computing all reachable
states from the states that have been reached until now. The computation stops when no new reachable
states have been found in the last iteration, signifying that all reachable states have been found. Looking
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at Figure 1.1.1 the only changed aspect is how line 5 is handled.

Going from one level to the next level can be formulated as follows:

Formula 5
V'(z) = (Fz(V(z) A R(z,2"))) [z := ]

V(x) represents the current visited set, or in other words the set of states that have currently been
found to be reachable. After applying the described operations we obtain V’/(z) which denotes the newly
updated visited set. The formula consists of three operations that we will now discuss in detail. The first
part of the formula is V' (z) A R(x, 2’). Here, the AND operator is applied to the current visited set and the
BDD representing the transition relation. The result of this operation is a BDD with two sets of variables,
x and z'. Let us denote this result by Result(x,z’). As the AND operator only allows for valuations
that are both in V(z) and R(x,x’) to appear in Result(x,z’), we obtain a BDD that only has transition
representations of which the first set of variables (z) denotes a state that was also in V(z). Therefore, all
relations in the result describe transitions that can be taken by the states in V(z). The second part of
the formula is Jz(Result(z,2')). The 3 stands for existential quantification which effectively deletes the
variables described in its first argument (z), from its second argument Result(x,z’). So the new result
after applying the 3 operator is a BDD representation of all reachable next states from the set V' (z). Let
us denote this intermediate result as Result2(z’). The combination of the BDD AND operator and the
existential quantification is called the relational product. Even though we have now obtained the set of
reachable states from V() a last BDD operation denoted by [z’ := z] is needed. This operation effectively
renames all variables in X’ to variables in x, making sure that the result of our computations can be used
in a next iteration. The final result is thus a new (updated) visited set denoted by V’(x). In order to make
sure that we remember all visited states (and not start looping around in our search), we should combine
the new visited set with the previous visited set with the BDD AND operator.

1.2 Partitioning of the relational BDDs

The main problem of symbolic model checking is that the transition BDD and the intermediate results of
BDD operations such as the relational product can get very large [16, 9]. The intermediate results of the
relational product operator are often greater than the end result of the operation. Splitting the complete
transition BDD into multiple transition BDDs (partitions) that together describe the complete transition
system is a much used solution to this problem. In terms of storage requirements it is often the case that
the combined number of BDD nodes used to describe the smaller transition BDDs is often smaller than
the number of BDD nodes used to describe the original transition BDD. Computation time can also be
reduced because of the existence of special relational product operators that take advantage of these smaller
transition BDDs to ensure smaller intermediate results [9]. The complete transition BDD is often called the
monolithic transition BDD. This section discusses the two main flavours of transition BDD partitioning:
disjunctive and conjunctive partitioning.

1.2.1 Disjunctive partitioning

Disjunctive partitioning means that a disjunctive combination of multiple partitions is used to describe
the monolithic transition BDD. A partition of the transition relation describes a subset of the monolithic
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transition relation both in the sense that it describes part of all transitions of the model, but also in the
sense that it might describe partial transitions. A partial transition is a transition that describes change
for a strict subset of the total amount of model variables. The semantics of such a partial transition in the
case of disjunctive partitions is that this transition may take place independently of the valuation of other
model variables that are not described by this partial transition. The partial transition BDDs are combined
to yield the monolithic transition BDD by applying the disjunction operation to them. The disjunctive
operator makes sure that the next states determined by each of the partitions are all valid next states of
the complete model. This combinations of partial transition BDDs amounts to non-deterministic choice
between multiple possible next states which is the same as the interleaving semantics in a multi-process
asynchronous model as described in Section 1.3.2. If partitions actually do describe all variables of the
model then their combined result is the union of their successors.

Naively we could compute the relational product by first taking the disjunction over all partial transition
BDDs and then using the computed monolithic transition BDD to compute the set of next states:

Formula 6
V'(z) = Fz.(V(z) A (Ro(z,2") V... V Rp_1(z,2)))) [z = ]

With p the number of partitions, R; the i-th partition, V' (z) the current visited set and V’(x) all possible
next states. A much smarter way to compute the relational product is presented next: In order to compute
the relational product, the monolithic transition BDD never has to be constructed. Instead of creating the
monolithic transition BDD, we can also distribute the existential quantification over the partitions [8, 9]:

Formula 7
V'(z) = 3z.(V(z) ARo(z,2)) V...V Iz.(V () A Rp_1(x,2"))) [z := ]

1.2.2 Conjunctive partitioning

With conjunctive partitioning, a number of partitions is defined which are combined with the conjunction
operator to obtain the monolithic transition BDD [3, 8]. Conjunctive partitions describe partial transi-
tions in the sense that they contain all information of how a single variable changes. The conjunctive
combination of these partial transition BDDs do not represent interleaving semantics as is the case with
disjunctive partitions. Instead, the combination represents “true concurrency”, as described in section 1.3.1.

When computing the relational product over the conjunctive partitions we cannot use the same trick as
with the disjunctive partitions because existential quantification and logical conjunction cannot distribute
[9]. The naive approach to computing the relational product is to construct the monolithic transition BDD
when computing the relational product:

Formula 8
V/(z) = 3z.(V(x) A (Ro(z, ") A ..o A Rp_q(x,2)))) [z = z].

With p the number of partitions, R; the i-th partition, V' (z) the current visited set and V’(x) all possible
next states.

12



Early quantification

Combining the partial transition BDDs into a monolithic transition BDD is contrary to what we set out
to achieve. Early quantification is a technique which builds the relational product in a stepwise way
carefully preventing the need to build the monolithic transition BDD [8, 13]. The technique is based on
two observations called locality and early quantification. The locality observation states that every single
partial transition BDD only depends on a small number of variables. The early quantification observation
states that variables can be existentially quantified if they are not present in any of the remaining partial
transition BDDs. The idea is to conjunctively combine the visited set with one of the partial transition
BDDs and to existentially quantify the variables in x that are not present in any of the other partial
transition BDDs. The set of variables that can be existentially quantified after conjunctively applying
partition i to the intermediate results is denoted F;. This process, of applying a partition and then using
existential quantification for set F;, is iterated for every partial transition BDD. These computations give
rise to p — 1 intermediate results denoted by I;(z,z’), with j the partition last used. The last iteration
should apply existential quantification on all remaining variables in x, such that the next result is V' (z').
After renaming we obtain V'(z).

Formula 9
In(z,2") = 3Eo.(V(z) A Ro(z,2"))
Li(z,2’) = 3E,.(Io(x,2') A Ry(z, "))

Ip_g(it, :L’/) = E'Ep_g.(lp_g(l’, ZZ?/) A\ Rp_Q(JT
V(z') = 3Ep-1.(Ip—2(z,2") N Rp_1(x,2")

S~—
S~—"
H\
I
B

The ordering in which the conjunctive partitions are used in this process is very important as it is better
for both time and memory to eliminate as much variables as possible as early as possible.

1.3 Model types

Models are often described as a collection of multiple components. Such components can represent separate
(but not independent) parts of a model, but they can also represent multiple independent processes. There
are two different types of models with as their main difference the way that they handle parallel composition.
Parallel composition is the behaviour of a system of two or more combined components. What are the
transitions possible in a system that combines multiple components? Is is possible for components to
independently take steps or do all components need to do a transition at the same time? The two main
ways to look at parallel composition are called “true-concurrency” and “interleaving semantics” and give
rise to respectively “synchronous” and “asynchronous” models.

1.3.1 Synchronous models

A synchronous model is a model that is made from a parallel composition of one or more components,
which we will call modules from now on. The parallel composition of multiple modules is defined to be fully
synchronous: No module may take transitions on their own, instead all modules have to take a transition
at the same time. The parallel composition of a single component is the unchanged component. This type
of parallel composition is called “true-concurrency” and is formally defined as follows:
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Definition 10 (Parallel Composition according to True Concurrency)
Let TS = (S, R,s%), T'S; = (S1, R1,sY) and T'Sy = (So, Ra, s9) be three transition systems. We define the
parallel composition T'S = T'Sy ||sync T'S2, following the principle of true-concurrency, as follows:

o S = Sl X SQ

o 0= 8(1) X sg

o R={((s1,52), (t1,t2)) | Rai(s1,t1) A Ra(s2,t2)}

Synchronous models are often described with a conjunctively partitioned transition relation as the
relational product operator for conjunctive partitions (described in section 1.2.2) effectively provides true-
concurrency semantics.

1.3.2 Asynchronous models

Asynchronous models are made up of one of more processes. These processes are expected to behave follow-
ing interleaving semantics: If a transition of a process is defined to be independent of the other processes (an
internal transition) then this transition can take place separately of the other processes. Dependent, also
called external, transitions communicate with transitions in other processes. All communicating transitions
must happen at the same time. A process that wants to execute an external transition must wait until
other processes that are defined to communicate with this transition are also ready to take the transition.
External transitions therefore define communications between processes. They can be used to communicate
values or to make sure that the complete system is in a certain state. An important effect of interleaving
semantics is that if multiple processes have enabled internal actions, then the order in which those actions
are executed in the parallel composed system is arbitrary. The order is determined by non-deterministically
selecting transitions in arbitrary order. The effect on the state space is that for certain states a multitude
of successors states is possible: One where process A takes an internal step, one where process B takes an
internal step and so on. Determining which transitions in which processes is done by giving each transition
a label. The label can be either internal denoted by 7, or external denoted by an alphabetic character. A
Transition System with labels on the transitions is called a Labelled Transition System which we will define
next, after which we define parallel composition works.

Definition 11 (Labelled Transition System)

A labelled transition system (LTS) is a structure (S, R, s, L), where S is a set of states, 7 is the special
internal label, L a set of labels, R C S x LU7T x S is a transition relation in which each transition is
labelled with a label and s C S is the initial state. The set of next states of a state s, is defined to be
{s €S| R(s,8)}.

Definition 12 (Parallel Composition according to Interleaving Semantics)

Let T'S; = (S1, L1, Ry1,sY) and TSy = (Ss, L1, R, s9) be two labelled transition systems. We define the
parallel composition LTS = LTS; ||qsync LTS, following the principle of interleaving semantics, to be
LTS = <Sl X SQ7L1 U LQ, R, (8?, 8(2))>, with:

R = {((51,52),a, (tl,tg)) | R1(81,a,t1) A RQ(SQ,a,tQ) ANa € LN LQ}
U {((Sl,a,SQ), (t1782)) ‘ Rl(sl,a,tl) Na € Ll\LQ ora= T}
)R

U {((81,&,82), (Sl,tg ) 2(82,a,t2) ANa € Lg\Ll or a = T}
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Definition 12 describes parallel composition for only two processes in the sense that the definition does
not support communications between more than two processes at once. A parallel composition between
three LTS’s LT'S1,LTSs and LTS3 could be defined as follows: LT'S = LTS3 ||async (LT'S1 ||async LT'S2).
Depending on the semantics of a particular model checking language such multi-communication transitions
are allowed or disallowed. Asynchronous models are often described with disjunctive partitions. Sets
of internal transitions can be described with the use of disjunctive partitions (see Section 1.2.1). The
monolithic transition BDD resulting from a disjunctive combination of the aforementioned disjunctive
partitions is exactly the parallel composition following interleaving semantics of the processes described by
the aforementioned disjunctive partitions.

1.4 NuSMV

NuSMYV is a symbolic model checker for the SMV modelling language'. NuSMYV is an open source project
under the LGPL licence which allows full rights to use and modify NuSMV for research and commercial
applications. NuSMV supports both BDD-based and SAT-based model checking ??. In this work we will
only use the BDD-based model checking approach when comparing NuSMV with LTSmin. The NuSMV
model checker uses a conjunctively partitioned transition BDD for which SMV was specifically designed:
The SMV language descriptions requires the user to encode variable change on a per variable basis which are
easily translatable to conjunctive partitions. Even though SMV models are largely used in domains that use
synchronous models it is also possible to specify asynchronous modules (a kind of asynchronous processes
in an otherwise synchronous system). This function is however deprecated but can be reconstructed by the
user by creating their own process scheduler (more on that later). NuSMV uses the early quantification
technique described in Section 1.2.2 in order to speed up their reachability search 2.

1.5 LTSmin

LTSmin is a model checking toolset 3. The symbolic reachability tool in the LTSmin toolset support
multiple input languages for which in the most cases enumerative model checkers already exists. The
languages are supported via language modules that provide a connection between the input language and
the PINS interface, which is an interface that enables the LTSmin tools to query the input languages in a
generalized way. Multiple input languages are supported, such as the state-based languages Promela and
DVE, the two action-based process algebras pCRL and mCRL2, and the UPPAAL xml modelling language.
The goal of LTSmin is to apply methods for symbolic state space exploration onto existing enumerative
state generators [6, 4].

1.5.1 LTSmin PINS Interface

A much used interface between enumerative model checkers and input languages is the monolithic next-
state interface [5]. This interface specifies functions that represent two requests: The request to supply the
initial state(s), and the request to supply the next state(s) given a current state:

Thttp://nusmv.fbk.eu/
2http://nusmv.fbk.eu/NuSMV /papers/sttt__j/html/node24.html
3http://fmt.cs.utwente.nl/tools/ltsmin/
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Definition 13 (Monolithic Next-state Interface)
A monolithic next-state interface is an interface that supports at least two functions of the following form
( return type, function (arguments) ):

o state set GetlInitialStates();

o state set GetNextStates(state);

The LTSmin PINS interface demands from users of this interface that they support a disjunctive par-
titioned version of the next-state interface and that they provide a dependency matrix. PINS stands for
“Interface based on a Partitioned Next-State function”. The dependency matrix captures information on
how transitions depend on specific parts of the system state. This extra information, apart from the
next-state function gives LTSmin the information it needs to support efficient partitioned symbolic model
checking. A compact explanation of PINS is as follows: A state for PINS is a vector of N slots, where a
single slot can represent anything. The transition relation is split disjunctively into K groups. The N x K
PINS dependency matrix then denotes which slot each group depends on [4]. Let’s elaborate on this com-
pact explanation by taking a closer look at each of the components separately: The states, the transition
relation and the dependency matrix. A PINS state is a vector divided into N slots.

Definition 14 (PINS State)
A state for PINS is a vector of N slots, denoted (Si, ..., Sy). A single slot can represent anything.

Systems often have a natural state partitioning. Normally each slot is used to represent one variable in
the state space. The formal definition of the used partitioned transition system is as follows:

Definition 15 (Partitioned Transition System)

A partitioned transition system (PTS) is a structure P = ((S1, ..., SN), (R1, ..., Ri), (59, ...,5%)). The sets
of elements S, ..., Sy define the set of states Sp = S7 X ... x Sy. The transition groups R; C Sp x Sp, (1 <
i < K) define the transition relation R = |J'*, R;. The initial state is s° := (s, ..., %) € Sp. The defined
TS of P is (Sp, R, s%) [4].

The described transition system thus consists of:
e The set of states defined by all possible combinations of the valuations of the elements Sy, ..., Sy.
e The transition relation defined by a disjunctively partitioned set of partial transition relations.
e The initial state defined by the initial contents of each slot Sy, ..., Sn.

Note that not all states in Sp have to be reachable. Sp only denotes all possible combinations of
valuations of the defined slots. Reachability analysis is needed to determine the set of reachable states. As
the transition groups are indicated to define the transition relation R = Ufil R;, it is clear that LTSmin
uses disjunctive partitioning of the transition relation. Defining the state and transition relation in this
way enables the following definition of independence between transition group i and state slot j:

Definition 16 ((In)dependence between a Transition Groups and a State Slot)
Given a PTS P = ((S1, ..., Sn), (R1, ..., Ri), (sY, ..., s&)). Transition group i is independent of state slot j
if for all (s1,...,sy) and (t1,....tn) € Sp, whenever (s1, ..., S5, ..., SN)Ri (i, ..., tj, ..., ), then

1. s; =t; (i.e., state slot j is not modified in transition i) and
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2. for all rj € S, we also have (s1,...,75,...,sn)Ri(t1, ..., 75, ..., tn). (Le., the value of state slot j is not
relevant in transition i.)

The data structure used to record the dependence or independence between state slots and transition
groups is called a dependency matrix and is defined in the following way:

Definition 17 (Dependency Matrix)
A dependency matrix Dg«y = DM(P) for PTS P is a matrix with K rows and N columns containing
{0, 1} such that if D, ; = 0 then group i is independent of element j.

The dependency matrix in LTSmin gives an implementation of the notion of Event Locality.

Notion 18 (Event Locality)
The notion of Event Locality refers to the fact that even though in a state several events could be enabled,
each event separately affects just a small part of the state vector [5].

An important question to ask about LTSmin is the following one: “How is LTSmin able to use sym-
bolic model checking algorithms on languages that are meant for their own enumerative model checkers?”
The main obstacle for LTSmin is the creation of the symbolic transition relation. Creating the symbolic
transition relation directly from the input language is impossible as enumerative input languages were not
developed to support this usage contrary to the SMV language which is almost directly translatable. The
naive way of building the transition relation is to query the language module for the set of next states for
every possible state in Sp. This will be a costly process as the number of states in Sp is defined to be
all possible combinations between the state slots. Devising an on-the-fly plan where the language module
is only queried for the next states that are actually reachable is a better solution. LTSmin instead uses
an even better solution of using the independence information from the dependency matrix to only query
relevant combinations of the state slots. If a group of transitions is independent of slot j then LTSmin can
combine the transition information of this group with the identity matrix for slot j in order to obtain all
transitions for this group with the slot j unaffected in all transitions. In order to define this formally we
first define the projection of the state space vector in relation to a certain transition group.

Definition 19 (Projection)
For any transition group 1 <i < K, we define 7; as the projection m; : S — Ilf1<j<n|D, ;=135

The projection of state vector S to a subset of the state vector S’s slots is a combination of the original
slots for which the condition holds that the dependency matrix hold value “1”. The effect of this definition
of the relational transition BDD is that the LTSmin language modules are only queried for the combinations
of the state slots represented in Rg(my(x), m4(2")). All combinations with the independent variables are
never queried: the independent variables are inserted into the partial transition BDD as non changing
variables. The total relational BDD can then be described in the following way:

Formula 20
K

R(z,2') = \:/1(Rg(7fg($),7fg(x’)) A }€/> [z = 2i])[5]
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Where g denotes a transition group, I, denotes set of state slots depended on group g, 74(z) = (2;)e1,
denotes the projection to a transition group and [z; = }] denotes the BDD representing the identity matrix
for all independent variables. Something similar is done in [3]. Disjunctive partitions are kept small by not
recording the variables that are independent, and the relational product operator is adjusted to be able to
work with these new BDDs that do not contain information on all variables. By keeping the variables that
do not change out of the BDDs lots of memory space is saved.

The PINS version of the next-state interface which exposes dependency information takes the following
form:

int GetStateLength();

int GetGroupCount();

int list GetGroupInfluenced(int group);

state GetInitialState();

state set GetNextStates(state src, int group);

The function GetStateLength enables obtaining information about the state partitioning. The length is
the number of slots that are defined. GetGroupCount gives the amount of disjunctive transition partitions.
GetGrouplnfluenced is the way to communicate about the contents of the dependency matrix. The answer
is a list of integers that show which state slots are dependent on the given group. GetlnitialState is trivial.
The GetNextStates function is now adapted to incorporate the option of generating next states with respect
to the set of state slots defined by the given group.

1.5.2 LTSmin language modules

A LTSmin language modules is a body of (glue) code that enables LTSmin to use an input language through
the PINS interface. Such a language module usually attempts to link to the existing model checking tool
for the target input language in order to reuse their parser and possibly more existing functionalities.
Reusing code by linking to the input languages existing toolset ensures that creating a language module is
manageable in time and it also prevents problems in the future if the input language is changed. If LTSmin
would contain a complete parser for all input languages supported then those would have to be updated
with all updates to the input languages. Linking to existing tools is done by loading libraries containing
the code of the already existing tool in question and by implementing the PINS interface by using those
loaded libraries.

1.5.3 LTSmin and NuSMYV compared

The two main differences between LTSmin and NuSMV are:
e LTSmin supports multiple input languages versus NuSMV that only supports the SMV language.
e LTSmin uses disjunctive partitioning of the translation BDD versus NuSMV which uses conjunctive
partitioning of the transition BDD.
e LTSmin has to learn the transition BDD via the PINS interface versus NuSMV whose input language
is directly translatable to a transition BDD.

Both NuSMV and LTSmin support asynchronous and synchronous models, even though asynchronous
have been deprecated for NuSMV.
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Chapter 2

Automated Translations

This chapter describes, formalizes and provides correctness proofs for the implemented automatic transla-
tions. To that end, the used languages are clearly defined, the translations described and proofs presented.
First we will give a preview and examples of the different types of models and the translations between them.
Afterwards we will start with describing and formalising the SMV language which we call the SMV-input
language. Then, we will explain the SMV to SMV-flat translation which flattens an SMV-input model to
an SMV-flat model. The SMV-input model may contain multiple synchronous and or asynchronous mod-
ules whereas the SMV-flat model may contain only one synchronous module. The flattening translation
translates from SMV-input models to SMV-flat models while preserving the model’s behaviour.

Once the SMV to SMV-flat translation has been described and proven correct a description follows of
the translations that actually translate from SMV-flat to mCRL2. To that end, we describe and formalize
mCRL2 and prove two translations that translate from SMV-flat towards mCRL2.

2.1 Preview

This section provides a short explanation and examples of the SMV to SMV-flat, the SMV-flat to mCRL2
All-in-1 and the SMV-flat to mCRL2 1-by-1 translations. The aim of this Section is to provide an overview
picture of the languages involved and the created translations before going into formalisations and proofs.

2.1.1 SMYV to SMV-flat translation

Let’s first take a look at the SMV to SMV-flat translation. This translation has as its input a normal SMV
model in textual form. We call this textual model an SMV-input model. The result is a data-structure
called SMV-flat that is directly translatable to a textual SMV model. The main difference between the
SMV-input and the SMV-flat model is that SMV-input models may have multiple (possible asynchronous)
modules whereas the SMV-flat model has only a single synchronous module. Both models however still
express the same behaviour. The transformation done by the translation is called “flattening” The result-
ing SMV-flat model contains much less SMV language features and is therefore easier to translate to an
mCRL2 model.
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While compressing all modules into the single “main” module, we have to consider the two types of
modules that the SMV language supports. Synchronous modules adhere to the concept of true concurrency
(Def. 10) together with all other synchronous modules and the “main” module. Asynchronous modules
adhere to the principle of interleaving semantics (Def. 12) without the option to synchronize with other
modules in any way. Expanding a given state into it’s next states therefore works as follows: First a module
is chosen for execution. This may be any of the asynchronous modules, or the combination of the “main”
module and all synchronous modules. Afterwards, only the statements (defining how the state variables
change) in the chosen module(s) are executed. From now on we will act as if the combination of the “main”
module and all synchronous modules is a single asynchronous module.

The resulting single “main” module in the SMV-flat model must exert the same behaviour which is
ensured with the introduction of a scheduler variable that non-deterministically determines which asyn-
chronous module is to be executed next. The scheduler variable is of the enumeration type with a single
symbolic constant for each possible asynchronous module. The expressions in all modules that influence the
state variables are extended with the condition that they may only be executed if their module is scheduled
for execution by the scheduler variable. If not, then their influenced variable stays the same.

Let’s look at an improvised example to get a clearer picture of the proposed translation. The example
consists of four modules, a sender, a receiver, a communication channel and a “main” module. The sender
and receiver modules are asynchronous modules as is reflected by the use of the “process” keyword when
they are instantiated in the “main” module. The channel module is a synchronous module as reflected by
the absence of the “process” keyword. In the example, the sender produces a message and puts into the
channel. The receiver attempts to read the channel effectively clearing it of the message. The channel
itself has a data variable which represents the contents of the channel. The channel is also able to non-
deterministically put the channel into an error state but can only do this if the channel is currently empty.
The main module is used to tie all other modules together, giving the sender and receiver modules both
access to the channel.

1 MODULE Channel 1 MODULE Sender (chan)

2 VAR 2 ASSIGN

3 data : {EMPTY, FULL, ERROR}; 3 next (chan.data) := case

4 4 chan.data = EMPTY : FULL;
5 ASSIGN 5 TRUE : chan.data;

6 init (data) := EMPTY; 6 esac;

7 next (data) := case 7

8 data = EMPTY : {EMPTY,ERROR}; 8 MODULE Receiver (chan)

9 TRUE : data; 9 ASSIGN

10 esac; 10 next (chan.data) := case

11 11 chan.data = FULL : EMPTY;
12 MODULE main 12 TRUE : chan.data;

13 VAR 13 esac;

14 channel : Channel;

15 send : process Sender (channel);

16 receiv : process Receiver (channel);

The channel is initialized to EMPTY and both asynchronous modules Sender and Receiver have access
to the channel’s data variable via their module parameter chan. Execution of this model happens by
selecting either the Sender, the Receiver or the combination of the main and Channel module for execution,
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after which their next declarations are applied to the state variables. All unmentioned state variables stay
the same. The following example does just that, while using only the single “main” module.

MODULE main

VAR
channel_data : {EMPTY, FULL, ERROR};
scheduler : {sched_main, sched_send, sched_receiv};
ASSIGN
init (channel_data) := {EMPTY};
next (channel_data) := case
scheduler = sched_main : case
channel_data = EMPTY : {EMPTY,ERROR};
TRUE : channel_data;
esac;
scheduler = sched_send : case
channel_data = EMPTY : FULL;
TRUE : channel_data;
esac;
scheduler = sched_receiv : case
channel_data = FULL : EMPTY;
TRUE : channel_data;
esac;
esac;

{sched_main, sched_send, sched_receiv};
{sched_main, sched_send, sched_receiv};

init (scheduler)
next (scheduler)

Note that the SMV-input model has 3 states, whereas the SMV-flat model has 9. This is due to the
fact that the non-deterministic scheduler variable is added to the state vector which effectively generates
multiple versions of the same SMV-input states: one version for each possible scheduler choice.

2.1.2 The SMV-flat to mCRL2 “All-in-1” translation

mCRL2 models consist of processes, which in turn consists of summands. Using only a specific subset of the
mCRL2 language, we are able to describe the changes in the state variables as expressed in the SMV-flat
model. For our translations we only create a single mCRL2 process, with summands that have an optional
condition, an unused action and a process-call expression. The process-call expression is responsible for the
change in data variables from one state to another. The optional condition is used in order to determine if
the change in data variables expressed by this summand is enabled for the current state. Actions actually
label the transitions of an mCRL2 model but as the SMV language does not use the concept of actions
we actually have no need of mCRL2 actions as well. The action is however non-optional in the mCRL2
language and therefore the translation sets it to the improvised action called “noAction”.

Reachability analysis of an arbitrary mCRL2 model works by expanding already found states start-
ing with the unique initial state. As we always translate to models that only have a single mCRL2
process we only take that process’s summands into consideration. Expansion of a state then works by
non-deterministically selecting an enabled summand. The enabledness of a summand is determined by the
validity of the condition in the current state. The process-call expressions within the enabled summands
are then used to determine the next states as they describe next state valuations for all state variables (non
described variables remain the same).
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The SMV language supports non-determinism when specifying a variables valuation in the next state.
mCRL2 describes non-determinism by having a summand for each non-deterministic option. We there-
fore translate each non-deterministic choice in the SMV-flat model to a summand in the mCRL2 model.
The All-in-1 translation generates a summand for each combination of possible non-deterministic choices
available in the SMV-flat model. In this way the same non-deterministic choices can be made in both the
mCRL2 and the original SMV-flat model.

Some SMV models may have multiple initial states. In our case, where we first use the SMV to SMV-flat
translation this is even more likely as that translation introduces the non-deterministic scheduler variable
that also has a non-deterministic initial valuation (creating multiple initial states). As mCRL2 models only
support the presence of a single unique initial state we need to introduce a new initial state within the
mCRL2 model that first generates the SMV-flat initial states before continuing with the generation of the
normal next states.

In order to do this we add a special initial flag variable to the state vector of the mCRL2 model that
indicates whether a state is the unique mCRL2 initial state. In order to generate the set of SMV initial
states we then add summands to the mCRL2 models that have as their condition that the initial flag must
be true, and as their process-call expression state variable changes that generate the states in the SMV
initial states set. The process-call expression must also set the initial flag to false.

The originally created summands that generate next states from all already generated states must be
extended with the condition that the initial flag must be false. Let’s give a translation of the example
presented in Section 2.1.1 in order to see how the “All-in-1” translation works.

sort EnumO: {EMPTY, FULL, ERROR};
sort Enuml: {s_main, s_send, s_receiv};

proc P(c_d: EnumTypeO, s: EnumTypel, IF: Bool){
(IF = True) -> (noAction . P(c_d = EMPTY, s = s_main, IF = False))

+ (IF = True) -> (noAction . P(c_d = EMPTY, s = s_send, IF = False))

+ (IF = True) -> (noAction . P(c_d = EMPTY, s = s_receiv, IF = False))

+ (IF = False) -> (noAction . P(c_d = if(s = s_main,if(c_d = EMPTY, EMPTY,if(True,c_d,c_d)))
, 8 = s_main, IF = False))

+ (IF = False) -> (noAction . P(c_d = if(s = s_main,if(c_d = EMPTY, ERROR,if(True,c_d,c_d)))
, 8 = s_main, IF = False))

+ (IF = False) -> (noAction . P(c_d = if(s = s_main,if(c_d = EMPTY, EMPTY,if(True,c_d,c_d)))
, s = s_send, IF = False))

+ (IF = False) -> (noAction . P(c_d = if(s = s_main,if(c_d = EMPTY, ERROR,if(True,c_d,c_d)))
, s = s_send, IF = False))

+ (IF = False) -> (noAction . P(c_d = if(s = s_main,if(c_d = EMPTY, EMPTY,if(True,c_d,c_d)))

, s = s_receiv, IF = False))
+ (IF = False) -> (noAction . P(c_d = if(s = s_main,if(c_d = EMPTY, ERROR,if(True,c_d,c_d4)))
, s = s_receiv, IF = False))

}
init allow(noAction,P(EMPTY,sched_main, True);

As can be seen in the example on the previous page all case-esac expressions of the SMV-flat model have been
translated into if-then-else expressions from mCRL2 (denoted if(condition-expression,then-expression,else-
expression)). The reachable state spaces of the SMV-flat and mCRL2 “All-in-1” translations are exactly
the same with the exception of the special mCRL2 initial state. The difference in the reachable state space
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is pictorially described in Figure 2.1.2.

mCRL2 initial state

© O0_0) @ : 0)

SMV initial state: mCRL2 states

Figure 2.1: The SMV-flat initial states versus the single mCRL2 initial state

The unique mCRL2 initial state is greyed out because it is not really a part of the comparable reachable
state space as it is actually used as a computation step to generate the SMV initial state set.

2.1.3 The SMV-flat to mCRL2 “1-by-1” translation

All-in-1 models have a summand for each combination of non-deterministic choices for all state variables.
The process-calls in a All-in-1 model change all the state variables at the same time. As explained in
Section 1.5.1, LTSmin benefits from it’s dependency matrix that tells LTSmin which transition groups
depend on which variables. LTSmin creates the dependency matrix from an mCRL2 model by creating a
“dependency group” for each summand, for which the group depends on the variables mentioned in the
summand’s condition and process-call. If we thus change all variables in every process-call then that means
that according to LTSmin all created groups depend on all variables for all All-in-1 translated models. As
LTSmin cannot construct a beneficial dependency matrix this probably prevents LTSmin from executing
an efficient reachability search.

The 1-by-1 translation attempts to inspire LTSmin to create a better dependency matrix by only
changing a single process variable in each created summand. In order to only change a single variable
per summand and still have a model that behaves in the same way as the SMV-flat model we need to
have some kind of counter variable that governs the correct execution of which variable is to be changed
next. The counter variable is of integer type and is initialised to zero, and ranges to the number of model
variables plus 1 and is then reset to zero. Each variable is assigned a unique ID starting with zero which
indicates when they should be changed according to the value of the counter variable. For each variable we
therefore create a summand, which has as its condition that the counter variable has the correct ID and as
its process-call an expression that changes that single variable to its next state valuation according to the
SMV-flat model. We also increment the counter variable by 1 in order to make sure that in the next state
of the 1-by-1 model the next variable will be evaluated. Once all variables have been evaluated we have
successfully simulated a single transition of the SMV-flat model.

Non-determinism in the SMV-flat model can be build in into this 1-by-1 model in an efficient way:

If an SMV variable has a non-deterministic choice as its valuation, then we create multiple summands
that express all possible non-deterministic choices for that variable. All summands get the same condition
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which expresses that the counter must be equivalent to the variable’s ID and as such all the summands
that enumerate the possible non-deterministic choices are enabled at the same time. If the variable has
multiple non-deterministic choices then we once again create a summand for each combination of possible
options of those non-deterministic choices. This however blows up much less than in the case of the All-in-1
translation as we only take into account the non-deterministic choices for a single variable. The example
below shows the creation of multiple summands for the scheduler variable.

The 1-by-1 translation also has the previously discussed solution for multiple initial states built in
with the initial flag: The unique mCRL2 initial state is first used to construct all SMV-flat initial states
after which we continue with the generation of the rest of the state space. Another important feature of
the 1-by-1 model is that all model variables have to be recorded twice: When computing the next state
valuation of a variable we might need the current state valuations of any of the other variables. These
must still be available even if their next state valuations have already been computed. We therefore need
two variables for each variable, one that contains the current state valuation and one that contains the
possibly already computed next state valuation. After computing all variable’s next state valuations we
have an extra summand that copies the next state valuations to the variables that record the current state
valuations. In our example we call the current state variable by its original name, and for the next state

”

variable we add “_ e”.

sort EnumO: {EMPTY, FULL, ERROR};
sort Enuml: {s_main, s_send, s_receiv};
proc P(c_d: EnumO, c_d_e: EnumO, s: Enuml, s_e: Enuml, IF: Bool, PC: Int){
(IF = True & PC = 0) -> (noAction . P(c_d_e = EMPTY, PC = 1)
+ (IF = True & PC = 1) -> (noAction . P(s_e = s_main, PC = 2)
+ (IF = True & PC = 1) -> (noAction . P(s_e = s_send, PC = 2)
+ (IF = True & PC = 1) -> (noAction . P(s_e = s_receiv, PC = 2)
+ (IF = False & PC = 0) -> (moAction . P(
c_d_e = if(s = s_main,if(c_d = EMPTY, EMPTY,if (True,c_d,c_d))), PC = 1))
+ (IF = False & PC = 0) -> (noAction . P(
c_d_e = if(s = s_main,if(c_d = EMPTY, ERROR,if(True,c_d,c_d))), PC = 1))
+ (IF = False & PC = 1) -> (noAction . P(s_e = s_main, PC = 2))
+ (IF = False & PC = 1) -> (noAction . P(s_e = s_send, PC = 2))
+ (IF = False & PC = 1) -> (noAction . P(s_e = s_receiv, PC = 2))
+ (PC = 2) -> (noAction . P(c_d = c_d_e, s = s_e, IF = False, PC = 0)
¥
init allow(noAction ,P(EMPTY,EMPTY,sched_main,sched_main, True,True,0);

As mCRL2 models are interpreted by creating a state and a transition for each enabled process-call
we have effectively simulated one SMV-flat transition with multiple mCRL2 transitions (with in between
states). To be more precisely: Say we have 3 variables, then we need 3 transitions to change those variables
and we also need a transition to copy the newly computed next state valuations to the variables that track
the current state valuations. We therefore need the number of model variables plus one transitions to
simulate a single SMV-flat transition. When also taking account non-determinism this calculation becomes
even more involved as depicted in Figure 2.2.

Figure 2.2 shows a comparison between a state and its next states in the SMV-flat model and in the
translated mCRL2 1-by-1 model. This is a comparison for an SMV-flat model with 3 variables for which
variable 2 has a non-deterministic choice with 3 choices. The numbers in parenthesis on the right represent
the value of the counter variable. The greyed out states are in-between computation state in which only
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Next state computation of
the 1% variable

Next state computation of
the 2" variable

next(S)

Next state computation of
3" variable

Copy next state to current

i i i state variables

next(M(0))

Figure 2.2: A single state and its next states from an SMV model with 3 variables, non-determinism in
variable 2 with 3 options (left) and from the translated mCRL2 1-by-1 model (right)

part of the variable’s next state valuations have been computed. In a comparison of the state space we
therefore do not want to consider those states. Reachability of non-computational states should however
be equivalent in both models.
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2.2 The SMYV language

In this section we will formalise the SMV language. We will only describe the parts of the language that
are supported by our translations. Missing parts of the language in this description are thus not supported,
of which the most important are the INIT and TRANS sections. All terms used in the definitions that are
described by other definitions are printed in bold text.

Definition 21 (SMV model)
An SMV model is a collection of one or more modules. A special module with specification name “main”
must be available.

Definition 22 (SMV module)

An SMV module is a collection of the following items:

A module specification name described by a variable identifier.

A number of parameters, each of which are symbolically named by a variable identifier.

A number of VAR sections that contain zero or more variable declarations.

A number of ASSIGN sections that contain zero or more init declarations and or next declara-
tions.

A number of DEFINE sections that contain zero or more define declarations.

A number of IVAR sections that contain zero or more variable declarations.

7. A number of CONSTANTS sections that contain a single constants declaration.

Ll o

A

Definition 23 (SMV variable declaration)

An SMYV variable declaration is a description of a single variable containing of a variable identifier and a
variable type. Variable names must be unique within the same module and may not be declared multiple
times within the same module. Variables with the module-type may only be defined in the special “main”
module.

Definition 24 (SMV variable type)

An SMYV type is a description of a variable’s type, being either “boolean”, “enumeration type”, “integer
range”, “asynchronous module” or “synchronous module”. The asynchronous and synchronous module
types are special types that declare the initialization of a new module, its module specification type and
its parameter arguments. It is allowed to give any expression as argument. Arguments can therefore be
used to tie modules together by giving them each others variables as arguments to their parameters. The
module types contain of the following information: The optional keyword “process” signifying this module
is of the asynchronous module type, or the absence of the keyword “process” signifying that the module
is of synchronous module type, the module specification name and the arguments to the specification’s
parameters. The module specification type may not be the special “main” module.

Definition 25 (SMV variable identifier)
An SMV variable identifier is a string that does not contain a dot “”, and does not begin with a number,
but that otherwise may consist of A-Z, a-z, 0-9 and the special symbols “$”,“#”, “_” and “-”.

Definition 26 (SMV complex identifier)
An SMV complex identifier is an SMV variable identifier that may actually contain one or more dot “”
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symbols. All two pairs of strings directly separated by dot symbols signify on the left of the dot the name of
the variable that has a module type in which the variable as named on the right side of the dot is declared.

Definition 27 (SMV define declaration)

An SMYV define declaration contains of a variable identifier and an expression. A define declaration
defines a macro, or also called a function that relates the name of the function (the variable identifier) to
how it is calculated (the expression).

Definition 28 (SMV init declaration)

An SMV init declaration consists of a variable identifier and an expression. The init declaration
signifies that the variable described by the variable identifier must be initialized according to the valuation
of the expression. Each declared variable in a variable declaration may only be initialized by a single
init declaration. Each variable defined in the SMV model must have an init declaration associated with it,
the absence of such an init declaration implicitly declares the init declaration to be the non-deterministic
choice between all of the variable’s possible values. The expression of this init declaration may not make
use of the case-esac or next expression.

Definition 29 (SMV next declaration)

An SMV next declaration consists of a variable identifier and an expression. The next declaration
signifies that the variable described by the variable identifier changes its valuation in the next state according
to the expression. It is allowed to have multiple next declarations that convey information about the
same variable as long as they are declared in different asynchronous modules. The combination of the
synchronous modules together with the “main” module also counts as a single asynchronous module. Each
variable defined in the SMV model must have a next declaration associated with it, the absence of such a
next declaration implicitly declares the next declaration to be the non-deterministic choice between all of
the variable’s possible values.

Definition 30 (SMV constants declaration)

An SMV constants definition declares a list of symbolic constants that should be added to the available
symbolic constants. The constants declaration is used in combination with define variables that do not
have a declaration type and therefore cannot in that way declare their enumeration type.

Definition 31 (SMV symbolic constant)
An SMYV symbolic constant is a string that abides by the rules of the SM'V variable identifier which can
be used as an enumeration symbol.

Definition 32 (SMV integer constant)
An SMV integer constant is an integer number that can be used as a terminal symbol in expressions.

Definition 33 (SMV expression)
An SMYV expression is a Directed Acyclic Graph with several vertices, labelled with expression operators or
terminals. Fach vertex can have a certain number of expressions as its children (denoted #). An expression
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may begin with any of the available vertices. The available operators vertices are described by the table
2.1. The “any” type stands for the three normal types: boolean, integer (range) and enumeration type.

Table 2.1: SMV expression operators

Operator # Result Type Child type Description
() 1 any any precedence

1. 1 boolean boolean logical NOT

next(..) 1 any variable identifier next state valuation®

- 1 integer integer unary minus

L&, | 2 boolean boolean logical AND, logical OR
.= 1= 2 boolean any equality, inequality
< >, <=, >= 2 boolean integer less, greater, .. or equal, .. or equal
e 2 integer integer addition, subtraction
*/mod .. 2 integer integer  multiplication, division, remainder
win.. 2 boolean  integer, enumeration set inclusion
union 2 set of child type integer, enumeration the union of two sets
7. 3 any ok if-then-else
case .. esac ¥ any Horok case-esac™**
{.} * any any non-deterministic choice
{.} * list of any any, but all the same In a set context: creation of a set

* The next valuation expression evaluates to the valuation of the pointed to variable in the next state.
** The type of the children of the if-then-else expressions differs per child: The first child must have a
boolean type, and the other two may have any type.
*** The case-esac expression consists of pairs of expressions. Each pair consists of a condition expression
and a valuation expression. The condition expression must evaluate to a boolean type and determines
if the valuation should be used. A case-esac expression with multiple such pairs works by first analysing
the first pair. If the condition of the first pair evaluates to true then the case-esac expression evaluates to
the valuation of the first pair. If not then the second pair is evaluated and so forth. It is considered to
be a fault on the model creator’s side if there is no pair for which the condition evaluates to true when a
case-esac expression is evaluated.

Terminals are either symbolic constants, integer constants, or variable identifiers that point
to variable declarations and or define declarations. These terminals have respectively the types
enumeration, integer and the type of the pointed-to variable or define declaration.

2.2.1 Unsupported parts of the SMV language

The following parts of the SMV language are not supported (or have not been looked at) in this project:
word types, array types, bit shift operators, XOR, XNOR, implication (->), equivalence (<->), count,
word conversion and modification functions such as wordl, bool, toint, signed, unsigned, extend, resize and
word concatenation (::). It is also important to note that the sections INIT and TRANS are not supported.
Models with a TRANS section are not usable with the translations used in this project as they define
the next state of variables in a totally different way than is done in the ASSIGN section. The sections
INVAR, CTL (SPEC), LTLSPEC, PSLSPEC, FROZENVAR, ISA, COMPUTE are also not supported
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and automatically removed by the translation tool. Those sections denote all kinds of specifications which
have not been attempted to be translated as this project is solely about the reachability problem. The
FAIRNESS section influences the reachable state space results and is as such also removed from the SMV
model before determining the model’s execution time on NuSMV (as is the same for all other removed
specifications).

2.3 SMYV to SMV-flat formalisation

SMV to SMV-flat is a translation that has as its input SMV models with one or multiple modules, and as
its output an equivalent model that only consists of a single “main” module. The interesting part about this
translation is how asynchronous modules are handled: A scheduler and conditions on next expressions must
be added in order to govern the asynchronous execution semantics of the original model. The availability of
the SMV to SMV-flat translation simplifies the translations from the resulting SMV-flat model to mCRL2
as those translations do not have to cope with the semantics of possibly present asynchronous modules.

The SMV to SMV-flat translation consists of two translations, one that translates from SMV-input to
SMV-intermediate and one that translates from SMV-intermediate to SMV-flat. The SMV-intermediate
model is a data-structure that helps to organise the information in the SMV-input model differently as
to simplify the translation from SMV-intermediate to SMV-flat (in both theory and actual implemen-
tation). The SMV-input and SMV-flat models are translatable to an actual textual SMV model, the
SMV-intermediate model is not.

In order to formally describe and prove the SMV to SMV-flat translation we first will formally describe
the SMV-input and SMV-intermediate models. Then we will describe the translation algorithms from
SMV-input to SMV-intermediate, after which we describe the SMV-flat model and the translation from
SMV-intermediate to SMV-flat. Afterwards we will take a look at the formal semantics of SMV in order to
determine how an SMV model induces a Transition System. Lastly we will use all described model types,
translations and formal semantics in order to prove that the Transition System induced by an SMV-input
model is Equivalence-class Bisimilar (Def. 48) to the Transition System induced by a translated SMV-flat
model. The desired proof is pictorially described in Figure 2.3.

Translation SMV- Translation
SMV-input 1 g . SMV-flat
intermediate
SMV Semantics SMV Semantics
Transition -4—Equivalence-class Bisimulation— Transition
System System

Figure 2.3: The proof obligation for the SMV to SMV-flat translation depicted.

29



Firstly we define the SMV-input model that is supported by the SMV to SMV-flat translation.

Definition 34 (SMV-input)
An SMV-input model is seen as a Directed Acyclic Graph containing the aspects as described in Definition
21.

As an intermediate step we define the SMV-intermediate data-structure that essentially contains the
same data as the SMV-input model defined in Definition 34, but which removes the need for module
parameters and next declarations that are defined in one module, but that influence variables declared in
another module.

Definition 35 (SMV-intermediate)

An SMV-intermediate data-structure is a 5-tuple: (Ms,Vs,Ds,Is,Xs). Ms is a set of modules. Vs is a list of
variables, Ds a set of define macros, Is a set of init expressions that describe the initial value of a variable
and Xs is a set of next expressions that describe how a variable changes. A module denoted M is described
by a 2-tuple (N,B), with N its name and B a boolean variable which is TRUE when the module is an
asynchronous process and FALSE if not. A variable denoted V is described by a 3-tuple consisting of
(M,N,T). With M the name of the module typed variable which instantiates the module specification that
the variable was declared in, N the name of the variable and T the type of the variable. T may be any type
except the module-type. A define macro denoted D is described by a 3-tuple consisting of (M,N,E), with
E the expression that defines the valuation of the define macro. An init expression denoted I is described
by (M,V,E), with V the state variable and E the expression of the initial value. A next expression denoted
X consists of a 3-tuple: (M,V,E), with V a state variable and E the expression that defines the next state
valuation of variable V. All expressions denoted E are expressions such as defined in definition 33 with
the exception that references to module parameters have been substituted with their respective arguments
and that next expressions have been substituted for the actual next expression of the variable they point
to. Init declarations denoted I and next declarations denoted X follow the same syntactic rules as the init
declaration (Def. 28) and the next declaration (Def. 29). Modules denoted M in set Ms are only actual
modules (not module specifications). This means that a module M has the name of the variable in which
it was declared. The variable declaring the module M has a module type in the original SMV-input model
and is not represented in set Vs. If a module specification is not mentioned in the module-type of any
variable then it is not represented in set Ms, and if a module specification is mentioned multiple times then
it can also be found in set Ms multiple times. The same holds for variables, define macros, init and next
declarations (their module must exist in Ms).

The translation from SMV-input to SMV-intermediate is formally described next together with the
substitution function used by the translation.

Definition 36 (Expression substitution function)

Function subst : expression — expression is a function which substitutes references to module parameters
with their respective arguments and substitutes next expressions for the actual next expression of the
variable they point to.

30



Definition 37 (Translation from SMV-input to SMV-intermediate)
The translation from an SMV-input model M to an SMV-intermediate model M; = (M s;,V's;, Ds;, Is;, X s;)
is defined as follows:

o Ms; = {(N;,TRUE) | 3 variable declaration VD € M . VD’s type = asynchronous module and
N; = VD’s variable identifier} U {(N;,FALSE) | 3 variable declaration VD € M . VD’s type
= synchronous module and N; = VD’s variable identifier}

o Vs; = {(M;,N;,T;) | M; € Ms; and 3 variable declaration denoted VD € M . type # a module
type, VD is described in the module of which M; is an instantiation and T; equals the type of VD}

o Ds; = {(M;, N;, subst(E;)) | M; € Ms; and 3 define declaration denoted DD € M . DD is
described in the module of which M; is an instantiation, N; = DD’s variable identifier and FE; is
the expression mentioned in DD}

o Is; = {{M;,V;, subst(E;)) | M; € Ms; and 3 init declaration denoted ID € M . ID is described in
the module of which M; is an instantiation, V; € V's;, V; = the variable pointed to by ID’s variable
identifier and E; is the expression mentioned in ID}

o Xs; = {(M,;,V;, subst(E;)) | M; € Ms; and 3 next declaration denoted XD € M . XD is described
in the module of which M; is an instantiation, V; € Vs;, V; = the variable pointed to by XD’s vari-
able identifier and F; is the expression mentioned in XD}

One important feature of the SMV-input to SMV-intermediate translation is that it traces pointers
to variables back to their original variable declaration and replaces those pointers with their pointed to
variables. If a next declaration pointed to a variable that was not declared in the same module but instead
in one of that module’s parameters then they are now substituted for their actual variable declarations
effectively removing the need for the parameters. We will now take a look at the exact subset of SMV that
is used in an SMV-flat model

Definition 38 (SMV-flat)

An SMV-flat model consists of a single module called “main”. The model is described by the 4-tuple:
(Vsf,Dsf,Isf,Xsf). Vstfis a set of state variables, described by a 2-tuple (Nf Tf), with Nf the name and
Tf the type of the variable. Tf may be any type except the two module types. Dsf is a set of define macros
described by a 2-tuple (Nf Ef) with Nf the name and Ef the expression defining the define macro’s valuation.
Isf is a set of init definitions that describe the initial value of a variable with a 2-tuple (VfEf). Xsf is a set
of next definitions that consist of 2-tuples (Vf Ef) that define the variables change. All expressions denoted
Ef are expressions such as defined in definition 33. Init expressions denoted If and next expressions denoted
Xf follow the same syntactic rules as the init declaration (Def. 28) and the next declaration (Def. 29).

In order to translate from SMV-intermediate to SMV-flat we need to define a renaming function for the
state variable and define macro names. This is needed in order to guarantee unique names for the state
and define macro variable in the single “main” module. We also define the scheduler variable that is used
to simulate the execution of multiple asynchronous modules within the confines of a single synchronous
module. Afterwards we describe the translation that translates from the SMV-intermediate data-structure
to the SMV-flat model.
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Definition 39 (Renaming function)
The renaming function denoted remame is a bijective function defined by:

rename({module, name, ...)) = (module_name, ...)
Its inverse is defined by:
rename™ ! ({module_name, ...)) = (module, name, ...)

The rename function operates on any tuple of size 2 or larger where the first two elements are strings.
The resulting tuple is of size 1 smaller than the input tuple. The inverse function accepts any tuple of size
greater than 1 for which the first element must be a string and must contain an underscore. The resulting
tuple is of size one bigger than the input tuple.

Definition 40 (Scheduler variable)

The scheduler variable denoted Sc¢ simulates the asynchronous execution of multiple asynchronous modules
within a single synchronous module. The scheduler variable is uniquely named and has the enumeration
type. Sc’s enumeration type has a symbolic constant for each of the asynchronous modules found in the
SMV-intermediate model. Assuming the existence of N such modules the symbolic constants are denoted
Sc1, Sca, ... Scy. The enumeration type also contains a symbolic constant for the combination of the
main process plus remaining synchronous modules denoted Sc,,. The scheduler variable’s init declaration
(denoted Se;) and next declaration (denoted Sc,) is a state that Sc¢ may non-deterministically change to
Secy, Sca, ... Scy and Sc¢p,. The non any of the defined symbolic constants at any point in the execution
of the model.

Definition 41 (Translation from SMV-intermediate to SMV-flat)
The translation from an SMV-intermediate model M; = (Ms;, Vs;, Ds;, Is;, Xs;) to an SMV-flat model
My = (Vss,Dsy,Isy, Xsy) is defined as follows:

Vsy = {rename(V;) | V; € Vs;} U Sc (Def. 40).

Dsy = {rename(D;) | D; € Ds;}.

Isy = {rename(l;) | I, € Is;} U Sc;.

Xsy = {rename((M;, N;, E;)) | 3V; = (M;, N;) € Vs; . E; is a case-esac expression with a condition
valuation pair called CVP for each X; € Xs; for which the variable equals V;. C'VP’s condition must
state that scheduler variable Sc points to module M; and C'VP’s valuation is the expression mentioned
in Xl} U SCL

The main feature of the SMV-intermediate to SMV-flat translation is that the possibly multiple next
declarations for each single variable are combined into a single next declaration which depends on the
scheduler variable. Before actually proving that the SMV to SMV-flat translation results in a model that
is in some way equivalent to the original SMV-input model we first take a look at the induced Transition
Systems by SMV models. In order to do so we first describe how the SMV state vector and SMV states
are defined as well as what a Cartesian product is.

Definition 42 (SMV state vector and states)
A state vector is a list of slots. Each slot is occupied by a single variable. The state vector can be denoted
as (x1,%2,3,...,Tn) with z; being the slot for variable j. A state in a Transition System is denoted
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(v1,v2,vs,...,v,) and consists of the same list of slots occupied by values of the variables present in the
state vector.

Definition 43 (Cartesian product)
The product of set X and set Y denoted X x Y is the set that contains all ordered pairs {(z,y) | « €
X Ay € Y}. The product of three sets X, Y and Z is: (X xY) X Z etcetera.

In an SMV module the state space is discovered as follows: Starting from the initial states as current
state, the system first chooses one of the available asynchronous modules (or the synchronous plus “main”
module) for execution. It then expands the current state by only applying the next declarations found
in the module(s) selected for execution. Variables that do not have a next declaration in the selected
module(s) do not change in the set of next states [10]. Let us now formally define how an SMV model
induces a Transition System.

Definition 44 (Induced Transition System by an SMV model)

Let an SMV model M have N state variables (not define macros) denoted x1,xs,...,xn. Let the sets of
possible values per variable be denoted ry, 72, ...,7n. Let the sets of possible initial values per variable be
denoted i1, 42, ...,in. Let choices be a set of choices with one choice for each asynchronous module (plus
one choice for the combination of the synchronous modules and the “main” module) in the SMV model.
Let the sets of next state values per variable with current state S and module(s) choice C' be denoted
n1(S,C),na(S,C), ...,nn (S, C). Note that if the variable does not change for current state S and choice C'
that the set returned is a singleton set with as its element the value of the variable in current state S.

The induced Transition System T'S = (S,I,T) by M is defined as follows:

] S=T1><’I“2><...><’I“N
o [ =i Xig X ... X 1IN
o T ={(s1,s2) | 3C € choices . s3 € n1(s1,C) x n2(s1,C) X ... x nn(s1,C)}

Note that transition relation is left-total as any state that has no changing variables any-more will
always have a self-loop.

2.4 SMYV to SMV-flat equivalence

In this Section will define what it means for two models, one described in the SMV-input model and one
in the SMV-flat model to be equivalent. Our goal is to prove that reachability is preserved in the SMV
to SMV-flat translation. The intuition is that reachability is indeed preserved because any sequence of
scheduler choices made in the SMV-input model can also be made in the SMV-flat model. The SMV-flat
model also does not invent any new sequences of scheduler choices. In order to formalise and prove that
reachability is preserved we first take a look at an example of a state space of an SMV-input model and its
translated SMV-flat model’s state space.

Figure 2.4 shows on the left an improvised state space of an SMV-input model. The SMV-input model

has two asynchronous modules named with P1 and P2. Each transition is labelled with the module that
was selected for execution while taking that transition. On the right the translated SMV-flat state space
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Figure 2.4: An example of an SMV-input model state space (left) and its translated state space.

is shown. The first number in the state indicates the corresponding SMV-input state. The second number
shows the value of the scheduler variable which was determined in the previous state. Defining two states
to be equivalent if they have the same state number (so not looking at the scheduler variable), we can make
a number of observations:

e All SMV-input states exist two times in the SMV-flat state space. In fact, the multiplication factor
is equal to the number of scheduler choices.

e Any SMV-input state can simulate the behaviour of any of the equivalent states in the SMV-flat
model.

e The combination of the two equivalent states in the SMV-flat model can simulate the behaviour of
the equivalent state in the SMV-input model.

It is clear that states in the SMV-input model and states in the SMV-flat model can only be compared to
each other if the scheduler variable is not considered. Two states are thus equivalent if they have the same
value for all variables in the state vector while not considering the scheduler variable. This notion of state
equivalence is defined next:

Definition 45 (State equivalence relation for SMV to SMV-flat)

Let M; be an SMV-input model and T'S; = (S;, I;,T;) the induced Transition System. Let M; be an
SMV-flat model and T'Sy = (Sy,I;,Ty) the induced Transition System. Let M; have N variables and let
M¢ have N variables plus the scheduler variable denoted Sc, with valuation vgsc. Let s; € S; and sy € Sy,
then states s; and sy are equivalent if (s;, sy) € stateEqyq;. The relation stateEqyq € S; x Sy is defined
as follows:

stateEqriar= {((v1;,v2;,...,vN;), (v1f, 024, ..., N, vs¢)) | v1; = vlf, v2; =02y, ..., 0N; = vNy}

SMV-input’s ability to simulate SMV-flat and SMV-flat’s ability to simulate SMV-input suggests a
bisimulation relation. This cannot be a normal bisimulation relation as single states in SMV-flat cannot
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simulate their equivalent states in the SMV-input model. Look for example at state 1|1 in Figure 2.4, it
needs the help of state 1|2 in order to simulate all behaviour of state 1 in the SMV-input model. To that
end the bisimulation must relate states in the SMV-input model to groups of states in the SMV-flat model.
Those groups of states are called equivalence classes and are defined next.

Definition 46 (Equivalence class function for states in an SMV-flat model)
Let M;, T'S;, My and T'Sy be defined as in Def. 45. For any state sy € Sy it’s equivalence class function
denoted Eclass(sy): Sy — 25f is defined as follows:

Eclass(sy) = {se € Sy | 3s; € S;.(s4,5f) € stateEqsiar N (si, Sc) € stateEqyia}

With the definitions of the state equivalence relation and the equivalence classes we can now define the
desired bisimulation relation. For our purposes we say that the equivalence-class function is only applied
to the second Transition System. The definition would be mathematically cleaner if we would define
two equivalence-class functions, one for each Transition System. We could then set the equivalence-class
function for the SMV-input model to just return the input state (each state is its own equivalence class).
Our definition however does not incorporate two equivalence-class functions as to prevent an even more
complex definition.

Definition 47 (Equivalence-class Bisimulation Relation)
Given two Transition Systems T'S = (S,I,T) and T'S" = (S’,I',T") with equivalence class function €’ :
S — 25 a relation R C S x S is an equivalence-class bisimulation relation if (s, s') € R implies

eifs—>teT thenuece(s)AI €8 . Vzee(t) . u—zeT' A(tz) €R.

e if’ >t €T thenIt e Ss—teTA(tt)ER

Definition 48 (Equivalence-class bisimilar)
Two Transition Systems T'S = (S, I,T) and T'S" = (S, I',T") are equivalence-class bisimilar if there exists
a equivalence-class bisimulation relation R and an equivalence-class function e’ such that:

VsoeI3ds, el .Vzeel(sy) . (s0,2) €R
Vsy €I’ 3so € I . (s0,8)) € R

2.5 SMYV to SMV-flat proof

Using the definitions for SMV-input, SMV-intermediate and SMV-flat (Definitions 34,35,38) and the trans-
lations from SMV-input to SMV-intermediate and from SMV-intermediate to SMV-flat (Definitions 37,41)
we will now prove that any SMV-flat model that is a result of the SMV-input to SMV-flat translation
applied to an SMV-input model is equivalence-class bisimilar to that SMV-input model. The sought after
relation R is the state equivalence relation stateEqsiq: (Def. 45) and the used equivalence-class function is
the Eclass function (Def. 46).

Theorem 49
Let M; be an SMV-input model and let My = (Vsf, Dsf,Isf, Xsf) be an SMV-flat model that is obtained
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from M; by first applying the SMV-input to SMV-intermediate translation and by then applying the SMV-
intermediate to SMV-flat translation. Let T'S; = (S;,I;,T;) and T'Sy = (Sf,I¢,Tf) be the Transition
Systems induced by M; and My respectively. Then the following must hold:

T'S; is equivalence-class bisimilar to T'Sy under equivalence-class function Eclass.

Proof

The sought after equivalence-class bisimulation relation R is the stateFqsiq: relation. In order to prove
that T'S; and T'Sy are equivalence-class bisimilar we will first show that states in 7'S; and T'Sy have a
comparable state vector as otherwise we cannot even apply the stateEqsiq: relation to them. As such,
we will show that the state vector of SMV-flat states is equal to that of the SMV-input states with the
exception of the introduction of the scheduler variable. Afterwards, we will show that stateEqy,; is an
equivalence-class bisimulation relation for the 7'S; and T'S¢ transition systems by proving the conditions
on the initial states (Def. 48) and the conditions on all states in the relation (Def. 47) to hold.

Let M; have N, state variables denoted wiq, ..., xiyn;. Let the state vector for states in T'S; be denoted

as SV; = (ziy, ..., xin;). Let Ny, af1,...,xfny and SV = (zf1,...,xfns) be defined analogously for model
My.
Proof of: SV = (ziq,...,zini, Sc)
The SMV-input model contains a number of variable definitions. Those variables are copied without
change to set V's; by the SMV-input to SMV-intermediate translation. For each variable V's = (M;, N;, T;)
the parent module is recorded in M;, the variable name in NV; and its type in 7;. The SMV-intermediate to
SMV-flat translation copies the set V's; to set Vs; while applying the function rename on each element.
The translation also adds the scheduler variable Sc to set Vs¢. The rename function embeds the variable’s
parents module into the variable’s name but otherwise leaves the variable unchanged. Therefore, as no
variables have been created or lost during the translation other than that Sc has been added, and as the
rename function only changes the name of the variables but not its type and or any associated init or next
expressions, it must be the case that SVy = (i1, ..., vin, Sc).

Proof of: Vsg; € I; . 3soy € Iy . Vz € Eclass(soy) - (S0i,2) € stateEqyiaz
Let the sets of possible initial values per variable in the input model be denoted i1;, 724, ..., i 5; and the sets
of possible initial values per variable in Vsf be denoted @15, %2y, ..., n-

The SMV-input model contains a number of init declarations. These init declarations are copied to
set Is; by the translation from SMV-input to SMV-intermediate. Each init declaration is represented in
the set Is; by a single element I; = (M, V;, subst(E;)). As each variable has only a single init declaration
associated with it (Def. 28), we conclude that each variable is represented once in set Is;. The SMV-
input to SMV-intermediate translation applies function subst to expression E;, which does not change the
resulting value(s) of the expression as function subst only replaces symbolic names with the expressions
that they point to. The translation from SMV-intermediate to SMV-flat copies set Is; to set Is;y while
applying the rename function to each element. This function only changes the name of the represented
variable but does not otherwise change the information in any way. The translation also adds an initial
expression for the scheduler variable Sc to set Isy. Therefore,
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Note that the order of the variables in I is not necessarily the same as in I;, but as we showed that
14,924, ..., ing and d1¢,92¢, ..., in s consists of the same variables under the renaming function, showing that
it must be possible to re-arrange the variables such that 41; = 91f,%92; = %2f,...,ins = iny. For the rest of
the proof we assume that the variables in the SMV-input and SMV-flat models are ordered in the same way.

Denoting the number of scheduler choices as choices, Iy = {(I; x C) | C € choices}, it becomes clear
that for every initial state in the SMV-input model there must exist an initial state in the SMV-flat model
for which itself and all of the states in its equivalence-class (Eclass) are related to the previously mentioned
SMV-input state by stateEqyiq;.

Proof of: Vsoy € Iy . 3so; € I; . (S04, S0f) € stateEqgiar
It = {(I; x C) | C € choices} shows that all initial states in Iy have an initial state counterpart in I;
which it is related to by relation stateFqyq¢.

Let s;,t; € S, sy, ty € Sy and (s;, s¢) € stateEqyiqr.

Proof of: if s; = t; € T; then Ju € Eclass(sy) Aty € Sy . Vz € Eclass(ty) . u — z € Ty A (t,2) €
stateEqriqr-
Looking at how an SMV model induces a Transition System (Def. 44) we see that the transition s; — ¢;
was made under the choice of one of the asynchronous modules (also counting the main module and all
synchronous modules as a single asynchronous module). Let this particular chosen asynchronous module be
denoted as c. Now, seeing as that (s, sf) € stateEqyiqr, we know that the equivalence class of sy denoted
Eclass(sy), contains all states that are all related to s; according to relation stateEqsq;. By construction
of the scheduler variable Sc we know that it’s enumeration type contains a value for each asynchronous
module (plus 1) in the original SMV-input model. Therefore, no matter what the choice ¢ was, that choice
is represented by one of the states in Eclass(sy). Therefore we have proven the existence of state u that
has the same explicit scheduler choice as the transition from s; — ¢; made implicitly. Now we still have to
show that: 3ty € Sy . Vz € Eclass(ty) . u— z € Ty A (t,2) € stateEqyiaz.

Now let’s take a look at the transition relations of both T'S; and T'Sy. Both transition relations are
defined as follows:

o T'={(s1,82) | 3C € choices . s € n1(s1,C) x na(s1,C) X ... x nn(s1,C)}

In more detail, we know that for the transition between s; — t; we know that we made the choice called
¢, and we know that there exists a state in the SMV-flat Transition System that has this choice embedded
in it’s scheduler variable value. Let Sc. denote the symbolic constant in the scheduler’s enumeration type
that represents chosen module c:

o t; €ny(si,¢) X na(si,¢) X ... X ny(s;,¢)}

e 3C € choices . ty € ni(sy,C) x na(sf,C) x ... x ny(sf,C) x See}

As the SMV-flat model only consists of a single synchronous module there can only be one choice C

called m (for “main”):
o treni(sy,m) X na(sy,m) x ... x ny(sg,m) x Sc.}
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Now we show that the sets of next state values for the individual variables are the same in the SMV-
input and SMV-flat model: Looking at the next declarations we see that the translation from SMV-input
to SMV-intermediate copies the next declarations to the set Xs;. The function subst is applied to the ex-
pressions but as discussed before that does not change the expressions. The SMV-intermediate to SMV-flat
translation merges the next expressions that are concerning the same variable by grouping them in a single
case-esac expression with each their own condition valuation pair. The condition states that the correct
asynchronous module is chosen and the valuation is the original next expression. All created case-esac
statements (one per variable) are put into set Xs; and the next expression for the scheduler variable is
also added. Therefore, with implicit scheduler choice ¢ in the SMV-input model and explicit scheduler
choice Sc. made in the SMV-flat model, the created case-esac statements will make sure that the correct
next declaration’s expression is selected for next state value computation. As such we have proven that
each set of next state values for the individual variables are actually equal, and so there must exist a state
tr € ni(sy,m) x na(sp,m) X ... x ny(sy, m) x Sc.} for which it holds that (¢;,t7) € stateEqyias-

Lastly we need to prove that there exists a translation form state u not only to ¢y, but to every state in
Eclass(ty). This is however trivial as the only difference between the states in Eclass(ty) is the scheduler
variable whose next declaration states that it’s next state valuation is chosen non-deterministically ensuring
that all states in Eclass(ty) are generated. We have also already shown that for each state in Eclass(ty)
called z it holds that (¢, 2) € stateEq 4, because except for the scheduler variable their individual variable
values are exactly the same.

Proof of: if sy — ty € Ty then 3t; € S;.5; = t; € T; A (ti, tf) € stateEqyia
Having already shown that the SMV-input model has exactly the same implicit scheduler choices available
as the SMV-flat model does in an explicit way, and that the expressions for next state value computation
are then equal for each individual variable, we know that every transition in the SMV-flat model can also
be simulated in the SMV-input model.

Note that the definition of the Equivalence-class Bisimulation Relation (Def. 47) and the conditions
on the initial states in definition equivalence-class bisimilar (Def. 48) ensure that all states in reachable
equivalence classes are in fact also reachable themselves, making sure that the reachability property is
preserved.
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2.6 The mCRL2 language

In this section we will formalise the mCRL2 language. We will only describe the subset of the language
that shows up in the results of our SMV-flat to mCRL2 translations (a small subset).

Definition 50 (mCRL2 model)

An mCRL2 model is a collection of the following items:
A number of sort specifications.

A number of mapping specifications.

A single action specification.

A single process specification.

A single init statement.

Crs e

Definition 51 (mCRL2 sort specification)

The mCRL2 sort specification is a definition of an enumeration type. The sort specification contains a
name for the enumeration type and it contains a list of mCRL2 symbolic constants that together form
the enumeration type.

Definition 52 (mCRL2 symbolic constant)
An mCRL2 symbolic constant is a string that abides by the rules of the mCRL2 variable identifier
which can be used as an enumeration symbol.

Definition 53 (mCRL2 integer constant)
An mCRL2 integer constant is an integer that can be used as a terminal symbol in expressions.

Definition 54 (mCRL2 mapping specification)

The mCRL2 mapping specification is mCRL2’s variant of a function. A mapping expression consists of
three parts called map, var and eqn. The “map” part consists of the name of the macro and its type. Both
the function’s parameter types and return type is defined. The “var” part consists of a list of function
parameters, defined as their internal function name and their type. The “eqn” part lists a number of
equations that define the behaviour of the function.

Definition 55 (mCRL2 action specification)
The mCRL2 action specification declares which actions are used in this mCRL2 model.

Definition 56 (mCRL2 process specification)

An mCRL2 process specification is a 3-tuple (denoted (N,, Vs,, Sums,)) consisting of the following items:
1. A process name contained in a variable identifier.
2. A list of data variables.
3. A number of summands.

Definition 57 (mCRL2 init specification)
The mCRL2 init specification declares which actions are allowed to be executed, which process is selected
to be executed and the initial values for the variables of the mentioned processes. It is not allowed to
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specify multiple initial values for a single variable and as such it is not possible to create multiple initial
states.

In the init specification it is possible to refer to the start process as an parallel composition of multiple
processes. As we only have a single process in our mCRL2 models we will not look into that part of mCRL2
any further.

Definition 58 (mCRL2 data variable)
An mCRL2 data variable is a state variable and is denoted by its mCRL2 variable identifier and its
mCRL2 variable type.

Definition 59 (mCRL2 variable identifier)
An mCRL2 variable identifier is an string that does not begin with a number, but that otherwise may

consist of A-Z, a-z, 0-9 and the special symbols “”” and “_".

Definition 60 (mCRL2 variable type)

An mCRL2 type is a description of a variables type, being either “Bool”, “Int”, or “User defined sort”. The
“Bool” type is the standard boolean type, “Int” the integer type and the “User defined sort” is a type that
can be defined by enumerating its possible valuations. The “User defined sort” type is therefore effectively
an enumeration type and will denoted “Enumeration” from now on.

Definition 61 (mCRL2 summand)
An mCRL2 summand consists of an optional condition expression, an action and a process-call
expression and is denoted (cond, action, pcall).

Definition 62 (mCRL2 condition expression)
An mCRL2 condition expression consists of a mCRL2 expression which must have the Bool type. The
calculation of the condition expression related to a state s is denoted cond(s) and has a boolean result.

Definition 63 (mCRL2 action)

mCRL2 actions are used to label transitions with the name of the action. The mCRL2 language does not
allow for the action to be absent. As we are not interested in using actions we use the improvised dummy
action: “noAction”.

Definition 64 (mCRL2 process-call expression)

An mCRL2 process-call expression redirects model execution to a process mentioned by a variable identi-
fier and defines next state valuations for that process’s variables by listing expressions that determine their
next state valuations. Any variables for which the process-call does not mention the next state valuation
are left unchanged. The application of a process-call expression to a current state s is denoted pcall(s) and
results in a next state of state s.

Definition 65 (mCRL2 expression)
An mCRL2 expression can be seen as a tree, with several nodes that have a certain number of expressions as
its children (denoted #). An expression may begin with any of the available nodes. The available operator
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nodes and terminal nodes are described by the table below. The “any” type stands for the three types:
Bool, Int and Enumeration.

Table 2.2: mCRL2 expression operators

Operator # Result Type Child type Description

() 1 any any precedence

. 1 Bool Bool logical negation

- 1 Int Int unary minus

&&, | 2 Bool Bool logical and, logical or
.o==, 1= 2 Bool any equality, inequality
< >, <=, >= 2 Bool any less, greater, .. or equal, .. or equal
ety 2 Int Int addition, subtraction
,/;mod .. 2 Int Int  multiplication, division, remainder

in . 2 Bool Int, enumeration list inclusion
if(..,..,..) 3 any *x if-then-else
[..] * List of any any, but all the same list creation

** The type of the children of the if-then-else expressions differs per child: The first child must have a
boolean type, and the other two may have any type.

Terminals are either mCRL2 symbolic constants, mCRL2 integer constants, or mCRL2 vari-
able identifiers that point to variables declared in a process declaration and or available mapping
expressions. These terminals have respectively the types enumeration, integer, the type of the pointed-to
variable and the result type of the pointed-to mapping expression.

2.7 SMV-flat to mCRL2 translation

When translating from SMV-flat to mCRL2 there are multiple things to consider that do not have to do
with any specific translation from SMV-flat to mCRL2. This Section covers how types and expressions are

translated, how SMV define macros can be translated and how we can support multiple initial states in
mCRL2 models.

Definition 66 (Translation between SMV and mCRL2 variable types)
SMV variable types (Def. 24) are translated to mCRL2 variable types (Def. 60) following the table shown
below:

Table 2.3: Translation from SMV type to mCRL2 type

SMYV type mCRL2 type
Boolean Bool
Integer range Int

Enumeration User defined sort
module type Not applicable
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The translation from the SMV integer range to mCRL2’s Int type is potentially problematic: An
integer range is a clearly defined part of the integer range whereas mCRL2’s Int type represents the whole
integer range. As we are only interested in SMV models that are correct in the sense that the calculated
variable valuations stay within their defined integer range, we might just as well translate towards a broader
type without encountering any problems. The SMV module type is not applicable because any SMV-flat
model only consists of a single module and therefore cannot have variables with an SMV module type.

2.7.1 Translation of SMV expressions to mCRL2 expressions

Definition 67 (Translation between SMV and mCRL2 expressions)

The subset of supported SMV expressions (Def. 33) has been selected such that most operators in that
subset have an mCRL2 counterpart with the same semantics. The case-esac expression does not have
an mCRL2 counterpart but can be transformed into other operators which are translatable. The needed
transformation is described in Section 2.7.1. The next valuation expression does not have to be trans-
lated as it is already substituted away by the SMV-input to SMV-intermediate translation (Def. 37). For
the other SMV operators the proposed translation is described in table 2.4

Table 2.4: Translation from SMV to mCRL2 expression operators
SMV Operator mCRL2 Operator Description

() () precedence
I, I logical NOT
- - unary minus

L& L&y ] logical AND, logical OR.

o= 1= ==, 1= equality, inequality

LG > <= = L < >, <=, >= .. less, greater, .. or equal, .. or equal
C ot e addition, subtraction

* /,mod .. .. % /;mod ..  multiplication, division, remainder

.. in .. .oin .. set inclusion

AN if(..,..,.) if-then-else

{.} oK non-deterministic choice

{..} [ .. ] In a set context: creation of a set

** SMV supports non-deterministic valuations of variables when defining their next state valuation
in a next declaration. mCRL2 handles non-determinism in a different way by influencing the execu-
tion of the mCRL2 model by specifying multiple mCRL2 summands from which the system may non-
deterministically choose. The translation of non-deterministic choice expressions to mCRL2 summands
is described in the translation from SMV-flat to mCRL2 All-in-1 (Def. 73) and in the translation from
SMV-flat to mCRL2 1-by-1 (Def. 80).

The supported expression terminals in SMV expressions are SM'V symbolic constants, SMV inte-
ger constants and SMYV variable identifiers. The SMV variable identifiers can either point to SMV
variable declarations and or SM'V define declarations. Translating the SMV symbolic constants and
SMYV variable identifiers that point to SMV variable declarations happens by using Definition 68 which
only possibly changes the name of the symbolic constant. SMV integer constants can be translated without
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any change. The translation of SMV variable identifiers that point to a SMV define declaration depends
on the specific translation chosen. Two translations have been devised which are described in Section 2.7.2.

Note that we translate SMV set creations to mCRL2 list creations. As SMV only supports the use of
such sets as the right hand side of the in expression it becomes clear that it does not matter if we look
at the set of valuations as a set or a list; The “in expression” only determines if a certain element is in a
group of element. Such an operation does not care about the order of the element in the group.

In order to support the use of mCRL2 mapping specifications, which are effectively function decla-
rations it is also possible for the mCRL2 expression to be a terminal that points to this mapping expression
by stating its name and arguments for all its parameters.

case-esac to if-then-else

SMYV case-esac expressions do not have a counterpart mCRL2 expression construct. mCRL2 does
however support the use of the if-then-else construct. When looking at the definition of the case-esac
expression (Def. 33) we see that the evaluation of a case-esac expression resembles that of a nested if-then-
else structure. This becomes more clear when we look at a small example:

case
conditionl : valuationl ;
condition2 : valuation2 ;
esac;

The above shows a case-esac expression which is to be evaluated as follows: First conditionl is evaluated.
If conditionl evaluates to TRUE then the case-esac expression evaluates to valuationl. If not, we look at
the second pair: If condition2 evaluates to TRUE then the case-esac expression evaluates to valuation2
(and so forth). As such, it becomes trivial that this case-esac expression can be translated to the following
if-then-else expression:

if conditionl then valuationl else (if condition2 then valuation2 else (if ...)).

For any finite amount of condition valuation pairs in a case-esac expression there comes a moment that
this translation has processed the last condition valuation pair after which one “else” expression remains
empty (as there is no new condition valuation pair’s if-then-else representation to put there). This is
however not a problem as it is allowed to fill in anything: SMV dictates that for all possible current states
one of the conditions of the case-esac expression must be true and as such this last else expression will
never be reached.

union expression

The SMYV union expression is used in the SMV modelling language to determine a set of values, which
once created can be used in combination with the SM'V in expression. The resulting set can also be used
when assigning a next state value to a variable signifying a non-deterministic choice from all the values in
the set. The translation of union expressions therefore depends on the situation: If the result of the union
is used as a non-deterministic choice then the union expression is translated to an SMV non-deterministic
choice expression. If the result of the union is used as a set in combination with an “in expression”, then
it is marked as such and will be translated to an mCRL2 list.
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Translation between variable identifiers

Definition 68 (Translation between SMV and mCRL2 variable identifiers)

SMYV variable identifiers (Def 25) are translated to mCRL2 variable identifiers (Def 59) by renaming the
special symbols that are allowed in SMV but not in mCRL2. The symbols in question are “$” “#”, and
“.” These symbols can be replaced in any string used as an identifier by replacing them with for example
their names “dollar”, “hashtag” and “minus”.

2.7.2 Translation of SMV define macros

Definition 69 (Translation of SMV define macros by substitution)

Translation of SMV define macros by substitution works by substituting the expression that expresses how
the define macro is calculated for every occurrence of a SMV variable identifier that points to the define
macro in every expression found in the SMV model. The calculating expression can be found in the SM'V
define declaration.

Definition 70 (Translation between SMV define macros and mCRL2 mapping specification)

Translation between SMV define macros and mCRL2 mapping specifications works by generating a
mapping specification for each SMV define declaration and then changing all expressions that point to the
define declaration in order to correctly call the mCRL2 mapping function.

Let the mapping expression for variable Dy = (N, Ey) € Dsy be defined as mapping(Dy) = (map, var, eqn)

with:

o map = (Ny,{T}). The set of types {Ty} consists of the types of the variables mentioned in var
plus the return type of D¢. The return type of Dy is equal to the type of the top expression node of
expression Ey (see Def. 33).

o var = {(Ng,Ty) | Ey depends on variable Vy = (Ng,Ty)} € Vsy.

e eqn = E; with any references to other define macros augmented with their correct mCRL2 function
call (the depending variables must be given as function arguments).

Define macro Dy depends on a state variable V; € Vsy if the value of that variable in the current state
is needed for the computation of expression Ey. This is the case if 'y contains a symbolic constant that
points to variable Vy, or if V; is depended upon by any define macro mentioned in Ey.

Let’s look at an example of the define macro to mapping expression translation. Below an example is
shown of three define macros defined within an SMV model of an improvised game. The model has state
variables state and score (not depicted) and define macros start, finish, middle. The start macro states
that the game is started when both the state and score variables equal 0. The finish macro states that the
game is finished if either the state is 6 or if the score is bigger than 10. The middle define macro defines when
the game is neither just started nor finished. In order to do so it refers to the definitions of start and finish.

DEFINE
start := state = 0 & score = 0;
finish := state = 6 | score > 10;
middle := !start & ! finish;
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The translation of these define macros is depicted below. The translation for the start and finish define
macros is fairly straight foreward: They both depend on state and score which are of integer type and
the function results in a boolean type because the top expression is “and” resp. “or”. The translation of
middle is more involved as it depends on start and finish. First it is determined that start and finish
depend on state and score and as such so does middle. As such state and score are added to the mapping
expression. Lastly the expression of the middle define macro is adapted to correctly call upon the start
and finish mapping expressions. This same adaption must be done for all expressions in the SMV-flat
model. In those expressions the needed variable are however always available by their symbolic name as
we only use a single mCRL2 process.

map start: Int # Int -> Bool;

var state : Int;
score : Int;
eqn start(state,score) = state = 0 & score = 0;

map finish: Int # Int -> Bool;

var state : Int;
score : Int;
eqn finish(state,score) = state = 6 | score > 10;

map middle: Int # Int -> Bool;

var state : Int;
score : Int;
eqn middle (state,score) = !start(state,score) & ! finish(state,score);

Except for the creation of a mapping specification for each SMV define macro we must also adapt any found
variable identifiers in expressions that point to SMV define macro’s to incorporate the correct function call.
All depending state variables must be added to the function call which should be no problem as we have
only a single mCRL2 process and therefore all variables are readily available.

2.7.3 Support for multiple initial states

SMV models may have multiple initial states. mCRL2 models however are restricted to a single initial
state. The solution deployed to counteract this problem is that all translations from SMV to mCRL2 first
generate the set of initial states equal to the SMV set of initial states before continuing to generate the rest
of the state space. In order to generate the initial states from the mCRL2 initial state we introduce the
special Initial flag variable (Def. 71) into the mCRL2 models. The idea behind the initial flag is that the
flag can be used to determine a special mode of next state generation in the mCRL2 models: If the initial
flag is set to “True” then the next states are all initial states of the SMV-flat model. If the initial flag is
set to “False” then the next states are all next states as defined by the SMV-flat model.

Definition 71 (Initial flag)

The initial flag, denoted If, is a state variable with the boolean type that is used in mCRL2 models to
determine whether a state is the unique initial state or not. To that end, the initial flag is only set to
“True” for the initial state in the mCRL2 model. The init declaration and the next declaration for the
initial flag is just the valuation “False”, ensuring that any other state then the initial state will be marked
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with the information that it is not an initial state. For the initial state the initial flag’s valuation is set to
“True” in the mCRL2 init statement.

2.8 SMV-flat to mCRL2 All-in-1 formalisation

Having investigated multiple parts of the translation from SMV-flat to mCRL2 we are now ready to formalise
the All-in-1 translation. The concept behind the All-in-1 translation is that it translates one SMV state
to a single equivalent mCRL2 state. The translation is based on the idea that the single mCRL2 process
is created with process-call expressions that change all variables at the same time. In order to support
non-determinism, all combinations of the non-deterministic choices are computed and that same amount
of mCRL2 summands are created each representing a single non-deterministic choice combination. All
summands are created without a condition and the dummy action “noAction”. The mCRL2 semantics
(Def. 74) then dictate that the translated model has to choose between all created summands in a non-
deterministic manner. The All-in-1 translation makes use of the determiniser function defined next.

Definition 72 (Substitute Nondeterministic and Determiniser function)

The determiniser function creates a set of deterministic expressions from an expression that may contain
non-deterministic expressions. It’s application is to determinise next state valuation expressions. Let
FE,, be an expression that possibly contains non-deterministic expressions. F, may have multiple non-
deterministic expressions due to the case-esac expression: The case-esac expression may, upon different
values for referenced variables in it’s conditions, evaluate to different non-deterministic expressions. Let
FE, have N different non-deterministic expressions denoted Ney, Nes, ..., Ney. Each non-deterministic
expression consists of a set of values from which the non-deterministic choice is made, denoted Nsc; for
Ney, Nscy for Ney etcetera. Define function substN : E x {E} x {E} — E to be a function which
substitutes all non-deterministic expressions given in expression set Nse for a set of expressions given in
expression set Nsc:

substN (E,, Nse, Nsc) = E,, with all non-deterministic expressions given in set Nse substituted for their
respective expression given in Nsc.

Let the determiniser: E — {E} function be defined as follows:

determiniser(E,,) = {substN(E,,, Nse, Nsc) |
Nse ={Ney,Nesy,....,Nexy} AINsc € {Nsc; X Nscg X ... Xx Nsey}}

Let’s look at an example of the determiniser function before moving on to using it in the All-in-1
translation. The example displayed below is an SMV case-esac expression of which the valuation depends
on two variables called datal and data2. The expression contains two non-deterministic expressions which
are used depending on the values of datal and data?2.

case
datal = 1 {0,1};
data2 = 1 {2,3};
TRUE : 0;

esac;
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Below we see the resulting expressions from the determiniser function. The function generates four
expressions because there are two non-deterministic choices with both two options. The results of the
determiniser function represents all possible combinations of choices for the non-deterministic expressions.

1 case 1 case 1 case 1 case

2 datal = 1 : {0}; 2 datal = 1 {1}; 2 datal = 1 {0}; 2 datal = 1 : {1};
3 data2 = 1 : {2}; 3 data2 = 1 {2%}; 3 data2 = 1 {3}; 3 data2 = 1 {3};
4 TRUE : 0; 4 TRUE : 0; 4 TRUE : 0; 4 TRUE : 0;

5 esac; 5 esac; 5 esac; 5 esac;

Definition 73 (Translation between SMV-flat to mCRL2 “All-in-17)

Using the translation for variable identifiers (Def. 68), the translation for variable types (Def. 66), the
translation for expressions (Def. 67), together with one of the two options for translating SMV define
macros (Def. 69, Def. 70), we almost have a complete translation. Only the contents of the mCRL2
process specification, the mCRL2 init specification and the mCRL2 action specification have yet
to be determined.

Let the SMV-flat model be denoted M; = (Vsf,Dsf,Isf, Xsf) (Def. 38). Let the mCRL2 process
specification be denoted P = (N,, Vs,, Sums,), with N, the name of the process, V's, the set of variables
and Sums, a set of summands. Let a summand be denoted as a 3-tuple {cond, action, pcall) with cond the
condition expression, action the action and pcall the process-call expression. Let a process-call expression
be a set of expressions that each represent the next state valuation for a single variable. Let the number of
variables in V'sf be denoted N. Let Fi, and En, be resp. the init and next state valuation expression for
variable V, described in resp. Isf and Xsf. Let the determiniser function (Def. 72) be short-handed to
det. Let If be the Initial Flag variable, Ei;y and En;s be resp. the init and next expressions for the initial
flag variable. The “All-in-1” translation then translates model My to process specification P as follows:

o N, =“P".

o Vs, =VspUIS.

o Sums, = {{If == True, “noAction”, pcall) | Ipcall € det(Ei1) x det(Eiz) x ... x det(Ein) x det(Eirg)}
U {(If == Fulse, “noAction”,pcall) | Ipcall € det(Eny) x det(Eng) X ... x det(Eny) x det(En;s)}

The mCRL2 action specification must be created to declare the “noAction” action. The mCRL2 init
statement must be created with a random (but in range) value for each variable except for the initial flag
which must be set to “True”. The mCRL2 init statement should also state that the “noAction” action is
allowed to be executed.

mCRL2 models originally induce a Labelled Transition System and not a Transition System. The
difference is in the presence of labels on the transitions. For our purposes we will define how an mCRL2
model induces a Transition System without any labels which can be achieved by just leaving the mCRL2
labels out of consideration. The semantics presented here are only those of a small subset of the mCRL2
language and are not equal (but for our purposes they are) to the official semantics as presented by the
mCRL2 research group.
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Definition 74 (Induced Transition System by an mCRL2 model)
Let an mCRL2 model M have a single process with N variables denoted x1,xs,...,zn. Let the range
of the variables be denoted rq,7s,...,7n. Let the initial values as defined in the mCRL2 init state-

ment per variable be denoted i1, 2, ...,in5. Let the mCRL2 process specification of model M be denoted
P = (Ngy,Vsq, Sums,) (Def. 73). The induced Transition System T'S = (S, I,T) by M is defined as follows:

OS=T1><’I“2><...X7"N
L] I = {(il,ig, ,ZN)}
o T ={(s1,82) | Isum = (cond, action, pcall) € Sums, . cond(s1) == “True” A sy = pcall(s1)}

2.9 SMV-flat to mCRL2 All-in-1 equivalence

The All-in-1 translation has as its main characteristic that all generated process-call specifications
change all variables at the same time. In contrast to the 1-by-1 translation the All-in-1 translation generates
an equivalent mCRL2 state for each SMV-flat state. The equivalence between a state in the SMV-flat model
and a state in the All-in-1 model is determined by a state equivalence function, which in this case relates
states from the SMV-flat model to their equivalent state in the All-in-1 by adding the Initial Flag variable
to the SMV-flat state.

Definition 75 (State equivalence function for SMV-flat to All-in-1)

Let My be an SMV-flat model and T'S; = (Sy, Iy, Ty) the induced Transition System. Let My have Ny
state variables. Let M, be an All-in-1 model and T'S, = (S,, I, T,) the induced Transition System. Let
If denote the Initial Flag variable. The state equivalence function denoted stateEqay—in—1: Sy — Sq is
defined as follows:

stateEqaj—in—1((vls,v2y,...,uNy)) = (vlf,v2y,...,vNs, False)

The state spaces of the SMV-flat and translated All-in-1 model are equal except for the unique mCRL2
initial state that generates the set of SMV-flat initial states as described in Section 2.7.3. As that is the
only difference the equivalence proof for the state spaces we will be split into two parts:

e Prove that the unique mCRL?2 initial state correctly generates a set of mCRL2 states that are equiv-

alent to the set of SMV-flat initial states according to state Eqa;_in_1.

e Pretending that the unique mCRL2 initial state does not exist, and taking the generated set of mCRL2

states that are equal to the set of SMV initial states, prove that the state spaces of the SMV-flat and
mCRL2 models are equivalent.

The equivalence used between SMV-flat and All-in-1 models is one that should express that they have an
essentially equivalent state space. Such an equivalence is called an Isomorphism and is defined next.
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Definition 76 (Isomorphism)
Two Transition Systems T'S and TS’ are isomorphic if there exists a bijective function f : S — S’ such
that

o VspeI3dsyel Af(so)=sg

o Vso eI Isg € I N f(so) = s

o Vs1,89€5:8 28T < f(s1) = f(s2) €T’

The way in which the unique mCRL2 initial state should generate a set of mCRL2 states that is equal
to the set of initial states from the SMV-flat model is formally expressed in the following definition:

Definition 77 (Correct initial states generation)
Let the unique All-in-1 initial state be denoted sg,. An mCRL2 All-in-1 model with induced Transition
System T'S,, correctly generates a set of initial states equal to the set of initial states of an SMV-flat model
with induced Transition System TSy if:

o Vsor €Iy 3s €S, . 500 > sETFA f(sof) =5

o Vs €S, | soa = s€T, Isor € If A f(sof) =s

2.10 SMV-flat to mCRL2 “All-in-1” proof

This section presents the proof that the SMV-flat to mCRL2 All-in-1 translation results in an All-in-1
model that is isomorphic to the original SMV-flat model under the assumption that an mCRL2 model is
allowed to have multiple initial states which are equal to the SMV-flat initial states. In order to prove
that assumption correct, we will first prove that the conditions for correct initial states generation are met.
Afterwards we will prove that together with the assumption that the initial states are correctly generated,
the two models are isomorphic under the bijective function state Eqan_in_1-

Theorem 78

Let My be an SMV-flat model and let M, be a All-in-1 model that is obtained from My by applying the
SMV-flat to mCRL2 All-in-1 translation. Let T'Sy = (Sf, Iy, Tf) and T'Sq = (Sq, 14, T,) be resp. the
Transition System induced by My and M,. Then the following must hold:

TSy is isomorphic to T'S,. The isomorphism is given by state equivalence function stateEqay—in—1. The
isomorhpism holds under the assumption that mCRL2 models are allowed to have multiple initial states,
which have to be proved equal to the initial states of the SMV-flat model.

proof

In order to be able to prove anything we first have to confirm that we can use function stateEqa;_in_1-
This function assumes that if the state vector in an SMV-flat model has Ny variables then the translated
All-in-1 model has Ny + 1 variables of which the last one is of boolean type. The first Ny variables must
also all be of equal type.
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Let My = (Vsf,Dsf,Isf,Xsf). Let Vsf consists of N state variables denoted x fi, ...,z fn,. Let the
state vector for states in T'Sy be denoted as SVy = (zf1,...,xfn;). Let Ei, and En, be resp. the init and
next state valuation expression for variable V,, described in resp. Isf and Xsf. Let the mCRL2 process
specification of the M, model be denoted P = (N, Vs,, Sums,). Let the state vector for model M, be
denoted SV,. Let the Initial Flag variable be denoted If.

Proof of: SV, = (xf1,...,xfny, [ f). State vectors consist of all state variables in a model. For My
those are the variables in Vsf and for M, those are the variable in V's,. The SMV-flat to mCRL2 All-in-1
translation states that Vs, = Vsy UIf. Therefore, it must be the case that SV, consists of the same
variables as SVy, with the same types, and with I f added. Therefore, SV, = (zf1,...,xfns, I f).

Let’s now take a look at the conditions for correct initial states generation as defined in Def. 77.

Proof of: Vsor € Iy 3s € S, . (sos,s) € Ty A stateEqay—in—1(so5) = s and Vs € S, | (S0a;5) € Tq
Jsor € Iy A stateEqai—in—1(Soy) = s.
The SMV-flat to mCRL2 All-in-1 translation states that the mCRL2 init statement is created with random
values for each variable except for variable I f which is set to “ True”, which is therefore exactly the contents
of state sg,. The definition of the Induced TS by an mCRL2 model states that:

Ty = {(s1,82) | sum = (cond, action, pcall) € Sums,, . cond(s1) == “True” A sg = pcall(s1)}

As such, the next states of state sg, are those states created by summands whose condition under
current state s, denoted cond(soq), evaluates to “True”. Looking at the translation, the only summands
that are to be considered for next state generation are those that have a condition that expresses that the
Initial Flag is equal to “True”:

{(If == True, “noAction”, pcall) | Ipcall € det(Ei,) x det(Eiz) X ... X det(Ein) % det(Firg)}

The next state of a single summand is created by applying its process-call expression (denoted pcall)
to the current state (denoted peall(sp,)). The effect of pcall(sgq) is that all variable change expressions in
pcall are applied to sg, in order to generate a next state of sgq.

Looking at the induced Transition System by an SMV model we see that the definition denotes the sets
of possible initial values per variable to be 41,12, ...,inf. It also states that Iy = 41 X 92, X... X i,. These
sets of possible initial values per variable must have been generated using the expressions in their init
declarations which we call Eiy for xf1, Fis for xf; etcetera. As the determiniser’s function (Def. 72),
here short-handed to det, is exactly to creates an equivalent set of deterministic expressions from a single
possibly non-deterministic expression, we conclude that i1 == det(FEi1), i == det(FEis) etcetera.

As such, not counting the valuation for the Initial Flag variable in All-in-1 states, we have proven that
Iy == {sq | (S0a,5a) € T,}. As the difference in the presence of the Initial Flag variable is precisely what
the stateFEqay—in—1 function takes care of we have proved that both of the following conditions hold:

Vsor € Iy 3s € Sq.(s0f,8) € Ty A stateEqay—in—1(Sof) = s
Vs € Sq | (80a,8) € To 3sof € If A stateEqa—in—1(Sof) = $

As the definition of the correct initial state generation implies all conditions on the initial states of the
Isomorphism definition we will skip those and move on to the third condition.
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Proof of: Vssi,sp0 € Sy sp1 = sp2 € Ty < stateEqay—in—1(sf1) — stateEqai—in—1(5p2) € T, The
transition relation of the SMV-flat model is defined as follows:

Ty ={(s1,s2) | 3C € choices . s3 € n1(s1,C) x na(s1,C) X ... x ny(s1,C)}

With nq (S, C) being the result of the next expression of variable x f; under current state S and scheduling
choice C, ny (S, C) the same for x f5 etcetera. choices is a set of all choices of asynchronous modules plus one
choice for the combination of the “main” module and the remaining synchronous modules. As the SMV-flat
module only contains the “main” module only a single choice is possible which that “main” module. As
such, the choice is of no influence and can be removed from the definition:

Ty = {(s1,52) | s2 € n1(s1) X na(s1) x ... x nn(s1)}
As seen, the transition relation of an All-in-1 model is defined as follows:
T, = {(s1, s2) | Isum = (cond, action, pcall) € Sums, . cond(s1) == “True” A so = pcall(s1)}

This time however we only deal with summands from the All-in-1 model that have the condition that
the Initial Flag is equal to “False”. This is because only the unique mCRL2 initial state has an Initial
Flag with the value “True”, and for this isomorphism we assume that generation of the correct set of initial
states has already been proven (which we have). The created summands in the SMV-flat to mCRL2 All-in-1
translation that have the correct condition are:

{{If == False, “noAction” , pcall) | Ipcall € det(Eny) x det(Ens) X ... x det(Eny) x det(En;f)}

As with the initial states, we see that det(En,) == ni(s1), det(Eng) == na(s1) and so forth. As such,
if we compare states using the stateFEqa;—_in—1 state equivalence function, it must be the case that any
SMV-flat transition is also created (from the same state to the same state) as an All-in-1 transition and
the other way around.
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2.11 SMV-flat to mCRL2 “1-by-1" formalisation

The “All-in-1” model determines a next state by looking at the next declarations of all variables at the
same time. The “1-by-1” model determines next states by looking at each variable in a separate manner:
When determining a next state, each variable gets its own state in which its next valuation is determined.
The combination of the transitions between multiple states in the 1-by-1 model (when all variables have
been looked at) therefore simulates a single transition in the SMV-flat model. As each variable is calculated
separately and as the next state valuation of a variable may depend on other variables we need to keep
track of both the newly calculated next state value and the current state value of any variable. We therefore
declare the 1-by-1 model to have two variables for each variable in the SMV-flat model. One that records the
current state value and one that records the possibly already calculated next state value. After calculating
the next value of all variables the 1-by-1 model copies all next state variables to the current state variables
before starting repeating the process. Enforcing the 1-by-1 model to determine the next valuations of all
variables before starting over is done by a special counter variable which is defined next.

Definition 79 (Counter variable)

Let an SMV-flat model have N state variables. The counter variable is used to keep track of the state
variable that is to be analysed in the current state. The counter variable therefore has N different values,
plus an extra one that signals the special copy transition. Let the counter variable be denoted Cv. Cwv
is of integer type and ranges from 0 to N. Let the init expression of C'v be the value 0 and let the next
expression of the counter variable be (Cv + 1) mod N denoted as Cn.

Next we will use the counter variable to formally define the 1-by-1 translation.

Definition 80 (Translation between SMV-flat to mCRL2 “1-by-1”)

Let SMV-flat model My, process specification P, the summand, the process-call expression, the set of initial
values, the number of variables N and the det (determiniser) function be defined and denoted as in the
definition of the SMV-flat to mCRL2 All-in-1 translation (Def. 73). Additionally, let the Counter Variable
be denoted Cv (Def. 79), let Ei, and En, resp. be the init and next state valuation expression for variable
Ve described in resp. Isf and Xsf. Also define the set of states in Vs denoted Vi, Va, ..., Vv to be the
current state variables and let the set Visge = Vi, Vae, ..., Vive be the set of variables in which we temporar-
ily record the already calculated next state valuations, with Vs, = {(Ny +“_e€",T¢) | I(Ng, Ty) € Vsy}.

52



The translation from an SMV-flat to an mCRL2 1-by-1 model uses the same general SMV-flat to mCRL2
translations as is explained in the translation from SMV-flat to mCRL2 All-in-1. The 1-by-1 translation
then translates SMV-flat model M to process specification P as follows:

o N, =“P".

o Vs = VSf @] VSfe U Ifu Cu.

o Sums, =
{{If == True & Cv == 0,“noAction”, pcall) | Ipcall € {{Vie = E | E € det(Ei,)} x Cv =1}
U {{(If == True & Cv == 1,“noAction”, pcall) | Apcall € {{Va. = E | E € det(Fis)} x Cv =2}
U

U {(If == True & Cv== N-1,“noAction”,pcall) | Ipcall € {{Vne = E | E € det(Ein)} x Cv= N}

U {(If == False & Cv== 0,“noAction”,pcall) | pcall € {{Vi. = E | E € det(En1)} x Cv =1}

U {{If == False & Cv== 1,“noAction”,pcall) | Ipcall € {{Vao. = E | E € det(Eng)} x Cv =2}
U..

U {(If == False & Cv == N-1,“noAction”,pcall) | Ipcall € {{Vne =FE | E € det(Enn)} x Cv =N}

U {({Cv == N, “noAction”, pcall) | Ipcall € {V} = Vi, Vo = Vae, ... V¥ = Viye, I f = “False”,Cv = 0}

The mCRL2 action specification must be created to declare the “noAction” action. The mCRL2
init statement must be created with a random (but in range) values for each variable except for the
initial flag which must be set to “True” and the counter variable which must be set to “0”. The mCRL2
init statement should also state that the “noAction” action is allowed to be executed.

2.12 SMV-flat to mCRL2 “1-by-1” equivalence

An SMV-flat model and its translated mCRL2 1-by-1 model are equivalent up to the point that the 1-
by-1 model takes multiple transitions to come to the same effects as the SMV-flat model does in a single
transition. The reachable states are however the same if we do not consider states in the 1-by-1 model that
are used for “in between” calculations. Such states are called internal states and are defined next.

Definition 81 (Internal state)

An internal state is a state in a Transition System which has been marked as internal. The intuition behind
an internal state is that it should not be taken into consideration when equivalence of two reachable state
spaces is determined, for example because they are part of in-between computation steps.

As such, it is important to determine which states exactly are marked as internal in the 1-by-1 models.
In SMV-flat models there are no internal states.

Definition 82 (Internal states in the “1-by-1" model)

In any 1-by-1 model, only the states where the special counter variable is set to 0 are normal states.
All other states are marked as internal as they are used to compute those normal states in a step by step
(variable by variable) manner, or to copy calculated results to the current state variables.
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Normal SMV-flat states and normal 1-by-1 states are not completely equal: The translation adds a copy
of all SMV-flat variables denoted v1y,. for variable vl, v2. for variable v2; and so forth. The translation
also adds the initial flag variable and the counter variable. For the initial flag and the counter variable
we already know that their value bears no significance when we want to compare normal SMV-flat with
normal 1-by-1 states as they will always be equal to “False” and “0” respectively. The copies of the state
variables are also not important as they are used in order to store in-between computation results. As such
we define what it means for two states to be equivalent in a state equivalence function called stateEq; _py—1

Definition 83 (State equivalence relation for SMV-flat to 1-by-1)
Let M; be an SMV-flat model and T'S; = (Sy, Iy, Ty) the induced Transition System. Let My have Nj
state variables. Let My be an All-in-1 model and T'Sy = (S, Iy, Tp) the induced Transition System. Let I f
denote the Initial Flag variable with valuation v;f and let Cv denote the Counter Variable with valuation
Uey. Let sy € Sy and sp € Sp, then states sy and s;, are equivalent if (sy, sp) € stateEqi—py—1. The state
equivalence relation stateEqi_p,—1 € Sy X Sy is defined as follows:

stateEqi_py—1= {((v1;,v2;, ..., vN;), (015,025, ...,uNf, 01fe,V2f¢, ..., UNfe, Vi, Vew)) |
vl; = vly,v2; = v2y,...,0N; = vNy}

Even though we only want to consider non-internal or “normal” states when comparing an SMV-flat
model to a translated 1-by-1 model, it must still be the case that in the end the same normal states
are reachable in both models. In order to help define that the set of reachable states must still be the
same we first determine what an internal path is, after which we will explain the equivalence called weak
bisimulation.

Definition 84 (Internal path)
An internal path, denoted = is a path that starts and ends with a normal state. All other states on the
path must be internal states.

Definition 85 (Weak Bisimulation Relation)
Given two Transition Systems T'S and T'S’, a relation R C Sx .S’ is a weak bisimulation relation if (s, s’) € R
implies

eifs=teT thendt' €8s =t eT'N(t1)€ER.

eifs =t T thenIHeSs=teTA(t)eER

Definition 86 (Weak bisimilar)
Two Transition Systems T'S = (S, I,T) and T'S" = (S, I',T') are weak bisimilar if there exists a weak
bisimulation relation R among then such that:

Vso € I 3s;, € I'. (so.50) € R
Vsy € I' 3sp € I . (s0,8)) € R

For the 1-by-1 model we have the same problem as with the All-in-1 model with the unique mCRL2
initial states. As such we will first attempt to proof that the 1-by-1 model generates a set of initial states
that is equal to the set of SMV-flat initial states. Afterwards, assuming that the correct set of initial states

54



is generated, we will proof that both models are weak bisimilar. The definition of correct initial states
generation does however needs to be adapted slichtly in order to incorporate the use of internal paths:

Definition 87 (Weak correct initial states generation)
Let the unique 1-by-1 initial state be denoted sgp. An mCRL2 1-by-1 model with induced Transition System
TS, correctly generates a set of initial states equal to the set of initial states of an SMV-flat model with
induced Transition System TS if:

o Vsor €Iy 3s € Sy . sof = s €Tt A f(sof) =s

o Vse S, ‘ Sop = s €Ty HSOf Eff/\f(S()f):S

2.13 SMV-flat to mCRL2 “1-by-1” proof

This section presents the proof that the SMV-flat to mCRL2 1-by-1 translation results in an 1-by-1 model
that is weak bisimilar to the original SMV-flat model under the assumption an mCRL2 model is allowed
to have multiple initial states which are equal to the SMV-flat initial states. In order to prove that as-
sumption correct, we will first prove that the conditions for weak correct initial states generation are met.
Afterwards we will prove that together with the assumption that the initial states are correctly generated,
the two models are weak bisimilar under the weak bisimulation relation stateFqq_py—1.

Theorem 88

Let My be an SMV-flat model and let M}, be a 1-by-1 model that is obtained from M by applying the SMV-
flat to mCRL2 1-by-1 translation. Let T'S; = (Sy, I, Ty) and T'Sy = (Sp, I, Tp) be resp. the Transition
System induced by M; and M;. Then the following must hold:

TSy and T'Sy are weak bisimilar with weak bisimulation relation state£q;_p,—1. The weak bisimulation
holds under the assumption that mCRL2 models are allowed to have multiple initial states, which have to
be proved equal to the initial states of the SMV-flat model.

Proof

In order to be able to prove anything we first have to confirm that we can use function stateEq;_py—1. This
function assumes that if the state vector in an SMV-flat model has Ny variables then the translated All-in-1
model has (N *2) + 2 variables, for which the first Ny are have equal types as the set Vsy, just as the sec-
ond Ny variables. The last two variables must be equal to the Initial Flag variable and the Counter Variable.

Let My = (Vsf,Dsf,Isf, Xsf). Let the set of states in Vs, denoted V f1,V fa,...,V fn, be the cur-
rent state variables and let the set Vsge = V fie, V foe, ..., V fne be the set of next state variables, with
Vste = {(Ny +“_€",T¢) | I(Ng,Tf) € Vss}. Let the state vector for states in TSy be denoted as
SVy =(Vfi,...,Vfn,). Let Ei, and En, be resp. the init and next state valuation expression for variable
V f. described in resp. Isf and Xsf. Let the mCRL2 process specification of the M, model be denoted
P = (Ny, Vsp, Sumsy). Let the state vector for model M, be denoted SV,
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Proof of: SV, = (Vf1,...Vfng, V fies .., Ve, I f, Cv). State vectors consist of all state variables in
a model. For M, those are the variables in Vsf and for M, those are the variable in V's,. The SMV-flat to
mCRL2 1-by-1 translation states that Vs, = VspUV st UIfU Cv which directly proofs the correct contents
of SVj.

Let’s now take a look at the conditions for correct initial states generation as defined in Def. 87.

Proof of: Vso; € Iy 3s € Sy . sof = s € Ty A stateEq1_py—1(s05) = s and Vs € Sy | sop = s € Tj,
Jsor € Iy A stateEq1—py—1(S07) = s

Following the same reasoning as used in the proof for the SMV-flat to All-in-1 translation, we see that
the SMV-flat to mCRL2 1-by-1 translation creates an mCRL2 init statement with random values for each
variable except for variable I f which is set to “True”, and variable C'v which is set to “0”. The random
values combined with the If and Cv values are therefore exactly the contents of state sgp. Starting with
this state, all summands that may generate next states therefore have to have a condition that states that
If == “True’” and Cv == 0.

{{If = True & Cv= 0,“noAction”, pcall) | 3pcall € {{V1. =E | E € det(Ei;)} x Cv =1}

The states generated by these summands all have Cv == 1 and If == “True” (as non-mentioned
variables in a process-call stay the same). The states also have a calculated next state value for variable V;
recorded in variable Vi.. As Cv # 0, we see that the generated states are internal states. As such we have
not yet found a normal state and are on the way of defining an internal path. Knowing that the generated
states have Cv == 1 and If == “True”, we can only create new next state by applying the following
summands:

{{If == True & Cv== 1,“noAction”,pcall) | Ipcall € {{Vae = E | E € det(Fiz)} x Cv =2}

We now end up in internal states that have the first two variables calculated which is reflected in their
Counter Variable. Continuing to generate states like this, we at some point will generate states in which all
variable’s next value have been calculated and in which Cv == Ny. At that moment the copy transition
becomes active as it is the only summand that has the correct condition:

{(Cv== N, “noAction”, pcall) | Ipcall € {V1 = Vi, Vo = Voo, ... Viv = Vive, I f = “False’”,Cv = 0}

After all next state value’s have been copied to the current state variables the copy transition makes sure
that the Initial Flag is set to false and that the Counter Variable is reset to 0, creating a non-internal, or
also called “normal” state. Therefore, the internal path ends and a state has been found that is (hopefully)
equal to an SMV-flat initial state.

We will now prove that the normal states generated by the above process results in a set of mCRL2
states that is equal (according to stateEqi_py—1) to the set of SMV-flat initial states.

The SMV-flat initial states are generated by the expression Iy = i; X i2, X... X iy, with the sets of
possible initial values per variable denoted as i; for variable V7, io for variable V5 and so forth. In the
All-in-1 translation proof we already argued that iy == det(Ei ), ia == det(Fiss) and so forth. The
summands created by the SMV-flat to mCRL2 1-by-1 translation that have the condition I f == “True”
& Cv == 0 effectively calculate the next state valuation for the first variable, which can be denoted as
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Vi = E | E € det(Fiy), knowing that later on the copy transition happens. These summands result in a set
of states that all have one of the possible values in det(Fi1). After creating a new set of next states from the
summands that have the condition I f == “True” & Cv == 1, we have effectively computed all states that
have some value from det(FEi,) for the first variable and some value from det(Eis) for the second variable.
All states in the product of those two sets have been computed: det(Ei1) X det(Eig). After repeating
this process a number of times, states appear that have variable values [ f == “T'rue” & Cv == N — 1.
After computing their next states we have effectively computed det(Eiq) x det(Fiz) X ... X det(Eiy). As
i1 == det(Fiif), 12 == det(Eisy) and so forth, and as the state Eqy_p,—1 drops all extra duplicate variables
and the I f and Cv variables it becomes clear that the computed normal states, via a path of only internal
states, must be equal (according to stateEqi_p,—1) to the set of SMV-flat initial states.

As such, we have proven both Vsor € Iy 35 € Sp.50f = s € Ty A statequ,by,l(sof) =sand Vs € Sy |
sop = s € Ty Asoy € Iy A stateEqi_py—1(S0s) = 8.

As the definition of weak correct initial state generation implies all conditions on the initial states of
the weak bisimulation relation definition we will skip those and move on to the conditions on any related
states by stateEqi_py—1.

Proof of: If s=t €T then 3t' € §'.s' =t € T' A (t,t') € stateEqi_py—1 and 8’ =t € T’ then It € S
.s=teT A(tt) € stateEqi_py—_1.
We know that state t is a “normal” state that is not the mCRL2 unique initial state and as such [ f ==
“False” & Cv == 0 in state t. Using the same reasoning as for the proof of Weak correct initial state
generation, but this time using the next state valuation expressions (En, instead of Ei, for each variable),
we see that the 1-by-1 summands effectively calculates a set of normal states whose next state valuation is
in det(Eny) x det(Eng) x ... x det(Eny), applied by the process-call to state t.

By the reasoning in the proof of the All-in-1 translation we know that the SMV-flat model calculates
next states with the following function:

Ty ={(s1,52) | s2 € n1(s1) X na(s1) X ... x ny(s1)}

That same proof showed us that det(Eni) == ni(s1), det(Eng) == na(sz2) etcetera. As (s,t) €
stateFqi_py—1, and as their next state calculation is shown to be equal we have proven that if we only look
at “normal” state in the 1-by-1 model connect to each other by internal paths, then the state spaces of
the All-in-1 model and the 1-by-1 model are exactly the same. As such, any two states that are related by
statel)qi _py—1 can simulate each other’s behaviours as required by the definition of the Weak Bisimulation
Relation.
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2.14 Dependency matrix, state count and textual size of the cre-
ated models

This Section investigates a number of practical details on the created translations and also suggests the
creation of two additional translations to fix some of the uncovered practical problems. Per translation, we
will investigate the contents of the LTSmin dependency matrix, the number of reachable states in relation
to the number of reachable states in the original SMV-flat model and the textual size of the model. The
dependency matrix and the number of reachable states are important for the efficiency of the reachability
analysis by the LTSmin tool. The size of the mCRL2 model is important as the translation tool that gen-
erates the mCRL2 model, and the mecrl22lps pre-processing tool might get into trouble when the textual
size gets too big.

Before we look at each of the translations lets first determine what the dependency matrix looks like for
an mCRL2 model. The dependency matrix has on one side a number of groups and on the other side the
state variables of the mCRL2 model. Each group represents a number of transitions which in the case of an
mCRL2 model are those that are generated by a single mCRL2 summand. The information in the matrix
captures whether a group depends on a certain variables. LTSmin strongly prefers models that have as
less dependencies as possible as that enables an efficient reachability search. The mechanics in the LTSmin
toolset that use the dependency matrix in order to do reachability analysis are described in Section 1.5.1.

2.14.1 Details for All-in-1 models

The All-in-1 models have a very bad dependency matrix as each summand changes all variables at the
same time (because all process-call expressions change all variables). Therefore all created groups depend
on all state variables. As discussed before, the state space of the All-in-1 translation is the same size
plus one state as the SMV-flat state space. This is due to the addition of the unique mCRL2 initial
state. All-in-1 models are generally large when talking about textual size. This is due to the fact that
the All-in-1 translation creates a summand for each possible combination of the results of the available
non-deterministic choices. In each such summand it generates the next expressions for all variables. As
such the size of a single summand is fairly big, and the number of summands gets exponentially larger as
linearly more non-deterministic expressions are available or the existing non-deterministic expressions have
linearly more choices.

2.14.2 Details for 1-by-1 models

The concept of the 1-by-1 model was created in order to generate equivalent mCRL2 models with a better
dependency matrix than the All-in-1 model has. In order to generate mCRI2 models with a better depen-
dency matrix the 1-by-1 translation creates summand that only change a single state variable at the same
time. As such it does introduce a significant number of extra states. 1-by-1 models also have double the
number of variables as All-in-1 models. The extra variables are needed to store calculated next state values
while the old current state values may also still be needed and as such cannot yet be thrown away. The
SMV-flat to mCRL2 1-by-1 translation was also created to create mCRL2 files that where of a smaller size
than their equivalent All-in-1 models. This was mostly of importance as the translation tool had great
problems with generating the big All-in-1 models.
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1-by-1 dependency matrix

A 1-by-1 model has a dependency matrix has twice the variables compared to the dependency matrix of
an All-in-1 model because the extra set of next state variables are added and the counter variable is added
to the set of state variables. Each summand in a 1-by-1 model is generally concerned with calculating the
value of a single variable (denoted V', with next state variable ;). To that end it writes to two variables:
V. and the special Counter Variable. The summand also reads the current state variable for each variable
that is needed to calculate the next state value of variable V. For these summands the dependency matrix
therefore reflects very real and necessary dependency relations.

The 1-by-1 model also has a special summand that copies all next state variables to the current state
variables once the next state values have been determined for all state variables. This summand therefore
represents a big flaw in all 1-by-1 models: The copy summand depends on all variables as it reads form
all next state variables and writes to all current state variables. It also resets the Counter Variable and
sets the Initial Flag variable to “False”. As such it depends on all variables in some way and therefore the
summand’s corresponding group in the dependency matrix depends on all variables.

1-by-1 state calculation

The 1-by-1 model obtains a better dependency matrix in exchange for a larger set of reachable states.
The exact number of the blow-up in reachable states strongly depends on the number of non-deterministic
expressions in the original SMV-flat model and the number of non-deterministic options that each such an
expression has. Figure 2.2 in the preview Section gives an idea of how to calculate the reachable state space
blow-up. We will calculate an estimate based on the number of summands that are used to calculate the
next state of any given mCRL2 state. Let the SMV-flat model have N state variables. Starting from any
mCRL2 state that is equal to a state in the SMV-flat state space, we know that the Counter variable Cv
equals 0. The enabled summands calculate the next state value of the first variable V;. Denoting the next
expression that belongs to V7, we know that the amount of enabled summands must be equal do det(E}).
We now end up with say L; next states, which have a counter variable that is equal to 1. Generating the
states from the states in L; thus happens by looking at the summands that have C'v = 1 as their condition.
The enabled summands are those that calculate the next state value for variable V5. The amount of enabled
summands is det(Es). By that reasoning, the calculation of the number of states after all variables have
been analysed is:

L1 = |d€t(E1)|
L2 = Ll + (Ll * |det(E2)|)
L3 = Lg + (L2 * |d€t(E3)|)

LN = LN71 + (LN,1 * |d€t(EN)|)

The same calculation can be made for the number of states that are needed to calculate the set of
initial states by using the initial expressions of the variables instead of the next expressions. We do not
count the states created by the copy summand because those states are again equal to a state in SMV-flat
and therefore should not be counted when calculating the state blow-up in regards to the number of states
reachable in the SMV-flat model.

59



Note that the calculated value is only an indication of the state space blow-up as the calculation is
based on the number of executed summands. Therefore, the calculation does not take the possibility into
account that some summands may results in the same state. The calculated estimate does however give an
upper bound on the reachable state space blow-up.

1-by-1 textual size

1-by-1 models are of significant smaller size then there All-in-1 counterpart. Each summand only contains
the next expression for a single state variable and summands are only created for all possible combinations
of non-deterministic choices of a single variable, and not for all variables at the same time. Therefore 1-by-1
model files are relatively small in size.

2.14.3 1-by-1 Sum

The 1-by-1 Sum translation is an not before mentioned variant of the 1-by-1 translation that groups mCRL2
summands together that have equal dependencies on all variables. When creating summands to update
variable V, with next expression F,, the original SMV-flat to mCRL2 1-by-1 translation creates a summand
for each combination of non-deterministic choices in det(E,). The individual groups resulting from these
transitions don’t have a real function however, because all summands assign values to V., to Cv and read
from all variables that are mentioned in E,. The groups therefore have identical dependency characteristics
and can therefore be grouped. Grouping is arranged by creating a single summand that has mCRL2 Sum
expressions:

Definition 89 (mCRL2 Sum expression)

An mCRL2 Sum expression consists of an mCRL2 symbolic constant and an mCRL2 type. The sum
expression is a language construct that allows to combine the description of multiple summands into a
single one. It does so by allowing to use the symbolic constant as a place holder variable in the summand
that the Sum expression is created in. In the induced Transition System the summand that contains the
Sum expression is turned back into a set of summands, that have instantiations of each Sum expression’s
symbolic constant. The available instantiations are determined by the Sum expression’s type. Multiple
sum expressions result in summands that have instantiations of the symbolic constants from the Cartesian
product of all the sum expression’s types.

A 1-by-1 Sum model therefore has two dependency matrix groups for each variable (one for If ==
“False” and one for If == “True”). The dependency matrix also contains one group for the copy transition.
In any other aspect the dependency matrix is the same as for the original 1-by-1 model. A 1-by-1 Sum
model is also shorter in textual size as summands are grouped together. The reachable state space of a
1-by-1 Sum model is exactly the same as the original 1-by-1 model as the summands are grouped together,
but effectively expanded again when calculating the set of possible next states.

2.14.4 1-by-1 Sum Copy

The 1-by-1 Sum Copy translation is a not before mentioned variable of the 1-by-1 Sum translation (but
could just as well work on the original 1-by-1 translation). The 1-by-1 Sum Copy translation attempts to
have an even better dependency matrix by splitting up the copy transition into multiple transitions that
each copy a single variable. The copy transition is a problem in the 1-by-1 and 1-by-1 Sum dependency
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matrix as it depends on all variables. Therefore the 1-by-1 Sum Copy again trades an even better depen-
dency matrix for an increase in reachable states. The resulting dependency matrix is the same as the one
described for the 1-by-1 translation with the exception that the on all variables depending copy summand
group is now replaced with multiple groups that all depend on only 3 variables: the current and next state
version of the variable that is being copied plus the counter variable.

In comparison with the 1-by-1 Sum translation the textual size of the model increases slightly (but only
linearly in the number of states). The calculation of the number of reachable states can be given by the
following calculations:

L1 = |d€t(E1)|
Ly = Ly + (L1 * |det(E2)])
L3 = L2 + (L2 * |det(E3)|)

Ly =Ln_1+ (LN_1 * |d6t(EN)|)
Lci=Ly+ LN
Loo=Lc1 + Ly

Loy =Len-1+ Ly

This calculation assumes that the last copy transition is followed by a transition that changes the Initial
Flag to “False” and the Counter Variable to 0. The states generated by that transition are not counted
as they are again “normal” states. This calculation can also be done for the number of states that are
needed to calculate the set of initial states. As with the original 1-by-1 states calculation the results of the
calculation only represent an upper bound on the actual blow-up in the number of states relative to the
number of reachable states in the SMV-flat model.

2.14.5 Comparison between the translations

Table 2.5 gives a comparison of the presented translations in the categories of the dependency matrix, the
reachable state spaces and the textual size of the produced models. The comparison is done on the “Worst,
Worse, Average, Better, Best” scale.

Table 2.5: A comparison between the translations

Dependency matrix = Reachable state space Textual size

All-in-1 Worst Best Worst

1-by-1 Average Worse Better

1-by-1 Sum Average Worse Best
1-by-1 Sum Copy Best Worst Best
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Chapter 3

Results

This chapter describes the results of the automatic translations and the execution times of the original
models versus their translated counterparts. The chapter also describes results of some other comparison
methods, such as profiling results of the NuSMV and LTSmin symbolic reachability tools. All experiments
are performed on a visualised Ubuntu 11.10 64bit environment, with 4 CPU cores and 4GB memory. The
virtualization software used was VMware workstation version 9.0.1, running on a system with Windows
8.0. The native windows computer has an Intel Q9550 2,83Ghz quad core CPU, 8GB of memory and an
OCZ Vertex 3 SSD 240GB.

For the experiments NuSMV version 2.5.4 was used, always in conjunction with the “-r” option. This
option ensures that NuSMV will perform the reachability analysis. Before running any files in NuSMV all
specifications where removed from the SMV models in order to ensure that the validity of any specifications
are not calculated as well. For LTSmin we used LTSmin version 2.0. In order to be able to run mCRL2
models in LTSmin the mcrl22lps tool from the mCRL2 toolset must first be executed. The version of the
used mCRL2 toolset was 201202.0. The LTSmin tool used for the actual reachability is called lps2lts-sym,
which just as the merl22lps tool where run with multiple options as enumerated below. Only the best
results of the multiple runs with different enabled options where used when the results were collected. All
results where measured three times after which the average was taken.

e no-cluster: Uses the option —no-cluster on mcrl22lps.

e advanced: Uses the option —no-cluster, —no-globvars and —delta on mcrl22lps. Uses -rgs on 1ts2lps-
sym.

e chain: Uses the option —no-cluster, —no-globvars and —delta on mcrl22lps. Uses -rgs and —order=chain-
prev on lts2lps-sym.

e sat-like: Uses the option —no-cluster on mcrl22lps. Uses —saturation=sat-like on lts2lps-sym.

e save-sat: Uses the option —no-cluster, —no-globvars and —delta on mcrl22lps. Uses -rgs, —saturation=sat-
like and —save-sat-levels on lts2lps-sym.

For all experiments we used the translation from SMV define macros to mCRL2 mappings (Definition 70).
The alternative was to use Definition 69 which proposes to substitute the define variable’s next expressions
in all places where they are used. Tests showed that either option did not result in different performance
results. We have chosen to use the mCRL2 mappings as the substitution solution has the disadvantage
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that it may give rise to outputting the define variable’s next expression multiple times which blows up the
size of the model file and decreases it’s readability.

3.1 Used models

The models used in the experiments are described in this section. We shortly discuss the characteristics,
the meaning and the origin of the used models. Tables 3.1 and 3.2 contain some characteristics of the used
models. The non-determinism row of the tables denotes how much non deterministic choices are made when
determining a next state of the model. The used format shows on each numeric position a non-deterministic
choice and the number is actual number of non-deterministic options for that choice to choose from. The
meaning of the models and their special characteristics are discussed afterwards on a per model basis.

Table 3.1: Model characteristics

periodic  Tictactoe_v2 door ferryman abp4
Model type synchronous synchronous synchronous synchronous asynchronous
Modules (sync - async - main) 0-9-1 0-0-1 0-0-1 0-0-1 4-4-1
Variables (state - define) 11-29 15-1 4-0 6-8 12-0
States (NuSMV) 1k, 100, 10k 887k 36 240 140k
Non-determinism 10,0,10x10 3x3x3x3 2x2x3x5 8x8 16
Versions orig, corr, extra abp4

Table 3.2: Model characteristics
filo_n production-cell  screen.1001 screen.107 screen.125
Model type asynchronous synchronous synchronous synchronous synchronous
Modules (sync - async - main) n-n-1 0-9-1 0-0-1 0-0-1 0-0-1
Variables (state - define) n*2 + 1 39-0 26 23 21
States (NuSMV) 40, 218 81 510k 41k 11k
Non-determinism 2x2x2*n none 4 4 4

Versions filo3, filo4, filo5

periodic -orig, -corr and -extra

The periodic model was found in the NuSMV example set !. It is a data driven pipeline synchronous SMV
model. The aux variable in the original model is not used for anything and annotated with the comment
“used just to make SMV recognize the symbols idle and p*”. We assume that the author did not yet have the
fairly new CONSTANTS clause available when making the model as users can freely declare enumeration
values in the CONSTANTS section without creating an extra state variable. As such, model periodic-corr
removes the aux variable and adds an equivalent CONSTANTS clause. Periodic-extra adds an extra aux
variable called aux2 in order to see how the translation and execution of the created models react to more

Thttp://nusmv.fbk.eu/examples/examples.html
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nondeterminism. Each aux variable is an input variable with 10 symbolic constants and therefore blows up
the state space 10 fold.

Tictactoe_v2, Door and Ferryman

The tictactoe smv model is a model of the well known Tic Tac Toe game. In a 3x3 grid two players must
take turns to place one of their personal tokens. Once a player has three in a row (either horizontal, vertical
or diagonal) that player wins. We have two versions, the forSMV and the v2 version. As both versions
has comparable results we have only shown version v2 in our results. The “door” SMV model represents a
model of the logics behind an automatic door with open and close buttons on both sides of the door. This
model is very small in state space (36 states) but still results in interesting results as it contains multiple
non-deterministic choices. The ferryman SMV model is a model of the ferryman puzzle: A fisherman with
his goat, cabbage and wolf stand on one side of the river. The fisherman want to cross the river on a boat
that can only hold himself and another item. If the wolf and the goat are left alone on one side of the
river then the wolf will eat the goat. If the goat and the cabbage are left alone then the goat will eat the
cabbage. All “possessions” of the fisherman must reach the other side of the river safely. All three models
where found in the example set of the NuSMV-tools Model Advisor 2.

filo_ n and abp

The filo_n models are a SMV representation of the well known dining philosophers problem, with n philoso-
phers and n forks. The problem is valid for n >= 2: n philosophers sit around a round table, with the
space between philosophers occupied with a single fork. Each philosopher can either think or eat. When a
philosopher wants to eat he must first acquire the two forks that are situated on both his sides. Seeing as
there are as many forks as there are philosophers, the problem is to find a solution of how the philosophers
should attempt to claim the forks in such a way that all philosophers regularly get to eat (no philosophers
should starve). The filo models where found in the example set of the NuSMV-tools Model Advisor. The
abp models are descriptions of the Alternating Bit Protocol which is a communication protocol. A sender
and a receiver are connected by two communication channels which together serve as a bi direction commu-
nication medium. Both the sender and the receiver have a binary alternating bit which is used in order to
determine if messages are correctly received. A detailed description of the Alternating Bit Protocol can be
found in the apbx.smv files. The abp models are part of the NuSMV examples set 3. The used abp4C.smv
model is a copy of the original abp4.smv model with some adjustments to the enumeration types as to keep
symbolic constants unique.

production-cell

The production-cell model describes an ASM-specification of the Production Cell and is part of the NuSMV
examples set. The model describes an automatic industrial system which involves a crane, a robot with two
arms and multiple transport belts. See the paper by Borger and Mearelli for a more detailed description
[15]. The used production-cellC.smv model is a copy of the original production-cell.smv model with some
adjustments to the enumeration types as to keep symbolic constants unique.

2http://code.google.com/a/eclipselabs.org/p/nusmv-tools/
3http://nusmv.fbk.eu/examples/examples.html
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screen.1001, screen.107 and screen.125

The screen files are Sokoban puzzles. These puzzles are translated to a SMV model by software created in
the Modelling & Analysis of Concurrent Systems 2 course given at the University of Twente by Jaco van
de Pol. A Sokoban puzzle looks like the listing below. W stands for wall, P for player, B for box and *”
for the goal positions. The player can walk in all directions: up, down, left and right. The player cannot
walk into a wall and if the player pushes against a box then the box will move in the direction the player
is pushing it. This however cannot happen if the box is up against the wall or against another box. The
goal of the puzzle is to control the player in such a way that all boxes are pushed onto a goal position.
WWWWW

WP WWWWW

WWB . W

W W

WW BW.B W

WW WWW
WWWWW

Used LTSmin options

Tables 3.3 and 3.4 shows the LTSmin options per translation that worked best for the presented models.

Table 3.3: LTSmin options per translation per model

p-orig  p-corr p-extra Tictactoe v2 door  ferryman abp4

All-in-1 chain chain chain advanced chain chain -

1-by-1 Sum sat-like sat-like advanced sat-like  advanced no-cluster sat-like
1-by-1 Sum Copy chain sat-like sat-like sat-like no-cluster sat-like  sat-like

Table 3.4: LTSmin options per translation per model

filo-3, filo-5 filo-4 production-cell screen.1001 screen.107 screen.125

All-in-1 - - chain advanced  advanced chain

1-by-1 Sum sat-like  no-cluster sat-like sat-like sat-like sat-like
1-by-1 Sum Copy sat-like  no-cluster sat-like sat-like sat-like sat-like
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3.2 Measuring the LTSmin and NuSMYV reachability tool execu-
tion times

A first comparison was made by measuring the full execution time of the NuSMV reachability tool against
the reported reachability time of the LTSmin reachability tool. We chose not to measure the full execution
time of the LTSmin tool as it contains a preprocessing step in which some mCRL2 related files are com-
piled. The experiment includes measurements for the original SMV model, the flattened SMV model, the
translated mCRL2 All-in-1 model, the translated mCRL2 1-by-1 SUM model and the translated mCRL2
1-by-1 COPY model. We do not report on models resulting from the original mCRL2 1-by-1 translation
as it has exactly the same performance as the mCRL2 1-by-1 SUM translation. The results are depicted in
Graph 1 on the next page. The x-axis shows (created) models per input model. The y-axis shows the time
in milliseconds. The numbers in the base of the vertical bars represent the number of states generated by
the applied reachability tool. LTSmin All-in-1 measurements are not available for the abp4C, filo3, filo4
and filo5 models as the mcrl22lps tool ran out of memory. Please note that the y-axis uses a logarithmic
scale base 10.
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The data in Graph 1 shows that NuSMYV is significantly faster in most cases in comparison to all LT'Smin
measurements. Differences of multiple orders of magnitude have been measured. The “door”, “ferryman”
and “periodic-cellC” models do not show a significant difference which is most likely due to their very small
state spaces. Even though the All-in-1 models sometimes have good performance it is important to realize
that due to the model’s textual size the mCRL2 preprocessing steps generally take significantly longer. So
much longer, that we were unable to take measurements for the abp4C and filox models as the mcrl22lps
tool ran out of memory after a long runtime. The periodic-corr, periodic-orig and periodic-extra models
show how the LTSmin reachability time is influenced upon an increase of non-deterministic choices in the
model. The results show that the All-in-1 and 1-by-1 Sum model’s execution times are strongly influenced
by the presence of the extra non-deterministic choices in periodic-orig and periodic-extra whereas the 1-by-1
Copy and the NuSMV execution time are not.

The abp4, filo3, filo4 and filo5 models are special as they are asynchronous models. Graph 1 shows
that it does not seem to matter whether the input model is synchronous or asynchronous. This observa-
tion can be explained by the fact that the presence of multiple asynchronous processes is translated to an
extra non-deterministic by the translation from SMV to SMV-flat. The synchronous models may however
also contain non-deterministic choices and as such there is no real difference in the synchronous and asyn-
chronous models after translation. The results for the abp4C model do however show a clear difference
between the original 1-by-1 Sum and the 1-by-1 Copy versions of the model which must be an effect of the
better dependency matrix resulting from the Copy version of the model. Any occurrences where a Copy
model performs worse than the Sum model may be due to the increased number of dependency groups
which might effect reachability negatively.

The results for the Sokoban models screen.1001, screen.107 and screen.125 show that these models
present more of a challenge to the NuSMV reachability tool than the other models. It seems that the
execution time difference between the NuSMV and LTSmin reachability tools stays roughly the same for
all three models which suggests that this is also the case for even larger Sokoban puzzles. This observation
stands against what we see with the periodic models that show an increase in the difference between NuSMV
and LTSmin as we increase the number of non-deterministic choices. The difference can be explained with
the fact that all Sokoban puzzle models only have a single non-deterministic choice with four options that
determines the direction of the player.

Graph 1 also shows that the SMV-flat to All-in-1 translation is the best translation in the sense that the
resulting model is evaluated faster than the models created by the 1-by-1 translations. This is most likely
explained by the larger number of states in the state space of the 1-by-1 models. The big disadvantage
of the All-in-1 translation is that models tend to get very big, resulting in long execution times from the
translation tool and long execution times (and high memory usage) of the mcrl22lps tool.

3.3 Maeasuring the execution time of the translator tool

While measuring all data shown in Graph 1 we also measured the time it took for our translation software to
generate the desired models. The measurements are shown in Graph 2 (on the next page). It is important
to measure the execution time of the translation software in order to determine its practical use for end
users: The translation is only useful if the time it takes to translate the model plus the reachability time
of the new model is smaller than the original reachability time.
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The measurements include the time it takes to parse the SMV file with our created ANTLRv4 SMV
parser, the time it takes to translate from SMV to SMV-flat and the time the created software takes to
execute the SMV-flat to All-in-1 and SMV-flat to 1-by-1 translations. The x-axis shows the recorded ex-
ecution times per input model. The y-axis shows the time in milliseconds. SMV-flat to mCRL2 All-in-1
measurements are not available for the abp4C, filo3, filo4 and filo5 models as the translation tool ran out of
memory during the creation of the translated models. Please note that the y-axis uses a logarithmic scale
base 10.

Graph 2 shows that together with the fact that the data for the SMV-flat to All-in-1 translation is
missing for abp4C, filo3, filo 4 and filo5 models because of the mcrl22lps tool running out of memory (after
for example 30 minutes of computation time) it is clear that the SMV-flat to All-in-1 translation take an
unacceptable amount of time. The explanation of the time usage by this translation is that it generates
an mCRL2 summand for each possible combination of non-deterministic choices in the model. Each
mCRL2 summand is very big as it contains the next state valuation expressions for all variables in the
model. The translator software therefore generates big files which take long to create and handle. The
1-by-1 translation was partly designed to counteract the model’s size explosion that was seen by the All-in-1
translation. The 1-by-1 translation succeeds as the models are kept manageable in size which is reflected in
the translation times. The time taken by the translator software’s SMV parser is relatively high, but as the
time needed by the SMV parser used by the NuSMV software is embedded in the execution times measured
in Graph 1, we have clear proof that the parser’s performance can be improved upon. It is therefore not a
lasting problem and the current parser performance is good enough for our own experiments.

3.4 Measuring the execution time of the NuSMV and LTSmin
reachability algorithm

One explanation for the differences in performance between the LTSmin and NuSMV symbolic reachability
tools is that they both solve a very different problem: NuSMYV has an input file from which the transition
BDD can be easily build. LTSmin builds the transition BDD by way of querying the language module
while doing the reachability search (by way of the PINS interface). In order to see how this difference in
LTSmin influences its performance a version of LTSmin’s reachability function was created that first exe-
cutes normal reachability and then executes reachability again with the already learned transition BDD.
NuSMV was also recompiled with a timer on its reachability function. Graph 3 (on the next page) shows
the reachability time of the NuSMV and LTSmin reachability algorithms for the original SMV model and
all obtained models through automatic translations. Graph 4 shows a comparison between Graph 1 and
Graph 2: The x-axis shows for both the SMV-flat translated model and the All-in-1 translated model the
reachability tool runtime compared with the actual reachability algorithm’s runtime per input model. The
y-axis shows the time in milliseconds. Graph 3 shows the best results found working with option sets that do
not include saturation for LTSmin. Reason was that measuring LTSmin while enabling saturation incurred
a large measuring overhead and therefore rendered results that where not representable to reality. Graph
3 therefore only gives an indication of the differences in reachability algorithm time and not an exact one
when comparing Graph 3 with Graph 1. For Graph 4 we used the no-cluster option package for all LTSmin
related measurements shown. Please note that the y-axis uses a logarithmic scale base 10. All zero entries
have been altered to 1 ms due to technical difficulties. (This applies to all values that have a 1 ms valuation).
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Graph 3 shows that the NuSMV reachability algorithm is significantly faster than the LTSmin reach-
ability algorithm for all examples except the Sokoban puzzles. The data for the Sokoban puzzles (screen
1001, 107 and 125) shows that NuSMV and the 1-by-1 translated models are evaluated using the same
amount of time. The All-in-1 translated models of the Sokoban puzzles are evaluated significantly faster
by LTSmin then their NuSMV counterpart. The results in Graph 3 one again confirm by way of the peri-
odic examples that NuSMYV is not influenced by the extra non-deterministic choices whereas the translated
mCRL2 models are. The Sokoban puzzles also support that claim as they all only have 1 non-deterministic
choice with 4 options. As such, the Sokoban models must present a difficulty for the NuSMV toolset other
than a high (or low) degree of non-determinism.

Graph 4 shows the comparison between a model’s evaluation time when the transition BDD relation
must first be learned against a model’s evaluation time if the transition BDD is already known. The data in
Graph 4 shows that LTSmin spends most of it’s time creating the transition BDD via the PINS interface.
The results in Graph 4 show us that for the 1-by-1 Sum translated models on average, only 4.5% of the time
spend in the LTSmin reachability function is used on actual reachability (the rest on the learning of the
transition BDD). Graph 4 also shows that NuSMV does not spend all its time in its reachability function.
This can possibly be explained by the fact that this is only the case for the small examples (which have
a lot of program overhead). The larger examples such as the Sokoban puzzles show that almost all time
is spend in the NuSMV reachability function. Section 3.5.2 provides profiling results in order to further
clarify how the program spends its time in the tictactoe_v2 and screen.1001 examples.

Comparing the NuSMV results for the models tictactoe_v2 and screen.1001 we see that the first model
has 887k states and the second 510k states which is strange as NuSMV spends about 100 times more on
the screen.1001 model than on the tictactoe v2 model. The LTSmin results show that for LTSmin it works
the other way around: For the 1-by-1 Sum translation LTSmin finds the screen.1001 model significantly
easier than the tictactoe v2 model. The characteristics found in Table 3.1 and Table 3.2 show that the
Tictactoe_v2 model has 3x3x3x3 = 6561 non-deterministic choices whereas the screen.1001 model only
has 4 non-deterministic choices. Looking at other models such as the periodic models it does not seems as
NuSMV is clearly influenced by the number of non-determisitic choices. LTSmin is influenced however as
the translations to mCRL2 translate non-determinism directly into complexity and size of the models. As
such, we see for LTSmin that models with high non-determinism often have a lot of dependency groups
(as a lot of summands are created). We assume that a trade-off exists in which a larger number of groups
exceeds the benefits that LTSmin can create by having those dependency groups. In relation to Graph
3 our experiments show that for the All-in-1 translation LTSmin has to deal with only 8 groups for the
screen.1001 model as opposed to 163 groups for the tictactoe v2 model. For the 1-by-1 Sum translation
the screen.1001 model has more groups then the tictactoe_ v2 model: 55 versus 33, possibly explaining why
the difference in time for the 1-by-1 Sum models is much less significant than for the All-in-1 models.

It is also very likely that the tictactoe v2 simply has a worse dependency matrix than the screen.1001
model. This would only be affecting the 1-by-1 Sum models as the All-in-one models have a very bad de-
pendency matrix anyway. Tictactoe v2 may have a worse dependency matrix than the screen.1001 model
because the Sokoban models have good locality: All variables represent grid points in the puzzle which only
depend on their neighbours or their neighbour’s neighbours. The tictactoe_ v2 model has worse locality as
there are two variables that depend on all variables: There is a variable which determines the game status
and a variable which determines the winner which both use all other state variables to determine their
next state value. The results for the 1-by-1 Sum Copy translation tell us a different story. All dependency
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matrices created with the 1-by-1 Sum Copy translation should be better than those created by the 1-by-1
Sum translation. Seeing as the 1-by-1 Sum and the 1-by-1 Sum Copy models give us opposite results it is
clear that further investigation is needed (future work).

Let’s now try to explain the difference in results for NuSMV. NuSMV generally finds the Sokoban
puzzles very difficult to analyse. A possible explanation is that NuSMYV is unable to find a good early
quantification ordering (Section 1.2.2) for the Sokoban puzzles compared to all other models. As explained
in the section about conjunctive partitioning it is important for the early quantification system to find an
order for the state variables in which to remove them from the process of calculating all next states. The
SMYV descriptions of the Sokoban puzzles contain however a state variable for each grid point in the puzzle
which all depend on each other. Often, variables representing neighbouring grid points depend on each
other in a circular manner. It is therefore very likely that NuSMYV is unable to find a good ordering for the
early quantification mechanism effectively bringing down efficiency.

3.5 Other comparison methods

In order to further investigate and possibly clarify the comparison results found through the use of the
automatic translations a number of different comparison methods where also executed. This section reports
on those comparison methods and the results obtained through them.

3.5.1 Profiling LTSmin

Profiling is a way to see how a program spends it time. An interesting question for example is how much of
the time is spend in the language module and how much in the actual reachability. The results of profiling is
a list of all functions in the program and the percentage of time spend in them. For the LTSmin reachability
tool called “lps2lts-sym” we investigated the periodic-extra, abp4C and screen.1001 models with profiling.
For all models we used the 1-by-1 sum version of the translated mCRL2 model. Table 3.5 shows the top
five functions in which lps2lts-sym spends its time for the profiled models. Table 3.6 shows the percentage
of time spend on different categories. Each function’s category is determined mainly by its name-space or
by personal experience. Only the first 100 functions mentioned in the profiling report are used to obtain
the numbers in Table 3.6.

Table 3.5: LTSmin profiling results by top-5 most used functions

mdd mdd mdd mdd mdd Itsmin

create_ node sweep_ bucket hash  put collect project find_ mecrl2

index

periodic-extra 26.15 11.74 839 835 2.61 0.06 1.7
screen.1001 9.86 4.97 9.5 2.03 2.29 9.45 3.5
abpdC 17.78 483 712 4.84 0.9 0.07 3.77

Table 3.5 shows that among the 6 most used functions 5 of them start with “mdd” meaning that they
are part of the BDD package. This is no surprise as both reachability and the construction of the transition
BDD use BDD operations. Table 3.6 shows that all profiled executions heavily leaned on the BDD package
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Table 3.6: LT'Smin profiling results by category

mdd merl2 aterm  boost

periodic-extra 51.02 3.54 3.52 3.42
screen.1001  40.53 4.64 5.75 7.59
abp4C  30.08 5.95 6.2 7.85

(30 to 51% of time spend). It also shows that the axillary libraries of the mCRL2 language module, an
aterm library and a boost library al take their fair share in the execution time. They all take up around
5% of total time spend. Note that the sum of the categories does not end up to 100%, this is because
not all functions where identified as part of a category and only the 100 most used functions where taken
into account. One particularly interesting result is that the execution of the screen.1001 model relies more
strongly on the mdd_ project function than the others. This is interesting as the screen.1001 model (and
also the other Sokoban puzzles) are the functions where LT'Smin can compete or even be faster then NuSMV
when only looking at reachability algorithm execution time as depicted in Graph 3.

3.5.2 Profiling NuSMV

Profiling NuSMV might tell us more about how the NuSMV program spends its time. For the Sokoban
puzzles Graph 4 shows that NuSMV spends all its time in the reachability function. For tictactoe v2
however the reachability function only uses about one third of the available time. Table 3.7 shows the pro-
filing results for the screen.1001 and tictactoe v2-flat models. Note that the BDD package of the NuSMV
tool is called cudd. Accurately profiling NuSMYV is harder than profiling LTSmin as our profiling tool
works by measuring intervals of 0.01 seconds. For most NuSMV runtimes we have encountered this interval
was too big, making the results more unreliable. The screen.1001 example does not suffer from this problem.

Table 3.7: NuSMV profiling results

cudd cudd cudd cudd cudd cudd Other
Uniquelter Cache BddAnd Cache BddAnd Other
Lookup AbstractRecur Lookup2 Recur
screen.1001 32.01 13.52 13.12 10.93 10.93 19.21 0.28
tictactoe_ v2-flat 4.76 9.52 14.29 4.76 4.76  47.63 14.28

The profiling results for screen.1001 show that all time is spend in BDD operations (cudd). These are
exactly the results as suggested by Graph 4, in which it becomes clear that 98.6% of the time spend by
the NuSMV executable is used for actual reachability. Those same results suggest that only 32.2% of the
NuSMV execution time is used for reachability when it comes to the tictactoe_v2 model. The profiling
possibly suggest something different: they suggest that 85.7% of the time is used by the cudd library,
which might also be for building the transition BDD. We should remember however that the profiling of
the tictactoe_v2 example is fairly unreliable as its runtime is too short.

75



Chapter 4

Conclusions and future work

This Section summarizes the conclusions that can be drawn from the results presented in Chapter 3. A
number of conclusions can be drawn, which of course all depend on the translations described in this work.
Other translations and or translations that translate from LTSmin supported input languages to the SMV
language might show different results. This section also elaborates on possible future work.

4.1 Conclusions

The NuSMYV reachability tool is significantly faster than the LTSmin reachability tool. Graph
1 in Chapter 3 shows that in all cases that have a significant runtime NuSMYV is orders of magnitude faster
than LTSmin. The difference would only get worse if we would have included the preprocessing steps needed
to translate the mCRL2 models into an LPS model. We also did not include an additional mCRL2 related
compilation step in the LTSmin reachability tool. The results have been checked by creating an SMV to
PROMELA (another LTSmin supported language). The measurements done on the SMV to PROMELA
translation confirmed the results shown in Graph 1.

There is no clear winner between the NuSMYV reachability algorithm and the LTSmin
reachability algorithm. Graph 3 in Chapter 3 shows that for some models the NuSMV reachability
algorithm performs better whereas it also shows that for other models the LTSmin reachability algorithm
performs better. The difference between the reachability algorithms is that NuSMV uses a conjunctively
partitioned transition BDD whereas LTSmin uses a disjunctively partitioned transition BDD. Our results
do not show a winner between those two ways of partitioning the transition relation and their related
reachability algorithms.

The difference in performance between the NuSMYV reachability tool and the LTSmin
reachability tool can be explained with the time it takes for LTSmin to learn the transition
relation. The data behind Graph 4 in Chapter 3 shows that on average only 9.2% of the LTSmin execution
time is spend on actual reachability. As we only measure both the learning of the transition relation and
the actual reachability we must conclude that LTSmin spends on average 90.8% of it’s execution time learn-
ing the transition relation. These results where also confirmed with the SMV to PROMELA translation.
NuSMYV does not seem to have this problem, at least not for the Sokoban puzzles. The tictactoe_v2 and
abp4c models do however seem to have an unexplained difference between its total execution time and the
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reachability algorithm execution time. We should however mention that in the total execution time we
also include the time it takes for NuSMV to parse the SMV file, something that we do not measure for the
LTSmin tool. In combination with the fact that the runtimes of the tictactoe_v2 and abp4C models are
still very short (100 - 350 ms) we cannot draw any conclusions for NuSMV.

There is no difference in the results when using either asynchronous or synchronous input
models. All results in Chapter 3 show that there is no difference to whether we use an asynchronous or
synchronous input model. The asynchronous models used in our experiments where the abp4, filo3, filo4
and filo5 models. Although their results are not comparable to the synchronous Sokoban puzzle model’s
results (screen. models), they are comparable to the remaining models which are also synchronous models.
We can explain this indifference as the asynchronous models are internally by NuSMV and by our tool
translated to synchronous models by adding a non-deterministic choice and a number of conditions (the
SMV to SMV-flat translation). We do feel that it matters how much non-deterministic choices there are
in a model but as the asynchronous models only add one non-deterministic choice to the model there is no
real measurable difference as the model may already have numerous non-deterministic choices.

The All-in-1 models are evaluated faster then the 1-by-1 models. The All-in-1 translation is
both a success and a curse: On one side the produced All-in-1 model is faster in all cases, on the other side
the translation often is not possible for larger models due to time and memory problems occurring in the
translation tool and the mcrl22Ips tool. The time and memory problems are easily explained with the fact
that the All-in-1 translation generates a large mCRL2 summand for each element in the Cartesian product
of all non-deterministic choices and their options. This Cartesian product blows up fast as when handling
models with multiple non-deterministic choices and their non-deterministic options. Once translated, the
All-in-1 model does however produce a non-inflated state space when comparing it to the state space of
the SMV-flat model. The 1-by-1 models have on average a state space that is 762 times bigger than the
All-in-1 state space. The great difference in the number of states explains why the reachability analysis of
the All-in-1 models is faster than the 1-by-1 models.

A linear increase in the number of states does not entail a linear increase in the reachabil-
ity time Graph 1 in combination with Graph 3 (both in Chapter 3) show that even though the state space
size of an 1-by-1 model may be 221 times that of the All-in-1 model(for the periodic-extra example), it
does not take 221 times longer to evaluate the state space of the 1-by-1 model. In fact, the time needed to
evaluation the 1-by-1 model only increases 1.16 times for the periodic-extra input model. On average (for
those models that we could translate with the All-in-one translation) we see a state space increase of 141.4
and a time increase of 79.6. The non-linear relation can be explained with the fact that we are using BDD
structures for the transition relation and the visited set. As operations on the visited BDD for example
can happen on a compressed groups of visited states at a time it does not necessarily means that a larger
group (more states) means a linear growth in the run time for an operation.
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4.2 Future work

Collect results from more input models and input models that have a larger state space.
A further investigation of the relation between model characteristics and its performance in NuSMV and
LTSmin could facilitate a comparison between conjunctive and disjunctive partitioning of the transition
relation. Previously determined interesting model characteristics are the degree of non-determinism and
locality of the model. An other interesting model characteristic is the average out-degree of the states in
the model. The out-degree of a state is the amount of transitions originating from the state. A detailed
analysis of NuSMV’s early quantification performance and LTSmin’s dependency matrix for different mod-
els could also provide more insight in which models work good with conjunctive partitioning and which
models work good with disjunctive partitioning. Investigating more models that have a significant NuSMV
runtime would also facilitate better profiling of NuSMV as to possibly explain the total program runtime
versus the reachability algorithm runtime for the tictactoe_v2 and abp4C models.

A further investigation of LTSmin’s transition relation learning process. We have concluded
that the LTSmin reachability tool is significantly slower than the NuSMV reachability tool. We also found
out that all the time difference is used by LTSmin for the discovery and creation of the transition relation.
Future work could therefore entail the further analysis of the transition relation learning process in the
hope to find unnecessary inefficiencies or improvements in both the theory and implementation.

Compare NuSMYV and LTSmin by using translations from LTSmin supported input lan-
guages to SMV. In this work we only translated from SMV to LTSmin supported input languages. As
such it is possible that we have given an unfair advantage to NuSMV as we only used models that where
designed to be used with NuSMV. Future work therefore could include the usage of the S2N tool which
translations from a PROMELA subset to SMV to see if it influences the comparison. Automatic transla-
tions from both mCRL2 and PROMELA to SMV are possible. It is also possible to ask experts to create
a model both in an LTSmin supported language and in SMV in order to compare performance.

Translate SMV specifications to mCRL2 specifications. The SMV-flat to All-in-1 and SMV-flat
to 1-by-1 translations have been developed knowing that we only wanted to compare the NuSMV and
LTSmin tools for their reachability capabilities. The translation of specifications from SMV to the trans-
lated mCRL2 models would greatly enhance the practical use of the created translations.

Create other translations that translate from SMYV to LTSmin supported languages. It
is possible that the SMV-flat to All-in-1 and SMV-flat to 1-by-1 translations are not the best possible
translations. A translation that directly translates from an asynchronous SMV-flat model to an mCRL2
model while encoding the scheduler choices directly into mCRL2 summands instead of an SMV scheduler

variable comes to mind. Future work could also focus on translating to other LTSmin supported languages
such as the DVE language (from the DIVINE model checker).

(Translation Software:) Generate directly to LPS format instead of mCRL2 format. The
translator tool currently generates mCRL2 models which then have to be translated to LPS format by
the merl22Ips tool from the mCRL2 toolset. For the All-in-1 models the tool takes a very long time as
the models may get very large. The mcrl22lps tool could be made obsolete if the translation tool would
generate the models directly in LPS format.
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Chapter 5

The translation software

The translation software used to obtain the results presented in this Thesis was developed specifically for
this project. The software is made for scientific purposes only and does not have a commercial quality,
meaning that any new models tried with are likely to result in the appearance of bugs. The software was
written in JAVA and comes in a JAR package. The software has the following features:

A custom ANTLRv4 SMV parser.

e An implementation of the SMV to SMV-flat translation.
e An implementation of the All-in-1 and 1-by-1 SMV-flat to mCRL2 translations. For the 1-by-1

translation not only the classic version, but also the SUM and the SUM COPY versions are available,
for both translations an option is provided to use either the “substitution” or “functional” approach
to translating SMV define macro’s.

e An experimental implementation of an SMV-flat to PROMELA translation.
e Mechanics enabling the execution of NuSMV, mCRL2 and LTSmin tools on both Windows and Linux.
e An experiment manager that automatically generates and executes tests for the available translations

and the available options (options described in Chapter 3).

A results collector that obtains and groups together measurements (up to 72 measurements per
model).

A build in Sokoban puzzle to SMV translator.

A graphical user interface.

The provided graphical user interface ties all features together by providing:

A file (input model) selection screen.

A selection screen with options for all available translations and options. Any chosen work will be
added to the system as a “job”.

A wait queue that displays jobs that are waiting to be executed.

A results queue that displays executed jobs.

Multiple result panels that upon job selection from either queues display a number of intermediate
models and or measurement results.
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The software is able to run tests using NuSMV, mCRL2 and LTSmin executables. In order to provide
compatibility with other computers all needed paths to external executables are encoded in a configuration
file called “config.conf”. The paths should point to the actual executable and not to the folder that they
are installed in. If the configuration file is missing upon start-up of the software then it is automatically
created after which the user is expected to fill in any needed paths.
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