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Abstract

Advancements in computer architectures have resulted in an exponential increase in the speed
of processors and memory capacity. However, memory latencies have not improved to the same
extent, thus access times are increasingly limiting peak performance. To address this, several layers
of cache are added to computer architectures to speed up apparent memory access and instruction
are reordered to maximize memory throughput.

This worked well for single-processor systems, but because of physical limits, modern computer
architectures gain performance by adding more processors instead of increasing the clock speed.
In multi-processor systems, the cache and instruction reordering make communication complex,
because reads and writes of one processor may be observed in a different orders by different pro-
cessors. To mitigate this, some computer architectures add complex hardware at the cost of perfor-
mance, power requirements and die size. Other architectures employ a relaxed memory model and
add synchronization instructions, memory barriers, to the instruction set. This means the software
has to deal with the complexity. By placing memory barriers, an ordering on reads and writes can
be enforced, causing processors to synchronize.

However, memory barriers are expensive instructions and need only to be placed where absolutely
needed if performance is of importance. To this end, we present our tool, LLMC. The target of
LLMC is concurrent programs written in LLVM IR, an intermediate representation language with
numerous front-ends, e.g. for C, C++, Java, .NET, and Erlang. Using the model checker LTSmin, we
explore the state space of these programs in search of assertion violations, deadlocks and livelocks.
We do this for the memory models TSO, PSO and a limited version of RMO. To the best of our
knowledge, this is the first tool that model checks LLVM IR programs running on PSO and a
limited version of RMO. We applied LLMC to a well-known concurrent queue, the Michael-Scott
queue, and were able to confirm the necessity of the required memory barriers for correctness
under RMO.





Preface

The reason I started this project is because of months of struggling to wrap my head around getting
the implementation of a concurrent queue correct on an ARMV7 architecture. This was before
my thesis. Back then, I did not know all the intricate details of relaxed memory models and the
memory model of the ARMV7 instruction set is one of the most relaxed. But after being at it for
months, I had learned a great deal about concurrent data structures and implementing them on
relaxed memory models. But still, this concurrent queue was a beast.

So, months later, still shaking off some frustration, the thought crept into my mind to develop a
tool which could help me do this! A tool that will tell me if my concurrent queue implementation
is correct on ARMV7. And thus, a long while later, LLMC was a reality. While it is still a long way
from the tool I had envisioned, I think it will still be useful for the next time I need to implement a
concurrent queue.

In making LLMC a reality, the members of my committee were essential. I would like to take
this opportunity to thank Jaco, Stefan and Alfons, for supporting me in this project. I received
useful feedback, applicable suggestions and guidance to reach the end. I would like to thank Jaco
for giving me the opportunity and confidence to define my own master’s thesis. He helped me
define my goals and narrow down the scope of this project. I would like to thank Stefan for the
discussions on a wide range of topics, the various technical inspirations and for the added features
to LTSmin. I would like to thank Alfons for the discussions on memory models, for concise, no-
nonsense feedback and for helping me structure this thesis.

Looking back at this project, it has been quite the ride: a lot of hours went into supporting as
many features as I wanted, to make LLMC more useful and in writing all this down. I learned a lot
from this. In particular, I learned that one should not try to solve everything at once: science is an
iterative process, gathering knowledge one step at a time. I should not forget this.
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1
Introduction

Behind many great projects lies a large collection of software components. Not only scientific
endeavours such as the Large Hadron Collider [HKK+13], the Mars Rover [WC05] and nuclear
power plants [VPP], but also projects people use every day, such as planes, trains and automo-
biles, contain large code bases. The software in these projects have to function according to their
specification. If they do not, they contain Bugs. The effects from a bug may differ from project to
project. A bug in your favourite messenger will not cause the loss of billions of dollars, but a bug
in the Mars Climate Orbiter will [BV05]. A nuclear power plant requires software reacting to the
environment in real-time. It would be quite unhealthy for the surroundings if there would be a
catastrophic bug in the program operating the control rods of the reactor. When not controlled cor-
rectly, some medical equipment can have a devastating effect on the lives of people. The Therac-25
machine used in radiation therapy was one of those, causing at least five deaths. [Trc] Trains, trans-
porting numerous of persons, rely on the correctness of the software as well. Many lives could be
lost if the control software were to direct two trains on a collision course.

It is vital for the success of these projects that the software functions adequately. Not only could
it cause the loss of billions of dollars, but also human lives are at stake. This is why finding bugs
before they happen is critical.

1
1

Bugs

Bugs are caused by that the logic of the program does not reflect the intended behaviour. Either the
implementation is not correct according to the algorithm it tries to implement, or the algorithm is
not correct itself. An example of this kind of bug could be that some implementation of a protocol
does not handle a certain message correctly. Another example is that the protocol itself allows
for unwanted behaviour such as deadlocks. A second kind of bug is where the program relies
on certain facts about its environment. These bugs can prove highly elusive, as it could involve
multiple aspects of various programs. An example is a program relying on a specific version of a
library being available, assuming a certain contract. The environment of a program is not limited
to software: the hardware the program is running can influence the correctness of a program as
well.

1
2

Hardware

In modern hardware, the executed instructions of a program only vaguely resembles the original
code of that program: a lot of optimizations are done on-the-fly to make the code more performant.
This includes removing, replacing and reordering instructions. This is not an issue for single-
threaded programs, but can cause problems for multi-threaded programs.

In multi-processor hardware using shared memory, these optimizations pose a problem for com-
munication between processors. While the optimized reordering of memory operations does not
alter the local behaviour of a process, another process could observe an unintended state of that
process. What kind of memory instruction reorderings are allowed is governed by the memory

1



1.3. PROGRAM VERIFICATION CHAPTER 1. INTRODUCTION

model of the hardware. Hardware that allows memory instructions to be reordered are said to have
a relaxed memory model.

Programmers tend to think in a sequential consistent way of their code, but this does not hold
for hardware with a relaxed memory model. This makes writing concurrent software that is both
correct and performant a daunting task.

1
3

Program Verification

The programmer is faced with the question: is my multi-threaded code correct? To be able to answer
this, the programmer needs to go through all the possible scenarios where it might go wrong,
possibly due to memory instruction reordering. The number of these scenarios is exponential in
the number of threads; too high for a mere human to reason about.

To this end, we can call on the help of formal verification: proving the correctness or incorrectness
of the code using formal methods. Various verification techniques have been researched; one of
which is model checking. Model checking means to systematically perform an exhaustive explo-
ration to find all the states the program can be in, using all possible interleavings of threads and
memory instruction reorderings, thus finding the possible scenarios. This set of states the program
can be in is called the state space. The combinatorial blow-up of the number of states is known
as the state space explosion: all the possible interleavings of multiple threads cause an exponential
growth of the state space.

The idea is to find if the state space contains states that have a certain property. For example, we
could define erroneous states by states that have an outcome we do not desire, like in Figure 2.2.

11..33..11 LTSminLTSmin
LTSmin is a toolset for model checking and manipulating labelled transition systems. It uses a
partitioned next-state interface (PINS) to separate language modules from exploration tools. This
modular approach yields a high reusability of modules: a new language module can automati-
cally benefit from all the algorithms and tools implementing PINS. New back-end tools provide
enhancements for all the language modules, though sometimes the language modules need to be
slightly updated. We will discuss LTSmin in more detail in Section 2.3.

1
4

The LLVM Project

The LLVM Project [LLV] contains modular and reusable compiler and toolchain technologies. It
uses language-independent instruction set and type system. Instructions are in static single assign-
ment form, allowing simple variable dependency analysis. This instruction set is named LLVM
Intermediate Representation (LLVM IR).

There exist multiple front-ends that combined compile many languages to LLVM IR, for example
C, C++, Java, Ruby, and Rust. Having such a wide range of input languages makes The LLVM
Project interesting: if our program code is in generic LLVM IR, we automatically support all the
languages that have a compiler to LLVM IR. We will discuss The LLVM Project in more detail in
Section 2.2.

1
5

Problem Statement

This research aims to marry the projects LLVM and LTSmin to produce a model checker that can
model check LLVM IR. We want to verify LLVM IR programs using various memory models and
provide guarantees per memory model. This way, we can determine on what hardware the LLVM
IR will behave correctly and on what hardware the LLVM IR may exhibit undesired behaviour.
Our primary target is to verify the correctness of concurrent, lock-free data structures.

11..55..11 Research QuestionsResearch Questions
Using this problem statement as a basis for our research, we must answer the following questions:

2
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P2 How can we model the execution of multi-threaded LLVM IR programs on a relaxed memory model?
Exploration of the state space of multi-threaded LLVM IR requires defining an execution
model and a threading model. Modeling the relaxed memory model semantics requires tak-
ing into account the presence of caches and write buffers.

P1 How can we construct a next-state function from this model? By using the model checker LTSmin,
we need to implement PINS and thus define a next-state function. This next state function
needs to take into account the registers, stack and global memory of the program. It also
needs to consider the memory instruction reordering.

P3 When is the multi-threaded program deemed correct and when is it deemed incorrect? The program
could be incorrect even in the absence of memory instruction reordering. If we inspect the
states of the state spaces, we must decide what constitutes an erroneous state. We must also
differentiate the causes of erroneous states: whether or not it is only reachable using a more
relaxed memory model or also reachable using a sequential memory model.

P4 How can we limit memory usage? Saving entire LLVM process stacks, global memory and heap
memory can be a daunting task.

P5 How can we make our LLVM IR model checker as forward compatible with future LLVM IR versions
as possible? The LLVM Project is ever evolving with new features being added and thus the
LLVM IR changes with it. Limiting the efforts to incorporate the new features is beneficial to
the maintainability of an LLVM IR model checker.

We aim to make guarantees given a program with a limited number of threads, for example a test
program for a concurrent data structure. We do not address the issue of providing guarantees
under any number of threads.

1
6

Contribution

We design and implement our approach in LLMC, the low-level model checker. To the best of our
knowledge, this is the first model checker that accepts generic LLVM IR and explores its state space
assuming a relaxed memory model.

We specified an execution model of an LLVM IR program running on a relaxed memory model
and used this model to implement state space exploration. The advantage of targeting LLVM IR
is that there are a lot of languages that can be compiled to LLVM IR, including C and C++. Using
LLMC, we were able to confirm the necessity of the required memory barriers for correctness in the
well-known Michael-Scott queue, running on our relaxed memory model.

LLMC uses an original LLVM interpreter, but modified to accommodate our needs. By reusing
the LLVM interpreter, future LLVM interpreter versions can easily be merged. This allows for
new features to be integrating in the existing tool without significant problems. This comes at a
performance penalty: serializing and re-initializing the LLVM Interpreter takes more than half the
work.

LLMC is also an attempt to bring software model checking to the toolset LTSmin. While a lot of
language modules already exist, until now there have been none for software model checking,
without performing an abstraction step. We hope this tool can form a basis for future software
model checking research using LTSmin.

1
7

Organization

We first provide required background information. We start by briefly covering the relevant history
of multi-processor hardware: why do we have multiple processors in the first place and why do we
have to deal with these relaxed memory models (Section 2.1). We then describe the LLVM Project
and its low-level intermediate representation LLVM IR (Section 2.2), following by a description of
the toolset LTSmin (Section 2.3). Finally, we comment on related techniques and tools (Section 2.4).

We then describe our tool, LLMC. We describe our design choices (Section 3.1), provide a design,
including execution model (Section 3.2) and how we mapped LLVM IR to PINS (Section 3.3). We

3
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then describe a strategy of exploration that gradually relaxes the memory model and we comment
on the soundness and completeness (Section 3.4), followed by a brief description of some imple-
mentational details (Section 4.1).

We apply LLMC to various litmus tests (Section 5.1) and execute multiple experiments (Section 5.2)
to indicate the validity and applicability of LLMC. For reference, we provide a number of bench-
marks based on these experiments (Section 5.3).

We conclude with a brief summary (Section 6.1) and evaluate design choices and achieved goals
(Section 6.2). Finally, we suggest future improvements and future possible topics of research (Sec-
tion 6.3).

4



2
Preliminaries

2
1

Computer Architectures

Computer architectures implement a certain instruction set. This instruction set dictates what in-
structions a program can perform and what the effects of the instructions are. There are many such
instruction sets in existence. Popular ones include X86, SPARC and various ARM versions. They
are similar in many respects: they all have instructions for memory instructions to load from and
store to memory. To actually perform calculations, they usually have basic arithmetic instructions.

At the center of a computer architecture is the central processing unit (CPU). This is the part that
executes these instructions. The data that is used during execution is classically stored in memory.
The speed of the complete system is influenced by two important factors: 1) the speed of the
processor, i.e. how fast it can execute basic arithmetic; and 2) the bandwidth and latency of the
memory, i.e. how fast can the processor load and store values.

Figure 2.1 The cache hierarchy of the
K8 core in the AMD Athlon 64 CPU1

Ever since the year 1958 the performance of CPUs have
roughly doubled every two years [M+65]. However, mem-
ory latency decrease has been lagging behind by a signifi-
cant margin since 1980 [Car02]. This means that inevitably
performance will hit a memory wall [WM95]: performance
will be limited by the speed of accessing memory.

22..11..11 CacheCache
To speed up apparent memory access, CPUs are given a
cache. This cache is a faster type of memory and acts as a
barrier between the CPU and the slower shared memory.
See Figure 2.1 for an illustration of this. The idea of the
cache is to speed up operations on the same memory ad-
dresses over and over again. When the CPU would request the value of an address in the memory,
it would be cached. The next request of this address would not go through to the slower shared
memory, but the value could be obtained from the cache.

Most computer architectures even employ multiple layers of cache. Because of the limited size of
the cache, only a limited number of addresses can be cached. Thus, over time some cached values
are flushed to memory in order to make room for other values. The operation of this depends on
the heuristics (replacement policy) used; one heuristic could be to flush the ’oldest’ cached memory
addresses when space is needed.

Depending on the architectural implementation the cache may be coherent or not. A cache is
coherent iff writes to a single location are serialized so every process observes the same order of
writes [MSS12]. A cache is causal iff a read of a location does not return the value of a write until all

1Source: https://en.wikipedia.org/wiki/CPU_cache
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observers observe that write. A cache that is both coherent and causal is multi-copy atomic [ARM10].

22..11..22 Write bufferWrite buffer
Writing to memory is also sped up by writing the value to the cache instead. The cache then writes
to the shared memory, using a write buffer. A write buffer is part of the CPU cache and buffers
writes from the cache to the shared memory. This speeds up apparent processing as instead of
waiting for the write to complete, the cache and by extension the CPU can continue other work.
One further optimization is to merge writes to consecutive locations in memory, allowing writes
to complete out-of-order.

22..11..33 Multi-processorMulti-processor
This allowed computer architectures to gain performance by setting the clock-rate of the processor
faster and faster. However, since an electric signal takes time to reach its destination, the clock-rate
was bounded by the time to complete an instruction. Thus, to further increase the clock-rate, the
execution of an instruction had to be divided into a sequence of steps. The hardware was divided
accordingly into stages, the so-called instruction pipeline, the output of one stage being the input
of another. The execution time of one stage is significantly smaller than the execution time of the
entire instruction. Thus, the clock-rate could be increased, now only bounded by the slowest stage,
but still bounded.

Because of this bound on the clock-rate, at a certain point [Sut] a different approach had to be
taken. Instead of making one processor faster, the focus shifted towards having multiple proces-
sors. However, this approach has a fundamental issue: a single sequential program does not utilize
multiple processors, because it is only made to be executed on one. For a program to fully utilize
multiple processors, the work has to be divided in such a way that the processors can do part of the
work load in parallel. At a certain point the workers running in parallel may have to communicate
with one another, for example to signal they are done. The synchronization of parallel workers is
not a trivial task as this is usually done by writing to and reading from shared memory. This cre-
ates a difficulty, because these operations go through the cache and write buffer. These subsystems
can cause two processors to observe a different state of the memory.

22..11..11 Memory instruction reorderingMemory instruction reordering
One side-effect of the introduction of cache and write buffers is that the execution time of loading
and storing is not a fixed number of cycles. Two loads or stores to different addresses may take a
different number of clock cycles to get the value, because one could be cached while the other is
not. This would allow load and stores to complete out-of-order. The merging of stores in the write
buffer allows stores to complete out-of-order as well.

Thus, the evident execution order is different from the program order. This is because of the dif-
ferent execution times of the instructions and that the processor in question did not wait for an
instruction to be completed before going to the next. The operation of single sequential programs
is not altered by this reordering, because the processor takes them into account.

Not all processors employ this policy of allowing loads and stores being reordered this way. Ta-
ble 2.1 shows some instruction sets and which memory operations they allow to be reordered.

22..11..11..11 Memory modelsMemory models

Figure 2.2 Reordering on X86,
is R1 = 1∨R2 = 1 guaranteed?

P1 P2

X ← 1
R1 ← Y

Y ← 1
R2 ← X

For single processor architectures it is not a problem to allow
memory operations to be reordered this way. The hardware im-
plementation guarantees that the effects of reordering are not ob-
servable by the program running on the single processor. How-
ever, a problem arises when multiple processors are introduced,
all with their own cache and write buffer. If one processor exe-
cutes its memory operations out of order, it could mean that an-
other processor observes this fact. Even though this reordering
does not alter the semantics of the first processor, it could inadvertently cause the second processor
to observe a state of the memory that was not intended to be observed. When and how a processor
observes writes from another processor is governed by the memory model of the instruction set.

6
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Table 2.1 Some instruction sets and their policy on reordering memory operations

RMO PSO TSO
Relaxation Alpha ARMv7 IA-64 SPARC PSO x86 AMD64
Loads reordered after loads 3 3 3
Stores reordered after loads 3 3 3 3 3 3
Loads reordered after stores 3 3 3
Stores reordered after stores 3 3 3 3
Atomic reordered with loads 3 3 3
Atomic reordered with stores 3 3 3 3
Dependent loads reordered 3

A memory model dictates the conditions under which writes of one processor become observable
to another processor and places constraints on read operations.

An example of this is shown in Figure 2.2. The memory model of X86 allows a processor to reorder
loads before stores to different addresses. Thus, the operation R1 ← Y may read the value of Y
before 1 is written to the memory where X is stored. In that event, R1 will be equal to 0. Then
P2 runs in its entirety. Because 1 was not yet written to X, R2 will also be equal to 0. Then finally
the store operation of P1 finishes and thus P1 is also done. The end state is X == Y == 1 and
R1 == R2 == 0, which is not something one might expect.

This is just one type of reordering of memory operations: store after load. There are in total four
types of these relaxations on memory instruction order as can be seen in Table 2.1. The three other
cases, atomic and dependent operations, are special cases of these four. Not every processor allows
for the same reordering to happen, but even on the X86, which only allows stores to be reordered
after loads, it is a source of bugs in multi-threaded programs.

Figure 2.3 Memory
models hierarchy

SC

TSO

PSO

LMO

RMO

We consider four commonly used memory models: sequentially consistent
(SC), total store order (TSO), partial store order (PSO) and relaxed memory
order (RMO). In addition to these, we describe a limited relaxed memory
order (LMO) memory model that we will use for LLMC.

SC We use sequentially consistent to denote the memory models that
specifies that all memory operations are observed by all observers at
the same time: no reordering is allowed.

TSO [w→r] Total store order means that all observers agree on a single
total order of all store operations. Reads are allowed to be reordered
after writes.

PSO [w→r/w] Partial store order means that in addition to the relaxation
of TSO, the store operations issued by a process may overtake other
store operations and atomic operations.

LMO [w→r/w + r→∗r/w] Limited relaxed memory order is an extension
to PSO: in addition to allowing w→r/w, LMO allows r→r/w in some cases, but not all. We
will specify these cases and give a formal description of LMO in Section 3.2. Without this
limitation, it would be equal to RMO.

RMO [r/w→r/w] Relaxed memory order means a memory model that allows any number of
relaxations, with the exception of the reordering of dependent loads.

Note that we left the memory model of the Alpha, which allows dependent loads to be reordered
with each other. This is a relic of the past and we will not consider it.

22..11..11..22 Multi-processor communicationMulti-processor communication
To restrain the processor to reorder memory operations at a certain point in the program order, the
programmer can use memory barriers, also called memory fences. These are instructions used to
prohibit certain memory operations from being reordered. Simply put, memory barriers work by
not allowing memory operations to “jump” over the barrier, i.e. being reordered past a barrier.

There are four types of barriers, each to restrain a certain reordering: LoadLoad, LoadStore,
StoreLoad and StoreStore. For example, the StoreLoad barrier guarantees that all store in-

7
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structions before the barrier are executed and observed before load instructions after the barrier.
Table 2.2 shows with which instructions X86, ARMV7 and SPARC [Spa98] implement these four
barriers. These instructions are needed for a processor to cooperate correctly with another proces-
sor. If the code running on one processor makes assumptions on the state of a second processor
based on the state of the memory, the memory should be in a state consistent with the state of the
second processor. Thus, barriers need to be explicitly added where needed.

Figure 2.4 R1 = 1 ∨ R2 = 1 is
guaranteed!

P1 P2

X ← 1
SL-barrier
R1 ← Y

Y ← 1
SL-barrier
R2 ← X

The example of Figure 2.2 is fixable by adding memory barri-
ers. A fixed version is shown in Figure 2.4. The reordering of
the store after the load needs to be prohibited, thus we insert a
StoreLoad barrier between these instructions. Now the proces-
sor is not allowed to reorder the store past the load and thus we
can guarantee that in the end R1 = 1 ∨ R2 = 1. This is just a
simple toy example. As a multi-threaded program grows and
its concurrency complexity increases it becomes more difficult to
know where there barriers are needed.

Even more difficult is to know when a memory barrier can be left out. This is important, because
these instructions cause processors to synchronize with each other. Synchronization yields a per-
formance hit as it removes some parallelism from the program. Thus, memory barriers have to be
placed with care. Alternating every instruction of a program with memory barriers will make it
sequentially consistent, but its performance will be significantly degraded.

22..11..11..33 Reasons of relaxationReasons of relaxation
So this raises the question: why do instruction sets not just implement a sequential consistent
memory model? Having a relaxed memory model has various advantages.

A relaxed memory model allows more optimizations. Because the hardware does not have to
deal with sequential consistency, it may optimally reorder instructions. Instruction reordering is
a feature that provides a healthy speed increase, by fully exploiting instruction level parallelism
(ILP) in the instruction pipeline [HP06]. The unconstrained buffering of writes hides the write
latency of slow memory. The faster cache hides the latency of reads and writes.

If these advantages were desired and a stronger memory model were a requirement, then a lot of
complex hardware would need to be added to keep both the performance and correctness, depend-
ing on the required guarantees. Adding complex hardware not only further increases the time and
costs of development, but also the production costs. The added hardware also means an increase
in die size, thermal design power (TDP) and power requirements as well. A higher TDP means
that the hardware gets hotter, which means better cooling is required. In this era of measuring
performance in instructions per watt, these are important factors.

Thus, a relaxed memory model benefits the hardware. However, the software running on this
hardware has the disadvantage of having to cope with less guarantees. This makes the software
more complex, because the synchronization now has to deal with multiple processors possibly
observing a different state of the memory. A lot of responsibility now rests upon the shoulders of
the programmer to write correct multi-threaded code using a relaxed memory model.

1Sparc-V9’s membar supports more control than specified here, e.g. flushing the lookaside buffer

Table 2.2 Some instruction sets and their memory barrier instruction

Type x86 ARMv7 Sparc-V91

load-load lfence dmb membar #LoadLoad
store-load mfence dmb membar #StoreLoad
load-store mfence dmb membar #LoadStore
store-store sfence dmb membar #StoreStore

8



CHAPTER 2. PRELIMINARIES 2.2. THE LLVM PROJECT

2
2

The LLVM Project

The LLVM Project [LLV] is a collection of modular and reusable compiler and toolchain technolo-
gies. The origin of the LLVM Project lies with the Master’s Thesis of Chris Lattner [Lat02]. LLVM
used to be an acronym for Low-Level Virtual Machine, but they presumably changed this to simply
LLVM to iterate the fact that LLVM is more than a virtual machine. It is a complete infrastructure
for compilers, using a language-independent register-based instruction set and type system. This
instruction set is LLVM Intermediate Representation (LLVM IR) and is at the heart of the LLVM
project. LLVM IR instructions are in static single assignment (SSA) form, meaning every variable
(a typed register), is assigned once. One of the advantages of SSA is that it allows simple variable
dependency analysis.

as can be seen in Figure 2.5. This figure also depicts where LLMC would fit in the existing LLVM
toolchain.

There are many front-ends that generate LLVM IR, enabling LLVM to support a wide variety of lan-
guages [LLV]: ActionScript, Ada, D, Fortran, GLSL, Haskell [TC10], Java bytecode, Julia, Objective-
C, Python, Ruby, Rust, Scala, C#, and Erlang [SST12]. After these front-ends compile a program
from a language to the LLVM IR, the LLVM tool chain takes it from there.

An important next step is optimization. The generated LLVM IR may contain redundant code
that the front-end generated naively; some registers may be optimized out; or inlining instructions
may improve performance. The LLVM collection has numerous optimization passes, supporting
compile-time, link-time, run-time, and “idle-time” optimization of programs. Some of these can
be performed on any LLVM IR, regardless of the machine the code will be executed on. Others are
only available when the target architecture is known or only for a specific target.

After the optimization step the optimized LLVM IR is used to generate machine code. This can
either be done statically, resulting in a binary that can only be executed on the target architecture,
or it can be done in a just-in-time (JIT) fashion.

22..22..11 Intermediate RepresentationIntermediate Representation
The LLVM IR has three distinct goals. It is well-suited to be 1) used by a compiler in-memory; 2) to
be used as an on-disk file and later compiler by a JIT compiler; 3) to be used as a human readable
assembly language [LLI]. In all of these scenarios the LLVM IR is equivalent. LLVM IR aims to be
a representation that is low enough to not sacrifice performance, while providing the means such
that high-level concepts can be mapped to it in a clean fashion.

LLVM programs are built from Modules containing LLVM IR. A module is usually the result of
one of the front-ends translating a single unit into a single Module. Each module may contain
functions, global variables, and symbol table entries. The LLVM linker can link these modules
together, thus forming a new Module that is the results of merging the linked modules. During
the merge, optimizations may have taken place.

Figure 2.5 The flow of data: 1) front-ends; 2) optimizer passes; 3) back-ends

C

C++

...

Front-Ends

LLVM IR LLVM Optimizer passes LLVM IR

LLVM machine code gen

LLVM JIT

LLVM Interpreter

LLVM Model Checker

Back-Ends

9



2.2. THE LLVM PROJECT CHAPTER 2. PRELIMINARIES

22..22..11..11 Type SystemType System
One of the key assets of the LLVM IR is its type system. It provides enough information to allow
various optimizations directly on the LLVM IR without surplus analysis. Combined with the fact
that is in the SSA form, it allows for easy analysis and transformations. Table 2.3 lists the available
types.

Primitive Types

Primitive types form the basis of the LLVM Type System. The primitive types are: label, void,
integer, floating point, x86mmx, metadata. Table 2.4 lists the available primitive types
and shows a description of each.

Table 2.4 LLVM IR Primitive Types

Type name Description
label Labels are references to specific positions in the LLVM IR.
void A void type is a type without size or value.

integer
Integers are used to describe whole numbers. Any integer type with a bit
width ranging from 1 to 223 − 1 can be created.

floating point
Floating points are used to describe real numbers. There are various float-
ing point types, offering different domains and resolution.

x86mmx
This type is only available on an X86 machine. It is used to describe an
MMX register.

metadata The metadata type represents embedded metadata.

Aggregate Types

Aggregate types are types that are composed from other types. Table 2.5 lists the available methods
of creating new aggregate types and shows a description of each.

Table 2.5 LLVM IR Aggregate Types

Type name Description

Arrays Array types describe a number of elements of any one certain type se-
quentially in memory.

Structs Struct types describe a collection of data members of various types,
grouped together in memory.

Function Types

Function types are types that describe the signature of a function. It contains a return type and a list
of parameter types. It is made up of basic blocks, containing instructions. These basic blocks can
be jumped to, allowing the familiar goto, if, and while to be implemented. The last instruction
of every basic block should be a terminator instruction, listed in Table 2.7.

Pointer Types

Pointer types are used to point to a specific location of a specific type in memory.

Vector Types

Table 2.3 LLVM IR Types

Class Types
integer in, where 1 ≤ n ≤ 127, e.g. i8, i10, i64
floating point half, float, double, x86_fp80, fp128, ppc_fp128

first class integer, floating point, pointer, vector, structure, array,
label, metadata

primitive label, void, integer, floating point, x86mmx, metadata
derived array, function, pointer, structure, vector, opaque
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Vector types describe a vector of elements. They are not equal to an array and are not considered
an aggregate type. Vector types are used for SIMD (single instruction multiple data) instructions,
where a single instructions operates on the elements in parallel.

Examples

Table 2.6 shows a list of examples of LLVM types.

Table 2.6 LLVM IR Examples of Types

LLVM IR Description
i100 An integer of 100 bits
[float x 23] Array of 23 single precision floating point values
[10 x [14 x i8]] 10x14 array of 8-bit integer values
<{ i8, i16 }> A packed structure of exactly 3 bytes

{ i8, i16 }
A non-packed structure where padding between elements may be
inserted

float (i16, i8*)*
Pointer to a function that takes an i16 and a pointer to i8, return-
ing float

{i16, i16} (float)
A function taking a float, returning a structure containing two
i16 values

22..22..11..22 Instruction SetInstruction Set
Terminator instructions

Terminator instructions are used to terminate a basic block; see Table 2.7 for a list. They decide
what the next basic block to be executed is. A br for example jumps to the specified basic block.
A ret finishes the current function and optionally returns a value, then allowing the caller to
continue execution of the basic block where the callee was called.

Table 2.7 LLVM IR Terminator Instructions
LLVM IR Description

ret
The return instruction hands back control to the function caller and
optionally returns a value

br
The branch instruction branches to a target label, optionally de-
pending on a conditional value

switch
The switch instruction branches to any one label of a list of labels
and values, depending on a value

indirectbr
The indirect branch instruction branches to any one label of a list
of labels and values, depending on an address

invoke
The invoke instruction calls a specific function and provides a
mechanism for the function to throw an exception

resume
The resume instruction is used to resume an exception that is cur-
rently in-flight

unreachable
The unreachable instruction is used to tell the optimizer that this
instruction should not be reachable

Binary instructions

LLVM IR supports a number of binary instructions: add, fadd, sub, fsub, mul, fmul, udiv,
sdiv, fdiv, urem, srem, frem, shl, lshr, ashr, and, or, xor.

Memory instructions

The memory instructions of LLVM IR are of special interest to this project; see Table 2.8 for a
list. LLVM IR provides atomic memory instructions and defines behaviour in their presence. This
can be used for our multi-threaded LLVM IR programs. Together with the memory model LLVM
IR defines, we can abstract from hardware memory models and only concern ourselves with the
software memory model LLVM defines. We will discuss this further in Section 2.2.2.
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Table 2.8 LLVM IR Memory Instructions

LLVM IR Description
alloca Allocates memory on the current stack frame
load Loads a value from a location in memory into a register
store Stores a value to a location in memory

fence
A memory fence can be used to introduce dependencies between
instructions

cmpxchg Atomically compares and modifies memory
atomicrmw Atomically modify memory
getelementptr Get the address of an element of an aggregate type

22..22..11..33 LLVM IR ExampleLLVM IR Example
An example implementation of the program shown in Figure 2.2:

1 @x = global i32 0
2 @y = global i32 0
3
4 define i32 @proc_1_t0() {
5 entry:
6 store i32 1, i32* @x ; X ← 1
7 %R1 = load i32* @y ; R1 ← Y
8 ret i32 %R1 ; for valid IR
9 }

10
11 define i32 @proc_1_t1() {
12 entry:
13 store i32 1, i32* @y ; Y ← 1
14 %R2 = load i32* @x ; R2 ← X
15 ret i32 %R2 ; for valid IR
16 }

22..22..22 Memory ModelMemory Model

Figure 2.6 data should be available,
when P2 observes shared.status = 1

P1 P2

shared.X ← data
ssfence
shared.status ← 1

if(shared.status)
llfence
data ← shared.X

LLVM version 3.0 introduced a memory model to de-
fine the behaviour of LLVM IR in the presence of multi-
ple threads executing LLVM IR code [LLI]. This model
is derived from the C++11 memory model [ABH+04].
We will first discuss the C++11 memory model and
then the LLVM memory model.

22..22..22..11 C++11 Memory ModelC++11 Memory Model
The two most important keywords in the C++11 memory model are release and acquire. To-
gether with seq_cst for sequentially consistent and relaxed for no guarantees, they govern the
possible memory order semantics of memory barriers, i.e.
std::atomic_thread_fence(std::memory_order). They can also be used when calling
std::atomicmethods, e.g. std::atomic<int>::store(int, std::memory_order). Note
that this generally only makes sense in the presence of other shared variables.

Figure 2.7 shows a C++11 interpretation of the program shown in Figure 2.6. Notice that in the
second C++11 version the placement of the memory barrier is different from the other examples. It
is placed before the conditional jump generated by the if statement instead of after it like the other
examples. This can cause a performance hit when running on architectures that need an explicit
memory barrier at that point. If the condition of the if statement evaluates to false, the fence is
not needed in this example.

The supported memory ordering specifications are listed below together with their intended se-
mantics.

12



CHAPTER 2. PRELIMINARIES 2.2. THE LLVM PROJECT

Figure 2.7 C++11 interpretations of Figure 2.6

P1 P2 (explicit fence)
shared.X ← data
atomic_thread_fence(memory_order_release);
shared.status ← 1

if(shared.status==1) {
atomic_thread_fence(memory_order_acquire);
data ← shared.X

}

P1 P2 (atomic store/load)
shared.X ← data;
shared.status.store(1, memory_order_release);

if(shared.status.load(memory_order_acquire)==1)
data ← shared.X;

relaxed The relaxed memory order specifies that no ordering whatsoever is guaranteed in re-
lation to other variables. It does specify that for all write operations to any single memory
location there is a single total order. When compiling for an instruction set that has a coherent
cache, this does not add any more guarantees than the instruction set guarantees.

release The release memory order specifies that memory operations before the fence will be
observed by all observers before any store after the fence. [LS+SS FENCE]

acquire The acquire memory order specifies that load operations before the fence will be ob-
served before any memory operation after the fence. [LL+LS FENCE]

seq_cst The seq_cst memory order specifies that memory operations before the fence will be
observed by all observers before any memory operation after the fence. When put before
and after every memory instruction, this guarantees that all observers agree on a total order
of those memory operations. [LL+LS+SL+SS FENCE]

22..22..22..22 LLVM Memory ModelLLVM Memory Model
The LLVM memory model employs the same semantics as C++11 for the specified memory order-
ing keywords. In addition, it specifies unordered and monotonic. These ordering specifications are
applicable to the atomic LLVM IR instructions such as fence or cmpxchg.

monotonic The monotonic memory order is the equivalent of C++11’s relaxed memory order.

unordered The unordered memory order guarantees only that a value can only be read if it was
previously written. This is a very weak guarantee, but strong enough to model Java’s non-
volatile shared variables. This is a more relaxed guarantee than monotonic, because it allows
observers to observe a different order of write operations to a single location. However, since
we assumed a multi-copy atomic cache, we cannot model this relaxation.

Figure 2.8 shows the LLVM IR interpretations of the program shown in Figure 2.6. Notice that the
placement of fences matches that of the C++11 example perfectly.

LLVM IR can be compiled to various instruction sets. By providing a software memory model,
LLVM IR abstracts from the memory model used in various instruction sets. LLVM IR that correctly
implements this memory model and is verified to be correct under this model, is guaranteed to run
on supported instruction sets, regardless of its memory model. This is assuming the compiler from
LLVM IR to machine code correctly implemented the mapping from the LLVM memory model to
the memory model of the instruction set in question.

22..22..33 Motivation for The LLVM ProjectMotivation for The LLVM Project
There are a number of compelling arguments for using The LLVM Project. Firstly, having a low-
level intermediate representation, The LLVM Project provides a precise mapping to machine in-
structions. The LLVM IR was designed to be a platform-independent, low-level representation of
a program. Thus, it resembles an assembly language. This is an advantage over JVM and .NET,
because it more closely resembles the generated machine code.
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A second advantage is that the LLVM Project has numerous front-ends, supporting many lan-
guages, including C++11 and Java. The LLVM community is of considerable size and enjoys sup-
port from various companies. It is still growing as well, more features being added to the tool
chain at a fast rate [LLV]. The performance of the generated machine code is on par with GCC gen-
erated machine code [Lara, Larb]. A major advantage to GCC is that the compile times of LLVM
generated machine code are considerably lower than those of GCC.

A third advantage is the use of SSA to unique registers. In LLVM IR, there are no limits to the
number of registers used, so each assignment to a register ’creates’ a new register. This is useful
because it means once a register is created, its value will not change.

A disadvantage of using LLVM is that we obtain answers for LLVM IR and not in the language
that was used to compile to LLVM IR, for example C++11. Using LLVM IR gives us a generic way
of reasoning, but it does not automatically map back to the language of every front-end. Another
disadvantage is that because LLVM IR is primarily used by generating it from other, higher order
languages, potentially information is lost. For example in C, it is valid to optimize exit(0) in
main() to return 0, but this knowledge does not have to be passed down.

Figure 2.8 LLVM IR interpretations of Figure 2.6

Using explicit fence Using atomic store/load
@shared_data = global i32 0
@shared_status = global i32 0

define i32 @proc_1_t0() {
entry:
store i32 1234, i32* @shared_data
fence release
store i32 1, i32* @shared_status
return

}

define i32 @proc_1_t1() {
entry:
%status = load i32* @shared_status
%_eq_ = icmp eq i32 %status, 1
br i1 %_eq_, label %then, label %merge

then:
fence acquire
%data = load i32* @shared_data
br label %merge

merge:
return

}

1 @shared_data = global i32 0
2 @shared_status = global i32 0
3
4 define i32 @proc_1_t0() {
5 entry:
6 store i32 1234, i32* @shared_data
7 store atomic i32 1, i32* @shared_status release
8 return
9 }

10
11 define i32 @proc_1_t1() {
12 entry:
13 %status = load atomic i32* @shared_status acquire
14 %_eq_ = icmp eq i32 %status, 1
15 br i1 %_eq_, label %then, label %merge
16
17 then:
18 %data = load i32* @shared_data
19 br label %merge
20
21 merge:
22 return
23 }
24
25
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2
3

LTSmin

For the verification we have chosen LTSmin [LPW11a, BPW10]. This is a toolset providing a mod-
ular high-performance model checker. It contains multiple language modules supporting various
input specification languages, such as µCRL, mCRL2, DVE, PROMELA [BL12], UPPAAL and ETF. The
modularity stems from the use of a single, specified interface: the PINS interface.

In this section, we will first describe LTSmin and then motivate the choice.

22..33..11 The PINS InterfaceThe PINS Interface
PINS, Partitioned Next-State Interface, is an interface between the various parts of LTSmin, see
Figure 2.9 for an illustration. All LTSmin modules work with this interface and thus modules
implementing optimization algorithms can be reused by any language module. The result of this
clean interface is the separation of concerns into three areas: language modules, PINS optimization
modules and model checking algorithm modules.

There are four primary model checking tools that implement PINS: sequential, multi-core, dis-
tributed and symbolic:

• The sequential back-end offers LTL model checking using partial-order reduction [LPPW13].
The storage can optionally be done using BBD-based state storage.

• The multi-core back-end [LPW10] optimizes exploration on a single machine using multi-
ple processors and shared memory. It supports LTL model checking and uses a tree-based
compression method to store states [LPW11b]. Both multi-threaded and multi-process explo-
ration is supported.

• The distributed back-end [BLPW09] allows a cluster of compute nodes to explore the state
space. It supports multi-core exploration as well, but is not as optimized for single machine
operations as the multi-core back-end. Exploration is limited to safety checking.

• The symbolic back-end [BPW10] supports CTL/µ-calculus model checking [BPW09] using
various BDD/MDD packages, including the parallel BDD package Sylvan [DLP13].

22..33..11..11 Next-StateNext-State

Figure 2.10 State space of
Γ example

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

A transition system (TS) is a structure 〈S,→, s0〉, where S is a set of
states,→⊆ S × S is a transition relation and s0 ∈ S is the initial state.

For example, take the transition system Γ = 〈SΓ,→Γ, s
0
Γ〉, where

• SΓ = {〈i, j〉 | i, j ∈ {0, 1, 2}},
• →Γ= {〈〈i, j〉, 〈i+m, j + n〉〉 | i, j,m, n ∈ {0, 1},m 6= n},
• s0

Γ = 〈0, 0〉.

Figure 2.10 illustrates this transition system.

Figure 2.9 PINS, Partitioned Next-State Interface
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22..33..11..22 Partitioned Next-StatePartitioned Next-State
LTSmin uses a partitioned next state interface, which uses a partitioned transition systems (PTS). In
a PTS, the set of states is a Cartesian product and the transition relation is the union of transition
groups. A PTS is a structure P = 〈〈S1, ..., SN 〉, 〈→1, ...,→K〉, 〈s0

1, ..., s
0
N 〉〉, where

• the sets of elements S1, ..., SN define the set of states SP = S1 × · · · × SN ;
• the transition groups→i⊆ SP × SP , 1 ≤ i ≤ K define the transition relation→=

⋃K
i=1 →i;

• the initial state s0 = 〈s0
1, ..., s

0
N 〉.

The defined TS of P is 〈SP ,→, s0〉. A state s ∈ 〈S1, ..., SN 〉 in a PTS is in fact a vector of N slots or
variables.

This provides the ability to define transition groups that read or modify certain slots. These depen-
dencies can be specified in a dependency matrix DK×N , a matrix with K rows (transition groups)
and N columns (state vector slots). Di,j specifies whether transition group i depends on state
vector slot j. The dependency matrix is relayed from the language module to the back-end via
PINS.

Figure 2.11 Dependency matrix

State vector
Transition Groups i j

→i +
→j +

r: read, w: write, +: read/write

An example partitioned transition system based on the Γ ex-
ample is ∆ = 〈〈Si, Sj〉, 〈→i,→j〉, 〈s0

i, s
0
j〉〉, where

• Si = Sj = {0, 1, 2},
• →i= {〈〈i, j〉, 〈i+ 1, j〉〉 | i ∈ {0, 1}, j ∈ {0, 1, 2}}
→j= {〈〈i, j〉, 〈i, j + 1〉〉 | j ∈ {0, 1}, i ∈ {0, 1, 2}},
• s0

i = s0
j = 0.

Notice that the transition groups do not read or write all state vector variables when calculating
the next states of a state. Transition group→i reads and writes only i and analogically→j reads
and writes only j. The advantage of a PTS is that if a transition group does not depend on all the
state vector slots, reachability tools can exploit this.

The dependency matrix of this example is shown in Figure 2.11.

22..33..11..33 LabelsLabels

Figure 2.12 State space of
labeled Γ example

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

j++ j++

j++ j++

j++ j++

i++

i++

i++

i++

i++

i++

More information can be added to the transition system by specify-
ing state labels and edge labels. State labels are similar to state vector
variables and their value is based on a subset of state vector variables.
State labels can be used to describe a certain property of a state. For
example, a state label totalIsTwo could be added to the earlier Γ,
calculated by

SLtotalIsTwo(〈i, j〉) =

{
1, (i+ j = 2)

0, otherwise

The fact that their value is solely based on the state vector allows them to be calculated on demand.

Edge labels are labels associated with a transition and are not solely based on a single state. Instead,
edge labels are calculated by the language module when reporting a new transition to LTSmin via
PINS. Thus, they are not generated on demand, but calculated once for every new transition.

In Figure 2.12 a labeled version of the Γ example is shown. In this version, we coloured the state s
red iff SLtotalIsTwo(s) = 1. We added an edge label in the transition system to provide a description
of each transition.

22..33..11..44 Trace generationTrace generation
We can also define traces on a transition system. A trace is a path from one state to another state,
including all states in between. A trace ρ can be written as ρ = s0s1...sn, ∀0 ≤ i ≤ in : si → si+1.
For example, 〈0, 0〉〈1, 0〉〈1, 1〉〈1, 2〉〈2, 2〉 is one of the six traces from 〈0, 0〉 to 〈2, 2〉 in the Γ example.
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We can ask LTSmin to search the state space for a state with a certain property, e.g. an erroneous
state. Finding this erroneous state tells us that the program is not correct, but does not tell us
why: for this we need LTSmin to generate a trace to the state. This will tell us how the state can be
reached: what transitions have been taken and what the intermediate states are.

22..33..11..55 Linear Temporal LogicLinear Temporal Logic
LTSmin supports Linear Temporal Logic (LTL). LTL is a model temporal logic which can be used
to create formulae that reason about traces. For example, a formula stating that a certain condition
will eventually be true or that it remains true in all possible paths until some other condition is
satisfied. In the case of LTSmin, conditions can be about state vector variables or state labels.

22..33..11..66 Chunk MappingChunk Mapping
The toolset LTSmin supports a feature that is called chunk mapping. This boils down to a table of
chunks of data, where a chunk is identified by a single integer. These chunks are available to
all back-ends and all workers. The language module can upload a chunk map to LTSmin, getting
back a chunk identifier. This chunk identifier can then be put into the state vector. Later, when
reading back the state, this identifier can be used to download this chunk from LTSmin. If there
are significantly less versions of a chunk than there are states, this reduces the memory needed to
describe the state space.

22..33..22 Motivation for LTSminMotivation for LTSmin
Much research has been done over the last decade to make LTSmin what it is now [LTS]. It is a
model checker and complete suite of tools, supporting multiple exploration algorithms and var-
ious input specifications. Because LTSmin separates language modules from analysis tools using
PINS, future improvements to the analysis tools will apply to older language modules as well.
This may require a patch to the original language module, but even then it is a insignificant com-
pared to the advantages of gaining algorithmic and implementational advancements. Moreover,
by implementing PINS, we automatically enable the use of a wide range of reachability tools: e.g.
distributed, multi-core and symbolic. This is very useful for this research: we get these reachability
tools for free and benefit from future improvements to them as well.

Furthermore, it is interesting to investigate how LTSmin can cope with large state vectors contain-
ing entire registers, stacks and memory. Together with the state space explosion caused by memory
operation reordering this forces to investigate into memory footprint reducing techniques.

Multiple approaches have been investigated [GWZ+11, BL13] in an attempt to make software
model checking more practical. This research is an attempt to pave the way for this research to
continue using the LTSmin toolset as a basis. This is one thing that has been missing from the wide
range of input specifications LTSmin can handle: source code. Because the chosen target is LLVM,
this would widen the input range to a whole new audience. Instead of having to create a model
first and then feed it to LTSmin, it would be possible to directly model check a program using its
source code. This makes this research interesting for the development of LTSmin.
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2
4

Related Work

There are a lot of similar approaches and tools already existing. However, they all have one or
more aspects that are not similar. In this section we list a few approaches and tools that relate to
the goal of this project in some way.

22..44..11 Related ApproachesRelated Approaches

22..44..11..11 SAT/SMT solvingSAT/SMT solving
SAT solving involves determining whether or not a boolean formula can be satisfied using a certain
interpretation. A small example is determining for what interpretation of a, b and c the formula
a ∨ b ∨ c⇔ a ∧ b ∧ c holds (there are two of these interpretations for this example).

SMT solving is similar to SAT solving: an SMT formula is a generalization of a boolean SAT for-
mula. SMT adds predicates over a set of non-boolean variables to the mix.

In recent years, research [Duc13, Mos09] has been done to bring SMT solving to low-level software
supporting pointer arithmetic and to allow to reason about the heap. This research makes SMT
solving feasible to use in the context of verifying LLVM IR.

However, both approaches would require mapping every LLVM IR instruction to a formula. Cap-
turing the precise meaning of every instruction is prone to human error and may prove to be
cumbersome.

22..44..11..22 CEGARCEGAR
A Counter-Example Guided Abstraction Refinement [Kur94, CGJ+00, BL13] loop is a technique
to symbolically build an abstract model of a model by iteratively applying refinement techniques
using automatically generated counterexamples. When used on software model checking, a coun-
terexample is a path that leads to an error state. If the path is not possible in the original model,
the abstract model is subsequently refined accordingly.

This technique has also been successfully applied [CI10] to assembly code, thus avoiding assump-
tions about higher level languages and supporting pointer arithmetic. This makes it an interesting
approach as well.

22..44..11..33 Static AnalysisStatic Analysis
Static analysis of source code is done by verifying that invariants hold. These invariants can be
manually specified, but research [DH07] has been done to automatically deduce invariants, even
on low-level code allowing recursive data structures and pointer arithmetic.

22..44..22 Related toolsRelated tools

22..44..22..11 MCPMCP
MCP [TBS] is a Model checker for C Plus plus. It is an explicit-state software model checker for
LLVM bitcode, but aimed at model checking C++ code. An important difference is that MCP
assumes no memory model and does not mandate a specific threading model. Moreover, it specif-
ically targets C++ instead of generic LLVM IR.

It does contain a few interesting features. Firstly, it uses a versioned heap, allowing the run-time
to remember the history of the memory. By itself this is not more than what LTSmin offers, but the
implementation is at least interesting: instead of saving states, state deltas are saved.

22..44..22..22 KleeKlee
KLEE [CDE08] is a symbolic virtual machine built on top of the LLVM compiler infrastructure. It
can be utilized as an automatic generator of coverage tests. It produced some significant results,
e.g. uncovering bugs in the COREUTILS library that had been missed for over 15 years.

18



CHAPTER 2. PRELIMINARIES 2.4. RELATED WORK

While KLEE also targets LLVM IR, coverage test generation is a different approach to debugging
software than model checking. It is a testing technique to generate tests that combined cover as
much of the software as possible. The measurement of coverage can be based on for example what
statements are executed at least once or the combination of conditions in if-else statements.
Research has been done to combine software testing and model checking and [BG04].

22..44..22..33 LLBMCLLBMC
LLBMC [SFM10], the Low-Level Bounded Model Checker, is a static software analysis tool for
finding bugs in LLVM IR programs. It is based on the technique of Bounded Model Checking and
primarily targeted at verifying low-level programs. It does not support concurrency.

22..44..22..44 DiVinEDiVinE
DiVinE 3.0 [BBH+13] is a tool that closely matches the goal of this project. While targeting multi-
threaded C/C++ programs, they use generic LLVM IR as input that in theory can be generated by
other LLVM front-ends. The difference is that DiVinE does not reason about programs running
on instruction sets employing a relaxed memory model such as the ARMv7. They do support
reasoning about programs running on TSO and automatic memory barrier insertion under TSO.

22..44..22..55 JPF and MoonWalkerJPF and MoonWalker
The Java PathFinder is an explicit-state model checker for Java programs. It is made by NASA
with the primary purpose of finding concurrency bugs like data races and deadlocks. JPF uses
on-the-fly partial order reduction [Pel96] to minimize the state space.

JPF is similar to the goal of this project, but it assumes the Java memory model and model checks
only Java programs.

A similar tool for .NET programs is called MoonWalker [ANR09].

22..44..22..66 VerisoftVerisoft
VeriSoft is a model checker for concurrent C and C++. It does not save visited state, but uses per-
sistent sets and sleep sets to explore the state space. It can detect dead locks, live locks, divergence
and assertion violations. However, VeriSoft assumes a sequentially consistent memory model.

22..44..22..77 CHESSCHESS
CHESS [MQB+07] is a stateless model checker for finding and reproducing Heisenbugs in concur-
rent programs. CHESS repeatedly runs a program and on every run tries a different interleaving.
If an interleaving results in an error, CHESS can report it.

Sober [BM08] extends CHESS by combining a store buffer safety monitor and thus supporting
relaxed memory models.

22..44..22..88 SLAMSLAM
SLAM [BLR11] is a Microsoft Research project which found many bugs in Windows Device Drivers.
The SLAM Project uses CEGAR as a means to search for bugs and violations in C. It only targets
sequential programs, but there are some extensions that allow concurrent programs.

22..44..22..99 SaturnSaturn
The Saturn project [XA05] is is another tool for bug-finding and verification in C using static anal-
ysis. Saturn uses three main concepts: 1) it’s summary-based, the analysis of a function f is a
summary of the behaviour of f ; 2) it’s constraint-based, analysis is expressed in a set of boolean
constraint formulae; and 3) program analysis is expressed in a logic programming language.

The tool scales well [DDA08] and found numerous locking errors in the Linux kernel. It sup-
ports heap manipulation, but only the operations load and store on pointers. Moreover, it only
supports sequential programs. However, it is not entirely bit-accurate, because functions are ab-
stracted into small finite-state property automata.
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Table 2.9 Comparison of approaches

Aspect Target Approach Concur. TSO PSO RMO Dynamic1

MCP C/C++2 Model checking 3 3
Klee LLVM IR Coverage test gen.
LLBMC LLVM IR Static analysis
DiVinE LLVM IR Model checking 3 3 3

JPF Java Model checking 33 3

MoonWalker .NET Model checking 34 3
Verisoft C/C++ Model checking 3 3

CHESS Binaries Model checking 3 35 3

SLAM C CEGAR 35 3

Saturn C Static analysis 36

Calysto LLVM IR Static analysis 37

CheckFence C Static analysis 3 3 3 3 3
CBMC C/C++ Bounded model ch. 3 3 3 3 3
LLMC LLVM IR Model checking 3 3 3 (LMO) 3

22..44..22..1010 CalystoCalysto
Calysto [BH08], an extended static checker, is inspired by Saturn and scales even better. Calysto
has arguably better statistics to show. A notable difference between the two is that Saturn is only
intraprocedurally path-sensitive, abstracting functions into small finite-state property automata.
Calysto uses a fully formal analysis, but employs unsound approximations when dealing with
loops, recursion and heap-allocated data. It uses LLVM as a front-end, allowing many languages
to serve as input format. It is only targeted at sequential programs, however.

22..44..22..1111 CheckFenceCheckFence
CheckFence [BAM07] is a SAT-based formal verification tool that analyzes C code implementing
concurrent data types on multiprocessors with respect to a selected memory model. The imple-
mentation of a program is soundly verified or falsified by CheckFence for individual tests supplied
by the user and covers all possible instruction interleavings and memory instruction reorderings.
No annotations or formal specification is needed: CheckFence learns a specification directly from
the C code A subset of C is supported, including conditionals, loops, pointers, arrays, structures,
function calls, locks, and dynamic memory allocation. CheckFence lets the user specify the desired
memory model. If a test fails, CheckFence provides an HTML-formatted counterexample trace
that displays various views of the execution.

22..44..22..1212 CBMCCBMC
CBMC [CKL04] is a Bounded Model Checker for ANSI-C and C++ programs. It checks for buffer
overflows, pointer safety, exceptions and user-specified assertions. The verification is done by
unwinding loops in a program and passing the resulting equation to a decision procedure. There
is an extension to CBMC that adds support for SC, TSO, PSO, RMO and Alpha [AKT13].

22..44..33 ComparisonComparison
These tools all have their own merits and approaches, as listed in Table 2.9. Some approach find-
ing bugs in programs by generating coverage tests, others by model checking. What makes our
approach unique is that we model check generic concurrent LLVM IR that assumes only a relaxed
memory model. By using this approach, we enable model checking of a wide range of languages in
the presence of a relaxed memory model. This is by no means a complete list. Some other related
tools are Bandera, Valgrind, Jinx Debugger, CMC, MaceMC and SMV.

1Dynamic features such as heap manipulations, recursion and loops.
2Using LLVM IR
3Using the Java Memory Model.
4Using the .NET Memory model.
5Using extensions.
6Only load and store operations.
7Unsound approximations.
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3
LLMC Design

The rationale behind LLMC is that using LLVM IR as input specification, we cater for a lot of lan-
guages: all the languages that have a compiler to LLVM IR. Because we implement PINS, we get
the benefit of the various back-end reachability tools of LTSmin. Combined this gives us a model
checker for a large collection of languages. In addition to this, LLMC explores the state space of
the LLVM IR program running as if it ran on a limited relaxed memory model. Figure 3.1 depicts
where this would put the new LLVM IR Model Checker in relation to the other LLVM tools as well
as its relation with LTSmin.

This chapter describes the design of our tool, LLMC. We will first describe our design choices in or-
der to answer our research questions (Section 3.1) and define a formal model for our program (Sec-
tion 3.2). We then describe how we used LLVM and LTSmin to reach our goal (Section 3.3). We
conclude this chapter by describing an exploration strategy and comment on the soundness and
completeness (Section 3.4).

3
1

Design choices

• How can we model the execution of multi-threaded LLVM IR programs on a relaxed memory model?
To model relaxed memory and LLVM IR instructions in the presence of relaxed memory, we
define a model of execution. The memory model of this execution model, LMO, governs
what instructions can execute when and what instructions can be buffered and when. We
discuss this in more detail in Section 3.2.

• How can we explore the state space of generic LLVM IR programs? The LLVM Project contains an
interpreter that accepts LLVM IR. Modifying this interpreter with functionality to load and
store the entire state and performing a single instruction (step) is a valid approach to explore
the state space of an LLVM IR program. This avoids the need to recreate the semantics of

Figure 3.1 How LLMC fits in relation to other tools.
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LLVM Front-Ends

LLVM IR LLVM Model Checker
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every instruction.
Because the LLVM Interpreter itself does not specify a threading model, nor does it natively
support threading, we need to define a threading model in its presence. We opt to implement
two threading models: 1) by catching pthread calls, we borrow the threading model of
pthreads (pthread-mode); and 2) we can let the user define LLVM IR functions that will be
started as if they were threads (proc-mode). In this second model, we can also define init
and fini functions that run exclusive at respectively the start and the end of the execution.
We map the execution of LLVM IR to the PINS interface and thus gain a method of exploring
the state space of LLVM IR programs. This is discussed in more detail in Section 3.3.

• When is the multi-threaded program deemed correct and when is it deemed incorrect? LLMC allows
users to specify what are erroneous states using assert(<condition>) statements. LLMC
intercepts these calls and if condition does not hold, we have found an erroneous state.
To determine under what memory model the erroneous state is reachable, we can make use
of a search strategy that starts with sequential consistent and gradually relaxes memory op-
erations. To determine what memory operation reorderings caused the erroneous state to be
reached, we can look at the trace to the erroneous state: this precisely tells us the order of
memory operations. We discuss this exploration strategy in more depth in Section 3.4.

• How can we limit memory usage? Limiting memory usage is done by saving copies of data only
once and inserting them into a chunk table. This is discussed in more detail in Section 3.3.3.3.

• How can we make our LLVM IR model checker as forward compatible with future LLVM IR versions as
possible? By reusing the LLVM Interpreter and making the required changes, newer revisions
of the LLVM Interpreter and LLMC have a common ancestor. This allows for future merging
of new instructions, providing our modifications are not too intrusive. By taking care to leave
the LLVM Interpreter as intact as possible, sometimes at the cost of readability and common
best practices, we make it easier to merge future LLVM Interpreter revisions and with it,
newer LLVM IR versions.

3
2

The Execution Model

We base our definition of a program and program execution on the definitions of the memory
model in Section 8.1 of [ABBM10]. That model allows the writes to be reordered after reads and
reads to be reordered after any memory operation ([w→r + r→r/w]). Since that model is a
memory model and does not define instruction that use loaded values, we need to extend it with
registers and instructions using these registers. This extension allows us to map the register-based
LLVM IR to the model. We will first give our definition (Sections 3.2.1 to 3.2.3) and then comment
on the differences (Section 3.2.4).

33..22..11 PreliminariesPreliminaries
Let [k], k ∈ N, k ≥ 1 be the set of integers {1, ..., k}. Let k ≥ 1 be an integer and E a set. Let e = (e1,
...ek) ∈ Ek be a k-dim vector over E. For every i ∈ [k], we use e[i] to denote the i-th component of
e (i.e., e[i] = ei). For every j ∈ [k], and e′ ∈ E, we denote by e[j ←↩ e′] the k-dim vector e′ over E
defined as follows: e′[j] = e′ and ∀l ∈ [k], l 6= j : e′[l] = e[l].

33..22..22 The ProgramThe Program
LetD be a finite data domain,X = {x1, ..., xm} be a finite set of variables valued inD andM = Dm

be the set of all possible valuations of the variables in X . We will use this to model the shared
memory. We define R = D∗ to describe the possible states of a register of a single process. We
can use an unbounded number of registers, because LLVM IR allows for an unbounded number of
registers.

For a given finite set of process identities I , let Ω(I,D,X) be the smallest set of operations which
contains 1) the no operation nop; 2) the operations local to a process lop(i, rd, rs); 3) the read oper-
ations r(i, x, d, rd); 4) the write operations w(i, x, d); and 5) the atomic read-write operations arw(i, x,
d, d′), where i ∈ I , x ∈ X , d, d′ ∈ D, rd ∈ N, rs ∈ N∗.

We can then define a multi-threaded program over D and X by a tuple N = (P1, ...,Pn), where
for every i ∈ [n], Pi = (Pi,∆i) is a finite-state process where Pi is a finite set of control states
and ∆i ⊆ Pi × Ω({i}, R,D,X) × Pi is a finite set of label transition rules. For the sake of clarity,
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Figure 3.2 A graphical depiction of what the variables in the definitions roughly mean.
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we use p
op−→ p′ instead of (p, op, p′) ∈ ∆i, for any p, p′ ∈ Pi and op ∈ Ω({i}, R,D,X). The exact

implementation of the various operations in Ω(I,R,D,X) depends on the memory model we want
to model.

33..22..33 The Execution of a ProgramThe Execution of a Program
We assume the cache to be multi-copy atomic. This avoids the need to differentiate between what
every process observes of the shared memory, since writes to a single location are serialized and
all observers agree on the order of serialization. We also separate instructions that only affect the
local stack from other instructions that affect the shared memory. This will give rise to possible
optimizations later.

Let us now define the model of executing a multi-threaded program for a relaxed memory model,
by defining the various operations in Ω(I,D,X) for LMO. We first associate a buffer to each pro-
cess. This buffer is used to store both write and read operations performed by the process (Write
to Store, Read to store). These buffered operations are then performed by nondeterminis-
tically choosing a process and nondeterministically choosing an enabled operation in the buffer of
that process (Update).

A memory operation is enabled iff there are no preceding memory operations to the same location.
This allows operations to overtake each other, but not allowing memory operations to the same
location to overtake each other. This is the desired behaviour for our LMO definition, because we
assume a coherent cache.

When a read operation to the variable xj would be added to the buffer and there are writes to xj in
that buffer, the read will read the last of such write operation instead of being added to the buffer
(Read own write). This allows read operations to overtake memory operations in the buffer.
Atomic read-write operations can be executed when the buffer is empty (ARW) or when the buffer
does not contain memory operations to dependent memory locations (RelaxedARW). Lastly, the
memory barriers SCFence, RelFence and AcqFence can be executed when the buffer does not
contain writes (RelFence) or reads (AcqFence) or both (SCFence).

A formal definition is as follows. Let P = P1 × · · · × Pn and for every i ∈ [n], let Bi = {w,
r} × {i} × [m]×D × N be the alphabet of the store buffer associated with Pi. A configuration of N
is a tuple 〈p, r,d,u〉, where p ∈ P describes the state of the finite-state processes, r ∈ Rn describes
the state of the registers, d ∈M describes the shared memory and u ∈ B∗1 × · · · ×B∗n is a valuation
of the store buffers. Figure 3.2 graphically depicts the relations of these variables.

Let us now define the transition relation →N on configurations of N, to be the smallest relation
such that, for every p,p′ ∈ P, for every r, r′ ∈ Rn, for every d,d′ ∈ M , and for every u,u′ ∈
B∗1 × · · · × B∗n, we have 〈p,d,u〉 →N 〈p′,d′,u′〉 if there is an i ∈ [n] and there are p, p′ ∈ Pi, such
that p[i] = p, p′ = p[i←↩ p′], and one of the following cases hold:

1. nop: p
nop−−→i p

′, r′ = r, and d′ = d, and u′ = u.

2. lop: p
lop(i,rd,rs)−−−−−−−→i p

′,

(a) ∀(op, i, k, d, ro) ∈ u[i] • ro 6∈ rs, and
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(b) r′ = r[i←↩ r[i][rd ←↩ v]], v ∈ X , and d′ = d, and u′ = u.

3. Write to store: p
w(i,xj ,d)−−−−−→i p

′, r′ = r, and d′ = d, and u′ = u[i←↩ (w, i, j, d, 0)u[i]].

4. Read: p
r(i,xj ,d,rd)−−−−−−−→i p

′, d′ = d, and

- Read own write: u′ = u, r′ = r[i ←↩ r[i][rd ←↩ d]] if ∃u1, u2 ∈ B∗i such that 1)
u[i] = u1(w, i, j, d)u2, and 2) ∀(op, i, k, d′, ro) ∈ u1 • k 6= j, or

- Read to store: u′ = u[i←↩ (r, i, j, d, rd)u[i]], r′ = r otherwise.

5. Update: p′ = p and ∃j ∈ [m] • ∃d ∈ D • ∃u1, u2 ∈ B∗i such that

(a) u[i] = u1(w, i, j, d, 0)u2, and ∀(op, i, k, d′, ro) ∈ u2 • k 6= j, and
(b) r′ = r, and
(c) d′ = d[j ←↩ d], and
(d) u′ = u[i←↩ u1u2]

6. Retrieve: p′ = p, d′ = d, and ∃j ∈ [m] • ∃d ∈ D • ∃rd ∈ N • ∃u1, u2 ∈ B∗i such that

(a) u[i] = u1(r, i, j, d, rd)u2, and ∀(op, i, k, d′, ro) ∈ u2 • k 6= j, and
(b) r′ = r[i←↩ r[i][rd ←↩ d[j]], and
(c) u′ = u[i←↩ u1u2]

7. ARW: p
arw(i,xj ,d,d

′)−−−−−−−−→i p
′, and

(a) u[i] = ε, and
(b) d[j] = d, and r′ = r, and d′ = d[j ←↩ d′], and u′ = u.

8. RelaxedARW: p
arw(i,xj ,d,d

′)−−−−−−−−→i p
′, and

(a) ∀(op, i, k, d′, ro) ∈ u[i] • k 6= j, and
(b) d[j] = d, and r′ = r, and d′ = d[j ←↩ d′], and u′ = u.

9. SCFence: p scfence−−−−−→i p
′, and u[i] = ε, and r′ = r, and d′ = d, and u′ = u.

10. RelFence: p relfence−−−−−→i p
′, ∀(op, i, k, d, ro) ∈ u[i] • op 6= w, r′ = r, and d′ = d, and u′ = u.

11. AcqFence: p
acqfence−−−−−→i p

′, ∀(op, i, k, d, ro) ∈ u[i] • op 6= r, r′ = r, and d′ = d, and u′ = u.

33..22..44 DifferencesDifferences
The LMO memory model of our execution model differs from the memory model in Section 8.1
of [ABBM10]. There are two key differences.

Firstly, we model registers in our execution model and define the instruction in their presence,
including the read and write operations. Then, we model instructions that use these registers, for
example for arithmetic or branching. An instruction can only be executed if all the load operations
on which it depends are executed. This means that in our memory model, we do not model all
[r→r/w] behaviour: memory operations after the instruction are never reordered before the in-
struction nor before the load operations on which that instruction depends. This is a limitation we
leave for future work to solve; in Section 6.3 we suggest a solution.

Secondly, they add the [w→w] relaxation later in Section 8.2 by having a buffer per memory loca-
tion per process. However, we achieve the [w→w] relaxation by using a single buffer per process,
but allowing memory operations to different locations to overtake each other. These approaches
have the same effect: if in their model of Section 8.2 a memory operation would be enabled, it is
at the front of the FIFO queue associated with the targeted memory location, meaning there are no
preceding memory operations to that memory location. In that situation, the memory operation
would also be enabled in our model. Vice versa, if in our model a memory operation is enabled,
it means there are no preceding memory operations to that memory location, thus it is enabled
in their model as well. In both models, memory operations can overtake memory operations to
different memory locations.

Furthermore, we added some instructions. One of the instruction we added is lop, a local oper-
ation that only reads registers and writes to a single register. Local operations can only be per-
formed if the buffer contains no stored read operations to any of the registers the local operation
reads from. We can use this later to fit local LLVM IR instruction into this model. We added
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RelaxedARW to allow memory operations to overtake atomic memory operations. We also added
SCFence, RelFence and AcqFence, to model memory barriers according to the release-acquire
memory model of LLVM.

33..22..55 ExampleExample

Figure 3.3 Reordering on X86,
is R1 = 1∨R2 = 1 guaranteed?

P1 P2

X ← 1
R1 ← Y

Y ← 1
R2 ← X

Let us consider the simple example in Figure 2.2, repeated in Fig-
ure 3.3. The program has two shared variables, X and Y; two
processes, P1 and P2, with each their own register, R1 and R2. The
entire state space of this 4-line example is shown in Figures 3.4
and 3.5.

Figure 3.4 shows the state space when running assuming a se-
quentially consistent memory model and Figure 3.5 when assum-
ing a relaxed memory model.

The states are described by XY R1R2|B1|B2, where B1 and B2 are the buffer of the two processes.
The buffers can be empty or containX or Y , meaning a write of 1 toX or Y respectively. Notice that
states that are reachable without memory instruction reordering are marked as ; states that are
only reachable with memory instruction reordering as ; and paths that end up in an unexpected
state as . This example illustrates the significance of the state space explosion. Even this example
containing only 4 instructions produces a state space of 34 states. Out of these 34 states, 21 are only
reachable when allowing memory instruction reordering.

33..22..55..11 Right or Wrong?Right or Wrong?
As illustrated in Figure 3.5, there are multiple execution traces of multi-threaded programs. Some
of these traces are only possible when memory instruction reordering is allowed. It depends on
the desired semantics of the program whether memory instruction reordering causes incorrect
behaviour. In the example, we determined that ending with R1 = 0 and R2 = 0 is incorrect, but
only because we naturally assume sequential consistency. If the program does not rely on R1 ∨R2

being true at the end, there is no incorrect behaviour. This is why we leave this up to the user to
specify erroneous behaviour using assert() statements in the code.
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Figure 3.4 The state space of the program shown in Figure 3.3 running on a sequentially consistent
memory model
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Figure 3.5 The state space of the program shown in Figure 3.3 running on a relaxed memory model
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3
3

Mapping LLVM IR and LTSmin

In this section we will describe how we mapped LLVM IR to the model described in Section 3.1
and to the fixed-size state vector LTSmin can understand.

The model in Section 3.1 describes a single state by 〈p, r,d,u〉 and a transition relation by 〈p, r,d,
u〉 →N 〈p′, r′,d′,u′〉, where p,p′ ∈ P, r, r′ ∈ Rn, d,d′ ∈M and u,u′ ∈ B∗1 ×· · ·×B∗n. We can map
these to a transition system 〈SLLVM,→LLVM, s

0
LLVM〉 as follows:

• SLLVM = P×M× (B∗1 × · · · ×B∗n) (Section 3.3.1);
• s0

LLVM = 〈p, r,d,u〉, where p are the finite-state process described by LLVM IR, r contains
only empty LLVM IR registers, d contains LLVM IR global and local variables, initialized to
a certain value, ∀i ∈ [n] • u[i] = ε (Section 3.3.2);

• s→LLVM s′ ⇔ 〈p,d,u〉 →N 〈p′,d′,u′〉, where s = 〈p,d,u〉 and s′ = 〈p′,d′,u′〉. (Section 3.3.3)

33..33..11 Mapping the stateMapping the state
Figure 3.6 illustrates how the state of an LLVM Interpreter is serialized to a state vector. LTSmin
describes a state using a fixed-size state vector. This is a problem for us if we want to support
stacks, stack frames, registers and buffers of arbitrary size. To mitigate this, we used the chunk
mapping functionality of LTSmin. The downside to this is that LTSmin has no knowledge of what
is inside these chunks: they are just binary blobs to LTSmin. This means we cannot use register
values, stack memory values or buffers in LTL formulae. The only state vector variables we can
meaningfully use for LTL are PIDs, Status flags, Status and NextPID. The others are all
chunk map identifiers.

Each process has a stack, stack memory, a process identifier (PID) and status flags. A stack is
a chunk map comprised of an arbitrary number of stack frames. A single stack frame contains
the registers of the LLVM Interpreter, including the instruction pointer as well as some auxiliary
informations such as the size of stack memory allocated. The stack memory of a process itself is
stored separately. This allows for a more concise dependency matrix: local LLVM instructions that
only use the registers, e.g. bitcast, br, only need a dependency on the stack itself. It also uses less
duplicate memory, because local changes are in separate chunk maps from the global chunk map.
Thus, a change to the stack memory does not yield a change in the global memory, thus avoiding
the need to upload the entire global memory chunk map with only a minor change. A process
identifier is a unique identifier during the lifetime of the LLVM program: process identifiers are
not reused. The status flags of a process contain various flags, which will be explained in more
detail in Section 4.1.4.5.

Notice that the depicted fixed-size state vector can only support up to four concurrently running
processes. However, process slots are reused, so there is no bound on the total number of executed
processes during the lifetime of the LLVM program.

Figure 3.6 The state vector containing a serialized LLVM Interpreter instance.
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Given the model described in Section 3.1, the LLVM Interpreter state can be mapped to 〈p, r,d,u〉
as follows:

1. LLVM IR registers are in r

2. LLVM IR global variables and local variables are in d

3. The buffered LLVM IR instructions are in u.
4. LLVM IR code is not in the state and is assumed to be immutable, so p is outside of the state.

33..33..22 Initial stateInitial state
To start exploration of the state space, we need an initial state. We obtain the initial state by first
allocating memory for all the global variables and initializing them. If present, constructors for
global variables are called. This is needed to support for example global and static class variables
in C++. The global constructors are assumed to be sequential: no concurrency is allowed in them.
If an illegal action or an assert is triggered, the initial state will be erroneous. The global variables
are serialized and put into the initial state vector. How we serialize the LLVM Interpreter we will
describe in more detail in Section 3.3.3.3.

Then, we setup the initial process or processes, depending on the mode.

33..33..22..11 pthread-modepthread-mode
In pthread-mode, LLVM IR is interpreted as one would expect: the function main() is called at
the start and new threads can be created and joined using pthread calls. A call to the function
pthread_create(t,f) starts a new thread that starts its execution at the function f and puts
a thread identifier in t. Using this identifier, we can wait for a thread to finish execution using
pthread_join(t,r). When that call returns, r will have the return value of f . In Section 3.3.4
we provide detail on how this is achieved.

An example of this mode is shown in Appendix B.1.

This main-process is the first process, thus we give it the PID 1. We serialize the state of the LLVM
Interpreter and use the first process slot of the state vector to describe this state. This gives us the
state of an LLVM Interpreter, about to execute main().

33..33..22..22 proc-modeproc-mode
In proc-mode, LLVM IR is interpreted slightly differently. This mode is used when no main()
is found in the LLVM IR. Instead, some functions are started as if they were threads. Firstly, if it
exists, the function llmc_init() is called and executed, which can initialize global variables to
specific values. Then, LLMC looks for functions starting with llmc_proc and initializes a stack for
each of them and starts them as if it were threads. Their stacks are saved in the process slots of the
initial state vector. Thus the initial state is the combined start states of all these functions running
concurrently with global values initialized according to llmc_init().

33..33..33 Next-stateNext-state
After having uploaded the first state, LTSmin will explore state state space by requesting new tran-
sitions and new states from LLMC. The general flow of obtaining a next state is illustrated in
Figure 3.7.

LTSmin passes a state vector to LLMC and requests to generate the next states (PINS:getNextStates(s))
and report them. First, LLMC re-instantiates the LLVM Interpreter and buffers from the passed
state vector. Then, multiple possible next states are calculated, one for each choice of possible tran-
sitions. Lastly, the new state of the LLVM Interpreter and buffers is serialized and uploaded to
LTSmin.

33..33..33..11 InstantiationInstantiation
LLVM Interpreter

Global memory

SF SM B

When we receive a state vector from LTSmin, we need to instantiate a valid LLVM Interpreter from
this. We read the stack, stack memory and stack frames chunk identifiers from the state vector,
download the associated chunks and recreate the stack. The global memory is one big chunk, so
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is easily recreated. The buffer containing a number of buffered instruction is recreated as well. All
re-instantiations are on-demand: not all transition groups need everything to be recreated. The
flushing of the buffer does not need the entire LLVM Interpreter to be recreated for example, just
the global memory part.

33..33..33..22 Performing a stepPerforming a step
LLVM Interpreter

Global memory

SF SM B

LLVM Interpreter

Global memory

SF SM B

Having re-instantiated the LLVM Interpreter and buffers, we can perform a step. There are mul-
tiple possible steps from a single state, for example a process can perform a step or the buffer
can flush an enabled item. LTSmin uses a partitioned next state interface, which means we need to
partition →LLVM into transition groups. To optimize the state space exploration and locality, we
partition the next-state into the following six transition groups:

• Local

– Transitions: lop, nop
– Alterations: Local transitions read and write only to registers and stack memory of the

executing process.
– A running process can execute any number of consecutive local transition, even after a

single non-local transition. These transitions are usually squashed into previous transi-
tions and thus this transition group is never taken in practice. A local transition reads
the instruction to be executed, determines that it only affects the local state and executes
it. Local instructions are only enabled when there are no dependent operations in the
buffer, as per the lop in the model.

• ToStore

– Transitions: Write to store, Read to store
– Alterations: The global read and write operations are added to the buffer.
– A running process can put memory operations into the buffer, waiting to be executed

later by the transition group FromStore. Instructions can be added to the buffer whether
they have dependent operations in the buffer or not. Both local and global memory
operations may be added. This way, we can support reordering independent memory
operations across memory operations that are dependent. So for example, R2 ← P;
R2 ← *R2; R1 ← X can be reorded to R1 ← X; R2 ← P; R2 ← *R2.

• FromStore

– Transitions: Update, Retrieve
– Alterations: Operations in the buffer are executed.
– A non-empty buffer can perform a single step per enabled item by flushing that enabled

item from the buffer. Both local and global instructions can be the buffer.

Figure 3.7 The state vector containing a serialized LLVM Interpreter instance.

PINS

LTSmin

getNextStates(s)
(re-)instantiate LLVM

Serialize LLVM

Perform a step
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Upload new state
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LLVM Interpreter

Global memory
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LLVM Interpreter

Global memory
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• Global

– Transitions: Read own write, ARW, SCFence, RelFence, AcqFence
– Alterations: All remaining global operations.
– A running process can perform a single globally visible step. Local instructions of

that process (loc)) may be executed before and after this global step and the effects
squashed into a single transition. A running process can perform an instruction involv-
ing a form of synchronization in this transition group.

• ThreadManagement

– LLVM Call instructions to pthread functions and to llmc_atomic_*() functions.
– This is a special transition group for the management of threads (processes). This transi-

tion group handles calls to the pthread library. It atomically performs a pthread_create()
or pthread_join(). This is only used in pthread-mode. As per the pthread speci-
fication1, these calls synchronize memory with respect to other threads. This is achieved
by only performing this call when all the buffers are empty.

• Fini

– When all processes are done, a final fini() transition is performed to signify correct
execution of the program. In proc-mode and if the LLVM program has a function called
llmc_fini(), this sets up a call to llmc_fini(), which can be used for final asser-
tions on the values of global variables for example.

When mapping LLVM IR instruction to this transition relation, we differentiated between memory
operations to the stack of a process and the global memory. Memory operations to a process’ own
stack are local and thus do not change the reachability of an erroneous state. This allows us to
optimize these out. We can determine local memory operations by the address they are writing to
or reading from.

We mapped the LLVM IR instructions to→LLVM as follows.

• lop

– Every terminator instruction, every binary instruction, getelementptr and all mem-
ory operations to stack memory of that process.

• Write to store

– All store instructions to global memory.

• Read own write

– All load instructions to global memory.

• Read to store

– All load instructions to global memory.

• ARW/RelaxedARW

– All atomicrmw and cmpxchg instructions to global memory, depending on the mem-
ory barrier specified as argument: relaxed will map to RelaxedARW and the others
will map to ARW.

• SCFence

– fence seq_cst and fence acq_rel instructions.

• RelFence

– fence release instruction.

• AcqFence

– fence acquire instruction.

1pthread specification 4.11, Memory Synchronization at
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_11
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33..33..33..33 SerializationSerialization
LLVM Interpreter

Global memory

SF SM B

To serialize the state of an LLVM Interpreter instance, we must store the value of every relevant
data object in the LLVM Interpreter. This includes the stack, the memory allocated on the stack and
the global variables. The stack is stored per stack frame. Every individual stack frame is uploaded
to LTSmin as a chunk map. Then, the combined chunk identifiers from the stack frame chunk maps
are put into an array and uploaded to LTSmin as a chunk map as well. This chunk map represents
the stack of that state of the LLVM Interpreter. This avoids duplicating every stack frame for every
process and every state. The reason for this is that in the most cases the stack frames of previous
stacks are not altered. Thus instead of uploading an entire stack, we upload the changed stack
frames and the new array of stack frame chunk identifiers, representing the stack.

This scheme is not used for the global variables: these are just monolithically uploaded as one big
chunk to LTSmin.

After uploading these various chunk maps, the chunk identifiers are stored in the state vector.
Then, we pass the state vector to LTSmin as a new state or as the initial state.

33..33..44 Thread ManagementThread Management
In pthread-mode, the creation and exiting of threads need to be managed. When a process calls
pthread_create(t,f), it looks for an empty process slot in the state vector. If there is one, it
will initialize an LLVM Interpreter and setup a call to the function f . This state is then serialized,
uploaded to LTSmin and the associated identifier put into the process slot, along with proper status
flags, empty stack memory, empty registers and an empty buffer. The PID of the process is the
value of NextPID and then NextPID is incremented. If there is no empty process slot, ErrMsg
will be set to an appropriate error message, the error status flag is set and exploration continues.

When a process finishes execution, it will store the return value of its ’main’-function (the f of
the pthread_create(t,f) call that started it) in the thread result chunk (ThrRes). This is done
such that it can later be retrieved using the process identifier (t).

When a process calls pthread_join(t,r), it is determined if the process identified by t has com-
pleted execution. This is the case when the stack and buffer of that process are both empty. It is also
the case when that process has no process slot anymore, because it has finished execution and all
memory operations earlier. If the process has finished, its return value is obtained from the thread
result chunk and assigned to r.

33..33..55 Dependency MatrixDependency Matrix
The transition groups described in Section 3.3.3 do not all use every state vector variable. In Ta-
ble 3.1 the associated dependency matrix is shown. All the transition groups are per process,
except the Fini transition. The global status is read from and written to by all transition groups
to ascertain the current status and possible alter it. The status flags per process can be read from
and written to by every transition group as well for the same reason. The PID is always read from,
with the primary goal creating an edge label that describes the performed step. The PID is used in
this description to denote which process performed this step.

Because the Local transition only performs instructions local to that process, it only has a depen-
dency on the data of that process. The ToStore transition group writes an instruction to the instruc-
tion buffer and obtains this information from the stack and stack memory. The FromStore flushes
any one enabled item in the buffer of that process to stack memory or the global memory. The
Global transition group is used for any other instruction that modifies global memory. Sometimes
whether a global instruction can be executed depends on the buffer, so we add a read dependency.
The ThreadManagement transition group may read and modify any one process with the excep-
tion of its buffer. The buffer is only used to check if the step can be performed. The Fini transition
group is only enabled when no threads are running and all buffers are empty. Because it resets
the stack, stack memory and PID of all processes, it also needs write permission to write to those
variables.
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Table 3.1 Dependency matrix

State vector
Transition Groups SFrame SMem PIDs Flags Buffers G S N E T

Local (per Proc) + + r + r r r r + w +
ToStore (per Proc) + r r + r r r + r + w +

FromStore (per Proc) + + r + + + + w
Global (per Proc) + + + + + r + r r r r r r r + + w +

ThreadMananagment (per Proc) + + + + + + + + + + + + + + + + r r r r + + + w +
Fini w w w w + + + + + + + + r r r r r + w

r: read, w: write, +: read/write
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3
4

Exploration strategy

Figure 3.8 An illustration of the
minimal-cost search strategy.

States after +1 relaxation

States after 1 relaxation

To ascertain under what memory model an assert can be trig-
gered, we describe a specific exploration strategy. This strategy
first explores the state space of a program without any mem-
ory instructions reordered (SC). Then, it will allow the reorder-
ing of [w→w] (TSO). Following, the [w→r] relaxation is al-
lowed (PSO) and finally, we allow all the relaxations LMO al-
lows. This exploration strategy allows us to model check for
multiple memory models in one run.

We define this exploration strategy by first giving every tran-
sition a cost. The cost of a state s is determined by adding the
cost of all the transitions on the trace from the initial state to s.
During exploration, we will explore the next-states of the state that has the lowest such cost. Thus,
the cost of the transitions will determine the order in which states are explored.

This cost is a tuple 〈r, ww, wr〉, specifying the cost of reordering write after read (wr), write after
write (ww) and read after read/write (r). The transitions will be given a cost as specified in Ta-
ble 3.2. To determine the lowest cost, we use a lexicographical ordering. If we are only interested
in a certain memory model, we can avoid exploring states that have a certain cost.

33..44..11 Soundness and completenessSoundness and completeness

Figure 3.9 Not all RMO allowed
reorderings are modeled.

Program order RMO allowed

R1 ← X
R1 ← R1 + 1
R2 ← Y

R2 ← Y
R1 ← X
R1 ← R1 + 1

We are complete with respect to LMO. But in this model, we
do not allow certain [r→r/w] RMO memory instruction re-
ordering scenario to occur: memory operations after an in-
struction that depends on a previous load are not allowed
to be reordered with that load. The cause is that a local in-
struction is only executed when all instructions on which it
depends are executed. An illustration of this is shown in Fig-
ure 3.9: under RMO, the load of Y would be allowed to be
reordered before the other two instructions. This makes our
model not complete with respect to RMO. In Section 6.3.1 we outline a possible solution.

We also assume the modeled cache to be coherent and causal. This allows us to use a single repre-
sentation of the global memory in the state vector, but this limits the completeness of our model.
We make this assumption for the simple reason that it limits the state space. It is our assessment
that the reduction of the state space this brings forth outweighs covering non-causal behaviour:
modeling delayed propagation to a sizable number of threads causes yet another exponential blow-
up of the state space. Moreover, we are not aware of software exploiting non-causal cache nor of
any programming idiom that relies on causality without also relying on a more strict memory
model.

Our model is sound: if we find an error and generate a trace to this error, then this means that the
program has a bug. Thus, under certain conditions, running on certain hardware with a specific
memory model and using certain memory instruction reorderings, the program can exhibit unde-
sired behaviour. The exploration strategy incrementally relaxes the memory model, from TSO to
PSO to LMO. Thus, should we only be interested in TSO, we can stop the exploration when all TSO
behaviour is explored and ignore possible future errors on more relaxed memory models. Using
this, we can provide a sound answer per model.

Table 3.2 Costs (〈r, ww, wr〉) of transitions
Transition r ww wr
Write/Read 0 0 0
Write/Read [w→r] 0 0 1
Write/Read [w→w] 0 1 0
Write/Read [r→r/w] 1 0 0
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33..44..22 Deadlock and livelock detectionDeadlock and livelock detection

Figure 3.10 Example of a
reduced state space

ττ
τ τ

α

Detecting a deadlock in the state space is a relatively trivial task: we
simple check for states that have no outgoing edges and do not have
a status flag indicating proper completion. This will also detect er-
roneous states, because erroneous states do not have outgoing transi-
tions.

Detecting a livelock can be done by testing for divergence. Executions
that properly finish are said to converge. Infinite executions and exe-
cutions that end up in an erroneous state are said to diverge. LTSmin
allows us to test for this. We mark every transition except the Fini
transition as a τ step and then reduce the state space using divergence
sensitive weak branching bisimulation. The result is a reduced state
space with only a few states. If the original state space has a trace to
proper completion, there will be a α or τα trace, where α is a proper
final Fini transition. If the original state space has a deadlock, there
will be a τ trace. If the original state space has a livelock, there will be
a τω trace.
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4
LLMC Implementation

4
1

Implementational Details

In this section we list some details of our implementation

44..11..11 PointersPointers
We support LLVM pointer types. We achieve this by obtaining a very large slab of virtual memory
at the start of LLMC. In this slab, when needed, we allocate memory for the stack and global
memory. When we re-instantiate the LLVM Interpreter, we copy the stack and global memory
from the state vector to the same place in the slab of virtual memory. Thus, pointer to any of these
memory location remain valid.

In the implementation, we use mmap to obtain this virtual memory. To support the multi-core
back-ends of LTSmin, one process mmaps private anonymous memory at some memory location.
Then, the other processes try to mmap private anonymous memory to the same fixed memory
location. This only works for process, not for threads.

44..11..22 Bounded bufferBounded buffer
The execution model supports an unbounded number of instructions in the buffer, but this is not
feasible. Therefore, our implementation allows to select the maximum number of buffered instruc-
tions per buffer.

44..11..33 ExplorationExploration
The current implementation of the exploration strategy does not reflect the design described in
Section 3.4. The current implementation of this strategy can only differentiate between SC and
a more relaxed memory model: first SC behaviour is explored and then all behaviour that LMO
allows is explored.

44..11..44 FeaturesFeatures
Here, we list some features of LLMC.

44..11..44..11 Atomic instructionsAtomic instructions
We provide a few instructions that are executed atomically. Optionally they carry out a memory
barrier as well, depending on the argument passed, in accordance with the LLVM memory model.
These can be used to implement std::atomic. We provide a small version of std::atomic as
llmc::atomic in Appendix C.2.
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• bool __atomic_compare_exchange(size_t bytes, void* target, void* expected,
void* desired, std::memory_order model_success,
std::memory_order model_failure) This atomically compares *target and *expected.
If equal (success), *desired is assigned to *target and true is returned. Else (failure),
*target is assigned to *expected and false is returned. On success, model_success
will be used to determine the carried out barrier. For example, if seq_cst is used, the func-
tion will only be executed when the buffer is empty. On failure, model_failure will be
used in the same manner. This function is added in addition to the cmpxchg instruction to
support C++11 atomics.

• void __atomic_load(size_t bytes, void* source, void* destination,
std::memory_order model) This atomically performs a copy operation from *source
to *destination. The argument passed to model determines the carried out barrier.

• void __atomic_store(size_t bytes, void* source, void* destination,
std::memory_order model) This atomically performs a copy operation from *source
to *destination. The argument passed to model determines the carried out barrier.

44..11..44..22 Memory barriersMemory barriers
We support a number of explicit memory barriers as a function call in addition to the LLVM IR
fence instruction. This is to support LLVM IR generated by clang when compiling C and C++.
These can be used by calling llmc_barrier_x.

• llmc_barrier_acquire corresponds to fence acquire: the call can be executed when
there are no load instructions in the buffer.

• llmc_barrier_release corresponds to fence release: the call can be executed when
there are no store instructions in the buffer.

• llmc_barrier_seq_cst corresponds to fence acquire: the call can be executed when
there are no load or store instructions in the buffer.

44..11..44..33 Additional memory modificationAdditional memory modification
We provide implementations for commonly used memory modification routines. These calls are
only executed if there are no instruction in the buffer that read from or write to any of the mem-
ory locations in (source,source+sizeInBytes) or (dest,dest+sizeInBytes). Note that
memcmp and memset are implemented as if they were atomic.

• memcpy(void* dest, void* source, size_t sizeInBytes) performs a copy from
*source to *dest of sizeInBytes bytes.

• memcmp(void* one, void* other, size_t sizeInBytes) compares sizeInBytes
bytes of *one and *other.

• memset(void* dest, int val, size_t sizeInBytes) sets sizeInBytes bytes of
*dest to val.

44..11..44..44 C/C++ specific additionsC/C++ specific additions
We added support for assert(<condition>) by catching the call to void __assert_fail().
This is because assert() is a macro that is expanded to code similar to:
if(!<condition>) __assert_fail(...).

To add static constructor support for classes in C++, before setting up the main() call when de-
termining the initial state, we perform a call to _GLOBAL__I_a(). This adds support to LLVM IR
generated from C++ using clang.

44..11..44..55 Exploration guidance flagsExploration guidance flags
In the state vector, each process has status flags. These flags contain various bits of informa-
tion that optimize or guide exploration:

LOCAL If this flag is set, the next instruction is a local transition. This is an optimization flag
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to avoid having to re-initialize the LLVM Interpreter to determine whether the next
instruction is local. Instead, this flag is set when a state is reported to LTSmin.

ERROR If this flag is set, the process reached an erroneous state. No process will execute
instructions from this point.

THREADCRT If this flag is set on a process, it means its previous and next instruction are calls to
pthread_create(). Optionally (Section 4.1.4.6) this means that other processes
are not allowed to report a transition, thus culling a part of the state space that a
user might deem not interesting. By default this is not used to cull the state space.

DONE If this flag is set, the process has completed execution. Its buffer might still contain
instructions.

ATOMIC If this flag is set on a process, no other process may generate a transition. This is
used for llmc_atomic_begin() and llmc_atomic_end(). However, this is an
experimental feature in the current implementation of LLMC.

44..11..44..66 Settings fileSettings file
LLMC supports a few optional features that can be turned on or off in a settings file.

optimize_local_steps This boolean setting controls whether or not local transitions are
squashed into a previous transition. By default this is on.

all_tau_except_last This boolean setting controls whether to replace all actions in the
generated state space with τ except the Fini transition. This is
used to test for deadlock and livelocks (Section 3.4.2). By default
this is off.

buffer_size This integer setting controls the maximum size of the buffer, i.e.
how many instructions the buffer of each process can hold. By
default this is 5.

combine_pthread_create This boolean setting controls whether consecutive calls to the
function pthread_create() are grouped together in order to
cull the state space. By default this is off.
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5
Results

In this chapter, we first provide a validation of LLMC (Section 5.1), then list multiple experiments
that provide further validation (Section 5.2) and finally show some benchmarks of these experi-
ments (Section 5.3).

5
1

Validation

We validated LLMC by implementing various litmus tests [MSS12] in LLVM and determining
whether the tool found the missing memory barriers. We used the RMO memory model for these
tests to show the similarities and the differences between RMO and LMO. The implementation of
these litmus tests can be found in Appendix B. The results of these validations are in Tables 5.1
to 5.3 and 5.5. There is no table for the Dependent Load Litmus Test because memory barriers do
not affect the outcome, like expected.

Table 5.1 Store Buffer Litmus Test results for LLMC

SB t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 7 7 7
release 7 7 3 3
seq_cst 7 7 3 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

Table 5.2 Load Buffer Litmus Test results for LLMC

LB t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 3 7 3
release 7 7 7 7
seq_cst 7 3 7 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer
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Table 5.3 Independent Reads of Independent Writes Litmus Test results for LLMC

IRIW t2_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 3 7 3
release 7 7 7 7
seq_cst 7 3 7 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

Table 5.4 Independent Reads of Independent Writes with Load Dependency Litmus Test results
for LLMC

IRIW+addr t2_fence
t0_fence relaxed acquire release seq_cst
relaxed 3 3 3 3
acquire 3 3 3 3
release 3 3 3 3
seq_cst 3 3 3 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

Table 5.5 Message Passing Litmus Test results for LLMC

MP t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 7 7 7
release 7 3 7 3
seq_cst 7 3 7 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

Table 5.6 Message Passing Litmus Test with dependency results for LLMC

MP-dep t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 7 7 7
release 3 3 3 3
seq_cst 3 3 3 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

The result of running the litmus tests was as expected: the litmus tests are correctly verified or
falsified when LMO and a coherent and causal cache is assumed. There are two litmus tests which
show the limitations of these assumptions.

The IRIW+addr litmus test (Appendix B.5) shows in Table 5.4 that assuming a coherent and causal
cache means that different observers never see a different order of writes. A store that is flushed
from the buffer (using the Update transition) is observed by all observers at the same time.

The MP-dep litmus test (Appendix B.7) shows in Table 5.6 that our LMO model does not allow
all [r→r/w] memory instruction reorderings. The increment acts as a barrier for that memory
location. This confirms that our model does not completely model memory instruction reordering
according to what RMO allows.
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5
2

Experiments

We performed a series of experiments to further ascertain the soundness and completeness of
LLMC. Our experiments contain a simple counting algorithm (Section 5.2.1) and a widely used
concurrent queue, the Michael-Scott queue (Section 5.2.2).

55..22..11 Concurrent countingConcurrent counting
This experiment is to show that atomically incrementing a single counter by multiple threads run-
ning concurrently yields is possible and that a correct version is verified to be correct. It is also
used to determine the performance of LLMC, which we will cover in Section 5.3. In the algorithm,
we use CAS to indicate an atomic compare-and-swap. Listing 5.1 describes the semantics of this
operation.

Listing 5.1 CAS operation used in the concurrent counting experiment.

1 CAS(destination: pointer to WORD, expected: pointer to WORD, desired: WORD) -> bool
2 if *destination == *expected;
3 *destination = desired;
4 return true;
5 else
6 *expected = destination;
7 return false;
8 endif

55..22..11..11 The algorithmThe algorithm
It is a very simple algorithm: every thread attempts a compare-and-set until it succeeds, thus incre-
menting the atomic counter by one. Every thread does this INCS times, thus after every thread is
done, the counter should be equal to THREADS*INCS, where THREADS is the number of threads.
The algorithm is shown in Listing 5.2. In Appendix C.1 we list the C++ and LLVM IR implemen-
tations. Note that between lines 65 and 66 there is no need for a memory barrier. This is because
pthread_join() only returns when the buffer of the joined thread is empty.

55..22..11..22 LLMC appliedLLMC applied
LLMC correctly verified the correctness of this algorithm. Upon investigating the state space for
two threads (Figure 5.1), each incrementing the counter once, we find what we expected. States 0
through 5 form the setup phase in which the counter is initialized and a second thread is started
(pthread_create()). At that point either the main thread performs an increment (to state 6)
or the started thread performs its initial setup up until it can also perform an increment (to state
7). From that state, both can perform the increment (to state 8 or to state 9). If one succeeds, the
first CAS operation (__atomic_compare_exchange_llmc()) of the other will fail and it will
try again and succeed. Notice that the two paths do not merge until the last state. This is because
their local variable j differs in the two paths: the first thread that succeeded in incrementing the
counter has j equal to 0, the second thread will have j equal to 1. They merge in the last state
because the Fini transition resets the stack and stack memory.

Listing 5.2 The algorithm of a single thread of the concurrent counting experiment.

1 integer counter;
2
3 increment() {
4 int i=0;
5 while i<INCS
6 int j = i;
7 loop
8 if CAS(&counter,&j,j+1)
9 break;
10 endif
11 endloop
12 i++;
13 endwhile
14 }
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Figure 5.1 The state space of the concurrent counting experiment for THREADS=2 and INCS=1
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55..22..22 Michael-Scott queueMichael-Scott queue

Figure 5.2 State after adding 1 and
2

H T

One example of a software component that is used of-
ten in multi-threaded programs is the Michael-Scott queue.
This is a concurrent, multiple consumer, multiple producer,
lock-free data structure providing a FIFO operation on el-
ements. It can be used as the basics for scheduling work
or passing messages. It is available in the Java library as
ConcurrentLinkedQueue. To understand this experiment,
we will first describe the algorithm of the Michael-Scott queue and then explain why the memory
barriers are needed. We conclude with the results of LLMC regarding this concurrent queue. In the
Michael-Scott queue algorithm, we use CAS(t,e,d) to indicate an atomic compare-and-set. List-
ing 5.3 describes the semantics of this operation. The difference with the one used in Section 5.2.1
is that in the event the CAS fails, it will not assign the obtained value to *expected. Moreover,
this version operates on a DWORD (double word) instead of a single WORD.
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Listing 5.3 CAS operation used in the Michael-Scott queue.

1 CAS(destination: pointer to DWORD, expected: DWORD, desired: DWORD) -> bool
2 if *destination == *expected
3 *destination = desired;
4 return true;
5 else
6 return false;
7 endif

Listing 5.4 displays the used structures and initialization of the Michael-Scott queue. The queue
works with a linked list, thus the number of elements is not algorithmically bounded. Each node in
the linked list has a data member, containing data, and a next member, pointing to the next element
or NULL in the case of the last node. In the empty state, there is one node in the list: the sentinel
node. The value of the data member of this node is not important. There are two shared variables:
Head and Tail; these reflect the global state of the queue. The Head pointer points to the oldest
node in the linked list, which is the sentinel node. The Tail pointer points to the newest node, or
the one before that in the case the Tail pointer was not yet updated by a Push() operation See
Figure 5.2 for an illustration of the state of the queue after adding two elements: 1 and 2.

55..22..22..11 PushPush
The push() operation adds an element by inserting a new node at the tail-end of the queue. When
inserting a node, first it is linked in by having the next member of the Tail node point to the new
node. Then, the Tail pointer is advanced to reflect the new state of the queue. Of course, at all
these stages another thread can interfere. The algorithm takes care of these cases and minimizes
the effect of unfortunate context switching by allowing a different thread to finalize the transaction
of a thread. Finalizing a transaction means to advance the shared pointer, in this case the Tail
pointer. Listing 5.5 shows pseudocode of the push() operation of the Michael-Scott queue.

Listing 5.4 Structures and initialization of the Michael-Scott queue [MS]

1 structure pointer_t {ptr: pointer to node_t, count: unsigned integer}
2 structure node_t {value: data type, next: pointer_t}
3 structure queue_t {Head: pointer_t, Tail: pointer_t}
4
5 initialize(Q: pointer to queue_t)
6 node = new_node() # Allocate a free node
7 node->next.ptr = NULL # Make it the only node in the linked list
8 Q->Head.ptr = Q->Tail.ptr = node # Both Head and Tail point to it

Listing 5.5 The push() operation of the Michael-Scott queue [MS] with the required memory
barriers [BAM07]

E1 enqueue(Q: pointer to queue_t, value: data type)
E2 node = new_node() # Allocate a new node from the free list
E3 node->value = value # Copy enqueued value into node
E4 node->next.ptr = NULL # Set next pointer of node to NULL
E5 barrier_release() # Make sure the data is observed before linking in the node
E6 loop # Keep trying until Enqueue is done
E7 tail = Q->Tail # Read Tail.ptr and Tail.count together
E8 barrier_acquire() # Obtain the tail before tail.ptr->next
E9 next = tail.ptr->next # Read next ptr and count fields together

E10 barrier_acquire() # Obtain the next before rechecking the tail
E11 if tail == Q->Tail # Are tail and next consistent?
E12 # Was Tail pointing to the last node?
E13 if next.ptr == NULL
E14 # Try to link node at the end of the linked list
E15 if CAS(&tail.ptr->next, next, <node, next.count+1>)
E16 break # Enqueue is done. Exit loop
E17 endif
E18 else # Tail was not pointing to the last node
E19 # Try to swing Tail to the next node
E20 CAS(&Q->Tail, tail, <next.ptr, tail.count+1>)
E21 endif
E22 endif
E23 endloop
E24 # Enqueue is done. Try to swing Tail to the inserted node
E25 barrier_release() # Make sure the node is linked in before swinging the Tail
E26 CAS(&Q->Tail, tail, <node, tail.count+1>)
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55..22..22..22 PopPop
When there is data in the queue, the pop() operation tries to dequeue an element from the queue
and return this element. This is achieved by first advancing the Head pointer, thus claiming the
data that resides in the new Head pointer. After this data is retrieved, the memory of the old
sentinel node is freed. As the data in the new sentinel is already obtained, it is no longer important
and thus this new sentinel node may be freed without objection by a future pop() operation1.

55..22..22..33 Consistent SnapshotConsistent Snapshot
Throughout the descriptions of the algorithms there is the use of the term consistent snapshot, but
so far we did not make explicit what this exactly entails nor how it is achieved. To explain this,
consider the push() operation. The first thing that is done in the loop is obtaining the tail and
the next of the tail. But what if the tail was advanced before the next of the tail could be obtained?
That would not only mean we are using an out of date tail, but also that the tail we are using could
potentially be deleted or its memory already reused for a new node. By checking that the tail did
not change, we are certain that the tail node was not deleted. Because if a tail node would
have been deleted, it must have been deleted by the pop() operation and for that to happen, the
head must have caught up with the next of the tail in question. This means the tail should have
advanced at least one node, thus the tail changed. So by checking that the tail did not change,
we can be sure that tail was not deleted1 and that the next of the tail is consistent with the
tail.

55..22..22..44 Counted pointersCounted pointers

Figure 5.3 Illustration of the
ABA problem.

The pointers mentioned in the algorithm are not normal point-
ers, but they are counted pointers. These are pointers which not
only have a normal pointer value, they also have an integer that
is increased every time the normal pointer value is altered. They
are used to mitigate the ABA problem [IBM83]. This problem
has been solved in multiple ways [DPS10, Mic04a, Mic04b] and
one of the approaches being the counted pointers [IBM83].

Consider the scenario described in Section 5.2.2.3. There, we
check if the tail changed, after obtaining the next of the

1At least, that is what the original algorithm led to believe; in reality the original algorithm only works when deleted is
replaced with made available for reuse and memory of nodes is never given back to the OS.

Listing 5.6 The pop() operation of the Michael-Scott queue [MS] with the required memory bar-
riers [BAM07]

D1 dequeue(Q: pointer to queue_t, pvalue: pointer to data type): boolean
D2 loop # Keep trying until Dequeue is done
D3 head = Q->Head # Read Head
D4 barrier_acquire() # Obtain the head before the tail
D5 tail = Q->Tail # Read Tail
D6 barrier_acquire() # Obtain the tail before the next
D7 next = head.ptr->next # Read Head.ptr->next
D8 barrier_acquire() # Obtain the next before rechecking the head
D9 if head == Q->Head # Are head, tail, and next consistent?
D10 if head.ptr == tail.ptr # Is queue empty or Tail falling behind?
D11 if next.ptr == NULL # Is queue empty?
D12 return FALSE # Queue is empty, couldn’t dequeue
D13 endif
D14 # Tail is falling behind. Try to advance it
D15 CAS(&Q->Tail, tail, <next.ptr, tail.count+1>)
D16 else # No need to deal with Tail
D17 # Read value before CAS
D18 # Otherwise, another dequeue might free the next node
D19 *pvalue = next.ptr->value
D20 # Try to swing Head to the next node
D21 if CAS(&Q->Head, head, <next.ptr, head.count+1>)
D22 break # Dequeue is done. Exit loop
D23 endif
D24 endif
D25 endif
D26 endloop
D27 free(head.ptr) # It is safe now to free the old node
D28 return TRUE # Queue was not empty, dequeue succeeded
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tail. It would be possible for the tail to change twice in a row before it is checked. This
would make it possible for the tail pointer to point to the same memory location, even though it
is pointing to a different node. Without the counted pointers, this would mean that the tail-check
would succeed, but this is not intended behaviour, because the next node does not necessarily
have to be the node directly after the tail node any more. As can be seen in the illustration in
Figure 5.3, the next node could be the node behind the tail node. In this scenario, the push()
operation will determine that next.ptr != NULL and will then attempt to advance the tail.
However, what this thread deems to be advancing the tail is in reality messing up the algorithm,
because it will advance the tail in the wrong way.

This can be avoided by using counted pointers. This approach has the disadvantage of requiring
a CAS operation on DWORDs, which is not available on all architectures. An alternative is using
LL/SC (load-linked, store conditional) [Mic04b].

55..22..22..55 The memory barriersThe memory barriers

Figure 5.4 Illustration of why
the D8 memory barrier is
needed.

h t

H T

The memory barriers in the Michael-Scott queue are all neces-
sary for correct behaviour. However, they are not all needed
on all memory models, because some models already guaran-
tee the memory barriers inherently. Under TSO for example,
none of the memory barriers are needed. This is because TSO,
for the purpose of this queue, guarantees acquire-release
semantics for all memory operations.

Under RMO, they are in fact needed, with the exception of the
two in the enqueue: 1) the acquire memory barrier at line 8
is not needed because it protects a dependent load; and 2) the
release memory barrier at line 25 is not needed, because it protects a data dependent control
dependency, the CAS in line 15 and the CAS in line 26. We will discuss the other 5 and why they
are needed below. Under LMO, the same 5 barriers are needed. This is essential to understand the
result of LLMC.

The E5 memory barrier is needed to make sure the store operations to value and next to the
new node are observed by a dequeuer before the enqueuer links in that node. Otherwise, the
incorrect data might be read or the queue might end up in an inconsistent state.

The E10 memory barrier is needed to make sure the second read of Q->Tail is done after reading
the next of tail. If the reverse would be allowed, it would be possible for a node to be enqueued
on a node that might not belong to this queue. This is only a concern when two Michael-Scott
queue instances share the same pool of nodes. The trace of such a situation is as follows: operating
on an empty queue, an enqueuer obtains the Tail and checks for consistency. Another thread
now enqueues and dequeues a node, thus freeing the original node for reuse. This node is then
reused by an enqueuer to link in a node on a different Michael-Scott queue instance. The first
enqueuer will continue execution, find that next.ptr==NULL and link in the node in the wrong
Michael-Scott queue instance.

The D4 memory barrier guarantees the Head is read before the Tail. If the reverse would be
allowed, it would be possible to incorrectly determine head.ptr!=tail.ptr while next.ptr
is NULL. Thus, the statement in line 19 would produce a segmentation fault. The trace to this
situation is easy to describe: operating on an empty queue, a dequeuer first obtains the Tail,
then another thread enqueues a node and dequeues a node. Now, the first dequeuer is al-
lowed to obtain the Head and the next of Head. It will then determine head==Q->Head and
head.ptr!=tail.ptr.

The D6 memory barrier guarantees the Tail is read before reading the next of the Head. If the re-
verse would be allowed, it would again be possible to incorrectly determine head.ptr!=tail.ptr
while next.ptr is NULL. The trace to this situation is even simpler: a dequeuer obtain the Head
and the next of Head, then another thread enqueues a node. Now, the first dequeuer obtains the
Tail. It will then determine head==Q->Head and head.ptr!=tail.ptr.

The D8 memory barrier guarantees that checking the Head is done after obtaining the next of
Head. If the reverse would be allowed, it would yet again be possible to incorrectly determine
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head.ptr!=tail.ptr while next.ptr is NULL. The trace to this situation is more tricky as it
requires memory to be reused by one thread while still in use by another. Figure 5.4 illustrates this
trace. Starting with a queue with a single element, thus two nodes, a dequeuer first obtains the
Head, Tail and checks for consistency (head==Q->Head). Then another thread dequeues a node
and enqueues a node. The node that it enqueues has the same memory address as the dequeued
node, which is possible when allowing nodes to be reused. Because that node is the last node in the
linked list, its next.ptr field is NULL. Thus, when the first dequeuer now obtains the next.ptr
value and continues, it will determine head.ptr!=tail.ptr and dereference NULL.

55..22..22..66 LLMC appliedLLMC applied
When we applied LLMC to the Michael-Scott queue, we were able to find all 5 required mem-
ory barriers for our model. Using the C++ code in Appendix C.2 and simply commenting one
of the barriers, one of the asserts would trigger. Sometimes this required modifying main()
slightly to allow more concurrent threads. The resulting code would be compiled with clang
msq2.cpp -std=c++11 -pthread -S -flto -emit-llvm -omsq2.ll -O3 -g and then
model checked with LLMC. The result is either the state space or a trace to an error.

In the case of the Michael-Scott queue we have the luxury of knowing where the barriers are
needed, thus we can modify our test case accordingly. We can describe what test case can be
used to find the memory barriers by using an E for enqueuer, D for dequeuer, ; for sequential
execution and || for parallel execution. In our case, || will have a stronger binding than ;. For
example, E;E||D;D means to first execute an enqueuer, then to parallel execute an enqueuer and
a dequeuer and when they are both done to execute a dequeuer. In the tests below we will always
use 3 enqueuers and 3 dequeuers, to keep the final assert correct.

• [E||D;E;E;D;D] Using this, we can find the E5 and D6 memory barriers.
• [E||(D;E;C);E;D;D] Using this, we can find the E10 memory barrier. C is the act of claim-

ing a node for another data structure. Because a node with data is enqueued on a node
outside of the queue, the data is lost. This means one of the dequeuers will remain in the
while, because there is no data to be dequeued. We can detect this livelock by testing for
divergence, as described in Section 3.4.2.

• [E;D||(E;D;D;E)] Using this, we can find the D4 memory barrier. Note that D||(E;D)
would have sufficed as well, but would live lock. We can also test for this using divergence.

• [E;E;D||(D;E);D] Using this, we can find the D8 memory barrier.

Note that if we did not have the luxury of knowing where the memory barriers are required, we
would need to try out multiple executions. Starting 6 threads in parallel, i.e. E||E||E||D||D||D
is not feasible. The largest complete run we have achieved is E||E||E;D;D;D, the state space of
which is close to 1.4 billion states (see Table 5.8).

46



CHAPTER 5. RESULTS 5.3. BENCHMARKS

5
3

Benchmarks

In this section, we provide benchmarks that provide an indication of what LLMC can handle.

55..33..11 PerformancePerformance
We ran a series of performance benchmarks using the concurrent counting LLVM IR implementa-
tion and the Michael-Scott queue. Tables 5.7 and 5.8 show the results of these experiments. The
experiments are executed on machine with 48 cores and 128GiB of memory. To explore the state
space in search of error states, we used the multi-core back-end of LTSmin with default options and
an invariant specifying that the state has no error. This provides us an indication of what LLMC is
able to handle.

Comparing X1 to X4 and X2 to X6 we can see that changing the buffer size from 3 to 5 increases
the state space by respectively 17% and 27%. This gives a small indication of the influence of the
buffer size on the state space.

The decrease in memory usage of using chunk maps can amount to two orders of magnitude:
running the recursive Fibonacci LLVM IR program (Appendix C.3), calculating fib(20) without
this optimization uses 3.3GiB of RAM. When we apply this chunk mapping scheme, the memory
usage shrinks to just 30MiB. This is an extreme example because the recursive Fibonacci is intensive
for the stack.

Let us look at the influence of the chunk maps on X6: we have 24810 chunks there, taking 17MiB
of memory, which is on average 0.7kiB per chunk. If we would not have used chunks for the stack,
this would have meant that a single state would need at least 1.4kiB on average, for the stack and
globals. This would have amounted to a grand total of 16GiB for all the states. This is only a rough
estimate, but it is certainly significantly higher than the 191.8MiB that was actually used.

55..33..22 Implementation bottlenecksImplementation bottlenecks
We performed benchmarks showing the bottlenecks of LLMC. In Figure 5.5 a typical call graph for
an execution of LLMC is depicted. There are four methods that take the most time:

1. downloadState() (readStateVector() in the graph), which reads a state vector coming
from LTSmin and constructs a working LLVM Interpreter from it, initialized to the state in the
state vector. This part requires a lot of memory operations.

2. uploadState() does the reverse. The state of a working LLVM Interpreter is flattened into

Table 5.7 Results of executed concurrent counting experiments.

THREADS=4, buffer_size=3
INCS States Transitions Time (s) Mem (MiB) States/s Trans/s Chunks

1 611 1158 <1 <1 20367 38600 206
2 111713 252630 1.120 1.4 99744 225562 1021
3 16075101 37526179 99.540 174.9 161494 376996 7099
4 2868903162 6770299558 19038.061 29882.9 150693 355619 58203

Table 5.8 Results of executed Michael-Scott queue experiments.
buffer_size=3
ID Config States Transitions Time (s) Mem (MiB) States/s Trans/s Chunks
X1 E||D;E;D;E;D 18000 46046 3.3 <1 62069 158779 3416, 3MiB
X2 E;D||(E;D;D;E) 9749606 29252651 180.6 144.0 67696 203115 23731, 16MiB

buffer_size=5
ID Config States Transitions Time (s) Mem (MiB) States/s Trans/s Chunks
X3 E||D;E;E;D;D 20391 56741 2.4 <1 78427 218235 2677, 2MiB
X4 E||D;E;D;E;D 21036 57518 4.4 <1 67858 185542 7099, 3MiB
X5 E;E;D||(D;E);D 1027044 3178352 27.9 15.4 66821 206789 9227, 10MiB
X6 E;D||(E;D;D;E) 12349674 39519755 222.3 191.8 64382 206025 24810, 17MiB
X7 E||E||E;D;D;D 1390462376 5099266244 19348.8 15561.9 71863 263545 663975, 492MiB
X8* E||E||D||D >3886772182 >18569898690 >44406.8 >60545.2 ∼64196 ∼306711 >52713, >28MiB

*:incomplete execution
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a state vector and is uploaded to LTSmin.
3. step() performs a single step. This takes roughly a third of the entire time. Ideally this

should be significantly higher.

As can be seen in the graphic, uploading and downloading the state from and to LTSmin takes the
greatest amount of time: almost 75%. The actual calculating of the next state only takes around
7% of time. This was an expected result: in particularly downloading the state and re-instantiating
the LLVM Interpreter takes a significant amount of time. We believe there is still a lot of room for
optimization, especially in the readStateVector() method.

Figure 5.5 A typical call graph for an execution of LLMC
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6
Conclusions

In this chapter, we first provide a summary (Section 6.1), then we evaluate our contribution (Sec-
tion 6.2) and finally we propose future work (Section 6.3).

6
1

Summary

To aid developers of concurrent software, we have developed LLMC, the low-level model checker.
We have designed an execution model that captures executing LLVM IR running on a relaxed
memory, that completely models the allowed memory instruction reorderings of TSO ([w→r])
and PSO ([w→r/w]). It also supports a limited relaxed memory model (LMO), which in addition
to PSO, allows some load instruction reorderings ([w→r/w + r→∗r/w]), but not to the same
extent as RMO ([r/w→r/w]).

We have provided a mapping from LLVM IR to our execution model and to PINS. Using this, we
show how we can explore the state space of LLVM IR programs running on LMO. We provide
the design of an exploration strategy that explores the state space of an LLVM IR program while
incrementally relaxing the memory mode. Using this exploration strategy, we can investigate the
behaviour of an LLVM IR program running on SC, TSO, PSO and LMO in one exploration.

We have implemented our design in LLMC by reusing the LLVM Interpreter and modifying it in
order to connect it to PINS. This way, newer LLVM IR versions can be supported in the future by
merging the new LLVM Interpreter into our LLVM Interpreter.

The implementation limits memory usage by inserting the stacks, stack memory, buffers and glob-
als in a chunk table and using a chunk identifier in the state space. This reduces the footprint of
the state space by multiple orders of magnitude.

We applied LLMC to various litmus tests and performed multiple experiments with it. We passed
the implemented litmus tests for the LMO memory model and for some of them for RMO, but
were incomplete with respect to the RMO memory model in other cases. We applied LLMC to a
well-known concurrent queue, the Michael-Scott queue, and were able to confirm the necessity of
the required memory barriers for correctness under RMO.

The output of LLMC is not only a boolean answer, it also generates a trace to the erroneous state.
While this trace contains mostly chunk map identifiers, the actions clearly indicate the path the
program took: when which thread did what and when which buffer was used or partly flushed.
The trace uses LLVM IR instructions as actions. This gives a precise path to the erroneous state at
the LLVM IR level.
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6
2

Evaluation

In this section we evaluate our tool LLMC and the obtained results.

66..22..11 ConsiderationsConsiderations
By choice, our LMO memory model does not reorder dependent loads. We do not consider this a
viable memory model for any hardware as the software running on it would require every depen-
dent load to be separated by a load-load memory barrier. Moreover, modern microprocessors
do not reorder dependent loads.

One major consideration in our LMO memory model is that it does not allow all [r→r/w] that
RMO allows. Because instructions are possibly dependent on preceding loads, execution can only
happen if these loads are actually performed. Thus, in that scenario, those preceding loads are
never reordered with memory operations after such an instruction. A possible solution is to add
these instructions to the buffer as well and make an addendum to when an instruction is enabled:
an operation is enabled iff none of its operands depend on preceding operations in the buffer. This
allows operations to overtake each other, but not allowing dependent operations to overtake each
other: an operation can only be executed if all the operations it depends on are executed. We have
an experimental version of LLMC that uses this technique, but it suffers from related regressions.
We leave this for future work.

Moreover, our model assumes a coherent and causal cache. This gave use the benefit of using a
single representation of the global memory, but this further limits the completeness of our model.
As we saw in the IRIW litmus test, LLMC does not execute behaviour that is not causal.

66..22..22 So where does that leave LLMC?So where does that leave LLMC?
LLMC can successfully invalidate the Michael-Scott queue when one of 5 memory barriers that do
not protect a data dependency is left out. It can correctly validate and invalidate various litmus
tests and other test cases. While not complete with respect to RMO, the model is sound: if LLMC
claims there is an erroneous state and gives a trace, it means an error in the LLVM IR program.

The bottom line is that it supports model checking LLVM IR programs assuming a limited relaxed
memory model (LMO). This in itself is useful for the development and debugging of current and
future concurrent data structures. We hope that this will become apparent in the future.
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6
3

Future Work

For future work, we first list further future features (Section 6.3.1) both in the supported function-
ality as well as in LTSmin, then we suggest future topics of research that can follow in the footsteps
of this research (Section 6.3.2) and finally we suggest more test cases to test both performance and
validity of both this research and the suggested research (Section 6.3.3).

66..33..11 Future FeaturesFuture Features
There are a lot of features that did not make it into this version of LLMC. To start, there is only
an experimental implementation of llmc_atomic_begin() and llmc_atomic_end(), which
could be used to describe an atomic section. If a thread would be in this section, other threads
could not perform a step. It resembles the d_step of PROMELA.

Secondly, the implementation does not allow __atomic_compare_exchange_llmc() to spuri-
ously fail. In reality, this is possible on LL/SC (load-link/store-conditional) hardware. We expect
this is fairly easy to implement, but would require some testing.

Thirdly, we believe that we can optimize the re-instantiation of the LLVM Interpreter by directly
operating on the chunk map when dealing with interpreter memory operations. Thus avoiding the
need to re-instantiate. We believe this is possible without altering the core implementation of the
LLVM Interpreter, but instead writing a thin wrapper around all memory access routines. We can
apply the same technique to the access of the registers. By redefining access to the stack frame, we
avoid the need to re-instantiate the stack. We suspect that by limiting the overhead of serializing
and re-instantiating the LLVM Interpreter we can at least attain a doubling of the performance.

To name a fourth wanted feature, the current implementation does not handle stdin or stdout.
The approach we envision that would be appropriate is to intercept calls to functions like scanf()
and have them choose an input non-deterministically from a predefined set of possible inputs. This
set could be specified on a per call to scanf() basis, using for example the static information of
file, line number and calling function. Dynamic information such as the number of times scanf()
had been called before is also possible. Note that this feature is outside of the target audience of
LLMC: the primary target is to model check concurrent data structures.

Dynamic memory allocation on the heap did not make it into this version. We can implement
this using the chunk mapping technique we used for the global variables, thus pointers are not an
issue, as we would keep the memory at the same location.

Lastly, our implementation of PINS does not support distributed model checking. The reason for
this is that the LLVM Module is not in the state vector, but resides in memory which is the same
for processes on the same machine. However, across multiple machines this will not work. We
attempted to put the entire LLVM Module in the state vector, but did not succeed. Having the
LLVM Module in the state vector would not only bring distributed model checking to the table,
but also self modifying LLVM IR.

66..33..22 Future ResearchFuture Research
As mentioned in Section 6.2.1, one of the drawbacks of the current implementation is that local in-
structions that use a register cause a preceding load to that register to complete before continuing.
This acts as a local barrier and does not allow all memory instruction reorderings that should be
allowed under RMO. However, adding this may prove a daunting task: even though adding these
local instructions to the buffer as well seems like a possible solution, it does yield an enormous
growth in the state space. We have some ideas to limit this to a manageable growth: 1) if per-
forming an enabled instruction is flushed from the buffer causes another local instruction (in the
buffer or the instruction to be executed) to be enabled, execute that as well; 2) add multiple con-
secutive instruction to the buffer in one transition, if that instruction uses only local data, thus the
observable behaviour of that process is not altered; and 3) instead of generating a new state after
a memory barrier, the transition could perform one global instruction afterward, since executing a
memory barrier is not observable in our model, its execution is merely conditional. This addition
would make the LLMC’s exploration more complete.
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The current model assumes the cache to be coherent and causal. While this model still allows most
reorderings, it does not allow non-causal behaviour and thus makes LLMC less complete. However,
modeling such a cache would cause a growth in the state space and more pressingly, the required
memory would grow significantly. We expect the chunk mapping will take care of the growth in
memory usage, but cannot state this with certainty.

Currently LLMC gives a trace to an erroneous state, or multiple traces if there are more than 1
errors. However, it does not specify how to fix the problem. An interesting topic of research would
be to devise a way to use the given traces and the state space to suggest the placement of one or
more memory barriers in order to fix the error. Providing that the cause of the error is memory
instruction reordering and not an inherent problem in the program.

During this research, we primarily used the multi-core and distributed back-ends of LTSmin. We
tried the symbolic back-end, but it was significantly slower than the multi-core back-end. We
suspect there is a lot of room for improvement in the dependency matrix, because in the current one
we have a transition group with a dependency on all state vector variables: the thread management
transition group. It has a dependency on all process slots, because any process can create a new
process in any process slot. However, by separating this transition group into multiple separate
ones, one for each combination of two process slots, we can get rid of the transition group with
this large dependency. Then, implementing the PINS interface for short state vectors would be the
next step. This would make an interesting follow-up research, to investigate how well symbolic
exploration algorithms can handle exploring LLVM IR.

Continuing on this train of thought, it would be of interest if program arguments or even op-
erations using stdin could be handled symbolically. However, we suspect this is not practically
feasible: if the LLVM IR program would use argc to determine the number of threads for example,
the exploration would take a tremendous amount of time.

66..33..33 Future test casesFuture test cases
To further test the validity and performance of LLMC, we suggest implementing primarily three
new test cases: 1) the Dualqueue [SS04], which is based on the Michael-Scott queue, but provides
a way for the dequeuers to wait for an element instead of polling; 2) applying Hazard Pointers to
the Michael-Scott queue, to provide a garbage collecting technique customized for concurrent data
structures; and 3) applying Hazard Pointers to the Dualqueue. We have an LLVM IR implementa-
tion of the Dualqueue, but we were unable to verify it for more than two threads. This is because
the algorithm is much more complex than the Michael-Scott queue.

The tool diy [AMSS12] is a generator for litmus tests for PowerPC or X86 from concise specifica-
tions. It is worth investigating how well LLMC handles the numerous tests this tool can generate,
taking into account the various memory models.

In the event that future research is done to model the cache such that non-causal behaviour is
allowed, the concurrent counting test case with more than two threads will be of use: the atomic
transaction have to make sure all threads agree.

If LLMC is enhanced with support for stdin and stdout, a useful test case would be the Rigorous
Examination of Reactive Systems (RERS) challenge1. This is challenge where competitors can at-
tempt to solve white-box, grey-box and black-box problems using any means. These problems are
for example implemented in C and use stdin/stdout to communicate with the environment. It
would be interesting to investigate how well LLMC can handle such problems. While there is no
concurreny in them, there is still an explosion of the number of states because of the inputs.

1http://rers-challenge.org/
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Glossary

Alpha DEC Alpha is a 64-bit RISC instruction set architecture that has notoriously weak memory
ordering. 7

AMD64 AMD64 was created as an alternative to the IA-64 architecture. It was positioned by
AMD from the beginning as an evolutionary way to add 64-bit computing capabilities to
the existing x86 architecture. This in contrast to Intel’s approach of creating an entirely new
64-bit architecture with IA-64. AMD64 uses a TSO memory model. 7

ARMv7 ARMv7 is the 7th version of the ARM instruction set. It is a RISC (Reduced Instruction
Set Computer) instruction set. It is widely used in electronic devices, most prominently in
smartphones. 7, 8

Bug A bug in this context means a fault in the source code of a problem. The origin of the words
comes from the word debugging, which was used to describe the activity of removing real
bugs from the first computers. These computers were so large that real bugs could enter it
and cause it to clog up. 1

CPU A Central Processing Unit (CPU) performs calculations like integer and floating arithmetic.
5

IA-64 IA-64 was Intel’s 64-bit successor of the x86 instruction set. It is a 64-bit register-rich explic-
itly parallel architecture. A key property is that it does not use a TSO memory model like its
predecessor, but uses a much more relaxed memory model instead. 7

JIT Just-In-Time compilation (JIT) is a method to improve the run-time performance of computer
programs based on virtual machine code. 9

library A library is a collection of subroutines that can be linked to by another binary to use these
subroutines. 1

memory barrier A memory barrier is an instruction used to refrain the processor from reordering
certain memory operations. The four relevant barriers are LoadLoad, LoadStore, StoreLoad,
StoreStore. 7

memory model A memory model dictates the conditions under which writes of one processor
become observable to another processor and the constraints under which read operations
may succeed. 6
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mmap mmap is a POSIX function that allows mapping a file to addresses in memory. It also allows
to extend the heap per process by requesting a range of memory to be used privately, per
process. Optionally an address may be specified to request that the range of memory to be
allocated is to start at that address. 35

MMX MMX is a single instruction, multiple data (SIMD) instruction set designed by Intel, intro-
duced in 1997 with their P5-based Pentium line of microprocessors. 10

Sparc-V9 SPARC Version 9, the 64-bit SPARC architecture, was released by SPARC International
in 1993. It assumes only a weak memory model, allowing various memory instruction re-
orderings. 8

TDP The thermal design power (TDP), sometimes called thermal design point, refers to the max-
imum amount of power the cooling system in a computer is required to dissipate. 8

x86 Going back as far as the Intel 8086 CPU, X86 means a backwards compatible instruction set.
The term usually implies a binary compatibility with the 32-bit instruction set of the Intel
80368. 7, 8

60



B
Litmus Tests

B
1

Store Buffer Litmus Test (SB)

This litmus test investigates whether or not store operations can be reordered. They can, thus in
an unfixed state, the assert will be triggered.

BB..11..11 Summary of inserted barriersSummary of inserted barriers

Table B.1 Store Buffer Litmus Test results for LLMC

t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 7 7 7
release 7 7 3 3
seq_cst 7 7 3 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

BB..11..22 C and LLVM IR implementationsC and LLVM IR implementations

C implementation of SB
1 #include <assert.h>
2
3 int x;
4 int y;
5 int R1;
6 int R2;
7
8 int llmc_init() {
9 return 0;

10 }
11 int llmc_proc_1_t0() {
12 x = 1;
13 // t0_fence
14 R1 = y;
15 return 0;
16 }
17 int llmc_proc_1_t1() {
18 y = 1;
19 // t1_fence
20 R2 = x;
21 return 0;
22 }
23 int llmc_fini() {
24 assert(R1||R2);
25 return 0;
26 }
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B.1. STORE BUFFER LITMUS TEST (SB) APPENDIX B. LITMUS TESTS

LLVM IR generated by clang SB.c -S -flto -emit-llvm -oSB.ll -O3

1 ; ModuleID = ’SB.c’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64

:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4
5 @x = common global i32 0, align 4
6 @y = common global i32 0, align 4
7 @R1 = common global i32 0, align 4
8 @R2 = common global i32 0, align 4
9 @.str = private unnamed_addr constant [7 x i8] c"R1||R2\00", align 1
10 @.str1 = private unnamed_addr constant [5 x i8] c"SB.c\00", align 1
11 @__PRETTY_FUNCTION__.llmc_fini = private unnamed_addr constant [16 x i8] c"int llmc_fini()

\00", align 1
12
13 ; Function Attrs: nounwind readnone uwtable
14 define i32 @llmc_init() #0 {
15 ret i32 0
16 }
17
18 ; Function Attrs: nounwind uwtable
19 define i32 @llmc_proc_1_t0() #1 {
20 store i32 1, i32* @x, align 4, !tbaa !0
21 %1 = load i32* @y, align 4, !tbaa !0
22 store i32 %1, i32* @R1, align 4, !tbaa !0
23 ret i32 0
24 }
25
26 ; Function Attrs: nounwind uwtable
27 define i32 @llmc_proc_1_t1() #1 {
28 store i32 1, i32* @y, align 4, !tbaa !0
29 %1 = load i32* @x, align 4, !tbaa !0
30 store i32 %1, i32* @R2, align 4, !tbaa !0
31 ret i32 0
32 }
33
34 ; Function Attrs: nounwind uwtable
35 define i32 @llmc_fini() #1 {
36 %1 = load i32* @R1, align 4, !tbaa !0
37 %2 = load i32* @R2, align 4, !tbaa !0
38 %3 = or i32 %2, %1
39 %4 = icmp eq i32 %3, 0
40 br i1 %4, label %5, label %6
41
42 ; <label>:5 ; preds = %0
43 tail call void @__assert_fail(i8* getelementptr inbounds ([7 x i8]* @.str, i64 0, i64 0), i8

* getelementptr inbounds ([5 x i8]* @.str1, i64 0, i64 0), i32 25, i8* getelementptr
inbounds ([16 x i8]* @__PRETTY_FUNCTION__.llmc_fini, i64 0, i64 0)) #3

44 unreachable
45
46 ; <label>:6 ; preds = %0
47 ret i32 0
48 }
49
50 ; Function Attrs: noreturn nounwind
51 declare void @__assert_fail(i8*, i8*, i32, i8*) #2
52
53 attributes #0 = { nounwind readnone uwtable "less-precise-fpmad"="false" "no-frame-pointer-

elim"="false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-
fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

54 attributes #1 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false
" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="
false" "unsafe-fp-math"="false" "use-soft-float"="false" }

55 attributes #2 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="
false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math
"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

56 attributes #3 = { noreturn nounwind }
57
58 !0 = metadata !{metadata !"int", metadata !1}
59 !1 = metadata !{metadata !"omnipotent char", metadata !2}
60 !2 = metadata !{metadata !"Simple C/C++ TBAA"}

62



APPENDIX B. LITMUS TESTS B.1. STORE BUFFER LITMUS TEST (SB)

C implementation of SB (pthread version)
1 #include <assert.h>
2 #include <stdint.h>
3 #include <pthread.h>
4
5 int x;
6 int y;
7
8 void* t0(void* data) {
9 x = 1;

10 // t0_fence
11 return y;
12 }
13
14 void* t1(void* data) {
15 y = 1;
16 // t1_fence
17 return x;
18 }
19
20 int main(int argc, char** argv) {
21 pthread_t th1, th2;
22 int R1;
23 int R2;
24 pthread_create(&th1, 0, &t0, 0);
25 pthread_create(&th2, 0, &t1, 0);
26 pthread_join(th1, &R1);
27 pthread_join(th2, &R2);
28 assert( R1 || R2 );
29 return 0;
30 }

63



B.1. STORE BUFFER LITMUS TEST (SB) APPENDIX B. LITMUS TESTS

LLVM IR generated by clang SB.c -S -flto -emit-llvm -oSB.ll -O3 (pthread version)

1 ; ModuleID = ’pSB.c’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64

:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4 %union.pthread_attr_t = type { i64, [48 x i8] }
5 @x = common global i32 0, align 4
6 @y = common global i32 0, align 4
7 @.str = private unnamed_addr constant [9 x i8] c"R1 || R2\00", align 1
8 @.str1 = private unnamed_addr constant [6 x i8] c"pSB.c\00", align 1
9 @__PRETTY_FUNCTION__.main = private unnamed_addr constant [23 x i8] c"int main(int, char **)

\00", align 1
10 ; Function Attrs: nounwind uwtable
11 define i8* @t0(i8* nocapture %data) #0 {
12 store i32 1, i32* @x, align 4, !tbaa !0
13 %1 = load i32* @y, align 4, !tbaa !0
14 %2 = sext i32 %1 to i64
15 %3 = inttoptr i64 %2 to i8*
16 ret i8* %3
17 }
18 ; Function Attrs: nounwind uwtable
19 define i8* @t1(i8* nocapture %data) #0 {
20 store i32 1, i32* @y, align 4, !tbaa !0
21 %1 = load i32* @x, align 4, !tbaa !0
22 %2 = sext i32 %1 to i64
23 %3 = inttoptr i64 %2 to i8*
24 ret i8* %3
25 }
26
27 ; Function Attrs: nounwind uwtable
28 define i32 @main(i32 %argc, i8** nocapture %argv) #0 {
29 %th1 = alloca i64, align 8
30 %th2 = alloca i64, align 8
31 %R1 = alloca i32, align 4
32 %R2 = alloca i32, align 4
33 %1 = call i32 @pthread_create(i64* %th1, %union.pthread_attr_t* null, i8* (i8*)* @t0, i8*

null) #4
34 %2 = call i32 @pthread_create(i64* %th2, %union.pthread_attr_t* null, i8* (i8*)* @t1, i8*

null) #4
35 %3 = load i64* %th1, align 8, !tbaa !3
36 %4 = bitcast i32* %R1 to i8**
37 %5 = call i32 @pthread_join(i64 %3, i8** %4) #4
38 %6 = load i64* %th2, align 8, !tbaa !3
39 %7 = bitcast i32* %R2 to i8**
40 %8 = call i32 @pthread_join(i64 %6, i8** %7) #4
41 %9 = load i32* %R1, align 4, !tbaa !0
42 %10 = icmp eq i32 %9, 0
43 br i1 %10, label %11, label %15
44
45 ; <label>:11 ; preds = %0
46 %12 = load i32* %R2, align 4, !tbaa !0
47 %13 = icmp eq i32 %12, 0
48 br i1 %13, label %14, label %15
49
50 ; <label>:14 ; preds = %11
51 call void @__assert_fail(i8* getelementptr inbounds ([9 x i8]* @.str, i64 0, i64 0), i8*

getelementptr inbounds ([6 x i8]* @.str1, i64 0, i64 0), i32 26, i8* getelementptr
inbounds ([23 x i8]* @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #5

52 unreachable
53
54 ; <label>:15 ; preds = %11, %0
55 ret i32 0
56 }
57
58 ; Function Attrs: nounwind
59 declare i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*) #1
60 declare i32 @pthread_join(i64, i8**) #2
61
62 ; Function Attrs: noreturn nounwind
63 declare void @__assert_fail(i8*, i8*, i32, i8*) #3
64 attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false

" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="
false" "unsafe-fp-math"="false" "use-soft-float"="false" }

65 attributes #1 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-
frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "
unsafe-fp-math"="false" "use-soft-float"="false" }

66 attributes #2 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-
pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe
-fp-math"="false" "use-soft-float"="false" }

67 attributes #3 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="
false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math
"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

68 attributes #4 = { nounwind }
69 attributes #5 = { noreturn nounwind }
70 !0 = metadata !{metadata !"int", metadata !1}
71 !1 = metadata !{metadata !"omnipotent char", metadata !2}
72 !2 = metadata !{metadata !"Simple C/C++ TBAA"}
73 !3 = metadata !{metadata !"long", metadata !1}
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APPENDIX B. LITMUS TESTS B.1. STORE BUFFER LITMUS TEST (SB)

BB..11..33 Traces to errorTraces to error
The following are traces to the error states, i.e. states where the assertion is triggered.

Figure B.1 Traces to the error states.
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B.2. LOAD BUFFER LITMUS TEST (LB) APPENDIX B. LITMUS TESTS

B
2

Load Buffer Litmus Test (LB)

This litmus test investigates whether or not load operations can be reordered. They can, thus in
an unfixed state, the assert will be triggered.

BB..22..11 Summary of inserted barriersSummary of inserted barriers

Table B.2 Load Buffer Litmus Test results for LLMC

t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 3 7 3
release 7 7 7 7
seq_cst 7 3 7 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

BB..22..22 C and LLVM IR implementationsC and LLVM IR implementations

C implementation of LB
1 #include <assert.h>
2 #include <stdint.h>
3 #include <pthread.h>
4
5 int x;
6 int y;
7
8 void* t0(void* data) {
9 register int lx;
10 lx = x;
11 // t0_fence
12 y = 1;
13 return lx;
14 }
15
16 void* t1(void* data) {
17 register int ly;
18 ly = y;
19 // t1_fence
20 x = 1;
21 return ly;
22 }
23
24 int main(int argc, char** argv) {
25 pthread_t th1, th2;
26 int R1;
27 int R2;
28 pthread_create(&th1, 0, &t0, 0);
29 pthread_create(&th2, 0, &t1, 0);
30 pthread_join(th1, &R1);
31 pthread_join(th2, &R2);
32 assert( !R1 || !R2 );
33 return 0;
34 }
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APPENDIX B. LITMUS TESTS B.2. LOAD BUFFER LITMUS TEST (LB)

LLVM IR generated by clang pLB.c -S -flto -emit-llvm -opLB.ll -O3

1 ; ModuleID = ’pLB.c’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64

:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4 %union.pthread_attr_t = type { i64, [48 x i8] }
5 @x = common global i32 0, align 4
6 @y = common global i32 0, align 4
7 @.str = private unnamed_addr constant [11 x i8] c"!R1 || !R2\00", align 1
8 @.str1 = private unnamed_addr constant [6 x i8] c"pLB.c\00", align 1
9 @__PRETTY_FUNCTION__.main = private unnamed_addr constant [23 x i8] c"int main(int, char **)

\00", align 1
10 ; Function Attrs: nounwind uwtable
11 define i8* @t0(i8* nocapture %data) #0 {
12 %1 = load i32* @x, align 4, !tbaa !0
13 store i32 1, i32* @y, align 4, !tbaa !0
14 %2 = sext i32 %1 to i64
15 %3 = inttoptr i64 %2 to i8*
16 ret i8* %3
17 }
18 ; Function Attrs: nounwind uwtable
19 define i8* @t1(i8* nocapture %data) #0 {
20 %1 = load i32* @y, align 4, !tbaa !0
21 store i32 1, i32* @x, align 4, !tbaa !0
22 %2 = sext i32 %1 to i64
23 %3 = inttoptr i64 %2 to i8*
24 ret i8* %3
25 }
26
27 ; Function Attrs: nounwind uwtable
28 define i32 @main(i32 %argc, i8** nocapture %argv) #0 {
29 %th1 = alloca i64, align 8
30 %th2 = alloca i64, align 8
31 %R1 = alloca i32, align 4
32 %R2 = alloca i32, align 4
33 %1 = call i32 @pthread_create(i64* %th1, %union.pthread_attr_t* null, i8* (i8*)* @t0, i8*

null) #4
34 %2 = call i32 @pthread_create(i64* %th2, %union.pthread_attr_t* null, i8* (i8*)* @t1, i8*

null) #4
35 %3 = load i64* %th1, align 8, !tbaa !3
36 %4 = bitcast i32* %R1 to i8**
37 %5 = call i32 @pthread_join(i64 %3, i8** %4) #4
38 %6 = load i64* %th2, align 8, !tbaa !3
39 %7 = bitcast i32* %R2 to i8**
40 %8 = call i32 @pthread_join(i64 %6, i8** %7) #4
41 %9 = load i32* %R1, align 4, !tbaa !0
42 %10 = icmp eq i32 %9, 0
43 br i1 %10, label %15, label %11
44
45 ; <label>:11 ; preds = %0
46 %12 = load i32* %R2, align 4, !tbaa !0
47 %13 = icmp eq i32 %12, 0
48 br i1 %13, label %15, label %14
49
50 ; <label>:14 ; preds = %11
51 call void @__assert_fail(i8* getelementptr inbounds ([11 x i8]* @.str, i64 0, i64 0), i8*

getelementptr inbounds ([6 x i8]* @.str1, i64 0, i64 0), i32 30, i8* getelementptr
inbounds ([23 x i8]* @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #5

52 unreachable
53
54 ; <label>:15 ; preds = %11, %0
55 ret i32 0
56 }
57
58 ; Function Attrs: nounwind
59 declare i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*) #1
60 declare i32 @pthread_join(i64, i8**) #2
61
62 ; Function Attrs: noreturn nounwind
63 declare void @__assert_fail(i8*, i8*, i32, i8*) #3
64 attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false

" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="
false" "unsafe-fp-math"="false" "use-soft-float"="false" }

65 attributes #1 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-
frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "
unsafe-fp-math"="false" "use-soft-float"="false" }

66 attributes #2 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-
pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe
-fp-math"="false" "use-soft-float"="false" }

67 attributes #3 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="
false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math
"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

68 attributes #4 = { nounwind }
69 attributes #5 = { noreturn nounwind }
70 !0 = metadata !{metadata !"int", metadata !1}
71 !1 = metadata !{metadata !"omnipotent char", metadata !2}
72 !2 = metadata !{metadata !"Simple C/C++ TBAA"}
73 !3 = metadata !{metadata !"long", metadata !1}
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B.2. LOAD BUFFER LITMUS TEST (LB) APPENDIX B. LITMUS TESTS

BB..22..33 Traces to errorTraces to error
The following are traces to the error states, i.e. states where the assertion is triggered.

Figure B.2 Traces to the error states.
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B
3

Dependent Load Litmus Test (DL)

This litmus test investigates whether or not dependent loads are reordered. The dependent load
is in line 14: *p. First the value of p is loaded and then the value at the address p points to is
loaded. They should never be reordered in the model we use, thus under no circumstance should
the assert fail.

BB..33..11 C and LLVM IR implementationsC and LLVM IR implementations

C implementation of DL
1 #include <assert.h>
2
3 int x;
4 int y;
5 int* p;
6
7 int llmc_init() {
8 y = 1234;
9 p = &y;

10 return 0;
11 }
12 int llmc_proc_1_t0() {
13 assert(*p==y);
14 return 0;
15 }
16 int llmc_fini() {
17 return 0;
18 }

LLVM IR generated by clang DL.c -S -flto -emit-llvm -oDL.ll -O3

1 ; ModuleID = ’counter.c’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0

:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4
5 @x = common global i32 0, align 4
6 @.str = private unnamed_addr constant [6 x i8] c"x==20\00", align 1
7 @.str1 = private unnamed_addr constant [10 x i8] c"counter.c\00", align 1
8 @__PRETTY_FUNCTION__.llmc_fini = private unnamed_addr constant [16 x i8] c"int llmc_fini()\00", align 1
9

10 ; Function Attrs: nounwind uwtable
11 define i32 @llmc_init() #0 {
12 store i32 0, i32* @x, align 4
13 ret i32 0
14 }
15
16 ; Function Attrs: nounwind uwtable
17 define i32 @llmc_proc_2_t0() #0 {
18 %i = alloca i32, align 4
19 store i32 0, i32* %i, align 4
20 br label %1
21
22 ; <label>:1 ; preds = %4, %0
23 %2 = load i32* %i, align 4
24 %3 = icmp slt i32 %2, 10
25 br i1 %3, label %4, label %7
26
27 ; <label>:4 ; preds = %1
28 %5 = load i32* @x, align 4
29 %6 = add nsw i32 %5, 1
30 store i32 %6, i32* @x, align 4
31 br label %1
32
33 ; <label>:7 ; preds = %1
34 ret i32 0
35 }
36
37 ; Function Attrs: nounwind uwtable
38 define i32 @llmc_fini() #0 {
39 %1 = load i32* @x, align 4
40 %2 = icmp eq i32 %1, 20
41 br i1 %2, label %3, label %4
42
43 ; <label>:3 ; preds = %0
44 br label %6
45
46 ; <label>:4 ; preds = %0
47 call void @__assert_fail(i8* getelementptr inbounds ([6 x i8]* @.str, i32 0, i32 0), i8* getelementptr inbounds ([10 x i8]* @.str1

, i32 0, i32 0), i32 19, i8* getelementptr inbounds ([16 x i8]* @__PRETTY_FUNCTION__.llmc_fini, i32 0, i32 0)) #2
48 unreachable
49 ; No predecessors!
50 br label %6
51
52 ; <label>:6 ; preds = %5, %3
53 ret i32 0
54 }
55
56 ; Function Attrs: noreturn nounwind
57 declare void @__assert_fail(i8*, i8*, i32, i8*) #1
58
59 attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="

true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
60 attributes #1 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="

true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
61 attributes #2 = { noreturn nounwind }
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B
4

Store propagation litmus test (IRIW)

This litmus test investigates whether or not stores can propagate to different processes in differ-
ent orders. IRIW stands for Independent Reads of Independent Writes. Because in this version
(plain IRIW) the loads can be reordered, the assert can be triggered. A different version with
load dependency removes this and is handled differently (IRIW+addr), which is shown in Ap-
pendix B.5.

BB..44..11 Summary of inserted barriersSummary of inserted barriers

Table B.3 Independent Reads of Independent Writes Litmus Test results for LLMC

t2_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 3 7 3
release 7 7 7 7
seq_cst 7 3 7 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

BB..44..22 C and LLVM IR implementationsC and LLVM IR implementations

C implementation of IRIW
1 #include <assert.h>
2 #include <stdint.h>
3 #include <pthread.h>
4
5 int x;
6 int y;
7
8 void* t0(void* data) {
9 int register lx,ly;
10 lx = x;
11 // t0_fence
12 ly = y;
13 return lx*10+ly;
14 }
15
16 void* t1(void* data) {
17 y = 1;
18 }
19
20 void* t2(void* data) {
21 int register lx,ly;
22 ly = y;
23 // t2_fence
24 lx = x;
25 return lx*10+ly;
26 }
27
28 int main(int argc, char** argv) {
29 pthread_t th1, th2, th3;
30 int R1,R2;
31 pthread_create(&th1, 0, &t0, 0);
32 pthread_create(&th2, 0, &t1, 0);
33 pthread_create(&th3, 0, &t2, 0);
34 x = 1;
35 pthread_join(th1, &R1);
36 pthread_join(th2, NULL);
37 pthread_join(th3, &R2);
38 assert(R1!=10 || R2!=1);
39 return 0;
40 }
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LLVM IR generated by clang pIRIW.c -S -flto -emit-llvm -opIRIW.ll -O3

1 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64
:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"

2 target triple = "x86_64-unknown-linux-gnu"
3 %union.pthread_attr_t = type { i64, [48 x i8] }
4 @x = common global i32 0, align 4
5 @y = common global i32 0, align 4
6 @.str = private unnamed_addr constant [16 x i8] c"R1!=10 || R2!=1\00", align 1
7 @.str1 = private unnamed_addr constant [8 x i8] c"pIRIW.c\00", align 1
8 @__PRETTY_FUNCTION__.main = private unnamed_addr constant [23 x i8] c"int main(int, char **)

\00", align 1
9 define i8* @t0(i8* nocapture %data) #0 {

10 %1 = load i32* @x, align 4, !tbaa !0
11 %2 = load i32* @y, align 4, !tbaa !0
12 %3 = mul nsw i32 %1, 10
13 %4 = add nsw i32 %3, %2
14 %5 = sext i32 %4 to i64
15 %6 = inttoptr i64 %5 to i8*
16 ret i8* %6
17 }
18 define noalias i8* @t1(i8* nocapture %data) #1 {
19 store i32 1, i32* @y, align 4, !tbaa !0
20 ret i8* undef
21 }
22 define i8* @t2(i8* nocapture %data) #0 {
23 %1 = load i32* @y, align 4, !tbaa !0
24 %2 = load i32* @x, align 4, !tbaa !0
25 %3 = mul nsw i32 %2, 10
26 %4 = add nsw i32 %3, %1
27 %5 = sext i32 %4 to i64
28 %6 = inttoptr i64 %5 to i8*
29 ret i8* %6
30 }
31 define i32 @main(i32 %argc, i8** nocapture %argv) #1 {
32 %th1 = alloca i64, align 8
33 %th2 = alloca i64, align 8
34 %th3 = alloca i64, align 8
35 %R1 = alloca i32, align 4
36 %R2 = alloca i32, align 4
37 %1 = call i32 @pthread_create(i64* %th1, %union.pthread_attr_t* null, i8* (i8*)* @t0, i8*

null) #5
38 %2 = call i32 @pthread_create(i64* %th2, %union.pthread_attr_t* null, i8* (i8*)* @t1, i8*

null) #5
39 %3 = call i32 @pthread_create(i64* %th3, %union.pthread_attr_t* null, i8* (i8*)* @t2, i8*

null) #5
40 store i32 1, i32* @x, align 4, !tbaa !0
41 %4 = load i64* %th1, align 8, !tbaa !3
42 %5 = bitcast i32* %R1 to i8**
43 %6 = call i32 @pthread_join(i64 %4, i8** %5) #5
44 %7 = load i64* %th2, align 8, !tbaa !3
45 %8 = call i32 @pthread_join(i64 %7, i8** null) #5
46 %9 = load i64* %th3, align 8, !tbaa !3
47 %10 = bitcast i32* %R2 to i8**
48 %11 = call i32 @pthread_join(i64 %9, i8** %10) #5
49 %12 = load i32* %R1, align 4, !tbaa !0
50 %13 = icmp eq i32 %12, 10
51 br i1 %13, label %14, label %18
52 ; <label>:14 ; preds = %0
53 %15 = load i32* %R2, align 4, !tbaa !0
54 %16 = icmp eq i32 %15, 1
55 br i1 %16, label %17, label %18
56 ; <label>:17 ; preds = %14
57 call void @__assert_fail(i8* getelementptr inbounds ([16 x i8]* @.str, i64 0, i64 0), i8*

getelementptr inbounds ([8 x i8]* @.str1, i64 0, i64 0), i32 36, i8* getelementptr
inbounds ([23 x i8]* @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #6

58 unreachable
59 ; <label>:18 ; preds = %14, %0
60 ret i32 0
61 }
62 declare i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*) #2
63 declare i32 @pthread_join(i64, i8**) #3
64 declare void @__assert_fail(i8*, i8*, i32, i8*) #4
65 attributes #0 = { nounwind readonly uwtable "less-precise-fpmad"="false" "no-frame-pointer-

elim"="false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-
fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

66 attributes #1 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false
" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="
false" "unsafe-fp-math"="false" "use-soft-float"="false" }

67 attributes #2 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-
frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "
unsafe-fp-math"="false" "use-soft-float"="false" }

68 attributes #3 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-
pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe
-fp-math"="false" "use-soft-float"="false" }

69 attributes #4 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="
false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math
"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

70 attributes #5 = { nounwind }
71 attributes #6 = { noreturn nounwind }
72 !0 = metadata !{metadata !"int", metadata !1}
73 !1 = metadata !{metadata !"omnipotent char", metadata !2}
74 !2 = metadata !{metadata !"Simple C/C++ TBAA"}
75 !3 = metadata !{metadata !"long", metadata !1}
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BB..44..33 Traces to errorTraces to error
The following are traces to the error states, i.e. states where the assertion is triggered.

Figure B.3 Traces to the error states.
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1: main:store->call[pthread_join]
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Error: Assert triggered

1: THREADS[pthread_join(t=4)]->unreachable
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APPENDIX B. LITMUS TESTS B.5. STORE PROP.+DEP. LITMUS TEST (IRIW+ADDR)

B
5

Store propagation and Load Dependency litmus test (IRIW+addr)

This litmus test investigates whether or not stores can propagate to different processes in differ-
ent orders. IRIW stands for Independent Reads of Independent Writes. We assume a coherent and
causal cache, thus the assert will not trigger.

BB..55..11 Summary of inserted barriersSummary of inserted barriers

Table B.4 Independent Reads of Independent Writes with Load Dependency Litmus Test results
for LLMC

t2_fence
t0_fence relaxed acquire release seq_cst
relaxed 3 3 3 3
acquire 3 3 3 3
release 3 3 3 3
seq_cst 3 3 3 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

BB..55..22 C and LLVM IR implementationsC and LLVM IR implementations

C implementation of IRIW+addr
1 #include <assert.h>
2 #include <stdint.h>
3 #include <pthread.h>
4
5 int x;
6 int y;
7
8 void* t0(void* data) {
9 int register lx,ly;

10 lx = x;
11 // t0_fence
12 ly = *(&y+lx-lx);
13 return lx*10+ly;
14 }
15
16 void* t1(void* data) {
17 y = 1;
18 }
19
20 void* t2(void* data) {
21 int register lx,ly;
22 ly = y;
23 // t1_fence
24 lx = *(&x+ly-ly);
25 return lx*10+ly;
26 }
27
28 int main(int argc, char** argv) {
29 pthread_t th1, th2, th3;
30 int R1,R2;
31 pthread_create(&th1, 0, &t0, 0);
32 pthread_create(&th2, 0, &t1, 0);
33 pthread_create(&th3, 0, &t2, 0);
34 x = 1;
35 pthread_join(th1, &R1);
36 pthread_join(th2, NULL);
37 pthread_join(th3, &R2);
38 assert(R1!=10 || R2!=1);
39 return 0;
40 }
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B.5. STORE PROP.+DEP. LITMUS TEST (IRIW+ADDR) APPENDIX B. LITMUS TESTS

LLVM IR generated by clang pIRIWaddr.c -S -flto -emit-llvm -opIRIWaddr.ll -O3

1 ; ModuleID = ’pIRIWaddr.c’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0

:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4 %union.pthread_attr_t = type { i64, [48 x i8] }
5 @x = common global i32 0, align 4
6 @y = common global i32 0, align 4
7 @.str = private unnamed_addr constant [16 x i8] c"R1!=10 || R2!=1\00", align 1
8 @.str1 = private unnamed_addr constant [12 x i8] c"pIRIWaddr.c\00", align 1
9 @__PRETTY_FUNCTION__.main = private unnamed_addr constant [23 x i8] c"int main(int, char **)\00", align 1

10 ; Function Attrs: nounwind uwtable
11 define i8* @t0(i8* %data) #0 {
12 %1 = alloca i8*, align 8
13 %lx = alloca i32, align 4
14 %ly = alloca i32, align 4
15 store i8* %data, i8** %1, align 8
16 %2 = load i32* @x, align 4
17 store i32 %2, i32* %lx, align 4
18 %3 = load i32* %lx, align 4
19 %4 = sext i32 %3 to i64
20 %5 = getelementptr inbounds i32* @y, i64 %4
21 %6 = load i32* %lx, align 4
22 %7 = sext i32 %6 to i64
23 %8 = sub i64 0, %7
24 %9 = getelementptr inbounds i32* %5, i64 %8
25 %10 = load i32* %9, align 4
26 store i32 %10, i32* %ly, align 4
27 %11 = load i32* %lx, align 4
28 %12 = mul nsw i32 %11, 10
29 %13 = load i32* %ly, align 4
30 %14 = add nsw i32 %12, %13
31 %15 = sext i32 %14 to i64
32 %16 = inttoptr i64 %15 to i8*
33 ret i8* %16
34 }
35 ; Function Attrs: nounwind uwtable
36 define i8* @t1(i8* %data) #0 {
37 %1 = alloca i8*, align 8
38 %2 = alloca i8*, align 8
39 store i8* %data, i8** %2, align 8
40 store i32 1, i32* @y, align 4
41 %3 = load i8** %1
42 ret i8* %3
43 }
44 ; Function Attrs: nounwind uwtable
45 define i8* @t2(i8* %data) #0 {
46 %1 = alloca i8*, align 8
47 %lx = alloca i32, align 4
48 %ly = alloca i32, align 4
49 store i8* %data, i8** %1, align 8
50 %2 = load i32* @y, align 4
51 store i32 %2, i32* %ly, align 4
52 %3 = load i32* %ly, align 4
53 %4 = sext i32 %3 to i64
54 %5 = getelementptr inbounds i32* @x, i64 %4
55 %6 = load i32* %ly, align 4
56 %7 = sext i32 %6 to i64
57 %8 = sub i64 0, %7
58 %9 = getelementptr inbounds i32* %5, i64 %8
59 %10 = load i32* %9, align 4
60 store i32 %10, i32* %lx, align 4
61 %11 = load i32* %lx, align 4
62 %12 = mul nsw i32 %11, 10
63 %13 = load i32* %ly, align 4
64 %14 = add nsw i32 %12, %13
65 %15 = sext i32 %14 to i64
66 %16 = inttoptr i64 %15 to i8*
67 ret i8* %16
68 }
69 ; Function Attrs: nounwind uwtable
70 define i32 @main(i32 %argc, i8** %argv) #0 {
71 %1 = alloca i32, align 4
72 %2 = alloca i32, align 4
73 %3 = alloca i8**, align 8
74 %th1 = alloca i64, align 8
75 %th2 = alloca i64, align 8
76 %th3 = alloca i64, align 8
77 %R1 = alloca i32, align 4
78 %R2 = alloca i32, align 4
79 store i32 0, i32* %1
80 store i32 %argc, i32* %2, align 4
81 store i8** %argv, i8*** %3, align 8
82 %4 = call i32 @pthread_create(i64* %th1, %union.pthread_attr_t* null, i8* (i8*)* @t0, i8* null) #4
83 %5 = call i32 @pthread_create(i64* %th2, %union.pthread_attr_t* null, i8* (i8*)* @t1, i8* null) #4
84 %6 = call i32 @pthread_create(i64* %th3, %union.pthread_attr_t* null, i8* (i8*)* @t2, i8* null) #4
85 store i32 1, i32* @x, align 4
86 %7 = load i64* %th1, align 8
87 %8 = bitcast i32* %R1 to i8**
88 %9 = call i32 @pthread_join(i64 %7, i8** %8)
89 %10 = load i64* %th2, align 8
90 %11 = call i32 @pthread_join(i64 %10, i8** null)
91 %12 = load i64* %th3, align 8
92 %13 = bitcast i32* %R2 to i8**
93 %14 = call i32 @pthread_join(i64 %12, i8** %13)
94 %15 = load i32* %R1, align 4
95 %16 = icmp ne i32 %15, 10
96 br i1 %16, label %20, label %17
97 %18 = load i32* %R2, align 4
98 %19 = icmp ne i32 %18, 1
99 br i1 %19, label %20, label %21

100 br label %23
101 call void @__assert_fail(i8* getelementptr inbounds ([16 x i8]* @.str, i32 0, i32 0), i8* getelementptr inbounds ([12 x i8]* @.

str1, i32 0, i32 0), i32 36, i8* getelementptr inbounds ([23 x i8]* @__PRETTY_FUNCTION__.main, i32 0, i32 0)) #5
102 unreachable
103 br label %23
104 ret i32 0
105 }
106 ; Function Attrs: nounwind
107 declare i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*) #1
108 declare i32 @pthread_join(i64, i8**) #2
109 ; Function Attrs: noreturn nounwind
110 declare void @__assert_fail(i8*, i8*, i32, i8*) #3
111 attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="

true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
112 attributes #1 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true" "no-

infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
113 attributes #2 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true" "no-infs-fp-

math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
114 attributes #3 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="

true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
115 attributes #4 = { nounwind }
116 attributes #5 = { noreturn nounwind }
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APPENDIX B. LITMUS TESTS B.6. MESSAGE PASSING LITMUS TEST (MP)

B
6

Message Passing Litmus Test (MP)

This litmus test investigates the order of propagation of store operations to matching load op-
erations.

BB..66..11 Summary of inserted barriersSummary of inserted barriers

Table B.5 Message Passing Litmus Test results for LLMC

t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 7 7 7
release 7 3 7 3
seq_cst 7 3 7 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

BB..66..22 C and LLVM IR implementationsC and LLVM IR implementations

C implementation of MP
1 #include <assert.h>
2 #include <stdint.h>
3 #include <pthread.h>
4
5 int x;
6 int y;
7
8 void* t0(void* data) {
9 x = 1;

10 // t0_fence
11 y = 1;
12 return 0;
13 }
14
15 void* t1(void* data) {
16 register int lx,ly;
17 ly = y;
18 // t1_fence
19 lx = x;
20 assert(!ly || lx);
21 return 0;
22 }
23
24 int main(int argc, char** argv) {
25 pthread_t th1, th2;
26 int R;
27 pthread_create(&th1, 0, &t0, 0);
28 pthread_create(&th2, 0, &t1, 0);
29 pthread_join(th1, NULL);
30 pthread_join(th2, &R);
31 return 0;
32 }
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B.6. MESSAGE PASSING LITMUS TEST (MP) APPENDIX B. LITMUS TESTS

LLVM IR generated by clang MP.c -S -flto -emit-llvm -oMP.ll -O3

1 ; ModuleID = ’pMP.c’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64

:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4
5 %union.pthread_attr_t = type { i64, [48 x i8] }
6
7 @x = common global i32 0, align 4
8 @y = common global i32 0, align 4
9 @.str = private unnamed_addr constant [10 x i8] c"!ly || lx\00", align 1
10 @.str1 = private unnamed_addr constant [6 x i8] c"pMP.c\00", align 1
11 @__PRETTY_FUNCTION__.t1 = private unnamed_addr constant [17 x i8] c"void *t1(void *)\00",

align 1
12
13 ; Function Attrs: nounwind uwtable
14 define noalias i8* @t0(i8* nocapture %data) #0 {
15 store i32 1, i32* @x, align 4, !tbaa !0
16 store i32 1, i32* @y, align 4, !tbaa !0
17 ret i8* null
18 }
19
20 ; Function Attrs: nounwind uwtable
21 define noalias i8* @t1(i8* nocapture %data) #0 {
22 %1 = load i32* @y, align 4, !tbaa !0
23 %2 = load i32* @x, align 4, !tbaa !0 ; manual intervention was required
24 %3 = icmp ne i32 %1, 0 ; to swap these two operations
25 %4 = icmp eq i32 %2, 0
26 %or.cond = and i1 %3, %4
27 br i1 %or.cond, label %5, label %6
28
29 ; <label>:5 ; preds = %0
30 tail call void @__assert_fail(i8* getelementptr inbounds ([10 x i8]* @.str, i64 0, i64 0),

i8* getelementptr inbounds ([6 x i8]* @.str1, i64 0, i64 0), i32 19, i8* getelementptr
inbounds ([17 x i8]* @__PRETTY_FUNCTION__.t1, i64 0, i64 0)) #5

31 unreachable
32
33 ; <label>:6 ; preds = %0
34 ret i8* null
35 }
36
37 ; Function Attrs: noreturn nounwind
38 declare void @__assert_fail(i8*, i8*, i32, i8*) #2
39
40 ; Function Attrs: nounwind uwtable
41 define i32 @main(i32 %argc, i8** nocapture %argv) #0 {
42 %th1 = alloca i64, align 8
43 %th2 = alloca i64, align 8
44 %R = alloca i32, align 4
45 %1 = call i32 @pthread_create(i64* %th1, %union.pthread_attr_t* null, i8* (i8*)* @t0, i8*

null) #4
46 %2 = call i32 @pthread_create(i64* %th2, %union.pthread_attr_t* null, i8* (i8*)* @t1, i8*

null) #4
47 %3 = load i64* %th1, align 8, !tbaa !3
48 %4 = call i32 @pthread_join(i64 %3, i8** null) #4
49 %5 = load i64* %th2, align 8, !tbaa !3
50 %6 = bitcast i32* %R to i8**
51 %7 = call i32 @pthread_join(i64 %5, i8** %6) #4
52 ret i32 0
53 }
54
55 ; Function Attrs: nounwind
56 declare i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*) #3
57
58 declare i32 @pthread_join(i64, i8**) #1
59
60 attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false

" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="
false" "unsafe-fp-math"="false" "use-soft-float"="false" }

61 attributes #1 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-
pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe
-fp-math"="false" "use-soft-float"="false" }

62 attributes #2 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="
false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math
"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

63 attributes #3 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-
frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "
unsafe-fp-math"="false" "use-soft-float"="false" }

64 attributes #4 = { nounwind }
65 attributes #5 = { noreturn nounwind }
66
67 !0 = metadata !{metadata !"int", metadata !1}
68 !1 = metadata !{metadata !"omnipotent char", metadata !2}
69 !2 = metadata !{metadata !"Simple C/C++ TBAA"}
70 !3 = metadata !{metadata !"long", metadata !1}
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APPENDIX B. LITMUS TESTS B.6. MESSAGE PASSING LITMUS TEST (MP)

BB..66..33 Traces to errorTraces to error
The following are traces to the error states, i.e. states where the assertion is triggered.

Figure B.4 Traces to the error states.
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B.7. MESSAGE PASSING LITMUS TEST WITH DEP. (MP-DEP) APPENDIX B. LITMUS TESTS

B
7

Message Passing Litmus Test with dependency (MP-dep)

This litmus test investigates the order of propagation of store operations to matching load op-
erations. This illustrates the difference between LMO and RMO: The increment in line 21 has a
dependent load, which is always executed before the load after the increment.

BB..77..11 Summary of inserted barriersSummary of inserted barriers

Table B.6 Message Passing Litmus Test with dependency results for LLMC

t1_fence
t0_fence relaxed acquire release seq_cst
relaxed 7 7 7 7
acquire 7 7 7 7
release 3 3 3 3
seq_cst 3 3 3 3

7: assertion triggered, 3: assertion not triggered
73: correct answer, 73: incorrect answer

BB..77..22 C and LLVM IR implementationsC and LLVM IR implementations

C implementation of MP-dep
1 #include <assert.h>
2 #include <stdint.h>
3 #include <pthread.h>
4
5 volatile int x;
6 volatile int y;
7 volatile void llmc_barrier_ss();
8 volatile void llmc_barrier_ll();
9
10 void* t0(void* data) {
11 x = 1;
12 // t0_fence
13 y = 1;
14 return 0;
15 }
16
17 void* t1(void* data) {
18 volatile int lx,ly;
19 ly = y;
20 // t1_fence
21 ly++;
22 lx = x;
23 ly--;
24 assert(!ly || lx);
25 return 0;
26 }
27
28 int main(int argc, char** argv) {
29 pthread_t th1, th2;
30 int R;
31 pthread_create(&th1, 0, &t0, 0);
32 pthread_create(&th2, 0, &t1, 0);
33 pthread_join(th1, NULL);
34 pthread_join(th2, &R);
35 return 0;
36 }
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APPENDIX B. LITMUS TESTS B.7. MESSAGE PASSING LITMUS TEST WITH DEP. (MP-DEP)

LLVM IR generated by clang MP-dep.c -S -flto -emit-llvm -oMP-dep.ll -O3

1 ; ModuleID = ’pMP-dep.c’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64

:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4
5 %union.pthread_attr_t = type { i64, [48 x i8] }
6
7 @x = common global i32 0, align 4
8 @y = common global i32 0, align 4
9 @.str = private unnamed_addr constant [10 x i8] c"!ly || lx\00", align 1

10 @.str1 = private unnamed_addr constant [10 x i8] c"pMP-dep.c\00", align 1
11 @__PRETTY_FUNCTION__.t1 = private unnamed_addr constant [17 x i8] c"void *t1(void *)\00",

align 1
12
13 ; Function Attrs: nounwind uwtable
14 define noalias i8* @t0(i8* nocapture %data) #0 {
15 store volatile i32 1, i32* @x, align 4, !tbaa !0
16 tail call void (...)* @llmc_barrier_ss() #4
17 store volatile i32 1, i32* @y, align 4, !tbaa !0
18 ret i8* null
19 }
20
21 declare void @llmc_barrier_ss(...) #1
22
23 ; Function Attrs: nounwind uwtable
24 define noalias i8* @t1(i8* nocapture %data) #0 {
25 %lx = alloca i32, align 4
26 %ly = alloca i32, align 4
27 %1 = load volatile i32* @y, align 4, !tbaa !0
28 store volatile i32 %1, i32* %ly, align 4
29 %2 = load volatile i32* @x, align 4, !tbaa !0
30 store volatile i32 %2, i32* %lx, align 4
31 %3 = load volatile i32* %ly, align 4
32 %4 = icmp eq i32 %3, 0
33 br i1 %4, label %9, label %5
34 ; <label>:5 ; preds = %0
35 %6 = load volatile i32* %lx, align 4
36 %7 = icmp eq i32 %6, 0
37 br i1 %7, label %8, label %9
38 ; <label>:8 ; preds = %5
39 call void @__assert_fail(i8* getelementptr inbounds ([10 x i8]* @.str, i64 0, i64 0), i8*

getelementptr inbounds ([10 x i8]* @.str1, i64 0, i64 0), i32 23, i8* getelementptr
inbounds ([17 x i8]* @__PRETTY_FUNCTION__.t1, i64 0, i64 0)) #5

40 unreachable
41 ; <label>:9 ; preds = %5, %0
42 ret i8* null
43 }
44
45 ; Function Attrs: noreturn nounwind
46 declare void @__assert_fail(i8*, i8*, i32, i8*) #2
47 ; Function Attrs: nounwind uwtable
48 define i32 @main(i32 %argc, i8** nocapture %argv) #0 {
49 %th1 = alloca i64, align 8
50 %th2 = alloca i64, align 8
51 %R = alloca i32, align 4
52 %1 = call i32 @pthread_create(i64* %th1, %union.pthread_attr_t* null, i8* (i8*)* @t0, i8*

null) #4
53 %2 = call i32 @pthread_create(i64* %th2, %union.pthread_attr_t* null, i8* (i8*)* @t1, i8*

null) #4
54 %3 = load i64* %th1, align 8, !tbaa !3
55 %4 = call i32 @pthread_join(i64 %3, i8** null) #4
56 %5 = load i64* %th2, align 8, !tbaa !3
57 %6 = bitcast i32* %R to i8**
58 %7 = call i32 @pthread_join(i64 %5, i8** %6) #4
59 ret i32 0
60 }
61 ; Function Attrs: nounwind
62 declare i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*) #3
63 declare i32 @pthread_join(i64, i8**) #1
64 attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false

" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="
false" "unsafe-fp-math"="false" "use-soft-float"="false" }

65 attributes #1 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-
pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe
-fp-math"="false" "use-soft-float"="false" }

66 attributes #2 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="
false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math
"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

67 attributes #3 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-
frame-pointer-elim-non-leaf"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "
unsafe-fp-math"="false" "use-soft-float"="false" }

68 attributes #4 = { nounwind }
69 attributes #5 = { noreturn nounwind }
70 !0 = metadata !{metadata !"int", metadata !1}
71 !1 = metadata !{metadata !"omnipotent char", metadata !2}
72 !2 = metadata !{metadata !"Simple C/C++ TBAA"}
73 !3 = metadata !{metadata !"long", metadata !1}

79





C
Implementations of Experiments

C
1

Concurrent counting

These are C++ and LLVM IR implementation of multiple threads concurrently incrementing a sin-
gle atomic integer. They are discussed in Section 5.2.1.

C++ implementation

1 #include <pthread.h>
2 #include <atomic>
3 #include <assert.h>
4
5 #define THREADS 3
6 #define INCS 2
7
8 extern "C" {
9 volatile void llmc_barrier_release();

10 volatile void llmc_barrier_acquire();
11 volatile bool __atomic_compare_exchange_llmc(int, void*, void*, void const*, std::memory_order ms, std::memory_order mf);
12 }
13
14 namespace llmc {
15 template<typename T>
16 class atomic {
17 private:
18 T data;
19 public:
20 void operator=(T const& d) volatile {
21 llmc_barrier_release();
22 data = d;
23 }
24 void store(T const& d, std::memory_order model = std::memory_order_seq_cst) volatile {
25 if(model==std::memory_order_release || model==std::memory_order_seq_cst)
26 llmc_barrier_release();
27 data = d;
28 }
29 T load(std::memory_order model = std::memory_order_seq_cst) volatile {
30 T d = data;
31 if(model==std::memory_order_acquire || model==std::memory_order_seq_cst)
32 llmc_barrier_acquire();
33 return d;
34 }
35 bool compare_exchange_strong(T& expected, T const& desired) volatile {
36 return __atomic_compare_exchange_llmc(sizeof(T), (void*)&data, (void*)&expected, (void*)&desired, std::memory_order_relaxed, std

::memory_order_relaxed);
37 }
38 bool compare_exchange_weak(T& expected, T const& desired) volatile {
39 return __atomic_compare_exchange_llmc(sizeof(T), (void*)&data, (void*)&expected, (void*)&desired, std::memory_order_relaxed, std

::memory_order_relaxed);
40 }
41 };
42 }
43
44 volatile llmc::atomic<int> atomicInt;
45
46 void* tadd(void* data) {
47 int i=0;
48 while(i<INCS) {
49 int j = i;
50 while(!atomicInt.compare_exchange_weak(j,j+1));
51 i++;
52 }
53 return NULL;
54 }
55
56 int main(int argc, char** argv) {
57 atomicInt = 0;
58 pthread_t t[4];
59 for(int i=THREADS-1; i--;) {
60 pthread_create(&t[i], 0, &tadd, 0);
61 }
62 tadd(NULL);
63 for(int i=THREADS-1; i--;) {
64 pthread_join(t[i], nullptr);
65 }
66 assert(atomicInt.load()==THREADS*INCS);
67 }
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C.1. CONCURRENT COUNTING APPENDIX C. IMPLEMENTATIONS OF EXPERIMENTS

LLVM IR generated by clang tadd.cpp -std=c++11 -pthread -S -flto -emit-llvm -otadd.ll -O3

1 ; ModuleID = ’tadd.cpp’
2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0

:64:64-f80:128:128-n8:16:32:64-S128"
3 target triple = "x86_64-unknown-linux-gnu"
4
5 %"class.llmc::atomic" = type { i32 }
6 %union.pthread_attr_t = type { i64, [48 x i8] }
7
8 @atomicInt = global %"class.llmc::atomic" zeroinitializer, align 4
9 @.str = private unnamed_addr constant [22 x i8] c"atomicInt.load()==2*1\00", align 1

10 @.str1 = private unnamed_addr constant [9 x i8] c"tadd.cpp\00", align 1
11 @__PRETTY_FUNCTION__.main = private unnamed_addr constant [23 x i8] c"int main(int, char **)\00", align 1
12
13 ; Function Attrs: uwtable
14 define noalias i8* @_Z4taddPv(i8* nocapture %data) #0 {
15 %j = alloca i32, align 4
16 %1 = alloca i32, align 4
17 %2 = bitcast i32* %j to i8*
18 %3 = bitcast i32* %1 to i8*
19 store i32 0, i32* %j, align 4, !tbaa !0
20 br label %4
21
22 ; <label>:4 ; preds = %._crit_edge, %0
23 %5 = phi i32 [ %phitmp, %._crit_edge ], [ 1, %0 ]
24 store i32 %5, i32* %1, align 4, !tbaa !0
25 %6 = call zeroext i1 @__atomic_compare_exchange_llmc(i32 4, i8* bitcast (%"class.llmc::atomic"* @atomicInt to i8*), i8* %2, i8*

%3, i32 0, i32 0)
26 br i1 %6, label %7, label %._crit_edge
27
28 ._crit_edge: ; preds = %4
29 %.pre = load i32* %j, align 4, !tbaa !0
30 %phitmp = add i32 %.pre, 1
31 br label %4
32
33 ; <label>:7 ; preds = %4
34 ret i8* null
35 }
36
37 ; Function Attrs: uwtable
38 define i32 @main(i32 %argc, i8** nocapture %argv) #0 {
39 %j.i = alloca i32, align 4
40 %1 = alloca i32, align 4
41 %t = alloca [4 x i64], align 16
42 call void @llmc_barrier_release()
43 store volatile i32 0, i32* getelementptr inbounds (%"class.llmc::atomic"* @atomicInt, i64 0, i32 0), align 4, !tbaa !0
44 %2 = getelementptr inbounds [4 x i64]* %t, i64 0, i64 0
45 %3 = call i32 @pthread_create(i64* %2, %union.pthread_attr_t* null, i8* (i8*)* @_Z4taddPv, i8* null) #4
46 %4 = bitcast i32* %j.i to i8*
47 call void @llvm.lifetime.start(i64 4, i8* %4)
48 %5 = bitcast i32* %1 to i8*
49 call void @llvm.lifetime.start(i64 4, i8* %5)
50 store i32 0, i32* %j.i, align 4, !tbaa !0
51 store i32 1, i32* %1, align 4, !tbaa !0
52 %6 = call zeroext i1 @__atomic_compare_exchange_llmc(i32 4, i8* bitcast (%"class.llmc::atomic"* @atomicInt to i8*), i8* %4, i8*

%5, i32 0, i32 0)
53 br i1 %6, label %_Z4taddPv.exit.preheader, label %._crit_edge.i
54
55 _Z4taddPv.exit.preheader: ; preds = %._crit_edge.i, %0
56 %7 = load i64* %2, align 16, !tbaa !3
57 %8 = call i32 @pthread_join(i64 %7, i8** null)
58 %9 = load volatile i32* getelementptr inbounds (%"class.llmc::atomic"* @atomicInt, i64 0, i32 0), align 4, !tbaa !0
59 call void @llmc_barrier_acquire()
60 %10 = icmp eq i32 %9, 2
61 br i1 %10, label %13, label %12
62
63 ._crit_edge.i: ; preds = %0, %._crit_edge.i
64 %.pre.i = load i32* %j.i, align 4, !tbaa !0
65 %phitmp.i = add i32 %.pre.i, 1
66 store i32 %phitmp.i, i32* %1, align 4, !tbaa !0
67 %11 = call zeroext i1 @__atomic_compare_exchange_llmc(i32 4, i8* bitcast (%"class.llmc::atomic"* @atomicInt to i8*), i8* %4, i8*

%5, i32 0, i32 0)
68 br i1 %11, label %_Z4taddPv.exit.preheader, label %._crit_edge.i
69
70 ; <label>:12 ; preds = %_Z4taddPv.exit.preheader
71 call void @__assert_fail(i8* getelementptr inbounds ([22 x i8]* @.str, i64 0, i64 0), i8* getelementptr inbounds ([9 x i8]* @.str1

, i64 0, i64 0), i32 73, i8* getelementptr inbounds ([23 x i8]* @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #5
72 unreachable
73
74 ; <label>:13 ; preds = %_Z4taddPv.exit.preheader
75 ret i32 0
76 }
77
78 ; Function Attrs: nounwind
79 declare i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*) #1
80
81 declare i32 @pthread_join(i64, i8**) #2
82
83 ; Function Attrs: noreturn nounwind
84 declare void @__assert_fail(i8*, i8*, i32, i8*) #3
85
86 declare void @llmc_barrier_acquire() #2
87
88 declare void @llmc_barrier_release() #2
89
90 declare zeroext i1 @__atomic_compare_exchange_llmc(i32, i8*, i8*, i8*, i32, i32) #2
91
92 ; Function Attrs: nounwind
93 declare void @llvm.lifetime.start(i64, i8* nocapture) #4
94
95 attributes #0 = { uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-pointer-elim-non-leaf"="false" "no-

infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
96 attributes #1 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-pointer-elim-non-leaf"="false" "no

-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
97 attributes #2 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-pointer-elim-non-leaf"="false" "no-infs-fp-

math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
98 attributes #3 = { noreturn nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-frame-pointer-elim-non-leaf"="

false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
99 attributes #4 = { nounwind }

100 attributes #5 = { noreturn nounwind }
101
102 !0 = metadata !{metadata !"int", metadata !1}
103 !1 = metadata !{metadata !"omnipotent char", metadata !2}
104 !2 = metadata !{metadata !"Simple C/C++ TBAA"}
105 !3 = metadata !{metadata !"long", metadata !1}
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C
2

Michael-Scott queue

This is a C++ implementation of the Michael-Scott queue. Due to its size, we omit the LLVM IR
implementation. They are discussed in Section 5.2.2.

C++ implementation: headers, atomics, node (part 1/3)

1 #include <pthread.h>
2 #include <atomic>
3 #include <assert.h>
4
5 extern "C" {
6
7 volatile void llmc_assume(bool b);
8 volatile void llmc_barrier_seq_cst();
9 volatile void llmc_barrier_release();

10 volatile void llmc_barrier_acquire();
11 volatile void llmc_atomic_begin();
12 volatile void llmc_atomic_end();
13 void memcpy(void*, void*, int);
14 __uint32_t memcmp(void*, void*, int);
15 volatile bool __atomic_compare_exchange_llmc(int s, void* t, void* e, void const* d, std::memory_order ms, std::memory_order mf);
16
17 }
18
19 struct Node;
20
21 struct NodePtr {
22 public:
23 Node* ptr;
24 intptr_t count;
25
26 bool operator==(NodePtr const& other) {
27 return this->ptr == other.ptr
28 && this->count == other.count;
29 }
30
31 NodePtr(Node* volatile const& ptr, intptr_t const& count)
32 : ptr(ptr)
33 , count(count)
34 {
35 }
36
37 NodePtr(Node* const& ptr, intptr_t const& count)
38 : ptr(ptr)
39 , count(count)
40 {
41 }
42
43 NodePtr()
44 : ptr(nullptr)
45 , count(0)
46 {
47 }
48
49 volatile NodePtr& operator=(NodePtr const& d) volatile {
50 memcpy((void*)this,(void*)&d,sizeof(d));
51 return *this;
52 }
53
54 void store(NodePtr const& d, std::memory_order model = std::memory_order_seq_cst) volatile {
55 if(model==std::memory_order_release || model==std::memory_order_seq_cst)
56 llmc_barrier_release();
57 memcpy((void*)this,(void*)&d,sizeof(d));
58 }
59 NodePtr load(std::memory_order model = std::memory_order_seq_cst) volatile {
60 NodePtr d;
61 load(d,model);
62 return d;
63 }
64 void load(NodePtr& d, std::memory_order model = std::memory_order_seq_cst) volatile {
65 memcpy((void*)&d,(void*)this,sizeof(d));
66 if(model==std::memory_order_acquire || model==std::memory_order_seq_cst)
67 llmc_barrier_acquire();
68 }
69 bool compare_exchange_strong(NodePtr volatile& expected, NodePtr const& desired, std::memory_order const& mo = std::

memory_order_seq_cst) volatile {
70 return __atomic_compare_exchange_llmc(sizeof(NodePtr), (void*)this, (void*)&expected, (void*)&desired, mo, mo);
71 }
72 bool compare_exchange_weak(NodePtr volatile& expected, NodePtr const& desired, std::memory_order const& mo = std::

memory_order_seq_cst) volatile {
73 return __atomic_compare_exchange_llmc(sizeof(NodePtr), (void*)this, (void*)&expected, (void*)&desired, mo, mo);
74 }
75
76 };
77
78 struct Node {
79 public:
80 NodePtr next __attribute__ ((aligned (16)));
81 int data;
82 Node(): next(), data() {}
83 } __attribute__ ((aligned (16)));
84 int const MAX_NODES = 10;
85 Node globalMemory[MAX_NODES] __attribute__ ((aligned (16)));
86 bool inUse[MAX_NODES] __attribute__ ((aligned (16)));
87
88 Node* newNode() {
89 int i=0;
90 bool F = false;
91 bool T = true;
92 do {
93 i++;
94 assert(i<MAX_NODES);
95 F = false;
96 } while(!__atomic_compare_exchange_llmc(sizeof(bool), &inUse[i], &F, &T, std::memory_order_relaxed, std::memory_order_relaxed));
97 return &globalMemory[i];
98 }
99 void freeNode(Node* node) {

100 inUse[node-globalMemory] = false;
101 }
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C++ implementation: Michael-Scott queue (part 2/3)

102 struct MSQ {
103 public:
104 volatile NodePtr Head;
105 volatile NodePtr Tail;
106
107 public:
108 MSQ() {
109 Node* node = &globalMemory[1];
110 inUse[1] = true;
111 node->next = NodePtr(nullptr, 0);
112 Head = NodePtr(node, 0);
113 Tail = NodePtr(node, 0);
114 assert(Head.ptr==Tail.ptr);
115 }
116
117 void enqueue(int const& data, int nid) {
118 volatile NodePtr tail;
119 volatile NodePtr next;
120 volatile NodePtr tail2;
121 Node* node = newNode();//&globalMemory[nid];
122 node->data = data;
123 node->next.ptr = nullptr;
124 int i=0;
125 llmc_barrier_release(); // Can find this one: E || D; E; E; D; D (others should be ACQUIRE!)
126 while(true) {
127
128 tail.count = Tail.count;
129 tail.ptr = Tail.ptr;
130 llmc_barrier_seq_cst(); // not needed because of data dependency
131 next.ptr = tail.ptr->next.ptr;
132 next.count = tail.ptr->next.count;
133 llmc_barrier_seq_cst(); // Can find this one
134 tail2.ptr = Tail.ptr;
135 tail2.count = Tail.count;
136
137 if(tail.ptr==tail2.ptr && tail.count==tail2.count) {
138 if(!next.ptr) {
139 if(tail.ptr->next.compare_exchange_weak(next, NodePtr(node, next.count+1), std::memory_order_relaxed)) {
140 break;
141 }
142 } else {
143 Tail.compare_exchange_strong(tail, NodePtr(next.ptr, tail.count+1), std::memory_order_relaxed);
144 }
145 }
146 }
147 llmc_barrier_release(); // not needed because of data dependency
148 Tail.compare_exchange_strong(tail, NodePtr(node, tail.count+1), std::memory_order_relaxed);
149 }
150
151 bool dequeue(int& data) {
152 NodePtr head;
153 NodePtr head2;
154 NodePtr tail;
155 NodePtr next;
156 int i=0;
157 while(true) {
158
159 head.count = Head.count;
160 head.ptr = Head.ptr;
161
162 llmc_barrier_seq_cst(); // Verified. Can find this one: E; D || (E; D; D; E) or E; D || (E; D; D) (can block!) needs a

buffer size of 5
163
164 tail.ptr = Tail.ptr;
165 tail.count = Tail.count;
166
167 llmc_barrier_seq_cst(); // Verified. Can find this one: E || D; E; E; D; D needs a buffer size of 5
168
169 next.ptr = head.ptr->next.ptr;
170 next.count = head.ptr->next.count;
171
172 llmc_barrier_seq_cst(); // Verified. Can find this one: E; E; D || (D; E); D
173
174 head2.ptr = Head.ptr;
175 head2.count = Head.count;
176
177 if(head.ptr==head2.ptr && head.count==head2.count) { // Count is needed to fix: E; E; D || (D; E); D
178 if(head.ptr == tail.ptr) {
179 if(!next.ptr) return false;
180 Tail.compare_exchange_strong(tail, NodePtr(next.ptr, tail.count+1), std::memory_order_relaxed);
181 } else {
182 assert(next.ptr);
183 data = next.ptr->data;
184 assert(data);
185 if(Head.compare_exchange_weak(head, NodePtr(next.ptr, head.count+1), std::memory_order_relaxed)) {
186 assert(data);
187 break;
188 }
189 }
190 }
191 }
192 freeNode(head.ptr);
193 return true;
194 }
195
196 };
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C++ implementation: main (part 3/3)

197 MSQ msq;
198
199 void* E(intptr_t data) {
200 msq.enqueue(data, data+1);
201 return nullptr;
202 }
203
204 void* E1(void*) {
205 msq.enqueue(1, 2);
206 return nullptr;
207 }
208
209 void* E2(void*) {
210 msq.enqueue(2, 3);
211 return nullptr;
212 }
213
214 void* E3(void*) {
215 msq.enqueue(3, 4);
216 return nullptr;
217 }
218
219 void* D(void*) {
220 int data;
221 while(!msq.dequeue(data));
222 return (void*)(intptr_t)data;
223 }
224
225 int main(int argc, char** argv) {
226 pthread_t e1, d1;
227 pthread_t e2, d2;
228 pthread_t e3, d3;
229 intptr_t data[3];
230
231 data[0] = 0;
232 data[1] = 0;
233 data[2] = 0;
234
235 llmc_barrier_seq_cst();
236
237 E(1);
238 E(2);
239 E(3);
240 data[0] = (intptr_t)D(nullptr);
241 data[1] = (intptr_t)D(nullptr);
242 data[2] = (intptr_t)D(nullptr);
243
244 assert( (data[0]==1 && data[1]==2 && data[2]==3)
245 || (data[0]==1 && data[1]==3 && data[2]==2)
246 || (data[0]==2 && data[1]==1 && data[2]==3)
247 || (data[0]==2 && data[1]==3 && data[2]==1)
248 || (data[0]==3 && data[1]==1 && data[2]==2)
249 || (data[0]==3 && data[1]==2 && data[2]==1)
250 );
251 }
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C
3

Recursive Fibonacci algorithm

This is an LLVM implementation of a recursive Fibonacci algorithm.

LLVM IR generated by clang tadd.cpp -std=c++11 -pthread -S -flto -emit-llvm -otadd.ll -O3

1 define i32 @fib(i32 %n) {
2 entry:
3 %n1 = alloca i32
4 store i32 %n, i32* %n1
5 %deref = load i32* %n1
6 %_eq_ = icmp slt i32 %deref, 2
7 br i1 %_eq_, label %then, label %else
8
9 then: ; preds = %entry

10 %deref2 = load i32* %n1
11 ret i32 %deref2
12
13 else: ; preds = %entry
14 %deref3 = load i32* %n1
15 %_sub_ = sub i32 %deref3, 1
16 %_call_ = call i32 @fib(i32 %_sub_)
17 %deref4 = load i32* %n1
18 %_sub_5 = sub i32 %deref4, 2
19 %_call_6 = call i32 @fib(i32 %_sub_5)
20 %_add_ = add i32 %_call_, %_call_6
21 ret i32 %_add_
22 }
23
24 define i32 @main(i32 %argc, i8** %argv) {
25 entry:
26 %_call_ = call i32 @fib(i32 1)
27 ret i32 %_call_
28 }

86


	Introduction
	Bugs
	Hardware
	Program Verification
	LTSmin

	The LLVM Project
	Problem Statement
	Research Questions

	Contribution
	Organization

	Preliminaries
	Computer Architectures
	Memory instruction reordering

	The LLVM Project
	Intermediate Representation
	Memory Model
	Motivation for The LLVM Project

	LTSmin
	The pins Interface
	Motivation for LTSmin

	Related Work
	Related Approaches
	Related tools
	Comparison


	LLMC Design
	Design choices
	The Execution Model
	Preliminaries
	The Program
	The Execution of a Program
	Differences
	Example

	Mapping LLVM IR and LTSmin
	Mapping the state
	Initial state
	Next-state
	Thread Management
	Dependency Matrix

	Exploration strategy
	Soundness and completeness
	Deadlock and livelock detection


	LLMC Implementation
	Implementational Details
	Pointers
	Bounded buffer
	Exploration
	Features


	Results
	Validation
	Experiments
	Concurrent counting
	Michael-Scott queue

	Benchmarks
	Performance
	Implementation bottlenecks


	Conclusions
	Summary
	Evaluation
	Considerations
	So where does that leave llmc?

	Future Work
	Future Features
	Future Research
	Future test cases


	Glossary
	Glossary

	Litmus Tests
	Store Buffer Litmus Test (SB)
	Summary of inserted barriers
	C and LLVM IR implementations
	Traces to error

	Load Buffer Litmus Test (LB)
	Summary of inserted barriers
	C and LLVM IR implementations
	Traces to error

	Dependent Load Litmus Test (DL)
	C and LLVM IR implementations

	Store propagation litmus test (IRIW)
	Summary of inserted barriers
	C and LLVM IR implementations
	Traces to error

	Store prop.+dep. litmus test (IRIW+addr)
	Summary of inserted barriers
	C and LLVM IR implementations

	Message Passing Litmus Test (MP)
	Summary of inserted barriers
	C and LLVM IR implementations
	Traces to error

	Message Passing Litmus Test with dep. (MP-dep)
	Summary of inserted barriers
	C and LLVM IR implementations


	Implementations of Experiments
	Concurrent counting
	Michael-Scott queue
	Recursive Fibonacci algorithm


