
Master Thesis

Automated ANTLR Tree walker

Generation

Author: A.J. Admiraal
Email: alex@admiraal.dds.nl

Institute: University of Twente
Chair: Formal Methods and Tools
Date: January 25, 2010

Automated ANTLR Tree walker

Generation

Supervisors
dr. ir. Theo Ruys
prof. dr. ir. Joost-Pieter Katoen
dr. ir. Arend Rensink

Abstract

ANTLR is a parser generator that allows the user to write �exible multi-pass language parsers. It
can generate a parser that builds an abstract syntax tree from the parsed text, and it can generate
tree walkers that can parse this tree. A typical ANTLR multi-pass language parser consists of
one or more tree walkers, which can be used as checker, optimiser and/or code generator.

Ensuring a tree walker correctly matches the abstract syntax trees produced by the parser is a
manual task. When a change in the parser speci�cation a�ects the abstract syntax tree, all tree
walkers need to be inspected and changed accordingly. Mistakes can lead to nontrivial errors and
may therefore be hard to �nd and solve. This can be a signi�cant problem, both for experienced
and inexperienced users, both during development and maintenance of a language parser.

The root-cause of this problem lies in the redundancy between the ANTLR parser and tree walker
speci�cations. Both specify the syntax of the abstract syntax tree; the parser speci�es how it is
to be created and the tree walker how it is to be parsed.

This thesis introduces ANTLRTG , an extension for ANTLR that allows the user to automatically
generate a matching tree walker based on the speci�cation of an ANTLR parser. An algorithm
has been created, using a tree pattern algebra, that can determine a tree walker that is able to
parse all possible tree walkers that can be generated by a given parser. ANTLRTG has been
fully implemented and is demonstrated through a case-study that implements a compiler for the
Triangle language.

iii

Preface

The past few years, I have used ANTLR to build several parsers and compilers. Several times I
ran into the problem that I have identi�ed in this thesis, but it was only during the �rst months of
my master project that I found a potential solution for it. After discussing this with Theo Ruys,
my primary supervisor, we decided to change the scope of the project and I started implementing
and formalising the algorithm.

This is when I learned that writing an algorithm in code is one thing, but writing an algorithm
on paper is something completely di�erent. It took me quite some time to get the algorithm
from the idea and the proof-of-concept in code to what it is today on paper, and I learned a lot
of new skills along the way.

Halfway through my project, I got a job o�er at Philips Healthcare. As part of my Bachelor
degree, I have done several projects at the Academic Medical Center in Amsterdam, which built
up my a�nity with Healthcare. Therefore, Philips Healthcare was, and had been for a while, on
the top of my list of companies where I would like to work, I therefore decided I should accept
this o�er and continue my project part-time.

I would like to thank my supervisors Theo Ruys, Joost-Pieter Katoen and Arend Rensink for
their support. A special thanks to Theo Ruys for reading and correcting this thesis and for the
help and ideas that made it possible for me to formalise the algorithm. Finally, I wish to thank
my colleagues at Philips Healthcare for pushing me to keep working on this thesis.

iv

Contents

1 Introduction 1

1.1 ANTLR . 1

1.1.1 Compilation phases . 2

1.1.2 Abstract syntax trees . 3

1.1.3 EBNF . 3

1.1.4 Concrete Syntax Trees . 5

1.2 Problem description . 6

1.3 Overview of the thesis . 7

2 Preliminaries and related work 9

2.1 Language parsing . 9

2.1.1 Grammars . 9

2.1.2 Abstract Syntax Trees . 10

2.2 Tree representation . 11

2.2.1 Classical notation . 11

2.2.2 First-child, next-sibling notation . 12

2.2.3 Linear notation . 13

2.2.4 Properties of FCNS trees . 13

2.3 Related work . 15

3 Generating the tree grammar 17

3.1 Rationale . 17

3.2 Tree pattern algebra . 17

3.2.1 Tree patterns . 18

3.2.2 Operations on tree patterns . 19

3.2.3 Master and slave patterns . 22

v

CONTENTS

3.3 The context-free tree grammar . 23

3.4 Building the AST . 24

3.4.1 Rewriting production rules . 24

3.4.2 Single carets . 26

3.4.3 Normal-form . 26

3.5 Modelling an annotated context-free grammar . 27

3.5.1 Overview . 28

3.5.2 Patterns that provide the root . 28

3.5.3 Iterating through the rule . 29

3.6 Constructing the context-free tree grammar . 33

3.6.1 Overview . 34

3.6.2 Start symbol . 35

3.6.3 Pattern rules . 36

4 Optimisation of the tree grammar 41

4.1 Macro expansion . 41

4.2 Rule merging . 42

4.2.1 Limitations to rule merging . 43

4.3 Further optimisations . 45

5 Implementation of ANTLRTG 47

5.1 Architectural overview . 48

5.1.1 Integrated parser speci�cation . 48

5.1.2 Walker generator . 48

5.2 Design . 49

5.2.1 Algorithm . 49

5.2.2 Grammar . 50

5.3 Usage . 51

5.3.1 Action annotations . 51

5.3.2 Invocation . 53

6 Case study: Triangle 55

6.1 Design of the Triangle compiler . 56

6.1.1 Lexical analyser and parser . 56

6.1.2 Checker . 56

vi

6.1.3 Generator . 60

6.2 Generated C code . 60

6.3 Evaluation . 62

7 Conclusions 65

7.1 Summary . 65

7.2 Evaluation of ANTLRTG . 65

7.3 Future work . 66

A ANTLRTG sources 69

A.1 FCNSTree class . 69

A.2 TreePattern class . 75

A.3 ANTLRTG grammar . 82

B Triangle compiler sources 97

B.1 Integrated parser speci�cation for Triangle . 97

B.2 Generated checker . 106

B.3 Generated generator . 113

Software licenses 121

Bibliography 127

vii

viii

List of Figures

1.1 Several phases of a compiler . 2

1.2 An AST for the assignment statement �a = 1 + 2� 3

1.3 An example ANTLR parser speci�cation . 4

1.4 An EBNF grammar fragment with tree shaping operators 5

1.5 A tree walker speci�cation . 5

1.6 An AST for the sentence �1 + -(a + b)� . 5

1.7 A CST for the sentence �1 + -(a + b)� as parsed by the grammar of �gure 1.3 6

2.1 A context-free grammar . 10

2.2 An annotated context-free grammar, based on �gure 2.1 10

2.3 The sentence S1 parsed by the grammar G from �gure 2.2 11

2.4 A subsection of 1 ≤ depth ≤ 2 . 12

2.5 A subsection of 1 ≤ depth ≤ 2, using the Filial-Heir notation 12

2.6 The linear notation of a tree . 13

2.7 The di�erences between ordinary trees and FCNS-trees 14

3.1 The tree pattern template . 18

3.2 Some example tree patterns . 19

3.3 Examples for the stacking operator �: F+ → F+ 21

3.4 Template for the function Top : F+ → F+ . 21

3.5 Template for the function Bottom : F+ → F+ 21

3.6 Examples for the functions Top : F+ → F+ and Bottom : F+ → F+ 22

3.7 Example for the function Collapse : F+ → F . 22

3.8 The elementary tree patterns . 23

3.9 Two example trees. 25

3.10 A context-free tree grammar that is able to parse the trees from �gure 3.9. . . . 25

ix

LIST OF FIGURES

3.11 The context-free tree grammar from �gure 3.10 using the linear notation 25

3.12 The AST for the rule �A B C^^ D E^^ F G!�, given the sentence �A B C D E F G� 25

3.13 A production rule. 25

3.14 The production rule from �gure 3.13 written down using tree patterns 26

3.15 The production rule from �gure 3.14 in normal-form 27

3.16 A formula for all possible ASTs of �gure 3.15. 27

3.17 The di�erent trees generated by the formula of �gure 3.16. 28

3.18 An automaton for the grammar from �gure 3.15. 29

3.19 Pseudo-code for obtaining the set RT from an automaton. 30

3.20 Pseudo-code for obtaining the set CH+(p) from an automaton for a given pattern. 31

3.21 Pseudo-code for obtaining the set CH−(p) from an automaton for a given pattern. 32

3.22 An example production rule. 34

3.23 The sets RT , CH+ and CH− for the production rule from �gure 3.22. 34

3.24 An AST generated by the production rule of �gure 3.22. 34

3.25 A tree grammar that can parse the tree from �gure 3.24. 35

3.26 A tree grammar that can parse any tree from the production rule from �gure 3.22. 36

3.27 De�nitions 3.6.1 and 3.6.2 applied to all patterns from �gure 3.23. 37

3.28 De�nitions 3.6.3 and 3.6.4 applied to all patterns from �gure 3.23. 39

3.29 The results from �gures 3.27 and 3.28 in one grammar. 40

4.1 An example of �Macro expansion� . 42

4.2 A trivial mergable context-free tree grammar . 43

4.3 The context-free tree grammar from �gure 4.2 merged according to de�nition 4.2.1 43

4.4 A context-free tree grammar with rules that can not be merged 44

4.5 The result of a merge of rules start and ruleA from 4.4 44

4.6 The result of a merge of rules start and ruleB from 4.4 44

4.7 An unoptimised context-free tree grammar . 46

4.8 The optimisations from section 4.3 applied to the tree grammar from �gure 4.7 . 46

5.1 Architectural overview . 47

5.2 Walker generator . 48

5.3 The dependencies between packages in org.antlrtg.* 49

5.4 The simpli�ed UML class diagram for org.antlrtg.algo 49

5.5 The simpli�ed UML class diagram for org.antlrtg.grammar 50

5.6 An ANTLR/EBNF parser speci�cation . 52

x

5.7 The generated tree walker for �gure 5.6. 52

5.8 Some action annotation examples. 53

5.9 Adding ANTLRTG to an ANT build script . 54

6.1 A simple Triangle example . 55

6.2 Triangle compiler overview . 56

6.3 ANTLR/EBNF speci�cation of the parser . 57

6.4 Additional AST annotations follow the declarations and de�nitions. 57

6.5 Figure 6.3 annotated with the checker code. 58

6.6 The checker code generated by ANTLRTG for �gure 6.5. 59

6.7 Figure 6.3 annotated with the generator code. 61

6.8 Compiling the generated C code. 62

6.9 The generated C code for the example of �gure 6.1. 63

xi

xii

Chapter 1

Introduction

Ever since the �rst compiler was created by Grace Hopper in 1952 for the A-0 programming
language [1], compilers have become more and more prominent tools for writing computer soft-
ware. Over the years the responsibilities of a compiler have been extended signi�cantly. The
early compilers simply translated a piece of human readable source code into a machine language,
where the higher level programming languages were relatively close to the machine languages.
Modern compilers have to parse signi�cantly more complex languages, do contextual analysis to
provide the programmer with helpful error and warning messages and do complex optimisations.

Today, the divide and conquer paradigm [2] is used on many large-scale compilers; the compilation
task is split up into a series of simple tasks, or phases, which can be executed separately. This
design strategy was adopted by the Production Quality Compiler-Compiler Project (PQCC) at
Carnegie Mellon University [3]. Due to the separation of the di�erent responsibilities of the
compiler, it becomes possible to develop complex compilers for complex languages such as C++,
Java and C#. Today there are many compiler-compilers, or parser generators, available.

This thesis focuses on one speci�c parser generator: ANTLR [4]. One of the key features of
ANTLR is that the format it uses to specify the syntax of a language is very similar to EBNF
[5]. This chapter will brie�y introduce ANTLR and then states the problem that we are going
to solve.

1.1 ANTLR

ANTLR [6] [4] is a parser generator that can parse language speci�cations in an EBNF-like syntax
and generate C, C++, Java, Python, C# or Objective-C source code for a parser that parses
the speci�ed language. The EBNF language speci�cation can be annotated with source code
during the parsing process. ANTLR distinguishes three compilation phases; the lexical analysis
phase, the parsing phase and tree walking phases. An ANTLR generated compiler usually at
least implements the lexical analysis and parsing phases, and can optionally add one or more
tree walking phases. A few examples for tree walking phases are checking the logical correctness,
optimisation and generating assembly code.

1

Introduction

1.1.1 Compilation phases

A typical compiler �rst uses the lexical analyser, or �Lexer�, to analyse the input �le. The lexical
analyser is responsible for grouping the characters from the input �le, or character stream, into
a stream of words or tokens. Using the token stream as an input; the parser then parses this
token stream and creates a tree of tokens, called an �Abstract Syntax Tree� or AST. After this
phase, one or more tree walking phases can use and modify this AST. Figure 1.1 schematically
demonstrates this concept. Modi�cation of the AST is an important part of the tree walking
phases, for example the phase that checks the logical correctness, or �Checker�, might annotate
all variables with a reference to their declaration. And the optimisation phase might change a
construction that models �a = 1 + 2� into �a = 3�.

Character stream

Lexer
Token stream

Parser
AST

Checker
AST

Optimiser
AST

Generator

Machine code

Interpreter

Figure 1.1: Several phases of a compiler

The lexical analyser

The lexical analyser is responsible for converting the character stream into a token stream. For
ANTLR, the EBNF speci�cation of the lexical analyser speci�es exactly how tokens can be
recognised. Lexical analysis is a well understood process, more information on this can be found
in many places, for example in [7]. This thesis will focus mainly on the parsing and tree walking
phases and the AST data structures in between. For more information on the lexical analyser
as provided by ANTLR, please refer to [8].

The parser

The parser is responsible for creating the initial AST from the token stream that the lexical
analyser has produced. The EBNF speci�cation of the language is used to determine the structure
of the tree, it can be annotated with special tree shaping operators to control the shape of the
AST. An example parser speci�cation is demonstrated in �gure 1.3.

The tree walkers

A tree walker is used to process the AST that has been produced by the parser. Basically
a tree walker is a parser that parses an AST instead of a token stream. Checking phases or
optimisation phases are usually implemented using tree walkers. To let ANTLR generate a tree
walker, one has to write an EBNF tree-walker speci�cation for the AST that has been produced

2

by the parser. Because the shape of the AST depends on the input sentences and the parser
speci�cation, writing a tree walker speci�cation requires speci�c knowledge on both. An example
tree walker speci�cation is demonstrated in �gure 1.5.

1.1.2 Abstract syntax trees

An Abstract Syntax Tree, or �AST�, is a �nite, directed, labelled tree, where each node repre-
sents a programming language construct, the children of each node represent components of the
construct. Figure 1.2 demonstrates a simple AST for the assignment statement �a = 1 + 2�.

=
�
a
@
+
�
1
@
2

Figure 1.2: An AST for the assignment statement �a = 1 + 2�

When the compiler tasks are separated by multiple phases, an AST is often used as an interme-
diate structure between the parsing phase and the other phases. The AST should only contain
relevant information, where relevant is determined by the language that is being parsed. For
example, for the programming language C, semicolons and commas are discarded, where paren-
theses can usually only be recognised by the shape of the tree. For example �a = 1 + 2;� and
�a = (1 + 2);� would most likely be parsed to the same AST as depicted in �gure 1.2.

1.1.3 EBNF

Extended Backus-Naur form, or �EBNF�, is a commonly used notation for context-free grammars
and is an ISO/IEC standard [5]. EBNF was originally developed by Niklaus Wirth [9] based on
the Backus-Naur form, or �BNF�, notation that was developed by John Backus and Peter Naur.
EBNF is intended to be extensible, this means that many variants of EBNF currently exist.

EBNF syntax for ANTLR parsers

ANTLR uses a specialised variant of EBNF, where the operators for repetition, concatenation,
option, etc. have been replaced by operators that are more commonly used in regular expressions.
This variant of EBNF is very similar to the variant of EBNF that the W3C uses to specify the
XML syntax [10]. Table 1.1 explains the operators that ANTLR uses in its EBNF syntax.

All references to EBNF hereafter refer to the ANTLR speci�c version of EBNF, unless otherwise
noted. Please refer to [8] for all details on this version of EBNF. Figure 1.3 shows a fragment of
an EBNF speci�cation for a simple language. Assuming that value matches decimal numbers
and identifier literal identi�ers, the grammar fragment matches sentences like: �a + b + 3 +

-c" and �1 + -(a + b)".

Besides the operators demonstrated above, ANTLR provides tree shaping operators in its EBNF
extensions. Table 1.2 brie�y explains these operators. When it is the intention to use the AST,

3

Introduction

ANTLR EBNF Explanation
A B A, B Matches A followed by B.
A | B A | B Matches A or B.
A? [A] Matches zero or one occurrences of A.
A+ A, {A} Matches one or more occurrences of A.
A* {A} Matches zero or more occurrences of A.

Table 1.1: ANTLR EBNF operators versus the original EBNF operators

expression
: operand ("+" operand)*
;

operand
: ("-")? operand
| "(" expression ")"
| value
| identifier
;

Figure 1.3: An example ANTLR parser speci�cation

that is generated by the parser, as input for a tree walker, it may be desirable to use these
tree shaping operators provided by ANTLR. Figure 1.4 demonstrates the grammar from �gure
1.3 annotated with the tree shaping operators provided by ANTLR. In this grammar the add
(+) and invert (-) operators have been annotated with a double-caret (^^) denoting that they
should form a node in the AST, the other elements shall form leafs. The parentheses have been
annotated with an exclamation mark (!) to indicate that they are not relevant and should not
be taken into the AST at all.

Operator Explanation
A^^ A becomes the parent node for this EBNF rule.
A^ A becomes the parent node for this section.
A! A should not be taken into the AST.

Table 1.2: ANTLR tree shaping operators

If the sentence �1 + -(a + b)� were to be parsed by a parser generated from the EBNF grammar
from �gure 1.4, the AST from �gure 1.6 would be generated.

EBNF syntax for ANTLR tree walkers

The EBNF syntax that ANTLR uses for tree-walkers is slightly di�erent from the one used for
parsers. The tree shaping operators are not used for tree walkers, a tree operator is introduced
instead: �^()�. The �rst terminal or non-terminal between the parentheses of the tree operator
is considered to be a parent in the AST subtree currently being parsed. The other terminals

4

expression
: operand ("+"^^ operand)*
;

operand
: ("-"^^)? operand
| "("! expression ")"!
| value
| identifier
;

Figure 1.4: An EBNF grammar fragment with tree shaping operators

or non-terminals are considered to be the children of this parent. Figure 1.5 shows the EBNF
speci�cation for the tree walker that is able to parse all ASTs that can be generated by the parser
speci�cation of �gure 1.4.

expression
: ^("+" expression expression)
| ^("-" expression)
| value
| identifier
;

Figure 1.5: A tree walker speci�cation

For example, consider the AST of �gure 1.6 with the tree walker speci�cation of �gure 1.5. The
root of the AST �res the �rst alternative of the tree walker speci�cation. This rule demands a
node �+� with two children conforming to the alternative expression, in this case the left child
is a value and the right child is a node �-� with one child. This child is again a node �+� with
two children, both conforming to the alternative identifier.

+
�
1
@
-

+
�
a
@
b

Figure 1.6: An AST for the sentence �1 + -(a + b)�

1.1.4 Concrete Syntax Trees

The Concrete Syntax Tree, or �CST�, is used to model the parsing of a grammar. In a non-empty
Concrete Syntax Tree, the root node is always the start symbol of the grammar that was used

5

Introduction

to parse a sentence. The leafs consists of all terminals that were encountered while parsing a
sentence. The paths from the leafs to the root in the CST contain all encountered non-terminals
that were found while parsing the sentence. The CST is also known as a �parse tree�.

A CST is useful for demonstrating how a sentence is related to a grammar. For example, �gure
1.7 demonstrates a CST for the sentence �1 + -(a + b)� as parsed by the grammar of �gure 1.3.
For every terminal one can trace back all non-terminals to the start symbol. More information
on CSTs can be found in any compiler construction textbook, such as [7].

expression

operand

value

1 +

operand

-

operand

(

expression

operand

identifier

a +

operand

identifier

b)

Figure 1.7: A CST for the sentence �1 + -(a + b)� as parsed by the grammar of �gure 1.3

1.2 Problem description

Language parsers and translators are widely used software components; from relatively simple
parsers for con�guration �les to extremely complex parsers such as C++ compilers. For many
languages, one or two phases, or passes, are su�cient. ANTLR excels in ease of use for these
kinds of languages. There is a group of languages that need many di�erent passes over the AST.
For example, highly optimised C or C++ compilers. For this approach, using ANTLR is not
ideal.

As explained in section 1.1.1, the tree walker can be seen as a parser for the AST that was
produced by the previous phase. While writing the tree walker speci�cation, the developer needs
to know exactly how the AST is shaped with respect to the language speci�cation. Which requires
detailed knowledge on the parser speci�cation and the way tree shaping operators behave. This
leads to several research questions:

• With each change of the parser speci�cation, all tree walker speci�cations that rely on this
parser speci�cation have to be changed accordingly. Is it possible to automatically update
tree walker speci�cations after changes on the parser speci�cation?

6

• A parser speci�cation holds all information on the Abstract Syntax Trees that can be
generated. Is it possible to automatically generate the ANTLR tree walker speci�cation,
given the ANTLR parser speci�cation?

• A parser speci�cation should precisely de�ne the sentences of the source language. A
tree walker, on the other hand, does not have to follow the source language precisely.
Consequently, it is common practise to create tree walker speci�cations that are much
more generic and concise than the corresponding parser speci�cation. Is it possible to
automate this simpli�cation process?

All information that is needed to build a tree walker speci�cation is already present in the
parser speci�cation. Therefore it should be possible to automatically generate a bare tree walker
speci�cation based on the parser speci�cation. This thesis will try to create an algorithm to
generate a skeleton tree walker speci�cation from a parser speci�cation.

1.3 Overview of the thesis

Chapter 2 will introduce some necessary background information and introduce some related
work. Chapter 3 will provide an algorithm that is able to extract one or more tree walkers from
an ANTLR parser speci�cation. This chapter will provide a detailed overview of the issues that
arise when extracting the required information from the parser speci�cation and formalises the
algorithm using a tree pattern algebra. Chapter 4 will introduce several methods that can be
used to generalise the generated tree walker speci�cations to improve their practical usability.

Chapter 5 will introduce an implementation for the solution mentioned in chapters 3 and 4. This
solution will then be evaluated for its practical usability in the case study described in chapter
6. This case study involves the implementation of a simple translator which consists of a parser
and two tree walkers.

Finally, chapter 7 provides a small summary of the results, conclusions and an overview of any
future work.

7

8

Chapter 2

Preliminaries and related work

2.1 Language parsing

2.1.1 Grammars

Ever since the Algol project [11], the formal speci�cation of a language almost always involves
some form of a context-free grammar [12]. The context-free grammar is usually used to specify
the syntax of a language, constructions that can not be speci�ed using a context-free grammar
are usually considered the semantics of a language. For example the sentence �a = 1;� is for
many languages a syntactical correct sentence. However, if the variable �a� is not de�ned within
the scope of the statement; the sentence is semantically incorrect for many languages, because
�a� was not de�ned.

De�nition 2.1.1 presents the context-free grammar as de�ned by [12] with some minor adapta-
tions to suit the context-free grammars de�ned in ANTLR. Figure 2.1 demonstrates an example
context-free grammar.

De�nition 2.1.1 A context-free grammar G is denoted by a 4-tuple (N,T,R, S), where N is a
�nite nonempty set of non-terminals, T a �nite, nonempty set of terminals and S ∈ N the start
symbol. The alphabet of G is denoted by N ∪ T . R is a �nite set of production rules: for each
r ∈ R : n→ α, where n ∈ N . Here α can be de�ned using EBNF:
α = a | A | (α)op | α1α2 | α1|α2.
op = * | + | ? | .

with a ∈ N and A ∈ T .

To accommodate the tree shaping operators, as explained in section 1.1.3, the de�nition of the
context-free grammar will be extended with the annotations in de�nition 2.1.2. Any reference
hereafter to a parser speci�cation will refer to an annotated context-free grammar. Figure 2.2
annotates the context-free grammar of �gure 2.1 with tree shaping operators.

De�nition 2.1.2 An annotated context-free grammar G′ is denoted by a 4-tuple (N,T ′, R, S),
where N is a �nite nonempty set of non-terminals, T ′ a �nite nonempty set of annotated termi-
nals and S ∈ N the start symbol. The alphabet of G′ is denoted by N ∪ T ′. R is a �nite set of

9

Preliminaries and related work

start
: ((A B C)* D rule)* (K L M)?
;

rule
: (E F G (rulesub)*)+
| K L M
;

rulesub
: H I J
;

Figure 2.1: A context-free grammar

production rules: for each r ∈ R : n→ α, where n ∈ N . Each t ∈ T ′ can optionally be annotated
with either ! or ^^. α can be de�ned using EBNF:
α = a | A | (α)op | α1α2 | α1|α2.
op = * | + | ? | .

with a ∈ N and A ∈ T ′. The annotations ^^ and ! on terminals declare the following behaviour:
! Each terminal that is annotated with an exclamation mark will not be present in the

AST.
^^ When parsing from left to right, any terminal that is annotated by a double-caret (^^)

becomes the root node of the section that has formed until there. Any subsequent termi-
nals and non-terminals become children of the last terminal annotated with a double-
caret.

start
: ((A B^^ C)* D rule)* (K^^ L M)?
;

rule
: (E! F^^ G (rulesub)*)+
| K L^^ M
;

rulesub
: H I^^ J
;

Figure 2.2: An annotated context-free grammar, based on �gure 2.1

2.1.2 Abstract Syntax Trees

The AST plays an important role in the algorithms described in this thesis. A brief introduction
to the AST was already given in section 1.1.2, this section will de�ne the AST and explains
how an AST is constructed by a parser. A large amount of information is available on Abstract

10

Syntax Trees, for example in [7]. De�nition 2.1.3 is used as the de�nition of an AST in this
thesis.

De�nition 2.1.3 An Abstract Syntax Tree, or �AST� is a �nite, directed, labelled tree, where
each node represents a programming language construct, the children of each node represent
components of the construct. An �AST section� is a part of the AST that was formed by exactly
one rule of a grammar.

An AST that is produced by a grammar consists of several sections, or sub-trees. Every rule
in a grammar produces one or more sections, they are interconnected by the section of the rule
associated with the start symbol. A basic AST is build up by processing a grammar speci�cation
G with an input sentence S, denoted by G ↑ S. Every terminal parsed by a rule of G results in
a node in the section for that rule. Every non-terminal parsed by a rule of G results in a new
section, which is connected to the section of the rule containing the non-terminal by its root.
When a grammar is unambiguous, every sentence parsed by the grammar results in a unique
AST.

Consider the annotated context-free grammar G′ from �gure 2.2 and sentence S1 = �A B C A B

C D E F G H I J K L M�. While parsing S1, the start rule accepts the terminals A, B^^, C, ...,
D, rule, K, L^^, M. The rule rule accepts the terminals E, F^^, G and the rulesub rule accepts
the terminals H, I^^, J. Figure 2.3 demonstrates the parse tree for this.

G ↑ S1 =

start

A B^^C A B^^C D

rule

E F^^G H I^^J K L^^M

Figure 2.3: The sentence S1 parsed by the grammar G from �gure 2.2

2.2 Tree representation

This thesis will present algorithms to process an AST, several of these algorithms rely on breaking
down the AST into several small �subtrees�. These �subtrees� are sections of trees consisting of
nodes with a common depth, or distance from the root. For example; in �gure 2.4 all nodes with
�1 ≤ depth ≤ 2� are selected in a subtree.

2.2.1 Classical notation

Usually, in computer science, trees are represented using edges between the parent and its chil-
dren. The root node is usually at the top of the tree, with its children directly below it and edges
between the parent and the children. Such as represented in �gure 1.6. The downside of this

11

Preliminaries and related work

notation is that the relationship of children at the same level in the tree is not modelled. For an
AST however, the relationship of the children can be very important; �a - b� is usually not the
same as �b - a�.

+
�
1
@
-

+
�
a
@
b

⇒
1 -

+

Figure 2.4: A subsection of 1 ≤ depth ≤ 2

2.2.2 First-child, next-sibling notation

Because of the ambiguities with the classical tree notation, this thesis will also use the Filial-Heir
notation [13]. This is also known as the �First-child, next-sibling� notation, or the child-sibling
tree implementation. In this notation, the root is at the top of the tree and has an edge pointing
downwards to its �rst child. The �rst child has an edge pointing right to its next sibling, which
recurses until the last sibling. Each of the siblings can have an edge pointing downwards to their
�rst child. De�nition 2.2.1 de�nes the �FCNS-tree�, for an example see �gure 2.5. Note that in
this notation it is also legal for the root node to have a sibling, this represents a forest where the
roots have a sequential relationship.

De�nition 2.2.1 A ��rst-child, next-sibling tree�, or �FCNS-tree�, F is a �nite acyclic directed
connected graph denoted by a tuple (V,E). Where V (F) is a �nite nonempty set of labelled
vertexes and E(F) is a set of ordered pairs {u, v, l} with u, v ∈ V (F) where {u, v, l} is a labelled
edge in the graph from vertex u to vertex v with label l ∈ {�fc",�ns"}. In this graph every vertex
has a maximum of two outgoing edges: an edge labelled: �fc" (�rst-child) and an edge labelled:
�ns" (next-sibling), every vertex has exactly one incoming edge except for the root vertex.

+
�
1
@
-

+
�
a
@
b

=

+

1 -

+

a b

⇒
1 -

+

Figure 2.5: A subsection of 1 ≤ depth ≤ 2, using the Filial-Heir notation

This notation has several advantages when representing ASTs. Primarily, the relationship be-
tween child nodes is explicit, which is important for evaluating the order of operands. A second
advantage is that the Filial-Heir tree itself always is a binary tree, which simpli�es iteration
trough it somewhat.

12

2.2.3 Linear notation

Next to the graphical notations demonstrated in the previous sections, a linear notation is also
used in this thesis. The bene�t of a linear notation is that it is very compact and can therefore
easily be used in formulae and code. The linear tree notation used is deliberately chosen to be
an abstracted form of the linear notation used in ANTLR [8]. This notation is based on the tree
operator �^()� introduced in section 1.1.3. The �rst element between the parentheses of the tree
operator is considered to be a parent node in the tree, the other elements are considered to be
the children of this parent. De�nition 2.2.2 de�nes the linear notation, �gure 2.6 presents an
example.

De�nition 2.2.2 A vertex v ∈ V (F) is denoted as: � (̂v C1...Cn) � where C1...Cn represents
the ordered set of children of v , which are recursively denoted in the same way. When the set
of children of the vertex v is empty, the parentheses and ˆ sign may be discarded.

+

1 -

+

a b

= ^(+ 1 ^(- ^(+ a b)))

Figure 2.6: The linear notation of a tree

2.2.4 Properties of FCNS trees

A number of properties can be de�ned for FCNS-trees. These properties are used in the algo-
rithms de�ned further on in this thesis. These properties are the root, the stem, levels and the
depth.

De�nition 2.2.3 Any non-empty FCNS-tree always has exactly one root vertex. This is the
vertex with an in-degree of 0, i.e. the vertex without incoming edges.

This basically follows immediately from de�nition 2.2.1. Please note that the root node does not
always follow the standard intuition for a root node. For example, it can have siblings. In �gure
2.6, the topmost + is the root node.

De�nition 2.2.4 A set of stem vertexes can be determined for any non-empty FCNS-tree: the
root vertex is a stem vertex. Any vertex that can be reached via an edge labelled �fc" from another
stem vertex is also a stem vertex. All other vertexes are not stem vertexes.

The stem vertexes form a path that starts at the root vertex, the edges along this path are drawn
with double lines to clarify this. Vertexes along this path have a certain distance from the root
vertex, this distance determines the level of the stem-subgraph. In �gure 2.6, the topmost + and
1 are the stem vertexes. The set of stem vertices is also referred to as the stem of the FCNS
tree. In the graphical representation of an FCNS tree, the edges between stem vertexes can be
drawn with double lines.

13

Preliminaries and related work

De�nition 2.2.5 A non-empty FCNS-tree can be subdivided into one or more stem-subgraphs.
These stem-subgraphs consist of one stem vertex and the entire subgraph connected to the �next-
sibling" edge of that stem vertex.

De�nition 2.2.6 The depth of an FCNS-tree is equal to the number of nodes in the stem.

In �gure 2.6, the depth of the FCNS-tree is 2. Please note that the de�nition of the depth of an
FCNS tree is not equal to the de�nition of the depth of an ordinary tree. For example; in the
ordinary tree representation in �gure 2.5, the depth is 4.

Any ordinary forest of trees can be rewritten as an FCNS-tree and vice versa [13], as demonstrated
in �gure 2.7. The algorithms de�ned in this chapter strongly rely on the ordering of the child
nodes inside a tree, therefore these FCNS-trees are used to represent them as they provide a
more intuitive explanation of the algorithms.

A

B C ⇔

A
�
B
@
C

A

B C

D E ⇔

A
�
B
@
C

�
D
@
E

A B C

D E ⇔

A
�
D
@
E

B C

^(A B C) ^(A ^(B D E) C) ^(A D E) B C

Figure 2.7: The di�erences between ordinary trees and FCNS-trees

Functions on FCNS trees

A number of functions can be de�ned for FCNS-trees. These functions are used in the algorithms
de�ned further on in this document.

The root node of any FCNS-tree u can be selected by the function: Root : F → V. The next
sibling vertex of any vertex from any FCNS-tree can be selected by the function: NextSibling :
V → V ∪ {⊥}. Similarly, the �rst child vertex can be selected by the function: FirstChild :
V → V ∪ {⊥}. The previous sibling vertex of any vertex can be selected by the function:
PreviousSibling : V → V ∪ {⊥}. Similarly, the parent vertex of any vertex can be selected by
the function Parent : V → V ∪ {⊥}. The depth of any FCNS-tree can be retrieved with the
function Depth : F → N.

For some operations the last sibling is required, the last sibling is the vertex that can be found
by following the edges labelled as next-sibling recursively from the current vertex until the last
vertex has been found (i.e. without a next-sibling edge). This process is represented by the
function LastSibling : V → V.

De�nition 2.2.7 For any vertex v in a FCNS-tree, the set of all siblings can be determined:
v is in the set of all siblings. Any vertex that is connected to a vertex that is in the set of all
siblings via an edge labelled "ns", traversed either forwards or backwards, is also in the set of all
siblings. All other vertexes are not in the set of all siblings. This process is represented by the

function AllSiblings : V → 2V .

14

2.3 Related work

Not many solutions for the problems identi�ed in section 1.2 exist, most of them try to circumvent
the problem by not using the tree walkers or taking a slightly di�erent approach to the tree
walking. Terence Parr explains in an article on his website [14] why he thinks tree walkers
should be used by translators. In a response to this article, Andy Tripp wrote a white-paper
that advocates hand-written code for walking an AST using the visitor pattern [15] rather than
using ANTLR Tree Grammars [16]. This white-paper mainly focuses on the mixing of di�erent
languages and not so much on the maintenance issues, nevertheless a hand-written tree walker
can potentially be easier to debug since hand-written code is usually better readable compared
to generated code.

In 2008, Terence Parr introduced rewrite rules for ANTLR version 3 [17]. These rewrite rules
allow the user to directly specify the desired shape of the AST, instead using the ! and ^

operators, this makes the shape of the AST that is generated by the parser more transparent.

A more complete solution is ANTLRWorks [18] by Jean Bovet. ANTLRWorks is a development
environment for ANTLR grammars which is able to help the user build and debug a grammar.
It provides a grammar editor, various visualisation methods for grammars and an integrated
debugger.

The solutions mentioned above do not resolve the underlying redundancy between the parser
speci�cation and the tree walker speci�cation. Although, especially ANTLRWorks, they provide
a method to deal with the consequences of this redundancy. The intention of this thesis is to
directly target this redundancy.

15

16

Chapter 3

Generating the tree grammar

This thesis will present an algorithm for extracting one or more tree walkers from a parser
speci�cation. The input for this algorithm is the EBNF parser speci�cation, similar to �gure
1.4. The output will be a skeleton EBNF tree walker speci�cation, similar to �gure 1.5. The
goal is to create a practically useful human-readable tree walker. This chapter will present the
algorithm that handles the conversion from a parser speci�cation to a tree walker speci�cation.
The algorithm is designed around grammars, ASTs and trees as introduced in chapter 2. For
each of them a formal de�nition is given and examples are provided to understand them.

3.1 Rationale

The research questions in section 1.2 follow from a redundancy issue within the ANTLR parser
and tree walker speci�cations. Usually, within models and speci�cations, redundancy is regarded
as a bad thing as it implies more e�ort to implement and maintain. Furthermore, the behaviour
of the tree building operators provided by ANTLR can become rather involved, especially when
multiple of them are used in the same rule.

To address the redundancy issues while leaving the ANTLR paradigm intact, the solution is either
to generate a tree walker speci�cation or to validate a manually written tree walker speci�cation
against the parser speci�cation. Although validation has some bene�ts over generation, in the
sense that it gives the programmer more freedom in de�ning the tree walker; this would imply
that an algorithm needs to be created that validates whether two algorithms generate the same
language, which is impossible according to Rice's theorem [19]. When leaving the ANTLR
paradigm, one can choose to use the visitor pattern [15] to accommodate the tree walkers. The
downside of this is that the parser and the tree walkers will then use very di�erent mechanisms.

Because of the considerations mentioned above, the choice has been made to automatically
generate a tree walker speci�cation from the parser speci�cation.

3.2 Tree pattern algebra

As demonstrated in section 2.1.2, the resulting structure of the AST can be complex. An anno-
tation anywhere in the rule of the context-free grammar can in�uence the entire section of the

17

Generating the tree grammar

AST generated by that rule. This section presents an algebra to help solve this problem. The
basic idea behind this algebra is to use atomic building blocks to build up an AST. These build-
ing blocks represent atomic operations on the AST construction and are called �Tree Patterns�.
Similar methods to use an algebra to have been presented in [20] and [21], the di�erence here is
that the algebra is used to build a tree and not to match a tree.

3.2.1 Tree patterns

The FCNS-tree (as de�ned in section 2.2.2) forms the basis for tree patterns. Tree patterns are
FCNS-trees labelled with terminals and/or non-terminals from the input context-free grammar
and contain two connection points: a root connector and a child connector.

De�nition 3.2.1 A tree pattern F+ is an FCNS-tree such that: the last two stem vertexes are
labelled with a root connector (t) and a child connector (d) in that order. The other vertexes,
if any, are labelled with terminals or non-terminals.

αt βd γ

Figure 3.1: The tree pattern template

Figure 3.1 demonstrates the tree pattern template according to de�nition 3.2.1. Note that α
, β and γ represent FCNS trees with zero or more vertexes labelled with terminals and/or
non-terminals. The root connector of any tree pattern p can be selected by the function:
Rootconnector : F+ → V, the child connector of any tree pattern p can be selected by the
function: Childconnector : F+ → V.

De�nition 3.2.2 A minimal tree pattern is de�ned as the null pattern, also denoted by ⊥. This
is the smallest tree pattern conforming to de�nition 3.2.1:

td
De�nition 3.2.3 The two elementary tree patterns are shown below:

td α

αtd
where α can be either one terminal or one non-terminal.

18

td A

Atd
At Bd

Atd B

At Bd C

A

B Ct Dd

A

B Ct Dd E

Figure 3.2: Some example tree patterns

The elements of the tree pattern algebra are de�ned as the in�nite set of all possible tree patterns.

Figure 3.2 presents some example tree patterns, the linear representation of these patterns is
(from left to right):
(̂ t d A)
(̂A (̂ t d))
(̂A (̂ t d) B)
(̂A (̂ t d B))
(̂A (̂ t d C) B)
(̂A (̂B (̂ t d) D) C)
(̂A (̂B (̂ t d E) D) C)
3.2.2 Operations on tree patterns

The tree pattern algebra de�nes a limited set of operations. The most signi�cant one is a binary
operation called �Stacking�, which combines two tree patterns. Furthermore, we de�ne three
unary operations called �Top�, �Bottom� and �Collapse�.

Stacking

Tree patterns are designed to be building blocks for an AST, these building blocks can be
�stacked� on top of each other to form an AST. Tree pattern stacking is explicitly denoted by
p � q, the root connector and child connector of the second pattern are used as connection
points between the two patterns. The root of p becomes the �rst child of the parent of the root
connector of q and the siblings of the root connector of q become the siblings of the root of p,
the root connector of q itself is discarded. Furthermore, the siblings of the child connector of q
will be appended to the set of children of the root of p, also the child connector of q is discarded.
De�nition 3.2.4 de�nes how stacking works.

De�nition 3.2.4 Stacking of tree patterns is denoted by �: F+ × F+ → F+. This operator
stacks two patterns and results in a new tree pattern.
r = p � q, where:
V (r) = V (p) ∪ (V (q)− {Rootconnector(q), Childconnector(q)})
E(r) = E(p) ∪ E(q) ∪ {

(LastSibling(Root(p))
ns→ NextSibling(Rootconnector(q))),

(LastSibling(FirstChild(Root(p)))
ns→

NextSibling(Childconnector(q))),

(Parent(Rootconnector(q))
fc→ Root(p))}

19

Generating the tree grammar

Any dangling edges will be discarded. Note that the root connector and child connector of the
second pattern are not part of the new pattern.

The stacking operator � is also implicit; writing down two tree patterns next to each other,
without parentheses separating them, implies stacking. The stacking of two patterns forms a
new pattern, meaning p � q results in a new pattern r. Furthermore, stacking is left-associative:
(p � q � r) ⇔ ((p � q) � r). From de�nition 3.2.4 it can be derived that stacking is not
commutative: (p � q) 6= (q � p). Figure 3.3 demonstrates three examples for tree pattern
stacking.

The name of the root connector refers to the fact that in p � q, the root connector of q is
connected to the root of p . The child connector of q connects to the last child of the root of p .

Top and Bottom

Patterns can be subdivided into a top and a bottom part. The root connector and child connector
are the separators in this process; everything above and to the right of the root connector
is considered to be the top part, everything below and to the right of the child connector is
considered to be the bottom part. To ensure that the top and bottom parts are both valid
tree patterns, the root connector and child connector are present in both parts. The functions
Top : F+ → F+ and Bottom : F+ → F+, as de�ned in de�nitions 3.2.5 and 3.2.6, are used to
split a pattern this way. Figure 3.6 demonstrates these functions.

De�nition 3.2.5 The function Top : F+ → F+ selects the top part of a tree pattern.
q = Top(p), where:
V (q) = V (p)− (AllSiblings(Childconnector(p))− Childconnector(p))
E(q) = E(p)
Any dangling edges will be discarded.

De�nition 3.2.6 The function Bottom : F+ → F+ selects the bottom part of a tree pattern.
q = Bottom(p), where:
V (q) = V (p)− ((V (Top(p))−Rootconnector(p))− Childconnector(p))
E(q) = E(p)
Any dangling edges will be discarded.

Collapsing

The root connector and child connector can be removed from the tree pattern by collapsing it.
Collapsing appends all siblings of the root connector to the set of siblings of the child connector
and makes the next sibling of the child connector the �rst child of the parent of the root connector.
The function Collapse : F+ → F , as de�ned in de�nition 3.2.7, is designed to do this, �gure 3.7
demonstrates this.

De�nition 3.2.7 The function Collapse : F+ → F collapses the root connector and child
connector from the tree pattern.
v = Collapse(p), where:

20

At Bd �

Ct Dd E =

At Bd

Ct Dd E

=

C

A Dt B Ed
Or linear: (̂A (̂ t d) B) � (̂C (̂ t d E) D) = (̂C (̂A (̂ t d) B E) D)

Atd �

td B C =

Atd
td B C

=

At B Cd
Or linear: (̂A (̂ t d)) � (̂ t d B C) = (̂A (̂ t d) B C)

td B C �

Atd =

td B C

Atd =

Atd B C

Or linear: (̂ t d B C) � (̂A (̂ t d)) = (̂A (̂ t d B C))

Figure 3.3: Examples for the stacking operator �: F+ → F+

αt βd γ

Figure 3.4: Template for the function Top : F+ → F+

αt βd γ

Figure 3.5: Template for the function Bottom : F+ → F+

21

Generating the tree grammar

Top

G

H Et Fd D

=

G

H Et Fd
Or linear: Top((̂G (̂H (̂ t d D) F) E)) = (̂G (̂H (̂ t d) F) E)

Bottom

Bt Cd A

 = td A

Or linear: Bottom((̂B (̂ t d A) C)) = (̂ t d A)
Figure 3.6: Examples for the functions Top : F+ → F+ and Bottom : F+ → F+

V (v) = V (p)−Rootconnector(p)− Childconnector(p)
E(v) = E(p) ∪ {

(Parent(Rootconnector(p))
fc→ NextSibling(Childconnector(p))),

(LastSibling(Childconnector(p))
ns→ NextSibling(Rootconnector(p)))}

Any dangling edges will be discarded.

Collapse

G

H Et Fd D I

=

G

H E

D I F

Or linear: Collapse(̂ (G (̂H (̂ t d D I) F) E)) = (̂G (̂H D I F) E)

Figure 3.7: Example for the function Collapse : F+ → F

3.2.3 Master and slave patterns

When taking a closer look at the stacking operator, two kinds of patterns can be distinguished.
Considering the stacking p � q = r; if q has a root other than the root connector, q will provide
the root of r and is designated a master pattern. One exception is made for the null pattern, as
it is a master pattern even though the root connector is the root of it. De�nition 3.2.8 de�nes
the distinction between master and slave patterns.

22

De�nition 3.2.8 A slave tree pattern is a tree pattern where (i) the root connector is the root
and (ii) the root connector and/or the child connector has siblings. Otherwise, it is a master tree
pattern.

Consider the examples in �gure 3.3; in the �rst and third examples, q is a master pattern and
provides the new root in the stacking. For the second example, q is a slave and does not provide
the root. Figure 3.8 demonstrates the elementary tree patterns.

td α ⇒ slave

αtd ⇒ master

td ⇒ master

Figure 3.8: The elementary tree patterns

Parent-child relations in stacking

When stacking two patterns, one of the patterns usually dominates the other pattern in the sense
that it provides the topmost or leftmost nodes in the resulting pattern. Which pattern will be
the dominant pattern depends on the order in which they are stacked and whether the patterns
are master or slave . The dominant pattern is referred to as the �parent� pattern, the other
pattern is referred to as the �child� pattern.

De�nition 3.2.9 For p � q, The child pattern can be determined as follows: If q is master; p
will become the child of q, otherwise q will become the child of p.

For example, consider �gure 3.3. The patterns (̂A (̂ t d) B) , (̂ t d B C) and (̂ t d B C)
become the child patterns in these operations.

3.3 The context-free tree grammar

The output for the algorithm is a context-free tree grammar. Instead of parsing sentences, a
context-free tree grammar parses trees generated by an annotated context-free grammar. De�-
nition 3.3.1 de�nes a context-free tree grammar.

De�nition 3.3.1 A context-free tree grammar T is denoted by a 4-tuple (N,F,R, S), where N
is a �nite nonempty set of non-terminals, F a �nite nonempty set of FCNS trees and S ∈ N the
start symbol. The alphabet of T is denoted by N ∪ F . R is a �nite set of production rules: for
each r ∈ R : n→ α, where n ∈ N . Here α can be de�ned using EBNF:
α = A | (α)op | α1 + α2

op = * | + | ? |

with A ∈ F .

23

Generating the tree grammar

For example, consider the two FCNS trees from �gure 3.9. The context-free tree grammar from
�gure 3.10 is able to parse both trees. When this grammar is written using the linear notation
described in de�nition 2.2.2, it becomes much more compact as demonstrated in �gure 3.11.
The context-free tree grammar in linear notation is very similar to a tree walker speci�cation of
ANTLR.

3.4 Building the AST

When parsing a sentence with an annotated context-free grammar, an AST is built up. The
exact shape of the AST depends on the placement of the double-caret annotations within the
production rules. To build the corresponding AST, one has to parse the sentence from left to
right and obey the following rules:

• Every unannotated terminal becomes either a child of the last terminal annotated with a
double-caret or, if there is no such terminal, a sibling of the previous unannotated terminal.

• Every terminal annotated with a double-caret becomes the root of the tree as parsed until
there.

• Every terminal annotated with a exclamation mark is not taken into the tree.

For example, consider the following annotated context-free grammar rule: �start: A B C^^

D E^^ F G!;�. Parsing a sentence using this rule, from left to right; (i) the �rst terminal is A,
which becomes the �rst node in the tree. (ii) B becomes a sibling of A. (iii) C becomes the parent
of both A and B. (iv) D becomes the child of C and thus siblings of A and B. (v) E becomes the
parent of C. (vi) F becomes the child of E and thus a sibling of C. Finally, (vii) G is not taken into
the tree. Resulting in the tree depicted in �gure 3.12.

3.4.1 Rewriting production rules

Now assume that instead of the rule �A B C^^ D E^^ F G!� the rule of �gure 3.13 is used,
meaning that the resulting tree consists of n·(A B C^^)+m·(D E^^)+(F G!), with n,m ∈ N.
This section will demonstrate how to use tree patterns to determine the resulting AST for any
�nite value of n and m. First, de�nition 3.4.1 will show how to write an annotated context-free
grammar using tree patterns instead of annotations.

De�nition 3.4.1 Any annotated context-free grammar, as de�ned in de�nition 2.1.2, can be
translated using elementary tree patterns. This can be done by translating each of the terminals
or non-terminals on the right-hand side of each production rule as tree patterns based on their
annotation:

24

A

B C

D E

A

B D E

Figure 3.9: Two example trees.

start

:

A

B tail

;

tail

:

C

D E

| D E

;

Figure 3.10: A context-free tree grammar that is able to parse the trees from �gure 3.9.

start

: ^(A B tail)

;

tail

: ^(C D E)

| D E

;

Figure 3.11: The context-free tree grammar from �gure 3.10 using the linear notation

E

C F

A B D

Figure 3.12: The AST for the rule �A B C^^ D E^^ F G!�, given the sentence �A B C D E F G�

rule

: (A B C^^)* (D E^^)* (F G!)

;

Figure 3.13: A production rule.

25

Generating the tree grammar

Terminal/Non-Terminal Pattern Linear

α

td α (̂ t d α)
α!

td (̂ t d)

α^^

αtd (̂α (̂ t d))
Figure 3.14 shows the application of de�nition 3.4.1 on the production rule from �gure 3.13.
Considering �gure 3.14 and the stacking operator from section 3.2.2; one can immediately recog-
nise the rules for building an AST presented earlier in this section. For example, B becomes a
sibling of A and C becomes the parent of A and B.

rule

: (

td A

td B

Ctd)* (

td D

Etd)* (

td F

td)

;

Figure 3.14: The production rule from �gure 3.13 written down using tree patterns

3.4.2 Single carets

The algorithm only considers double caret operators in a grammar. The reason for this is that
the behaviour of single caret operators can be modelled using double caret operators. The
single caret operator behaves exactly like the double caret operator, with the exception that its
e�ect stays limited to the nearest set of parentheses. Furthermore, single caret and double caret
operators are not allowed to be used together in one rule. Therefore, moving all terminals and
non-terminals between these parentheses to a new rule and replacing the single carets by double
carets will generate the same AST.

3.4.3 Normal-form

Writing down an annotated context-free grammar using de�nition 3.4.1 can cause two or more
patterns to follow each other without being separated by parentheses. As explained in section
3.2.2; this means the stacking operator is implicitly present and can be applied to them. For
any further operations on the annotated context-free grammar it may be desirable to be as
compact as possible, therefore we introduce the annotated context-free grammar written down
using tree patterns in normal-form. This means that all stacking operators between consecutive
tree patterns have been applied and the stacking operator only remains between EBNF sections.
De�nition 3.4.2 de�nes this normal-form, �gure 3.15 shows the production rule from �gure 3.14
in normal-form.

26

De�nition 3.4.2 A production rule in an annotated context-free grammar written down using
tree patterns is in normal-form i� the right-hand side of the rule only contains a stacking operator
between EBNF sections. If all rules of an annotated context-free grammar are in normal-form,
the grammar itself is said to be in normal-form.

rule

: (

Ctd A B)* (

Etd D)* (

td F)

;

Figure 3.15: The production rule from �gure 3.14 in normal-form

Figure 3.16, depicts the production rule from �gure 3.15 as a formula. In this formula the
operator · : N0 ×F+ → F+ is de�ned as stacking the pattern repetitively on top of itself, where
the number of repetitions is equal to the natural number minus one and ⊥ is the result if the
natural number equals zero. When using the value 1 for n and m in this formula; the resulting
tree is equal to the tree from �gure 3.12. Please note that the collapse is required to remove the
root connector and child connector from the �nal tree pattern. Figure 3.17 shows several trees
for di�erent values of n and m.

Collapse

n ·

Ctd A B

 �

m ·

Etd D

 �

 td F

Figure 3.16: A formula for all possible ASTs of �gure 3.15.

3.5 Modelling an annotated context-free grammar

Section 3.4 de�ned how to use tree patterns to formalise the generation of an AST. The tree
patterns can be seen as atomic building blocks that can be connected in any order allowed by the
context free grammar. This section will present an algorithm that extracts the order in which
the tree patterns can potentially be connected to each other. First, the potential tree patterns
that start the sequence are modelled, this is later used for the start rule in the context-free
tree grammar. Next, for each pattern it is determined which patterns can potentially follow it,
which is used to generate the other rules in the context-free tree grammar. The starting point
of this procedure will be the annotated context-free grammar written down using tree patterns
in normal-form.

27

Generating the tree grammar

values for n and m Produced tree
n = 0,m = 0 F

n = 1,m = 0

C

A B F

n = 1,m = 1

E

C F

A B D

n = 2,m = 1

E

C F

C D

A B A B

Figure 3.17: The di�erent trees generated by the formula of �gure 3.16.

3.5.1 Overview

This part of the algorithm extracts the sequential order in which the tree patterns of a production
rule can be used to form an AST. For example, consider the production rule from �gures 3.15
and 3.16, where the patterns are labelled p, q and r from left to right. Figure 3.17 shows that
patterns p, q and r can all potentially provide the root of the AST. Furthermore, pattern p can
have the patterns p and r as a child and pattern q can have the patterns p, q and r as a child.

These possible constructions have to be allowed by the corresponding context-free tree grammar.
For example, an abstract representation of the rule representing the start symbol would be
�start : p|q|r;�. For the rules representing p, q and r they would be �p : p|r;�, �q : p|q|r;� and
�r :;�.

The other paragraphs of this section explain in detail how this structure and information is
extracted, section 3.6 explains how this information is combined to generate the actual context-
free tree grammar.

3.5.2 Patterns that provide the root

A context-free tree grammar, as de�ned in section 3.3, parses a tree from top to bottom. However,
section 3.4 demonstrated that, if it is annotated with a double-caret, the root node may be the
last node that has been parsed by the parser. To build the context-free tree grammar from
tree patterns, one has to start with the tree pattern that provided the root of the AST section
produced by the production rule. To determine which patterns will provide the root of the
AST section, a minimal deterministic automaton is used. Figure 3.18 shows an automaton for
the production rule from �gure 3.15; p, q and r represent respectively the leftmost, centre and
rightmost patterns from �gure 3.15.

The accepting state in the automaton from �gure 3.18 only has incoming edges labelled with
r, meaning that the last pattern to be parsed is always the rightmost pattern from �gure 3.15.
However, this does not mean that pattern r will always provide the root. Pattern r is a slave

28

p q

q

r

r

Figure 3.18: An automaton for the grammar from �gure 3.15.

pattern; if it is stacked on another pattern, that pattern will provide the root of the resulting
pattern. This means that the pattern that is parsed before r is relevant. The automaton has a
path where r is the only pattern to be parsed and hence provides the root, there are also paths
where either pattern p or pattern q precedes r; as both p and q are master patterns, they will
provide the root of the AST section. For this grammar, patterns p, q and r can provide the root
node of the AST section, hence they are in the set of root patterns RT . De�nition 3.5.1 de�nes
this set.

De�nition 3.5.1 For each production rule ρ ∈ R(G) of an annotated context-free grammar G
we de�ne the set of root patterns RT . A pattern p is member of RT if an AST section P can
be produced by ρ where the root node of P is provided by p, as de�ned by de�nition 2.2.3. The
null-pattern ⊥ is included in the set RT if an AST section P can be produced by ρ where P is
empty.

To obtain the complete set of root patterns RT one has to consider every path through the
automaton for ρ. For each path with master patterns, the last master pattern in the path is
member of this set. For each path without master patterns, the �rst pattern is member of this
set. Finally, if there exists a path without patterns, the null-pattern ⊥ is included in the set (i.e.
the initial state is also an accepting state).

Figure 3.19 presents pseudo-code for obtaining the set RT given a minimal deterministic automa-
ton for the rule. The algorithm traverses the automaton backwards, starting at the accepting
states and working towards the initial state, using the recursive function obtainIn at line 11.
To prevent in�nite loops, the states are marked once visited so they are not visited again using
the code at lines 2, 13 and 27. The loop on line 3 calls the function obtainIn for each accepting
state in the speci�ed automaton A, it also adds ⊥ to the set RT if an accepting state is also an
initial state. The function obtainIn analyses all incoming edges of a state. If one of those edges
is labelled with a master pattern; it is added to the set RT . If one of those edges is labelled with
a slave pattern; the function obtainIn is called recursively on the source state of the edge, the
slave pattern is added to the set if the source state of the edge is an initial state.

3.5.3 Iterating through the rule

As the context-free tree grammar parses from top to bottom, it is important to know which
patterns can exist below each other. The nodes below a pattern are provided by patterns that
have become children of this pattern, as de�ned in de�nition 3.2.9. Again, the minimal deter-
ministic automaton can be used to derive this information. For example, consider the automaton
from �gure 3.18. The left state in this automaton has an outgoing edge labelled with p and an

29

Generating the tree grammar

A : The automaton to obtain the set from
RT: The resulting set RT

RT := ∅;1

Set all states ∈ A to not-visited;2

foreach state ∈ A do3

if state is accepting state then4

RT := RT ∪ obtainIn(state);5

if state is an initial state then6

RT := RT ∪ {⊥};7

end8

end9

end10

function obtainIn(S) : RT begin11

RT := ∅;12

if S has not been visited then13

foreach edge ∈ incoming edges of S do14

pattern := label of edge;15

if pattern is a master pattern then16

RT := RT ∪ {pattern};17

end18

else19

state := source state of edge;20

RT := RT ∪ obtainIn(state);21

if state is an initial state then22

RT := RT ∪ {pattern};23

end24

end25

end26

Set S to visited;27

end28

end29

Figure 3.19: Pseudo-code for obtaining the set RT from an automaton.

30

A : The automaton to obtain the set from
P : The pattern to obtain the set for
CH+: The resulting set CH+

CH+ := ∅;1

Set all states ∈ A to not-visited;2

if P is a master pattern then3

foreach edge ∈ edges of A with label P do4

CH+ := CH+ ∪ obtainIn(source state of edge);5

end6

end7

function obtainIn(S) : CH+ begin8

CH+ := ∅;9

if S has not been visited then10

foreach edge ∈ incoming edges of S do11

pattern := label of edge;12

if pattern is a master pattern then13

CH+ := CH+ ∪ {pattern};14

end15

else16

CH+ := CH+ ∪ obtainIn(source state of edge);17

end18

end19

if S is an initial state then20

CH+ := CH+ ∪ {⊥};21

end22

Set S to visited;23

end24

end25

Figure 3.20: Pseudo-code for obtaining the set CH+(p) from an automaton for a given
pattern.

31

Generating the tree grammar

A : The automaton to obtain the set from
P : The pattern to obtain the set for
CH−: The resulting set CH−

CH− := ∅;1

foreach edge ∈ edges of A with label P do2

state := destination state of edge;3

foreach edge ∈ outgoing edges of state do4

pattern := label of edge;5

if pattern is a slave pattern then6

CH− := CH− ∪ {pattern};7

end8

end9

if state is an accepting state then10

CH− := CH− ∪ {⊥};11

end12

end13

if P is a master pattern then14

Set all states ∈ A to not-visited;15

foreach edge ∈ edges of A with label P do16

CH− := CH− ∪ obtainIn(source state of edge, P);17

end18

end19

function obtainIn(S, P) : CH− begin20

CH− := ∅;21

if S has not been visited then22

foreach edge ∈ incoming edges of S do23

pattern := label of edge;24

if pattern is a slave pattern then25

CH− := CH− ∪ obtainIn(source state of edge, pattern);26

end27

end28

if S is an initial state then29

CH− := P ;30

end31

Set S to visited;32

end33

end34

Figure 3.21: Pseudo-code for obtaining the set CH−(p) from an automaton for a given
pattern.

32

incoming edge labelled with p, meaning that p can be stacked on itself and p can become a child
of p. Furthermore, the left state in this automaton has an outgoing edge labelled with r, meaning
that r can be stacked on p and, as r is a slave pattern, r can become a child of p.

Now, for each pattern two sets can be de�ned; the set of master patterns that can become
children of the pattern and the set of slave patterns that can become children of the pattern,
respectively CH+ and CH−, de�ned in de�nitions 3.5.2 and 3.5.3.

De�nition 3.5.2 For each master pattern p within a rule ρ ∈ R(G) of an annotated context-free
grammar G we de�ne the set of master child patterns CH+(p). A master pattern p′ is member
of this set if an AST section can be produced by ρ where p′ is a child of p, as de�ned in de�nition
3.2.9. If an AST section can be produced where there is no pattern p′, the null-pattern ⊥ is
included in the set CH+(p).

For the production rule from �gure 3.15, the sets are CH+(p) = {p,⊥} and CH+(q) = {p, q,⊥}.
Figure 3.20 presents pseudo-code for obtaining the set CH+ for an active pattern given a minimal
deterministic automaton for the rule. The algorithm traverses the automaton backwards, starting
at the source states of edges labelled with the master pattern, using the recursive function
obtainIn at line 8. To prevent in�nite loops, the states are marked once visited so they are not
visited again using the code at lines 2, 10 and 23. The loop on line 3 calls the function obtainIn

for each source state of edges labelled with the master pattern in the speci�ed automaton A.
The function obtainIn analyses all incoming edges of a state. If one of those edges is labelled
with a master pattern; it is added to the set CH+. If one of those edges is labelled with a slave
pattern; the function obtainIn is called recursively on the source state of the edge. On line 20
⊥ is added to the set CH+ if the state provided to the function obtainIn is the initial state.

De�nition 3.5.3 For each pattern p within a rule ρ ∈ R(G) of an annotated context-free gram-
mar G we de�ne the set of slave child patterns CH−(p). A slave pattern p′ is member of this set
if an AST section can be produced by ρ where p′ is a child of p, as de�ned in de�nition 3.2.9. If
an AST section can be produced where there is no pattern p′, the null-pattern ⊥ is included in
the set CH−(p).

For the production rule from �gure 3.15, the sets are CH−(p) = {r,⊥}, CH−(q) = {r,⊥} and
CH−(r) = {⊥}. Figure 3.21 presents pseudo-code for obtaining the set CH− for a pattern given
a minimal deterministic automaton for the rule. In the loop at line 2, the algorithm looks one
step forward in the automaton for slave child patterns. In case the pattern under investigation is
a master pattern; the algorithm also traverses the automaton backwards, starting at the source
states of edges labelled with the master pattern, using the recursive function obtainIn at line
20. To prevent in�nite loops, the states are marked once visited so they are not visited again
using the code at lines 15, 22 and 32.

3.6 Constructing the context-free tree grammar

Section 3.5 de�ned how to extract the potential roots of an AST section into the set RT and to
extract the potential paths through the automaton in the sets CH+ and CH−. This information
can now be used to generate the context-free tree grammar.

33

Generating the tree grammar

3.6.1 Overview

This section will generate the context-free tree grammar using the information modelled in the
sets RT , CH+ and CH−. This information has been summarised in �gure 3.23 for the examples
of the previous section.

rule

: (

Ctd A B)* (

Etd D)* (

td F)

;

Figure 3.22: An example production rule.

Designation Pattern Type RT CH+ CH−

p

Ctd A B master ∈ RT {p,⊥} {r,⊥}

q

Etd D master ∈ RT {p, q,⊥} {r,⊥}

r

td F slave ∈ RT Not Applicable {⊥}

Figure 3.23: The sets RT , CH+ and CH− for the production rule from �gure 3.22.

Figures 3.10 and 3.11 illustrated that a context-free tree grammar traverses the stem of the AST
from top to bottom. For example, consider �gure 3.24; in this �gure all nodes are marked with
subscripts 1 - 4, grouping them by the original instance of the pattern that provided these nodes.
Figure 3.25 presents a context-free tree grammar that is able to parse this AST.

E1

C3 F2

C4 D1

A4 B4 A3 B3

Figure 3.24: An AST generated by the production rule of �gure 3.22.

Note that master tree patterns can in�uence at most three lines in the AST; the line where the
root of the tree pattern is placed, the line where the siblings of the root connector are placed

34

start

: ^(E ch+q F)

;

ch+q
: ^(C ch+p D)

;

ch+p
: ^(C ch+p A B)

| A B

;

Figure 3.25: A tree grammar that can parse the tree from �gure 3.24.

and the line where the siblings of the child connector are placed. That means that, ignoring
slave tree patterns for now, every horizontal line except for the bottom line in an AST takes
the following form: A root node of a tree pattern, followed by zero or more siblings of the root
connector of the pattern above it, followed by zero or more siblings of the child connector of the
pattern above that pattern.

The context-free tree grammar of �gure 3.25 is designed such that every rule parses a root node
of a tree pattern and all nodes that are a direct child of it. The �rst child of the root node, i.e.
next stem node, is always referenced with a non-terminal to a rule that models the next line in
the AST. This non-terminal is followed by any siblings of the root connector of the tree pattern.
The siblings of the child connector of the pattern are placed on the next line in the AST and are
therefore taken to the rule speci�ed by the non-terminal that models the �rst child of the root
node. Therefore the rule ch+q also contains the siblings of the child connector of q. The rule
ch+p has one alternative A B which is the result of the very �rst instance of pattern p, modelled
as A4, B4 and C4 in �gure 3.24, has no master child patterns and therefore the siblings of the
child connector of the pattern are not appended to the siblings of the root connector of another
parent, but remain as direct children of their own parent.

Extending the context-free tree grammar of �gure 3.25 to a context-free tree grammar that can
parse any AST produced by the production rule from �gure 3.22 can be realised by extending
the rules such that they model all entries in the sets RT , CH+ and CH−. Figure 3.26 presents
this grammar; the start rule has been extended with the patterns p and r and pattern q has been
added as a potential child of q in the rule ch+q.

The rest of this section will formalise the process described in this overview using the tree
pattern algebra presented in section 3.2. Also the process will be extended to include of slave
tree patterns.

3.6.2 Start symbol

The context-free tree grammar traverses the AST section from top to bottom, the rule represent-
ing the start symbol is therefore generated from the set RT . The set RT contains all patterns
that can potentially become the root of the AST section, each pattern in this set will provide
an alternative in this rule. The tree pattern formulæ from de�nition 3.6.1 and 3.6.2 abstract the
alternatives for master patterns and slave patterns respectively. Figure 3.27 demonstrates these

35

Generating the tree grammar

start

: ^(C ch+p F)

| ^(E ch+q F)

| F

;

ch+q
: ^(C ch+p D)

| ^(E ch+q D)

| D

;

ch+p
: ^(C ch+p A B)

| A B

;

Figure 3.26: A tree grammar that can parse any tree from the production rule from �gure 3.22.

formulæ for the patterns from �gure 3.23.

De�nition 3.6.1 For each master pattern pi in the set RT for a rule ρ of an annotated context-
free grammar G, an alternative api

exists in the rule ρ′ in its counterpart context-free tree gram-
mar G′, where:

api
= Collapse

 td ch+pi

� Top(pi) �
td ch-pi

De�nition 3.6.2 For each slave pattern pi in the set RT for a rule ρ of an annotated context-free
grammar G, an alternative api

exists in the rule ρ′ in its counterpart context-free tree grammar
G′ where:

api
= Collapse

pi � td ch-pi

3.6.3 Pattern rules

The rule representing the start symbol models the set RT , the sets CH+ and CH− for each
pattern are modelled by pattern rules. Two rules exist for each pattern pi ∈ ρ, designated by the
non-terminals ch+pi

and ch-pi
. The tree pattern formulæ from de�nition 3.6.3 and 3.6.4 abstract

the alternatives for master patterns and slave patterns respectively. Figure 3.28 demonstrates
these formulæ for the patterns from �gure 3.23.

De�nition 3.6.3 For each master pattern pi in a rule ρ of an annotated context-free grammar
G, a rule ch+pi

exists in its counterpart context-free tree grammar G′. For each pattern qj in
the set CH+(pi), an alternative aqj

exists in the rule ch+pi
, where:

36

ap = Collapse

td ch+p

� Top

Ctd A B

 �
td ch-p

= Collapse

td ch+p

�

Ctd �
td ch-p

= Collapse

Ct ch-pd ch+p

= ^(C ch+p ch-p) (linear notation)

aq = Collapse

td ch+q

� Top

Etd D

 �
td ch-q

= Collapse

td ch+q

�

Etd �
td ch-q

= Collapse

Et ch-qd ch+q

= ^(E ch+q ch-q) (linear notation)

ar = Collapse

 td F
�

td ch-r

= F ch-r (linear notation)

Figure 3.27: De�nitions 3.6.1 and 3.6.2 applied to all patterns from �gure 3.23.

37

Generating the tree grammar

aqj
= Collapse

 td ch+qj

�

Top(qj) � td ch-qj

� Bottom(pi)

Any reference to ch+⊥ or ch-⊥ will be discarded.

De�nition 3.6.4 For each slave pattern pi in a rule ρ of an annotated context-free grammar G,
a rule ch-pi

exists in its counterpart context-free tree grammar G′. For each pattern qj in the
set CH−(pi), an alternative aqj

exists in the rule ch-pi
, where:

aqj
= Collapse

qj � td ch-qj

Any reference to ch-⊥ will be discarded.

Figure 3.29 demonstrates the complete grammar generated using de�nitions 3.6.1 to 3.6.4 for the
production rule from �gure 3.22.

38

app = Collapse

td ch+p

�

Ctd �

td ch-p
�

td A B

= ^(C ch+p ch-p A B) (linear notation)

ap⊥ = Collapse

 td ch+⊥
�

 td �
td ch-⊥

�
td A B

(Note that any reference to ch+⊥ and ch-⊥ is to be discarded.)
= A B (linear notation)

aqp = Collapse

td ch+p

�

Ctd �

td ch-p
�

td D

= ^(C ch+p ch-p D) (linear notation)

aqq = Collapse

td ch+q

�

Etd �

td ch-q
�

td D

= ^(E ch+q ch-q D) (linear notation)

aq⊥ = Collapse

 td ch+⊥
�

 td �
td ch-⊥

�
td D

(Note that any reference to ch+⊥ and ch-⊥ is to be discarded.)
= D (linear notation)

apr = Collapse

 td F
�

td ch-r

= F ch-r (linear notation)

ap⊥ = Collapse

 td �
td ch-⊥

(Note that any reference to ch-⊥ is to be discarded.)
=

ar⊥ = Collapse

 td �
td ch-⊥

(Note that any reference to ch-⊥ is to be discarded.)
=

Figure 3.28: De�nitions 3.6.3 and 3.6.4 applied to all patterns from �gure 3.23.

39

Generating the tree grammar

start

: ^(C ch+p ch-p)
| ^(E ch+q ch-q)
| F ch-r
;

ch+p
: ^(C ch+p ch-p A B)

| A B

;

ch+q
: ^(C ch+p ch-p D)

: ^(E ch+q ch-q D)

| D

;

ch-p
: F ch-r
|

;

ch-q
: F ch-r
|

;

ch-r
:

;

Figure 3.29: The results from �gures 3.27 and 3.28 in one grammar.

40

Chapter 4

Optimisation of the tree grammar

The context-free tree grammar generated by the conversion algorithm from chapter 3 is a rather
precise match for the parser speci�cation. Tree grammars are usually used to implement compiler
steps such as optimisers and code generators; these are designed around the more general AST.
For example, implementing correct operator precedence usually takes several rules in a parser
speci�cation. A code generator speci�cation could su�ce with one rule where all operators are
alternatives in that rule as the operator precedence is already correctly parsed into the AST by
the parser. Therefore, a precise match with the parser is usually not needed, since the context-
free tree grammar can be more general. This chapter describes how the tree walker speci�cation
can be cleaned up and generalised to make it more practical to use.

The optimisations described below are based on the manner in which the rules were generated.
Note that all rules in the context-free tree grammar are generated according to the formulæ in
de�nitions 3.6.1, 3.6.2, 3.6.3 and 3.6.4 and take the form of ρ = a1|...|an, where a1...an are
FCNS-trees. The set a1...an will be designated by F (ρ) in this chapter.

4.1 Macro expansion

Macro expansion is a procedure that combines rules without a�ecting the language the grammar
accepts. A basic example of this is a non-terminal that refers to a rule that only consists of one
terminal. In this case, all instances of this non-terminal can be replaced by this terminal.

To prevent making the grammar more complex instead of more readable, there are some limita-
tions to the macro expansion procedure. Rules with multiple alternatives and rules that contain
FCNS-trees with a depth of more than one are not expanded. Although this would be semanti-
cally correct , it would make further optimisations more complex as the rules no longer take the
form of ρ = a1|...|an.

The merging procedure itself is quite similar to the stacking procedure de�ned in de�nition 3.2.4.
The notation u(a), used in the de�nition below, denotes the vertex in the FCNS-tree u that is
labelled with the non-terminal a.

De�nition 4.1.1 Macro expansion of two FCNS-trees is denoted by MacroExpand : F ×N ×
F → F . This expands the second FCNS-tree into the �rst FCNS-tree on the speci�ed non-
terminal and results in a new FCNS-tree.

41

Optimisation of the tree grammar

w =MacroExpand(u, a, v), where:
V (w) = V (v) ∪ (V (u)− {u(a)})
E(w) = E(v) ∪ E(u) ∪ {

(PreviousSibling(u(a))
ns→ Root(v)),

(LastSibling(Root(v))
ns→ NextSibling(u(a))),

(Parent(u(a))
fc→ Root(v))}

Any dangling edges will be discarded.

For example; The rules start and tail from �gure 4.1 can be expanded according to de�nition
4.1.1.

start

:

A

B tail

;

tail

: D E

;

MacroExpand

A

B tail
, tail, D E

 =
A

B D E

Figure 4.1: An example of �Macro expansion�

4.2 Rule merging

The macro expansion method will only clean up the most trivial rules from the context-free
tree grammar. The rule merging method described in this section is an algorithm that can
signi�cantly generalise the context-free tree grammar. Theoretically, it could even reduce the
entire context-free tree grammar to a single rule.

The procedure works as follows: if a rule σ is referred to via one or more non-terminals from
rule ρ, then all alternatives of rule σ are uni�ed with the alternatives from rule ρ. All references
to rule σ are replaced by references to rule ρ. Figure 4.3 demonstrates the merging of the two
rules from �gure 4.2 according to de�nition 4.2.1.

De�nition 4.2.1 Merging of two rules is denoted by RuleMerge : R × R → R. This merges
all alternatives from both rules.
τ = RuleMerge(ρ, σ), where:
τ = a1|...|an, where a1...an = F (ρ) ∪ F (σ)
Note that all references to ρ and σ should be replaced by a reference to τ in the entire grammar.

42

start

: ^(A B C D)

| ^(B C D rule)

;

rule

: ^(E F G)

| H

;

Figure 4.2: A trivial mergable context-free tree grammar

start

: ^(A B C D)

| ^(B C D start)

| ^(E F G)

| H

;

Figure 4.3: The context-free tree grammar from �gure 4.2 merged according to de�nition 4.2.1

4.2.1 Limitations to rule merging

Rules are not to be merged if the merged rule introduces LL(1) violations and/or left-recursion
anywhere in the grammar. Consider the context-free tree grammar from �gure 4.4. The rules
start and ruleA are not merged as it would introduce a rule that has a root that resolves to
itself, as demonstrated in �gure 4.5. And the rules start and ruleB are not merged as it would
introduce two alternatives with roots that resolve to the same terminal, as demonstrated in �gure
4.6.

As mentioned, if the parser speci�cation is not too complex, this will can result in a tree walker
speci�cation with only one rule. Therefore, the parser designer is still able to retain speci�ed
rules by annotating them in the parser speci�cation with a ^, this will prevent them from being
merged with another rule. It will not, however, prevent other rules being merged with the
annotated rule.

43

Optimisation of the tree grammar

start

: ruleA B C

| ^(B C D ruleB)

;

ruleA

: ^(E G)

| ^(H I)

;

ruleB

: ^(B E F G)

| ^(H I)

;

Figure 4.4: A context-free tree grammar with rules that can not be merged

start

: start B C

| ^(B C D ruleB)

| ^(E G)

| ^(H I)

;

Figure 4.5: The result of a merge of rules start and ruleA from 4.4

start

: ruleA B C

| ^(B C D start)

| ^(B E F G)

| ^(H I)

;

Figure 4.6: The result of a merge of rules start and ruleB from 4.4

44

4.3 Further optimisations

Besides macro expansion and rule merging, there are some trivial optimisations that hardly need
to be mentioned. These optimisations are merely present to clean up things that are left behind
by the other algorithms, so the implementations of these algorithms can be kept simpler. For
example many implemented algorithms do not check if parentheses are really necessary, they
simply always place parentheses to prevent con�icts. Excessive parentheses are removed by a
simple algorithm later. None of the optimisations below make signi�cant changes to the generated
tree walker, they merely clean up the grammar.

• Rules with identical content are removed; the algorithm that generates the walker from the
parser may generate several rules with identical content, these are redundant and can be
represented by one rule.

• Alternatives within one rule with identical content are removed; the algorithm that gener-
ates the walker from the parser and the optimisation from section 4.2 sometimes generate
rules with two or more identical alternatives, they are redundant and can be merged into
one.

• Sometimes rules are generated that are not referenced by other rules; this may happen as a
result of some of the other optimisations. All rules that are not referenced, either directly
or indirectly, from the start rule are removed.

• The algorithm also generates optional rules as BNF rules with an empty alternative, these
are changed to EBNF rules where the empty alternative is removed and all invocations
of the rule are annotated with an EBNF ? operator. If these rules invoke themselves
recursively; these are changed to the EBNF + operator.

• And �nally, all empty rules and super�uous parentheses are removed.

The optimisations in this section will clean up context-free tree grammar from �gure 4.7 to
the tree grammar as demonstrated in �gure 4.8. First, all references to ruleC are replaced
by references to ruleA as they are both identical. Next, the second alternative ^(A B C D) is
removed from rule start. Next, ruleB and ruleC are removed as they are not referenced by any
other rule. And �nally, the parentheses around F G in ruleA are removed.

45

Optimisation of the tree grammar

start

: ^(A B C D)

| ^(B ruleA)

| ^(A B C D)

| ^(D ruleC)

;

ruleA

: ^(E (F G))

| A

;

ruleB

: ^(A B C D)

;

ruleC

: ^(E (F G))

| A

;

Figure 4.7: An unoptimised context-free tree grammar

start

: ^(A B C D)

| ^(B ruleA)

| ^(D ruleA)

;

ruleA

: ^(E F G)

| A

;

Figure 4.8: The optimisations from section 4.3 applied to the tree grammar from �gure 4.7

46

Chapter 5

Implementation of ANTLRTG

To be able to perform a case study, a Java implementation of the algorithm has been made. Java
has been chosen as implementation language to ease the integration with ANTLR, since it is also
implemented in Java. This section will brie�y describe the design and some important details of
this implementation. To aid understanding the code, several classes that implement important
parts of the algorithm will be explained brie�y in this section. For exact details, please refer to
the JavaDoc documentation and the source code.

ANTLRTG

Parser spec

ANTLR

Parser

Integrated
parser spec

Walker-
generator

Walker spec

ANTLR

AST
Walker

AST

Walker spec

ANTLR

Walker

Figure 5.1: Architectural overview

47

Implementation of ANTLRTG

5.1 Architectural overview

Figure 5.1 demonstrates an abstracted �ow of information for a compiler with a parser and
two tree walkers. The dashed boxes represent automated processes or tools. The input for
this process is an integrated parser speci�cation, containing the information needed to generate
the parser and tree walkers. A walker generator splits this integrated speci�cation into the
di�erent speci�cations needed by ANTLR. The last step is to invoke ANTLR with the generated
speci�cations to generate the code for the parser and tree walkers.

5.1.1 Integrated parser speci�cation

The integrated parser speci�cation plays a key role in this process. It needs to contain the
information that is required to generate a parser and the tree walkers, but must not be redundant.
ANTLR parser and tree walker speci�cations contain context-free grammars, that specify the
language that is to be parsed, and source code annotations that are inserted into the generated
code. For the integrated parser speci�cation these separate speci�cations are merged into one.
Only the context-free grammar for the ANTLR parser speci�cation is used in the integrated
parser speci�cation, the context-free grammars for the tree walkers are internally generated from
the parser speci�cation. The source code annotations for the parser and tree walkers are all
attached to the same context-free grammar, a specialised editor shall be provided to keep this
comprehensible to the user.

5.1.2 Walker generator

Parser spec Parser Walker spec

Generator Walker spec Optimiser

Figure 5.2: Walker generator

An important node in the architecture is the walker generator. Figure 5.2 zooms in on the
walker generator, the dashed boxes again represent automated processes. The parser parses the
integrated parser speci�cation, which generates the ANTLR parser speci�cation and sets aside
the source code annotations for the tree walkers. Next the generator will generate the raw tree

48

walker speci�cations for each tree walker and merges the source code annotations. Finally the
optimiser will optimise walker speci�cations so that is practically usable.

5.2 Design

The architecture is broken down into several parts. The part that handles the integrated parser
speci�cation is implemented in the Java package org.antlrtg.grammar. The part that implements
the algorithms described in chapter 3 is implemented in the Java package org.antlrtg.algo with
some overlap with the org.antlrtg.grammar package. Two more packages are provided with some
helper classes and JUnit unit tests in the packages org.antlrtg.utilities and org.antlrtg.test. The
dependencies between these packages are depicted in �gure 5.3.

org.antlrtg.utilities

org.antlrtg.algo

org.antlrtg.grammar

Figure 5.3: The dependencies between packages in org.antlrtg.*

5.2.1 Algorithm

The Java package org.antlrtg.algo, for which the simpli�ed UML class diagram is depicted in
�gure 5.4, contains the code that implements most of the algorithms described in chapter 3. It
contains a representation of the FCNS tree, the tree pattern and a rule generator that implements
the formulæ from section 3.6. Note that extracting the sets RT , CH+ and CH− is provided by
the interface org.antlrtg.algo.PatternSets, but it is actually implemented in the grammar package
by the class org.antlrtg.grammar.PatternSets as it requires access to the grammar.

FCNSTree PatternSets

TreePattern RuleGenerator

Figure 5.4: The simpli�ed UML class diagram for org.antlrtg.algo

The class org.antlrtg.algo.FCNSTree implements the FCNS tree as described in section 2.2.2, the
source code for this class has been provided in appendix A.1. The class has a constructor that
restores the FCNS tree from its linear representation and a counterpart-method toString() that
converts it back to a linear representation. Furthermore, it provides some methods that provide
access to the root node of the FCNS tree and query properties such as the depth of the FCNS
tree. The class provides one subclass org.antlrtg.algo.FCNSTree.Node which models a node in

49

Implementation of ANTLRTG

the FCNS tree. It provides methods to query the �rst child, next sibling and last sibling of the
node.

The class org.antlrtg.algo.TreePattern extends the class FCNSTree and implements the tree pat-
tern as described in section 3.2, the source code for this class has been provided in appendix A.2.
The class also has a constructor that restores the tree pattern from its linear representation and
its counterpart toString(). Furthermore it has a constructor to construct one of the elementary
tree patterns. The class provides several methods to query properties such as if it is a master
or slave pattern. The class also provides methods to stack two tree patterns, retrieve the top or
bottom part, collapse it to an FCNS tree and decompose it to a set of elementary tree patterns.

The class org.antlrtg.algo.RuleGenerator generates the rules of the tree grammar as described
in section 3.6, it uses the information provided by the PatternSets interface to build them. The
rules are provided as a set of FCNS trees which are adapted by the class PatternGrammarGen
to the Grammar interface.

5.2.2 Grammar

The Java package org.antlrtg.grammar, for which the simpli�ed UML class diagram is depicted
in �gure 5.5, contains the code that handles the integrated parser speci�cation. It is built around
the main grammar �le from ANTLR, ANTLRv3.g, which has been annotated with calls to the
GrammarGenerator interface according to the visitor design pattern [15], the source code for this
class has been provided in appendix A.3. The ANTLRv3.g grammar �le is converted to the class
ANTLRv3Parser by ANTLR. The GrammarGenerator interface has been implemented by the
class PatternGrammarGen, which is responsible for building an annotated context-free grammar
as described in section 3.4 from the integrated parser speci�cation. The class PatternGrammarNF
is able to take the generated annotated context-free grammar and bring it to normal-form as
described in the same section.

ANTLRv3Parser

CodeGenerator Grammar GrammarGenerator

PatternGrammar

PatternGrammarNF PatternGrammarGen

TreeGrammar

TreeGrammarOpt TreeGrammarGen

Figure 5.5: The simpli�ed UML class diagram for org.antlrtg.grammar

The next step is to generate a context-free tree grammar according to section 3.5, this is im-

50

plemented in the class TreeGrammarGen. This class takes a PatternGrammar and builds a
context-free tree grammar from it. The class TreeGrammarOpt is able to take the generated
context-free tree grammar and optimise it according to chapter 4.

The last step is to generate code again that can be parsed by ANTLR to generate a lexical
analyser, parser, or tree walker. This has been implemented in the class CodeGenerator, which
can take any grammar and generate code that can be parsed by ANTLR.

5.3 Usage

ANTLRTG requires the user to make a standard ANTLR/EBNF parser speci�cation, this does
not deviate from the normal ANTLR way of working. The user should then annotate the rules
with carets to specify the root nodes for each rule, these will structure the AST. Figure 5.6
demonstrates a simple ANTLR grammar named �Test�, which parses sentences like �36 + 22�.
The corresponding tree walker, generated with ANTLRTG , is depicted in �gure 5.7.

5.3.1 Action annotations

ANTLR allows users to annotate terminals and non-terminals in a grammar speci�cation with
(Java) code. This code is then executed as the generated parser parses a token, or when the
generated tree walker visits a node in the AST. These code annotations are placed between
brackets:
{ System.out.println("Hello world"); }

Figure 5.6 already contains such an annotation in the WHITESPACE lexical analyser rule, which is
an ANTLR speci�c statement that hides all white-space tokens from the AST.

Annotating integrated parser speci�cations

ANTLRTG extends the syntax for action annotations slightly to support placing the annotations
for all tree walkers in the integrated parser speci�cation. In ANTLRTG, action annotations can
be started with '{@' followed by a number and a white-space to specify the tree walker to be
placed in:
{@1 System.out.println("Hello world"); }

The number following the '@' denotes the tree walker the action annotation is placed in, 1 is
the �rst tree walker to be generated, 2 the second, etc. The action annotation is placed in
the generated parser speci�cation if the '@' is followed by the number 0. Omitting this pre�x
on action annotations will place the action in the all generated speci�cations, note that lexer
rules (such as WHITESPACE and INTEGER_LITERAL in �gure 5.6) are only present in the parser
speci�cation.

Tree walkers

The structure of the tree walker speci�cation may di�er signi�cantly from the parser speci�ca-
tion. The order of the terminals and non-terminals may have changed, additional non-terminals
may have been introduced as explained in chapter 3 and other non-terminals may have been
optimised out as explained in chapter 4. To be sure all non-terminals can be annotated with an

51

Implementation of ANTLRTG

grammar Test;

options {
output=AST;

}

tokens {
PLUS = '+' ;

}

// Parser rules
add

: INTEGER_LITERAL PLUS^ INTEGER_LITERAL
;

// Lexer rules
INTEGER_LITERAL

: ('0' .. '9')+
;

WHITESPACE
: (' ' | '\t')+
{ $channel=HIDDEN; }

;

Figure 5.6: An ANTLR/EBNF parser speci�cation

tree grammar TestChecker;

options {
output = AST;
backtrack = true;

}

tokens {
PLUS;
WHITESPACE;

}

add
: ^(PLUS INTEGER_LITERAL INTEGER_LITERAL)
;

Figure 5.7: The generated tree walker for �gure 5.6.

52

action from the integrated parser speci�cation, a '+' followed by a number can be appended to
the '@' notation:
{@2+1 System.out.println("Hello world"); }

The number following the '+' denotes the number of terminals/non-terminals this action annota-
tion should be delayed from the perspective of the tree walker. Figure 5.8 presents some action
annotation examples.

// Integrated parser specification
add

: INTEGER_LITERAL PLUS^
{@1 System.out.println("1"); }
{@1+1 System.out.println("1+1"); }
INTEGER_LITERAL
{@1 System.out.println("X"); }

;

// First tree walker
add

: ^(PLUS
{ System.out.println("1"); }
INTEGER_LITERAL
{ System.out.println("1+1"); }
INTEGER_LITERAL
{ System.out.println("X"); }
)

;

Figure 5.8: Some action annotation examples.

5.3.2 Invocation

ANTLRTG can be invoked either from another Java application or from the console. Analogous
to ANTLR, ANTLRTG has an org.antlrtg.Tool class that provides a constructor that takes a list
of arguments String[] args and provides a process() method that actually processes the request.

From the console, ANTLRTG can be invoked by executing the main function in the class
org.antlrtg.Tool. The following �les need to be in the Java classpath: stringtemplate.jar, antlr3.jar
and either antlrtg.jar or the output directory where ANTLRTG is built. The arguments consist
of:
[-O<n>] <inputfile> [-op <outputfile>] [-ow[<n>] <outputfile>]

Where -op speci�es the output �le for the parser speci�cation, -ow<n> speci�es the output �le
for the (nth) tree walker speci�cation and -O<n> the level of optimisation to use (0 = no opti-
misation, 1 = full optimisation (default)). Figure 5.9 shows an example ANT build rule to add
ANTLRTG to an ANT build script.

53

Implementation of ANTLRTG

<target name="-pre-compile">
<exec dir="src" executable="java">
<arg value="-cp"/>
<arg value="../ext/stringtemplate-3.2.jar:

../ext/antlr-3.1.3.jar:

../ext/antlrtg.jar"/>
<arg value="org.antlrtg.Tool"/>
<arg value="IntegratedParserSpec.tg"/>
<arg value="-op"/><arg value="Parser.g"/>
<arg value="-ow1"/><arg value="Checker.g"/>
<arg value="-ow2"/><arg value="Generator.g"/>

</exec>
<exec dir="src" executable="java">
<arg value="-cp"/>
<arg value="../ext/stringtemplate-3.2.jar:

../ext/antlr-3.1.3.jar"/>
<arg value="org.antlr.Tool"/>
<arg value="Parser.g"/>
<arg value="Checker.g"/>
<arg value="Generator.g"/>

</exec>
</target>

Figure 5.9: Adding ANTLRTG to an ANT build script

54

Chapter 6

Case study: Triangle

The previous chapters established an algorithm and implementation to obtain an ANTLR tree-
walker from an ANTLR parser speci�cation. To con�rm the practical usability of this algorithm,
a case study has been executed for a compiler for a language called Triangle [7]. Triangle
is a Pascal-like language, but much simpler and more regular. A simple Triangle example is
demonstrated in �gure 6.1.

let
const newline ~ 0x0A;

proc getline (var length: Integer, var content: array 80 of Char) ~
let var c : Char
in
begin
length := 0;
c := getchar();
while c \ newline do
begin
content[length] := c;
length := length + 1;
c := getchar()
end

end;

var length: Integer;
var content: array 80 of Char

in
begin
printf('Please enter a line of text: ');
getline(var length, var content);
content[length] := newline; content[length+1] := 0;
printf('You provided the following line: %s', content)
end

Figure 6.1: A simple Triangle example

55

Case study: Triangle

This case study will implement a parser for this language and automatically let ANTLRTG gener-
ate two tree-walkers for it: a checker and a generator. Afterwards, the tree walkers are evaluated
for correctness and practical usability.

6.1 Design of the Triangle compiler

The compiler for this case study will parse a Triangle program and check it for semantic cor-
rectness and will output ISO/ANSI C code. C has been chosen for this case study as it is can
be easily veri�ed manually. Figure 6.2 presents the three logical components of the triangle
compiler.

Triangle

Lexer/
Parser AST

Checker
AST

Generator
ISO C

Figure 6.2: Triangle compiler overview

The Triangle compiler will be written in Java using ANTLRTG. The speci�cation for the parser
will be written in an ANTLRTG integrated parser speci�cation (.tg �le) which contains a standard
ANTLR parser speci�cation annotated with the custom actions for the tree walkers that will
be generated. This ANTLRTG integrated parser speci�cation will then be processed by the
ANTLRTG tool presented in chapter 5, resulting in an ANTLR parser speci�cation and two
ANTLR tree walker speci�cations (.g �les). The ANTLR speci�cations can then be processed
by ANTLR resulting in a set of Java �les that form the most signi�cant parts of the compiler.

6.1.1 Lexical analyser and parser

The �rst stages of the compiler are the lexical analyser and the parser, these will parse the input
�le and build an AST for it. Both are speci�ed in the ANTLRTG integrated parser speci�-
cation. The procedure for specifying these does not deviate from the procedure for specifying
a standard ANTLR lexical analyser and parser [8]. Figure 6.3 demonstrates a code snippet of
the ANTLR/EBNF speci�cation of the parser, the fully annotated ANTLRTG/EBNF integrated
parser speci�cation is provided in Appendix B.1. No custom actions are required for the parser,
a standard ANTLR parser is used for this case study.

Note that, in the design of this compiler, the only task for the parser is to check the syntax of
the input and generate an AST. Therefore the only deviations of the parser speci�cation from a
pure EBNF speci�cation are the ^ and ! annotations on terminals to determine the shape of the
AST. The rest of the compiler tasks as performed by the checker and generator.

6.1.2 Checker

The checker is used to check the semantic correctness of the �le (e.g. con�rm that a variable
is declared before it is used). The checker is a tree walker, which means it will traverse the
AST generated by the parser. The checker will cross reference identi�ers that are related, e.g.
variables with their declarations and types with their de�nitions.

56

declaration
: single_declaration (SEMICOLON! single_declaration)*
;

single_declaration^
: CONST^ IDENTIFIER EQUIV! expression
| VAR^ IDENTIFIER COLON! type_denoter
| PROC^ IDENTIFIER

LPAREN! formal_parameter_sequence RPAREN!
EQUIV! single_command

| FUNC^ IDENTIFIER
LPAREN! formal_parameter_sequence RPAREN!
COLON! type_denoter EQUIV! single_command

| TYPE^ IDENTIFIER EQUIV! type_denoter
;

Figure 6.3: ANTLR/EBNF speci�cation of the parser

Checking declarations

To be able to cross reference the type de�nitions and declarations, the compiler uses special AST
nodes that are annotated with a reference to another AST node. This reference is used to follow
declarations, for example: p := 0;, where the identi�er p is declared by var p : Point and
therefore the AST node for p is linked to the AST node for Point. In term, the identi�er Point
is de�ned by type Point ~ Integer; and therefore the AST node for Point is linked to the
AST node for Integer. Figure 6.4 presents a graphical representation of this concept.

Declared by

De�ned by

De�ned by

Figure 6.4: Additional AST annotations follow the declarations and de�nitions.

To be able to correctly cross reference the type de�nitions and declarations, the checker maintains
a stack of scopes (named scopeStack). This stack contains the hierarchical structure of all type
de�nitions and declarations, where a new entry is pushed each time a scope is entered and popped
each time a scope is left. Hence, new declarations and de�nitions are added to the scope on the
top of the stack. An error is generated when a reference can not be made, i.e. a declaration or
type de�nition is not available.

To be able to recursively specify types, the checker maintains a stack of types (named typeStack)
and a stack of records (named recordStack). An entry is pushed on the respective stack each

57

Case study: Triangle

declaration
: single_declaration (SEMICOLON! single_declaration)*
;

single_declaration^
: CONST^ IDENTIFIER EQUIV! const_denoter

{@1 $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

| VAR^ IDENTIFIER COLON! type_denoter
{@1 $IDENTIFIER.dataType = typeStack.pop();

scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

| PROC^ IDENTIFIER
{@1 scopeStack.push(new TriangleTreeNode.ProcType()); }
LPAREN! formal_parameter_sequence RPAREN!
EQUIV! single_command
{@1 $IDENTIFIER.dataType = scopeStack.pop();

scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

| FUNC^ IDENTIFIER
{@1 scopeStack.push(new TriangleTreeNode.FuncType()); }
LPAREN! formal_parameter_sequence RPAREN!
COLON! type_denoter EQUIV! single_command
{@1 $IDENTIFIER.dataType = scopeStack.pop();

((TriangleTreeNode.FuncType)$IDENTIFIER.dataType).type =
typeStack.pop();

scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

| TYPE^ IDENTIFIER EQUIV! type_denoter
{@1 $IDENTIFIER.dataType = typeStack.pop();

scopeStack.peek().typedefs.add($IDENTIFIER.text, $IDENTIFIER); }
;

Figure 6.5: Figure 6.3 annotated with the checker code.

58

declaration_suf_2
: (single_declaration)+
;

single_declaration
: ^(CONST type_denoter_pre_3 IDENTIFIER const_denoter

{ $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(VAR type_denoter_pre_3 IDENTIFIER type_denoter

{ $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(PROC type_denoter_pre_3 IDENTIFIER

{ scopeStack.push(new TriangleTreeNode.ProcType()); }
formal_parameter_sequence? single_command
{ $IDENTIFIER.dataType = scopeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(FUNC type_denoter_pre_3 IDENTIFIER

{ scopeStack.push(new TriangleTreeNode.FuncType()); }
formal_parameter_sequence? type_denoter single_command
{ $IDENTIFIER.dataType = scopeStack.pop();
((TriangleTreeNode.FuncType)$IDENTIFIER.dataType).type =
typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(TYPE type_denoter_pre_3 IDENTIFIER type_denoter

{ $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().typedefs.add($IDENTIFIER.text, $IDENTIFIER); }

)
;

Figure 6.6: The checker code generated by ANTLRTG for �gure 6.5.

59

Case study: Triangle

time a type or record is denoted, an entry is popped each time it is used in a de�nition or
declaration.

Source code

The tree walker speci�cation for the checker is not explicitly speci�ed, instead it is generated
by ANTLRTG. The custom actions to be performed on the visiting of an AST node by the
checker are speci�ed in the integrated parser speci�cation, ANTLRTG will put them at the
correct position in the ANTLR tree walker speci�cation as explained in section 5.3.1. Figure
6.5 demonstrates the code snippet from �gure 6.3 with the action annotations for the checker
appended. Note that the rule type_denoter pushes one element on the typeStack, see Appendix
B.2 for the generated tree walker speci�cation for the checker.

Figure 6.6 contains the generated tree walker speci�cation for the rules presented in �gure 6.5.
The declaration rule has been renamed as a side e�ect of the optimiser, this could have been
prevented by annotating the rule with a ^ like the single_declaration rule, and has been
simpli�ed because the SEMICOLON terminal was annotated with a ! and therefore left out of the
AST. The single_declaration rule is a clean rewrite of the parser rule.

6.1.3 Generator

The generator will output ISO/ANSI C code for the Triangle program. Like the checker, the
generator is also a tree walker, which will walk the same tree that the checker has annotated. The
ANTLR tree walker speci�cation for the generator is also generated by ANTLRTG, the custom
actions for the generator are therefore also speci�ed in the integrated parser speci�cation.

Generating code

The actual code generation has been implemented in a separate class CGenerator which imple-
ments the interface Generator. This interface is used for the output language speci�c parts,
the more generic parts are kept in the tree walker. Similar to the checker, the generator also
maintains a stack to deal with scopes. This stack, named codeStack contains all the generated
code for the current scope, which is merged with the rest of the program once the scope is closed.

Source code

Also the tree walker speci�cation for the generator is generated by ANTLRTG. Figure 6.7 demon-
strates the code snippet from �gure 6.3 with the action annotations for the checker appended,
see Appendix B.3 for the generated tree walker speci�cation for the generator.

6.2 Generated C code

Several types and functions from the standard C library have been directly made available to
Triangle. These types from stdint.h are int8_t, int16_t, int32_t and int64_t, which are
respectively exposed as Byte, Short, Integer and Long. The following functions from stdio.h

60

declaration
: single_declaration (SEMICOLON! single_declaration)*
;

single_declaration^
: CONST^ IDENTIFIER EQUIV! const_denoter

{@2 codeStack.peek().addType(
generator.generateDefinition($IDENTIFIER)); }

| VAR^ IDENTIFIER COLON! type_denoter
{@2 codeStack.peek().addDeclaration(

generator.generateDeclaration($IDENTIFIER)); }

| PROC^ IDENTIFIER
{@2 codeStack.push(generator.openScope(

generator.generateDefinition($IDENTIFIER), codeStack.peek())); }
LPAREN! formal_parameter_sequence RPAREN!
EQUIV! single_command
{@2 String code = generator.closeScope(codeStack.pop());

codeStack.peek().addMethod(code); }

| FUNC^ IDENTIFIER
{@2 codeStack.push(generator.openScope(

generator.generateDefinition($IDENTIFIER), codeStack.peek())); }
LPAREN! formal_parameter_sequence RPAREN!
COLON! type_denoter EQUIV! single_command
{@2 String code = generator.closeScope(codeStack.pop());

codeStack.peek().addMethod(code); }

| TYPE^ IDENTIFIER EQUIV! type_denoter
{@2 codeStack.peek().addType(

generator.generateDeclaration($IDENTIFIER)); }
;

Figure 6.7: Figure 6.3 annotated with the generator code.

61

Case study: Triangle

are exposed under the same name: getchar, printf and putchar. Figure 6.9 presents the
generated ISO/ANSI C code for the Triangle example of �gure 6.1.

The set of reserved keywords in Triangle is di�erent from that of C. For example, it is fully
legal to de�ne a Triangle variable with the name volatile, which is a reserved keyword in C.
Therefore, all Triangle identi�ers have been pre�xed with �tr_� to prevent name clashes with
standard C library methods and reserved keywords. Furthermore, as constants are untyped in
Triangle, all constants are de�ned using the C pre-processor with a #define directive.

Triangle allows passing variables by reference to a function or procedure, this has been replaced
by passing a pointer to a variable to a function in the generated C code. In this case, the function
argument is explicitly dereferenced everywhere it is used.

The C code should compile on any ISO/ANSI compatible C compiler, but only GCC 4.3.4 has
been tested. Figure 6.8 demonstrates how to compile and execute the generated program.

bash$ cc fullexample.c -o fullexample
bash$./fullexample
Please enter a line of text: This is a simple test!
You provided the following line: This is a simple test!
bash$

Figure 6.8: Compiling the generated C code.

6.3 Evaluation

During the building of the Triangle compiler, it became almost immediately apparent that build-
ing a compiler with ANTLRTG is signi�cantly easier compared to manually writing a parser
and tree walkers. There is more freedom to iteratively improve the parser speci�cation without
the risk of accidentally invalidating one of the tree walkers. Several bugs in the implementation
of ANTLRTG were discovered during the development of the Triangle compiler, some of these
bugs resulted in a tree walker that did not properly match the AST generated by the parser.
Detecting the mismatches of the tree walker with the AST alone took many hours, which shows
that automatically generating tree walkers does improve compiler building with ANTLR.

The usefulness of the generated tree walkers is mainly determined by the correctness, the read-
ability and the possibility to correctly position the action annotations in the tree walkers from
the integrated parser speci�cation. Chapter 3 presented some theoretical examples where the
generated tree walker would di�er signi�cantly and many additional rules could be generated, in
practise these constructions are hardly used and no more than one terminal annotated with a ^

is used in one alternative. Figures 6.5 and 6.6 are typical for the complexity encountered and
demonstrate that it is not very hard to follow what the tree walker generator is doing.

62

#include <sys/types.h>
#include <stdint.h>
#include <stdio.h>

#define tr_newline 0x0A

void tr_getline(int32_t * tr_length, char * tr_content)
{
{

char tr_c;

{
*tr_length = 0;
tr_c = getchar();
while (tr_c != tr_newline)
{
tr_content[*tr_length] = tr_c;
*tr_length = *tr_length + 1;
tr_c = getchar();

}
}

}
}

int main(int argc, char **argv)
{
int32_t tr_length;
char tr_content[80];

{
printf("Please enter a line of text: ");
tr_getline(&tr_length, tr_content);
tr_content[tr_length] = tr_newline;
tr_content[tr_length + 1] = 0;
printf("You provided the following line: %s", tr_content);

}

return 0;
}

Figure 6.9: The generated C code for the example of �gure 6.1.

63

64

Chapter 7

Conclusions

The �rst chapter of this thesis identi�ed a problem with the development and maintainability of
compilers using ANTLR. The following chapters provided a possible solution to this problem by
means of an algorithm and implementation of an automatic tree walker generator. This chapter
will evaluate the provided solution.

7.1 Summary

An ANTLR parser speci�cation not only contains the (E)BNF grammar de�nition of the language
to be parsed, it also contains the description of the abstract syntax tree to be generated in the
form of tree shaping operators. It therefore makes sense to automatically derive the parsers for
these abstract syntax trees from the same speci�cation. This thesis introduced ANTLRTG, a
tool that can generate ANTLR tree walkers given an annotated ANTLR parser speci�cation.
It uses a powerful algorithm by means of a tree pattern algebra. Several ANTLRTG speci�c
annotations allow the integrated parser speci�cation to contain all necessary information for the
parser and all tree walkers. The usefulness of this tool was demonstrated with a case study
building a Triangle compiler, which showed to signi�cantly reduce the identi�ed issues.

7.2 Evaluation of ANTLRTG

Automatically generating a tree walker for a speci�c parser helps developing a compiler signif-
icantly, as it removes the problems of debugging AST mismatches. The maintainability of the
compiler code is improved by an enhancement of the ANTLR action annotations that allows the
developer to place all action annotations for all tree walkers in the integrated parser speci�ca-
tion. Although the need for a specialised editor to help the user correctly position these action
annotations was foreseen, after completion of the case study it became apparent that manually
positioning these action annotations was relatively easy in practise. The case study has shown
that this resulted in signi�cantly more freedom to iteratively improve the parser speci�cation
without the risk of accidentally invalidating one of the tree walkers compared to the normal
ANTLR work �ow.

65

Conclusions

ANTLR version 3 provides a rewriting notation that enables the developer to manually structure
the abstract syntax tree. This diminishes the need to know the exact details of the tree shaping
operators, and therefore reduces a part of the problem described in the �rst chapter of this
thesis. However it introduces a new redundancy and it does not solve the redundancy between
the parser speci�cation and the tree walker speci�cations, which introduces the most signi�cant
problems.

ANTLRTG relies on the usage of tree shaping operators of ANTLR to shape the abstract syntax
tree, these operators can be hard to understand for new users and the complexity of these
operators has been identi�ed as part of the problem described in the �rst chapter of this thesis.
However, ANTLRTG is able to provide the user with direct feedback as the user can immediately
generate a tree walker speci�cation and evaluate the e�ects of the used tree shaping operators
on the tree walker.

7.3 Future work

The algorithms introduced in chapters 3 and 4 have shown to provide a useful tree walker. The
case-study has shown that integrating all grammar components into a single speci�cation can
be done and remains maintainable, at least for small compilers. It can be expected that for
larger compilers, the integrated parser speci�cation will grow signi�cantly. This might reduce
the maintainability, several possible solutions for this problem have been identi�ed:

• A very simple solution would be to allow the user to split up the integrated parser spec-
i�cation into several �les using #include directives, similar to the C pre-processor. This
allows the user to split up the grammar into logical sections, for example declarations, com-
mands and expressions. Although this would still require that the code for the di�erent
tree walkers are provided in the same �le, which might become confusing if there are many
tree walkers.

• Another solution would be to automatically generate a tree walker that invokes a method
on an interface for each visited terminal, according to the visitor pattern [15]. This allows
the user to directly write the code for the tree walker in a Java class, instead of adding
action annotations to the integrated parser speci�cation. This approach is already more
or less visible in the case-study, where most code for the generator has been placed in a
separate class.

• A more advanced solution would be a dedicated editor that provides the user with multiple
views of the integrated parser speci�cation. This editor will show the user the parser
speci�cation with only the action annotations for the parser when the user works on the
parser speci�cation, hiding all other information. When the user works on one of the tree
walkers instead, the editor will generate and show the requested tree walker. The user can
then change the action annotations in this view, which the editor will then merge back into
the integrated parser speci�cation transparently to the user.

Another topic for future work might be to investigate integrating ANTLRTG into ANTLRWorks
[18]. Several new features can be provided:

• Automatically generating a skeleton tree walker from an ANTLR parser speci�cation. For
example, when the user chooses to create a new tree walker, ANTLRWorks could automat-
ically provide the user with an automatically generated tree walker based on the parser

66

speci�cation that was already made. Although it would probably not be possible to keep
the two synchronised after changes have been made to both.

• A more thorough approach would be to integrate the editor mentioned above. This would
probably be signi�cantly more work, since now also the integrated debugger of ANTLR-
Works needs to be taken into account, but it could become a very powerful combination.

Finally, it might be worth to investigate what ANTLRTG can bring to JavaCC [22] [23]. JavaCC
is at certain points very similar to ANTLR and therefore a JavaCCTG may be useful.

67

68

Appendix A

ANTLRTG sources

This appendix contains the most signi�cant source �les for ANTLRTG. Explanations on the
software design is provided in chapter 5.

A.1 FCNSTree class

//
// ANTLR tree parser generator //
// Copyright (C) 2010 A.J. Admiraal (mailto:code@admiraal.dds.nl) //
// //
// This program is free software; you can redistribute it and/or modify it //
// under the terms of the GNU General Public License version 2 as published //
// by the Free Software Foundation. //
// //
// This program is distributed in the hope that it will be useful, but //
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY //
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License //
// for more details. //
// //
// You should have received a copy of the GNU General Public License along //
// with this program; if not, write to the Free Software Foundation, Inc., 51 //
// Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. //
//

package org.antlrtg.algo;

import java.lang.String;
import java.util.Collection;
import java.util.HashMap;
import java.util.Vector;
import org.antlrtg.utilities.Payload;
import org.antlrtg.utilities.GenericPayload;

/** The implementation of the FCNS tree
@author A.J. Admiraal

69

ANTLRTG sources

*/
public class FCNSTree
{
public enum NodeType { NODE, ROOTCONNECTOR, CHILDCONNECTOR }
public enum Tag { LABEL, ACTIVE_CHIDREN, INACTIVE_CHIDREN }

/** A FCNS tree node
@author A.J. Admiraal

*/
public static class Node
{

// Attributes
private Payload payload;
private NodeType type;
private Node parent;
private Node firstChild;
private Node nextSibling;

// Simple functions
public Payload getPayload() { return payload; }
public NodeType getType() { return type; }
public void setType(NodeType t) { type = t; }
public Node getParent() { return parent; }
public Node getFirstChild() { return firstChild; }
public Node getNextSibling() { return nextSibling; }

/** Constructs a new Node.
@param payload The payload for the node.
@param type The type of the node.
@param firstChild The first child of the node.
@param nextSibling The next sibling of the node.

*/
public Node(Payload payload,

NodeType type,
Node firstChild,
Node nextSibling)

{
this.payload = payload;
this.type = type;
this.parent = null;
setFirstChild(firstChild);
setNextSibling(nextSibling);

}

/** Returns a deep copy of the node.
*/
protected Node clone()
{
Node fc = (firstChild != null) ? firstChild.clone() : null;
Node ns = (nextSibling != null) ? nextSibling.clone() : null;

return new Node(payload, type, fc, ns);

70

}

/** Sets the first child of this node
@param n The new first child.

*/
public void setFirstChild(Node n)
{
firstChild = n;

if (firstChild != null)
firstChild.setParent(this);

}

/** Sets the next sibling of this node
@param n The new next sibling.

*/
public void setNextSibling(Node n)
{
nextSibling = n;

if (nextSibling != null)
nextSibling.setParent(this);

}

/** Returns either the previous sibling of this node, or null if it has no
previous sibling.

*/
public Node getPreviousSibling()
{
if (parent != null)
if (parent.getNextSibling() == this)
return parent;

return null;
}

/** Returns the previous last sibling of this node.
*/
public Node getLastSibling()
{
Node l = this;
while (l.getNextSibling() != null)
l = l.getNextSibling();

return l;
}

/** Returns a collection of all siblings of this node, including this node.
*/
public Collection<Node> getAllSiblings()
{
Vector<Node> nodes = new Vector<Node>();

71

ANTLRTG sources

for (Node i=this; i!=null; i=i.getNextSibling())
nodes.add(i);

for (Node i=getPreviousSibling(); i!=null; i=i.getPreviousSibling())
nodes.add(i);

return nodes;
}

public String toString()
{
if (type == NodeType.ROOTCONNECTOR)
return "â��";

else if (type == NodeType.CHILDCONNECTOR)
return "â��";

else if (payload != null)
{
if (payload.isOptional())
return payload.getLabel() + "?";

else if (payload.isRepetetive())
return payload.getLabel() + "*";

else
return payload.getLabel();

}
else
return null;

}

public boolean equals(Object o)
{
return toString().equals(o.toString());

}

private String toLinear()
{
String linear;
Node fc = getFirstChild();
Node ns = getNextSibling();

if (fc != null)
linear = "^(" + toString() + " " + fc.toLinear() + ") ";

else
linear = toString() + " ";

if (ns != null)
linear += ns.toLinear();

return linear;
}

protected void setParent(Node n)
{
if (parent != null)

72

parent.remove(this);

parent = n;
}

protected void remove(Node n)
{
if (firstChild == n)
firstChild = null;

if (nextSibling == n)
nextSibling = null;

}
}

// Attributes
private Node root;
private HashMap<Tag, Object> tags;
private boolean repetetive;

// Simple functions
public Node getRoot() { return root; }
public Object getTag(Tag id) { return tags.get(id); }
public void setTag(Tag id, Object tag) { tags.put(id, tag); }
public boolean getRepetetive() { return repetetive; }
public void setRepetetive(boolean r) { repetetive = r; }

/** Constructs a new FCNS tree with a specified root node.
@param root The root node.

*/
protected FCNSTree(Node root)
{

this.root = root;
this.repetetive = false;
tags = new HashMap<Tag, Object>();

}

/** Reconstructs a new FCNS tree from a linear representation.
@param linear The linear representation of the FCNS tree.

*/
public FCNSTree(String linear)
{

// Parameter by reference (pointer)
int[] parsePos = new int[1];

parsePos[0] = 0;

this.root = parseLinear(linear.split(" "), parsePos, false);
this.repetetive = false;

}

/** Returns a deep copy of the FCNS tree.
*/
public FCNSTree clone()
{

73

ANTLRTG sources

if (root != null)
return new FCNSTree(root.clone());

else
return new FCNSTree((Node)null);

}

public String toString()
{

Node root = getRoot();

if (root != null)
{
if (repetetive)
return "(" + root.toLinear() + ")+";

else
return root.toLinear();

}
else
return "";

}

public boolean equals(Object o)
{

return toString().equals(o.toString());
}

/** Sets a new root node.
@param node The new root node.

*/
public void setRoot(Node n)
{

root = n;

if (root != null)
root.setParent(null);

}

/** Returns the depth of the FCNS tree.
*/
public int getDepth()
{

int depth = 0;
for (Node i=getRoot(); i!=null; i=i.getFirstChild())
depth++;

return depth;
}

/** Parses a linear FCNS representation into a (root) node.
@param linear The linear FCNS representation.
@param parsePos The current position in the linear FCNS

representation.
@param firstRoot True if this is the first entry in a by

74

parentheses enclosed sequence, where all other
entries are children of this one.

*/
protected Node parseLinear(String[] linear, int[] parsePos, boolean firstRoot)
{

Node n = null;
Node nx = null;

for (; parsePos[0]<linear.length; parsePos[0]++)
{
Node nt = null;

if (linear[parsePos[0]].equals("^("))
{
parsePos[0]++;
nt = parseLinear(linear, parsePos, true);

}
else if (linear[parsePos[0]].equals(")"))
return n;

else
nt = new Node(new GenericPayload<String>(linear[parsePos[0]]),

NodeType.NODE,
null,
null);

if (nx == null)
n = nx = nt;

else if (firstRoot == true)
{
nx.setFirstChild(nt);
nx = nt;
firstRoot = false;

}
else
{
nx.setNextSibling(nt);
nx = nt;

}
}

return n;
}

}

A.2 TreePattern class

//
// ANTLR tree parser generator //
// Copyright (C) 2010 A.J. Admiraal (mailto:code@admiraal.dds.nl) //
// //
// This program is free software; you can redistribute it and/or modify it //
// under the terms of the GNU General Public License version 2 as published //

75

ANTLRTG sources

// by the Free Software Foundation. //
// //
// This program is distributed in the hope that it will be useful, but //
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY //
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License //
// for more details. //
// //
// You should have received a copy of the GNU General Public License along //
// with this program; if not, write to the Free Software Foundation, Inc., 51 //
// Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. //
//

package org.antlrtg.algo;

import java.util.Collection;
import java.util.LinkedList;
import org.antlrtg.utilities.Payload;

/** The implementation of the Tree pattern
@author A.J. Admiraal

*/
public class TreePattern extends FCNSTree
{
private static TreePattern nullPattern = null;

/** Returns the null tree pattern (i.e. "^(â�� â��)")
*/

public static TreePattern GetNullPattern()
{

if (nullPattern == null)
nullPattern = new TreePattern();

return nullPattern;
}

private TreePattern()
{

super((Node)null);

Node cc = new Node(null, NodeType.CHILDCONNECTOR, null, null);
setRoot(new Node(null, NodeType.ROOTCONNECTOR, cc, null));

}

/** Constructs a new elementary tree pattern.
@param payload The payload for the node in the elementary tree

pattern.
@param active True if this will be the active elementary tree

pattern (i.e. "^(Î± ^(â�� â��))"), otherwise it
will be the inactive elementary tree pattern
(i.e. "^(â�� â�� Î±)").

*/
public TreePattern(Payload payload, boolean active)
{

76

super((Node)null);

Node cc = new Node(null, NodeType.CHILDCONNECTOR, null, null);
Node rc = new Node(null, NodeType.ROOTCONNECTOR, cc, null);

if (active)
setRoot(new Node(payload, NodeType.NODE, rc, null));

else
{
cc.setNextSibling(new Node(payload, NodeType.NODE, rc, null));
setRoot(rc);

}
}

/** Constructs a new elementary tree pattern.
@param node The node in the elementary tree pattern.
@param active True if this will be the active elementary tree

pattern ("^(A ^(â�� â��))"), otherwise it will
be the inactive elementary tree pattern
("^(â�� â�� A)").

*/
public TreePattern(Node node, boolean active)
{

super((Node)null);

Node cc = new Node(null, NodeType.CHILDCONNECTOR, null, null);
Node rc = new Node(null, NodeType.ROOTCONNECTOR, cc, null);

if (active)
{
setRoot(node);
node.setFirstChild(rc);

}
else
{
cc.setNextSibling(node);
setRoot(rc);

}
}

/** Constructs a new tree pattern with the specified node as root, note that
this constructor can not guarantee that it is a real tree pattern (i.e. it
has a root and child connector).
@param root The root in the tree pattern.

*/
protected TreePattern(Node root)
{

super(root);
}

/** Constructs a new tree pattern from a linear representation, note that
this constructor can not guarantee that it is a real tree pattern (i.e. it
has a root and child connector).

77

ANTLRTG sources

@param linear The linear representation of the tree pattern.
*/
public TreePattern(String linear)
{

super(linear);

// Mark the root and child connector appropriately
for (Node i=getRoot(); i!=null; i=i.getFirstChild())
if (i.toString().equals("â��"))
i.setType(NodeType.ROOTCONNECTOR);

else if (i.toString().equals("â��"))
i.setType(NodeType.CHILDCONNECTOR);

}

/** Returns a deep copy of the tree pattern.
*/
public TreePattern clone()
{

return new TreePattern(getRoot().clone());
}

/** Returns true if this is an active pattern.
*/
public boolean isActive()
{

if (getRoot().getType() == NodeType.ROOTCONNECTOR)
// The root connector is the root, the pattern is only active iff the
// child connector and the root connector have no siblings
return (getRoot().getNextSibling() == null) &&

(getRoot().getFirstChild().getNextSibling() == null);
else
// The root connector is not the root, hence the pattern is active
return true;

}

/** Returns true if this is the null pattern (i.e. "^(â�� â��)").
*/
public boolean isNull()
{

if (getRoot().getType() == NodeType.ROOTCONNECTOR)
// The root connector is the root, the pattern is null iff the
// child connector and the root connector have no siblings
return (getRoot().getNextSibling() == null) &&

(getRoot().getFirstChild().getNextSibling() == null);
else
// The root connector is not the root, hence the pattern is not null
return false;

}

/** Returns the first node that is not a root or child connector in the
* pattern.
*/
public Node getFirstNode()

78

{
Node node = getRoot();

while (node.getType() != NodeType.NODE)
{
if (node.getType() == NodeType.ROOTCONNECTOR)
node = node.getFirstChild();

else if (node.getType() == NodeType.CHILDCONNECTOR)
node = node.getNextSibling();

}

return node;
}

/** Concatenates a pattern with this pattern and returns the result.
@param addPattern The pattern to concatenate to this pattern

(i.e. this Â· addPattern).
*/
public TreePattern concat(TreePattern addPattern)
{

// Make sure we're not modifying existing patterns.
TreePattern con = addPattern.clone();
Node root = getRoot().clone();

// Find the root connector in the addPattern
for (Node i=con.getRoot(); i!=null; i=i.getFirstChild())
if (i.getType() == NodeType.ROOTCONNECTOR)
{
// Retrieve the parent, child connector and next sibling
Node p = i.getParent();
Node c = i.getFirstChild().getNextSibling();
Node n = i.getNextSibling();

// Replace the root connector with the child pattern
if (p != null)
p.setFirstChild(root);

else
con.setRoot(root);

// Add the next sibling of the root connector to the last sibling of
// the root of the child pattern
root.getLastSibling().setNextSibling(n);

// Add the next sibling of the child connector to the last sibling of
// the first child of the root of the child pattern
root.getFirstChild().getLastSibling().setNextSibling(c);

// Return the result
return con;

}

// Failed (corrupted pattern?)
return null;

79

ANTLRTG sources

}

/** Returns the top of this pattern.
*/
public TreePattern getTop()
{
// Make sure we're not modifying existing patterns.
TreePattern top = clone();

// Find the root connector in the addPattern
for (Node i=top.getRoot(); i!=null; i=i.getFirstChild())
if (i.getType() == NodeType.CHILDCONNECTOR)
{
// Remove all siblings of the child connector
i.setNextSibling(null);

// Return the result
return top;

}

// Failed (corrupted pattern?)
return null;

}

/** Returns the bottom of this pattern.
*/
public TreePattern getBottom()
{
// Make sure we're not modifying existing patterns.
TreePattern bot = clone();

// Find the root connector in the addPattern
for (Node i=bot.getRoot(); i!=null; i=i.getFirstChild())
if (i.getType() == NodeType.ROOTCONNECTOR)
{

// Remove all siblings of the root connector
i.setNextSibling(null);

// Make the root connector the root of the patern
bot.setRoot(i);

// Return the result
return bot;

}

// Failed (corrupted pattern?)
return null;

}

/** Collapses this pattern into an FCNS tree (i.e. removes the root and child
connectors).

*/
public FCNSTree collapse()

80

{
// Make sure we're not modifying existing patterns.
TreePattern col = clone();

// Find the root connector in the addPattern
for (Node i=col.getRoot(); i!=null; i=i.getFirstChild())
if (i.getType() == NodeType.ROOTCONNECTOR)
{
// Retrieve the parent, child connector and next sibling
Node p = i.getParent();
Node c = i.getFirstChild().getNextSibling();
Node n = i.getNextSibling();

// Replace the root connector with the siblings of the child connector
if (p != null)
p.setFirstChild(c);

else
col.setRoot(c);

// Add the siblings of the root connector to the siblings of the child
// connector
if (c != null)
c.getLastSibling().setNextSibling(n);

// Return the result
return new FCNSTree(col.getRoot());

}

// Failed (corrupted pattern?)
System.err.println("Found corrupted pattern: " + toString());
return null;

}

/** Decomposes the pattern into a collection of elementary tree patterns.
*/
public Collection<TreePattern> decompose()
{

// Make sure we're not modifying existing patterns.
TreePattern cln = clone();

// Find the root connector in the addPattern
for (Node i=cln.getRoot(); i!=null; i=i.getFirstChild())
if (i.getType() == NodeType.ROOTCONNECTOR)
{
// Retrieve the parent, child connector
Node p = i.getParent();
Node c = i.getFirstChild().getNextSibling();

if (c != null)
{
// Remove it from the pattern
c.getParent().setNextSibling(c.getNextSibling());
c.setNextSibling(null);

81

ANTLRTG sources

c.setFirstChild(null);

// Add it to the list
LinkedList<TreePattern> dec = (LinkedList<TreePattern>)cln.decompose();
dec.add(0, new TreePattern(c, false));

return dec;
}
else if (p != null)
{
// Remove it from the pattern
i.getFirstChild().setNextSibling(i.getNextSibling());
i.setNextSibling(p.getNextSibling());
p.setNextSibling(null);
p.setFirstChild(null);

if (p.getParent() != null)
p.getParent().setFirstChild(i);

else
cln.setRoot(i);

// Add it to the list
LinkedList<TreePattern> dec = (LinkedList<TreePattern>)cln.decompose();
dec.add(0, new TreePattern(p, true));

return dec;
}

}

// Empty pattern, return empty list
return new LinkedList<TreePattern>();

}
}

A.3 ANTLRTG grammar

/*
[The "BSD licence"]
Copyright (c) 2005-2007 Terence Parr
ANTLRTG modifications - Copyright (c) 2010 A.J. Admiraal
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

82

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/** ANTLR v3 grammar written in ANTLR v3 with AST construction */
grammar ANTLRv3;

options {
output=AST;
ASTLabelType=CommonTree;

}

tokens {
DOC_COMMENT;
PARSER;
LEXER;
RULE;
BLOCK;
OPTIONAL;
CLOSURE;
POSITIVE_CLOSURE;
SYNPRED;
RANGE;
CHAR_RANGE;
EPSILON;
ALT;
EOR;
EOB;
EOA; // end of alt
ID;
ARG;
ARGLIST;
RET='returns';
LEXER_GRAMMAR;
PARSER_GRAMMAR;
TREE_GRAMMAR;
COMBINED_GRAMMAR;
LABEL; // $x used in rewrite rules
TEMPLATE;
SCOPE='scope';
SEMPRED;
GATED_SEMPRED; // {p}? =>
SYN_SEMPRED; //(...) => it's a manually-specified synpred converted to sempred
BACKTRACK_SEMPRED; // auto backtracking mode syn pred converted to sempred

83

ANTLRTG sources

FRAGMENT='fragment';
TREE_BEGIN='^(';
ROOT='^';
BANG='!';
RANGE='..';
REWRITE='->';
AT='@';
LABEL_ASSIGN='=';
LIST_LABEL_ASSIGN='+=';

}

@parser::header
{
package org.antlrtg.grammar;

}

@lexer::header
{
package org.antlrtg.grammar;

}

@members {
int gtype;
private GrammarGenerator gen;
public void setGenerator(GrammarGenerator g) { gen = g; }

}

grammarDef
: DOC_COMMENT?
('lexer' { gtype=LEXER_GRAMMAR; gen.setEnabled(false); }
| 'parser' { gtype=PARSER_GRAMMAR; gen.setEnabled(true); }
| 'tree' { gtype=TREE_GRAMMAR; gen.setEnabled(false); }
| { gtype=COMBINED_GRAMMAR; gen.setEnabled(true); }
)
g='grammar' id ';' { gen.setParserName($id.text); } optionsSpec?
tokensSpec? attrScope* action*
rule+
EOF
-> ^({adaptor.create(gtype,$g)}

id DOC_COMMENT? optionsSpec? tokensSpec? attrScope* action* rule+
)

;

tokensSpec
@init{ gen.genParserTokensSpec(true); }
@after{ gen.genParserTokensSpec(false); }
: TOKENS tokenSpec+ '}' -> ^(TOKENS tokenSpec+)
;

tokenSpec
: t1=TOKEN_REF

('=' (lit=STRING_LITERAL|lit=CHAR_LITERAL)
{ gen.genParserTokensSpec($t1.text, $lit.text); } -> ^('=' TOKEN_REF $lit)

84

| { gen.genParserTokensSpec($t1.text, null); } -> TOKEN_REF
)
';'

;

attrScope
: 'scope' id a=ACTION { gen.appendAction($id.text, $a); }

-> ^('scope' id ACTION)
;

/** Match stuff like @parser::members {int i;} */
action
: '@' (actionScopeName

{ gen.setActionScopeName($actionScopeName.text); }
'::')? id a=ACTION { gen.appendAction($id.text, $a); }
-> ^('@' actionScopeName? id ACTION)

;

/** Sometimes the scope names will collide with keywords; allow them as
* ids for action scopes.
*/
actionScopeName
: id
| l='lexer' -> ID[$l]

| p='parser' -> ID[$p]
;

optionsSpec
//@init{ gen.genParserOptionsSpec(true); }
//@after{ gen.genParserOptionsSpec(false); }
: OPTIONS (option ';')+ '}' -> ^(OPTIONS option+)
;

option
: id '=' optionValue

{ gen.genParserOptionsSpec($id.text, $optionValue.text); }
-> ^('=' id optionValue)

;

optionValue
: qid
| STRING_LITERAL
| CHAR_LITERAL
| INT
| s='*' -> STRING_LITERAL[$s] // used for k=*
;

rule
scope {
String name;

} @after{ gen.closeRule(); }
: DOC_COMMENT?

(modifier=('protected'|'public'|'private'|'fragment'))?

85

ANTLRTG sources

id {$rule::name = $id.text; gen.setRuleName($id.text);}
('^' { gen.setPrimaryRule(); })? /* ANTLRTG grammar supplement */
'!'?
(arg=ARG_ACTION)?
('returns' rt=ARG_ACTION { gen.setRuleReturns($rt); })?
throwsSpec? optionsSpec? ruleScopeSpec? ruleAction*
':' altList ';'
exceptionGroup?
-> ^(RULE id {modifier!=null?adaptor.create(modifier):null}

^(ARG[$arg] $arg)? ^('returns' $rt)?
throwsSpec? optionsSpec? ruleScopeSpec? ruleAction*
altList
exceptionGroup?
EOR["EOR"]

)
;

/** Match stuff like @init {int i;} */
ruleAction
: '@' id a=ACTION { gen.appendAction($id.text, $a); } -> ^('@' id ACTION)
;

throwsSpec
: 'throws' id (',' id)* -> ^('throws' id+)
;

ruleScopeSpec
: 'scope' a=ACTION { gen.appendAction($a); } -> ^('scope' ACTION)
| 'scope' id (',' id)* ';' -> ^('scope' id+)
| 'scope' a=ACTION { gen.appendAction($a); }

'scope' id (',' id)* ';'
-> ^('scope' ACTION id+)

;

block
: lp='('

((opts=optionsSpec)? ':')?
altpair ('|' { gen.nextAlternative(); } altpair)*
rp=')'
-> ^(BLOCK[$lp,"BLOCK"] optionsSpec? altpair+ EOB[$rp,"EOB"])

;

altpair : alternative rewrite ;

altList
@init {
// must create root manually as it's used by invoked rules in real antlr tool.
// leave here to demonstrate use of {...} in rewrite rule
// it's really BLOCK[firstToken,"BLOCK"]; set line/col to previous (or : token.
CommonTree blkRoot = (CommonTree)adaptor.create(BLOCK,input.LT(-1),"BLOCK");

}
: altpair ('|' { gen.nextAlternative(); } altpair)*

-> ^({blkRoot} altpair+ EOB["EOB"])

86

;

alternative
@init {
Token firstToken = input.LT(1);
Token prevToken = input.LT(-1); // either : or | I think

}
: element+ -> ^(ALT[firstToken,"ALT"] element+ EOA["EOA"])
| -> ^(ALT[prevToken,"ALT"] EPSILON[prevToken,"EPSILON"] EOA["EOA"])
;

exceptionGroup
: (exceptionHandler)+ (finallyClause)?
| finallyClause
;

exceptionHandler
: 'catch' ARG_ACTION ACTION -> ^('catch' ARG_ACTION ACTION)
;

finallyClause
: 'finally' ACTION -> ^('finally' ACTION)
;

element
: id (labelOp='='|labelOp='+=')

{ gen.openScope(); gen.setRuleAssignID($id.text); }
atom
(ebnfSuffix
-> ^(ebnfSuffix ^(BLOCK["BLOCK"] ^(ALT["ALT"]

^($labelOp id atom) EOA["EOA"]) EOB["EOB"]))
| { gen.cancelScope(); } -> ^($labelOp id atom)
)

| id (labelOp='='|labelOp='+=')
{ gen.openScope(); gen.setRuleAssignID($id.text); }
block
(ebnfSuffix
-> ^(ebnfSuffix ^(BLOCK["BLOCK"] ^(ALT["ALT"]

^($labelOp id block) EOA["EOA"]) EOB["EOB"]))
| { gen.cancelScope(); } -> ^($labelOp id block)
)

| { gen.openScope(); } atom
(ebnfSuffix
-> ^(ebnfSuffix ^(BLOCK["BLOCK"]

^(ALT["ALT"] atom EOA["EOA"]) EOB["EOB"]))
| { gen.cancelScope(); } -> atom
)

| ebnf
| a=ACTION { gen.appendAction($a); }
| SEMPRED (g='=>' -> GATED_SEMPRED[$g] | -> SEMPRED)
| { gen.openScope(); } treeSpec

(ebnfSuffix
-> ^(ebnfSuffix ^(BLOCK["BLOCK"]

87

ANTLRTG sources

^(ALT["ALT"] treeSpec EOA["EOA"]) EOB["EOB"]))
| { gen.cancelScope(); } -> treeSpec
)

;

atom @init{ int flags = (int)(' '); }
: terminal
| range

((op='^' { flags |= GrammarGenerator.CARET_ENABLED; }
| op='!' { flags |= GrammarGenerator.BANG_ENABLED; }) -> ^($op range)

| -> range
) { gen.parseTerminal($range.text, flags); }

| notSet
((op='^'|op='!') -> ^($op notSet)
| -> notSet
)

| rr=RULE_REF (aa=ARG_ACTION { gen.setArgAction(aa); })?
((op='^' { flags |= GrammarGenerator.CARET_ENABLED; }
| op='!' { flags |= GrammarGenerator.BANG_ENABLED; })

-> ^($op RULE_REF ARG_ACTION?)
| -> ^(RULE_REF ARG_ACTION?)
) { gen.parseRuleRef(rr, flags); }

;

notSet
: '~'

(notTerminal elementOptions? -> ^('~' notTerminal elementOptions?)
| block elementOptions? -> ^('~' block elementOptions?)
)

;

notTerminal
: CHAR_LITERAL
| TOKEN_REF
| STRING_LITERAL
;

elementOptions
: '<' qid '>' -> ^(OPTIONS qid)
| '<' option (';' option)* '>' -> ^(OPTIONS option+)
;

elementOption
: id '=' optionValue -> ^('=' id optionValue)
;

treeSpec
: '^(' element (element)+ ')' -> ^(TREE_BEGIN element+)
;

range!
: c1=CHAR_LITERAL RANGE c2=CHAR_LITERAL elementOptions?

-> ^(CHAR_RANGE[$c1,".."] $c1 $c2 elementOptions?)

88

;

terminal @init { int flags = (int)(' '); }
: (t=CHAR_LITERAL elementOptions? -> ^(CHAR_LITERAL elementOptions?)

// Args are only valid for lexer rules
| t=TOKEN_REF (aa=ARG_ACTION { gen.setArgAction(aa); })? elementOptions?
-> ^(TOKEN_REF ARG_ACTION? elementOptions?)

| t=STRING_LITERAL elementOptions? -> ^(STRING_LITERAL elementOptions?)
| '.' elementOptions? -> ^('.' elementOptions?)
)
('^' { flags |= GrammarGenerator.CARET_ENABLED; } -> ^('^' $terminal)
| '!' { flags |= GrammarGenerator.BANG_ENABLED; } -> ^('!' $terminal)
)?
{ gen.parseTerminal(t, flags); }

;

/** Matches ENBF blocks (and token sets via block rule) */
ebnf
@init {
Token firstToken = input.LT(1);
int flags = (int)(' ');
gen.openScope();

}
@after {
$ebnf.tree.getToken().setLine(firstToken.getLine());
$ebnf.tree.getToken().setCharPositionInLine(

firstToken.getCharPositionInLine());
gen.closeScope(flags);

}
: block

(op='?' { flags = (flags & ~GrammarGenerator.SCOPECHAR) | (int)('?'); }
-> ^(OPTIONAL[op] block)

| op='*' { flags = (flags & ~GrammarGenerator.SCOPECHAR) | (int)('*'); }
-> ^(CLOSURE[op] block)

| op='+' { flags = (flags & ~GrammarGenerator.SCOPECHAR) | (int)('+'); }
-> ^(POSITIVE_CLOSURE[op] block)

| '=>' // syntactic predicate
-> {gtype==COMBINED_GRAMMAR &&

Character.isUpperCase($rule::name.charAt(0))}?
// if lexer rule in combined, leave as pred for lexer
^(SYNPRED["=>"] block)
// in real antlr tool, text for SYN_SEMPRED is predname

-> SYN_SEMPRED
| -> block
)

;

ebnfSuffix
@init {
Token op = input.LT(1);

int flags = (int)(' ');
}
@after {

89

ANTLRTG sources

gen.closeScope(flags);
}
: '?' { flags = (flags & ~GrammarGenerator.SCOPECHAR) | (int)('?'); }

-> OPTIONAL[op]
| '*' { flags = (flags & ~GrammarGenerator.SCOPECHAR) | (int)('*'); }

-> CLOSURE[op]
| '+' { flags = (flags & ~GrammarGenerator.SCOPECHAR) | (int)('+'); }

-> POSITIVE_CLOSURE[op]
;

// R E W R I T E S Y N T A X

rewrite
@init {
Token firstToken = input.LT(1);

}
: (rew+='->' preds+=SEMPRED predicated+=rewrite_alternative)*

rew2='->' last=rewrite_alternative
-> ^($rew $preds $predicated)* ^($rew2 $last)

|
;

rewrite_alternative
options {backtrack=true;}
: rewrite_template
| rewrite_tree_alternative

| /* empty rewrite */ -> ^(ALT["ALT"] EPSILON["EPSILON"] EOA["EOA"])
;

rewrite_tree_block
: lp='(' rewrite_tree_alternative ')'

-> ^(BLOCK[$lp,"BLOCK"] rewrite_tree_alternative EOB[$lp,"EOB"])
;

rewrite_tree_alternative
: rewrite_tree_element+ -> ^(ALT["ALT"] rewrite_tree_element+ EOA["EOA"])
;

rewrite_tree_element
: rewrite_tree_atom
| rewrite_tree_atom ebnfSuffix

-> ^(ebnfSuffix ^(BLOCK["BLOCK"]
^(ALT["ALT"] rewrite_tree_atom EOA["EOA"]) EOB["EOB"]))

| rewrite_tree
(ebnfSuffix
-> ^(ebnfSuffix ^(BLOCK["BLOCK"]

^(ALT["ALT"] rewrite_tree EOA["EOA"]) EOB["EOB"]))
| -> rewrite_tree
)

| rewrite_tree_ebnf
;

90

rewrite_tree_atom
: CHAR_LITERAL
| TOKEN_REF ARG_ACTION? -> ^(TOKEN_REF ARG_ACTION?) // for imaginary nodes
| RULE_REF
| STRING_LITERAL
| d='$' id -> LABEL[$d,$id.text] // reference to a label in a rewrite rule
| ACTION
;

rewrite_tree_ebnf
@init {
Token firstToken = input.LT(1);

}
@after {
$rewrite_tree_ebnf.tree.getToken().setLine(firstToken.getLine());
$rewrite_tree_ebnf.tree.getToken().setCharPositionInLine(

firstToken.getCharPositionInLine());
}
: rewrite_tree_block ebnfSuffix -> ^(ebnfSuffix rewrite_tree_block)
;

rewrite_tree
: '^(' rewrite_tree_atom rewrite_tree_element* ')'

-> ^(TREE_BEGIN rewrite_tree_atom rewrite_tree_element*)
;

/** Build a tree for a template rewrite:
^(TEMPLATE (ID|ACTION) ^(ARGLIST ^(ARG ID ACTION) ...))

where ARGLIST is always there even if no args exist.
ID can be "template" keyword. If first child is ACTION then it's
an indirect template ref

-> foo(a={...}, b={...})
-> ({string-e})(a={...}, b={...}) // e evaluates to template name
-> {%{$ID.text}} // create literal template from string
-> {st-expr} // st-expr evaluates to ST

*/
rewrite_template
: // -> template(a={...},...) "..." inline template

id lp='(' rewrite_template_args ')'
(str=DOUBLE_QUOTE_STRING_LITERAL | str=DOUBLE_ANGLE_STRING_LITERAL)
-> ^(TEMPLATE[$lp,"TEMPLATE"] id rewrite_template_args $str)

| // -> foo(a={...}, ...)
rewrite_template_ref

| // -> ({expr})(a={...}, ...)
rewrite_indirect_template_head

| // -> {...}
ACTION

;

91

ANTLRTG sources

/** -> foo(a={...}, ...) */
rewrite_template_ref
: id lp='(' rewrite_template_args ')'

-> ^(TEMPLATE[$lp,"TEMPLATE"] id rewrite_template_args)
;

/** -> ({expr})(a={...}, ...) */
rewrite_indirect_template_head
: lp='(' ACTION ')' '(' rewrite_template_args ')'

-> ^(TEMPLATE[$lp,"TEMPLATE"] ACTION rewrite_template_args)
;

rewrite_template_args
: rewrite_template_arg (',' rewrite_template_arg)*

-> ^(ARGLIST rewrite_template_arg+)
| -> ARGLIST
;

rewrite_template_arg
: id '=' ACTION -> ^(ARG[$id.start] id ACTION)
;

qid : id ('.' id)* ;

id : TOKEN_REF -> ID[$TOKEN_REF]
| RULE_REF -> ID[$RULE_REF]
;

// L E X I C A L R U L E S

SL_COMMENT
: '//'

(' $ANTLR ' SRC // src directive
| ~('\r'|'\n')*
)
'\r'? '\n'
{$channel=HIDDEN;}

;

ML_COMMENT
: '/*'

{if (input.LA(1)=='*') $type=DOC_COMMENT; else $channel=HIDDEN;} .*
'*/'

;

CHAR_LITERAL
: '\'' LITERAL_CHAR '\''
;

STRING_LITERAL
: '\'' LITERAL_CHAR LITERAL_CHAR* '\''
;

92

fragment
LITERAL_CHAR
: ESC
| ~('\''|'\\')
;

DOUBLE_QUOTE_STRING_LITERAL
: '"' (ESC | ~('\\'|'"'))* '"'
;

DOUBLE_ANGLE_STRING_LITERAL
: '<<' .* '>>'
;

fragment
ESC : '\\'

('n'
| 'r'
| 't'
| 'b'
| 'f'
| '"'
| '\''
| '\\'
| '>'
| 'u' XDIGIT XDIGIT XDIGIT XDIGIT
| . // unknown, leave as it is
)

;

fragment
XDIGIT :

'0' .. '9'
| 'a' .. 'f'
| 'A' .. 'F'
;

INT : '0'..'9'+
;

ARG_ACTION
: NESTED_ARG_ACTION
;

fragment
NESTED_ARG_ACTION :
'['
(options {greedy=false; k=1;}
: NESTED_ARG_ACTION
| ACTION_STRING_LITERAL
| ACTION_CHAR_LITERAL
| .
)*

93

ANTLRTG sources

']'
//{setText(getText().substring(1, getText().length()-1));}
;

ACTION
: NESTED_ACTION ('?' {$type = SEMPRED;})?
;

fragment
NESTED_ACTION :
'{'
(options {greedy=false; k=2;}
: NESTED_ACTION
| SL_COMMENT
| ML_COMMENT
| ACTION_STRING_LITERAL
| ACTION_CHAR_LITERAL
| .
)*
'}'
;

fragment
ACTION_CHAR_LITERAL
: '\'' (ACTION_ESC|~('\\'|'\'')) '\''
;

fragment
ACTION_STRING_LITERAL
: '"' (ACTION_ESC|~('\\'|'"'))* '"'
;

fragment
ACTION_ESC
: '\\\''
| '\\' '"' // ANTLR doesn't like: '\\"'
| '\\' ~('\''|'"')
;

TOKEN_REF
: 'A'..'Z' ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*
;

RULE_REF
: 'a'..'z' ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*
;

/** Match the start of an options section. Don't allow normal
* action processing on the {...} as it's not a action.
*/
OPTIONS
: 'options' WS_LOOP '{'
;

94

TOKENS
: 'tokens' WS_LOOP '{'
;

/** Reset the file and line information; useful when the grammar
* has been generated so that errors are shown relative to the
* original file like the old C preprocessor used to do.
*/
fragment
SRC : 'src' ' ' file=ACTION_STRING_LITERAL ' ' line=INT
;

WS : (' '
| '\t'
| '\r'? '\n'
)+
{$channel=HIDDEN;}

;

fragment
WS_LOOP
: (WS

| SL_COMMENT
| ML_COMMENT
)*

;

95

96

Appendix B

Triangle compiler sources

This appendix contains the integrated parser speci�cation for the Triangle compiler presented in
chapter 6 and the generated parser and tree walkers for this �le.

B.1 Integrated parser speci�cation for Triangle

//
// Integrated parser specification for the Triangle compiler //
// Copyright (C) 2010 A.J. Admiraal (mailto:code@admiraal.dds.nl) //
// //
// This program is free software; you can redistribute it and/or modify it //
// under the terms of the GNU General Public License version 2 as published //
// by the Free Software Foundation. //
// //
// This program is distributed in the hope that it will be useful, but //
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY //
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License //
// for more details. //
// //
// You should have received a copy of the GNU General Public License along //
// with this program; if not, write to the Free Software Foundation, Inc., 51 //
// Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. //
//

grammar Triangle;

options {
output=AST;
ASTLabelType=TriangleTreeNode;

}

tokens {
ARRAY = 'array'; BEGIN = 'begin'; CONST = 'const';
DO = 'do'; ELSE = 'else'; END = 'end';
FUNC = 'func'; IF = 'if'; IN = 'in';

97

Triangle compiler sources

LET = 'let'; OF = 'of'; PROC = 'proc';
RECORD = 'record'; SKIP = 'skip'; THEN = 'then';
TYPE = 'type'; VAR = 'var'; WHILE = 'while';

ASSIGN = ':='; LPAREN = '('; RPAREN = ')';
LBRACE = '{'; RBRACE = '}'; LBLOCK = '[';
RBLOCK = ']'; COLON = ':'; SEMICOLON = ';';
DOT = '.'; COMMA = ','; EQUIV = '~';

}

@header {
package triangle;

import java.util.LinkedList;
}

//
// Checker members

@members {@1
private KeyValueList<TriangleTreeNode.Type> builtinTypes;
private KeyValueList<TriangleTreeNode.Type> builtinVariables;
private Stack<TriangleTreeNode.Type> typeStack =

new Stack<TriangleTreeNode.Type>();
private Stack<TriangleTreeNode.RecordType> recordStack =

new Stack<TriangleTreeNode.RecordType>();
private Stack<TriangleTreeNode.Scope> scopeStack =

new Stack<TriangleTreeNode.Scope>();
private TriangleTreeNode.RecordType currentRecord = null;
private boolean errorFound = false;

public void setBuiltins(KeyValueList<TriangleTreeNode.Type> bt,
KeyValueList<TriangleTreeNode.Type> bv)

{
builtinTypes = bt;
builtinVariables = bv;

}

public boolean allOk()
{

return !errorFound;
}

private void findDeclaration(TriangleTreeNode node)
{

TriangleTreeNode.Type builtin =
builtinVariables.get(node.getText());

if (builtin != null)
{
node.dataType = builtin;
return;

}

98

for (int i=scopeStack.size()-1; i>=0; i--)
{
TriangleTreeNode declarator =
scopeStack.get(i).variables.get(node.getText());

if (declarator != null)
{
node.declarator = declarator;

TriangleTreeNode.Type type = declarator.findType();
if (type instanceof TriangleTreeNode.RecordType)

currentRecord = (TriangleTreeNode.RecordType)type;
else

currentRecord = null;

return;
}

}

errorFound = true;
System.err.println(node.getLine() +
": Failed to find a declaration for token \"" +
node.getText() + "\"");

}

private void findRecElemDeclaration(TriangleTreeNode node)
{

if (currentRecord != null)
{
TriangleTreeNode.Type type =
currentRecord.elements.get(node.getText());

if (type != null)
{
node.dataType = type;

if (type instanceof TriangleTreeNode.RecordType)
currentRecord = (TriangleTreeNode.RecordType)type;

else
currentRecord = null;

return;
}

}

errorFound = true;
System.err.println(node.getLine() +
": Failed to find a record declaration for token \"" +
node.getText() + "\"");

}

private void findDefinition(TriangleTreeNode node)

99

Triangle compiler sources

{
TriangleTreeNode.Type builtin =
builtinTypes.get(node.getText());

if (builtin != null)
{
node.dataType = builtin;
return;

}

for (int i=scopeStack.size()-1; i>=0; i--)
{
TriangleTreeNode declarator =
scopeStack.get(i).typedefs.get(node.getText());

if (declarator != null)
{
node.declarator = declarator;
return;

}
}

errorFound = true;
System.err.println(node.getLine() +
": Failed to find a definition for token \"" +
node.getText() + "\"");

}
}

//
// Generator members

@members {@2
private Stack<Generator.CodeBlock> codeStack =

new Stack<Generator.CodeBlock>();
private Stack<Generator.ExpressionSequence> expressionStack =

new Stack<Generator.ExpressionSequence>();
private int references = 0;
private Generator generator;

public void setGenerator(Generator g)
{

generator = g;
codeStack.clear();
codeStack.push(null);
expressionStack.clear();
expressionStack.push(new Generator.ExpressionSequence());

}

private void closeScope()
{

Generator.CodeBlock block = codeStack.pop();

100

if (codeStack.peek() != null)
codeStack.peek().addCode(generator.closeScope(block));

else
generator.setRootScope(block);

}
}

//
// Commands

command
: single_command (SEMICOLON! single_command)*
;

single_command^
: IDENTIFIER

{@1 findDeclaration($IDENTIFIER); }
{@2 expressionStack.peek().sequence.add($IDENTIFIER); }
{@2+1 codeStack.peek().addCode(

generator.generateCommand(expressionStack.peek())); }
single_command_operator

| BEGIN^
{@2 codeStack.push(generator.openScope(codeStack.peek())); }
command
END
{@2 closeScope(); }

| LET^
{@1 scopeStack.push(new TriangleTreeNode.Scope()); }
{@2 codeStack.push(generator.openScope(codeStack.peek())); }
declaration IN! single_command
{@1 $LET.dataType = scopeStack.pop(); }
{@2 closeScope(); }

| IF^ expression
THEN! single_command
ELSE! single_command

| WHILE^ expression DO
{@2 codeStack.peek().addCode(

generator.generateWhile(expressionStack.peek())); }
single_command

;

single_command_operator
: ((vname_modifier)*

ASSIGN^
{@2+1 generator.generateOperator(expressionStack.peek(), $ASSIGN.text); }
expression
{@2 codeStack.peek().addCode(

generator.generateCommand(expressionStack.peek())); }
)

101

Triangle compiler sources

| (LPAREN^
{@2 generator.generateOperator(expressionStack.peek(), "()"); }
actual_parameter_sequence RPAREN
{@2 generator.generateExpression(expressionStack.peek()); }
)

;

//
// Expressions

expression^
: secondary_expression
| LET^ declaration IN! expression
| IF^ expression THEN! expression ELSE! expression
;

secondary_expression
: primary_expression (OPERATOR

{@2 generator.generateOperator(expressionStack.peek(), $OPERATOR.text); }
primary_expression)*

;

primary_expression
: IDENTIFIER

{@1 findDeclaration($IDENTIFIER); }
{@2 expressionStack.peek().sequence.add($IDENTIFIER); }
primary_expression_operator

| INTEGER_LITERAL
{@2 expressionStack.peek().sequence.

add(generator.generateIntLiteral($INTEGER_LITERAL)); }
| CHARACTER_LITERAL

{@2 expressionStack.peek().sequence.
add(generator.generateCharLiteral($CHARACTER_LITERAL)); }

| LPAREN^ expression RPAREN!
| LBRACE^ record_aggregate RBRACE!
| LBLOCK^

{@2 expressionStack.push(new Generator.ExpressionSequence()); }
array_aggregate RBLOCK
{@2 String expr = generator.generateExpression(expressionStack.pop());

expressionStack.peek().sequence.add(expr); }
;

primary_expression_operator
: (vname_modifier)*
| (LPAREN^

{@2 expressionStack.push(new Generator.ExpressionSequence());
generator.generateOperator(expressionStack.peek(), "()"); }

actual_parameter_sequence RPAREN
{@2 String expr = generator.generateExpression(expressionStack.pop());

expressionStack.peek().sequence.add(expr); }
)

;

102

record_aggregate
: IDENTIFIER

{@1 findDeclaration($IDENTIFIER); }
EQUIV! expression (COMMA! record_aggregate)?

;

array_aggregate
: expression (COMMA! expression)*
;

vname
: IDENTIFIER

{@1 findDeclaration($IDENTIFIER); }
{@2 $IDENTIFIER.references = references;

references = 0;
expressionStack.peek().sequence.add($IDENTIFIER); }

(vname_modifier)*
;

vname_modifier
: DOT^ IDENTIFIER

{@1 findRecElemDeclaration($IDENTIFIER); }
{@2 expressionStack.peek().sequence.add($IDENTIFIER); }

| LBLOCK^
{@2 expressionStack.push(new Generator.ExpressionSequence()); }
expression RBLOCK
{@2 String expr = generator.generateExpression(expressionStack.pop());

expressionStack.peek().sequence.add(expr); }
;

//
// Declarations

declaration
: single_declaration (SEMICOLON! single_declaration)*
;

single_declaration^
: CONST^ IDENTIFIER EQUIV! const_denoter

{@1 $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

{@2 codeStack.peek().addType(
generator.generateDefinition($IDENTIFIER)); }

| VAR^ IDENTIFIER COLON! type_denoter
{@1 $IDENTIFIER.dataType = typeStack.pop();

scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }
{@2 codeStack.peek().addDeclaration(

generator.generateDeclaration($IDENTIFIER)); }

| PROC^ IDENTIFIER

103

Triangle compiler sources

{@1 scopeStack.push(new TriangleTreeNode.ProcType()); }
{@2 codeStack.push(generator.openScope(

generator.generateDefinition($IDENTIFIER), codeStack.peek())); }
LPAREN! formal_parameter_sequence RPAREN!
EQUIV! single_command
{@1 $IDENTIFIER.dataType = scopeStack.pop();

scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }
{@2 String code = generator.closeScope(codeStack.pop());

codeStack.peek().addMethod(code); }

| FUNC^ IDENTIFIER
{@1 scopeStack.push(new TriangleTreeNode.FuncType()); }
{@2 codeStack.push(generator.openScope(

generator.generateDefinition($IDENTIFIER), codeStack.peek()));
expressionStack.push(new Generator.ExpressionSequence()); }

LPAREN! formal_parameter_sequence RPAREN!
COLON! type_denoter EQUIV! expression
{@1 $IDENTIFIER.dataType = scopeStack.pop();

((TriangleTreeNode.FuncType)$IDENTIFIER.dataType).type =
typeStack.pop();

scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }
{@2 codeStack.peek().addCode(

generator.generateFunctionBody(expressionStack.pop()));
String code = generator.closeScope(codeStack.pop());
codeStack.peek().addMethod(code); }

| TYPE^ IDENTIFIER EQUIV! type_denoter
{@1 $IDENTIFIER.dataType = typeStack.pop();

scopeStack.peek().typedefs.add($IDENTIFIER.text, $IDENTIFIER); }
{@2 codeStack.peek().addType(

generator.generateDeclaration($IDENTIFIER)); }
;

formal_parameter_sequence^
: (formal_parameter (COMMA! formal_parameter)*)?
;

formal_parameter
: IDENTIFIER COLON^ type_denoter

{@1 $IDENTIFIER.dataType = typeStack.pop();
((TriangleTreeNode.ProcType)scopeStack.peek()).
variables.add($IDENTIFIER.text, $IDENTIFIER);

((TriangleTreeNode.ProcType)scopeStack.peek()).
parameters.add($IDENTIFIER.text, $IDENTIFIER); }

| VAR^ IDENTIFIER COLON! type_denoter
{@1 $IDENTIFIER.dataType =

new TriangleTreeNode.PointerType(typeStack.pop());
((TriangleTreeNode.ProcType)scopeStack.peek()).
variables.add($IDENTIFIER.text, $IDENTIFIER);

((TriangleTreeNode.ProcType)scopeStack.peek()).
parameters.add($IDENTIFIER.text, $IDENTIFIER); }

104

| PROC^ IDENTIFIER
LPAREN! formal_parameter_sequence RPAREN!

| FUNC^ IDENTIFIER
LPAREN! formal_parameter_sequence RPAREN!
COLON! type_denoter

;

actual_parameter_sequence^
: (actual_parameter (COMMA

{@2 expressionStack.peek().sequence.add(generator.generateNext()); }
actual_parameter)*)?

;

actual_parameter
: expression
| VAR^ {@2 references++; } vname
| PROC^ IDENTIFIER
| FUNC^ IDENTIFIER
;

//
// Types

const_denoter^
: INTEGER_LITERAL

{@1 typeStack.push(
new TriangleTreeNode.ConstType($INTEGER_LITERAL)); }

| CHARACTER_LITERAL
{@1 typeStack.push(

new TriangleTreeNode.ConstType($CHARACTER_LITERAL)); }
;

type_denoter^
: IDENTIFIER

{@1 findDefinition($IDENTIFIER);
typeStack.push(

new TriangleTreeNode.SingleType($IDENTIFIER)); }

| ARRAY^ INTEGER_LITERAL OF! type_denoter
{@1 typeStack.push(

new TriangleTreeNode.ArrayType(typeStack.pop(),
Integer.valueOf($INTEGER_LITERAL.text))); }

| RECORD^
{@1 recordStack.push(new TriangleTreeNode.RecordType()); }
record_type_denoter END
{@1 typeStack.push(recordStack.pop()); }

;

record_type_denoter
: IDENTIFIER COLON! type_denoter

{@1 recordStack.peek().elements.add($IDENTIFIER.text, typeStack.pop()); }
(COMMA! record_type_denoter)?

105

Triangle compiler sources

;

//
// Lexical analyzer

INTEGER_LITERAL : ('0x' ('0' .. '9' |
'A' .. 'F' |
'a' .. 'f')+) |

('0' .. '9')+;
CHARACTER_LITERAL : '\'' (('\t') | (' ' .. '&') |

('(' .. '[') | (']' .. '~'))*
'\'';

IDENTIFIER : ('a'..'z' | 'A' .. 'Z')
('a'..'z' | 'A' .. 'Z' | '0' .. '9')*;

OPERATOR : ('+' | '-' | '*' | '/' | '=' | '<' | '>' |
'\\' | '&' | '@' | '%' | '^' | '?')+;

COMMENT : ('!' (('\t') | (' '..'!') |
('#'..'[') | (']'..'~'))* '\r'? '\n'

) { $channel=HIDDEN; };
WHITESPACE : (' ' | '\t' | '\f' | '\r'? '\n')+

{ $channel=HIDDEN; };

B.2 Generated checker

tree grammar TriangleChecker;

options {
output = AST;
ASTLabelType = TriangleTreeNode;
backtrack = true;

}

tokens {
ARRAY; BEGIN; CONST; DO; ELSE; END; FUNC; IF; IN; LET; OF; PROC; RECORD;
SKIP; THEN; TYPE; VAR; WHILE; ASSIGN; LPAREN; RPAREN; LBRACE; RBRACE;
LBLOCK; RBLOCK; COLON; SEMICOLON; DOT; COMMA; EQUIV; INTEGER_LITERAL;
CHARACTER_LITERAL; IDENTIFIER; OPERATOR; COMMENT; WHITESPACE;

}

@header {
package triangle;

import java.util.LinkedList;
}

@members {
private KeyValueList<TriangleTreeNode.Type> builtinTypes;
private KeyValueList<TriangleTreeNode.Type> builtinVariables;
private Stack<TriangleTreeNode.Type> typeStack =

new Stack<TriangleTreeNode.Type>();
private Stack<TriangleTreeNode.RecordType> recordStack =

106

new Stack<TriangleTreeNode.RecordType>();
private Stack<TriangleTreeNode.Scope> scopeStack =

new Stack<TriangleTreeNode.Scope>();
private TriangleTreeNode.RecordType currentRecord = null;
private boolean errorFound = false;

public void setBuiltins(KeyValueList<TriangleTreeNode.Type> bt,
KeyValueList<TriangleTreeNode.Type> bv)

{
builtinTypes = bt;
builtinVariables = bv;

}

public boolean allOk()
{

return !errorFound;
}

private void findDeclaration(TriangleTreeNode node)
{

TriangleTreeNode.Type builtin =
builtinVariables.get(node.getText());

if (builtin != null)
{
node.dataType = builtin;
return;

}

for (int i=scopeStack.size()-1; i>=0; i--)
{
TriangleTreeNode declarator =
scopeStack.get(i).variables.get(node.getText());

if (declarator != null)
{
node.declarator = declarator;

TriangleTreeNode.Type type = declarator.findType();
if (type instanceof TriangleTreeNode.RecordType)

currentRecord = (TriangleTreeNode.RecordType)type;
else

currentRecord = null;

return;
}

}

errorFound = true;
System.err.println(node.getLine() +
": Failed to find a declaration for token \"" +
node.getText() + "\"");

}

107

Triangle compiler sources

private void findRecElemDeclaration(TriangleTreeNode node)
{

if (currentRecord != null)
{
TriangleTreeNode.Type type =
currentRecord.elements.get(node.getText());

if (type != null)
{
node.dataType = type;

if (type instanceof TriangleTreeNode.RecordType)
currentRecord = (TriangleTreeNode.RecordType)type;

else
currentRecord = null;

return;
}

}

errorFound = true;
System.err.println(node.getLine() +
": Failed to find a record declaration for token \"" +
node.getText() + "\"");

}

private void findDefinition(TriangleTreeNode node)
{

TriangleTreeNode.Type builtin =
builtinTypes.get(node.getText());

if (builtin != null)
{
node.dataType = builtin;
return;

}

for (int i=scopeStack.size()-1; i>=0; i--)
{
TriangleTreeNode declarator =
scopeStack.get(i).typedefs.get(node.getText());

if (declarator != null)
{
node.declarator = declarator;
return;

}
}

errorFound = true;
System.err.println(node.getLine() +
": Failed to find a definition for token \"" +

108

node.getText() + "\"");
}

}

command
: single_command command_suf_2?
;

command_suf_2
: (single_command)+
;

single_command
: single_command_pre_1
| ^(BEGIN type_denoter_pre_3 single_command command_suf_2? END)
| ^(LET

{ scopeStack.push(new TriangleTreeNode.Scope()); }
type_denoter_pre_3 single_declaration declaration_suf_2? single_command
{ $LET.dataType = scopeStack.pop(); }
)

| ^(IF type_denoter_pre_3 expression single_command single_command)
| ^(WHILE type_denoter_pre_3 expression DO single_command)
;

single_command_pre_1
: IDENTIFIER

{ findDeclaration($IDENTIFIER); }
single_command_pre_1

| vname_modifier single_command_operator_suf_2?
| ^(ASSIGN single_command_operator_suf_2? expression

single_command_operator_suf_2?)
| ^(LPAREN actual_parameter_sequence? RPAREN)
;

single_command_operator_suf_2
: (vname_modifier)+
;

expression
: expression_pre_1
| ^(LET type_denoter_pre_3 single_declaration declaration_suf_2? expression

)
| ^(IF type_denoter_pre_3 expression expression expression)
;

expression_pre_1
: secondary_expression_suf_1 secondary_expression_suf_1?
;

secondary_expression_suf_1
: OPERATOR secondary_expression_suf_1 secondary_expression_suf_2?
| IDENTIFIER

{ findDeclaration($IDENTIFIER); }

109

Triangle compiler sources

primary_expression_operator?
| INTEGER_LITERAL
| CHARACTER_LITERAL
| ^(LPAREN expression)
| ^(LBRACE IDENTIFIER

{ findDeclaration($IDENTIFIER); }
expression record_aggregate_suf_1?)

| ^(LBLOCK expression array_aggregate_suf_2? RBLOCK)
;

secondary_expression_suf_2
: (OPERATOR secondary_expression_suf_1)+
;

primary_expression_operator
: vname_modifier primary_expression_operator_suf_1?
| ^(LPAREN actual_parameter_sequence? RPAREN)
;

primary_expression_operator_suf_1
: (vname_modifier)+
;

record_aggregate
: IDENTIFIER

{ findDeclaration($IDENTIFIER); }
expression record_aggregate_suf_1?

;

record_aggregate_suf_1
: record_aggregate
;

array_aggregate_suf_2
: (expression)+
;

vname_suf_2
: (vname_modifier)+
;

vname_modifier
: ^(DOT IDENTIFIER

{ findRecElemDeclaration($IDENTIFIER); }
)

| ^(LBLOCK expression RBLOCK)
;

declaration_suf_2
: (single_declaration)+
;

single_declaration

110

: ^(CONST type_denoter_pre_3 IDENTIFIER const_denoter
{ $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(VAR type_denoter_pre_3 IDENTIFIER type_denoter

{ $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(PROC type_denoter_pre_3 IDENTIFIER

{ scopeStack.push(new TriangleTreeNode.ProcType()); }
formal_parameter_sequence? single_command
{ $IDENTIFIER.dataType = scopeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(FUNC type_denoter_pre_3 IDENTIFIER

{ scopeStack.push(new TriangleTreeNode.FuncType()); }
formal_parameter_sequence? type_denoter expression
{ $IDENTIFIER.dataType = scopeStack.pop();
((TriangleTreeNode.FuncType)$IDENTIFIER.dataType).type =
typeStack.pop();
scopeStack.peek().variables.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(TYPE type_denoter_pre_3 IDENTIFIER type_denoter

{ $IDENTIFIER.dataType = typeStack.pop();
scopeStack.peek().typedefs.add($IDENTIFIER.text, $IDENTIFIER); }

)
;

formal_parameter_sequence
: formal_parameter_sequence_pre_2 formal_parameter_sequence_suf_2?
;

formal_parameter_sequence_pre_2
: formal_parameter formal_parameter_sequence_suf_2?
;

formal_parameter_sequence_suf_2
: formal_parameter_sequence_pre_2
;

formal_parameter
: ^(COLON IDENTIFIER type_denoter

{ $IDENTIFIER.dataType = typeStack.pop();
((TriangleTreeNode.ProcType)scopeStack.peek()).
variables.add($IDENTIFIER.text, $IDENTIFIER);
((TriangleTreeNode.ProcType)scopeStack.peek()).
parameters.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(VAR IDENTIFIER type_denoter

{ $IDENTIFIER.dataType =
new TriangleTreeNode.PointerType(typeStack.pop());
((TriangleTreeNode.ProcType)scopeStack.peek()).
variables.add($IDENTIFIER.text, $IDENTIFIER);

111

Triangle compiler sources

((TriangleTreeNode.ProcType)scopeStack.peek()).
parameters.add($IDENTIFIER.text, $IDENTIFIER); }

)
| ^(PROC IDENTIFIER formal_parameter_sequence?)
| ^(FUNC IDENTIFIER formal_parameter_sequence? type_denoter)
;

actual_parameter_sequence
: actual_parameter_sequence_pre_1 actual_parameter_sequence_suf_2?
;

actual_parameter_sequence_pre_1
: actual_parameter_sequence_pre_2 actual_parameter_sequence_suf_2?
;

actual_parameter_sequence_pre_2
: COMMA actual_parameter_sequence_pre_2 actual_parameter_sequence_suf_2?
| expression
| ^(VAR IDENTIFIER

{ findDeclaration($IDENTIFIER); }
vname_suf_2?)

| ^(PROC IDENTIFIER)
| ^(FUNC IDENTIFIER)
;

actual_parameter_sequence_suf_2
: actual_parameter_sequence_pre_2
;

const_denoter
: const_denoter_pre_1
| const_denoter_pre_2
;

const_denoter_pre_1
: INTEGER_LITERAL

{ typeStack.push(
new TriangleTreeNode.ConstType($INTEGER_LITERAL)); }

;

const_denoter_pre_2
: CHARACTER_LITERAL

{ typeStack.push(
new TriangleTreeNode.ConstType($CHARACTER_LITERAL)); }

;

type_denoter
: type_denoter_pre_1
| ^(ARRAY type_denoter_pre_3 INTEGER_LITERAL type_denoter

{ typeStack.push(
new TriangleTreeNode.ArrayType(typeStack.pop(),

112

Integer.valueOf($INTEGER_LITERAL.text))); }
)

| ^(RECORD
{ recordStack.push(new TriangleTreeNode.RecordType()); }
type_denoter_pre_3 IDENTIFIER type_denoter
{ recordStack.peek().elements.add($IDENTIFIER.text, typeStack.pop()); }
record_type_denoter_suf_1? END
{ typeStack.push(recordStack.pop()); }
)

;

type_denoter_pre_1
: IDENTIFIER

{ findDefinition($IDENTIFIER);
typeStack.push(
new TriangleTreeNode.SingleType($IDENTIFIER)); }

;

type_denoter_pre_3
:
;

record_type_denoter
: IDENTIFIER type_denoter

{ recordStack.peek().elements.add($IDENTIFIER.text, typeStack.pop()); }
record_type_denoter_suf_1?

;

record_type_denoter_suf_1
: record_type_denoter
;

B.3 Generated generator

tree grammar TriangleGenerator;

options {
output = AST;
ASTLabelType = TriangleTreeNode;
backtrack = true;

}

tokens {
ARRAY; BEGIN; CONST; DO; ELSE; END; FUNC; IF; IN; LET; OF; PROC; RECORD;
SKIP; THEN; TYPE; VAR; WHILE; ASSIGN; LPAREN; RPAREN; LBRACE; RBRACE;
LBLOCK; RBLOCK; COLON; SEMICOLON; DOT; COMMA; EQUIV; INTEGER_LITERAL;
CHARACTER_LITERAL; IDENTIFIER; OPERATOR; COMMENT; WHITESPACE;

}

@header {

113

Triangle compiler sources

package triangle;

import java.util.LinkedList;
}

@members {
private Stack<Generator.CodeBlock> codeStack =

new Stack<Generator.CodeBlock>();
private Stack<Generator.ExpressionSequence> expressionStack =

new Stack<Generator.ExpressionSequence>();
private int references = 0;
private Generator generator;

public void setGenerator(Generator g)
{

generator = g;
codeStack.clear();
codeStack.push(null);
expressionStack.clear();
expressionStack.push(new Generator.ExpressionSequence());

}

private void closeScope()
{

Generator.CodeBlock block = codeStack.pop();

if (codeStack.peek() != null)
codeStack.peek().addCode(generator.closeScope(block));

else
generator.setRootScope(block);

}
}

command
: single_command command_suf_2?
;

command_suf_2
: (single_command)+
;

single_command
: single_command_pre_1
| ^(BEGIN

{ codeStack.push(generator.openScope(codeStack.peek())); }
type_denoter_pre_3 single_command command_suf_2? END
{ closeScope(); }
)

| ^(LET
{ codeStack.push(generator.openScope(codeStack.peek())); }
type_denoter_pre_3 single_declaration declaration_suf_2? single_command
{ closeScope(); }
)

114

| ^(IF type_denoter_pre_3 expression single_command single_command)
| ^(WHILE type_denoter_pre_3 expression DO

{ codeStack.peek().addCode(
generator.generateWhile(expressionStack.peek())); }

single_command)
;

single_command_pre_1
: IDENTIFIER

{ expressionStack.peek().sequence.add($IDENTIFIER); }
single_command_pre_1
{ codeStack.peek().addCode(
generator.generateCommand(expressionStack.peek())); }

| vname_modifier single_command_operator_suf_2?
| ^(ASSIGN single_command_operator_suf_2?

{ generator.generateOperator(expressionStack.peek(), $ASSIGN.text); }
expression
{ codeStack.peek().addCode(
generator.generateCommand(expressionStack.peek())); }

single_command_operator_suf_2?)
| ^(LPAREN

{ generator.generateOperator(expressionStack.peek(), "()"); }
actual_parameter_sequence? RPAREN
{ generator.generateExpression(expressionStack.peek()); }
)

;

single_command_operator_suf_2
: (vname_modifier)+
;

expression
: expression_pre_1
| ^(LET type_denoter_pre_3 single_declaration declaration_suf_2? expression

)
| ^(IF type_denoter_pre_3 expression expression expression)
;

expression_pre_1
: secondary_expression_suf_1 secondary_expression_suf_1?
;

secondary_expression_suf_1
: OPERATOR

{ generator.generateOperator(expressionStack.peek(), $OPERATOR.text); }
secondary_expression_suf_1 secondary_expression_suf_2?

| IDENTIFIER
{ expressionStack.peek().sequence.add($IDENTIFIER); }
primary_expression_operator?

| INTEGER_LITERAL
{ expressionStack.peek().sequence.
add(generator.generateIntLiteral($INTEGER_LITERAL)); }

115

Triangle compiler sources

| CHARACTER_LITERAL
{ expressionStack.peek().sequence.
add(generator.generateCharLiteral($CHARACTER_LITERAL)); }

| ^(LPAREN expression)
| ^(LBRACE IDENTIFIER expression record_aggregate_suf_1?)
| ^(LBLOCK

{ expressionStack.push(new Generator.ExpressionSequence()); }
expression array_aggregate_suf_2? RBLOCK
{ String expr = generator.generateExpression(expressionStack.pop());
expressionStack.peek().sequence.add(expr); }

)
;

secondary_expression_suf_2
: (OPERATOR

{ generator.generateOperator(expressionStack.peek(), $OPERATOR.text); }
secondary_expression_suf_1)+

;

primary_expression_operator
: vname_modifier primary_expression_operator_suf_1?
| ^(LPAREN

{ expressionStack.push(new Generator.ExpressionSequence());
generator.generateOperator(expressionStack.peek(), "()"); }

actual_parameter_sequence? RPAREN
{ String expr = generator.generateExpression(expressionStack.pop());
expressionStack.peek().sequence.add(expr); }

)
;

primary_expression_operator_suf_1
: (vname_modifier)+
;

record_aggregate
: IDENTIFIER expression record_aggregate_suf_1?
;

record_aggregate_suf_1
: record_aggregate
;

array_aggregate_suf_2
: (expression)+
;

vname_suf_2
: (vname_modifier)+
;

vname_modifier

116

: ^(DOT IDENTIFIER
{ expressionStack.peek().sequence.add($IDENTIFIER); }
)

| ^(LBLOCK
{ expressionStack.push(new Generator.ExpressionSequence()); }
expression RBLOCK
{ String expr = generator.generateExpression(expressionStack.pop());
expressionStack.peek().sequence.add(expr); }

)
;

declaration_suf_2
: (single_declaration)+
;

single_declaration
: ^(CONST type_denoter_pre_3 IDENTIFIER const_denoter

{ codeStack.peek().addType(
generator.generateDefinition($IDENTIFIER)); }

)
| ^(VAR type_denoter_pre_3 IDENTIFIER type_denoter

{ codeStack.peek().addDeclaration(
generator.generateDeclaration($IDENTIFIER)); }

)
| ^(PROC type_denoter_pre_3 IDENTIFIER

{ codeStack.push(generator.openScope(
generator.generateDefinition($IDENTIFIER), codeStack.peek())); }

formal_parameter_sequence? single_command
{ String code = generator.closeScope(codeStack.pop());
codeStack.peek().addMethod(code); }

)
| ^(FUNC type_denoter_pre_3 IDENTIFIER

{ codeStack.push(generator.openScope(
generator.generateDefinition($IDENTIFIER), codeStack.peek()));
expressionStack.push(new Generator.ExpressionSequence()); }

formal_parameter_sequence? type_denoter expression
{ codeStack.peek().addCode(
generator.generateFunctionBody(expressionStack.pop()));
String code = generator.closeScope(codeStack.pop());
codeStack.peek().addMethod(code); }

)
| ^(TYPE type_denoter_pre_3 IDENTIFIER type_denoter

{ codeStack.peek().addType(
generator.generateDeclaration($IDENTIFIER)); }

)
;

formal_parameter_sequence
: formal_parameter_sequence_pre_2 formal_parameter_sequence_suf_2?
;

formal_parameter_sequence_pre_2
: formal_parameter formal_parameter_sequence_suf_2?

117

Triangle compiler sources

;

formal_parameter_sequence_suf_2
: formal_parameter_sequence_pre_2
;

formal_parameter
: ^(COLON IDENTIFIER type_denoter)
| ^(VAR IDENTIFIER type_denoter)
| ^(PROC IDENTIFIER formal_parameter_sequence?)
| ^(FUNC IDENTIFIER formal_parameter_sequence? type_denoter)
;

actual_parameter_sequence
: actual_parameter_sequence_pre_1 actual_parameter_sequence_suf_2?
;

actual_parameter_sequence_pre_1
: actual_parameter_sequence_pre_2 actual_parameter_sequence_suf_2?
;

actual_parameter_sequence_pre_2
: COMMA

{ expressionStack.peek().sequence.add(generator.generateNext()); }
actual_parameter_sequence_pre_2 actual_parameter_sequence_suf_2?

| expression
| ^(VAR

{ references++; }
IDENTIFIER
{ $IDENTIFIER.references = references;
references = 0;
expressionStack.peek().sequence.add($IDENTIFIER); }

vname_suf_2?)
| ^(PROC IDENTIFIER)
| ^(FUNC IDENTIFIER)
;

actual_parameter_sequence_suf_2
: actual_parameter_sequence_pre_2
;

const_denoter
: const_denoter_pre_1
| const_denoter_pre_2
;

const_denoter_pre_1
: INTEGER_LITERAL
;

const_denoter_pre_2
: CHARACTER_LITERAL
;

118

type_denoter
: type_denoter_pre_1
| ^(ARRAY type_denoter_pre_3 INTEGER_LITERAL type_denoter)
| ^(RECORD type_denoter_pre_3 IDENTIFIER type_denoter

record_type_denoter_suf_1? END)
;

type_denoter_pre_1
: IDENTIFIER
;

type_denoter_pre_3
:
;

record_type_denoter
: IDENTIFIER type_denoter record_type_denoter_suf_1?
;

record_type_denoter_suf_1
: record_type_denoter
;

119

120

Software licenses

This appendix contains the licenses under which the software is distributed. All code reused
from the ANTLR project is licensed under the BSD license as provided in section B.3, all other
code is licensed under the General Public License as provided in section B.3.

ANTLR BSD license

Copyright (c) 2005-2007 Terence Parr
Maven Plugin - Copyright (c) 2009 Jim Idle
ANTLRTG modi�cations - Copyright (c) 2010 A.J. Admiraal
All rights reserved.

Redistribution and use in source and binary forms, with or without modi�cation, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this
software without speci�c prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR �AS IS� AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

121

Software licenses

General Public License

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software�to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modi�ed by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not re�ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in e�ect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

Terms and Conditions For Copying, Distribution and
Modification

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The �Program�, below, refers to any such program or work, and a �work based
on the Program� means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modi�cations and/or translated into another language. (Hereinafter, translation is included
without limitation in the term �modi�cation�.) Each licensee is addressed as �you�.

Activities other than copying, distribution and modi�cation are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output

122

from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modi�cations or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modi�ed �les to carry prominent notices stating that you changed
the �les and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

(c) If the modi�ed program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

123

Software licenses

(a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

(b) Accompany it with a written o�er, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the o�er to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�cations
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface de�nition �les, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by o�ering access to copy from a
designated place, then o�ering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify
the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,

124

then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version
number of this License which applies to it and �any later version�, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are di�erent, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no warranty for
the program, to the extent permitted by applicable law. Except when oth-
erwise stated in writing the copyright holders and/or other parties pro-
vide the program �as is� without warranty of any kind, either expressed
or implied, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. The entire risk as to the
quality and performance of the program is with you. Should the program
prove defective, you assume the cost of all necessary servicing, repair or
correction.

125

Software licenses

12. In no event unless required by applicable law or agreed to in writing will
any copyright holder, or any other party who may modify and/or redis-
tribute the program as permitted above, be liable to you for damages, in-
cluding any general, special, incidental or consequential damages arising
out of the use or inability to use the program (including but not limited
to loss of data or data being rendered inaccurate or losses sustained by
you or third parties or a failure of the program to operate with any other
programs), even if such holder or other party has been advised of the pos-
sibility of such damages.

End of Terms and Conditions

126

Bibliography

[1] G. Hopper. The education of a computer. Proceedings of the Association for Computing
Machinery Conference, May 1952, pages 243�249, 1952.

[2] A. Karatsuba and Yu Ofman. Multiplication of many-digital numbers by automatic com-
puters. Physics-Doklady, 7:595�596, 1963.

[3] B. W. Leverett, R. G. Cattell, S. O. Hobbs, J. M. Newcomer, A. H. Reiner, B. R. Schatz,
and W. A. Wulf. An overview of the production-quality compiler-compiler project. IEEE
Computer, 13:38�49, 1980.

[4] T. J. Parr and R. W. Quong. Antlr: A predicated-ll(k) parser generator. Software-practice
and experience, 25, 1995.

[5] ISO/IEC. ISO/IEC 14977:1996(E) Extended BNF.
http://www.iso.org/cate/d26153.html.

[6] Antlr project home.
http://antlr.org/.

[7] D. A. Watt and D. F. Brown. Programming language processors in Java. Pearson Education
Limited, Edinburgh Gate, 2000. ISBN:0-130-25786-9.

[8] T. J. Parr. The De�nitive ANTLR Reference: Building Domain-Speci�c Languages. The
Pragmatic Bookshelf, 2007. ISBN:978-0-9787-3925-6.

[9] N. Wirth. What can we do about the unnecessary diversity of notation for syntactic de�ni-
tions? CACM, 20:822�823, 1977.

[10] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition).
http://www.w3.org/TR/REC-xml/.

[11] J. W. Backus. The syntax and semantics of the proposed international algebraic language of
zürich acm-gamm conference. Proceedings of the International Conference on Information
Processing, pages 125�132, 1959.

[12] N. Chomsky. Three models for the description of language. IEEE Transactions on Infor-
mation Theory, 2:113�124, 1956.

[13] K. E. Iverson. A Programming Language. Wiley, New York, 1962. ISBN:0-471430-14-5.

[14] T. J. Parr. Translators should use tree grammars, 2004.
http://www.antlr.org/article/1100569809276/use.tree.grammars.tml.

127

BIBLIOGRAPHY

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1994. ISBN:978-0201633610.

[16] A. Tripp. Manual tree walking is better than tree grammars, 2006.
http://www.antlr.org/article/1170602723163/treewalkers.html.

[17] T. J. Parr. Rewrite rules, 2008.
http://www.antlr.org/wiki/display/∼admin/2008/04/11/Rewrite+rules.

[18] J. Bovet and T. J. Parr. Antlrworks: an antlr grammar development environment. Software:
Practice and Experience, 38:1305�1332, 2008.

[19] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 74:358�366, 1953.

[20] H.V. Jagadish, Laks V.S. Lakshmanan, Divesh Srivastava, and Keith Thompson. Tax: A
tree algebra for xml. Lecture Notes in Computer Science, pages 149�164, 2002. ISBN:978-
3-540-44080-2.

[21] C.M. Ho�mann and M.J. O'Donnell. An interpreter generator using tree pattern matching.
JACM, 29:68�95, 1982.

[22] Javacc project home.
https://javacc.dev.java.net/.

[23] V. Kodaganallur. Incorporating language processing into java applications: A javacc tuto-
rial. IEEE Software, 21:70�77, 2004.

128

	Introduction
	ANTLR
	Compilation phases
	Abstract syntax trees
	EBNF
	Concrete Syntax Trees

	Problem description
	Overview of the thesis

	Preliminaries and related work
	Language parsing
	Grammars
	Abstract Syntax Trees

	Tree representation
	Classical notation
	First-child, next-sibling notation
	Linear notation
	Properties of FCNS trees

	Related work

	Generating the tree grammar
	Rationale
	Tree pattern algebra
	Tree patterns
	Operations on tree patterns
	Master and slave patterns

	The context-free tree grammar
	Building the AST
	Rewriting production rules
	Single carets
	Normal-form

	Modelling an annotated context-free grammar
	Overview
	Patterns that provide the root
	Iterating through the rule

	Constructing the context-free tree grammar
	Overview
	Start symbol
	Pattern rules

	Optimisation of the tree grammar
	Macro expansion
	Rule merging
	Limitations to rule merging

	Further optimisations

	Implementation of ANTLRTG
	Architectural overview
	Integrated parser specification
	Walker generator

	Design
	Algorithm
	Grammar

	Usage
	Action annotations
	Invocation

	Case study: Triangle
	Design of the Triangle compiler
	Lexical analyser and parser
	Checker
	Generator

	Generated C code
	Evaluation

	Conclusions
	Summary
	Evaluation of ANTLRTG
	Future work

	ANTLRTG sources
	FCNSTree class
	TreePattern class
	ANTLRTG grammar

	Triangle compiler sources
	Integrated parser specification for Triangle
	Generated checker
	Generated generator

	Software licenses
	Bibliography

