
A Framework for Modular
Implementation of
Domain-Specific

Event-Based Applications

Author:
Roel ter Maat

(s0219681)

Master Thesis

Supervisor:
Dr. Somayeh Malakuti

Committee:
Prof. dr. ir. Mehmet Aksit

Dr. Ing. Christoph Bockisch
Ir. Steven te Brinke

March 10, 2014

Contents

1 Introduction 1

2 Background: Event Processing Applications 3

2.1 Core Concepts in Event-Processing Applications 3

2.1.1 Events . 3

2.1.2 Event Processing Network 4

2.2 Case Study . 5

2.3 Implementation Languages for Event Processing Applications . . 5

2.3.1 Stream-Processing Languages 6

2.3.2 Object Oriented Programming 7

2.3.3 Aspect Oriented Programming 7

2.4 Advantages of EPAs . 9

2.5 Summary . 9

3 Evaluation of Event Processing Languages 11

3.1 Evaluation Criteria . 11

3.1.1 Language Extensibility . 11

3.1.2 Modularity . 12

3.1.3 Composability . 12

3.2 Evaluation . 13

3.2.1 Language Extensibility . 13

3.2.2 Modularity . 14

3

CHAPTER 0 ROEL TER MAAT(S0219681)

3.2.3 Composability . 15

3.3 Illustration of Shortcomings in AspectJ 16

3.3.1 Evaluation Criteria . 16

3.3.2 Evolution Scenarios . 18

3.3.3 Implementation of Evolution Scenarios 20

3.4 Summary . 33

4 EventReactor2.0 35

4.1 Compile time . 35

4.2 Runtime . 38

4.3 Extensions to EventReactor . 40

4.4 Summary . 40

5 Specification of Events 41

5.1 Design . 41

5.1.1 Event types . 41

5.1.2 Events . 43

5.2 Implementation Details . 44

5.2.1 Event Compilation . 44

5.2.2 Example . 45

5.3 Future Work . 50

5.3.1 Language Extensibility . 50

5.3.2 Usage of Java types . 50

5.3.3 Automatic Publishing . 50

5.3.4 Extensible Base Language 51

5.4 Summary . 51

6 Specification of Event Modules 53

4

CHAPTER 0 ROEL TER MAAT(S0219681)

6.1 Design . 53

6.2 Functionality Languages . 55

6.2.1 Prolog . 55

6.2.2 Java . 57

6.2.3 SQL . 58

6.3 Implementation Details . 59

6.3.1 Event Module Compiler 59

6.3.2 Generated and Base Classes 61

6.3.3 Compilation of Functionality Languages 64

6.3.4 Extending the Functionality Language 65

6.4 Future Work . 66

6.5 Summary . 67

7 Specification of Compositions 69

7.1 Design . 69

7.2 Implementation Details . 72

7.3 Future Work . 75

7.4 Summary . 75

8 Evaluation of EventReactor2.0 77

8.1 Evolution of Modularity and Composability 77

8.1.1 Base Scenario . 77

8.1.2 Evolution Scenario 1: . 79

8.1.3 Evolution Scenario 2: . 81

8.1.4 Evolution Scenario 3: . 85

8.1.5 Evolution Scenario 4: . 88

8.1.6 Evolution Scenario 5: . 89

8.1.7 Evolution Scenario 6: . 90

5

8.2 Evaluation of Language Extensibility 91

8.3 Summary . 92

9 Conclusion 93

Appendices 99

A Event and Event Type Language 101

A.1 Xtext . 101

A.2 Xtend . 102

B Event Module Language 105

B.1 Xtext . 105

B.2 Xtend . 107

C Prolog Language 111

C.1 Xtext . 111

C.2 Xtend . 112

D Java Language 117

D.1 Xtext . 117

D.2 Xtend . 117

E Composition Specification Language 119

E.1 Xtext . 119

CHAPTER1
Introduction

There are various types of application that can be used to implement different
types of event processing. Examples of event processing are runtime verifica-
tion [1], self-adaptive software [2], and traffic monitoring. To implement these
types of application, event producers are used to indicate a state change. Event
consumers can perform actions on the event streams and event processing agents
are used to mediate between the event producers and event consumers.

When implementing event processing applications, a large amount of event pro-
ducers, event processing agents and event consumers can be used, increasing the
complexity. To manage this complexity, this thesis claims that a separation of
concerns, a loose coupling between concerns, and understandability of the code
is required.

In current advanced programming languages and frameworks, module abstrac-
tions, composition operators, and some language extensibility is provided. To
evaluate the suitability of these abstractions, a set of requirements for event
processing applications is set in chapter 3. A representative set of languages is
evaluated with respect to these requirements. Using the results of these evalu-
ations, the shortcomings are identified.

In [3, 4], event modules are introduced as linguistic abstractions. These modules
support modular representation of events and their reactions. In EventReac-
tor [3, 5, 6] these event modules are implemented. In this thesis, it is explained
that event modules can modularize the concerns, and facilitate loose coupling
in the compositions.
In chapter 4 a new EventReactor implementation is introduced. This framework
improves the composability of event modules by composing them on instance
level and supports both implicit and explicit composition of event modules. The
modularity is also improved by modularizing both the event consumer and event
processing agents. Finally, an extensible set of languages is used to defined the
functionality in the event modules, which is used to increase the understand-
ability of the code.

1

CHAPTER 1 ROEL TER MAAT(S0219681)

In chapters 5- 7 the implementation details of the event processing concerns are
explained. In these chapters, it is described how the criteria are fulfilled and
how the framework processes the concerns.

In chapter 8 a set of evolution scenarios is used to show how the designed
constructs are useful to fulfill the criteria. This is done by evaluating the mod-
ularity and composability of the concerns by removing, adding, and replacing
them and counting the amount of changes that are required. Secondly, the pos-
sible language extensibility is compared to existing languages and frameworks
to show that more extensibility is offered.

2

CHAPTER2
Background: Event Processing

Applications

In Event Processing Applications (EPA) [7], the flow of the program is influ-
enced, determined, and changed by events. In the section 2.1, the basic com-
ponents of EPAs are explained. This is followed by section 2.2 in which a case
study is described which will be used throughout this thesis. Section 2.3 explains
a set of languages that can be adopted for programming EPAs. In section 2.4,
the advantages of using EPAs are explained. Finally, the chapter is summarized
in section 2.5.

2.1 Core Concepts in Event-Processing Appli-
cations

2.1.1 Events

An event [7] is something commonly known in the real world as something that
has happened [7]. This can, for instance, be a phone starting to ring or a pen
dropping on the floor. Events like this can prompt a person to react, because
he or she is able to detect those events and take actions accordingly, such as
answering the phone or picking up the pen. Using events in such a manner
and using the ability to react to them allows a person to continue living his life
without waiting for the phone to ring in order to react to it. Secondly, other
people are able to make a person perform an action by initiating an event, in
this case by calling him.

Events can be used in the same manner in software. Events represent a state
change of interest during the execution of the software. In this case, an event

3

CHAPTER 2 ROEL TER MAAT(S0219681)

may maintain information about the corresponding state change, for example
the time of occurrence and the thread of execution in which it has occurred.

There are various ways to represent events in software. A typical way is to
represent them as a data structure that defines a set of fields to keep informa-
tion about the state changes. Events may be typed, where an event type can
be used to instantiate events which have the same structure and meaning.

2.1.2 Event Processing Network

In EPAs, three types of entities interact with each other forming an Event
Processing Network [7], an example of which is shown in Figure 2.1.

Figure 2.1: Event Processing Network

The first of the three components is the event producer [7], which is re-
sponsible for the generating and publishing of events. Events can be produced
by both hardware and software. For example, a sensor can be used to measure
certain values, such as temperature, in the real world. Every newly measured
value can be regarded as an event allowing hardware to produce events.
At the software level, various kinds of state changes may be regarded a events.
Examples are: occurrence of exceptions, invocation of methods, construction of
objects, access to I/O, etc.

When an event is produced, a reaction can take place which is the responsibility
of the event consumer [7]. The reactions that take place can, for example, be
logging or storing of data, checking and reacting to received data, altering the
event producer, and so on. Depending on the content, event consumers are also
able to become event producers. At this point an event can be produced which
will be consumed by another, or perhaps the same, consumer.

To mediate between the event consumer and event producer, Event Process-
ing Agents [7] are used. Event processing agents are entities which can both

4

CHAPTER 2 ROEL TER MAAT(S0219681)

consume and produce events. They may perform various operations on the
events. For example, filtering, routing, modifying and creating new events etc.
The produced events can then be sent to either the consumer, or other event
processing agents. Unlike the producer and consumer, the event processing
agent can only be expressed in software entities.
The processing performed by the agents can be stateless or stateful. With
stateless agents, the action which is performed is independent of the previously
published events. With stateful agents, previous events influence the action
which is performed with new events. An example of stateful agents is a filter
which only lets an event pass when a certain amount of events have been pub-
lished before it.
Using the processing agents to connect the consumers and producers removes
a direct coupling between the entities, and the producers have no knowledge of
which consumers will react to the event.

2.2 Case Study

Throughout this thesis, a thermostat system is as an illustrative example. In
this system, 10 sensors are located outside a house and measure a temperature
every 10 minutes. The sensors are event producers and generate an event every
time the sensor performs measures a new value.
There are software components used as consumers, which will publish the mea-
sured temperature to the weather station. An event processing agent is used
between the producer and consumer, filtering for the specific events produced
by the outside temperature sensors. This allows other types of sensors to pro-
duce events without these events being consumed by the existing consumers.
Figure 2.2 shows the basic architecture of the system with the sensors produc-
ing events, which are filtered by the event processing agent. When an event
is produced by this agent, the event consumer takes the temperature from the
event and sends it to the thermostat.

2.3 Implementation Languages for Event Pro-
cessing Applications

Software engineers face various alternative languages for implementing EPAs
In this section three alternatives are discussed, namely Stream-Processing Lan-
guages, Object Oriented(OO) programming and Aspect Oriented(AO) program-
ming.

5

CHAPTER 2 ROEL TER MAAT(S0219681)

Figure 2.2: Case Study

2.3.1 Stream-Processing Languages

Esper [8] is one of the event stream processing languages currently available.
There are multiple implementations for Esper for Java and .Net. This section
only focusses on the Java implementation. In Esper, events can be created
using a Plain Old Java Objects (POJO). In the configuration of the Complex
Event Processing(CEP) engine, the event needs to be added. Events can be
instantiated in the base code and can be sent to the engine. Esper offers a
dedicated language, similar to SQL, to filter the event stream and performing
various actions on the events.

1 s e l e c t ∗ from EventName . win : l ength (2)

Listing 2.1: Esper EPL Statement

Consider, for example the statement in Listing 2.1. Here, the event is triggered
with every second published EventName object by defining the window length
as 2, where a window contains event stream data which is defined like a table.
Event filtering statements are defined in a Java object. Reactions to the filtered
events can be defined using Java objects. For this, Esper facilitates defining the
Java objects as the listener for the selected events. An example of a listener
object is shown in Listing 2.2.

6

CHAPTER 2 ROEL TER MAAT(S0219681)

1 pub l i c c l a s s exampleLis tener implements UpdateListener {
2 pub l i c void update (EventBean [] newEvents , EventBean [] o ldEvents)

{
3 EventBean event = newEvents [0] ;
4 System . out . p r i n t l n (”Event F i l t e r e d ”)) ;
5 }
6 }

Listing 2.2: Esper Listener

2.3.2 Object Oriented Programming

In Object Oriented(OO) programming, objects are a means to modularize the
concern of interest; e.g. event producers, event processing agents. This allows
a program to be designed by creating objects for every real world object, creat-
ing a more readable and reusable program. Variables and methods are defined
within an object, which can be accessed and executed by other objects.

A possible implementation of EPAs can be achieved using the Observer de-
sign pattern [9]. Using the Observer pattern, event producers are assigned the
role of subject, and event processing agents and/or event consumers the role
of observer. Observers are able to register with subjects, allowing them to be
notified of changes when the subject invoke their notify method. The invocation
of this method is regarded as an event being produced. The arguments set in
the invocation are used as the attributes of the event.

Another possibility would be to use the event-delegate mechanism [9]. In this
mechanism, event type can be defined using a special type of class. Events can
be created by instantiating the correct event type. In order to bind producers
and consumers, a delegate is used. A method which matches the signature of a
delegate can be assigned to it, allowing multiple event consumers to be bound
to a producer. Event can be published by invoking the delegate corresponding
to the event.

2.3.3 Aspect Oriented Programming

Aspect Oriented (AO) programming [10] introduces the notion of aspects to
modularize crosscutting concerns in software. The languages offer dedicated
constructs to implements aspect elements.

AO languages offer a couple of basic elements; the following can be related
to the EPA concepts:

7

CHAPTER 2 ROEL TER MAAT(S0219681)

Join points: Join points represent a state change of interest in the execu-
tion of a program. Join points are not explicitly handled in many systems, yet
it is an important element that needs to be discussed. The created join points
make up the join point model which can be used by the other AO elements.
This element can be roughly translated to an event. A join point describes the
parts of the program which must publish an event with a specification of the
information which the event contains. The join points model can be point in
time or region-in-time [11]. The point-in-time model selects a specific point
in the execution of the base program, while the region-in-time model select an
interval in the execution. The latter can, for instance, be a method execution
at which the join point will include the entire execution of this method.

Pointcuts: A pointcut is a means to select a set of join points of interest.
The selection is usually expressed using a query language. Pointcuts can be
more complex by making them history based [12], where a pointcuts is acti-
vated based on the previous actions and pointcuts.
In implementing EPAs in AO languages, pointcuts can be adopted to implement
the event filtering functionality. This, however depends on the expressive power
of pointcuts designators. If it is not expressive enough, one has to also define
the event filtering functionality using advice code.

Advice : The advice is a piece of code that is bound to one or more point-
cuts and is executed when these are activated. Depending on how the concerns
of EPA are separated, an advice can be used to implement the functionality of
event processing agents and/or event consumers.

One of the currently best known AO languages is AspectJ [13, 14, 15], which
is an extension to the Java language. Join points in AspectJ are static and
consist of things like method calls, method executions, object instantiations,
constructor executions, field references and handler executions [14, 16]. Inside
a main aspect component a user can define a pointcut by selecting the specific
join points.

1 pub l i c aspect ExampleAspect{
2

3 p r i v a t e po intcut methodCall () : t h i s (Sensor) &&
4 c a l l (void doSomething (S t r ing)) ;
5

6 be f o r e () : methodCall () {
7 // perform act i on
8 }
9 }

Listing 2.3: Example Aspect

In Listing 2.3, an example aspect is shown. The pointcut is named allowing it to
be referenced in both other pointcut, creating more complex pointcuts. In the

8

CHAPTER 2 ROEL TER MAAT(S0219681)

aspect, it is defined that, whenever the method doSomething with the String
parameter is called from a Sensor object, the pointcut methodCall is activated.
The advice, which has been specified to be executed before the pointcut, will
perform the required actions.

At compile time, the Java program is compiled to Java byte code. The byte
code is examined by the AspectJ compiler to find every point in the flow which
matches the defined pointcuts. For each matching point in the byte code, a call
to the advice code is weaved in automatically.

2.4 Advantages of EPAs

One of the main reason EPAs are used is that it is supposed to facilitates
loose-coupling between the event producers and consumers, or a separation of
concerns [17]. Both these concerns can be implemented without requiring any
knowledge of the function and implementation of the other. Using the events
communication is possible between the two. Events consumers can also be
implemented without knowing about each other. The loose coupling between the
concerns should mean that consumers and producers can be added and removed
without having any effect on the other producers and consumers. However,
as this thesis shall show, the loose coupling is highly dependant on the core
abstractions that are offered by the various languages which are used to program
EPAs.

2.5 Summary

This chapter explains the core concepts of Event-Processing Applications. In
it, it is claimed that these applications improve the maintainability of software
by improving the separation of concerns, extensibility, reusability and under-
standability. To fully show the background, a list of existing languages and
frameworks are explained with their own specific implementation of the core
concepts. With these languages and frameworks established, an analysis can be
performed examining to what extend the maintainability is achieved.

9

CHAPTER 2 ROEL TER MAAT(S0219681)

10

CHAPTER3
Evaluation of Event Processing

Languages

EPAs, like any other type of application, can implement complex functionalities
which may be subject to changes during, or after development. To support this,
linguistic mechanisms need to be provided to increase reusability and evolvabil-
ity. To evaluate whether or not the existing languages and framework fulfill
these requirements, this chapter defines three criteria, and evaluates a set of
representative languages.
In section 3.1, the three criteria are described. In section 3.2, a representative
set of languages is evaluated. In section 3.3, evolution scenarios are applied to
the case study to show the shortcomings in existing languages and frameworks.
In section 3.4, the results are summarized and a solution is explained.

3.1 Evaluation Criteria

In this section, we define three evaluation criteria: language extensibility, mod-
ularity and composability. This is done by examining how the criteria can be
improved, and what advantages this provides.

3.1.1 Language Extensibility

The most obvious choice to implement EPAs is the adoption of General Purpose
Languages (GPL), which are Turing complete languages.

Because there are situations where people with less programming knowledge
need to implement a functionality or a very specific action needs to be performed
which can be simplified, the concept of a Domain Specific Language(DSL) is in-
troduced. A DSL is a language created to implement functionalities for specific

11

CHAPTER 3 ROEL TER MAAT(S0219681)

application domains. A DSL is usually not Turing complete and contains a lim-
ited set of features. Examples of DSLs are HTML, used for the creation of web
pages, and SQL, for querying relational databases. Using the DSLs allows for a
more readable functionality and makes the code more maintainable for people
without a lot of programming knowledge.
When designing a framework a choice usually needs to be made which language
is used to define the functionalities. Since the number of existing languages is
too large to expect each and every one to be implemented in the framework,
the focus lies on whether or not new languages, either DSL or GPL, could be
added to a framework and used to implement a functionality.
With an increased language extensibility, a user is able to add new languages
necessary for a specific domain. This would increase the understandability and
maintainability of the different event consumers and event processing agents.

3.1.2 Modularity

In an EPA various event processing agents and event consumers may be used.
To be able to cope with the complexity and to increase usability, a language
must provide means to modularize these concerns. This allows them to be imple-
mented without the knowledge of other elements [18]. The module abstraction
must provide well-defined input and output interface and an implementation
part which encapsulates the functionality [19]. To support referencing the mod-
ules they must provide a unique identity.

3.1.3 Composability

To compose the modularized concerns with each other, a language must pro-
vide mechanisms to support composing modules at interface level and defining
modularized constraints in their language. The composition configuration can
occur on three different levels:

• Instance level, where specific instances of modules have a specific config-
uration.

• Module level composition, where every instance of a module is configured
identically.

• Language level composition, where every module written in the same lan-
guage has the same configuration.

Binding is possible in two different ways:

• Homogeneous, to compose two concerns of the same type.

12

CHAPTER 3 ROEL TER MAAT(S0219681)

• Heterogeneously, to compose two concerns of a different type.

3.2 Evaluation

In this section, the shortcomings of existing Object Oriented, Aspect Oriented
and Event Processing languages are explained with respect the defined criteria
by using the representative languages and frameworks.

3.2.1 Language Extensibility

3.2.1.1 Aspect Oriented Programming

AspectJ, like other AO languages, offers a join point model which include all the
events that can be produced. In the case of AspectJ it is a fixed model, meaning
join points not included in this model can not easily be used in the definition of
a pointcut and workarounds are required to make this possible, increasing the
complexity and decreasing the modularity.
The language used to define the pointcut and advice is fixed in AspectJ.
To extend the language extensibility in AO language, composition frameworks
are provided allowing multiple DSLs to be used to implement concerns. There
are currently various frameworks offering varying types of functionalities. The
following list explains the mechanism behind a few of those frameworks and
shows a few of their limitations.

• Awesome allows users to construct a multi weaver by composing the sep-
arate weavers constructed by the user [20]. Components are supplied by
the framework which implement the basic functionality of AspectJ like
weavers. New weavers can be created by implementing it in these compo-
nents.
Awesome supports the AspectJ join point model restricting it to the same
problems stated earlier.
Configuration of compositions in Awesome happens at language level,
which results in a lack of precision, because not every module can be
configured separately. Composition between the modules happens using
a set of pre-defined constraints.

• XAspects is a plug-in extending AspectJ [21]. In this framework, aspects
defined in DSLs are translated to Java classes and AspectJ aspects. As
with Awesome, the AspectJ join point model is used, and thus have the
same restrictions. After the first compilation phase the resulting aspects
become visible to each other allowing composition to take place between
them.

13

CHAPTER 3 ROEL TER MAAT(S0219681)

• Reflex is a versatile kernel for the composition of aspects [22]. These
aspects can be defined in varying languages. Plug-ins can be created which
translate aspects, written in the desired language, to basic operations
understandable by the kernel and meta objects. A limited set of join
points is provided.
composition between aspects is possible using the fixed set of composition
instructions. Using these instructions, constraints can be created for a
more advance configuration.

3.2.1.2 Object Oriented Programming

Events in the observer pattern are fixed resulting in a tight coupling between
the producer and the consumer, because the producer is limited to the specific
events of the consumer. New types of events would also require new observers,
which makes projects with a large number of event types difficult to manage.
The language used to define event consumers and event processing agents is
fixed by the OO language used to implement the pattern.
The event delegate mechanism allows new types to be specified, but limits them
to types published within a program. Languages used for event consumers and
event processing agents are fixed.

3.2.1.3 Stream Processing Languages

Events in Esper can be defined in various ways including Java objects and XML.
The language used to implement event consumers and event processing agents
is fixed to Java and SQL respectively.

3.2.2 Modularity

3.2.2.1 Aspect Oriented Programming

AspectJ offers aspects in the form of modules containing pointcut designators
to select events. When the expressiveness of the pointcut language is not good
enough, not all required event selection can be implemented, meaning the ad-
vice needs to contain code to implement it. This results in tangling between the
pointcut and the advice.
Aspect modules can be instantiated using a limited amount of strategies, includ-
ing per object and as a singleton. In the former, each aspect instance is bound
to a specific object and the aspect will only handle events published by that
object. When changes occur in the amount of event producers being processed
by a consumer or event processing agent, problems arise handling this in the
implementation.

14

CHAPTER 3 ROEL TER MAAT(S0219681)

Singleton instances experience difficulties when implementing stateful event pro-
cessing where states need to be maintained for a specific group of event produc-
ers, requiring workarounds to make this possible.
The advice code can be used to implement stateful event processing. There
are other languages which allow history based event selection to be defined in
the pointcut [12], yet these are very dependent on the expression power of the
pointcuts.

3.2.2.2 Object Oriented Programming

Using the observer pattern results in fixed interfaces with only one type of event
being used. For more advanced event processing this could offer some difficul-
ties.
When implementing stateful event processing, other observers need to be used
to gather events used to reason.
When implementing complex event consumers and event processing agents, mul-
tiple observer are required, each implementing part of the processing. This re-
sults in some tight coupling between the observers.

The event-delegate mechanism can also be used to implement the EPA. using
this mechanism, event types are defined within their own module and these can
be instantiated and published by the base program as events. The event con-
sumer and event processing agents can be defined within their own module by
defining a method whose signature matches the delegate. When implementing
complex functionalities, the same problems arise as in the observer pattern.

3.2.2.3 Stream Processing Languages

Esper offers primitive statements used as queries for event processing, yet they
are not represented as modules, meaning no modularity is supported.

3.2.3 Composability

3.2.3.1 Aspect Oriented Programming

The advice code in AspectJ contains the binding to the pointcut resulting in
a tight coupling between the two concerns. Advices are also not named mod-
ules, making composition impossible and making it impossible to differentiate
between advices initiating a join point which can be caught by other pointcuts
using the adviceexecution designator. In the former problem, a workaround is
required which compose the code in the advice creating a tight coupling be-
tween the advices. The latter problem can be worked around by mapping the

15

CHAPTER 3 ROEL TER MAAT(S0219681)

join points to the method invocations or executions but would tangle the advice
activating the join point and the advice reacting to it.

3.2.3.2 Object Oriented Programming

For observers to process the produced events streams they need to be explicitly
bound to the subjects producing them. This create a tight coupling between
the concerns and changing the number of subjects or observers the binding need
to be redefined.
When observer objects produce events, the object needs to be designated the
role of subject. For each target of the event a new implementation of observer
pattern can be required, increasing the complexity.
When the amount of observers is changed, a redefinition may be required.
Specifically when the order needs to be defined. The Mediator pattern may
be used to implement this, but would require a redefinition of the observers.
When subjects provide multiple event streams to be used by an observer, this ob-
server needs to be invoked in all the subjects, creating a tight coupling between
the subject and observer, and scattering the invocation across multiple subjects.

The composability of the event-delegate mechanism is very similar to the ob-
server pattern, where there is a tight coupling between the producer and con-
sumer.

3.2.3.3 Stream Processing Languages

Because modularization is not supported interface level composition can also
not be supported. The composition of queries is possible using the SQL queries.

3.3 Illustration of Shortcomings in AspectJ

To show the shortcomings this sections uses the case study from section 2.2
to which evolutions are applied. To do this, a set of evaluation criteria and
evolution scenarios are defined which are implemented and evaluated to identify
areas of improvement.

3.3.1 Evaluation Criteria

In AspectJ, an aspect is considered a module in which a pointcut is the input
interface, advice is the implementation, and the set of joinpoints that can be
designated within an aspect are the output interface.

16

CHAPTER 3 ROEL TER MAAT(S0219681)

In AspectJ, event selection is done by pointcut designators. AspectJ facilitates
defining pointcuts in separate aspect modules. Advice is a means to define event
reaction. Advice is bound to pointcut, the binding is defined as part of advice.
The advice and pointcut will be considered modules in this section, which should
be an advantage for AspectJ, and will make comparison easier.

The choice of evolution scenarios, which are used, were selected based on the
types of software evolution described in [23]. The types most relevant to this sit-
uation are those defined in the business rules, which are adaptive enhancive, and
corrective. This is, because the other evolution scenarios won’t create changes
which can be used to evaluate the modularity and/or composability. For com-
plete analysis, the main features of modularity have been defined as input,
output, functionality and instantiation. These four features have been crosscut
with the required types of software evolutions giving 12(4x3) types to be exam-
ined, many of which can be combined.
To examine a framework, a set of criteria needs to be defined. When selecting
the criteria we specifically want to look at how much existing code needs to be
redefined and/or changed to implement these scenarios.

To examine modularity, the evolutions are checked for adding, removing, re-
defining of modules. In the case of the composability, AspectJ’s composition
happens within existing modules meaning the redefining of modules should cover
that. Some frameworks cover composition in a separate section, requiring a
metric which counts changes in composition code. In this case a change in the
composition code is more desirable than a change in a module because of the
requirement of reducing the amount of redefinition of the modules.

AspectJ can increase the modularity by adding external functionalities defined
in classes which can be reused in multiple modules. This is more desirable than
duplicate code, but still requires an extra metric.
Finally modularity offers the possibility to loosely couple elements. To examine
this, a metric is added counting the amount of strongly coupled concerns.
These requirements lead to the following list of metrics. Since different lan-
guages have different sections modularized, this list assumes a module to be one
of the EPA concerns. This way, it is possible to properly compare the languages
and frameworks.

Added Modules: Number of event consumer and event processing agents
added to perform the desired action. In the case of AspectJ, the pointcut and
advice aspectmodules are counted and the overall aspect is ignored.
Removed Modules: Amount of modules removed from the implementation.
When binding this to a pointcut which is never activated, it will also count as
removed.
Redefined Modules: The number of modules where the code is changed. This
can either be functionality or AspectJ binding which is changed.
Altered Bindings: In some languages the bindings are handled outside the

17

CHAPTER 3 ROEL TER MAAT(S0219681)

modules in a separate script. This metric counts the amount of changes in this
script. This type of change is more favourable than a redefined module, since it
supports an increase modularity.
Non-modular functionalities added: Number of modules functionalities
added not directly defined in a module. E.g. classes which are called from
within a module.
Strongly coupled concerns: Counts the number of concerns strongly cou-
pled within one module. For AspectJ, the coupling between the advice and
pointcut is ignored.

3.3.2 Evolution Scenarios

With the criteria defined the scenarios could be created. In the following sec-
tion, six evolution scenarios are defined, using the case study from section 2.2
as a base, which will focus on one or more of the selected types defined in the
previous section. These scenarios can be mapped in the following way:

Input Functionality Output Instantiation

Enhancive 6 1, 2 6 1, 2
Corrective 3 3, 4 3 4
Reductive 6 5 6 5

3.3.2.1 Scenario 1

As an evolution, half of the sensors are moved from the outside to the inside. The
indoor temperature was deemed useless for the weather station, yet would be
useful for a thermostat to regulate indoor temperature. The values measured
by the sensors must be split up to perform different actions. The values of
the indoor sensors must be sent to the thermostat, while the outdoor sensors’
values must be sent to the weather station. The identifier of the sensors is used
to differentiate between the two, where 1 to 5 is used for indoor sensors and 6 to
10 is used for outdoor sensors. This evolution scenario will be used to evaluate
the frameworks on their ability of creating more complex event processing agents
based on existing agents and the parameterization of instances.

3.3.2.2 Scenario 2

The sensors inside the building are divided over 3 adjacent areas and for each
of these areas an average temperature is requested to inform users of area tem-
peratures. Since most rooms have 2 sensors the choice was made to create the

18

CHAPTER 3 ROEL TER MAAT(S0219681)

average of the last two values, and publish this to the user.
Secondly, the sensors must be used to measure radiator malfunctions, which
needs to be fixed as soon as possible. The radiators are located between the
areas, and when 10 continuous values greater than the allowed values (set at 30)
is measured in one of the areas near the radiator the maintenance crew needs to
be informed. This evolution scenario is useful to test the ability of a framework
to have an instance of a module for a specific group of objects. Secondly, it
tests the possibility of two aspects performing actions on the both the same and
different instances of a functionality.

3.3.2.3 Scenario 3

For the third scenario, it is assumed that a new sensor has been added from an
external project. This external project also has an event processing agent and
an event consumer responsible for the transmitting of the data to a different
weather station.
For the evolution, the old weather station needs to be removed and the outside
temperatures must be sent to the new weather station. The reaction, responsi-
ble for sending the data to new weather station, only requires the temperature
as a value.
This evolution scenario will be used to examine the ability to correct functional-
ities in existing event consumers and event processing agents. Secondly, it takes
a look at correcting input and output of modules.

3.3.2.4 Scenario 4

For some reason the previous programmer switched the IDs in the event pro-
cessing agents responsible for filtering between inside and outside, meaning the
inside temperatures are sent to the weather stations and the outside are sent to
the thermostat. In order to fix this, the event processing need to be corrected.
This scenario will examine the possibility of correcting functionality and the
instantiation of modules.

3.3.2.5 Scenario 5

The following scenario uses the resulting program of evolution scenario 2 as a
base.
Because one of the three areas only contains one sensor, the publishing of the
aggregate of the last two values has been deemed useless. To solve this, the
choice has been made to remove the calculation of the aggregate and publish
the temperature of the sensor directly to the user.
This scenario is used to examine the ability to remove modules or instances of

19

CHAPTER 3 ROEL TER MAAT(S0219681)

modules from the flow of a program.

3.3.2.6 Scenario 6

The following scenario contains 4 evolutions but to avoid repetition they are
combined in one scenario.
This scenario looks at the event processing agents and event consumer of the
inside sensors and more specifically the output of the former, the input of the
latter, and the binding between the two. For the evolution, variables from both
the input and output are added and removed resulting in the 4 (2x2) evolutions.

3.3.3 Implementation of Evolution Scenarios

After defining the criteria and the scenarios, they were implemented in AspectJ
and the evaluation criteria are evaluated. Furthermore the results when using
both the Observer pattern and Esper are discussed.

3.3.3.1 Base Scenario

Implementing the base scenario in AspectJ an aspect needs to be defined in
which joinpoints are selected where sensors store the measured temperature
after which the advice is executed.

This results in the AspectJ code shown in Listing 3.1.

1 p r i v a t e po intcut f i l t e r (TemperatureSensor s enso r) : t h i s (s enso r) &&
c a l l (void s t o r e (Str ing , double , i n t)) ;

2

3 be f o r e (TemperatureSensor s enso r) : f i l t e r (s enso r) {
4 // perform act i on
5 }

Listing 3.1: AspectJ Base Scenario Implementation

The advice is not fully implemented since it is not relevant for the evolution
scenarios.

In Java, the Observer Pattern can be used where the observers can be cre-
ated which will react when the sensors notify them that a value is published.

In Esper, a statement needs to be defined to select the events published when
the sensors store the values. The reaction defined in a separate class can be
bound to statement.

20

CHAPTER 3 ROEL TER MAAT(S0219681)

Figure 3.1: Base Project

3.3.3.2 Scenario 1

In this scenario, the original pointcut needs to be extended to filter on both
the inside, where the ID is between 1 and 5, and the outside, where the ID is
between 6 and 10. For both the filters, a reaction is required resulting in the
structure seen in Figure 3.2.

To implement this in AspectJ the original aspect was altered to ensure it would
be extensible in other aspects. This is done, by making the original aspect ab-
stract and the pointcut protected. Listing 3.2 shows the resulting AspectJ code.

1 pub l i c ab s t r a c t aspect TemperatureFi l ter {
2 protec ted po intcut sensorPo intcut (TemperatureSensor s enso r) : t h i s

(s enso r) && c a l l (void s t o r e (Str ing , double)) ;
3 }

Listing 3.2: Abstract Temperature Aspect

To create a better separation of concern two aspects were created, one for the
inside sensors and one for the outside. In both aspects, a pointcut was created
extending the original pointcut with a filter to select either the inside or outside
sensors. Listing 3.3 shows the aspect for filtering inside sensors, while Listing 3.4
shows the aspect for filtering outside sensors.

21

CHAPTER 3 ROEL TER MAAT(S0219681)

Figure 3.2: Evolution Scenario 1

1 pub l i c aspect Ins ideTemperatureF i l t e r extends TemperatureFi l ter {
2 p r i v a t e po intcut i n s i d e P o i n t c u t (TemperatureSensor s enso r) :

s enso rPo intcut (s enso r) && i f (s enso r . ge t Id () >0 && senso r . ge t Id
() <6) ;

3

4 be f o r e (TemperatureSensor s enso r) : i n s i d e P o i n t c u t (s enso r) {
5 System . out . p r i n t l n (” publ i shed To thermostat : ”+senso r . getName ()

+” with value : ”+ senso r . getValue ()) ;
6 // perform act i on
7 }
8 }

Listing 3.3: Inside Sensor Filter Aspect

22

CHAPTER 3 ROEL TER MAAT(S0219681)

1 pub l i c aspect Outs ideTemperatureFi l ter extends TemperatureFi l ter {
2

3 p r i v a t e po intcut out s idePo in tcut (TemperatureSensor s enso r) :
s enso rPo intcut (s enso r) && i f (s enso r . ge t Id () >5 && senso r . ge t Id
() <11) ;

4

5 be f o r e (TemperatureSensor s enso r) : out s idePo in tcut (s enso r) {
6 System . out . p r i n t l n (” publ i shed To weather s t a t i o n : ”+senso r .

getName ()+” with value : ”+ senso r . getValue ()) ;
7 // perform act i on
8 }
9 }

Listing 3.4: Outside Sensor Filter Aspect

The aspect responsible for the outside sensors needs the advice code from the
original aspect, responsible for the publishing to the weather station. This can
be copied from the aspect, after which the pointcut needs to be replaced with
the pointcut specifically for the outside sensors.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

AspectJ 3 0 2 0 0 0

The amount of added modules seems logical since two new filters are required
and one new reaction, but the filters perform the same action, but on a dif-
ferent ID, meaning this number could be reduced. The redefined modules are
not desired. Because of the strong coupling between the filter and the reaction,
changing the binding between them requires a redefinition of one of the modules.

To allow this in Java, two new modules need to be created which utilize the orig-
inal filter. The original filter will need to be removed as an observer. Because of
the binding between the filter and the reaction, the original filter will need to be
redefined, removing the call to the reaction, which needs to be moved to a new
filter. This means, even more changes are required for the Java implementation.

In Esper, the amount of new modules can not be reduced since instantiation
or parameterization is not possible in the statements. The binding between the
filter and reaction is specified in the filter, just like in Java, and therefore does
not have the same problems as AspectJ. The problem with Esper is that the
first filter, used to select the right events cannot be bound to other filters. This
means the code from the primary filter needs to be moved to both the new filters
introducing duplicate code.

3.3.3.3 Scenario 2

For this evolution the filter used for the inside sensors needed to be replaced
with three filters for the correct areas. Two functionalities need to be added

23

CHAPTER 3 ROEL TER MAAT(S0219681)

and instantiated and composed with the correct filters resulting in the structure
seen in Figure 3.3.

Figure 3.3: Evolution Scenario 2

To reduce the amount of duplicate code for AspectJ, two classes were created
to perform aggregate calculation, and temperature measurement. These classes
were:

Aggregate: which maintains and returns the average temperature.
RadiatorSensor: Counts the amount of continues values above 30, when it
reaches 10 values it will return ’true’.

Since the publishing of the aggregate values is always executed after the cal-
culation of the aggregate, the possibility exists to incorporate this code in the
aggregate calculation code. This would reduce the amount of calls in the advice,
but would decrease the modularity. Since modularity is something we want to
test the code was kept out of the classes. The same counts for the functionalities
implementing radiator monitoring and the maintenance notification. Especially
since one of these calls will need to be removed from a specific area in a future
scenario, preserving modularity will in this case prevent extra work for AspectJ.

24

CHAPTER 3 ROEL TER MAAT(S0219681)

To allow different areas to perform an action on the same instance all pointcuts
and advices will have be defined within the same aspect. Otherwise instances
of a specific type needs to be made public so other aspects can reference it.
This would also create a strong coupling between the aspects, which we want to
avoid. In the inside aspect, three Aggregate instances and two RadiatorSensor
instances are defined, as shown in Listing 3.5.

1 Aggregate agg1 = new Aggregate () ;
2 Aggregate agg2 = new Aggregate () ;
3 Aggregate agg3 = new Aggregate () ;
4 RadiatorSensor radMon1 = new RadiatorSensor () ;
5 RadiatorSensor radMon2 = new RadiatorSensor () ;

Listing 3.5: External Class Instantiation

For every area, a pointcut is defined, as shown in Listing 3.6.

1 p r i v a t e po intcut area1 (TemperatureSensor s enso r) : s ensorPo intcut (
s enso r) && i f (s enso r . ge t Id ()==1 | | s enso r . ge t Id ()==2) ;

2 p r i v a t e po intcut area2 (TemperatureSensor s enso r) : s ensorPo intcut (
s enso r) && i f (s enso r . ge t Id ()==3 | | s enso r . ge t Id ()==4) ;

3 p r i v a t e po intcut area3 (TemperatureSensor s enso r) : s ensorPo intcut (
s enso r) && i f (s enso r . ge t Id ()==5) ;

Listing 3.6: Area Pointcut Definition

After this, two options exist: Either handle all the advices per area, which is
shown in Listing 3.7.

1 be f o r e (TemperatureSensor s enso r) : area1 (s enso r) {
2 agg1 . addValue (s enso r . getValue ()) ;
3 // pub l i sh value
4 i f (radMon2 . addValue (s enso r . getValue ())) {
5 // a l e r t maintenance
6 }
7 }
8

9 be f o r e (TemperatureSensor s enso r) : area2 (s enso r) {
10 agg2 . addValue (s enso r . getValue ()) ;
11 // pub l i sh value
12 i f (radMon1 . addValue (s enso r . getValue ()) | | radMon2 . addValue (s enso r

. getValue ())) {
13 // a l e r t maintenance
14 }
15 }
16

17 be f o r e (TemperatureSensor s enso r) : area3 (s enso r) {
18 agg3 . addValue (s enso r . getValue ()) ;
19 // pub l i sh value
20 i f (radMon1 . addValue (s enso r . getValue ())) {
21 // a l e r t maintenance
22 }
23 }

Listing 3.7: Advice Specification per Area

25

CHAPTER 3 ROEL TER MAAT(S0219681)

Or handle the radiator monitors as a pointcut, as shown in Listing3.8.

1 @Pointcut (” (area1 (s enso r) | | area2 (s enso r)) && i f () ”)
2 p r i v a t e boolean rad iatorMoni tor1 (TemperatureSensor s enso r) {
3 r e turn radMon1 . addValue (s enso r . getValue ()) ;
4 }
5

6 @Pointcut (” (area2 (s enso r) | | area3 (s enso r)) && i f () ”)
7 p r i v a t e boolean rad iatorMoni tor2 (TemperatureSensor s enso r) {
8 r e turn radMon2 . addValue (s enso r . getValue ()) ;
9 }

10

11 be f o r e (TemperatureSensor s enso r) : area1 (s enso r) {
12 double aggregate = agg1 . addValue (s enso r . getValue ()) ;
13 // pub l i sh value
14 }
15

16 be f o r e (TemperatureSensor s enso r) : area2 (s enso r) {
17 double aggregate = agg2 . addValue (s enso r . getValue ()) ;
18 // pub l i sh value
19 }
20

21 be f o r e (TemperatureSensor s enso r) : area3 (s enso r) {
22 double aggregate = agg3 . addValue (s enso r . getValue ()) ;
23 // pub l i sh value
24 }
25

26 be f o r e (TemperatureSensor s enso r) : rad iatorMoni tor1 (s enso r) | |
rad iatorMonitor2 (s enso r) {

27 // a l e r t maintenance
28 }

Listing 3.8: Separated Pointcut and Advice

The former reduces the amount of modules but increases the redundancy and
does not separate the concerns of pointcut and advice. Both options will be
examined to see which one is the best.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

AspectJ per area 6 0 0 0 2 12
AspectJ monitor as pointcut 9 0 0 0 2 3

The problem in AspectJ is that advices are unnamed modules. Composing mul-
tiple advices together where the output of one is the input of another would
require them to be defined within the same module, or requires utilization of
global variable which becomes very dependant on the execution of AspectJ.

In Java, a similar coupling is required, where the reactions must call each other
in order to perform multiple reactions after each other.

In Esper, multiple listeners can be added to a statement removing the strongly
coupled concerns. The problem is that input and output can not be matched
between the listeners, requiring them to be implemented in the same listener.

26

CHAPTER 3 ROEL TER MAAT(S0219681)

3.3.3.4 Scenario 3

For this evolution scenario, the filter for the outside sensor needs to be composed
with the reaction from the external project, as shown in Figure 3.4. The external

Figure 3.4: Evolution Scenario 3

aspect is shown in Listing 3.9.

1 p r i v a t e po intcut e x t e r n a l F i l t e r (double va lue) : t h i s (
TemperatureSensor2) && args (Str ing , value , i n t) && c a l l (void
s t o r e (Str ing , double , i n t)) ;

2

3 be f o r e (double va lue) : e x t e r n a l F i l t e r (va lue) {
4 // Perform e x t e r n a l a c t i on
5 }

Listing 3.9: External Aspect

The problem in AspectJ is that the poincut and filter of the outside sensors and
the advice from the external sensor need to be connected, as can be seen in the
Figure 3.4. To make this happen some problems arise.
The biggest problem is passing the objects to the advice. Because different
types of objects are used it wont be possible to compose the outside pointcut
and the external pointcut straight up, because the resulting pointcut needs to

27

CHAPTER 3 ROEL TER MAAT(S0219681)

produce the same types as output.

To solve this, the outside filter can be changed by adding the value of the sensor
to the pointcut. Now the external and the outside pointcut can be composed
by ignoring the sensor in the new pointcut, as shown in Listing 3.10.

1 pub l i c po intcut out s idePo in tcut (TemperatureSensor sensor , double
va lue) : s ensorPo intcut (s enso r) && args (Str ing , va lue) && i f (
s enso r . ge t Id () >5 && senso r . ge t Id () <11) ;

Listing 3.10: Outside Sensor Filter with Added Output

This pointcut can be used in the external advice by composing the external and
outside pointcut into one pointcut which can be done in the advice, as shown
in Listing 3.11.

1 be f o r e (double va lue) : e x t e r n a l F i l t e r (va lue) | |
Outs ideTemperatureFi l ter . out s idePo in tcut (TemperatureSensor ,
va lue) {

2 // Perform e x t e r n a l a c t i on
3 System . out . p r i n t l n (” External va lue publ i shed : ”+ value) ;
4 }

Listing 3.11: Pointcut Composition

This does however require another change in the outside pointcut, because it
needs to be made public for the external aspect to use it. This can however be
avoided by having it public from the start.

If the outside pointcut was also being used by other advices, changing the out-
put becomes a more difficult task since that change will ripple to all modules
referencing it. To avoid this, a new pointcut can be created extending the out-
side pointcut by adding the temperature to the output. Then, the new pointcut
can be used for the external aspect while the other modules can keep using the
original pointcut. Because the outside pointcut is not, and will not, be used by
other modules, this alternative is ignored.

Another solution would be to copy the advice of the external filter and reuse it
with the outside filter, as shown in Listing 3.12.

1 be f o r e (TemperatureSensor s enso r) : Outs ideTemperatureFi l ter .
o u t s i d e F i l t e r (s enso r) {

2 // Perform e x t e r n a l a c t i on (again)
3 }

Listing 3.12: Duplicated External Reaction

This does mean that the temperature normally directly provided by the exter-
nal filter is no longer available. The advice will need to be changed to use the

28

CHAPTER 3 ROEL TER MAAT(S0219681)

temperature defined within the sensor provided by the outside filter. It also
creates redundancy because the same code is defined twice. The outside filter
will also still need to be made public so it can be referenced by the external
aspect.

Another way to handle this is to create a superclass for both sensors. At this
point both pointcuts can return that superclass as output and the advice can
receive that type as input. This would, however, require a change in the base
program and the external pointcut and advice, or the luck or knowledge that
all the sensors are already subtypes of one generic superclass. At that point,
only the external pointcut and advice need to be changed to alter the input and
output, and the way the temperature is retrieved in the advice.

It would also be possible to use the joinpoint as output for the pointcuts and
retrieve the class responsible for the activation of the pointcut, e.g. the sensors.
This would still require a change in both the outside and the external pointcut to
make sure that they output the joinpoint and a change in the advice to retrieve
the sensor from the joinpoint. Secondly, because this situation doesn’t assume
the previously mentioned superclass, the advice has to differentiate between the
two different types of sensors to perform the action, increasing the amount of
code.

All these different alternatives will be examined for completeness.
Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

AspectJ add temperature 0 1 2 0 0 0
AspectJ copied advice 0 1 1 0 0 0

AspectJ sensor superclass 0 1 2 0 1 0
AspectJ joinpoint 0 1 3 0 0 0

In all of the cases in this scenario, AspectJ requires changes to modules to cope
with the strong coupling between the modules. The second implementation has
a reduced amount of module redefinition but introduces duplicate code.

In Java, less, though still some, redefinition is required, because the filter used
for the outside sensors can call the newly added advice and remove the call to
the original advice, meaning Java is actually more preferable in this scenario.

The problem in Esper is that input and output are not explicitly used in. Events
are used to pass along values. If, in this case, the sensors and event of the ex-
ternal project are of a different type, than the existing project, the code in the
reaction which extracts the temperature from the event or sensor will not work
for the existing event or sensor. This requires the code to be duplicated and
changed to match the existing project.

29

CHAPTER 3 ROEL TER MAAT(S0219681)

3.3.3.5 Scenario 4

The fourth scenario requires the advice to be performed after a different point-
cut is activated.
In AspectJ, this scenario is solvable in two ways. The first is to change the im-
plementation of the pointcuts to make the filters correct again, as in Listing 3.13.

1 p r i v a t e po intcut i n s i d e P o i n t c u t (TemperatureSensor s enso r) :
s enso rPo intcut (s enso r) && i f (s enso r . ge t Id () >5 && senso r . ge t Id
() <11) ;

2

3 p r i v a t e po intcut out s idePo in tcut (TemperatureSensor s enso r) :
s enso rPo intcut (s enso r) && i f (s enso r . ge t Id () >0 && senso r . ge t Id
() <6) ;

Listing 3.13: Pointcuts with Switched Functionality

The second method is to change the bindings of the pointcuts in the advices to
make the outside reaction use the inside filter and vice versa. This does however
create the problem that the pointcuts need to be changed to allow them to be
referenced in the other aspects.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

AspectJ change pointcut 0 0 2 0 0 0
AspectJ change advice 0 0 4 0 0 0

This scenario reiterates the point made earlier where instantiation and param-
eterization can reduce the amount of modules, and when requiring changes like
this would reduce the amount of redefined modules.

In Java and Esper, the same situation applies, where both the inside and the
outside filter need to be changed.

3.3.3.6 Scenario 5

In this scenario, the functionality aggregating the values for one specific area
needs to be removed, composing the filter for the outside sensors to the external
reaction as seen in Figure 3.5.
To implement this scenario in AspectJ, the advice module needs to be dissected
to remove the part calculating the aggregate. Because it was decided to call
methods defined in objects, some modularity has been applied and removing
the specific action is rather simple. If this were not the case, some more work
would be required. After removing the aggregate code, the call to the publishing
needs to be changed to make sure the correct value would be published. The
resulting code is shown in Listing 3.14.

30

CHAPTER 3 ROEL TER MAAT(S0219681)

Figure 3.5: Evolution Scenario 5

1 be f o r e (TemperatureSensor s enso r) : area3 (s enso r) {
2 double aggregate = senso r . getValue () ;
3 publAggr . pub l i sh (aggregate) ;
4 }

Listing 3.14: Advice with Removed Funtionality

As mentioned in scenario 2, there were two options of publishing the data, where
the call to publishing could be incorporated in the aggregate calculation. This
option was not chosen because that would reduce modularity and that would
truly be shown in this scenario, where one instance of the aggregate-publishing
advice would have to be changed. If the two advices would be implemented
in one advice module, this scenario would require them to be separated and
removed for the third area.

This means modularity can be increased in AspectJ to prevent some work when
evolutions are required, but in some scenarios, modules still require change if
other modules needs to be removed.

31

CHAPTER 3 ROEL TER MAAT(S0219681)

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

AspectJ 0 0 2 0 0 0

In this scenario, the strong coupling between filters and reaction is shown. Be-
cause the two reactions are strongly coupled, removing one will result in a change
for the other.

In Java, the same coupling problem exists, because the concerns specifies how
to continue the flow of Ṙemoving the reactions between the filter and another
reactions requires the removal of the reaction and changing the filter to execute
a different reaction.

In Esper, the reactions are bound in the same way as in Java, meaning the
same actions are required.

3.3.3.7 Scenario 6

For this scenario, both the input of the reaction and the output filter will be
changed by adding and removing one of the values.

In AspectJ, the removing a parameter from the input will still allow the same
pointcut to be used. It will only require the binding defined in the reaction to
be changed to ignore the output from the pointcut by adding the type instead of
the name which used to match the input of the advice, as shown in Listing 3.15.

1 be f o r e () : o r i g i n a l P o i n t c u t 1 () | | i n s i d e P o i n t c u t (TemperatureSensor) {
2 //do something
3 }

Listing 3.15: Ignored Pointcut Output

A more difficult situation arises when adding an extra input. Because that
value will become unbound in the pointcut, an error will be given. For this to
work, the pointcut needs to be changed to include the added input as an output
value. After this, the input can be matched with the input, as can be seen in
Listing 3.16.

1 p r i v a t e po intcut addedInsideOutput (TemperatureSensor sensor , S t r ing
s t r i n g) : i n s i d e P o i n t c u t (s enso r) && args (s t r i ng , double) ;

Listing 3.16: Pointcut with Added Output

This pointcut can then be added to the advice, as shown in Listing 3.17.

32

CHAPTER 3 ROEL TER MAAT(S0219681)

1 be f o r e (TemperatureSensor sensor , S t r ing s t r i n g) : o r i g i n a l P o i n t c u t 2 (
sensor , s t r i n g) | | addedInsideOutput (sensor , s t r i n g) {

2 //do something
3 }

Listing 3.17: Bound Pointcut and Advice with Added Input

In the case of removing of output, the same situation arises as the adding of
input, which requires a change in the advice module. When adding output to
the pointcut, the same situation is used as the removal of input requiring only
a change in the binding code in the advice.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

Adding Input 0 0 2 0 0 0
Removing Input 0 0 1 0 0 0

Adding output 0 0 1 0 0 0
Removing output 0 0 1 0 0 0

AspectJ is fairly strict when it comes to input and output of the filter and re-
action. Most prominently when adding an input to the reaction the filter both
modules require changes. Secondly, the binding of input and output happens
within the modules itself, meaning any change immediately means the modules
need to be redefined which is not desirable.

In Java, the mapping of input and output is just as strict as AspectJ, since
they are simple method call, and happens within the modules, resulting in the
same situation as AspectJ.

In Esper, the input in modules is fixed, where the statement and the reaction
only receives events, limiting the possibilities.

3.4 Summary

In the previous sections, a set of languages and frameworks were evaluated and
shortcomings in fulfilling the criteria from section 3.1 were identified. When
looking at the evaluation, some shortcomings which are fairly evident. When
evaluating the language extensibility, the more established languages such as
AspectJ offer no direct support for language extensibility, and even the plug-in
mechanism XAspect does offers language extensibility, but with some limita-
tions. Reflex and Awesome offer a greater language extensibility, but fall short
when it comes to the modularity and composability.

The modularity and composability in AspectJ, though possible to some ex-
tent, could be improved.
When composing modules, the different frameworks require it to be specified

33

CHAPTER 3 ROEL TER MAAT(S0219681)

within one of the module. When a change is required in a filter, or when an-
other filter needs to be used, the modules which are bound to it require a change
themselves. Languages which offer a separate section in which the composition
can be defined, preserves the separation of concerns and ensures the modules
have no knowledge of each other, which is important in modularity.
Advices in AspectJ are unnamed modules and cannot be referenced in other
modules. This leads to the problem that when multiple reactions need to take
place they either needs to be defined in separate advices or all defined in one.
When the output of one reaction is required as the input of another, they will
need to be defined in the same advice, or require a construct where multiple
advices use the same global variable.
In some scenarios, nearly identical modules were required, or two modules which
needed to maintain a separate states. In the existing frameworks little to none
direct support is offered for this, increasing duplicate code and .

The scenarios lead to the following list of shortcomings is identified.

• Strong coupling between filters and reactions, requiring lots of redefining
of modules when small changes are needed.

• Strict binding of input and output, requiring all values to be mapped.

• Advices are unnamed and cannot be composed outside of the module.

• Duplicate code is increased due to lack of instantiation and parameteriza-
tion.

With the concerns evaluated, the conclusion can be drawn that no existing
framework is able to facilitate the modularity, composability and language ex-
tensibility to a full extend. To solve this problem, a new framework is proposed
which should be able to allow a bigger support these concerns to a greater
degree. This new framework would have the following requirements:

• All filters and reactions are defined within their own, named, module.

• Modules can be instantiated and parameterized at will.

• Modules do not require any knowledge about each other.

• Free composition between filters and reactions.

• Composition between the modules is handles in a separate section.

• New DSLs and GPLs can be added to define the functionalities.

In the next chapters this new framework is designed and implemented, after
which the same evaluation methods are applied to it, to ensure the goal is
reached.

34

CHAPTER4
EventReactor2.0

In the previous chapter, the shortcomings of various languages and frameworks
to fulfill the modularity, composability and language extensibility criteria were
discussed. To avoid these shortcomings a set of requirements are defined for a
framework to implement EPAs. In this chapter the EventReactor2.0 framework
is discussed.
In section 4.1, the compilation phase of the framework is explained. In sec-
tion 4.2, the runtime behaviour of the framework is explained. In section 4.3,
the improvements of EventReactor2.0 over EventReactor are explained. In sec-
tion 4.4, the results are summarized.

4.1 Compile time

Figure 4.1 shows the compiler of EventReactor2.0. To implement and EPA, an
application developer has to defined Specification of Event Types and Specifi-
cation of Events. These are used to define types of events and a set of events
supported by the EPA respectively. Specification of Event Types is provided to
the component Event Type Checker which verifies if the event types are specified
using the correct syntax and if language constraints, such as unique names, are
adhered to. After verification, the specification is provided to the component
Event Type Compiler, which compiles the specifications to one Event Type Java
Class for each defined event type. This class is stored on the file system. For
Specification of Events, the same type of actions are performed. It is provided
to the component Event Checker to verify the syntax and the language con-
straints. After that, the component Event Compiler creates one Event Java
Class for each event, which is stored on the file system. In the application Base
Program, which is created by the application developer, a generated Event Java
Class can be instantiated and published to indicate a state change.

In Specification of Event Modules, application developers are able to define event

35

CHAPTER 4 ROEL TER MAAT(S0219681)

F
igu

re
4
.1

:
O

vera
ll

A
rch

itectu
re

o
f

E
ven

tR
ea

cto
r2

.0

36

CHAPTER 4 ROEL TER MAAT(S0219681)

processing agents and event consumers in an extensible list of GPLs and DSLs.
The specification is provided to the component Event Module Checker, which
verifies whether or not the syntax is correct and the language constraints are
adhered to. After verification, the specification is provided to the component
Event Module Compiler, which is responsible for translating it to one Event
Module Java Class per specified event module. To do this, the repository Lan-
guage Specific Compilers is used to select the correct compiler based on the
language used to define Specification of Event Modules. A new Specification
of Language Compiler can be defined by the application developer and added
to the repository Language Specific Compilers so new languages to be used to
define Specification of Event Modules. After Event Module Java Class is gener-
ated, it is stored in Event Module Repository for later use.

The application developer provides Specification of Composition. This is in-
put to the component Composition Checker to verify the syntax and language
constraints. After this, the component Composition Interpreter splits it up
in three sections: Specification of Ordering, Specification of Instantiation, and
Specification of Binding.
Specification of Ordering, in which the order of execution of the modules in-
stances is defined, is directly stored in the repository Ordering Specifications.
Specification of Instantiations describes how many instances of each event mod-
ule is required and how they’re named. This is provided to the component
Instance Manager which also retrieves the event modules from Event Module
Repository. Both components are used to create instances of Event Module Java
Class as specified, to produce a list of Instantiated Event Modules. The compo-
nent Binding Manager is provided Binding Specifications, in which is described
how the event module instances are bound together. Instantiated Event Mod-
ules are retrieved by Binding Manager to create a list of unbound modules, to
be stored in the repository Unbound Event Modules. This repository contains
module instances, which do not have their output bound to the input of another
module. These instances are the consumers or event processing agents which
are at the start of the event processing network.
The component Binding Manager also sets all values in the instances as speci-
fied in Specification of Bindings as static bindings. All instances are stored in
the repository Event Module Instance Repository.

The processing of Specification of Composition currently happens at runtime.
This was done to avoid cluttering the file system with all the event module
instances and the other specifications. Secondly, changing a binding, or instan-
tiation will not require the entire compilation phase to be performed. On the
other hand however, the interpreting of the binding technically falls under com-
pilation. Secondly, performing the interpreting at runtime means every time
the application is executed the entire binding interpreting needs to take place,
reducing the performance. As stated, this version will perform the binding at
runtime, yet moving this functionality to the compile time phase is understand-
able and should perhaps be done in later versions.

37

CHAPTER 4 ROEL TER MAAT(S0219681)

Figure 4.2: Abstract Runtime Architecture

4.2 Runtime

Figure 4.2 show a flowchart of the algorithm which is used at runtime. To start
the flow, the Base Program, which has been briefly explained at compile time,
must instantiate an Event Java Class. This event represents a state change of

38

CHAPTER 4 ROEL TER MAAT(S0219681)

interest in the program. After this, the application developer must Set Event
Variables, which can for instance be the temperature measured by the sensor.
When all values are set the application developer can Publish Event, to notify
the EventReactor2.0 framework of the state change.

In the framework, the component RuntimeManager is responsible for receiv-
ing and processing the published event. After RuntimeManager receives the
event, the repository Unbound Event Modules is used to Set Unbound Modules
as Current List. The current list is the list containing event modules which are
currently being traversed to be executed.
From the current list, the framework can Get Next Module from Current List
and Set as Current Module. The Current Module is the event module to be
executed next. This way, the current list is traversed.
Before execution, it is checked whether or not Current Module is Not Null. This
verifies if there was still an event module in the current list.
If it is not Null, the framework can Set Input of Current Module. This sets all
the input variables based on Binding Specifications.

After the correct values have been set RuntimeManager can Execute Func-
tionality of Current Module. This functionality, expressed in the event module
using a GPL or DSL, performs the event processing.
After the functionality is executed, the framework Get Output of Current Mod-
ule. These are the values which are produces by the event module and can be
used to bind to the input of other modules using the binding specification.
Using Binding Specification the names of the module instances, bound to the
current module, are retrieved. Using the repository Event Module Instance
Repository, the module instances can be retrieved based on their name, result-
ing in a list of event module instances which should be executed next. The
framework can then Push Current List to Stack and Set Bound Modules as
Current List. The stack is filled with lists containing the event modules which
still need to be executed, yet are not processed at this moment. By adding
the current list to the stack and using the bound modules first the execution is
performed depth first. Using the repository Ordering Specifications, the frame-
work can Order Current List to set the order of execution of the created event
module list.

The execution of the modules is performed until the Current Module is Not
Null check fails, meaning no more modules have to be executed for the current
list. At this point the framework checks whether the Stack Size is 0, which
means no more list left to traverse on the stack. If this is not the case, the
framework can Pop List from Stack and Set as Current List, meaning the list
traversed before the current list will continue its traversal and execution.
If there are no more lists on the stack, all necessary modules have been exe-
cuted and the framework can Return Flow to Base Program, meaning the base
program can continue its flow.

39

CHAPTER 4 ROEL TER MAAT(S0219681)

4.3 Extensions to EventReactor

Since the framework uses EventReactor as a basis, it is possible to examine the
improvements offered by this new architecture. The following list explains the
advantages offered by EventReactor2.0:

• With respect to the criteria language extensibility ; EventReactor only
DSLs are provided to implement the specific concerns. EventReactor2.0
allows an extensible list of DSLs and GPLs to be used to implement the
concerns. New language specific compilers can be plugged into the frame-
work allowing more readable event modules to be defined for specific con-
cerns.

• With respect to the criteria modularity : The Prolog expressions in Even-
tReactor can not be modularized, while the different consumer and event
processing agent concerns can be modularized using the event module. In
these event modules the functionalities can be defined without any knowl-
edge required about other modules.

• with respect to the composability concern; module instantiation in Even-
tReactor happens based on the attributes of the events, while EventReac-
tor2.0 support explicit instantiation of the modules, and explicit binding
of modules at instance level.

4.4 Summary

In this chapter a framework is designed which should increase the modularity,
composability and language extensibility, where the examined languages and
frameworks in chapter 3 fall short. The framework allows all concerns to be
defined in separate modules, who have no knowledge of each other. In the con-
figuration these modules can be instantiated after which they can be bound.
This provides an increased and flexible composability at instance level. New
language specific compilers can be added which can be used to define modules
in DSLs or GPLs, increasing the language extensibility. With the basic architec-
ture defined the more specific components and functionalities can be designed
and implemented.

40

CHAPTER5
Specification of Events

The first step in programming EPAs is to define the events which can be pub-
lished. EventReactor2.0 assumes that events are typed entities, and provides
dedicated linguistic abstractions to define event types and events. In section 5.1,
the choices made when designing event types and events are explained includ-
ing the resulting languages. Section 5.2 describes how the two concerns are
compiled and how the compiled modules can be used in the base program. Sec-
tion 5.3 explains some shortcomings currently still existing in the language and
how they can be improved. Section 5.4 summarizes the achieved results.

5.1 Design

5.1.1 Event types

Event types are described as a specification for a set of event objects that have
the same semantic intent and same structure [7]. Events can be seen as in-
stances of event types.
In the following section, it is described how the language extensibility, modu-
larity and composability requirements are fulfilled in the specification of event
types.

To fulfill the requirement language extensibility, the framework offers a dedicated
language to define event types of interest as a data structure encapsulating a set
of attributes. This provided the user with the possibility to use an extensible
set of event types.
To fulfill the modularity requirement, all event types are defined in a sepa-
rate module. Providing modularized event types facilitates defining a library
or reusable event types. The modules have unique names and encapsulate the
specification of attributes.
To fulfill the composability requirement, event types can be composed with each

41

CHAPTER 5 ROEL TER MAAT(S0219681)

other via the inheritance relation. This means that a sub-event types inherits all
the attributes defined in the super-event type. This allows multiple event types
to have the same properties without having the need to define these properties
in each event types, identically to how the events extend the event types.

Event types in the EventReactor2.0 framework, like the event types in Even-
tReactor, all require a standard set of properties. There also exist a small set
of event types which are commonly used when designing EPAs. For this reason
the choice was made to have a set of standard event types available, identical
to those of EventReactor. This set consists of the following types:

• EventType is the data structure which functions as the super type for all
events. It contains the properties required for all events, which include
the publisher, thread and return flow. This can be used by the events
to identify where in the program the event is published and this allows a
reaction to alter the flow.

• BaseEvent is the super data structure for all base events, which are the
event published in the base program. This type contains no added at-
tributes.

• ReactorEvent is the super data structure for reactor events. These events
are published by the event modules, described further in the next chapter,
and contain the name of the event module which publishes the event, and a
reference to the event originally published which caused the reactor event
to be published.

• MethodBased events are used to represent state changes concerning method
invocations and execution. It contains all specification of the method call,
which include the name of the method called, the target object which
contains the method which is called, and the arguments of the method
called.

Listing 5.1 shows the syntax which has been designed to describe event types.

1 import eventtype <EventType>;
2

3 eventtype <name> extends <eventtype> {
4 s t a t i c :
5 <name>: <type >;
6 dynamic :
7 <name>: <type >;
8 }

Listing 5.1: Event Type Syntax

Line 1 shows the import statement which is necessary to allow one or more of
the existing event types to be used in the rest of the language. The statement

42

CHAPTER 5 ROEL TER MAAT(S0219681)

requires the keyword import followed by the name of the event type which is
to be imported. This statement can be repeated for all the event types and the
statements are separated by a semicolon.
The import statements are added, because of the limitation in Xtext which pre-
vents the super event type to be a selection between a reference to the super
event type and a set of strings. By adding the import statements, the super
event type is a selection between references, either the import statements or an
existing event type.

Line 3 shows the beginning of an event type definition in a code block. The
block is started with the eventtype keyword after which the name of the event
type is defined, which is used to reference it. The name used to identify the
event type must be unique.
Every event type has to inherit from another event type which is specified after
the extends keyword. The extended event type can either be an earlier defined
event type, or one of the imported event types.

Within an event type two types of variables can be defined. Line 4 shows
the start of the code block in which dynamic variables are defined. The vari-
ables are set at runtime and are dependent on the base programming producing
the events. Examples of these are the temperatures which are measured by a
sensor. The dynamic variables code block is started with the dynamic keyword
followed by a colon. Within the code block multiple variables can be defined,
which is done by specifying the unique name, followed by a colon after which
the object type is stated. The variable names must also be unique compared to
the variables defined in the parent event types. The types are currently limited
to a subset of the Java types, being String and Integer. Multiple variables can
be define in a block and they are separated using the semicolon.
The second type of variables are the static variables which are described in line
6. Static variables are assigned a value at compile time, and every event which
is an instance of this event type can be assigned a value to this variable which
cannot be changed. These variables can, for instance, be used to specify where
the created event needs to be published by including values which specify the
point in the flow of the program. The static code block is specified with the
static keyword followed by a colon. Within this code block variables can be
defined identical to dynamic variables.
The code blocks, in which static and dynamic variables are described, can be
created in any order, occur multiple times and can be omitted altogether.

5.1.2 Events

Events in EPAs indicate a state change. To design the event mechanism, a user
will have to be able to identify where in the base program an event occurs and
what the properties of the event are.

43

CHAPTER 5 ROEL TER MAAT(S0219681)

With respect to language extensibility, the EventReactor2.0 framework offers
a dedicated language in which users can define new events similarly to the ex-
tensible event types. This is facilitates an extensible set of events, each of which
can be used for specific state changes.
To fulfill the modularity requirement, each event needs to be defined within
its own separate module. Similar to the event types, this facilitates defining a
library of reusable events and requires the event to be name, ensuring they can
be referenced and instantiated in the base program.
To fulfill the composability requirement, events are instance of event types.
Events themselves only serve one purpose, which is to indicate a state change.
For this reason further composition of events is not desired.

Listing 5.2 shows the syntax in which events can be defined.

1 event <name> i n s t a n c e o f <eventtype> {
2 <name> : <value >;
3 }

Listing 5.2: Event Syntax

Line 1 shows the beginning of the code block in which the event is specified. The
code block is started with the event keyword and is followed by the unique name
of the event. An event is an instance of an event type which is indicated by the
instanceof keyword followed by a reference to an existing event type. Enclosed
in curly brackets static variable, which have been defined in a parent event type,
can be assigned a value as can be seen in line 2. A variable is assigned a value
by referencing the name of the static variable, which has been defined in the
event types this event is an instance off, or one of its parent types, followed by
a colon and the value it must be assigned. Multiple variables can be assigned a
value and the statements are separated using semicolons. A variable can only
be assigned a value once per event.

5.2 Implementation Details

To use the defined events and event types in the framework, they need to be
compiled and published in a base program. This section describes the necessary
steps to perform these actions.

5.2.1 Event Compilation

For this purpose an Xtext project is created, as can be seen in appendix A,
which implements the syntax and compilation of both the languages.

44

CHAPTER 5 ROEL TER MAAT(S0219681)

Each event and event type module is translated to a Java class. By doing
this the event type name or event name and the parent event type can be di-
rectly used as the class name and super class respectively.
Within the classes maps are maintained. In the event types, a map is used to
store the dynamic variables, while the static variables are stored in a map in
the event. In the constructor of the events, the variables are assigned the static
values. The map containing the dynamic variables is defined in the EventType
class ensuring every event and event type can reference it through inheritance.
For every dynamic variable, a getter and setter method is defined within the
event type.
To support easy access to the name of the event type or the event, an extra
method is added which returns the name of the object.

In the previous section four basic event types have been described. For it to
be used at compile time there need to be Java classes corresponding to these.
In Figure 5.1 the classes and the relation between them is defined. For each
dynamic variable in the event types a getter and setter method is created. In
the EventType class the method getEventTypeName is created which will return
the name of the eventTypeName variable. This variable is set in each sub type
to match the name of the event type.

In the base program, the created Xtext project must be added as a dependency,
to allow automatic compilation of the events and event types to Java classes.
At this point the user is able to instantiate the generated classes in the base
program and publish them to the Runtime manager as shown in Figure 4.2.

At compile time, the framework is informed of the defined event types and
events. The flow of this is shown in Figure 5.2. The files containing the specifi-
cations of the events and event types are passed to the EventHandler class. This
class uses the EventInterpreter to translate the file to an abstract syntax tree
connecting the events and event types using the existing functionalities of the
Xtext project. The abstract syntax tree is then transformed to a list of event
types and events which are stored locally. At this point, the repositories, which
have been defined by the user, can be added to the framework at which point
all the stored events and event types can be used to populate the repository
allowing tagging to take place.

5.2.2 Example

As an example, an event type is created as can be seen in Listing 5.3.

45

CHAPTER 5 ROEL TER MAAT(S0219681)

Figure 5.1: Event Type Class Diagram

1 import eventtype MethodBased
2

3 eventtype SensorEventType extends MethodBased{
4 dynamic :
5 Value : S t r ing ;
6 s t a t i c :
7 purpose : S t r ing ;
8 }

Listing 5.3: Example Event Type

This event type is used for all events which are produced when a sensor pro-
duce a value after which a method is executed. It is called SensorEventType
and extends the MethodBased event type, meaning it can contain information
of methods executed. Within the event type a dynamic variable called value is
created which can be assigned the sensed value at runtime. A static variable
called purpose is also used meaning all events which implement this event type
can be assigned a purpose which is used in all instances of that event.

In Listing 5.4 and example event is defined.

46

CHAPTER 5 ROEL TER MAAT(S0219681)

Figure 5.2: Event Handling in EventReactor 2.0

1 event TemperatureSensorEvent i n s t a n c e o f SensorEventType{
2 purpose : ”Used f o r temperature s e n s o r s ” ;
3 }

Listing 5.4: Example Event

In this example a new event is created, called TemperatureSensorEvent which
inherits from the previously defined SensorEventType event type example. In
the event the static variable purpose which has been defined in the event type
is assigned a value between the quotations. This value will be assigned to the
purpose variable in every TemperatureSensorEvent which is published, and can
not be changed.
The example event type and event can be compiled using the defined compi-
lation. Listing 5.5 shows the resulting class from the defined SensorEventType
event type.

47

CHAPTER 5 ROEL TER MAAT(S0219681)

1 pub l i c c l a s s SensorEventType extends MethodBased{
2

3 St r ing eventTypeName=”SensorEventType” ;
4

5 pub l i c S t r ing getValue () {
6 r e turn (S t r ing) dynamicAttr ibutes . get (”Value”) ;
7 }
8

9 pub l i c void setValue (S t r ing Value) {
10 dynamicAttr ibutes . put (”Value” , Value) ;
11 }
12 }

Listing 5.5: Compiled Event Type

The name of the class has been set as the name of the event type, which is
SensorEventType, and extends the MethodBased event type. The variable rep-
resenting the event type’s name is set to the name defined in the language. For
the dynamic variable Value, getters and setter are created. In those methods
the name of the variable is used to store or retrieve the value to or from the
map of dynamic variables.

The example event, also described in the previous section, can also be com-
piled. Listing 5.6 shows the resulting code.

1 pub l i c c l a s s TemperatureSensorEvent extends SensorEventType{
2

3 p r i v a t e s t a t i c f i n a l Map<Str ing , Str ing> a t t r i b u t e s = createMap
() ;

4

5 pub l i c s t a t i c Map<Str ing , Str ing> createMap () {
6 Map<Str ing , Str ing> a t t r i b u t e s = new HashMap<Str ing , Str ing

>() ;
7 a t t r i b u t e s . put (” purpose ” , ”Used f o r temperature s e n s o r s ”) ;
8 r e turn a t t r i b u t e s ;
9 }

10

11 pub l i c Map<Str ing , Str ing> g e t S t a t i c A t t r i b u t e s () {
12 r e turn a t t r i b u t e s ;
13 }
14

15 @Override
16 pub l i c S t r ing getEventName () {
17 r e turn ” TemperatureSensorEvent ” ;
18 }
19

20 }

Listing 5.6: Compiled Event

The class which is generated will have the same name as the defined event,
which is TemperatureSensorEvent, and inherits from the earlier compiled Sen-

48

CHAPTER 5 ROEL TER MAAT(S0219681)

sorEventType event type. In the class, the static attributes are defined in a map.
At instantiation the method createMap is executed which sets all the values as
defined in the event. A method is added which returns the static attributes.
Finally a method is defined which returns the name of the event.

With these compiled classes the class diagram is extended for this specific EPA
as can be seen in Figure 5.3.

Figure 5.3: Compiled Events Class Diagram

In the base program, events can now be published, and example of which can
be seen in Listing 5.7.

1 TemperatureSensorEvent event = new TemperatureSensorEvent () ;
2 event . setValue (t h i s . va lue }) ;
3 . . .
4 // Set a l l v a r i a b l e s .
5 t ry {
6 RuntimeManager . g e t In s tance () . publ ishEvent (event) ;
7 } catch (EventException e) {
8 e . pr intStackTrace () ;
9 } catch (FocalRuntimeException e) {

10 e . pr intStackTrace () ;
11 }

Listing 5.7: Event Publishing

49

CHAPTER 5 ROEL TER MAAT(S0219681)

In order to do this, the specific event, in this case the TemperatureSensorEvent,
needs to be instantiated at the point in the base program where the state is
changed. At this point, the dynamic variable Value can be set to the desired
value. Finally, the RuntimeManager is retrieved and the instance of the event
is published to it.

5.3 Future Work

In the current design of the event and event type mechanism, there are still
room for improvement for among others the extensibility and usability of the
concerns. In this section, some possible improvements are described and it is
discussed why this would be useful and how this could be implemented

5.3.1 Language Extensibility

There is currently no extensibility in the languages used to define events and
event types. In future implementations of the framework, it might be possible
to allow new language to be added to perform these actions.
To support this type of extensibility, the user must define compilers for these
languages, which will translate the events and event types to Java classes, and
be able to add these to the framework. In the event types and events language, it
must be indicated which language is used in order to select the correct compiler.

5.3.2 Usage of Java types

As described in the language design, the static and dynamic variables can cur-
rently only be defined using a subset of Java which only includes String and
Integers. Though this allows the framework to be tested to a certain extend,
when this framework is to be used for more comprehensive EPAs the use of all
Java types should be supported. In order to do this, the biggest obstacles are
firstly changing the XText project in which the syntax is defined to be aware of
and recognize all possible types, and secondly knowing which packages need to
be imported in the Java class to support the use of these types.

5.3.3 Automatic Publishing

As described in the compilation section, events need to be manually instantiated,
assigned the values and published to the runtime manager. In AO languages
such as AspectJ, the join points are automatically detected by the compiler in

50

CHAPTER 5 ROEL TER MAAT(S0219681)

the base program, allowing the Java byte code to be altered with a call to the
aspect. This reduces the amount of work for the users and means the base code
does not need to be changed in order to perform a reaction. For events which
inherit from the MethodBased event type, the same sort of mechanism could be
used, where the definition of the event can be used in order identify where in
the base code it needs to be published. This requires the dynamic attributes
of the MethodBased event type to become static, allowing them to be assigned
a value in the Specification of Events. The compiler will then have to traverse
the byte code of the base program to identify which method calls match the
attributes set in the event. At that point, the byte code can be changed and
an instantiation and publishing of the event can be inserted. To make it more
usable, the compiler should identify which dynamic attributes are required, and
will set them in the event allowing the flow of the base program to be altered.

5.3.4 Extensible Base Language

In the future, the framework should be able to be used for base programs written
in a different base language. To support this, the event types and events should
be compiled to one of a extensible set of base languages. To facilitate this,
the mechanism needs to be changed to contain a set of compilers which can
added or removed when necessary. When compiling, the correct compiler needs
to be selected based on the chose of the user, or automatically selected after
identifying the base program.

5.4 Summary

This chapter proposes an event language which allows user-defined events and
event types. The events can be instantiated and published at runtime to indicate
a state change. Even though the language can still be extended, an extensible
list of modularized and composable events and event types is offered to the user.

51

CHAPTER 5 ROEL TER MAAT(S0219681)

52

CHAPTER6
Specification of Event Modules

The EventReactor2.0 framework offers event modules as a means to modularity
implement event processing agents and event consumers. This chapter describes
the linguistic constructs which have been created to facilitate this. In section 6.1,
the language is designed and the syntax and semantics are explained. In sec-
tion 6.2, explains how extensible languages can be used to define the actions.
In section 6.3, the mechanism used to compile and executed the language is
described. In section 6.4, possible improvements to the language is described.
In section 6.5, the results are summarized.

6.1 Design

In the EventReactor2.0 framework, the event processing agent and event con-
sumer functionalities are defined in event modules. These modules are assigned
a unique name and have well-defined interfaces that encapsulate the function-
ality [19]. By providing this structure to implement the event processing agents
and event consumers, the modularity requirement is fulfilled.
To fulfill the language extensibility requirement, the section in which the func-
tionality is defined can be programmed using an extensible list of DSLs and
GPLs.
To fulfill the composability requirement, the event modules are not required to
explicitly refer to each other. Composition between event modules happens at
interface level and is done using the composition script explained in chapter 7.

With the requirements, a language was created. The syntax of this language is
shown in Listing 6.1.

53

CHAPTER 6 ROEL TER MAAT(S0219681)

1 eventmodule <name>{
2

3 input {
4 (<type> <name>) ∗ ;
5 }
6

7 l o c a l {
8 (<type> <name>) ∗ ;
9 }

10

11 f u n c t i o n a l i t y language=<language>{
12 <Statement>∗
13 }
14

15 output{
16 <type> <name>;
17 }
18

19 }

Listing 6.1: Specification of an Event Module

In line 1, the module keyword is used, together with a user-defined name, to
define the module and encapsulate the components. Within this module, four
separate sections are defined. In line 3, the input keyword is used to start the
code block in which the variables are defined which can be assigned a value in
the composition. In line 4, a variable can be defined by specifying an object
types followed by the name which will be used within this module. In the input,
zero or more variables can be defined and they are separated by the semicolon.
In line 7, the second code block is started indicated with the local keyword. It
contains a set of variables which are used to maintain a state. The variables are
defined in a similar fashion as the input, yet these variables can not be assigned
a value in the composition. In this section, zero or more variables can be defined
identical to the input. The local section is not required and can be omitted.
Variables which are defined in the input and local section must have a unique
name.

In line 11, a new code block is started using the he functionality keyword.
In this block, the event processing agent and event consumer functionalities can
be defined. To specify which compiler has to be used, a language needs to be
specified. This can be done after the language keyword, and should be available
in the extensible list of languages. The implementation of the functionality is
dependent on the language which is chosen, but a Java and Prolog example are
discussed after this.

The final code block, in line 15, starts with the output keyword and contains
the list of variables which will be produced as output. Within the section, a
list of variables is defined in the same way as the input and local sections. The
variables which are defined in the output must have already been created earlier

54

CHAPTER 6 ROEL TER MAAT(S0219681)

in the module.

6.2 Functionality Languages

The EventReactor2.0 framework currently support the Prolog and Java language
to implement the functionality section of event modules. In this section, the
syntax and semantics of these languages are explained, as well as possibilities
of adding more languages, where SQL is used as an example.

6.2.1 Prolog

In Prolog, rules can be defined to filter the events of interest based on the static
and/or dynamic attributes or events. First, a set of rules is explained which are
provided in the current version of EventReactor2.0:

isChildEvent(X, Y): Y is event type of X, or the event type of X is a di-
rect or indirect child type of Y

isChildType(X, Y): Y is the event type of X, or the event type of X is a
direct or indirect child type of Y

isEventWithName(X,Y): Y is the name of event X

isEventTypeWithName(X,Y): Y is the name of event type X

hasAttribute(X, Y): Y is name of attribute of event X or of direct or in-
direct event type of event X

hasDynamicAttributeWithValue(X, Y, Z): Y is the name of an attribute
of the direct of indirect event type of X, which has the value Z.

hasStaticAttributeWithValue(X, Y, Z): Y is the name of an attribute
of event X, which has the value Z.

hasStaticAttribute(X, Y): Y is the name of an attribute of event X.

hasDynamicAttribute(X, Y): Y is the name of an attribute of the direct
or indirect event type of event X

hasDynamicAttributeWithNameAndType(X, Y, Z): Y is the name of
an attribute of the direct or indirect even type of X, and is of the type Z.

55

CHAPTER 6 ROEL TER MAAT(S0219681)

To conform to the rules of a module, instead of returning a true or a false,
a event processing agent needs to return an event if the processing was success-
ful and null if it was unsuccessful.

1 <eventX> = {<eventY>|<ru le >(<var > , . . .) , (< ru le >(<var > , . . .)) ∗} ;

Listing 6.2: Prolog Filter Statement

Listing 6.2 shows the statement in which users can define the rule. In this state-
ment, eventX will be set to either eventY, when the query returns true, or null,
when it returns false. eventY contains an event to be checked with the query,
and can also be eventX. Due to the nature of Prolog, the event which is used
within the filter needs to start with a capital letter. Because the filter will be
translated to a rule in Prolog using the module name as the name of the rule,
the module can currently only be named starting with a lowercase letter.

1 eventmodule temperatureSensorEventFi l t e r {
2 input {
3 EventType Et ;
4 }
5

6 f u n c t i o n a l i t y language=pro log {
7 Et = {Et | isEventWithName (Et , ’ TemperatureSensorEvent ’) ,

hasDynamicAttributeWithValue (Ev , ’ value ’ , ’ 10 ’) } ;
8 }
9

10 output{
11 EventType Et ;
12 }
13 }

Listing 6.3: Prolog Example Module

Listing 6.3 shows a module using the Prolog language to filter events. In line
3, an input is defined which specifies that the modules receives the published
event. Within this module, the event will be referred to by the name given in the
input, in this case Et. For this module, a state does not need to be maintained,
meaning the local variables can be omitted
In line 6, the functionality is defined in the Prolog language. Line 7 contains
the one Prolog statement, which checks whether the published event is of the
type TemperatureSensorEvent, and whether the value attribute, defined within
the event, has the value 10. If this is the case, the variable Et maintains its
value, otherwise it is assigned null. Line 10 start the definition of the output in
which the event type Et is produced as output.

56

CHAPTER 6 ROEL TER MAAT(S0219681)

6.2.2 Java

Along with Prolog, the EventReactor2.0 framework currently also support the
Java language to implement the functionality of event modules.
Because it is a GPL, it is able to perform all types of consumer actions and
because of that is sufficient for the first version of this framework.
Listing 6.4 shows the syntax of the functionality using the Java language.

1 ‘ ‘ (< java statement > ;)∗ ‘ ‘

Listing 6.4: Java Functionality Syntax

What is noticeable is the need for the double grave accent(``) delimiters. This
is required, because the Xtext editor and compiler need to be able to differen-
tiate between the base module language and the Java language. This solution
does not influence the functionality or performance, but should be improved at
a later time.
Regular Java statements can be used between the delimiters.

To improve the usability of the languages used in the functionality, import
statements have been added to the base event module. This allows objects to
be used within the functionality without having to reference the entire package
name every time.

1 import <packagename>;

Listing 6.5: Import Syntax

Listing 6.5 shows the syntax which is identical to the import statements in Java
classes.

57

CHAPTER 6 ROEL TER MAAT(S0219681)

1 eventmodule tempSensorReaction{
2 input {
3 EventType Et ;
4 St r ing name ;
5 }
6

7 l o c a l {
8 i n t couter ;
9 }

10

11 f u n c t i o n a l i t y language=java {
12 ‘
13 counter++;
14 System . out . p r i n t l n (” Sensor ”+ name +” measured value ’10 ’ ”)

;
15 System . out . p r i n t l n (” This va lue has been measured ”+counter

+” times ”) ;
16 ‘ ;
17 }
18

19 output{
20 }
21

22 }

Listing 6.6: Example Java Module

Listing 6.6 shows an example event module which is implemented using the
Java language. In this case the module receives as an input the event, which
is named Et, and the String named name which will contain the name of the
reaction. For this module, a state is maintained counting the amount of times
this reaction has been executed. This is done by adding the local section in
which the integer counter is defined. In the part functionality, specified with
the java language name, the counter is raised by one every time it is executed.
After this, two lines are printed informing the user about the action which has
just occurred.

6.2.3 SQL

In the current implementation of the EventReactor2.0 framework, both Prolog
and Java are supported, but new languages can be added. In this section, it is
explained how the SQL language can be used.

1 <event> = <SQL Statement>

Listing 6.7: SQL Functionality Syntax

Listing 6.7 shows an example syntax should be able to perform the basic actions.
When an event gets published it must be stored in a database. When the event
module is executed the defined query is executed to see whether or not an event

58

CHAPTER 6 ROEL TER MAAT(S0219681)

in the database matches.
The SQL statement has been abbreviated for this thesis, since the syntax is of
no real importance for this thesis and can become elaborate.

1 eventmodule temperatureSensorEventFi l t e r {
2 input {
3 EventType Et ;
4 }
5

6 f u n c t i o n a l i t y language=s q l {
7 Et = SELECT ∗ FROM Events WHERE Events . name=’

TemperatureSensorEvent ’ AND DynamicValues . va lue = ’10 ’ ;
8 }
9

10 output{
11 EventType Et ;
12 }
13 }

Listing 6.8: Example SQL Module

Listing 6.8 shows an example module using the SQL language, which should
perform the same action as the previously defined example Prolog module, as
can be seen in Listing 6.3.

6.3 Implementation Details

The EventReactor2.0 framework must be provided the event modules in order
to compile them and use them at runtime. In this section, the compilation of
both the base module and the functionality languages is discussed and how the
framework works internally to make that happen. It also contains a description
how new functionality languages can be added to the framework.

6.3.1 Event Module Compiler

At compile time, the framework must be provided the event modules defined by
the users. Figure 6.1 shows the specific flow of the framework to support such
actions and is a more detailed description of the abstract design in Figure 4.1.
In this diagram, the Xtext and Java compiler functionalities have been abbrevi-
ated to avoid clutter, since these require a fair amount of method calls and the
names are not very descriptive.
The event modules are added to the framework by creating an instance of the
EventModuleCompiler class and passing it all the files containing event module
specifications. After collecting all the event modules, the Compile method is
called. The base module Xtext project, shown in Appendix B, is used for each

59

CHAPTER 6 ROEL TER MAAT(S0219681)

Figure 6.1: Module Compilation Process

60

CHAPTER 6 ROEL TER MAAT(S0219681)

event module to verify and interpret the basic components of the event module.
At this point, the name used to identify the language of the functionality is
retrieved and is used to select the correct Xtext project. Using the compiler
of the correct language specific compiler, the event module is compiled to Java
code.

To avoid cluttering the base project, the Java classes, representing the event
modules, are directly compiled to Java byte code using the Java compiler. To
support events to be tagged at compile time, the classes are instantiated after
compilation. Finally, the instances of all event modules are stored on the file
system. This avoids the need to instantiate the classes again at runtime. At
runtime, these instances are retrieved from the file system at which point they
can be executed.

As shown in chapter 4, a repositories can be provided allowing the extensi-
ble functionality languages to query their specific data store. As mentioned in
chapter 5, the events and event types are stored in these repositories. For the
event types, the name, super event type, and both the static and dynamic vari-
ables names and their types are stored. For the events, the name, the name of
the event type it is an instance of, and the static variable names and their values
are stored. At this point, the queries defined in the event modules can be used
to select events of interest based on their static properties, or tagging. These
tagged events are stored on the file system and can be retrieved at runtime.
By performing the query at compile time and tagging the events of interest,
the execution of these same queries can be avoided at runtime increasing the
performance.
Because the tagging of events only uses the static structure of the events and
event types, queries which rely on the dynamic attributes of an event or event
type can not be used for tagging. For this case, tags can be marked as either
static or dynamic. Static tags are used to indicate the query only uses the static
structure of an event when it is tagged, while dynamic tags indicate that the
static parts of the event match the query, yet still require the dynamic variables
to be checked at runtime.

When an event is published to the runtime manager, it is added to the rele-
vant repositories. After this, the event modules are executed according to the
composition script.

6.3.2 Generated and Base Classes

In the EventReactor2.0 framework, event modules are compiled to Java classes.
To support this, an abstract super-class was created called Module. In Fig-
ure 6.2, a class diagram is shown of the module and the created sub-class. The
abstract class is responsible for three variables:

61

CHAPTER 6 ROEL TER MAAT(S0219681)

Figure 6.2: Module Class Diagram

• input is a map containing the name of all the input variables and the
types they have been assigned. This is used for type matching when
binding input and output.

• The name is the name of the module assigned as defined earlier in this
chapter.

• The instanceName is the name given to the exact instance of this in-
stance. This is discussed further in the next chapter.

Besides getters and setters for the variables, there have been three abstract
methods which are defined:

• The set method takes as an input the name of a variable, which has to
be defined in the input of a module, and the value which it has to be
assigned. In the method the names of the variables maintained in the
class are compared to the given name, when the correct variable is found
the value is assigned.

• The functionality method described the actions, defined in the function-
ality section of the module, in Java.

• The getOutput method collects the values of all the variables which are
defined in the output section of the module and returns them in the form
of map containing the variables names as well for reference.

62

CHAPTER 6 ROEL TER MAAT(S0219681)

Finally, a deepCopy method is provided which creates an identical copy of the
instance and all the instances it references, to make sure the copied instance
does not reference the exact same variables. This method is required, because
instances of the compiled event modules are stored on the file system, and are
created of the compiled event modules

When compiling the module, first the base compiler creates a Java class which
is named identical to the name of the module and inherits from the abstract
Module class. For each of the variables defined in both the input and the local
section, a private variable gets created with the defined name and type. The set
methods are implemented by creating code comparing all the input variables
names to the provided name and setting the value when they match. In the
Output method, all the variables defined in the output are added to a map with
as a key the name of the variable, which is returned.

For the repositories, the RepositoryInterface is provided which must be im-
plemented. For this repository, a few basic methods need to be implemented in
order to support querying.

• The addEventType and addEvent methods, as the name suggests, add
the basic structure of both events and event types to the database. This
allows them to be used for tagging purposes.

• The resetDatabase method removes the temporarily added event which
was published, and makes sure the repository can be used for the next
published event without interference.

• The findEvents mis used to actually perform the query and must return
either the found query, or null.

• The tagEvents takes as an input a query and uses the earlier store events
and event types to tag events which currently match the query. Secondly,
it can indicates whether or not the tag was static or dynamic. When it
is statically tagged, the query does not need to be executed again when
a matching event is passed. This method is not required, but offers some
extra functionalities.

• The backup method stores the current repository on the file system, to
allow tagging to take place at compile time and still support the use of
the repository at run time.

• The restoreDatabase retrieves the repository from the file system and
restores it for use at run time.

63

CHAPTER 6 ROEL TER MAAT(S0219681)

6.3.3 Compilation of Functionality Languages

For the functionality section, a compiler has been created for both the Java and
Prolog implementation in their respective Xtext project.

For the Prolog language, a repository is created using the tuProlog [x] engine. For
this repository, two files are created implementing two sets of the rules defined
in section 6.2. In the first set, the rules are directly implemented as defined,
while the second set the dynamic variables are ignored. The latter is used for
tagging events while the former is used when executing a query at runtime.
At compile time, the repository is provided with the user defined events and
event types. The repository creates a file and populates it with the static infor-
mation of these event types and events. For the event type, the following facts
are used, with examples given the events and event types specified in chapter 5:

• eventtype(X): Where X is the name of the event type, which results in
eventtype(’SensorEventType’).

• dynamicattribute(X, Y, Z): Where X is the name of the dynamic vari-
able, Y is the type of the variable, and Z is the name of the event type.
This results in dynamicattribute(’Value’, ’String’, ’SensorEvent-
Type’).

• staticattribute(X, Y, Z): Where X is the name of the dynamic variable,
Y is the type of the variable, and Z is the name of the event type. This
results in staticattribute(’purpose’, ’String’, ’SensorEventType’).

• supertype(X, Y): Where X is the parent event type and Y is the child
event type, which results in supertype(’MethodBased’, ’SensorEvent-
Type’)

For the event, the following facts are used:

• event(X): Where X is the name of the event, resulting in
event(’TemperatureSensorEvent’).

• type(X, Y): Where X is the event type of which the event Y is an in-
stance. This results in
type(’SensorEventType’,’TemperatureSensorEvent’).

• attribute(X, Y, Z): Where X is the variable name of the static variable,
Y is the value assigned to it, and Z is the name of the event. This results
in attribute(’purpose’, ’Used for temperature sensors’, ’Temper-
atureSensorEvent’).

64

CHAPTER 6 ROEL TER MAAT(S0219681)

When compiling the Prolog event modules, the query defined by the user is
verified by the Prolog Xtext project from appendix C. In the constructor of the
generated Java class, the defined query is added as a new rule to the repository,
using the event module name as the rule name. When the rule is added, the
repository is instructed to tag all relevant events. In the repository, the newly
added rules and the previously stored events and event types are used to find
events of interest. These are tagged in the repository using the tag(X, Y, Z)
fact, where X is the name of the rule, Y is the name of the event which is tagged,
and Z indicates whether or not the tag is dynamic.

In the functionality method, code is added which calls the repository using
the published event and the name of the event module. In the repository, the
name of the event module is used to retrieve all the events tagged at compile
time, which are compared to the published event. If the types match, two op-
tions exists: either the tag is static and the event, which is provided, is returned.
If the tag is dynamic, the dynamic attributes of the event are stored in a file
using the following facts:

• attribute(X, Y, Z): Where X is the name of the attribute, Y is the value
assigned to the variable, and Z is the name of the Event

• type(X, Y, Z): Where X is the name of the variable, Y is the type of
the value and Z is the name of the event.

Using these facts with the already defined static facts of the events and event
types, and the set of dynamic rules, the query is executed again. If the pub-
lished event is returned when performing this query, this event is returned to
the module. If nothing is returned, or if no tag was found with the query, null
is returned.

The Java Xtext project, shown in appendix D, contains a similar compiler.
In this compiler, the code defined in the functionality of a Java event type is
directly copied to the functionality method of the Java class.

6.3.4 Extending the Functionality Language

To add new functionality languages, the user must create a new Xtext project
in order to define the syntax, checker and compiler of the language. In the new
project, the Xtext project of the base module, defined in appendix B, must be
added as a dependency in the plug-in. Secondly, the syntax must be extended
with the syntax of the base module after which the first rule must be defined
as a reference to the first rule of the base module syntax. At this point, the
syntaxes are identical and in the languageStatement rule, the syntax of the new

65

CHAPTER 6 ROEL TER MAAT(S0219681)

language can be implemented.

In the compiler, the compiler of the base module is extended after which the
abstract methods of the base module are implemented in the new compiler. The
compiled code can be added to both the constructor and the functionality of
the class.

When the compiler has been defined, the framework needs to be notified of
the new language. In the EventModuleCompiler class, a compiler map is de-
fined mapping the name of the language, which must match the name defined
in the functionality section of the module, to the specific compiler. Secondly,
the injector map is defined mapping the language to a specific injector of the
language, allowing code to be inserted. Both these maps need to be extended
to include the compiler and injector of the new Xtext project.

For some language, new repositories are required which can be added by im-
plementing the RepositoryInterface. At compile time, the repository must be
provided to the framework to be used as described earlier in the internal design.

6.4 Future Work

The designed modules are currently able to perform all the required actions,
yet should be improved for the future version to increase usability and remove
limitations. The following list describes some of the improvements that can be
implemented.

• The syntax used to defined the module still faces some limitations due to
Xtext or the mechanisms behind it. Examples of this are the requirement
of delimiters when using the Java language, or the requirement of Prolog
modules having to start with a lower case letter. The former means a
change in the Xtext compiler while the latter requires the mechanism
behind which could translate every modules first letter to lower case.

• Similar to the events, described in the previous chapter, the types used to
define variables is currently restricted to a subset of Java. To increase the
usability all Java types should be usable when defining the variables.

• The event type object used as input type can be extended to increase
functionality. By using the events or event types defined by the user,
filtering can already take place at the input. If, for instance, the user
specified that as an input the temperatureSensorFilter is required, only
those specific events can be used as input for that module.

66

CHAPTER 6 ROEL TER MAAT(S0219681)

6.5 Summary

The language designed in this chapter has been specifically created to increase
modularity and language extensibility. The modularity is increased by having
every event consumer and event processing agent defined in a separate module
without any knowledge of each other. The module, which is named, contains
both an input and an output allowing them to be composed to create more com-
plex functionalities. The functionality within a module can be defined using an
extensible set of GPLs and DSLs which increases the language extensibility.
There are currently two languages implemented for the functionality, with Pro-
log for event processing agents, and Java for both event processing agents and
event consumers. There are still some parts of the design which can be improved.
These parts are discussed in this chapter, but these must be implemented in a
later version.

67

CHAPTER 6 ROEL TER MAAT(S0219681)

68

CHAPTER7
Specification of Compositions

In the EventReactor2.0 framework, the event modules can be composed allow-
ing the construction of the event processing network. The framework offers a
dedicated language to define the composition. In section 7.1, this language is
designed and the syntax and semantics are explained. In section 7.2, describe
the details of the framework and explains what actions are performed in or-
der to compose the event modules. In section 7.3, possible improvements are
discussed. In section 7.4, the results are summarized.

7.1 Design

Event modules provide the functionality to process the events of interest. Event
modules can be composed with each other, allowing users to construct an event
processing network.
The composition between event modules takes place at the level of interfaces.
This is done by binding the input and output interface, provided by the event
modules, to each other.
When binding the input and the output interface, the EventReactor2.0 frame-
work allows for variables to be ignored on both ends. This allows event modules
with varying amount of variables in their interface to be bound.

In the event modules, composition constraints can be defined and modular-
ized. This facilitates implementing the constraints in the language suitable for
each specific problem, and flexibly changing the constraints.
The framework also provides a mechanism to influence the order of execution
of event modules when two or more need to be processed on a shared event.
Event modules can be instantiated multiple times, with each of the instances
explicitly configurable. This is a concept adopted from the OO paradigm and
allows each instance to maintain its own state, increasing the reusability of the
event modules.

69

CHAPTER 7 ROEL TER MAAT(S0219681)

Listing 7.1 shows the language which can be used to specify the composition of
event modules.

1 modules {
2 (< in s tance−name> : <module−name> ;)∗
3 }
4

5 b ind ings {
6 bind ((< in s tance−name1> ,) ? <in s tance−name2>){
7 ((<value >|<var i ab l e−name>) −> <var i ab l e−name> ;)∗
8 }
9 }

10

11 orde r ing {
12 (< in s tance−name> ;)∗
13 }

Listing 7.1: Composition Specification Language

In line 1, the instantiation code block is started using the modules keyword.
Enclosed in curly brackets, the various instances can be defined. Line 2 shows
how instances can be created. First, a unique instance name is defined followed
by a colon and the name of the module which is to be instantiated. Event mod-
ules can be instantiated multiple times and each instantiation is separated by a
semicolon.
Line 5-9 shows the specification of binding for event modules. In this code
block, multiple bindings can be defined, each of which contained within its own
code block. Line 6 shows the start of this code block using the bind keyword,
which is followed by brackets in which one or two event modules instances can
be defined, if necessary, separated by a comma. If one event module instance is
defined, the static values can be assigned to the selected instance. If two event
modules instances are defined, the two instances are connected for the event
processing network.
In line 7, the binding details are defined, where input variables of an event
module can be bound to either a value or an output variables of another event
module. A static binding is created by defining the static value followed by an
arrow (− >) and the name of the input variable which is assigned the value.
For the dynamic binding the syntax is similar, but instead of the static value
an output variable has to be referenced. Multiple bindings can be defined and
must be separated by a semicolon. Input variables of an event modules van be
bound multiple times, but only the binding defined last will be used.

In line 11, a code block is created starting with the ordering keyword, which is
used to specify the order of execution. Enclosed in curly brackets, instances of
event modules can be referenced separated by semicolons. The instance which
is referenced earliest will be performed earlier when multiple instance from the
list have to be executed at the same time. If multiple modules have to be ex-
ecuted and none of them is mentioned in the ordering, the order in which the
bindings are defined are used to set the order. If only a subset of the event

70

CHAPTER 7 ROEL TER MAAT(S0219681)

modules, which have to be executed, are set in the ordering, those mentioned
will be executed first using the order set, after which the rest is executed in the
order in which the bindings are declared.

Listing 7.2 shows an example composition script for the event modules defined
in Listings 6.6 and 6.3.

1 modules{
2 tempFi l te r1 : t emperatureSensorEventFi l t e r ;
3 tempReaction1 : tempSensorReaction ;
4 tempReaction2 : tempSensorReaction ;
5 }
6

7 b ind ings {
8 bind (tempReaction1) {
9 ” Reaction 1”−>name ;

10 }
11

12 bind (tempReaction2) {
13 ” Reaction 2”−>name
14 }
15

16 bind (tempFi lter1 , tempReaction1) {
17 Et−>Et ;
18 }
19

20 bind (tempFi lter1 , tempReaction2) {
21 Et−>Et ;
22 }
23 }
24

25 orde r ing {
26 tempReaction2 ;
27 tempReaction1 ;
28 }

Listing 7.2: Example Composition Language

In line 2 of Listing 7.2, one instance of the temperatureSensorEventFilter event
module is created and is named tempFilter1. In line 3 and 4, two instances of
the tempSensorReaction event modules are created, which are named tempRe-
action1 and tempReaction2.
In line 8 and 12, two static bindings are defined, one for each of the tempSensor-
Reaction instances, in which the names are set. In line 16 and line 20, bindings
are defined where the temperatureSensorEventFilter instance is bound to both
the tempSensorReaction instances, in both cases binding the Et output variable
to the Et input variable.
In line 26, the order of execution is specified to ensure the tempReaction2 in-
stance is performed before the tempReaction1 instance. If this ordering was
removed, the order in which they are bound is used to define order of execution,
which in this case would be the reverse of the specified order.

71

CHAPTER 7 ROEL TER MAAT(S0219681)

Using the example composition script, 3 instances are created at the start of
execution. In the tempReaction1 and tempReaction2 instances, the name input
variable are set as ”Reaction 1” and ”Reaction 2” respectively.
At a given point in time, the base program publishes a TemperatureSensorEvent
with the value of value set at 10. At this point the unbound modules are se-
lected, which is the tempFilter1 instance. Using the event, the functionality
is executed. After this, the input variable Et, of both bound modules tem-
pReaction1 and tempReaction2, is assigned the value the output variable Et
provided by the tempFilter1. As specified in the ordering, first the functionality
of tempReaction2 is executed, after which the functionality of tempReaction1 is
executed. This results in the output shown in Listing 7.3.

1 Sensor Reaction 2 measured value ‘10 ’
2 The value has been measured 1 t imes
3 Sensor Reaction 1 measured value ‘10 ’
4 The value has been measured 1 t imes

Listing 7.3: Output of Composition Example

If the same event type is published again the same output is produced, safe
for the number representing the amount of times the functionality is executed,
which will increase by 1 every time. If any other type of event, or the Tempera-
tureSensorEvent with a different value for the input variable value is published,
the filter does not succeed and none of the reactions are performed.

7.2 Implementation Details

To compose the event modules at runtime, the framework needs to interpret
the composition script, perform the functionalities of the event modules in the
correct order, and bind the set the input of event modules using the output of
another event module.

At runtime, two actions are used to compose the event modules. The first
is performed at the start of execution, where the composition script is provided
to the framework. Secondly, and more often, an event is published which trig-
gers the framework to execute the event modules. Both of these actions are
currently handled by the RuntimeManager as explained in Figure 4.2.

For the first action, which can be seen in Figure 7.1, the RuntimeManager
is instantiated which in instantiates the ModuleManager. In the constructor of
the ModuleManager, the instances of the event modules, which were stored on
the file system as described in section 6.3, are retrieved.
At this point, the user supplies the composition specifications to the RuntimeM-
anager. Using the Xtext project, which can be seen in appendix E, an abstract
syntax tree is generated.

72

CHAPTER 7 ROEL TER MAAT(S0219681)

Figure 7.1: Initializing Composition

73

CHAPTER 7 ROEL TER MAAT(S0219681)

By examining the abstract syntax tree, the three sections are retrieved. First,
the instantiation specifications are retrieved. In a map, both the name of the
instance and the name of the event module are stored.
For each binding specification, a Binding object is instantiated and stored in
a list. In the binding object, the target is assigned the name of the instance
who’s input will be bound. The source, if specifying a dynamic binding, will be
assigned the name of the instance whos output will be bound to an input. When
a static binding is specified, the static bindings are set in the object, which is
a map containing variable names and the value assigned to them. When a dy-
namic binding is specified, the dynamic attributes are set in the object, which
is a map containing names of the output variables of the source instance and
the names of the input variables of the target instance.
The orderings are finally retrieved from the abstract syntax tree and stored in
a list, ensuring the order is maintained.

The maps and lists created from the composition specification is sent to the
ModuleManager. Based on the list of instantiations, each module which needs
to be instantiated is retrieved from the earlier defined list of event modules af-
ter which the deepCopy method is called, creating a new instance of this event
module. In each event module instance the name is set as specified.
After all specified event modules are instantiated, the bindings are evaluated
to search for all unbound modules. This is done by examining all bindings in
search for event module instances which are not set as the target in any dynamic
binding. The unbound modules are stored in a list.

Using the static bindings, each instance is assigned the specified valued.

The process at runtime, which can been seen in Figure 7.2, allows the base
program to instantiate and publish the events as defined in section 5.2. The
RuntimeManager receives the event and calls the ModuleManager to handle
the published event. In the ModuleManager, all unbound modules are retrieved.
The input of each event module is analyzed in search for the event type input.
When this value is selected, it is set as the published event and the functional-
ity is executed. After finalizing the functionality, the output is retrieved from
the event module and from the list of Binding objects all instances are selected
which have the instance which was just executed as its source. Using the dy-
namic binding specification from the Binding object, the output is bound to
the input of the bound modules, after which they are executed. This process
continues until no more bound modules exist, after which the flow is returned
to the base program.

74

CHAPTER 7 ROEL TER MAAT(S0219681)

Figure 7.2: Event Publishing and Event Module Execution

7.3 Future Work

The binding language is fairly straightforward and should be able to perform
all the required actions. In the future, however, it may be logical to move the
mechanism, which interprets the composition language, instantiates the modules
and stores all the values, to the compile time phase. This would mean a larger
amount of data needing to be stored on the file system, but would reduce the
need to perform all these actions every time the program is executed, which
would in turn improve the performance.

7.4 Summary

In this chapter, a language and mechanism was created to specify the com-
position between modules. The modules which have been created, using the
language defined in the previous chapter, can be instantiated and bound to-

75

CHAPTER 7 ROEL TER MAAT(S0219681)

gether using the input and the output of those modules. The binding happens
at instance level to ensure full control over the composition. This supports
a free homogeneous and heterogeneous composition between the modules. The
explicit binding of the input and output increases the reusability of the modules.
Finally, ordering is supported to have direct control over the order of execution
and ensuring that the desired actions are performed at the point in the flow of
the program.

76

CHAPTER8
Evaluation of EventReactor2.0

In this thesis, it is claimed that the linguistic constructs offer by EventReac-
tor2.0 creates an increased modularity and composability when creating EPAs.
Furthermore, language extensibility is added, which supports the creation of
EPAs using languages best suited for the problems they try to solve. In this
chapter the added value of EventReactor2.0 is illustrated by implementing a set
of evolution scenarios, and by discussing the details of the language extensibil-
ity.
In section 8.1, the evolution scenarios, described in chapter 3, are implemented
and evaluated. In section 8.2, the language extensibility of EventReactor2.0 is
discussed. In section 8.3 the results are summed up and a conclusion is drawn
about whether or not the goals are reached.

8.1 Evolution of Modularity and Composability

In section 3.2, multiple evolution scenarios are created for the case study. These
evolution scenarios are implemented for AspectJ and discussed for other paradigms
to evaluate the modularity and composability of existing languages and frame-
works. To illustrate that EventReactor2.0 has an improved modularity and
composability, these evolution scenarios are also implemented for the EventRe-
actor2.0 framework and the same metrics are examined.

8.1.1 Base Scenario

In EventReactor2.0, the implementation of the base scenario is fairly similar
to design of the event processing network shown in Figure 2.1. First, an event
module is defined, shown in Listing 8.1, which must filter for the store method
call by a temperature sensors. For these scenarios, instances of the MethodBased
event type are used, called MethodCallEvent. The event is published when a

77

CHAPTER 8 ROEL TER MAAT(S0219681)

TemperatureSensor class calls the store method.

1 eventmodule temperatureEventFi l t e r {
2 input {
3 EventType Et ;
4 }
5

6 f u n c t i o n a l i t y language=pro log {
7 EventType t = {Et | hasDynamicAttributeWithNameAndType (Ev , ’

pub l i she r ’ , ’ TemperatureSensor ’) , hasDynamicAttributeWithValue (
Ev , ’ methodname ’ , ’ s to re ’) } ;

8 }
9

10 output{
11 EventType t ;
12 }
13 }

Listing 8.1: Base Scenario Event Processing Agent

A second event module is created, shown in Listing 8.2, which performs the
publishing to the weather station.

1 eventmodule outs ideTemperatureReact ion {
2 input {
3 EventType Et ;
4 }
5

6 f u n c t i o n a l i t y language=java {
7 ‘
8 // perform act i on
9 ‘ ;

10 }
11

12 output{
13 }
14 }

Listing 8.2: Base Scenario Event Consumer

In the composition script, shown in Listing 8.3, one instance of each event
module is created after which they are bound together.

78

CHAPTER 8 ROEL TER MAAT(S0219681)

1 modules{
2 t e f 1 : t emperatureEventFi l t e r ;
3 t r2 : outs ideTemperatureReact ion ;
4 }
5

6 b ind ings {
7 bind (te f1 , t r2) {
8 t−>Et ;
9 }

10 }
11

12 orde r ing { }

Listing 8.3: Base Scenario Composition Script

8.1.2 Evolution Scenario 1:

In the first scenario, an extra reaction has to be added which needs to be per-
formed for all sensors located indoors, while the reaction of the base scenario
only needs to be performed for the outdoor sensors.
To do this, an extra filter is created which will filter between inside and out-
side sensors. Using the parameterization of event modules, the filter shown in
Listing 8.4 can be used to filter for both situations.

1 eventmodule t empe ra tu r e IdF i l t e r {
2 input {
3 EventType Et ;
4 i n t min ;
5 i n t max ;
6 }
7

8 f u n c t i o n a l i t y language=java {
9 ‘

10 MethodCallEvent event = (MethodCallEvent) Et ;
11 i n t id = ((TemperatureSensor) Et . g e tPub l i she r ()) . ge t Id ()

;
12 i f (id< min | | id>max) {
13 Et=n u l l ;
14 }
15 ‘ ;
16 }
17

18 output{
19 EventType Et ;
20 }
21

22 }

Listing 8.4: Event Module Filtering on Sensor ID’s

Using the composition script, two instances are created of this event module and
assigned a minimum and maximum value as can been seen in Listing 8.5. In

79

CHAPTER 8 ROEL TER MAAT(S0219681)

this case, tif1 will filter for all IDs between one and five, i.e. the inside sensors,
while tif2 filters between six and ten, i.e. the outside sensors.
A new event module to implement the second reaction, called insideReaction, is
created similar to the reaction defined in base scenario. Secondly the previously
defined reaction has been renamed outsideReaction to improve the understand-
ability for this scenario. The latter action is not required and therefore not
taken into the metrics.

Listing 8.5 shows the complete composition script. Instead of the event fil-
ter being bound to the reaction directly, it is now bound to both the indoor and
outdoor filter module. Both of these modules are in their turn bound to their
respective reaction.

1 modules{
2 t e f 1 : t emperatureEventFi l t e r ;
3

4 t i f 1 : t empe ra tu r e IdF i l t e r ;
5 t i f 2 : t empe ra tu r e IdF i l t e r ;
6

7 t r1 : ins ideTemperatureReact ion ;
8 t r2 : outs ideTemperatureReact ion ;
9

10 }
11

12 b ind ings {
13 bind (t i f 1) {
14 1−>min ;
15 5−>max ;
16 }
17

18 bind (t i f 2) {
19 6−>min ;
20 10−>max ;
21 }
22

23 bind (te f1 , t i f 1) {
24 t−>Et ;
25 }
26

27 bind (te f1 , t i f 2) {
28 t−>Et ;
29 }
30

31 bind (t i f 1 , t r1) {
32 Et−>Et ;
33 }
34

35 bind (t i f 2 , t r2) {
36 Et−>Et ;
37 }
38 }

Listing 8.5: Composition Script Using Indoor and Outdoor Filters

80

CHAPTER 8 ROEL TER MAAT(S0219681)

In the following table, the measured values are shown combined with the values
of the AspectJ implementation.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

EventReactor2.0 2 0 0 2 0 0
AspectJ 3 0 2 0 0 0

Because EventReactor2.0 allows named modules, which can be instantiated mul-
tiple times, and parametrized interfaces, the event module used to filter between
the sensors can be used for both situations. AspectJ lacks this and needs two
modules to define both filters. If parts of an AspectJ module needs to be reused,
which is in this case the pointcut, the module needed to be redefined. Because
the binding between a pointcut and an advice is tangled within an advice,
binding an advice to a different pointcut requires the advice to be changed.
In EventReactor2.0 the composition script can change the binding at interface
level without modifying a module. The same tangling exists for AspectJ when
composing pointcuts. In AspectJ, extending one pointcut with, in this case, ID
filtering requires the second pointcut to reference the first one in its definition.
In EventReactor2.0, the binding script can be used to perform this same actions
without the tangling.

8.1.3 Evolution Scenario 2:

For the second evolution scenario, average temperatures need to be calculated
and published for specific areas, and temperatures need to be monitored over a
multiple of areas.
To implement this evolution using the EventReactor2.0 framework, the event
module used to filter sensors in an area can actually be implemented by using
the filter created in the previous evolution scenario. This way, only instantiation
is required to define areas as can be seen in Listing 8.6.

81

CHAPTER 8 ROEL TER MAAT(S0219681)

1 modules{
2 area1 : t empera tu r e IdF i l t e r ;
3 area2 : t empera tu r e IdF i l t e r ;
4 area3 : t empera tu r e IdF i l t e r ;
5 }
6

7 b ind ings {
8 bind (area1) {
9 1−>min ;

10 2−>max ;
11 }
12

13 bind (area2) {
14 3−>min ;
15 4−>max ;
16 }
17

18 bind (area1) {
19 5−>min ;
20 5−>max ;
21 }
22 }

Listing 8.6: Composition Script for Area Filters

Four event modules have been defined. aggregateReaction calculates and main-
tains the aggregate temperature, aggregatePublishing is publishes the aggregate
value to the interested party, monitorFilter monitors the values of the radiators
and is successful when the maximum temperature has been reached multiple
times, and RadiatorReaction contacts maintenance.

With the areas the two different functionalities are created by composing the
correct event modules together. In Listing 8.7 each area is composed with their
specific instance of the aggregateReaction module. Each of these module is then
bound to the same instance of the aggregatePublishing module.

82

CHAPTER 8 ROEL TER MAAT(S0219681)

1 modules{
2 aggr1 : aggregateReact ion ;
3 aggr2 : aggregateReact ion ;
4 aggr3 : aggregateReact ion ;
5

6 aggrPubl : aggregatePub l i sh ing ;
7 }
8

9 b ind ings {
10 bind (area1 , aggr1) {
11 Et−>et ;
12 }
13

14 bind (area2 , aggr2) {
15 Et−>et ;
16 }
17

18 bind (area3 , aggr3) {
19 Et−>et ;
20 }
21

22 bind (aggr1 , aggrPubl) {
23 value−>value ;
24 }
25

26 bind (area2 , aggrPubl) {
27 value−>value ;
28 }
29

30 bind (area3 , aggrPubl) {
31 value−>value ;
32 }
33

34 }

Listing 8.7: Composition Script for Aggregate Calculation and Publishing

In Listing 8.8, the composition is shown to implement the radiator monitoring.
Two instance of the monitorFilter module are created, one responsible for area
1 and 2, the second responsible for area 2 and 3. Both instance are bound to
the same instance of the RadiatorReaction event module.

83

CHAPTER 8 ROEL TER MAAT(S0219681)

1 modules{
2 radMon1 : mon i t o rF i l t e r ;
3 radMon2 : mon i t o rF i l t e r ;
4 radReact : RadiatorReact ion ;
5 }
6

7 b ind ings {
8

9 bind (area1 , radMon1) {
10 Et−>er ;
11 }
12 bind (area2 , radMon1) {
13 Et−>er ;
14 }
15

16 bind (area2 , radMon2) {
17 Et−>er ;
18 }
19

20 bind (area3 , radMon2) {
21 Et−>er ;
22 }
23

24 bind (radMon1 , radReact) {
25 Et−>Et ;
26 }
27

28 bind (radMon2 , radReact) {
29 Et−>Et ;
30 }
31 }

Listing 8.8: Composition Script for Temperature Monitoring and Publishing

The following table shows the metrics of this implementation together with the
previously generated examples.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

AspectJ per area 6 0 0 0 2 12
AspectJ monitor as pointcut 9 0 0 0 2 3

EventReactor2.0 4 0 0 0 0 0

The AspectJ implementation is possible in two different ways. By handling all
the actions per area the amount of modules is reduced but it greatly increases
the strongly coupled concerns since multiple actions get performed in each ad-
vice module. Because modularity is one of the main focuses of this analysis
separating the advices over more modules is the preferred solution.

Comparing that solution to the EventReactor2.0 implementation, the advantage
of the instantiatable modules with programmable interfaces is shown, allowing
the EventReactor2.0 implementation to use a lot less event modules. AspectJ
also suffers from a tangling between two pointcuts where the radiator is moni-
tored. The area pointcuts needs to be referenced in the pointcut which monitors

84

CHAPTER 8 ROEL TER MAAT(S0219681)

the radiator, where EventReactor2.0 uses the binding script to bind them at in-
terface level.

Instantiation and binding at interface level is also used in EventReactor2.0 to
allow different filter modules and reaction modules to be bound to the same
instance of another module without that being defined within that module. As-
pectJ requires the two external classes to maintain an instance which can be
referred to within other modules.

Because EventReactor2.0 allows the event reaction code to be defined modu-
larly, the amount of strongly coupled concerns is reduced to zero, while AspectJ
still has those concerns within the reaction.

8.1.4 Evolution Scenario 3:

In the third evolution scenario, an external sensor, with filter and reaction is
added. The outside reaction, which was created in the first evolution scenario,
must now be replaced with the external reaction. For this scenario, it assumed
three event modules are inserted from the external project. First, a filter se-
lecting all storage calls from the external temperature sensor, which is shown in
Listing 8.9.

1 eventmodule e x t e r n a l F i l t e r {
2 input {
3 EventType Et ;
4 }
5

6 f u n c t i o n a l i t y language=pro log {
7 EventType t ;
8 t = {Et | hasDynamicAttributeWithNameAndType (Ev , ’ pub l i sher

’ , ’ TemperatureSensor2 ’) , hasDynamicAttributeWithValue (Ev , ’
methodname ’ , ’ s to re ’) } ;

9 }
10

11 output{
12 EventType t ;
13 }
14 }

Listing 8.9: External Event Module for Filtering

Secondly, a module used to retrieve the temperature and output it, which is
shown in Listing 8.10.

85

CHAPTER 8 ROEL TER MAAT(S0219681)

1 eventmodule ex t e rna lVa lueRet r i eve r {
2 input {
3 EventType Et ;
4 }
5

6 f u n c t i o n a l i t y language=java {
7 ‘
8 MethodCallEvent event = (MethodCallEvent) Et ;
9 TemperatureSensor2 s enso r = (TemperatureSensor2) event .

g e tPub l i she r () ;
10 value = ””+senso r . getValue () ;
11 ‘ ;
12 }
13

14 output{
15 St r ing value ;
16 }
17 }

Listing 8.10: External Event Module for Retrieving Temperature

And finally, Listing 8.11 shows the event module responsible for publishing to
the external weather station.

1 eventmodule ex te rna lReac t i on {
2 input {
3 St r ing value ;
4 }
5

6 f u n c t i o n a l i t y language=java {
7 ‘
8 double aDouble = Double . parseDouble (va lue) ;
9 // Perform e x t e r n a l a c t i on

10 System . out . p r i n t l n (” External va lue publ i shed : ”+ aDouble) ;
11 ‘ ;
12 }
13

14 output{
15

16 }
17 }

Listing 8.11: External Event Module for Publishing

In the bindings, all modules have been instantiated and bound to each other
according to the specification.

To implement the evolution, a new event module is created similar to the exter-
nalValueRetriever event module which takes the value measured by the sensor
and produces it as output. This way the current filter can be indirectly bound
to the external reaction without encountering problems with matching input
and output types.
In the composition script, shown in Listing 8.12, the added module is bound

86

CHAPTER 8 ROEL TER MAAT(S0219681)

to the external reaction, and the binding from the outside filter to the outside
reaction needs to be removed, together with the instantiation of this reaction
to avoid making it unbound.

1 modules{
2 extReact : ex t e rna lReac t i on ;
3 e x t F i l t e r : e x t e r n a l F i l t e r ;
4 valueRetr : va lu eRe t r i ev e r ;
5 extVal : ex t e rna lVa lueRet r i eve r ;
6 }
7

8 b ind ings {
9 bind (e x t F i l t e r , extVal) {

10 t−>Et ;
11 }
12

13 bind (extVal , extReact) {
14 value−>value ;
15 }
16

17 bind (t i f 2 , va lueRetr) {
18 Et−>Et ;
19 }
20

21 bind (valueRetr , extReact) {
22 value−>value ;
23 }
24 }

Listing 8.12: Composition Script for Aggregate Calculation and Publishing

The current filter can also be changed by producing an extra output, allowing
the filter to be directly bound to the external reaction. In the following table,
both options are compared with the AspectJ results from chapter 3.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

EventReactor2.0 Added Temperature 1 1 0 1 0 0
EventReactor2.0 Added Event Module 0 1 2 2 0 0

AspectJ add temperature 0 1 2 0 0 0
AspectJ copied advice 0 1 1 0 0 0

AspectJ sensor superclass 0 1 2 0 1 0
AspectJ joinpoint 0 1 3 0 0 0

In AspectJ, the first two solution seems the most logical ones. Using the join-
points as input and output is the worst solution in AspectJ, because all involved
modules need to be redefined to allow this to happen. To differentiate between
the first two scenarios, it is required to look beyond the metrics. Creating a copy
of the advice requires only one module to be created/modified. The problem is
that the code is identical to the original and thus creates a redundancy. Adding
a temperature to the output of the filter requires changes to 2 modules, but
allows the external reaction to be reused. Because modularity is of importance,
reusing the reaction is deemed more important and therefore selected as the
best solution. Possible future scenarios which require change in the external
reaction will only require one module to be changed instead of two if the other
was selected.

87

CHAPTER 8 ROEL TER MAAT(S0219681)

In EventReactor2.0, the best solution is fairly clear. Using the event as input
and output is the better idea when starting from scratch, but in this scenario,
where the external modules have already been defined, changing only the out-
side filter is the better solution.

Comparing both best solutions with each other there is no clear better solu-
tion. The main advantage EventReactor2.0 offers, is the binding at interface
level. This leaves the module untouched and improves the modularity, while
AspectJ tangles the binding between the pointcut and advice which requires a
change in the advice to bind the changed pointcut to it.

8.1.5 Evolution Scenario 4:

In the fourth scenario, the IDs, used to differentiate between the inside and
outside filters, must be switched.
Implementing this in EventReactor2.0 is possible in two ways. The first one,
shown in Listing 8.13, changes the values which are statically bound to the
instances of the filters. The second way is changing the binding between the
filters and the reactions. Though they result in the same amount of changes,
the latter is a better representation in showing a change in the functionality,
since only changing the values of variable is less likely to happen than overall
changes in the flow of the functionality.

1 bind (t i f 1) {
2 6−>min ;
3 10−>max ;
4 }
5

6 bind (t i f 2) {
7 1−>min ;
8 5−>max ;
9 }

Listing 8.13: Altered Static Binding

The following table shows the metric of both the EventReactor2.0 and AspectJ
implementations.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

EventReactor2.0 0 0 0 2 0 0
AspectJ change pointcut 0 0 2 0 0 0

AspectJ change advice 0 0 4 0 0 0

The choice between the AspectJ alternatives is fairly easy and changing the im-
plementation of the pointcuts has therefore been chose as the best solution.

Allowing binding at interface level and allowing static values to be bound al-

88

CHAPTER 8 ROEL TER MAAT(S0219681)

lows EventReactor2.0 to only require two changes to the binding, while AspectJ
requires changes to be applied directly inside the module, which is less desirable.

8.1.6 Evolution Scenario 5:

For the fifth scenario, the second scenario is used and changed to remove part of
the functionality for only one of the areas. Implementing this in EventReactor2.0
first requires the temperature to be retrieved from the event so it can be used
as input for the aggregatePublishing event module. This is already discussed in
the previous scenarios where it was decided the better option is to create a new
module which retrieves this value.
In the composition script, shown in Listing 8.14, an instance of the event module
responsible for retrieving the value from the event is created and replaces the
event module which calculates the aggregate. In this case the latter instance
needs to be removed to ensure it not remain unbound.

1 modules{
2 . . .
3 valueRetr : va lu eRe t r i ev e r ;
4

5 }
6

7 b ind ings {
8 . . .
9 bind (area3 , va lueRetr) {

10 Et−>Et ;
11 }
12

13 bind (valueRetr , aggrPubl) {
14 value−>aggr ;
15 }
16 . . .
17 }

Listing 8.14: Composition Script

The following table shows the resulting metrics and the AspectJ metrics.
Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

EventReactor2.0 1 0 0 2 0 0
AspectJ 0 0 2 0 0 0

Because the initial strong coupling between the different reactions in AspectJ,
the amount of redefinition, required in the modules, is a bit higher than in Even-
tReactor2.0. It also becomes more complex to separate the modules because of
the strong coupling.
In EventReactor2.0, the main action is changing the binding script to replace
the aggregate calculation with the temperature retrieval module for the specific
area. Adding a new module, which retrieves this temperature value, will not

89

CHAPTER 8 ROEL TER MAAT(S0219681)

influence the other modules. Because event modules in EventReactor2.0 are
modularized the composition script can be used to remove parts of the func-
tionality without it influencing any other event module.

8.1.7 Evolution Scenario 6:

In the sixth scenario, both the input and output are changed by adding and
removing variables. In EventReactor2.0, not all output has to be bound to the
input and vice versa. For the module with the added input, the original filter
can be used only ignoring the binding for that parameter. This allows modules
to be bound without changing or creating any modules. When removing an
input the binding must also be changed to remove references to the input. The
resulting composition is shown in Listing 8.15

1 modules{
2 . . .
3 ext1 : ex te rna lReact i on1 ;
4 ext2 : ex te rna lReact i on2 ;
5 }
6

7 b ind ings {
8 bind (t i f 1 , ext1) {
9 }

10

11 bind (t i f 1 , ext2) {
12 Et−>Et ;
13 }
14 . . .
15 }

Listing 8.15: Composition Script

The same situation arises when output of a module is added or removed. Even-
tReactor2.0 will allow any number of input to be bound to any number of output,
although how the actual module handles certain values not being bound, and
not being assigned a value, depends on what the user has defined as the actions
in the module.

In the following table, all situations are examined and compared to the As-
pectJ implementation.

Added
Modules

Removed
Modules

Redefined
Modules

Altered
Bindings

Non-
modular
Funct.
Added

#Strongly
couple
concerns

AspectJ Adding Input 0 0 2 0 0 0
EventReactor2.0 Adding Input 0 0 0 0 0 0

AspectJ Removing Input 0 0 1 0 0 0
EventReactor2.0 Removing Input 0 0 0 1 0 0

AspectJ Adding output 0 0 1 0 0 0
EventReactor2.0 Adding Output 0 0 0 0 0 0

AspectJ Removing output 0 0 1 0 0 0
EventReactor2.0 Removing Output 0 0 0 1 0 0

In AspectJ, the advice always needs to be redefined no matter what evolution

90

CHAPTER 8 ROEL TER MAAT(S0219681)

happens. It either needs to make sure the value is no longer used in the advice,
or needs to remove the reference in the binding. The worst case scenario is when
adding input to the advice. In this case, the values need to be added to both
the binding in the advice as the pointcut.
The EventReactor2.0 binding script allows both input and output to be ignored.
Only when removing input or output which is already bound, the script needs
to be changed to remove these bindings.
Especially when a lot of advices use the same pointcut in AspectJ, one advice
requiring a new value to be added to the input can ripple through to all the
other reactions using the same pointcut.

8.2 Evaluation of Language Extensibility

As defined in chapter 3.2, it is difficult to measure language extensibility and
the most viable method is simply examining which languages can be used to
implement the various concerns of an EPA, and whether or not new DSLs or
GPLs can be added to implement these concerns.

In EventReactor2.0, there are three concerns which are defined using a lan-
guage. For the event and event type language a fixed language is used in which
data structures of the events and event types can be defined. The language that
was used allows for extensibility, in that it allows users to define new events and
event types. Language extensibility is not supported in the current implemen-
tation, but can be added in a later version.

For the event modules, in which event processing agents and event reactor can
be implemented, new DSLs and GPLs can be added. This allows each function-
ality to be implemented using a language best suited for the situation. In the
event module only the functionality section is implemented using an extensible
language, while the rest of the concern is defined using a fixed language. This
means the event module is able to support both event processing agents and
event reactors.

The final concerns, being the composition script, does not support extensi-
ble languages, since it must only provide basic functionalities which include a
mapping between modules. The composition script also aims at improving the
extensibility by allowing instantiation, instance level binding and ordering.

When comparing these results to the existing languages and frameworks, espe-
cially the extensible languages which can be used in the event modules provide
a great improvement. The frameworks which support this type of language ex-
tensibility do exist but fall short when comparing the extensibility of events and
event types and extensibility of composition.

91

CHAPTER 8 ROEL TER MAAT(S0219681)

8.3 Summary

When examining the results of the evolution scenarios, small improvements can
already be measured even thought the scale of the examples is fairly small.
When increasing the size and complexity of the EPAs, the gained advantages
will only increase with it, since it is not limited to the size of the program. The
language extensibility which is offered is also an improvement over the existing
frameworks in that new DSLs and GPLs can be added to implement event pro-
cessing agents and event consumers, while also offering extensibility for events
and composition. Both these results prove that the modularity, composability
and language extensibility has increased with the use of the EventReactor2.0
framework, and should be researched even further to examine the practicality
in a real world environment.

92

CHAPTER9
Conclusion

There are currently numerous amounts of application which can utilize event
processing of some sort. Because these can become very complex, extensible
linguistic mechanisms are required to modularize and compose the concerns.
There are quite a few programming languages that can be used to implement
event processing. In this thesis, these languages are evaluated using a set of
criteria; i.e. language extensibility, modularity and composability.
The languages extensibility criteria examines the possibility of adding new do-
main specific or general purpose languages and using them to define the event
processing concerns.
The modularity criteria is used to examine to what extend the concerns are
defined in separate modules. This requires a uniquely named entity without
knowledge of other modules, and a well defined input, output and an encapsu-
lated functionality.
The composability criteria is used to examine what types of concerns can be
composed with each other. In more detail, it checks at what level composition
is possible and to what extend it can be configured. Using these criteria, Object
Oriented, Aspect Oriented and Event Processing languages are evaluated and
their shortcomings discussed. This is done by using a set of evolution scenarios
and applying it to AspectJ and discussing the solutions for Java and Esper. For
the language extensibility, the languages and frameworks were examined to see
to what extend new languages can be added.

In the EventReactor framework, events and event types can be defined. Sec-
ondly it offers event modules. In an event module a selector, defined in Prolog,
which is used to select event of interest are composed with reactorchains. In a
reactorchain multiple reactors, which define the reactions, are composed.

Like other event processing applications, this thesis identified that EventRe-
actor suffers from tight coupling between concerns. The composition between
the concerns is defined within one of the concerns and specification is limited.
The languages used to define the concerns are fixed and limited to one per con-
cern.

93

CHAPTER 9 ROEL TER MAAT(S0219681)

To solve this problem EventReactor2.0 is introduced, which allows an extensible
list of DSLs and GPLs to be used to implement some concerns. It also provides
the event module to implement a modularized event consumer and event pro-
cessing agent. Finally, EventReactor2.0 support explicit instantiation of event
modules and binding can happen both explicit and implicit.

Using the evolution scenarios it is proven that, by defining each concern in its
own named module, with a well defined input, output and functionality section
with out any knowledge of other modules, the modularity criteria is fulfilled. By
allowing modules to be composed on instance level, binding them at interfaces-
level both explicitly and implicitly, and supporting configurable ordering, the
composability criteria is fulfilled.
The functionality language within the event modules can be defined using an
extensible list of DSLs and GPLs. This helps fulfill the language extensibility
criteria.

The results show that the designed framework is already an improvement over
existing languages and frameworks. The next step would be to research the
usability in larger and more complex projects. Secondly, there are still some
improvements which, when implemented, should increase the usability of the
framework and improve the selected criteria even more. These improvements
should be implemented in the next version of the framework.

94

Bibliography

[1] S. Malakuti, C. Bockisch, and M. Aksit, “Applying the Compo-
sition Filter Model for Runtime Verification of Multiple-Language
Software,” in 2009 20th International Symposium on Software
Reliability Engineering. IEEE, Nov. 2009, pp. 31–40. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5362079

[2] M. Salehie and L. Tahvildari, “Self-adaptive software,”
ACM Transactions on Autonomous and Adaptive Systems,
vol. 4, no. 2, pp. 1–42, May 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1516533.1516538

[3] S. Malakuti, “Achieving naturalness in run-
time enforcement,” Enschede, The Netherlands, Sep.
2011. [Online]. Available: http://doc.utwente.nl/78019/
http://purl.org/utwente/doi/10.3990/1.9789036532464

[4] ——, “Complex Event Processing with Event Modules,” Reactivity, Events
and Modularity, co-located with SPLASH 2013, USA, 2013. [Online]. Avail-
able: http://soft.vub.ac.be/REM13/papers/rem20130 submission 4.pdf

[5] S. Malakuti and M. Aksit, “Event-based Modularization of Reactive Sys-
tems,” 2Concurrent Objects and Beyond, LNCS, 2013(to appear).

[6] S. Malakuti, “Event Modules: Modularizing Domain-Specific Crosscutting
R.V. Concerns,” ACM Transactions on Aspect-Oriented Software Develop-
ment, Special Issue on Runtime Verification and Analysis, 2013(to appear).

[7] O. Etzion and P. Niblett, Event Processing in Action. Stamford,
CT, USA: Manning Publications Company, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1894960

[8] “Esper - Complex Event Processing.” [Online]. Available:
http://esper.codehaus.org/

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading: Addison Wesley
Publishing Company, 1995.

95

CHAPTER 9 ROEL TER MAAT(S0219681)

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Pro-
gramming,” no. June, pp. 220–242, 1997. [Online]. Available:
http://link.springer.com/chapter/10.1007/BFb0053381

[11] H. Masuhara, Y. Endoh, and A. Yonezawa, “A Fine-Grained Join Point
Model for More Reusable Aspects,” in Programming Languages and Sys-
tems. Springer Berlin Heidelberg, 2006, no. Aplas, ch. 8, pp. 131–147.

[12] C. Allan, J. Tibble, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, and G. Sittampalam,
“Adding trace matching with free variables to AspectJ,” in Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications - OOPSLA ’05. New
York, New York, USA: ACM Press, 2005, p. 345. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1094811.1094839

[13] “The AspectJ Project.” [Online]. Available: http://eclipse.org/aspectj/

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold, “Getting started with ASPECTJ,” Communications of
the ACM, vol. 44, no. 10, pp. 59–65, Oct. 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=383845.383858

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An Overview of AspectJ,” ECOOP 2001 Object-
Oriented Programming, vol. 2072, pp. 327–354, Jun. 2001. [On-
line]. Available: http://link.springer.com/chapter/10.1007/3-540-45337-
7 18 http://link.springer.com/10.1007/3-540-45337-7

[16] “Join Points and Pointcuts.” [Online]. Avail-
able: http://www.eclipse.org/aspectj/doc/next/progguide/language-
joinPoints.html

[17] W. L. Hürsch and C. V. Lopes, “Separation of
Concerns,” in Technical report NU-CCS-95-03. Boston,
USA: Northeastern University, 1995. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.5223

[18] D. Parnas, P. Clements, and D. Weiss, “The Modular Structure
of Complex Systems,” IEEE Transactions on Software Engineer-
ing, vol. SE-11, no. 3, pp. 259–266, Mar. 1985. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1702002

[19] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Addison Wesley, 2003.

[20] S. Kojarski and D. Lorenz, “Awesome: an aspect co-
weaving system for composing multiple aspect-oriented extensions,”

96

CHAPTER ROEL TER MAAT(S0219681)

ACM SIGPLAN Notices, pp. 515–534, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1297065

[21] M. Shonle, K. Lieberherr, and A. Shah, “XAspects: An Ex-
tensible System for Domain-Specific Aspect Languages,” in Com-
panion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications
- OOPSLA ’03. New York, New York, USA: ACM Press,
2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=949349
http://portal.acm.org/citation.cfm?doid=949344.949349

[22] E. Tanter and J. Noy, “A Versatile Kernal for Multi-Language AOP,” in
Generative Programming and Component Engineering, ser. Lecture Notes
in Computer Science, R. Glück and M. Lowry, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, vol. 3676, ch. 13, pp. 173–188. [Online].
Available: http://link.springer.com/10.1007/11561347

[23] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types
of software evolution and software maintenance,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 13, no. 1, pp. 3–30,
Jan. 2001. [Online]. Available: http://doi.wiley.com/10.1002/smr.220

97

CHAPTER ROEL TER MAAT(S0219681)

98

Appendices

99

APPENDIXA
Event and Event Type Language

A.1 Xtext

1 grammar n l . utwente . er2 . event . EventLanguage with org . e c l i p s e . xtext .
common . Terminals

2

3 generate eventLanguage ” http ://www. utwente . n l / er2 / event /
EventLanguage”

4

5 EventModel :
6 ((eventTypes += EventTypeDecl) | (events+=Event)) ∗
7 ;
8

9 EventTypeDecl :
10 ImportEvent | EventType
11 ;
12

13 ImportEvent :
14 ’ import event ’ name=ID
15 ;
16

17 EventType :
18 ’ eventtype ’ name=ID ’ extends ’ superEvent = [EventTypeDecl] ’{ ’
19 (s t a t i c c o n t e x t += Stat i cContext | dynamicContext +=

DynamicContext) ∗
20 ’} ’
21 ;
22

23 Stat i cContext :
24 ’ s t a t i c ’ ’ : ’ (a t t r i b u t e += Attr ibute ’ ; ’) ∗
25 ;
26

27 DynamicContext :
28 ’ dynamic ’ ’ : ’ (a t t r i b u t e += Attr ibute ’ ; ’) ∗
29 ;
30

31 Attr ibute :
32 name = ID ’ : ’ type = Type
33 ;

101

CHAPTER A ROEL TER MAAT(S0219681)

34

35 Type :
36 type = ID
37 ;
38

39 Event :
40 ’ event ’ name=ID ’ in s tanceo f ’ type = [EventTypeDecl] ’{ ’
41 (a t t r i b u t e s += A t t r i b u t e I n i t ’ ; ’) ∗
42 ’} ’
43

44 ;
45

46 A t t r i b u t e I n i t :
47 name = ID ’ : ’ va lue = Value
48 ;
49

50 Value :
51 value = STRING | INT
52 ;

A.2 Xtend

1 c l a s s EventLanguageGenerator implements IGenerator {
2

3 o v e r r i d e void doGenerate (Resource resource , IF i l eSystemAccess
f s a) {

4 f o r (e : r e s ou r c e . a l lContent s . t o I t e r a b l e . f i l t e r (typeo f (
EventType))) {

5 f s a . g e n e r a t e F i l e (
6 e . name . t oS t r i ng () + ” . java ” ,
7 e . compi le)
8 }
9 f o r (e : r e s ou r c e . a l lContent s . t o I t e r a b l e . f i l t e r (typeo f (Event)

)) {
10 f s a . g e n e r a t e F i l e (
11 e . name . t oS t r i ng () + ” . java ” ,
12 e . compi le)
13 }
14

15

16 }
17

18 de f compi le (EventType i t) ’ ’ ’
19 import n l . utwente . er2 . u t i l . EventTypeInter face ;
20 import n l . utwente . er2 . u t i l . baseevent . ∗ ;
21 import java . u t i l . HashMap ;
22 import java . u t i l .Map;
23

24 pub l i c c l a s s n a m e I F superEvent != n u l l e x t e n d s
su pe rE ven t . name ENDIF implements EventTypeInter face {

25

26

102

CHAPTER A ROEL TER MAAT(S0219681)

27 @Override
28 pub l i c S t r ing getEventTypeName () {
29 r e turn ” n a m e ” ;
30 }
31

32

33 FOR s t a t : s t a t i c c o n t e x t
34 s t a t . c o m p i l e
35 ENDFOR
36 FOR dyn : dynamicContext
37 d y n . c o m p i l e
38 ENDFOR
39 }
40 ’ ’ ’
41

42 de f compi le (Stat i cContext i t) ’ ’ ’
43

44 ’ ’ ’
45

46 de f compi le (DynamicContext i t) ’ ’ ’
47 FOR a t t r : a t t r i b u t e
48

49 pub l i c a t t r . type . t y p e g e t a t t r . name () {
50 r e turn (a t t r . type . t y p e) dynamicAttr ibutes . get (”

a t t r . name ”) ;
51 }
52

53 pub l i c void s e t a t t r . name (a t t r . type . t y p e a t t r . name
) {

54 dynamicAttr ibutes . put (” a t t r . name ” , a t t r . name) ;
55 }
56 ENDFOR
57 ’ ’ ’
58

59 de f compi le (Event i t) ’ ’ ’
60

61 import n l . utwente . er2 . u t i l . Event In te r f ace ;
62 import n l . utwente . er2 . u t i l . baseevent . ∗ ;
63 import java . u t i l . HashMap ;
64 import java . u t i l .Map;
65

66 pub l i c c l a s s n a m e extends t y p e . name implements
Event In te r f a ce {

67

68 p r i v a t e s t a t i c f i n a l Map<Str ing , Str ing> a t t r i b u t e s =
createMap () ;

69

70 pub l i c s t a t i c Map<Str ing , Str ing> createMap () {
71 Map<Str ing , Str ing> a t t r i b u t e s = new HashMap<Str ing

, Str ing >() ;
72 FOR a t t r : a t t r i b u t e s
73 a t t r i b u t e s . put (” a t t r . name ” , ” a t t r . va lue . v a l u e ”)

;
74 ENDFOR
75 r e turn a t t r i b u t e s ;
76 }
77

103

CHAPTER A ROEL TER MAAT(S0219681)

78

79

80 @Override
81 pub l i c Map<Str ing , Object> getDynamicAttr ibutes () {
82 r e turn dynamicAttr ibutes ;
83 }
84

85 @Override
86 pub l i c Map<Str ing , Str ing> g e t S t a t i c A t t r i b u t e s () {
87 r e turn a t t r i b u t e s ;
88 }
89

90

91 @Override
92 pub l i c S t r ing getEventName () {
93 r e turn ” n a m e ” ;
94 }
95

96 }
97 ’ ’ ’
98 }

104

APPENDIXB
Event Module Language

B.1 Xtext

1 grammar n l . utwente . er2 . basemodule . BaseModule with org . e c l i p s e . xtext
. common . Terminals

2

3 import ” http ://www. e c l i p s e . org /emf /2002/ Ecore ” as eco re
4 generate baseModule ” http ://www. utwente . n l / er2 /basemodule/

BaseModule”
5

6 Model :
7 (imports +=Import) ∗
8 ’ eventmodule ’ name=ID ’{ ’ input=Input locVars=LocalVars ?

f u n c t i o n a l i t y=Func t i ona l i t y output=Output ’} ’
9 ;

10

11 t e rmina l STR: ’\ ’ ’ (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’)+ ’ \ ’ ’ ;
12 t e rmina l CAPITAL : (’A’ . . ’ Z ’) ;
13 t e rmina l ID : ’ ˆ ’ ? (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’ ’) (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z

’ | ’ ’ | ’ 0 ’ . . ’ 9 ’) ∗ ;
14 t e rmina l INT re tu rn s eco re : : EInt : (’ 0 ’ . . ’ 9 ’) +;
15 t e rmina l STRING :
16 ’ ” ’ (’\\ ’ (’ b ’ | ’ t ’ | ’ n ’ | ’ f ’ | ’ r ’ | ’ u ’ | ’ ” ’ | ” ’ ” | ’ \ \ ’) |

! (’ \ \ ’ | ’ ” ’)) ∗ ’ ” ’ |
17 ” ’ ” (’\\ ’ (’ b ’ | ’ t ’ | ’ n ’ | ’ f ’ | ’ r ’ | ’ u ’ | ’ ” ’ | ” ’ ” | ’ \ \ ’) |

! (’ \ \ ’ | ” ’ ”)) ∗ ” ’ ” ;
18 t e rmina l MLCOMMENT : ’/∗ ’ −> ’∗/ ’ ;
19 t e rmina l SL COMMENT : ’// ’ ! (’ \ n ’ | ’ \ r ’) ∗ (’\ r ’ ? ’\n ’) ? ;
20

21 t e rmina l WS : (’ ’ | ’ \ t ’ | ’ \ r ’ | ’ \ n ’) +;
22

23 t e rmina l ANY OTHER: . ;
24 t e rmina l OPERATOR: (’+ ’ | ’ − ’ | ’∗ ’ | ’ / ’ | ’== ’ | ’ > ’ | ’ < ’ | ’ != ’) ;
25

26 Import :
27 ’ import ’ packageName=STRING
28 ;
29

30 Input :

105

CHAPTER B ROEL TER MAAT(S0219681)

31 ’ input ’ ’{ ’
32 (vars += V a r i a b l e I n s t a n t i a t i o n ’ ; ’) ∗
33

34 ’} ’
35 ;
36

37 LocalVars :
38 ’ l o c a l ’ ’{ ’
39 (vars += V a r i a b l e I n s t a n t i a t i o n ’ ; ’) ∗
40 ’} ’
41

42 ;
43

44 V a r i a b l e I n s t a n t i a t i o n :
45 type=Type name=ID
46 ;
47

48 Boolean :
49 ’ true ’ | ’ f a l s e ’
50 ;
51

52 Type :
53 (’ Str ing ’ | ’ int ’ | ’ double ’ | ’ Boolean ’ | ’ EventType ’)
54 ;
55

56 Output :
57 ’ output ’ ’{ ’
58 ((type=Type r e f s+=VarReference) ’ ; ’) ∗
59 ’} ’
60 ;
61

62

63 VarReference :
64 name=[V a r i a b l e I n s t a n t i a t i o n]
65 ;
66

67 Func t i ona l i t y :
68 ’ f u n c t i o n a l i t y ’ ’ language ’ ’= ’ language=Language ’{ ’
69 (s t a t s += Statement ’ ; ’) ∗
70 ’} ’
71 ;
72

73 Language :
74 name=ID
75 ;
76

77 Statement :
78 LanguageStatement
79 ;
80

81 LanguageStatement :
82 //Empty statement to be implemented in language s p e c i f i c

compi l e r s
83 value=’<<>>’
84 ;

106

CHAPTER B ROEL TER MAAT(S0219681)

B.2 Xtend

1 abs t r a c t c l a s s AbstractBaseModuleGenerator implements IGenerator {
2

3 pub l i c var f i l ename = ”” ;
4

5 o v e r r i d e void doGenerate (Resource resource , IF i l eSystemAccess
f s a) {

6

7 }
8

9 de f CharSequence g e t S t r i n g (Model model) {
10 f i l ename = model . name ;
11 r e turn (getImports + model . compileModel) ;
12 }
13

14 de f compileModel (Model i t) ’ ’ ’
15 import java . u t i l . L i s t ;
16 import java . u t i l . ArrayList ;
17 import n l . utwente . er2 . module . model . Module ;
18 import n l . utwente . er2 . r e p o s i t o r y . R e p o s i t o r y I n t e r f a c e ;
19 import n l . utwente . er2 . u t i l . Event In te r f ace ;
20 import n l . utwente . er2 . u t i l . baseevent . EventType ;
21 import java . u t i l . HashMap ;
22 import java . u t i l .Map;
23

24 FOR imp : i m p o r t s
25 import i m p . packageName ;
26 ENDFOR
27

28

29

30 pub l i c c l a s s n a m e extends Module {
31

32 p r i v a t e Event In te r f ace temp = n u l l ;
33 I F locVars != n u l l
34 FOR varDecl : locVars . v a r s
35 p r i v a t e v a r D e c l . t y p e v a r D e c l . name ;
36 ENDFOR
37 ENDIF
38

39 I F input != n u l l
40 FOR varDecl : input . v a r s
41 p r i v a t e v a r D e c l . t y p e v a r D e c l . name ;
42 ENDFOR
43

44 ENDIF
45 FOR s t a t : f u n c t i o n a l i t y . s t a t s
46 I F s t a t i n s t a n c e o f V a r i a b l e I n s t a n t i a t i o n
47 v a r varDecl = s t a t as V a r i a b l e I n s t a n t i a t i o n
48 p r i v a t e v a r D e c l . t y p e v a r D e c l . name ;
49 ENDIF
50 ENDFOR
51

52

53 pub l i c n a m e () {

107

CHAPTER B ROEL TER MAAT(S0219681)

54 s e l f = t h i s ;
55 name = ” n a m e ” ;
56

57 I F input != n u l l
58

59 FOR varDecl : input . v a r s
60 input . put (” v a r D e c l . name ” , v a r D e c l . t y p e . c l a s s) ;
61 ENDFOR
62

63 ENDIF
64

65 f u n c t i o n a l i t y . compi l eCons t ruc to rFunct
66 }
67 i n p u t . c o m p i l e
68 f u n c t i o n a l i t y . c o m p i l e F u n c t i o n a l i t y
69 o u t p u t . compi l eOutput
70

71 pub l i c void s e t (S t r ing name , Object va lue) {
72 i n p u t . comp i l eSe t t e r ()
73 }
74 }
75 ’ ’ ’
76

77 de f S t r ing comp i l eSe t t e r (Input i t) {
78 var returnValue = ”” ;
79 i f (i t != n u l l) {
80

81 f o r (V a r i a b l e I n s t a n t i a t i o n dec l : vars) {
82 returnValue = returnValue + ” i f (name . equa l s (\” ”+ dec l .

name + ” \”)) {
83 t h i s . ”+dec l . name+” = (”+dec l . type+”) value ;
84 }” ;
85 }
86 }
87 r e turn returnValue ;
88 }
89

90 de f S t r ing getImports ()
91

92 de f compi le (Input i t) ’ ’ ’
93

94 ’ ’ ’
95

96 de f compileOutput (Output i t) ’ ’ ’
97 @Override
98 pub l i c Map<Str ing , Object> getOutput () {
99

100 Map<Str ing , Object> r e t u r n L i s t = new HashMap<Str ing ,
Object >() ;

101

102 I F i t != n u l l
103

104 FOR r e f : r e f s
105 r e f . c omp i l eVarRe f e r ence
106 ENDFOR
107

108 ENDIF

108

CHAPTER B ROEL TER MAAT(S0219681)

109 r e turn r e t u r n L i s t ;
110 }
111 ’ ’ ’
112

113 de f compi leVarReference (VarReference i t) ’ ’ ’
114 r e t u r n L i s t . put (” name . name ” , name . name) ;
115 ’ ’ ’
116

117 de f compi l eFunct i ona l i ty (Func t i ona l i t y i t) ’ ’ ’
118 pub l i c void f u n c t i o n a l i t y () {
119 FOR s t a t : s t a t s s t a t . compi leStatement ENDFOR
120 }
121 ’ ’ ’
122

123 de f compileStatement (Statement i t) {
124 var value = ”” ;
125 i f (i t i n s t a n c e o f LanguageStatement) {
126 var langStat = i t as LanguageStatement ;
127 value = value + compileLanguageStatement (langStat) ;
128 }
129 r e turn value ;
130

131 }
132

133 de f S t r ing compileLanguageStatement (LanguageStatement i t)
134

135 de f c o m p i l e V a r i a b l e I n s t a n t i a t i o n (V a r i a b l e I n s t a n t i a t i o n i t) {
136 var returnValue = ”” ;
137

138 r e turn returnValue ;
139 }
140

141 de f S t r ing compi leConstructorFunct (Func t i ona l i t y i t)
142

143 }

109

CHAPTER B ROEL TER MAAT(S0219681)

110

APPENDIXC
Prolog Language

C.1 Xtext

1 grammar n l . utwente . er2 . language . pro log . Prolog with n l . utwente . er2 .
basemodule . BaseModule

2

3 import ” http ://www. e c l i p s e . org /emf /2002/ Ecore ” as eco re
4 generate pro log ” http ://www. utwente . n l / er2 / language / pro log / Prolog ”
5

6 Mod: model=Model ;
7

8 Language :
9 name=’ prolog ’

10 ;
11

12 LanguageStatement :
13 V a r i a b l e I n s t a n t i a t i o n | AssignmentStatement | Condit ionStatement
14 ;
15

16 AssignmentStatement :
17 v a r i a b l e=VarReference ’= ’ v a l l=Express ion
18 ;
19

20 Condit ionStatement :
21 ’ i f ’ ’ (’ c ond i t i on = Express ion ’) ’ ’{ ’
22 (i f S ta t ement s += Statement ’ ; ’)+
23 ’} ’ (’ e l s e ’ ’{ ’ (e l s eSta tement s += Statement ’ ; ’)+ ’} ’) ?
24 ;
25

26 Pointcut :
27 ’{ ’ v a r i a b l e=VarReference ’ | ’ (r u l e s += Rule ’ , ’) ∗ r u l e s +=

Rule ’} ’
28 ;
29

30 Rule :
31 (r u l e= ’ isChi ldEvent ’ ’ (’ vars+=Var iab le ’ , ’ vars+=Var iab le ’) ’) |
32 (r u l e= ’ isChildType ’ ’ (’ vars+=Variable ’ , ’ vars+=Variable ’) ’) |
33 (r u l e= ’ isEventWithName ’ ’ (’ vars+=Variable ’ , ’ vars+=Variable ’) ’) |

111

CHAPTER C ROEL TER MAAT(S0219681)

34 (r u l e= ’ isEventTypeWithName ’ ’ (’ vars+=Variable ’ , ’ vars+=Variable ’)
’) |

35 (r u l e= ’ hasAttr ibute ’ ’ (’ vars+=Variable ’ , ’ vars+=Variable ’) ’) |
36 (r u l e= ’ hasDynamicAttributeWithValue ’ ’ (’ vars+=Variable ’ , ’ vars+=

Variable ’ , ’ vars+=Variable ’) ’) |
37 (r u l e= ’ hasStat icAttr ibuteWithValue ’ ’ (’ vars+=Variable ’ , ’ vars+=

Variable ’ , ’ vars+=Variable ’) ’) |
38 (r u l e= ’ hasSta t i cAt t r ibute ’ ’ (’ vars+=Variable ’ , ’ vars+=Variable ’) ’)

|
39 (r u l e= ’ hasDynamicAttribute ’ ’ (’ vars+=Var iab le ’ , ’ vars+=Variable ’)

’) |
40 (r u l e= ’ hasDynamicAttributeWithNameAndType ’ ’ (’ vars+=Variable ’ , ’

vars+=Variable ’ , ’ vars+=Variable ’) ’)
41 ;
42

43

44 Var iab le :
45 (ID |STR)
46 ;
47

48 Express ion :
49 l hS ide=Value (operator=OPERATOR r h s i d e=Express ion) ?
50 ;
51

52 Value :
53 ((p r i m i t i v e=Primit iveValue) | (complex=ComplexValue))
54 ;
55

56 Primit iveValue :
57 STRING | Boolean | INT
58 ;
59

60 ComplexValue :
61 VarReference | Pointcut
62 ;
63

64 VarReference :
65 name=[V a r i a b l e I n s t a n t i a t i o n]
66 ;
67

68 V a r i a b l e I n s t a n t i a t i o n :
69 type=Type name=ID (’= ’ v a l l=Express ion) ?
70 ;

C.2 Xtend

1 c l a s s PrologGenerator extends AbstractBaseModuleGenerator
implements IGenerator {

2

3 o v e r r i d e void doGenerate (Resource resource , IF i l eSystemAccess
f s a) {

112

CHAPTER C ROEL TER MAAT(S0219681)

4 f o r (e : r e s ou r c e . a l lContent s . t o I t e r a b l e . f i l t e r (typeo f (Model)
)) {

5 f i l ename=e . name . t oS t r i ng () ;
6 f s a . g e n e r a t e F i l e (
7 e . name . t oS t r i ng () + ” . java ” ,
8 e . compileModel)
9 }

10 }
11

12 o v e r r i d e getImports () {
13 r e turn ’ import n l . utwente . er2 . r e p o s i t o r y . Pro logRepos i tory ; ’
14 }
15

16 o v e r r i d e compileLanguageStatement (LanguageStatement i t) {
17 var value = ”” ;
18 i f (i t i n s t a n c e o f V a r i a b l e I n s t a n t i a t i o n) {
19 var V a r i a b l e I n s t a n t i a t i o n va r In s t = i t as

V a r i a b l e I n s t a n t i a t i o n ;
20 value = value+c o m p i l e V a r i a b l e I n s t a n t i a t i o n (va r In s t) ;
21 } e l s e i f (i t i n s t a n c e o f AssignmentStatement) {
22 var AssignmentStatement a s sS ta t = i t as

AssignmentStatement ;
23 value = value + compileAssignmentStatement (a s sS ta t) ;
24 }
25 r e turn value ;
26 }
27

28 de f compileAssignmentStatement (AssignmentStatement i t) {
29 var returnValue = ”” ;
30 i f (v a l l . l hS ide . complex i n s t a n c e o f Pointcut) {
31 var p= v a l l . l hS ide . complex as ComplexValue
32 returnValue = returnValue + compi lePointcut (p) ;
33 }
34 returnValue = returnValue + v a r i a b l e . name . name+ ”=”+

compi leExpress ion (v a l l)+” ; ” ;
35 r e turn returnValue ;
36 }
37

38 o v e r r i d e compi leConstructorFunct (Func t i ona l i t y i t) {
39 var value = ”” ;
40 f o r (Statement s t a t : s t a t s) {
41 i f (s t a t i n s t a n c e o f V a r i a b l e I n s t a n t i a t i o n) {
42 var va r In s t = s t a t as V a r i a b l e I n s t a n t i a t i o n ;
43 i f (va r In s t . v a l l != n u l l && var In s t . v a l l . l hS ide .

complex i n s t a n c e o f n l . utwente . er2 . basemodule . baseModule .
Pointcut) {

44 var p = var In s t . v a l l . l hS ide . complex as Pointcut
45 value = value + compi leConstructorPointcut (p) ;
46 }
47 } e l s e i f (s t a t i n s t a n c e o f AssignmentStatement) {
48 var a s sS ta t = s t a t as AssignmentStatement ;
49 i f (a s sS ta t . v a l l . l hS ide . complex i n s t a n c e o f n l .

utwente . er2 . basemodule . baseModule . Pointcut) {
50 var p = as sS ta t . v a l l . l hS ide . complex as Pointcut
51 value = value + compi leConstructorPointcut (p) ;
52 }
53 }

113

CHAPTER C ROEL TER MAAT(S0219681)

54 }
55 r e turn value ;
56 }
57

58 de f c o m p i l e V a r i a b l e I n s t a n t i a t i o n (V a r i a b l e I n s t a n t i a t i o n i t) {
59 var returnValue = ”” ;
60 i f (v a l l != n u l l) {
61 i f (v a l l . l hS ide . complex i n s t a n c e o f Pointcut) {
62 var p= v a l l . l hS ide . complex as ComplexValue
63 returnValue = returnValue + compi lePointcut (p) ;
64 }
65 returnValue = returnValue + name+ ”=”+

compi leExpress ion (v a l l) +” ; ” ;
66 } e l s e {
67 returnValue = returnValue + name+ ”=”+ ”new ”+ type +”

() ” +” ; ” ;
68 }
69 r e turn returnValue ;
70 }
71

72 de f compi l eConstructorPointcut (Pointcut i t) ’ ’ ’
73 t ry {
74 Pro logRepos i tory . g e t In s tance () . tagEvents (” f i l e n a m e ” , ”

v a r i a b l e . name . name ” , ” c o m p i l e C o n s t r u c t o r R u l e s ”) ;
75 } catch (n l . utwente . er2 . r e p o s i t o r y . except ion . QueryException e

) {
76 e . pr intStackTrace () ;
77 }
78 ’ ’ ’
79

80 de f S t r ing compi leConstructorRules (Pointcut i t) {
81 var returnValue = ””
82 var i =0;
83 whi le (i<r u l e s . s i z e ()) {
84 returnValue = returnValue + r u l e s . get (i) . r u l e + ” (” ;
85 var j =0;
86 whi le (j<r u l e s . get (i) . vars . s i z e ()) {
87 returnValue = returnValue +r u l e s . get (i) . vars . get (j)

;
88 i f (j != r u l e s . get (i) . vars . s i z e ()−1){
89 returnValue = returnValue +” , ” ;
90 }
91 j = j+1
92 }
93

94 returnValue = returnValue + ”) ”
95 i f (i != r u l e s . s i z e ()−1){
96 returnValue = returnValue +” , ” ;
97 }
98 i = i +1;
99 }

100

101 r e turn returnValue ;
102 }
103

104

105

114

CHAPTER C ROEL TER MAAT(S0219681)

106 de f compi lePointcut (ComplexValue i t) ’ ’ ’
107 v a r pc = i t as P o i n t c u t
108 temp = Pro logRepos i tory . g e t In s tance () . checkEventByPointcut

((Event In te r f ace) p c . v a r i a b l e . name . name , ” f i l e n a m e ”) ;
109 ’ ’ ’
110

111 de f compi leExpress ion (Express ion i t) ’ ’ ’
112 I F lhS ide . complex i n s t a n c e o f P o i n t c u t (EventType)

tempELSEIF lhS ide . complex i n s t a n c e o f V a r R e f e r e n c e v a r vr =
lhS ide as V a r R e f e r e n c e v r . name . n a m e E L S E l h S i d e .
p r i m i t i v e E N D I F I F operator != n u l l o p e r a t o r r h s i d e .
c o m p i l e E x p r e s s i o n E N D I F

113 ’ ’ ’
114

115 }

115

CHAPTER C ROEL TER MAAT(S0219681)

116

APPENDIXD
Java Language

D.1 Xtext

1 grammar n l . utwente . er2 . language . java . Java with n l . utwente . er2 .
basemodule . BaseModule

2

3 import ” http ://www. e c l i p s e . org /emf /2002/ Ecore ” as eco re
4 generate java ” http ://www. utwente . n l / er2 / language / java /Java”
5

6 Mode : model=Model ;
7

8 Language :
9 name=’ java ’

10 ;
11

12 LanguageStatement :
13 t ex t = TEXT BLOCK
14 ;
15

16 t e rmina l TEXT BLOCK : ’ ‘ ’ −> ’ ‘ ’
17 ;

D.2 Xtend

1 c l a s s JavaGenerator extends AbstractBaseModuleGenerator implements
IGenerator {

2

3 o v e r r i d e void doGenerate (Resource resource , IF i l eSystemAccess
f s a) {

4 f o r (e : r e s ou r c e . a l lContent s . t o I t e r a b l e . f i l t e r (typeo f (Model)
)) {

5 f i l ename=e . name . t oS t r i ng () ;
6 f s a . g e n e r a t e F i l e (
7 e . name . t oS t r i ng () + ” . java ” ,

117

CHAPTER D ROEL TER MAAT(S0219681)

8 e . compileModel)
9 }

10 }
11

12 o v e r r i d e getImports () {
13 r e turn ’ ’ ;
14 }
15

16 o v e r r i d e compi leConstructorFunct (Func t i ona l i t y i t) {
17 r e turn ’ ’ ;
18 }
19

20 o v e r r i d e compileLanguageStatement (LanguageStatement i t) {
21 var temp = i t as n l . utwente . er2 . language . java . java .

LanguageStatement ;
22 var t ext = temp . t ext ;
23 value = text . su b s t r i ng (1 , t ex t . length −1) ;
24 r e turn value ;
25 }
26

27 }

118

APPENDIXE
Composition Specification

Language

E.1 Xtext

1 grammar n l . utwente . er2 . compos it ion . Composition with org . e c l i p s e .
xtext . common . Terminals

2

3 generate compos it ion ” http ://www. utwente . n l / er2 / compos i t ion /
Composition ”

4

5 Model :
6 ’ modules ’ ’{ ’
7 (modules+=ModuleInit) ∗
8 ’} ’
9

10 ’ b indings ’ ’ { ’
11 (mappings+=Mapping) ∗
12 ’} ’
13

14 ’ o rder ing ’ ’{ ’
15 (order+=[ModuleInit] ’ ; ’) ∗
16 ’} ’
17 ;
18

19 ModuleInit :
20 name=ID ’ : ’ type=ID ’ ; ’
21 ;
22

23 Mapping :
24 ’ bind ’ ’ (’ (source =[ModuleInit] ’ , ’) ? t a r g e t =[ModuleInit] ’) ’

’{ ’
25 (moduleMappings +=varMapping | stat icMapping+=StaticMapping) ∗
26 ’} ’
27 ;
28

29 StaticMapping :
30 value=L i t e r a l ’−>’ t a r g e t=ID ’ ; ’

119

CHAPTER E ROEL TER MAAT(S0219681)

31 ;
32

33 L i t e r a l :
34 STRING | INT
35 ;
36

37 varMapping :
38 source=ID ’−>’ t a r g e t=ID ’ ; ’
39 ;

120

