
Optimization, Specification and Verification of the
Prefix Sum Program in an OpenCL Environment

Thijs Wiefferink
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

t.w.wiefferink@student.utwente.nl

ABSTRACT
The Prefix Sum is an algorithm used as a building block
for various other algorithms, for example radix sort, quick-
sort and lexically comparing strings. Implementing the
Prefix Sum algorithm on the CPU is trivial, but a paral-
lel approach with OpenCL is more complicated. An im-
plementation in OpenCL has been made, and optimized
to minimize branch divergence by comparing two differ-
ent storage solutions. These storage solutions have been
benchmarked in order to show the difference in execution
time. In addition to performance, verification of the al-
gorithm is important. The two aspects that need to be
verified are the absence of data races and functional cor-
rectness. This paper describes a specification that cov-
ers the absence of data races, by using Permission-Based
Separation Logic. The first part of this specification (the
up-sweep phase of the algorithm) has been verified using
the VerCors tool.

Keywords
Prefix Sum, VerCors, Permission-Based Separation Logic,
OpenCL, GPU, Formal verification

1. INTRODUCTION
1.1 GPU properties and verification
GPUs are powerful devices designed to rapidly manipu-
late and alter memory to accelerate the creation of images,
while for example playing a game. However, the GPU is
also being used more and more for general purpose com-
puting, which is a use case normally handled by the CPU.
An advantage of using the GPU instead of the CPU is the
efficient parallel execution on large data sets. When using
a GPU for general computing, one has to select an API
for the communication with the GPU. Widespread APIs
include CUDA, DirectCompute and OpenCL [1] (Open
Computing Language). Of these APIs OpenCL is very
desireable due to its hardware vendor independency and
open source nature. OpenCL is a language specification
made by the Khronos Group, which can be used on a wide
range of devices, including GPUs of AMD and NVIDIA,
and CPUs of Intel and AMD.

Programs that are parallel in nature have an advantage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
23th Twente Student Conference on IT June 22st, 2015, Enschede, The
Netherlands.
Copyright 2015, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

when executed on the GPU instead of the CPU, because
of the large number of threads available on the GPU. How-
ever, there are some challenges to overcome before a GPU
can be used as a general computing device. The first chal-
lenge is the prevention of data races. A data race is the
situation in a program where multiple threads are access-
ing the same memory location, with at least one of them
writing to the location. The second challenge is verify-
ing the program functionally correct, which checks if the
program actually accomplishes the task it is written for.
The first aspect is harder to prove than in a singlethreaded
program because of the different possible interleavings of
thread executions. Verifying programs is useful for use in
safety critical systems, such as in the airplane industry.
Also for industries like the car and medical equipment in-
dustry the verification of programs is required for certain
aspects. A third challenge with implementing a program
on the GPU is minimizing branch divergence [8].

To overcome the challenges mentioned above, the first step
is to make a formal specification of a program to describe
exactly what should happen. The second step is verify-
ing this specification. A specification has been made with
Permission-Based Separation Logic [6], which is a way to
describe exactly what the result of a program should be.
The specification is used to describe read and write ac-
cesses to parts of the memory, which can in turn be used
to prove the program data race free after successful ver-
ification. It can also be used to describe the result of
the program, which in turn could be used to verify that
the program is functionally correct, that is however out of
scope for this research. To prove that the program adheres
to the Permission-Based Separation Logic specification the
VerCors [2] tool has been used. VerCors is capable of prov-
ing that the OpenCL programs match their specification,
which includes the absence of data races and the functional
correctness of the program.

1.2 Prefix Sums
The research goal is to verify a Prefix Sum program by
using Permission-Based Separation Logic and the VerCors
tool. The prefix Sum program will be written in OpenCL,
and benchmarked to check the performance. Prefix Sum is
an algorithm also known as Scan. The algorithm computes
the sums of all possible prefixes of an input array. In
Figure 1, a mathematical representation of the prefix sum
is illustrated, x represents the input array, x0 indicates the
first element from the input array, where n represents the
size of the input array, and y is the output array containing
the prefix sums. Each number ya in the output array is
the sum of all numbers xb ∈ x for which the condition
b < a holds.

The Prefix Sum algorithm is an interesting case study be-
cause it is a building block for a lot of other algorithms.

1



Figure 1: Prefix Sum description

For example radix sort and quicksort can be implemented
using Prefix Sums, but it can also be used to lexically
compare strings of characters or to search for regular ex-
pressions [4]. In the field of specifying and verifying GPU
programs the Prefix Sum is a suitable next step, because
it will be a bigger and more complex example of verifying
a GPU program.

The algorithm to calculate prefix sums can be structured
in such a way that large amounts of data can be processed
in parallel. There are existing algorithms that are multi
threaded and meant for the GPU. Chapter 39 Parallel Pre-
fix Sum (Scan) with CUDA of the book GPU Gems 3 [11]
has a step by step approach for implementing an efficient
Prefix Sum program in CUDA.

2. RESEARCH GOAL
2.1 Problem Statement
The problem with programs on the GPU is that data races
can occur, which are hard to detect with simple testing. It
is possible that testing never shows a data race problem,
but that it still occurs after long term usage. Another
problem is to prove that the end result of a program is
always correct, which also requires the absence of data
races. The only way to be sure a program is functionally
correct and data race free is to validate these two aspects
of the program. In order to do that the GPU program has
to be formally specified in Permission-Based Separation
Logic, which is a challenge for bigger programs like the
Prefix Sum used in this case study. A challenge with the
implementation of the Prefix Sum algorithm is avoiding
branch divergence [8], which would slow down the imple-
mentation considerably. Branch divergence occurs when
threads that execute the kernel are forced to execute differ-
ent instructions, disturbing the SIMT (Single-Instruction,
Multiple-Thread) principle explained in Section 3.1.

2.2 Research Questions
The research addresses the following research questions
based on the problem statement:

1. How can branch divergence be avoided in the imple-
mentation of the Prefix Sum?

2. How can the Prefix Sum program be formally speci-
fied with Permission-Based Separation Logic?

3. How can the Prefix Sum program be proven to have
no data races?

3. BACKGROUND
3.1 GPU execution model
Programs in OpenCL on the GPU have a different exe-
cution model than normal programs running on a CPU.
The GPU has work items, these are single threads. These
work items are bundled into work groups, which all con-
sist of a known number of work items for a certain kernel
execution. Because the size of a work group is limited (de-
termined by hardware and drivers), a GPU program uses
multiple work groups to execute a large task. Threads in

the same work group can easily be synchronized with a
barrier, which when reached halt the execution until all
threads arrived. But threads in different work groups can-
not be synchronized easily. The number of threads in a
work group is called the local size. The total number of
threads used for execution is called global size, and is nor-
mally determined by the size of the input of the program.
To illustrate this model we will look at the vector addi-
tion program, visualized in Figure 2. This program takes
two arrays of the same size as input, and has an output
array which is the sum of the two input arrays. With this
program we will use one thread for each addition. In the
example in Figure 2 we have an input size of 8, therefore
we take a global size of 8. In this example a local size
of 2 is drawn, which would lead to four work groups of
two work items each. Note that, normally the local size
is much higher. The maximum local size for the NVIDIA
GTX 770 GPU, which is used for this research, is 1024.
This number can be different for other GPUs. The global
size is basically unlimited, but is indirectly limited by the
available memory and the way you can split a certain task
amongst threads.

Figure 2: Vector addition example

The placement of work items into work groups is also im-
portant for the actual execution of a program. GPUs use a
SIMT (Single-Instruction, Multiple-Thread) architecture.
In this architecture a single program (set of instructions)
is used by multiple threads and executed at the same time.
The only difference between two threads is that they work
on different parts of the data. When using the vector
addition of Figure 2 as example, the addition of one cell
of input 1 and 2 would be done by a single thread. To
determine which thread performs the addition for which
position in the vector, the global thread id is used. The
global id is a number that is different for each thread and
ranges from zero to the global size minus one. Therefore
the global id can be used as an index in the data set, in
this case the thread with global id 0 would perform the
addition of the first values of the input arrays, and place
the result in the first slot of the output array.

The SIMT execution model and work group separation of
threads are the two most important aspects of the OpenCL
architecture for the planned case study. The paper An
Introduction to the OpenCL Programming Model [13] ex-
plains the above concepts in more detail and also explains
other aspects of the OpenCL programming model.

3.2 Permission-Based Separation Logic
For the specification of the GPU kernel Permission-Based
Separation Logic has been used. This specification lan-
guage started with Hoare logic [9] and has been extended

2



to Separation Logic [12] to make it possible to reason
about programs with pointers. After that it has been ex-
tended with permissions by Bornat et al. [7]. A full per-
mission, represented by 1, indicates a write permission,
and a fraction between 0 and 1 denotes a read permission.
The permissions for a certain memory location can be split
to allow multiple threads to read, and can also be joined
which can give write permission if it adds up to 1. This
system allows different threads to read the same data, but
prevents them from writing at the same time.

The specification as implemented in VerCors has a couple
of constructs to define the program structure. The first
line of the specification. class Ref {, serves as identifi-
cation of a class. After that methods can be placed in
the class, with a signature like void prefixSum(...), such
a method represents the kernel in this case. There is a
special block to indicate parallel executed threads, to use
in kernels: par threads(int t=0..N;;true), which is a par-
allel block. A parallel block looks similar to a for loop, but
instead represents threads of a kernel. The thread number,
often called tid can be referenced by t in the specification.

The specification language has a couple of basic clauses to
specify the pre- and postconditions of the kernel, a thread
and a barrier. A precondition can be expressed using re-

quires <boolean>; which ensures that this property holds
when the code is run. Requirements of the kernel are as-
sumed to be provided by the host code, in order to be able
to use these permissions inside the kernel. A postcondi-
tion can be expressed using ensures <boolean>; which en-
sures that after the code has been run, the condition holds.
These statements could be used to express the desired end
result of the kernel. Apart from this there is a loop invari-
ant to express statements that should hold before, during
and after a loop: loop invariant <boolean>;. There is also
a logical implication in the language written as: <boolean>

==> <boolean>;.

To reason about read and write permissions to variables
and array indices, there is a special specification construct:
Perm(<variable or array position>, <write|read>). This
predicate will give a boolean result, indicating if the per-
mission queried for has been met. To reason about a
range of conditions the following construct can be used:
(\forall* <variable declare>; <variable bounds>; <bool-

ean condition>);. This is useful for example to give a
thread permission to access a complete column of a ma-
trix, which would result in a statement similar to this:
(\forall* int i; i>0 && i<10; Perm(array[0][i], write));.

More detailed information about Permission-Based Sep-
aration Logic and how it is used to reason about GPU
programs can be found in Specification and Verification of
GPGPU Programs [6] by S. C. C. Blom, M. Huisman and
M. Mihelčić.

4. IMPLEMENTATION
4.1 Prefix Sum algorithm
The basic single thread Prefix Sum algorithm is simple,
but cannot be used with multiple threads. The trivial
way to compute Prefix Sums would be to compute it as
described in Algorithm 1. In the loop body of this algo-
rithm it depends on knowing the result of the previous
sum, because of this data dependency the algorithm can-
not be used to calculate Prefix Sums concurrently.

The algorithm implemented for this research is made by
Blelloch [3], and can be used concurrently. The description
of Nguyen [11] has been followed to implement the algo-
rithm. The Simple-OpenCL library [10] of O. A. Huguet

Algorithm 1: Single thread Prefix Sum

1 result[0] := 0
2 for a := 1 to n do
3 result[a] := input[a-1] + result[a-1]

and C. G. Marin has been used to implement the OpenCL
kernels. The algorithm by Blelloch performs the Prefix
Sum calculation in two phases, the up-sweep phase and
down-sweep phase. The algorithm uses a balanced binary
tree for data storage, therefore a tree with log2(n)+1 levels
is required to accommodate for an input of size n. If the
input size is not a power of 2, then the input will be padded
with zeros until it is; this is necessary because the algo-
rithm requires a binary tree. The tree has d = log2(n)+1
levels, and each level d has 2d nodes. At the start the
input values will be placed in the n leaves at the bottom
of the tree, see Figure 3. The up-sweep phase traverses
the tree from the leaves to the root, level by level, and
computes partial sums in the nodes of the tree. At each
level the sum of 2 nodes is computed and placed in the
node above, at the end the root node contains the sum of
all elements in the input. Figure 4 shows the end result of
this phase.

Figure 3: Tree at the start of the up-sweep phase

Figure 4: Tree after the up-sweep phase

After this first phase the second phase will start, called the
down-sweep phase. This phase starts by inserting zero at
the root of the tree, after that it traverses the tree from
the root to the leaves. On each level the right child will
be set to the sum of the left child and the current node,
and the left child will be set to the value of the current
node. This way the zero that has been inserted at the root
will travel to the leftmost leaf, and intermediate sums will
travel to the right, and get added to form the final result.
Figure 5 illustrates the first step, the right node will get
the value 0 + 10, the left node will get value 0. Figure 6
shows the result of the second step, and Figure 7 shows
the end result, with an exclusive prefix sum in the leaves of
the tree. An exclusive prefix sum means that each output
value is the sum of all inputs with a lower index, instead
of a lower or the same index as with an inclusive prefix
sum.

3



Figure 5: The first step of the down-sweep phase

Figure 6: The second step of the down-sweep
phase

Figure 7: The final step of the down-sweep phase

4.2 Two-dimensional Arrays As Storage
Now that the algorithm of the Prefix Sum has been ex-
plained in Section 4.1, the storage of the tree in memory
will be looked at. A common way to store a binary tree
in an array is to have the root node at index i = 1, with
the left child at i ∗ 2 and the right child at i ∗ 2 + 1. Such
a storage solution would require an array of twice the size
of the input, which is the minimum required size for this
algorithm to work. The disadvantage of this storage type
is that at each level of the tree in the up- and down-sweep
phase only a part of the threads running the kernel are
active. To illustrate, in the example of Figure 4 about the
up-sweep phase, 4 threads would be required to run this
kernel, with 4 of them active on the lowest level, then 2 on
the level above, and 1 for the highest level. To make the
correct threads active and idle, the kernel has code that
shuts off certain threads in certain iterations of the up-
sweep phase. This code causes branch divergence, which
means that certain threads of a kernel are running differ-
ent code as other threads. Because threads run different
code, the SIMT principle is disturbed.

To prevent the problem mentioned above a different ver-
sion of the Prefix Sum algorithm has been implemented
that uses another storage solution for the binary tree.
The algorithm has a two-dimensional array, the first array
stores an array for each level of the tree, and those levels
have values for each node of the tree. The two-dimensional
array has a height of log2(n)+1, and a width the same as

the inputsize n. The nodes of a tree are aligned to the left
in the level arrays, which leaves blank spots on all levels
except the lowest one. Because of these blank spots we
can now let all threads do the calculation as explained in
Section 4.1. The threads that normally would have been
idle will now perform operations on the blank spots of the
two-dimensional array, which do not interfere with the ac-
tually useful calculations. This change has a positive ef-
fect on the performance of the kernel because of reduced
branch divergence [8]. The kernel of the one-dimensional
array would need to be split each time it is executed, since
there are threads executing different code. But this is not
the case for the two-dimensional array version, in which
all threads do exactly the same operations (although on
different data). A performance comparison will be given
in Section 4.4.

4.3 Algorithmic description
The algorithm with the two-dimensional arrays works as
described in Algorithm 2 (up-sweep phase) and Algorithm 3
(down-sweep phase). The loops at respectively line 2 and
line 3 of these algorithms are to indicate that one work
item of the GPU will do the calculation inside the loop.
The arrays used in the algorithms have their first dimen-
sion represent the level of the tree, and their second dimen-
sion the node of tree on the given level. The algorithms
assume that the values of the nodes of the tree are stored
as much to the left as possible, so for example the root
of the tree has 0 as the second dimension of the array,
and the highest possible number on the first dimension:
log2(n)− 1.

Algorithm 2: Upsweep phase

1 for d=1 to log2(n) do
2 for all k=0 to n-1 in parallel do
3 x[d][k] := x[d-1][k*2] + x[d-1][k*2+1]

Algorithm 3: Downsweep phase

1 x[(log2(n)-1)*n] := 0
2 for d=log2(n)-1 to 1 do
3 for all k=0 to n-1 in parallel do
4 x[d-1][k*2+1] = x[d-1][k*2] + x[d][k]
5 x[d-1][k*2] = x[d][k]

4.4 Performance Comparison
The impact of the change in storage type as explained in
Section 4.2 has been measured by testing the time it took
to run a kernel with both implementations. The test has
been performed with all input sizes from 2 until 1024, that
are a power of 2. The maximum of 1024 is chosen because
this is the maximum number of threads the used graphics
card allows in one workgroup. The test has been repeated
10 times, the average result has been used. Figure 8 shows
the results of this test, for the first approach with the tree
in an array (called one-dimensional array), and the second
approach with an two-dimensional array. The difference
between the tested kernels in the range of 2 until 32 is
almost none, but from 64 until 1024 the difference is sig-
nificant. At 1024 the 1-dimensional array takes 270 mil-
liseconds to run, at which the 2-dimensional version takes
120 milliseconds to run. This means that the prediction
was correct, the two-dimensional storage of the tree is bet-
ter for the performance for these input sizes. However be
aware that this optimization is a trade off between mem-
ory usage and speed. The two-dimensional array might
be faster, but it does use 5 times as much memory as the
one-dimensional array version. With higher input sizes it

4



might be better to use the one-dimensional version since
the memory of the GPU might run out otherwise.

Figure 8: Comparison of kernel execution speed
(average of 10 runs)

4.5 Extending to multiple workgroups
The current algorithm is suitable for kernels that make use
of one workgroup, but cannot be ran on multiple work-
groups. The problem is that the workgroups require syn-
chronization to correctly compute the result with this al-
gorithm, and synchronization is not trivial between work-
groups. Because of this limitation the above algorithm can
only compute the prefix sum for an input size that is at
maximum two times the maximum workgroup size (which
is typically around 1024).

In order to extend the described algorithm of Section 4.1
to work with bigger input sizes, and therefore multiple
workgroups, it needs some modifications. The basic idea
to calculate the prefix sums of a bigger input is the follow-
ing:

1. Split the input into parts that a workgroup can do
individually.

2. Calculate the prefix sums of the different parts (using
the algorithm from Section 4.3), save the total sum
of a part for later.

3. Calculate the prefix sum on the array with all sums
saved at step 2.

4. Add the sums calculated at step 3 to the partial pre-
fix sums calculated at step 2, this results in a com-
pleted prefix sum for the complete input sequence.

The above general idea as described by H. Nguyen [11]
needs some refinement to be sufficient for all input sizes.
One problem of the algorithm is that the array with the
sums of the inputs, as saved in step 2, can still become
to large to handle by one workgroup. Because of this the
same algorithm would need to be applied again, but now
on the array with the sums. To fix this problem the al-
gorithm can be made recursive, using the same idea over
and over again until the size of the sums array is small
enough to compute with one workgroup. The description
of the recursive Prefix Sum algorithm to calculate it for
unlimited input sizes can be found below.

The workgroupsize stands for the maximum number of
work items that can be used in one workgroup, inputSize
stands for the size of the input array, padded to a power
of 2. The workgroupsize is different for each GPU model,
and can be determined by the host code before running

the kernel. The algorithm starts at item 1, and ends at
either item 1b or item 2e.

Calculate Prefix Sum for n input values:

1. Base case when n ≤ (workgroupsize∗2):

(a) Calculate the Prefix Sum with a single work-
group computation.

(b) Return the result.

2. Recursive case when n > (workgroupsize∗2):

(a) Split the input into parts that are small enough
to be handled by a single workgroup.

(b) Calculate the prefix sum for each of these parts
(uses 1 kernel with multiple workgroups, each
workgroup handling a part) and save the full
sum of each part into an array (total is known
after the upsweep phase).

(c) Calculate the prefix sum for the array with the
sums of the parts (contains 1 sum for each work-
group, as added in step 2b), this is a recursive
call, therefore starts at item 1 again and might
require a recursive case again. This will always
call the method with a smaller n as the current
call, since even if the graphic card only allows
1 item per workgroup, it will be divided by 2.

(d) Add the values calculated in step 2c to the out-
put of step 2b, workgroup synchronization is
not required for this step because these addi-
tions operate completely disjoint.

(e) Return the result.

The above algorithm has been fully implemented using
OpenCL and C++ (for source code check [14]). This im-
plementation will serve as a basis for the specification,
providing the structure of the kernel.

5. SPECIFICATION
5.1 General
After the implementation, the created kernel has been
specified. The code of the kernel has been written in
OpenCL, but to use the code and specification in the Ver-
Cors tool it has to be transformed to PVL. This is required
because currently VerCors does not support OpenCL code
as input. PVL is a toy language, which supports a subset
of C. Only the kernel will be specified and verified, the
host code is a step to consider for future research. In Al-
gorithm 4 the specified Prefix Sum kernel can be found.
The specification only focuses on proving the program data
race free, the functional correctness of the program is a
next step to be considered for future research. The spec-
ification is for a single workgroup algorithm of the Prefix
Sum, multiple workgroups would require extra logic for
building the sums array, and a verification of an adder
kernel. The specification is explained in the next section.

5.2 Kernel Specifications
The first line of the specification in Algorithm 4 declares
the name of the class, and is used to serve as start of
the program. On line 18 the kernel method is declared.
The N represents the input size of the algorithm and the
H represents the number of levels required in the binary
tree for the computation. The input array contains the
input numbers for the prefix sum, and has size N. The
output array will be used to give back the result, and is
also size N. The temporary array is given the width N and
height H, and will be used to store the tree required for
the calculation described in Section 4.1.

5



The specifications from line 3 until line 16 are the pre-
and postconditions for the complete kernel. These specifi-
cations declare a static input size as N=32, and the height
of the tree for this input size as H=6. The relation be-
tween N and H is described by H=log2(N) + 1, but prov-
ing such a definition is not trivial for the VerCors tool.
If specifying such a condition was possible then the spec-
ification could be proven for more input sizes, instead of
only for one static number (32 in this case). These speci-
fications requires read permissions for the complete input
array, since the kernel will need to read from the input. It
also requires write permission for all positions of the temp
array. These permissions are supplied by the host when
invoking the kernel.

5.3 Thread Specifications
Inside the method that represents the kernel there is a
parallel block (line 20), this represents the threads that
run the kernel. The parallel block specifies that there are
N threads, with numbers 0 until N-1. The specification
uses N threads, but actually there are just N/2 threads
required for the program. This is due to a more compli-
cated array indexing that using half of the threads would
require, which is currently unsupported by the VerCors
tool. Before the opening curly brace of the parallel block
there are specifications for single threads. The defined N
and H are repeated, which will be seen more often in the
specification.

Each thread with an id less than N/2 requires read permis-
sion to 2 different locations in the input array, namely t∗2
and t∗2+1. This is to enable the thread to copy the input
values it will need for the first step of the up-sweep phase
as seen in Figure 4. The indexing for the temp array is the
same, with an additional index 0, representing the lowest
level of the tree. Next to these permissions the remain-
der of the temp array will be divided amongst all threads,
which all get a complete column without the lowest level.
This permission situation is represented in Figure 9. In
this figure the horizontal plane represents the N dimen-
sion of the array, and the vertical plane represents the H
dimension. The number in the cells indicate the number
of the thread that has write access to the cell.

Figure 9: Permissions for the up-sweep phase

Line 40 until line 46 are to copy the input values to the
lowest level of the tree. Only the first half of the threads
will be doing this, all handling 2 values. Because of the
permission distribution mentioned in the last paragraph
these threads can immediately do the first up-sweep step,
which will be written to the first locations of the level
above (N/2 slots will be used on that level).

Line 54 until line 73 specify the up-sweep part of the al-
gorithm. The while-loop has a couple of loop invariants,
the first three restate N and H, indicate the bounds of
the thread numbers, and indicate the bounds of the level

(which is our loop variable). The loop invariant at line
51 specifies that this thread should have permission to
write in all locations from level until H-1, at column t,
as visualized in Figure 9. Since level starts at 1, and all
threads start with their complete column except the low-
est level, this will be correct before the loop starts. Inside
the loop, first the variable level is increased, then a barrier
is enforced, and after that a step of the up-sweep phase
happens. The barrier transfers the write permissions that
the threads used for the previous step to the threads that
will be reading from those location in the current step.
This means that the access pattern shown for row H=0 as
shown in Figure 9 is applied to the rows above one by one,
except for the topmost row.

Before the down-sweep phase the root has to be set to 0,
in this case it is better to set the complete top row to 0,
because this prevents branch divergence as mentioned in
Section 4.2. After the up-sweep phase each thread still
has write permissions to their own slot on the top level,
because of that it can set the complete top row to 0. Then
the down-sweep happens on line 84 until line 105. The
permissions for this phase are slightly different, but similar
in many aspects.

At the end, the result of the algorithm is copied to the
output array, this happens on line 108. For this operation
there is no need for a barrier or special permissions, since
the used permissions for the temp array are exactly the
ones the thread receives in the last iteration. The permis-
sion for the output array is already provided to the thread
at the start.

6. VERIFICATION
To verify the specification explained in Section 5 the Ver-
Cors tool has been used. VerCors translates a program
to a Common Object Language, and after that verifies it
by using the Silicon backend. More information about the
architecture can be found in the paper The VerCors Tool
for Verification of Concurrent Programs by S. C. C. Blom
and M. Huisman [5].

Immediately trying to verify the complete specification in
the VerCors tool has a very low chance of getting through,
that is why the specification has been done step by step.
Each time a certain line of the specification has been added,
then verified, if it succeeds the next one will be added, oth-
erwise it has to be refined or rewritten. The specification
as described in Section 5 has been verified until the up-
sweep phase, which is as shown in Algorithm 4, excluding
the ensures predicates of the kernel and thread.

7. RESULTS
In the implementation phase of this research a case of
branch divergence in an algorithm of the Prefix Sum has
been found. This case of branch divergence has been
avoided by changing the storage type of the tree required
for the computation to a two-dimensional array. Before
this change a part of the GPU threads would be idle in
certain iterations of the algorithm, which causes perfor-
mance problems, after this change all threads execute the
same instructions (although some threads do not perform
useful calculations). The impact of this change has been
benchmarked by measuring the execution time of the ker-
nel. The two-dimensional array storage has an execution
time of 120 milliseconds for an input size of 1024 values,
instead of 270 milliseconds for the one-dimensional array
(see Section 4.2 and Section 4.4 for details). The downside
of the alternative storage of the tree is the extra memory

6



it uses, which makes these two solutions a trade off for
speed and memory usage.

The Prefix Sum kernel using the two-dimensional array
has been fully specified for detection of data races. These
specifications entail read/write permissions for locations
in the used arrays, to ensure that threads never have ac-
cess for writing to the same location, and to ensure that
threads do not read from a location that another thread
has write permission for. These specifications are writ-
ten with Permission-Based Separation Logic, which can be
used to specify everything required to prove the absence
of data races (covered in this paper) and the functional
correctness (out of scope for this research).

In order to verify the specification the tool VerCors has
been used. This tool translates the specification to an
intermediate language from the source language, and after
that proves all predicates. Currently the up-sweep phase
has been verified by VerCors, consisting of Algorithm 4,
excluding the ensures predicates of the kernel and thread.
This result ensures that the up-sweep phase of the Prefix
Sum algorithm is data race free.

8. FUTURE WORK
In addition to the specification for proving the absence
of data races a specification could be made that also en-
tails the functional correctness of the Prefix Sum program.
The functional correctness of a program is the other half
of showing that the program is completely correct, that
is why expanding into that direction would offer a com-
plete specification of the Prefix Sum kernel. The specifi-
cations for the functional correctness would need to state
the output of the algorithm conform with the description
in Section 1.2 and Figure 1.

Apart from verifying the GPU kernel of the Prefix Sum,
the code running on the host that launches the kernel could
also be specified. This would also allow for verification of
the calculations required to run all kernels for the multiple
workgroups algorithm. This would specifically be the ver-
ification of the calculation of the required global size and
local size, and the splitting of the input array according to
these values.

The tool support for verifying GPU kernels could also be
improved upon. For example by looking into automatic
generation of certain repetitive specifications, like defin-
ing the input size of the given specification. Another au-
tomatic generation topic could be the boundaries of the
thread numbers as specified in the parallel blocks. These
numbers never change inside the block, and could there-
fore be repeated until the end of the block. Apart from
these examples there might be more cases where auto-
matic generation of specifications could help, and improve
the accessibility of the VerCors tool.

9. REFERENCES
[1] OpenCL the open standard for parallel

programming of heterogeneous systems.
https://www.khronos.org/opencl/. Accessed: 13
March 2015.

[2] The VerCors toolset. https://fmt.ewi.utwente.
nl/redmine/projects/vercors-verifier/wiki.
Accessed: 14 March 2015.

[3] G. E. Blelloch. Scans as primitive parallel
operations. Computers, IEEE Transactions on,
38(11):1526–1538, 1989.

[4] G. E. Blelloch. Prefix sums and their applications.
1990.

[5] S. C. C. Blom and M. Huisman. The VerCors Tool
for Verification of Concurrent Programs. In
Proceedings of the 19th International Symposium on
Formal Methods, FM 2014, Singapore, volume 8442
of Lecture Notes in Computer Science, pages
127–131, Berlin, 2014. Springer Verlag.

[6] S. C. C. Blom, M. Huisman, and M. Mihelčić.
Specification and verification of GPGPU programs.
Science of Computer Programming, 95, Part
3(0):376 – 388, 2014. Special Section: ACM
SAC-SVT 2013 + Bytecode 2013.

[7] R. Bornat, C. Calcagno, P. O’Hearn, and
M. Parkinson. Permission accounting in separation
logic. In ACM SIGPLAN Notices, volume 40, pages
259–270. ACM, 2005.

[8] T. D. Han and T. S. Abdelrahman. Reducing branch
divergence in GPU programs. In Proceedings of the
Fourth Workshop on General Purpose Processing on
Graphics Processing Units, GPGPU-4, pages
3:1–3:8, New York, NY, USA, 2011. ACM.

[9] C. A. R. Hoare. An axiomatic basis for computer
programming. ACM, 12(10):576–580, Oct. 1969.

[10] O. A. Huguet and C. G. Marin. Simple-OpenCL
library.
https://code.google.com/p/simple-opencl/.
Accessed: 05 March 2015.

[11] H. Nguyen. GPU Gems 3. Addison-Wesley
Professional, first edition, 2007.

[12] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Logic in Computer
Science, 2002. Proceedings. 17th Annual IEEE
Symposium on, pages 55–74. IEEE, 2002.

[13] J. Thompson and K. Schlachter. An introduction to
the OpenCL programming model. 2012.

[14] T. W. Wiefferink. Prefix sum specification and
OpenCL/C++ source. http:
//fmt.ewi.utwente.nl/education/bachelor/233.

7

https://www.khronos.org/opencl/
https://fmt.ewi.utwente.nl/redmine/projects/vercors-verifier/wiki
https://fmt.ewi.utwente.nl/redmine/projects/vercors-verifier/wiki
https://code.google.com/p/simple-opencl/
http://fmt.ewi.utwente.nl/education/bachelor/233
http://fmt.ewi.utwente.nl/education/bachelor/233


Algorithm 4: Part 1 of the kernel specifications: The up-sweep

1 class Ref {
2 // Requires/Ensures for the complete kernel
3 requires N==32 && H==6; // Using static numbers because the ratio is hard to
4 // use correcly in the tool (H == log2(N)+1)
5 requires (\forall* int i; 0<=i && i<N; Perm(input[i], read));
6 requires (\forall* int i; 0<=i && i<N; Perm(output[i], write));
7 requires (\forall* int i; 0<=i && i<N;
8 (\forall* int j; 0<=j && j<H; Perm(temp[j][i], write))
9 );

10 ensures N==32 && H==6;
11 ensures (\forall* int i; 0<=i && i<N; Perm(input[i], read));
12 ensures (\forall* int i; 0<=i && i<N; Perm(output[i], write));
13 ensures (\forall* int i; 0<=i && i<N;
14 (\forall* int j; 1<=j && j<H; Perm(temp[j][i], write))
15 );
16 ensures (\forall* int i; 0<=i && i<N; Perm(temp[0][i], write));
17 // Kernel method
18 void prefixSum(int N, int H, int[N] input, int[N] output, int[H][N] temp) {
19 // Define N threads (parallel block)
20 par threads (int t=0..N;;true)
21 requires N==32 && H==6;
22 requires t<(N/2) ==> Perm(input[t*2], read);
23 requires t<(N/2) ==> Perm(input[t*2+1], read);
24 requires t<(N/2) ==> Perm(output[t*2], write);
25 requires t<(N/2) ==> Perm(output[t*2+1], write);
26 requires t<(N/2) ==> Perm(temp[0][t*2], write);
27 requires t<(N/2) ==> Perm(temp[0][t*2+1], write);
28 requires (\forall* int j; 1<=j && j<H; Perm(temp[j][t], write));
29 ensures N==32 && H==6;
30 ensures t<(N/2) ==> Perm(input[t*2], read);
31 ensures t<(N/2) ==> Perm(input[t*2+1], read);
32 ensures t<(N/2) ==> Perm(output[t*2], write);
33 ensures t<(N/2) ==> Perm(output[t*2+1], write);
34 ensures t<(N/2) ==> Perm(temp[0][t*2], write);
35 ensures t<(N/2) ==> Perm(temp[0][t*2+1], write);
36 ensures (\forall* int j; 1<=j && j<H; Perm(temp[j][t], write));
37 // Thread code
38 {
39 // Only use the first half of threads
40 if(t < (N/2)) {
41 // Input copy
42 temp[0][t*2] = input[t*2];
43 temp[0][t*2+1] = input[t*2+1];
44 // First step of upsweep
45 temp[1][t] = temp[0][t*2] + temp[0][t*2+1];
46 }
47 int level=1;
48 loop_invariant N==32 && H==6;
49 loop_invariant t>=0 && t<N;
50 loop_invariant level>=1 && level<H;
51 loop_invariant (\forall* int i; level<=i && i<H; Perm(temp[i][t], write));
52 loop_invariant t<(N/2) ==> (\forall* int i; 0<=i && i<level; Perm(temp[i][t*2], write));
53 loop_invariant t<(N/2) ==> (\forall* int i; 0<=i && i<level; Perm(temp[i][t*2+1], write));
54 while((level+1)<H) {
55 level = level+1;
56 barrier(local) {
57 requires N==32 && H==6;
58 requires t>=0 && t<N;
59 requires level>=1 && level<H;
60 requires Perm(temp[level-1][t], write));
61

62 ensures N==32 && H==6;
63 ensures level>=1 && level<H;
64 ensures t>=0 && t<N;
65 ensures Perm(temp[level][t], write));
66 ensures t<(N/2) ==> Perm(temp[level-1][t*2], write));
67 ensures t<(N/2) ==> Perm(temp[level-1][t*2+1], write));
68 }
69 // Do next upsweep step
70 if(t < (N/2)) {
71 temp[level][t] = temp[level-1][t*2] + temp[level-1][t*2+1];
72 }
73 }

8



Algorithm 5: Part 2 of the kernel specifications: The down-sweep

74 // Set the root to 0 (does the complete top row to save a barrier/if-statement)
75 temp[H-1][t] = 0;
76 // Down-sweep phase
77 int level=H-1;
78 loop_invariant N==32 && H==6;
79 loop_invariant t>=0 && t<N;
80 loop_invariant level>=1 && level<H;
81 loop_invariant (\forall* int i; level<i && i<H; Perm(temp[i][t], write));
82 loop_invariant t<(N/2) ==> (\forall* int i; 0<=i && i<level; Perm(temp[i][t*2], write));
83 loop_invariant t<(N/2) ==> (\forall* int i; 0<=i && i<level; Perm(temp[i][t*2+1], write));
84 while((level-1)>0) {
85 level = level-1;
86 barrier(local) {
87 requires N==32 && H==6;
88 requires t>=0 && t<N;
89 requires level>=1 && level<H;
90 requires t<(N/2) ==> Perm(temp[level][t*2], write));
91 requires t<(N/2) ==> Perm(temp[level][t*2+1], write));
92

93 ensures N==32 && H==6;
94 ensures level>=1 && level<H;
95 ensures t>=0 && t<N;
96 ensures Perm(temp[level][t], write));
97 ensures t<(N/2) ==> Perm(temp[level-1][t*2], write));
98 ensures t<(N/2) ==> Perm(temp[level-1][t*2+1], write));
99 }

100 // Do next down-sweep step
101 if(t < (N/2)) {
102 temp[level-1][t*2+1] = temp[level-1][t*2] + temp[level][t]; // Set right child
103 temp[level-1][t*2] = temp[level][t]; // Set left child
104 }
105 }
106

107 // Copy the result from the tree to the output array
108 if(t < (N/2)) {
109 output[t*2] = temp[0][t*2];
110 output[t*2+1] = temp[0][t*2+1];
111 }
112 }
113 }
114 }

9


	Introduction
	GPU properties and verification
	Prefix Sums

	Research Goal
	Problem Statement
	Research Questions

	Background
	GPU execution model
	Permission-Based Separation Logic

	Implementation
	Prefix Sum algorithm
	Two-dimensional Arrays As Storage
	Algorithmic description
	Performance Comparison
	Extending to multiple workgroups

	Specification
	General
	Kernel Specifications
	Thread Specifications

	Verification
	Results
	Future Work
	References

