
Towards a
Methodology-Growing

Framework
Master’s Thesis

Author

Richard Cornelissen
University of Twente

r.cornelissen@student.utwente.nl

Supervisors (University of Twente)

Lodewijk Bergmans

Christoph Bockisch

Supervisors (Topicus)

Tom Palsma

Wouter Pollmann

November 21, 2013

mailto:r.cornelissen@student.utwente.nl

Abstract

Software development methodologies instruct teams how to collaborate on de-
veloping software for their project. Methodologies include, among others, pro-
cedures, tasks, techniques, guidelines, and tools. As each software project is
unique, each requires its own, tailored methodology, or way of working. With
an inadequate methodology, or one that remains unadopted by the team, the
project could end in failure.

The methodology-growing technique defined by Cockburn allows to create a
suitable methodology for a software project. This technique does not support
existing projects, though. Furthermore, it does not provide suggestions and
guidance what to change to the methodology.

This thesis proposes to extend the methodology-growing technique into a frame-
work that is able to support organizations in attaining suitable and adopted
methodologies for software projects. Properties of the software project are col-
lected that influence decisions on its methodology. These are used to prepare and
hold incremental reflection workshops. During these workshops, team members
collaboratively improve the methodology, making decisions on their previous
experiences and on the properties of the project.

We propose to define methodologies as a composition of software development
practices. Practices can be documented, reused and incorporated into method-
ologies when they are applicable. We propose to extend documented practices
with their usage criteria. These descriptions indicate when a practice is suitable
and how it can be adjusted to the project.

The methodology-growing framework has been applied at a small-scale project to
improve its methodology. Furthermore, surveys have been held with employees
at the organization where the project is located. The case study and evaluation
together show the framework is usable to improve the methodologies of software
projects.

iii

Acknowledgements

The following people have supervised the research and the writing of this thesis.
This research took place in a project called Findesk at Topicus, an organization
located mainly in Deventer, The Netherlands.

dr.ir. Lodewijk M.J. Bergmans

The first supervisor from the University of Twente, with whom I have discussed
in length about methodologies, relevant literature, changing the methodology in
practice, the design of the framework and the writing of this thesis.

dr.ing. Christoph M. Bockisch

The second supervisor as well as my mentor from the University of Twente, who
has helped in structuring and improving this thesis.

Tom Palsma, MSc

Supervisor and project manager at Findesk, who has helped apply the designed
framework together with his team. He has also provided guidance, feedback and
support in writing this thesis.

Ir. Wouter Pollmann

Supervisor and director at Findesk, who has guided me in designing the frame-
work as a whole and motivated me to use it in practice at Findesk. He has
also introduced me to the idea of discussing the framework with the interviewees
listed below.

Interviewees

The following people are employees at Topicus who are experienced in different
aspects of software development. They have helped me in designing the frame-
work through extended discussions. Furthermore, they have filled in surveys for
evaluation and have provided detailed comments.

• Marco van de Haar – Senior software developer.
• Sander Hofstee – Senior software developer.

v

• Nicky Koenders – Product owner for a project using Scrum.
• Sander van Loon – Process engineer.
• Marco Scholten – Senior software developer.
• Daan Verbree – Product manager and team leader.

Lastly, I would like to thank all employees at Topicus for providing a fun place
to perform my final project, especially those who have helped me evaluate the
methodology-growing framework.

vi Richard Cornelissen

Contents

1 Introduction & Motivation 1
1.1 Background . 1
1.2 Research objectives . 3

1.2.1 Main objective . 3
1.2.2 Research questions . 3
1.2.3 Definitions . 4

1.3 Approach . 5
1.4 Evaluation approach . 6

2 Methodology Design 7
2.1 Conceptual terms . 7
2.2 Methodology design principles . 9

1. Interactive, face-to-face communication is the cheapest and
fastest channel for exchanging information 9

2. Excess methodology weight is costly 9
3. Larger teams need heavier methodologies 10
4. Greater ceremony is appropriate for projects with greater crit-

icality . 10
5. Increasing feedback and communication reduces the need for

intermediate deliverables 11
6. Discipline, skills and understanding counter process, formality

and documentation . 11
7. Efficiency is expendable in non-bottleneck activities 12

3 Methodology Composition 15
3.1 SEMAT Kernel . 16

3.1.1 Alphas . 17
3.1.2 Activity spaces . 18

3.2 Practice library . 19
3.2.1 Purpose . 21

vii

Contents

3.2.2 Prerequisites . 21
3.2.3 Necessary commitment . 22
3.2.4 Tailoring . 22

3.3 Documenting software development practices 23

4 Project Inventory 27
4.1 Project properties . 28
4.2 Team member properties . 32
4.3 Solution properties . 33
4.4 Methodology properties . 34
4.5 Project inventory interview . 36

5 Methodology-Growing Framework 39
5.1 Composing the methodology . 39
5.2 Applying the framework . 44

Step 1. Project inventory . 44
Step 2. First practice attempt . 45
Step 3. Preparing reflection workshops 45
Step 4. Holding reflection workshops 48
Step 5. Changing the methodology 50
Step 6. Middle of the increment 51

5.3 Start of a new project . 51
5.3.1 First proposal . 52
5.3.2 First reflection workshop 52
5.3.3 First practice attempt . 52

5.4 Summary . 53

6 Case Description 55
6.1 Project inventory . 55

6.1.1 Project properties . 56
6.1.2 Team member properties 58
6.1.3 Solution properties . 59
6.1.4 Methodology properties 60
6.1.5 Summary . 62

6.2 First iteration . 63
6.2.1 First practice attempt . 63
6.2.2 Preparation of the reflection workshop 63
6.2.3 First reflection workshop 65

viii Richard Cornelissen

Contents

6.2.4 Changing the methodology 67
6.3 Second iteration . 69

6.3.1 Preparation of the reflection workshop 69
6.3.2 Second reflection workshop 71
6.3.3 Changing the methodology 73

6.4 Reflection on the methodology 75

7 Evaluation 77
7.1 Employee survey . 77

7.1.1 Survey results . 78
7.1.2 Summary . 80

7.2 Team member & experienced employee survey 81
7.2.1 Survey results . 81
7.2.2 Additional survey results 86
7.2.3 Summary . 87

8 Conclusion 89
8.1 Conclusions . 89
8.2 Contribution . 93
8.3 Business recommendations . 94
8.4 Limitations and future work . 95
8.5 Concluding remarks . 97

Bibliography 99

A Experienced employee interviews 104
A.1 First interview . 105
A.2 Second interview . 107

B Practice Library 109
B.1 Weekly Cycle . 111

B.1.1 Usage criteria . 112
B.1.2 Alphas (things to work with) 113
B.1.3 Work products (artifacts to maintain) 114
B.1.4 Activities (things to do) 115

B.2 Daily Standup . 117
B.2.1 Usage criteria . 118
B.2.2 Alphas (things to work with) 119

Richard Cornelissen ix

Contents

B.2.3 Activities (things to do) 120
B.3 MoSCoW Prioritization . 121

B.3.1 Usage criteria . 122
B.3.2 Alphas (things to work with) 123
B.3.3 Work products (artifacts to maintain) 124
B.3.4 Activities (things to do) 125

B.4 Pair Programming . 127
B.4.1 Usage criteria . 128
B.4.2 Alphas (things to work with) 129
B.4.3 Activities (things to do) 130

B.5 Seasons of the Day . 131
B.5.1 Usage criteria . 132
B.5.2 Alphas (things to work with) 133

B.6 Visualize Workflow . 135
B.6.1 Usage criteria . 136
B.6.2 Alphas (things to work with) 137
B.6.3 Work products (artifacts to maintain) 138
B.6.4 Activities (things to do) 139

C Project inventory interview 143

D Social adoption measurement form 147

E Questionnaires 149
E.1 Evaluation by employees . 150
E.2 Evaluation at Findesk . 153
E.3 Evaluation with experienced employees 155

F Survey results 157
F.1 Employee survey results . 157
F.2 Findesk team member survey results 158
F.3 Experienced employee survey results 159

x Richard Cornelissen

Chapter 1

Introduction & Motivation

This chapter introduces software development methodologies and states
the goal of this thesis. The problem statement is defined and research
questions are stated that have specified the focus of the performed
research.

§
This thesis will propose a framework for attaining and improving methodolo-
gies within a project. It has been applied within a single case to improve the
methodology of a two year old project in the financial domain.

1.1 Background

Definition of methodology

A software development methodology can be defined as a means to achieve the
development of systems, based on an underlying philosophy. Methodologies can
include, among others, phases, procedures, tasks, rules, techniques, guidelines
and tools [4, 30].

Benefits

Methodologies are useful for a number of reasons [4, 12, 25, 30]:

• Methodologies can increase transparency of the development process, which
facilitates management and control of the project and thereby reduces risks
and uncertainty.

• They can increase productivity and quality as necessary resources can be
predicted beforehand.

• Methodologies divide the complex process of software development into plau-
sible, consistent steps.

1

CHAPTER 1. INTRODUCTION & MOTIVATION

Furthermore, according to Cockburn [8], methodologies can

• Introduce new people to their jobs.
• Delineate responsibilities.
• Show progress.
• Provide a curriculum for education.

Agile methodologies

The Agile Manifesto provides a guideline for a new class of methodologies that
emerged in the mid-nineties: the agile methodologies [6]. The Manifesto in-
cludes twelve principles for agile methodologies, focusing on customer satisfac-
tion, changing requirements, frequent delivery, and other aspects to software
development. Agile methodologies have gained increasing acceptance in the IT
industry, as a number of surveys show [1, 26, 28, 29, 32], with up to 80% of the
respondents indicating they use some agile methodology.

Surveys show agile methodologies are adopted for the following reasons [26, 32]:

• They shorten time to market.
• They manage changing requirements.
• They increase productivity and quality.
• They increase predictability and better align business and IT.
• They reduce waste.

Adoption

Usage of methodologies is hard to measure because of bias and focus on specific
methodologies [10]. Surveys and research indicate, though, that many organiza-
tions are not using any methodology [12, 13, 14]. Among other reasons, this is
caused by the selection of methodologies by management, who see more benefits
to their use than developers, resulting in an unadopted methodology [14].

Furthermore, using an inappropriate or inadequate methodology can result in
development failures [33]. Every project calls for a different methodology that
fits both the project and the problem [8]. Attaining a methodology that is
appropriate and adequate for the project, as well as accepted and adopted by
developers is therefore important.

Tailoring

Fitzgerald suggests that methodologies that are tailored to the organization are
more likely to be adopted [11]. A methodology is tailored to the needs of the
development environment, for which parts of the methodology can be omitted

2 Richard Cornelissen

1.2. RESEARCH OBJECTIVES

or described in a broader sense. Instead of describing the exact way develop-
ment should take place, the tailored methodology often specifies activities and
objectives in less detail.

In order to tailor a methodology, Cockburn has designed a methodology-growing
technique [8]. With it, teams can construct and tune their own methodology “on-
the-fly”, beginning with a selected base methodology and iteratively tuning it to
better fit the project and the team members. Tuning is achieved by holding
reflection workshops. In these workshops, teams discuss what they have learned
during an increment and decide what they will improve.

Problem statement

The methodology-growing technique provides a guideline for iteratively tailoring
methodologies. In doing so, teams look into “things to try” for their methodology.
The technique does not, however, include a manner of composing methodologies.
It also does not provide suggestions of practices that can be applied within the
project. If teams want to look into new or alternative practices, they are required
to do their own research.

Cockburn’s technique also does not provide instructions for modifying the method-
ology of an existing project. Applying the technique to an existing project would
require it to replace its entire methodology. According to Anderson, this would
result in an unadopted methodology, as team members are likely to resist the
change [3].

1.2 Research objectives

1.2.1 Main objective

This thesis will extend the methodology-growing technique to both support ex-
isting projects and to suggest new practices that can be applied within projects.
The main objective of this thesis is:

Designing a framework able to support organizations in attaining
adequate agile software development methodologies for new and ex-
isting software projects.

1.2.2 Research questions

The following research questions will be the guideline to design such a framework.

Richard Cornelissen 3

CHAPTER 1. INTRODUCTION & MOTIVATION

1. For a given software project, how can suitable software devel-
opment practices be identified and incorporated into a coherent
methodology?
To improve a methodology, Cockburn indicates teams look into possible im-
provements, but does not include guidelines toward identifying these [8]. The
following subquestions aid in the answer of the main research question:

a) How can software development practices be documented?

b) How can usage criteria of documented practices be described?

c) How can software development practices be incorporated into a coherent
methodology?

2. How can software development practices be selected and adopted
in both new and existing software projects?
Previous work in this area has not addressed how both new and existing
projects can attain a suitable methodology. Many techniques only support
newly starting projects or replacing the current methodology entirely, such
as the methodology-growing technique by Cockburn and the decision model
introduced by Vavpotič and Vasilecas [8, 31]. As explained earlier in this
chapter, replacing the entire methodology is likely to result in an unadopted
methodology.
The goal of this thesis is not to help projects achieve a theoretically perfectly
suitable methodology, but rather to help them attain a methodology team
members will truly adopt. The following subquestions aid in the answer of
the main research question:

a) Which properties of software projects are important for making decisions
on a methodology?

b) How do identified properties of software projects apply to new or existing
software projects?

c) How do identified properties of software projects affect decisions regard-
ing a methodology?

d) By what method can software development practices be adopted in a
methodology?

1.2.3 Definitions

The main objective and research questions use terms that are defined next:

4 Richard Cornelissen

1.3. APPROACH

Software development practice A repeatable approach to doing something
with a specific purpose in mind [16]. For software engineering, practices
provide guidance to deal with some dimension of software development.

Software development methodology A means to achieve the development of
systems, based on an underlying philosophy. Methodologies can include,
amongst others, phases, procedures, tasks, rules, techniques, guidelines
and tools [4, 30].

Software project A software project can be defined as an endeavor in which
people collaborate on developing software towards a solution.

1.3 Approach

To answer the research questions and accomplish the stated goal, the following
approach has been used:

• Existing design principles for creating and adjusting methodologies are de-
scribed in Chapter 2.

• A meta-model for methodologies to decompose them in smaller, reusable
parts has been selected and discussed in Section 3.1.

• A library of reusable practices, appended with a description of their pur-
pose, prerequisites, necessary commitment, and how they can be tailored, is
described in Section 3.2.

• A ways of documenting reusable practices has been defined in Section 3.3.
• Properties of software projects that are important for making decisions on a

methodology have been identified and discussed in Chapter 4.
• Checklists for composing methodologies out of reusable practices are pro-

vided in Section 5.1.
• A framework extending the methodology-growing technique is discussed in

Section 5.2.
• This framework has been applied in practice at a small-scale, two year old

project, as discussed in Chapter 6.
• Surveys are held amongst employees at Topicus, with the team members

of the project at which the framework was applied, and with a number of
employees experienced with software development and methodologies. The
surveys and the results are discussed in Chapter 7.

Finally, Chapter 8 answers the research questions and discusses the contributions
and limitations of this thesis.

Richard Cornelissen 5

CHAPTER 1. INTRODUCTION & MOTIVATION

1.4 Evaluation approach

This thesis has led to the design of a framework for improving software develop-
ment methodologies. It has been evaluated within Topicus, where the research
took place.

Firstly, the framework has been applied in practice at a small-scale project in a
growing organization. This case study is described in Chapter 6. Team members
of the project were asked to complete a survey on their opinion of the framework.

Secondly, six experienced employees within the organization have aided in the
design of the framework by discussing it in detail. The discussions were held
as two semi-structured interviews. The used forms are included in Appendix A.
During the discussions, the framework was explained in detail. Their comments
and feedback have aided in the design of the framework. They have also been
asked to complete a survey on their opinion of the framework. This survey was
an extended version of the one completed by the team members.

Lastly, employees within the organization have been asked to fill in a short
survey. This survey determined whether the framework is in line with how
employees with different roles and responsibilities would want to improve their
methodology.

6 Richard Cornelissen

Chapter 2

Methodology Design

This chapter discusses concepts and design principles for software
development methodologies. These are used to discuss and make de-
cisions on methodologies.

§
Conceptual terms that are used for describing methodologies, as defined by Cock-
burn [8], are first introduced in Section 2.1. These are also used in Section 2.2,
where methodology design principles are discussed.

2.1 Conceptual terms

Cockburn discusses the design of methodologies using the conceptual terms de-
scribed in this section [8]. These definitions are used in the methodology design
principles described in Section 2.2. Some of the terms described by Cockburn
have not been included in this section as they remain unused within the rest of
this thesis.

Methodology size

The size of a methodology is defined as the number of control elements included
in it. These include deliverables, standards, conventions, activities, quality mea-
sures and technique descriptions.

A larger methodology, with more control elements, is said to be more prescrip-
tive, while a lighter methodology is more adaptive [21].

Ceremony

The ceremony of a methodology is the amount of precision and the tightness
of tolerance, both explained in this section later on. The necessary amount of

7

CHAPTER 2. METHODOLOGY DESIGN

ceremony of a methodology depends on the system criticality which is explained
below.

The past experience of the author of the methodology also affects its included
ceremony. Authors tend to include additional ceremony on everything they have
seen gone wrong.

Methodology weight

The weight of a methodology is the product of its size and ceremony. This
is a conceptual product, as it cannot be expressed as a number. The term
methodology weight is used to indicate and compare the size and ceremony of
methodologies.

Problem size

The problem size is defined as the number of elements in the problem and their
cross-complexity. This indicates how hard it is to solve a problem. The problem
size cannot be shown as an absolute measure, but the difficulty of different
problems can often be compared.

Project size

The project size is the number of people whose efforts need to be coordinated.
Depending on the project, the methodology might only need to coordinate devel-
opment efforts, or might need to coordinate an entire department with different
roles.

System criticality

The criticality of a system is the potential damage an undetected defect in the
system can bring. Cockburn recognized four main classes [7].

• Loss of comfort
With a system failure, only comfort is lost, such as having to do what the
system automatically does by hand. Purchase support systems fall in this
category.

• Loss of discretionary moneys
System failure results in loss of money, but only in the range of discomfort,
such as the failure of an invoicing system. The loss of money can be recovered.

• Loss of irreplaceable moneys
If the system would fail, any money lost cannot be recovered by hand or
after system recovery. Bank account systems fall under this category.

8 Richard Cornelissen

2.2. METHODOLOGY DESIGN PRINCIPLES

• Loss of life
System failure will put human life will be at stake. A well-known example
would be system failures at nuclear power plants.

Stability

Stability is defined as the likelihood that something will change. Cockburn
identifies three stability states:

• Wildly fluctuating, in which there is great likelihood something will change.
This is often the case when development has just started.

• Varying, in which the details are likely to change. The stability of develop-
ment is often in this state in the middle of an increment.

• Relatively stable, where there is a limited amount of things that can still
change. This is the case at the end of a successful increment.

2.2 Methodology design principles

Cockburn has documented seven principles for designing and evaluating method-
ologies [8].

1. Interactive, face-to-face communication is the cheapest and
fastest channel for exchanging information

Creating software is easier and less expensive if the entire team is sitting together
and has frequent and easy direct contact.

As the problem size increases, direct communication will become more difficult
to arrange, as more people are needed to solve the problem (also see the third
principle). This results in increased cost of communication, as well as decreased
quality of communication and more difficulty in developing the software.

This principle does not entail all software can nor should be developed by a small
group of people in a single room. Principle 3 describes that as the problem size
increases, the project size needs to increase to cope.

2. Excess methodology weight is costly

Letting team members spend time producing artifacts, such as intermediate
work products, charts, documents or plans, takes time away from development.
Adding elements to the methodology means adding workload to the team, which

Richard Cornelissen 9

CHAPTER 2. METHODOLOGY DESIGN

Figure 2.1: Problem size and methodology weight for a given project size [8].

decreases productivity. Adding a seemingly small amount of this methodology
weight will add a large cost. Figure 2.1 shows the effect of adding methodology
weight and shows that a fixed team size can often work on a larger problem with
a lighter methodology.

Removing methodology elements can increase productivity of the team. But
eventually, this approach can affect the elements that address (code) quality, in
which case the removal of elements can backfire. Therefore, only excess weight
should be removed, though what is excess is hard to determine. Cockburn sug-
gests starting with a lighter methodology and adding elements where necessary.

3. Larger teams need heavier methodologies

As the project size increases, it becomes less clear what each team member is
doing within the project. More coordination is required to ensure their work does
not overlap or interfere with each other. In this case, heavier methodologies are
necessary to offer this coordination. The relation between methodology weight
and problem size, with a large number of people, is shown in Figure 2.2.

Principle 2 also applies to heavy methodologies, as shown in the right-most part
of Figure 2.2.

4. Greater ceremony is appropriate for projects with greater
criticality

The criticality of a project is an indication of the potential damage if the de-
veloped system were to fail. The ceremony of a methodology is the amount

10 Richard Cornelissen

2.2. METHODOLOGY DESIGN PRINCIPLES

Figure 2.2: Problem size and methodology weight for a high project size [8].

of precision and the tightness of tolerance included in it. As the criticality in-
creases, there is less tolerance for error. Additional costs to prevent defects in the
system become justified and tighter control mechanisms within the methodology
are necessary.

According to the second principle, additional methodology weight is costly. In
projects with high criticality, however, this weight is not excess, it is added to
prevent potential costs.

5. Increasing feedback and communication reduces the need for
intermediate deliverables

Intermediate deliverables, such as refined requirements documents, are used in-
ternally (within the team) to facilitate decisions. There are two ways to reduce
the need of these deliverables:

• Deliver a working increment of the system quickly enough for rapid feedback
that will indicate whether the system is developing in the right direction.

• Reduce the team size so that everyone is close enough for direct communi-
cation. This way, no internal documents are necessary.

6. Discipline, skills and understanding counter process, formality
and documentation

• Documentation is not the same as understanding. Most knowledge
within a project is tacit knowledge, which cannot be documented. Only a
small part of everything necessary to know within the project can be docu-
mented.

Richard Cornelissen 11

CHAPTER 2. METHODOLOGY DESIGN

Figure 2.3: Discipline, skills and understanding counter process, formality and
documentation [8].

• Process is not the same as discipline. In case of a process, people follow
instructions that have been defined for them. Discipline means people have
chosen to work in a consistent way. Therefore, process does not necessarily
impart discipline.

• Formality is not the same as skill. Filling in forms cannot replace the
skills of people. System architecture designers, for example, will apply use
cases to create designs of the system and will rework this over time to improve
it. No formality will be able to replace this skill.

Heavy methodologies often rely on process, formality and documentation, which
optimize activities. These methodologies work better when the problem domain
is well known and there is no need to adapt to changes. This gives the project the
chance to optimize its costs. Lighter methodologies cling to discipline, skills and
understanding, which can be labeled as adapting. This difference is displayed
in Figure 2.3. Lighter methodologies are better when circumstances change and
when the problem domain is not well known.

7. Efficiency is expendable in non-bottleneck activities

A bottleneck activity is one whose speed determines the speed of the entire
project. Take, for instance, a project with a group of developers and a single

12 Richard Cornelissen

2.2. METHODOLOGY DESIGN PRINCIPLES

database administrator (DBA). All developers generate work for the DBA, but
the DBA is unable to keep up with the generated workload.

Such a situation can be improved by getting work to a more complete and stable
state before passing it to the bottleneck activity. In the example, developers
could spend more time drawing designs so the DBA can understand what has to
be done more easily. The bottleneck activity can then be done as efficiently as
possible, with the least amount of rework. The activities before the bottleneck
activity will contain more rework, thus working less efficient, but enabling the
bottleneck to be efficient.

Richard Cornelissen 13

Chapter 3

Methodology Composition

This chapter proposes a way to decompose software development method-
ologies into smaller practices. In doing so, practices can be docu-
mented and extended with their usage criteria for reusability.

§

Methodologies are often seen as a composition of smaller parts into a whole.
For instance, Cockburn describes methodologies as a structure of 13 types of
related elements [8]. Another example is the Software & Systems Process Engi-
neering Metamodel (SPEM), a meta-model for defining processes, such as entire
methodologies [23]. Elements of a methodology can be added, replaced, dis-
carded, altered, and adjusted to the project where they are applied.

In this thesis, we define methodologies as a composition of software devel-
opment practices, as proposed by the SEMAT initiative [18]. Software En-
gineering Method and Theory (SEMAT) is an initiative started in 2009 by
Jacobson, Meyer, and Soley “with the aim of refounding software engineer-
ing as a rigorous discipline” [17]. In contribution to this goal, a kernel in
which to describe methodologies and practices has been defined so they can
be composed, simulated, applied, compared, evaluated, measured, taught, and
researched [16, 19, 24].

This chapter first describes the SEMAT Kernel in Section 3.1. Section 3.2 ex-
tends the documentation possible with the Kernel, proposing that by adding
usage criteria of practices, they can be stored in a library and reused. Finally,
Section 3.3 provides instructions on how practices can be documented, using the
Weekly Cycle as an example [5].

15

CHAPTER 3. METHODOLOGY COMPOSITION

practice

extends

Activity space

alpha

*

competency

*

*

Methodology

composed of

*
SEMAT Kerneldefined in

Figure 3.1: Methodology composition using the SEMAT kernel.

Definition of software development practice

SEMAT defines a practice as a repeatable approach that provides guidance to
deal with some dimension of software development [16].

3.1 SEMAT Kernel

The SEMAT Kernel is divided into three areas of concerns: the Customer, the
Solution, and the Endeavor [16]. Each area of concern contains alphas, activity
spaces, and competencies, explained below.

Figure 3.1 depicts how methodologies are composed of practices, which can be
documented using the Kernel. The symbols defined by SEMAT is used in com-
bination with UML class diagram notation to show relationships. Practices,
alphas, activity spaces, activities, and competencies all have their own symbols,
which have been annotated with their name for clarification.

Note that SEMAT uses the composition notation also present in UML differently,
for instance to indicate a practice extends an alpha from the Kernel [24]. In this
chapter, only the symbols of SEMAT are used. In Appendix B, however, all
diagrams are in SEMAT notation.

16 Richard Cornelissen

3.1. SEMAT KERNEL

Essence 1.0 Beta 1 14

Figure 3 – The Kernel Alphas

In the customer area of concern the team needs to understand the stakeholders and the opportunity to be
addressed:

1. Opportunity: The set of circumstances that makes it appropriate to develop or change a software system.

The opportunity articulates the reason for the creation of the new, or changed, software system. It represents
the team’s shared understanding of the stakeholders’ needs, and helps shape the requirements for the new
software system by providing justification for its development.

2. Stakeholders: The people, groups, or organizations who affect or are affected by a software system.

The stakeholders provide the opportunity and are the source of the requirements and funding for the
software system. The team members are also stakeholders. All stakeholders must be involved throughout
the software engineering endeavor to support the team and ensure that an acceptable software system is
produced.

In the solution area of concern the team needs to establish a shared understanding of the requirements, and
implement, build, test, deploy and support a software system that fulfills them:

3. Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the software system, share this understanding among the
stakeholders and the team members, and use it to drive the development and testing of the new system.

4. Software System: A system made up of software, hardware, and data that provides its primary value by the
execution of the software.

The primary product of any software engineering endeavor, a software system can be part of a larger
software, hardware or business solution.

In the endeavor area of concern the team and its way-of-working have to be formed, and the work has to be
done:

5. Work: Activity involving mental or physical effort done in order to achieve a result.

Figure 3.2: Alphas in the SEMAT Kernel [24].

3.1.1 Alphas

Alphas are representations of essential things to work with when developing soft-
ware [16]. Figure 3.2 shows all alphas included in the Kernel and their relations.
For instance, the Endeavor area of concern includes the Team that applies its
Way of Working, which in turn guides the Work that the team performs. Alphas
have states that reflect the current status of the development endeavor. The
Software System, for instance, can be in states Architecture Selected through
Retired.

Figure 3.3 shows the structure of alphas and sub-alphas that extend their parent
alpha. States are defined which alphas can be in. An alpha enters a state when
its defined checkpoints are achieved. The Requirements alpha, for instance, is in
the Addressed state when the following checkpoints are achieved:

• Enough of the requirements are addressed for the resulting system to be
acceptable to the stakeholders.

• The stakeholders accept the requirements as accurately reflecting what the
system does and does not do.

• The set of requirement items implemented provide clear value to the stake-
holders.

• The system implementing the requirements is accepted by the stakeholders
as worth making operational.

Richard Cornelissen 17

CHAPTER 3. METHODOLOGY COMPOSITION

alpha

SEMAT Kernel

defined in

Work
Product

State

has

can be in

*

*

Level of
detail

can be in

*

Section
contains

*

sub-alpha

Figure 3.3: Structure of (sub-)alphas.

Adding a sub-alpha beneath an extended alpha implies the sub-alpha contributes
to its parent alpha in some way. A multiplicity is added to this relation, for
instance to show that the Week sub-alpha of the Weekly Cycle occurs multiple
times under Work, as further explained in Section 3.3.

Alphas and sub-alphas can contain work products. A multiplicity is added to
show the possible number of each work product type, for example “1..*”. The
work products can be in defined levels of detail and can contain multiple sections
describing its contents.

Practices can also add additional details to alphas they extend from the Kernel.
For instance, the Requirements alpha has an additional state Prioritized with
the MoSCoW Prioritization practice, described in Appendix B.3.

3.1.2 Activity spaces

Activity spaces contain essential things to do while developing software [16]. Ex-
amples of activity spaces are Implement the System, and Explore Possibilities.
Note that these are not activities but that practices add activities to their cor-
responding activity space. See Figure 3.4 for all activity spaces included in the
Kernel, grouped by area of concern.

Activities described in a practice are added under their corresponding activity
spaces, which are extended by the practice. This is shown in Figure 3.5. Ac-
tivities have any number of (sub-)alphas as input, on which some operation is

18 Richard Cornelissen

3.2. PRACTICE LIBRARY

Essence 1.0 Beta 1 15

In the context of software engineering, work is everything that the team does to meet the goals of producing
a software system matching the requirements, and addressing the opportunity, presented by the
stakeholders. The work is guided by the practices that make up the team’s way-of-working.

6. Team: A group of people actively engaged in the development, maintenance, delivery or support of a
specific software system.

One, or more, teams plan and perform the work needed to create, update and/or change the software system.

7. Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working
environment. As their work proceeds they continually reflect on their way of working and adapt it as
necessary to their current context.

8.1.5 Activity Spaces: The Things to Do
The kernel also provides a set of activity spaces that complement the Alphas to provide an activity based view of
software engineering. The kernel activity spaces are shown in Figure 4.

In the customer area of concern the team has to understand the opportunity, and involve the stakeholders:

1. Explore Possibilities: Explore the possibilities presented by the creation of a new or improved software
system. This includes the analysis of the opportunity to be addressed and the identification of the
stakeholders.

2. Understand Stakeholder Needs: Engage with the stakeholders to understand their needs and ensure that
the right results are produced. This includes identifying and working with the stakeholder representatives to
progress the opportunity.

3. Ensure Stakeholder Satisfaction: Share the results of the development work with the stakeholders to gain
their acceptance of the system produced and verify that the opportunity has been successfully addressed.

4. Use the System: Observe the use of the system in a live environment and how it benefits the stakeholders.

Figure 4 – The Kernel Activity Spaces

Figure 3.4: Activity spaces in the SEMAT Kernel [24].

performed.

Completion criteria are added to activities, which point to levels of detail (of
work products) and states (of alphas). When an activity is performed, these
levels and states are achieved for the corresponding work products and alphas.
For instance, performing the Weekly Planning Meeting of the Weekly Cycle
practice, used as an example in Section 3.3, means the Week Backlog work
product reaches the Filled state.

Activities can also indicate the competency that is accountable for performing
it, though not shown in the figure. Competencies are defined in the Kernel to
represent the key competencies required to perform software engineering. Figure
3.6 lists all predefined competencies. Competencies are still a work in progress
at the time of writing and therefore remain largely unused within this thesis [16].

3.2 Practice library

Using SEMAT, software development practices can be documented and stored
in a library for reuse with other projects and methodologies. To incorporate
practices into the methodology of a software project, we propose to extend the
documentation of practices to include their purpose, prerequisites, necessary
commitment, and possible ways of tailoring them.

Richard Cornelissen 19

CHAPTER 3. METHODOLOGY COMPOSITION

activity space

alpha

SEMAT Kernel

defined in

activity

contains

*

input

*

Alpha completion
criteria

Work product
completion criteria

achieves

achieves

*

*

Work
Product

State

has

can be in

*

*

Level of
detail

can be in

*

reaches

reaches

1

1

Figure 3.5: Relationship between activities, work products, and alphas.

20 Richard Cornelissen

3.2. PRACTICE LIBRARY

Essence 1.0 Beta 1 17

Figure 5 – The Kernel Competencies

In the customer area of concern the team has to be able to demonstrate a clear understanding of the business
and technical aspects of their domain and have the ability to accurately communicate the views of their
stakeholders. This requires the following competencies to be available to the team:

 Stakeholder Representation: This competency encapsulates the ability to gather, communicate, and
balance the needs of other stakeholders, and accurately represent their views.

In the solution area of concern the team has to be able to capture and analyze the requirements, and build and
operate a software system that fulfills them. This requires the following competencies to be available to the
team:

 Analysis: This competency encapsulates the ability to understand opportunities and their related
stakeholder needs, and transform them into an agreed and consistent set of requirements.

 Development: This competency encapsulates the ability to design and program effective software systems
following the standards and norms agreed by the team.

 Testing: This competency encapsulates the ability to test a system, verifying that it is usable and that it
meets the requirements.

In the endeavor area of concern the team has to be able to organize itself and manage its work load. This
requires the following competencies to be available to the team:

 Leadership: This competency enables a person to inspire and motivate a group of people to achieve a
successful conclusion to their work and to meet their objectives.

 Management: This competency encapsulates the ability to coordinate, plan and track the work done by a
team.

Each competency has five levels of achievement. These are standard across all of the kernel competencies and
summarized in Table 1. The table reads from top to bottom with the lowest level of competency shown in the
first row and the highest in the last row.

Figure 3.6: Competencies in the SEMAT Kernel [24].

3.2.1 Purpose

We propose to add a description of the purpose of each practice to its documen-
tation. This description explains why a practice should be incorporated within
the methodology of a project. When considering a practice, its purpose helps
identify if it would be of use to the project and the team.

The purpose of a practice can touch many aspects of software development. For
example, the User Stories practice would have the following purposes:

• Tasks are written as customer-visible functionality.
• Tasks are displayed on index cards on a card wall, making it possible to track

their progress.

3.2.2 Prerequisites

Each practice has prerequisites before they can be applied within a project.
Three types are recognized:

• Requirements that can be described using properties of the project. The
Daily Standup, for instance, requires the team to be located close together.

• Dependencies on other practices. For example, the Weekly Cycle requires
the use of User Stories so a customer representative can understand the tasks
he choses to be on the agenda for the next week.

Richard Cornelissen 21

CHAPTER 3. METHODOLOGY COMPOSITION

• Other prerequisites, such as the necessity of a certain expertise. Visualize
Workflow, for example, needs an outline of the workflow within the project
before a card wall can be prepared and tasks can be tracked along this
workflow.

We propose to add the prerequisites so they can be used as guidelines when
considering if and how to incorporate a practice into a methodology. Using the
description of how a practice can be tailored of Section 3.2.4, the practice can
be adjusted to fulfill its prerequisites as well.

As an example, Scrum requires the availability of a domain expert to fill the
role of Product Owner. This role can also be filled by a representative to which
customers can relay requirements of the system under development.

Aside from tailoring a practice, the project can be changed to accommodate for
the prerequisites of a practice as well. For example, a team that has been spread
across two floors can be moved to a single floor, fulfilling the prerequisite of the
Daily Standup.

3.2.3 Necessary commitment

Practices require certain work and activities to be carried out to apply it cor-
rectly. This is documented as the necessary commitment of a practice. Among
others, include regular activities, meetings, and maintained work products. This
description gives an idea of the additional methodology weight and of the work-
load demanded of the team. It helps in considering whether to incorporate a
practice in the methodology of a project.

For example, Scrum requires two regular meetings: a planning meeting for
scheduling the next increment, and a review meeting for demonstrating what
has been achieved.

3.2.4 Tailoring

In many cases, practices will need to be tailored to a project before they can be
applied. We propose to add a description of how practices can be tailored to the
project, without damaging its purpose. Practices described in literature often
already contain instructions for adjusting it to a project.

This description can be used to better fit the practice to the project and the
team. Furthermore, the practice might need to be adjusted so its prerequisites
are met.

22 Richard Cornelissen

3.3. DOCUMENTING SOFTWARE DEVELOPMENT PRACTICES

For instance, Scrum can be used with different increment lengths [27].

3.3 Documenting software development practices

This section describes how software development practices can be documented
with the SEMAT Kernel. The EssWork Practice Workbench has been used,
which supports documenting practices with the Kernel [15].

The Weekly Cycle has been used as an example throughout this section [5].
Extreme Programming has combined this practice with User Stories and Test-
First Programming, which are filtered out of the practice description. The entire
documentation of the Weekly Cycle is available in Appendix B.1.

The following steps explain how practices can be documented.

1. Identify and extend alphas

The SEMAT Kernel predefines seven alphas, or “things to work with”. Go over
each of these and decide whether the practice extends the alpha.

For instance, the Weekly Cycle extends the Work alpha, as it instructs the team
that work is performed in weekly increments.

2. Add sub-alphas to alphas where appropriate

Adding a sub-alpha to an alpha implies the practice contributes to this alpha in
some way.

For the Weekly Cycle, a sub-alpha Week is added under the Work alpha to
denote work is divided in weeks. TheWeek sub-alpha is given the states Planned,
In Progress, Concluded, and Closed, showing how a workweek progresses. As
multiple weeks are held, the multiplicity between Work and Week is set to “1..*”.

Extend any additional alphas if new sub-alphas are discovered.

3. Add work products to alphas and sub-alphas

Add work products defined in the practice to their corresponding alphas or sub-
alphas. Add levels of detail and sections that match the description in the
practice.

For the Weekly Cycle, when workweeks are scheduled, a backlog is created con-
taining the work items the team will complete the upcoming week. Correspond-
ingly, the Week Backlog work product is added to the Week sub-alpha with
Filled and Completed as levels of detail. No sections for the Week Backlog are

Richard Cornelissen 23

CHAPTER 3. METHODOLOGY COMPOSITION

described. As a single Week Backlog is created every week, the multiplicity from
Week to the Weekly Backlog work product is set to “1”.

If additional work products are discovered, extend the corresponding alphas if
the practice does not do so yet.

The Weekly Cycle includes a Weekly Increment work product corresponding
to the Software System alpha, which the practice will need to extend. The
work product is added under the Software System alpha. The work product
has Planned and Complete as levels of detail, which show that an increment
to the system will first be scheduled and finally be completed. No sections are
described. As the Software System is built by implementing multiple Weekly
Increments, the multiplicity between these two is set to “1..*”.

4. Identify activities and extend corresponding activity spaces

The Kernel predefines fifteen activity spaces, or “things to do”. Look into the
activities present in the practice and extend the activity spaces under which
these belong.

The Weekly Cycle specifies two activities: a meeting held at the beginning of
every week and deploying a new version of the system at the end of the week.
The practice therefore extends the Deploy the System and Prepare to do the
Work activity spaces.

5. Add activities to identified activity spaces

Describe the activities within the practice under the corresponding activity
spaces.

For the Weekly Cycle, the Weekly Planning Meeting activity is added under Pre-
pare to do the Work. The meeting takes the Requirements alpha from the Kernel
as alpha input directly, as the backlog will be planned using these requirements.
It has three completion criteria: the Week and Weekly Increment are Planned
and the Weekly Backlog is Filled. The activity Deploy Increment is added un-
der Deploy the System with three completion criteria: the Weekly Increment is
Complete, the Week is Concluded, and the Software System is Operational.

Although competencies in the Kernel are still a work in progress, specifying an
accountable competency makes it clear what role is necessary for completing
the activity. For the Weekly Planning Meeting, this is the Stakeholder Repre-
sentative present in the Kernel. For Deploy Increment, this is the Development
competency.

24 Richard Cornelissen

3.3. DOCUMENTING SOFTWARE DEVELOPMENT PRACTICES

Note that additional alphas or sub-alphas can be discovered at this point, as
activities take alphas as input.

6. Specify usage criteria of the practice

Lastly, specify the usage criteria of the practice, as defined in Section 3.2. These
can already be described in the literature where the practice is explained, but
can become more apparent when the team gains experience with applying the
practice.

For the Weekly Cycle, the following are identified from literature.

Purpose

• Focus to finish a deployable system every Friday.
• Have short iterations and thus receive feedback from customers often.
• Letting teams reflect on their progress often.
• Perform and reflect on experiments within their workplace, such as changing

details to the methodology, weekly.

Prerequisites

• Availability of customers for selecting tasks.
• The User Stories practice or a similar practice that has task breakdown and

estimation.

Necessary commitment

• Weekly meetings on Monday to schedule work.
• Reaching deployable software weekly.

Tailoring

• The Weekly Cycle can be combined with Test-First Programming, in which
tests are written before work items are implemented.

• Some people start their week on Tuesdays or Wednesday. The weekly meeting
can be moved as long as it will not pressure the team to work over the
weekend.

• Reduce the time necessary for the planning meeting. When applying the
Weekly Cycle initially, planning meetings can take hours.

Richard Cornelissen 25

Chapter 4

Project Inventory

Properties of software projects that influence decisions on a method-
ology are identified in this chapter. Furthermore, a way to identify
the important properties of a project is proposed.

§
As each software project is unique, each requires its own methodology with which
to perform the software development effort [3, 8]. Projects can differ, among
others, in team size, team members, budget, culture, schedule, and risks. These
properties of projects can influence how their methodologies are composed. This
chapter proposes a project inventory which enables gaining insight in a software
project by collecting these properties.

The identified project properties are summarized in Table 4.1. They are divided
into four groups:

• Properties about the project itself, described in Section 4.1.
• Properties of the team members of the project, described in Section 4.2.
• Properties about the developed solution, described in Section 4.3.
• Properties of the current methodology of the project, described in Section

4.4.

The project properties are described as questions to ask interviewees. They
include a description of their possible influence on the methodology and how
they apply to newly starting projects and existing projects.

The project properties have been selected from existing literature [8, 31]. The
following properties have been added to better support existing projects:

• The current backlog of the project.
• The maintainability of the current software system.
• The current methodology of the project.

27

CHAPTER 4. PROJECT INVENTORY

Project
properties

System and project history, team culture, criticality,
priorities, budget, requirement stability, customer
availability, planned milestones, environment, problem
domain complexity, current backlog

Team member
properties

People involved, problem domain experience, software
development experience, methodology experience,
willingness to change the methodology

Solution
properties

Solution complexity, maintainability

Methodology
properties

Current methodology, things to keep, things to discard
or change, stakeholder requirements, standards and
conventions, increment length, length of tasks, new
requirements

Table 4.1: Identified project properties.

• The preferences of interviewed team members on their current methodology.
• The current length of increments, or time between releases if increments are

not fixed.
• The length of lower-level tasks.
• The way new requirements become known within the project.

Section 4.5 describes how the properties of a software project are identified by
interviewing key figures within the project. The project inventory is part of the
methodology-growing framework further described in Chapter 5.

4.1 Project properties

This section lists the properties associated with software projects directly.

History

Ask for a short description of the history of the project, including changes in staff
and emotional high and low points. This helps to gain insight in the size and
type of the project [8], as well as to find other interesting questions to ask about
the project. Furthermore, ask for the history of the system and whether there
are any systems preceding the one under development. The goal of a project
can be to provide maintenance on an existing system. The methodology should
support this goal and not focus on developing new functionality, but rather on
providing support. For newly starting projects, only the history of the system
is applicable.

28 Richard Cornelissen

4.1. PROJECT PROPERTIES

Team culture

Ask interviewees whether they experience the culture within the team as being
autocratic or participative. In a participative culture, team members are more
likely to contribute in improving their methodology. In most autocratic cultures,
on the other hand, management makes all decisions for the team.

The team culture is yet to be determined for newly starting projects. The team
can initially discuss how they plan to shape the team culture, for example by
determining who will carry responsibility for what decisions.

Criticality

Ask interviewees about the criticality of the system under development, defined
in Chapter 2. The criticality indicates the amount of damage a failure would
cause. More critical systems will need more control elements in the methodology.
This applies to both existing and newly starting projects.

Practices that enable code reviewing and extensive testing, for example, can be
included in the methodology for such cases. Even with low criticality, correctness
can be a priority, for instance when stakeholders require it.

Priorities

Ask interviewees what the priorities of the project are. Priorities can range
between productivity and prevention of legal liability [31]. The former focuses
on a shorter time to market, often to get feedback quickly. The latter entails
that artifacts are traceable and work is documented and tracked. Additional
possible priorities are low costs and correctness, but also ask whether there are
other priorities within the project.

The priorities heavily influence the methodology. For example:

• For a short time to market, the methodology needs short increments, each
of which resulting in a workable product.

• To keep costs low, the project might need to have as few as possible team
members, with a correspondingly designed methodology.

• When correctness is important, practices that enable regression testing, for
example, need to be included.

• For traceability, the methodology needs more control elements as well as
clear guidelines on what needs to be documented.

This property applies to both existing and newly starting projects, though pri-
orities of newly starting projects might still need to be fully defined.

Richard Cornelissen 29

CHAPTER 4. PROJECT INVENTORY

Budget

Ask the interviewee to indicate the cost limitations within the project. A tight
budget can influence decisions on the methodology. For instance, it means there
is less room for excess methodology weight in the form of artifacts and docu-
mentation.

A budget too tight can have negative influence on the project’s success. From
the methodology’s point of view, with a tight budget, less time should be spend
creating artifacts and deliverables. Furthermore, letting the entire team sit in a
single room will cost less than arranging for necessary communication.

For newly starting projects with a tight budget, the methodology should be
composed light and later on extended if necessary. This will prevent excess
weight. For existing projects, the team should look into which parts of the
methodology are excess.

Requirement stability

Ask interviewees, especially those with a developer role, how stable and pre-
dictable requirements are. The stability and predictability of requirements can
decide the length of increments and how soon feedback is necessary. If require-
ments are unstable, faster feedback is necessary and increments need to be short
to allow this. Alternatively, include practices such as prototyping that allow for
fast feedback.

This project property is of less influence to newly starting projects, as the overall
stability of requirements is still unknown. Still, ask interviewees how stable they
expect requirements to become.

Customer availability

Ask each interviewee how communication with customers or their representatives
is arranged. In the best case, they are always available to answer questions and
give feedback. Practices that enable quick feedback should be included in the
methodology otherwise.

The level of customer cooperativeness influences the design of the methodology.
For instance, lower cooperativeness means less feedback, so requirements might
need to be made more concrete before they are moved towards development.

Projects can benefit from having a customer of customer representative in the
team. This practice is also included in Scrum and Extreme Programming [5,
27]. Newly starting projects can decide to include this practice in their initial

30 Richard Cornelissen

4.1. PROJECT PROPERTIES

methodology, if such a team member is available.

Planned milestones

Ask interviewees what they know of upcoming milestones within the project,
such as minor or major features and version updates. It is possible that no
milestones are scheduled, for instance when the system is in maintenance. Asking
this helps to predict arrival of new requirements and workload. It is therefore
related to the way new requirements become known, included in Section 4.4.

The planned milestones and workload influence the required efficiency of the
project, especially when a large backlog of tasks is still in progress. For instance,
when many milestones are defined, the methodology should focus on high pro-
ductivity. This property applies the same to both new and existing projects.

Environment

Ask each interviewee about external projects, organizations, and other parties
that are involved. Projects that develop a system integrating with the devel-
oped solution are an example of such a party. Also ask for the stability and
predictability of each party in the external environment and whether there are
any risks for the project.

For both new and existing projects, the way to deal with the environment needs
to be included in the methodology. For instance, other parties might require
some form of reporting, which is also included in Section 4.4. Furthermore, the
way communication with external projects is arranged should be included in the
methodology as well.

Problem domain complexity

Ask each interviewee their estimation of the problem domain complexity. This
is also called the problem size by Cockburn [8]. No absolute metric can indicate
this complexity, but it can be discussed in terms as how difficult it is to learn
and to implement a system in the domain.

The problem size affects the necessary methodology weight and project size. A
lower project size, with a low methodology weight, can often solve the same
problem size as a greater number of people with a greater methodology weight.
When the problem size becomes larger, though, the number of people needed to
succeed will greatly increase.

For a newly starting project, the problem domain complexity can be unclear
initially. When the project progresses and the team is more experienced with

Richard Cornelissen 31

CHAPTER 4. PROJECT INVENTORY

the problem, team members can start making decisions based on this property.

Current backlog

Ask for the size of the current task backlog. If there is no backlog available, ask
for an estimation of the number of work items and the time it would take to
complete all of them. A large backlog can indicate the project is not running
on schedule or if there are any unrealistic expectations towards the speed of
development.

This property is not applicable to newly starting projects, which do not have a
backlog of older tasks.

4.2 Team member properties

This section lists properties associated with the teammembers of software projects.

People involved and project size

Ask which people are involved with the project, including the interviewee. De-
termine how they are distributed amongst locations and what their roles and
responsibilities are.

The number of people that are to be coordinated is an important factor for
selecting and improving the methodology. As the number of people grows and
their distribution becomes more spread, more communication elements must be
included in the methodology for the project to succeed [8].

Problem domain experience

Ask interviewees how much experience they have with the problem domain of
the project. If overall experience with the problem domain of the team is low,
measures to prevent defects are necessary. For example, incorporating test-first
programming in the methodology. Team members should also receive training
to gain better understanding of the problem domain. This is especially impor-
tant when the problem domain complexity is high, which is a project property
described in Section 4.1.

For existing projects, it is likely there are experienced team members present.
This does not have to hold true for new projects. In this case, it can be necessary
to give team members training or to include a domain expert (such as a customer
representative) in the team for quick feedback.

32 Richard Cornelissen

4.3. SOLUTION PROPERTIES

Software development experience

Ask how much experience the interviewee has with software development. If
overall experience with developing software is low, try to improve the team,
not enlarge it. Enlarging it will make it necessary to increase the methodology
weight, which comes with a cost, as explained in Section 2.2. Also ask team
members that are not in a developer role about their experience with software
development to see if they require further training.

For existing projects, project-specific questions can be asked as well, such as
experience with used programming languages or frameworks.

Methodology experience

Ask interviewees about their experience in using software development method-
ologies. Also ask which roles they have played within the methodologies of other
projects. Employees with much experience are more likely to contribute in im-
proving the used methodology. However, employees that do not have experience
with methodologies are likely to need more guidance in changing their way of
working.

Willingness to change the methodology

Ask interviewees to indicate how willing they are to change their current way of
working. When interviewees are generally rigid, it is less likely major changes
to their methodology will be adopted by the team.

4.3 Solution properties

Two properties of the developed system are identified to be important for making
decisions on the methodology of a project: the complexity and the maintainabil-
ity of the solution. There can be many other properties of the solution that can
affect the methodology, such as its architecture, whether it uses a database and
whether it includes support for legacy systems [31].

Solution complexity

Ask the interviewee on the complexity of the current version of the system.
Ask whether specific metrics of the system are available, such as the number of
components, cyclomatic complexity, or lines of code. Other metrics are useful
as well, such as those indicating the (predicted) arrival of defects.

Richard Cornelissen 33

CHAPTER 4. PROJECT INVENTORY

If no metrics are available, ask for an indication of the complexity of the system,
for instance by asking how difficult it would be to add an entire new component.
Especially weigh in the opinion of interviewed developers. If complexity is high,
ask if there is excess complexity which can be resolved.

With high complexity, the methodology should include practices that prevent
defects and faults, such as regression testing.

For newly starting projects that do not inherit an existing system, this property
does not influence decisions on the methodology yet.

Maintainability

Discuss the maintainability of the existing system and whether and why fixing
defects or adding functionality is difficult. Also discuss whether this has had any
effect on the planning of new features or increments and if the effort for adding
features has been estimated wrong.

For newly starting projects that do not inherit an existing system, this property
is not applicable.

4.4 Methodology properties

This section describes properties of the project about the currently used method-
ology. These properties can still be useful to inventory for newly starting projects
to find whether team members have preferences towards their methodology.

Current methodology

Ask for a description of the currently used methodology, for instance as a basic
workflow. When discussing this, note any possible things to keep or discard.
These are associated with the two properties below.

If interviewees do not know the entire methodology, they will probably only
describe the elements they have experience with. These descriptions can be
pieced together to get a full picture of the methodology. Also see if there are any
differences in the given descriptions of the methodology. Differences can indicate
a lack of cohesion of the methodology.

This project property is not applicable to newly starting projects, as they do
not yet have a methodology defined.

34 Richard Cornelissen

4.4. METHODOLOGY PROPERTIES

Things to keep

Ask for things of the methodology to keep. The description given of the current
methodology can already give some answers. Also ask which rituals, customs and
other matters, such as monthly company drinks, are important to keep within
the project.

For newly starting projects, the things to keep of the methodology are not ap-
plicable, but the rituals, customs, and other matters can already be part of the
organization culture.

Things to discard or change

Similar to the things to keep, ask what not to keep or what to change within the
methodology and project. Again, the description of the current methodology
can give some answers.

For new projects, ask interviewees whether there are things to change within the
culture of the organization, such as rituals and customs.

Stakeholder requirements

Ask for the requirements stakeholders have towards the project. Specifically ask
for required work products, documentation, and other artifacts or deliverables.
These are included in the methodology. Also ask whether there is a way to
reduce the need of these deliverables, as they increase methodology weight.

This property applies to both new and existing projects, though for new projects,
these requirements might not all be known yet.

Standards and conventions

Ask interviewees whether any standards or conventions, such as coding styles,
use of certain languages, patterns, or frameworks, are set within the project. Also
let them indicate how tight the standards and conventions are used and if they
need to be improved or used more strictly. If there are none, ask interviewees
whether they feel standards and conventions are desired. Any of these cases can
indicate a possible improvement or refinement for the methodology.

This property only applies to existing projects. For newly starting projects,
however, it can be useful to ask whether the interviewee has experience with
predefined standards and conventions, and if these are recommendable for the
new project.

Richard Cornelissen 35

CHAPTER 4. PROJECT INVENTORY

Increment length

Ask for the length of increments, defined as the duration of an iteration. For
example, Scrum uses 30-day Sprints in which a next version of the product is
developed [27]. In the absence of increments or iterations, there might exist a
default release interval, for instance every other week. The length of increments,
if available, indicates how long it takes to develop new features for the system
under development.

This property does not apply to newly starting projects, although interviewees
can give indications as to what they expect the increment length will be.

Length of tasks

Discuss with interviewees what the length of the lower-level tasks is. Especially
let them give an indication of the maximal length of these tasks. This gives
insight in how larger features are split into smaller items of work. The task
length has influence on the length of increments. If tasks are relatively large
and cannot be split into smaller items of work, longer increments might be more
appropriate.

This property does not apply to newly starting projects.

New requirements

Ask interviewees how and when requirements become known to the project, who
announces them and where they come from. For instance, a higher number of
requirements might arrive in a specific season. This is called the demand profile
and can have influence on the workflow within the project [2].

The way new requirements enter the project and how they are prioritized and
scheduled are part of the methodology. Therefore, it is useful for team members
to realize how this takes place, as well as to discuss if it can be improved.

4.5 Project inventory interview

The project properties are identified by interviewing key figures within the
project, such as stakeholders, project managers, business roles, experienced de-
velopers and graphical or interaction designers. For small projects all team
members might be interviewed.

The project inventory interviews are individual and semi-structured to allow for
flexibility [22]. A script is available, but it is incomplete and allows for the in-

36 Richard Cornelissen

4.5. PROJECT INVENTORY INTERVIEW

terviewer to explore and look for surprises. As each project is different, each
project can also have unique, additional properties, therefore, structured inter-
views, which do not allow for improvisation, would not have been appropriate.

The project inventory has been used in the case described in Chapter 6. Ap-
pendix C contains the interview that has been used for identifying all properties
and additional topics within the case. Many of these properties and topics are
closed, but during the interviews, additional notes have been taken where inter-
esting opinions and facts were found.

For the experience with software development and methodologies, interviewees
were asked to indicate their time on the current project, the number of years of
experience with software development and methodologies, and an indication of
how they evaluate their own competence on both. The perceived team culture,
willingness to change their methodology, budget, maintainability, requirement
stability, customer cooperativeness, and stability of the environment are all asked
using a five-point likert-scale.

The distribution of people, project priorities, system criticality, tightness to stan-
dards and conventions, and planned milestones were asked as closed questions.
For the priorities and milestones, interviewees were asked if there were additional
options.

Richard Cornelissen 37

Chapter 5

Methodology-Growing Framework

This chapter proposes a framework that uses identified properties of a
software project to incrementally improve a methodology. Reflection
workshops are held with the entire team, during which decisions on
how to improve the methodology are made collaboratively.

§
The methodology-growing technique is described as a set of five activities, start-
ing with the adjusting of an existing methodology and improving it repeatedly
[8]. The methodology-growing framework extends this technique by including
the following:

• Support for existing projects that already have a methodology.
• Identifying project properties to make decisions on the methodology.
• A library of practices can be used to select possible improvements on the

methodology.

Section 5.1 provides checklists for making decisions on the methodology to keep
it coherent. Section 5.2 introduces the methodology-growing framework, written
from the point of view of an existing project. Section 5.3 gives additional instruc-
tions for newly starting projects. Section 5.4 gives a summary of the framework
and provides a high-level overview.

5.1 Composing the methodology

In this thesis, methodologies are defined as a composition of practices, as ex-
plained in Chapter 3. As each project is unique, each requires its own, tailored
methodology. To compose a coherent methodology, this section provides check-
lists which help select and tailor practices. When applying the methodology-

39

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

growing framework, as described in Section 5.2, these checklists are used when-
ever decisions on the methodology are made.

The following set of questions can be used as a checklist when considering to
incorporate a practice within the methodology.

1. Does the purpose of the chosen practice match with the goals of
the team and the project?
Assess whether the purpose of the practice matches with the goals of the
team. If there is uncertainty, briefly discuss with team members whether
they feel the practice would be of value to them.
Also check whether the purpose of the practice matches with the goals and
priorities of the project. In some cases, it is possible to adjust the practice.
For instance, using a practice with two month increment lengths does not
match a short time to market priority. This practice can possibly be tailored
for shorter increments, though.

2. Does the purpose of the chosen practice not overlap with that of
another selected practice?
See if there are no other practices selected that overlap in their purpose. If
so, see if either or both of the practices can be adjusted or if they can be
combined.

3. Are the prerequisites of the chosen practice met?
If the prerequisites are not met within the project, see if either the project
or practice can be adjusted to accommodate for the them. The description
of how the practice can be tailored can be used to make it fit the project.

4. Is the necessary commitment of the chosen practice worth its ben-
efits to the project?
Each documented practice contains a description of its necessary commit-
ment. This indicates its added methodology weight when incorporated.
Consider whether this commitment is worth the benefits of incorporating
the practice.
It can be possible to adjust the practice to add less weight to the methodol-
ogy. If this is not enough, other practices probably better fit the project.

5. Will team members be willing to adopt the chosen practice?
Consider whether team members will be willing to perform the necessary
commitment of the practice. If they would not be willing, trying to incorpo-
rate the practice can lead to it remaining unadopted.
Discuss the practice, its value, and its necessary commitment with a few
team members if there is uncertainty. Do not propose or incorporate the

40 Richard Cornelissen

5.1. COMPOSING THE METHODOLOGY

practice if team members feel it would remain unadopted.
6. Does the chosen practice contain overlapping deliverables?

See if there are any deliverables in the practice that provide similar value to
the project or its stakeholders as other deliverables already in the method-
ology. Combine overlapping deliverables if possible to ensure they no longer
overlap.

7. Does the chosen practice cover the same topic as other practices
in the methodology?
Practices are documented using the SEMAT Kernel, which uses alphas to
represent essential things software engineers work with. See if there are any
practices that add work products and sub-alphas to the same alpha. As-
sess whether the practices are compatible and try to combine overlapping
sub-alphas and work products. If practices are incompatible, they cannot
be incorporated together. For instance, Scrum, which results in a work-
ing increment after every Sprint, is incompatible with traditional waterfall
methodologies [27].
It is possible for practices covering the same topic to still be incorporated
in one methodology. For example, Extreme Programming contains Weekly
and Quarterly Cycle practices that would both extend the Work alpha in
the Kernel [5].

8. Does the chosen practice contain activities in the same activity
space as other practices in the methodology?
Documented practices group activities under activity spaces defined in the
SEMAT Kernel. See if there are any practices already incorporated within
the methodology that have activities in the same space. If so, ensure that the
methodology will not contain activities that overlap or can result in rework
or duplicate work. Combining, adjusting, or replacing these activities is often
possible. If none of these options is possible, it is better not to incorporate
the practice to prevent unnecessary rework.

9. Does the chosen practice unnecessarily contain ways of indirect
communication?
Only when the team size grows will the methodology need to include forms
of indirect communication. In case of a small team, if a practice uses inter-
mediate deliverables as indirect communication, replace them with meetings
between the necessary people.
In case of a large team size, indirect communication is necessary to prevent
rework.

Richard Cornelissen 41

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

10. Does the chosen practice represent excess weight for the method-
ology?
The necessary commitment of a practice indicates the weight it adds to the
methodology. Identifying excess weight is not easy, and removing too much
weight can hurt quality of the produced software.
Consider whether the chosen practice would represent excess weight for the
project and its current methodology. Note that some weight is necessary,
especially with high criticality, i.e. how dire negative consequences are if the
system fails. This is explained in the next checkpoint.

11. Does the chosen practice increase the ceremony of the methodol-
ogy?
The criticality indicates the potential damage a failure of the system can
bring. With greater criticality, practices should be incorporated that pre-
vent defects, such as testing and validation techniques. These practices are
often useful, but in projects with greater criticality, the weight they add to
the methodology is less excess.
With lower criticality, the question is whether the chosen practice represents
excess weight, which is discussed in the previous checkpoint.

12. Does the chosen practice contain unnecessary process, formality,
or documentation?
Discipline, skills, and understanding work better than process, formality and
documentation when there is need to respond to changing circumstances. As
the team becomes more familiar with the problem domain and the environ-
ment and problem domain are stable, the methodology can start relying more
on process, formality, and documentation. Until this point, prevent adding
process, formality and documentation to the methodology.
Formality and documentation are often represented by having to maintain
many work products, which can possibly be replaced with meetings between
the necessary people. Process can be discarded by removing parts of prac-
tices that are too specific and thereby prevent the team from adapting to
circumstances.

Additionally, the following questions represent a checklist for any decision on the
methodology, including the incorporation and improvement of practices.

1. Does the methodology weight correspond to the team size?
Larger teams need practices that coordinate work to prevent overlap and
rework. These often rely on indirect communication channels such as inter-

42 Richard Cornelissen

5.1. COMPOSING THE METHODOLOGY

mediate deliverables. Therefore, a heavier methodology is necessary. Smaller
teams, however, can use direct communication and keep their methodology
light. It is often better to have a methodology that is too light and increase
its weight as the project and its team matures.
Identifying excess weight to discard from the methodology is difficult. Fur-
thermore, there is a risk of removing parts that ensure quality of the solution.
When criticality is low, practices that increase ceremony can represent excess
weight. Again, removing all such practices can affect software quality.

2. Does the methodology contain enough ceremony for the criticality
of the system?
When criticality is high, the methodology needs to contain enough ceremony
to prevent defects, as well as to prevent legal liability. A methodology with
high ceremony and low criticality, however, contains excess weight.
To increase ceremony, practices that prevents defects can be incorporated,
such as testing or validation techniques.
If the amount of ceremony is high for the criticality of the system, the
methodology contains excess weight. This is explained in the previous check-
point.

3. Does the methodology facilitate enough feedback and communica-
tion?
Feedback and communication reduce the need for intermediate deliverables
for internal use. Increasing feedback can also prevent defects from being
introduced in the system.
To discover if intermediate deliverables can be discarded, try to increase
feedback and communication within the team and its stakeholders. If the
artifacts are less useful, they can be removed to reduce bureaucratic burden.

4. Can a bottleneck activity be identified?
To improve a bottleneck situation, make the work that feeds the bottleneck
activity more complete and stable before it is passed along. Practices in the
methodology that influence the activities before the bottleneck need to be
adjusted to make the produced work more stable and complete. Additional
practices can also be selected to make the work more complete and stable.
For instance, Test-First Programming can be used to bring development
efforts in a more stable state.

5. Does the methodology need adjustment to the project?
The methodology needs to be adjusted to properties of the project. We have
identified a number of properties of a software project that can influence

Richard Cornelissen 43

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

the design of its methodology. For instance, the priorities of the project
can influence how often the solution is released to the customer. For each
identified property, its possible influence on the methodology is described in
Chapter 4.
Note that additional properties of the project can also make it necessary to
adjust the methodology.

5.2 Applying the framework

This section explains how to apply the methodology-growing framework within a
software project. The framework consists of six consecutive steps. The first two
steps are applied once to identify the properties of the project and to see how
well the team copes with changes to their methodology. The last four steps are
hold iteratively, following the same increment length as the project if possible.

Reflection workshops are prepared and held (the third and fourth steps), where
teams reflect on what they have learned and decide collaboratively what they
will improve on their methodology during the next iteration. The fifth step is
to change the methodology gradually following the decisions made during the
workshop. With the sixth step, the team can either make some final adjustments
or try out improvements or entirely new practices in the middle of the increment.

Section 5.3 provides additional instructions for newly starting projects.

Step 1. Project inventory

First, hold inventory interviews with key figures within the project, as explained
in Chapter 4. The project inventory will identify properties for the project that
are important for making decisions. These properties are used when preparing
and holding reflection workshops and during mid-incremental changes. Further-
more, Section 5.1 provides guidance towards composing a coherent methodology
that use the identified properties of the project.

The project inventory also allows interviewees to indicate their preferences to-
wards the methodology. For existing projects, interviewees are expected to indi-
cate what they want to keep, change, or discard from their current methodology
and project. For new projects, they are expected to indicate preferences on
what they have seen in previous projects. These preferences should be consid-
ered whenever decisions on the methodology are made.

44 Richard Cornelissen

5.2. APPLYING THE FRAMEWORK

Step 2. First practice attempt

To assess how well team members cope with a change in their methodology,
apply a practice that is easy to implement within the project. Preferably, select
a practice that might be incorporated in the methodology. If the team has
difficulty with implementing a single practice in their work process, changes
to the methodology should be kept small. Alternatively, it might mean the
weight of the current methodology is too large, requiring team members to keep
themselves occupied with maintaining work products. According to the second
methodology design principle, excess methodology weight is costly [8].

The practice library introduced in Section 3.2 can be used to select a practice
as a first attempt. As this will be the first attempt of the team to change their
methodology, select a practice that does not have any obstructive prerequisites.
For example, Visualize Workflow requires creating a card wall. A practice that
is easy to implement is the Daily Standup, available in Appendix B.2.

To measure how well team members adopt the selected practice within a few
days, the social adoption of the practice can be measured, which is explained in
Step 3. In the case study, the social adoption of the first applied practice has
not been measured before the first reflection workshop.

Step 3. Preparing reflection workshops

The team reflects on their methodology during reflection workshops in step 4,
where the team collaboratively decides how to adjust the methodology. These
workshops are held periodically, after each increment. This step describes how
to prepare reflection workshops and to explore new practices that can be applied
within the project:

• Observing other projects to discover alternative practices.
• Creating a proposal containing changes and possible practices for the project.
• Measuring social adoption of changes and practices after a reflection work-

shop.
• Renewing the inventory to discover changes of the project and to discuss

their impact.

Observing projects

To discover new or alternative practices, other projects within the organiza-
tion can be observed, for instance by interviewing key figures of the project.

Richard Cornelissen 45

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

The methodology-growing technique contains the following interview to find the
strengths and weaknesses of an organization [8]:

1. Ask for a sample of each produced work product.

2. Ask for a short history of the project.

3. Ask what should be changed next time.

4. Ask what should be repeated next time.

5. Ask what the priorities of the project were.

6. Ask if there is anything else important to hear about.

If new practices are discovered within another project they can be documented
and added to the practice library, as explained in Section 3.3.

Proposal

Before holding a reflection workshop, a proposal can be created containing new
or replacing practices to be used in the methodology, as well as other changes
on the methodology, such as the removal or improvement of a practice.

When creating a proposal, it is important to keep resistance to change in regard.
Trying to change too much within a single proposal can result in the changes be-
ing unadopted. Therefore, keep proposals small rather than large. Furthermore,
ensure team members understand what the contents of the proposal will improve
on the methodology. Prevent suggesting practices for which the team does not
see any reason to apply. The results of the project inventory include preferences
team members have towards the methodology that can be considered initially.

The practice library can be used to select practices for incorporation, based on
their purpose, prerequisites, and necessary commitment. Section 5.1 provides
checklists to validate whether a practice would fit the project and its team.

Measure social adoption

To find out how well changes are adopted, part of the measurement instrument
introduced by Vavpotič & Bajec can be used [30]. This instrument concurrently
measures the social and technical suitability of a methodology. In doing so, they
define a methodology as a composition of interconnected elements. For each
of these elements, questionnaires are held to measure the social adoption and
technical efficiency and to find reasons for the measured levels. Case research by
Vavpotic & Bajec indicated using this approach requires some team members
to be experienced in using methodologies, as well as investing time in holding
questionnaires with all team members. To limit the required investment of time

46 Richard Cornelissen

5.2. APPLYING THE FRAMEWORK

and the necessity of experienced team members, only the measurement of the
level of social adoption can be performed.

The interview to measure the level of social adoption consists of the following
close-ended questions with a seven-point Likert scale. Each question is named
with an acronym given by Vavpotič & Bajec [30]. These questions are asked for
each practice or change. Interview participants only for the practices they have
applied in the project, excluding practices that have not yet been implemented
or those not applicable to this specific interviewee.

1. SIFU1: Given the opportunity to use the practice, how often do you use it?
With the following points: never, in up to 20% of opportunities, in 20–40%
of opportunities, in 40–60% of opportunities, in 60–80% of opportunities, in
more than 80% of opportunities but not always, always.
If results of this question are low, the practice is overall unadopted and can
be considered for replacement or removal.

2. SIFU2: Use of the practice is encouraged as a common activity within the
team.
If team members indicate use of the practice is not encouraged, the team
should discuss during the next reflection workshop why this is the case.
Specifically look into impediments that hinder use of the practice.

3. SIFU3: Use of the practice is routine and is used at every opportunity.
Results of this question might indicate the practice is not applied completely
within the project. Again, there might be impediments that hinder use of
the practice, but the required use of the practice might also be too high for
the project. The last can indicate possible improvements on the practice,
better tailoring it to the project.

4. SICU1: When I use the practice, I follow the instructions defined within the
team.
If this question gains low results, either team members did not fully discuss
how the practice is to be applied in the project, or team members disagree
on how to use the practice. In either case, this is to be discussed in the next
reflection workshop.

5. SICU2: The way the practice should be used is clear.
If team members indicate the usage of the practice is unclear within the
project, this can either be because of undefined instructions within the team,
as is the case with the fourth question, or because team members are uncer-
tain whether they apply the practice correctly.

Richard Cornelissen 47

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

Encourage the interviewees to give comments so to explain the reasons for their
answers to find possible improvements or impediments.

Renew inventory

As the project progresses, the properties of the project that were identified using
the project inventory of Chapter 4 can become obsolete. Although most changes
will be recognized immediately, it is important the entire team knows about
these changes so they can be discussed to see if the change might affect the
methodology.

Some changes within the project might not be recognized or reported. To find
and inventory these, a shorter, smaller-scale inventory can be held. Instead of
holding the entire inventory interview, only inquire on the project properties.

Improvements during an increment

In the middle of the increment, team members can incorporate, replace, or
change practices in their methodology to assess possible improvements. Feed-
back from these improvements can be used as input for a reflection workshop.
This is further explained in the sixth step.

Step 4. Holding reflection workshops

Send an invitation to the entire team before the reflection workshop. If a pro-
posal is made as a preparation to the workshop it should be included in an at-
tached agenda. Give participants the opportunity to send in their own requests,
additional practices, or other topics regarding the methodology and project in
advance. Add all these requests to the agenda of the workshop.

It is also possible to give participants access to the practice library. This is
especially useful if team members are experienced with methodologies.

Documentation

Prepare a board or flip chart to be used as a card wall. Practices and changes
are written on cards so they can be put on the card wall. Outline the following
columns on the board:

• Deferred. Practices and changes of which it is not yet certain whether they
will be implemented are put here during the workshop.

• Upcoming. Practices and changes that are decided to be used are put in this
column during the workshop. Furthermore, before the workshop, proposed
practices and changes are put here as well.

48 Richard Cornelissen

5.2. APPLYING THE FRAMEWORK

• Trying. After the workshop, changes are gradually moved into this column
when they are being implemented or tried out.

• Keep. Changes and practices are moved from Trying to this column during
the workshop when the participants decide they are worth keeping.

• Discard. Changes and practices that will be removed from the methodology
or project are moved here.

The board outlines how changes to the methodology are first tried out and then
either kept, further refined, or discarded.

Reflection workshop

During reflection workshops, teams can make decisions on their methodology
collaboratively. Section 5.1 can be used to assess whether these decisions will
result in a coherent methodology, or whether decisions need to be altered.

Begin reflection workshops by looking at the cards in the Trying column. Discuss
what the team has learned from applying these practices and changes. Conclude
with the team which practices and changes will be kept, moving these to the
Keep column. If the participants agree a practice or change should be kept,
but needs to be adjusted, discuss what can be improved. Add a new card to the
Upcoming column for these improvements. If the discussion goes on for too long,
add it to the Deferred column and, if necessary, better prepare this topic the
next reflection workshop. Move each practice or change that is to be removed
from the methodology or project to the Discard column.

Look at the Upcoming column next and discuss for each card why it has remained
in this state. Keep the discussion short and decide whether to move cards to the
Deferred column, the Discard column, or to keep them in the Upcoming column.

Next, discuss the results of any preparatory activities performed before the work-
shop, such as those of Section 5.2.

• If social adoption is measured for certain practices, present the gained results.
Discuss them with the participants and decide how each measured practice
can be improved. Add cards for each improvement to the Upcoming column.

• If new ideas for the methodology are discovered by observing other projects,
present these and decide collaboratively whether to add cards to the Upcom-
ing or Deferred columns or to disregard them. For any change or practice
added to the Upcoming column, decide how to apply it within the project.

• If there has been a change in the properties of the project, discuss whether the
methodology needs to be adjusted. Add changes that need to be incorporated

Richard Cornelissen 49

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

quickly to the Upcoming column. If it is unclear how and if the methodology
needs to be adjusted, add a card to the Deferred column.

• If new practices or changes are suggested by team members, add these to the
Deferred column. Discuss them with all participants and decide whether to
keep them in the deferred column, applying them during the next increment,
or to discard them. If participants agree to put practices or changes in the
upcoming column, discuss how they should be applied within the project.

• If a proposal was prepared, add its contents to the Upcoming column. Discuss
each of the proposed practices and changes with the participants and decide
whether to keep them in the Upcoming column to be implemented within
the next increment, or to move them to the Deferred column. For any card
kept in the upcoming column, discuss how it should be applied within the
project.

Lastly, ask if there are any other topics and problems to be discussed and if there
is anything that can still be improved in the current methodology.

Keep reflection workshops short, preferably within an hour. This might require
keeping some discussions short.

First reflection workshop

The first reflection workshop is held after applying the project inventory. Be-
fore beginning the workshop, explain to the participants that the goal of these
workshops is to collaboratively decide how the methodology will be improved.
Furthermore, present the results of the project inventory to all participants.

Step 5. Changing the methodology

While changing the methodology, there can be parts of the methodology that
are missing or unclear. If possible, combine these changes into a mid-increment
change, as described in the sixth step. However, it can be necessary to make
decisions ad hoc, which need to be discussed in the next reflection workshop.

Changes to the methodology should be applied gradually rather than immedi-
ately. According to Jacobson, Ng and Spence, experience has shown that it is
much more effective to transform the methodology one practice at a time [20].
Whenever a selected practice or change is ready for incorporation, move the
corresponding card on the card wall to Trying.

50 Richard Cornelissen

5.3. START OF A NEW PROJECT

First increment

During the increment directly after the first reflection workshop, assess whether
there is a problem with the methodology that might result in a development fail-
ure. To do so, ask team members during individual or group interviews whether
the expected goals will be achieved working with the improved methodology.
According to Cockburn, if the methodology does not work, first consider reduc-
ing the scope of the increment, to rule out an overambitious schedule [8]. If
this is not sufficient to ensure the success of the increment, look for structural
impediments, such as bottlenecks or problems with understanding requirements.
The goal is to deliver at least something, even if drastic measures are necessary,
such as making emergency staff changes.

In the case of Chapter 6, this assessment was performed together with interviews
for measuring social adoption of newly incorporated practices.

Step 6. Middle of the increment

Team members can try out additional changes to the methodology in the middle
of each increment, as they have a working methodology to fall back on. They
can choose to add, replace or refine practices within their methodology and see
whether these fit the team and the project.

Refrain from changing the methodology during the increment after the first
reflection workshop. At this point, changes to the methodology can result in not
achieving set goals, as discussed in the fifth step.

During an increment, team members can observe what can still be improved on
the methodology and can assess possible ways to perform those improvements.

Do not try to improve too much to avoid resistance to change. Also refrain from
changing the methodology if the team is still busy with adopting the changes
chosen during the last reflection workshop. Add all changes to the Trying column
of the card wall so they can be discussed during the next reflection workshop.

5.3 Start of a new project

This section gives instructions when applying the methodology-growing frame-
work on a newly starting project. As no methodology is yet in place, the first
reflection workshop is to result in a methodology the team can apply immedi-
ately.

Richard Cornelissen 51

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

5.3.1 First proposal

For a newly starting project, the proposal consists of a methodology the team
can start with. Cockburn suggests selecting an existing methodology, either from
literature or one that is in use within the organization elsewhere [8]. This is still
a viable option when using the methodology-growing framework. Boil a selected
methodology down to its basic work flow and a draft of the conventions that will
be used. This makes it easier to discuss. Use these work flow and conventions
as a proposal that to be discussed in the first workshop.

Alternatively, the practice library explained in Section 3.2 can be used to select
practices and combine them into a methodology. Use Section 5.1 to ensure the
practices form a coherent methodology. Note that it is better to begin with a
methodology that is too light, rather than one that is too heavy.

Observing projects

The third step of the methodology-growing framework describes a way to observe
other projects to see how they develop software. At the start of a project, this
can also be applied within the organization to see whether a methodology is
already available that might fit the project.

5.3.2 First reflection workshop

The first reflection workshop for newly starting projects will primarily focus on
the proposal, which contains a starter methodology. Discussing the methodology
is enough content, so it might be necessary to keep other discussions short and
defer them to the next workshop. The focus is on attaining a usable methodology
for the first increment quickly.

5.3.3 First practice attempt

Newly starting project that have not yet started development would not benefit
from attempting to adopt a first practice. This can still be done after proposing
and adjusting the first methodology, but will only be useful if the team has
sufficiently adopted the selected practices. Otherwise, continue using reflection
workshops to iteratively improve the methodology.

52 Richard Cornelissen

5.4. SUMMARY

5.4 Summary

In summary, the methodology-growing framework consists of the following six
steps, also outlined in the flow diagram of Figure 5.1 on page 54.

1. Use the project inventory of Chapter 4 to identify properties of the project
important for making decisions on its methodology.

2. Try a single practice to assess whether the team has difficulty changing their
methodology.

3. Prepare reflection workshops to exploring possible improvements of the method-
ology.

4. Hold reflection workshops after every increment, keeping track of queued and
tried improvements on the methodology.

5. After every reflection workshop, change the methodology according to the
decisions made during the workshop.

6. In the middle of the increment, try new or improve practices. These can be
reflected upon during the next workshop.

Richard Cornelissen 53

CHAPTER 5. METHODOLOGY-GROWING FRAMEWORK

Step
 1

.
P

ro
ject in

ven
to

ry

N
ew

ly startin
g

p
ro

ject?

Step
 2

.
First p

ractice
attem

p
t

N
o

O
b

serve o
th

er
p

ro
jects

O
b

serve o
th

er
p

ro
jects?

Yes

Step
 3

. P
rep

are reflectio
n

 w
o

rksh
o

p

N
o

C
reate

P
ro

p
o

sal

C
reate

p
ro

p
o

sal?

Yes

N
o

Step
 3

.
P

rep
are first reflectio

n

w
o

rksh
o

p
: C

reate
m

eth
o

d
o

lo
gy p

ro
p

o
sal

Yes

Step
 4

.
H

o
ld

 reflectio
n

w

o
rksh

o
p

Step
 5

.
A

p
p

ly m
eth

o
d

o
lo

gy
ch

an
ges

Step
 6

.
M

id
-in

crem
en

tal
im

p
ro

vem
en

ts

M
easu

re so
cial

ad
o

p
tio

n
 o

f
p

ractices

M
easu

re
ad

o
p

tio
n

?

Yes

N
o

R
en

ew
 p

ro
ject

in
ven

to
ry

R
en

ew

in
ven

to
ry?

Yes

N
o

P
ro

cess
feed

b
ack o

n

m
id

-
in

crem
en

tal
ch

an
ges

M
id

-in
crem

en
tal

ch
an

ges
ap

p
lied

?

Yes

N
o

Figure 5.1: High-level overview of methodology-growing framework.

54 Richard Cornelissen

Chapter 6

Case Description

The methodology-growing framework has been applied on a small-scale
project developing a product for mortgage advisors. This chapter
discusses the results of identifying important properties of this project
and the application of the framework within the project.

§
The methodology-growing framework has been designed and applied at a project
called Findesk within an organization called Topicus located in Deventer, The
Netherlands. Findesk is a two year old small-scale project developing software to
assist mortgage advisors. The framework was applied to better fit the method-
ology to the growing number of team members.

In this chapter, first, the results of performing the project inventory are sum-
marized in Section 6.1. The first iteration in improving the methodology is
discussed in Section 6.2. A second iteration was performed and is discussed in
Section 6.3. Lastly, Section 6.4 reflects on how the methodology of Findesk has
been improved using the methodology-growing framework.

6.1 Project inventory

Project properties of Findesk have been identified by interviewing all of its team
members. Initially, two separate interviews were created, one for team members
with management or leadership roles and one for all other team members. How-
ever, as team members turned out to have multiple roles, the interview forms
were combined. The combined form is available in Appendix C.

Below, the results for the inventory are summarized. Project properties are
grouped in four categories:

55

CHAPTER 6. CASE DESCRIPTION

• Properties about the project itself.
• Properties about the team members of the project.
• Properties about the solution developed within the project.
• Properties about the current methodology of the project.

6.1.1 Project properties

History

The system was initially implemented as a single-page web application that per-
formed some financial calculations. The system has gradually grown and become
more complex, allowing mortgage advisors to perform the entire advisory pro-
cess with their customers. Eventually, it included functionality to send mortgage
propositions digitally.

Team culture

The team culture is generally perceived as participative. One team member
added that though the team has little influence on decisions about priority, the
team does collaboratively decide how functionality is developed.

Criticality

The two directors both indicated the criticality of the system is in the loss of
discretionary monies class. If the system were to fail or introduce a defect, mort-
gage advisors might have to delay servicing a customer or closing a mortgage.

The project manager perceives the criticality as loss of comfort, only requiring
mortgage advisors to use other systems or doing some automated tasks by hand.

Priorities

A short time to market is a high priority for the project, as it enables the project
to react to changes in the market quickly.

Budget

The directors have indicated that the project budget is more than sufficient. At
the moment, the project is still backed financially by the organization. The goal
is for the project to begin making profit within a year.

Requirement stability

Requirements within the project are generally unstable. This is agreed by all
team members, including the project manager and directors.

56 Richard Cornelissen

6.1. PROJECT INVENTORY

Customer availability

There are two different views on this property. The directors indicate customers,
specifically mortgage advisors and banking firms, are difficult to collaborate
with. From the point of view of the project manager, the customer is the direc-
tor/domain expert, whom is highly collaborative to work with.

Planned milestones

A maintenance period has been scheduled, in which team members improve parts
of the system they feel should have been implemented differently. There is a
continuous stream of minor upgrades which are released regularly. Furthermore,
new major features are planned within the upcoming three to six months.

Environment

The following is a list of parties present in the environment of the case project.

• Banking firms at which mortgages are closed using the system.
• Insurance companies where insurances can be closed using the system.
• Another department within the organization that occasionally performs small

side-projects.
• A platform for closing mortgages, insurances, and other financial products

called HDN.

Overall, the environment is deemed unpredictable. Among other reasons, this
is because the format defined by HDN tends to change often, banking firms
and insurance companies are somewhat unreliable when it comes to sending
mortgage and insurance applications, and closing contracts with banking firms
and insurance companies can take time.

Problem domain complexity

Team members have between one and two years of experience with the problem
domain and have indicated they do not have difficulty with the problem domain.
A reason given by one interviewee is that the problem domain is specific to
mortgages, making the problem size relatively small when compared to the entire
financial domain.

Current backlog

The current backlog is not fully known by all team members. To the project
manager, the current backlog would take around twelve weeks to complete.

The two directors have a different view of the backlog, also including tasks

Richard Cornelissen 57

CHAPTER 6. CASE DESCRIPTION

and features they envision for the long-term. The domain expert/director, who
focuses on the current software product, indicates the current backlog would
take half a year to complete. The other director focuses also on side-projects
which are performed by other departments of the organization, and indicates the
backlog will take an entire year to complete.

6.1.2 Team member properties

People involved

The following people are involved with the project:

• Two directors responsible for creating new opportunities and prioritizing
them. One of them is also a domain expert with the added responsibility of
giving feedback to the team.

• A usability researcher responsible for receiving and processing feedback from
users and is also responsible for the help desk.

• A business analyst responsible for communication with customers and the
environment.

• A project manager also acting as an analyst and occasional developer. He
is responsible for estimating and planning development efforts, as well as
discuss requirements and their priority with the directors.

• Three full-time developers who perform the development effort, both front-
end and back-end.

• A graphical interface designer and front-end developer who designs the user
interface and consults with developers when they need advice on developing
the front-end.

• Two part-time developers still in college, one of whom the author of this
thesis.

The entire team is distributed close together over three adjacent rooms. All
developers are located in a separate with the project manager.

A second graphical interface designer and a part-time front-end developer have
been employed during the course of the case study. One of the directors has
taken over the responsibilities of the leaving business analyst.

Problem domain experience

As the project is two years old, most team members have some experience with
the problem domain. Two developers have gained additional experience with the
financial domain at other departments of the organization.

58 Richard Cornelissen

6.1. PROJECT INVENTORY

Software development experience

The experience in developing software is split in two groups within the project.
The team members not in a development role have relatively little experience
with software projects, between 1 and 3 years. Three of the developers, including
the project manager, have 5 to 8 years of experience. One developer was recently
employed after finishing his education and thus has limited experience.

Methodology experience

Team members have had little experience in using software development method-
ologies. They did indicate to have knowledge of methodologies and have seen
methodologies in other parts of the organization, where Scrum is used most
often.

Willingness to change the methodology

Almost all team members have indicated they are willing to change their method-
ology. Only one of the developers indicated lower willingness to change the
methodology, stating he would first want to agree changes are helpful.

6.1.3 Solution properties

Solution complexity

There are no software metrics available of the complexity of the system. For
team members, the source code contains a number of parts that are complex,
mostly on the front-end and regarding the above mentioned party HDN. Team
members have different opinions on whether or not it is difficult to add new
features to the current solution, which indicates they have focused on different
parts of the system.

Maintainability

Interviewees overall agree with the system being easy to maintain, as well as it
being easy to add additional features to the system. Two interviewees, however,
indicate they have more difficulty in maintaining the current system.

• The graphical interface designer indicates the system is very difficult to main-
tain. The designer is also responsible for web design, which includes the
writing and structuring of cascading style sheets (CSS). The main reason for
the maintainability being difficult is the badly structured and undocumented
collection of CSS-files currently in the system.

Richard Cornelissen 59

CHAPTER 6. CASE DESCRIPTION

• One developer, responsible for most of the back-end development, indicates
the system is difficult to maintain as the current architecture is too simple,
making it hard to add additional features without breaking the system.

6.1.4 Methodology properties

Current methodology

The current methodology of Findesk exists of the following:

• The entire team holds a morning meeting every Monday for about one hour.
Here, they discuss what they have achieved the previous week and plan to
achieve the upcoming week.

• Issues written by the project manager/analyst are stored and tracked using
a issue tracking and project management tool called JIRA.

• The project manager assigns issues from JIRA to team members. These
issues can represent small improvements which can be completed within a day
to entire new functionality which take a longer period of time to complete.

• The director/domain expert regularly reviews new features before they are
released to customers and indicates improvements if necessary.

• Software releases to customers of improvements happen every few days.
• Releases of new major features to customers happen every few weeks, though

irregularly.

Although more conventions are in place at Findesk, the list above captures the
normal flow of work within the project.

Things to keep

The interviewees indicated a number of things in the project and methodology
to keep.

• The ambience and culture present within the project.
• The weekly lunch at the local market.
• The Friday afternoon beer.
• The company getaways.
• The currently used issue tracker, JIRA, as it is considered a major improve-

ment to the previously used system.
• The short lines of communication.
• The Monday morning meeting, which is especially necessary when there is

progress important to other members of the team.

60 Richard Cornelissen

6.1. PROJECT INVENTORY

• “Doing it right”, a loosely defined principle that tells developers to spend
additional time to the quality of what is developed.

• The short code reviews and retrospective developers often have together.

Things to discard or change

Interviewees have not indicated any ritual or part of the methodology they feel
should be discarded, but they have indicated a number of changes they would
like to happen.

• A more complete backlog, so the team knows what they have to commit to.
• The help desk wants to know the way of working of the developers so they

better know when they have time to ask questions.
• Passing along larger tasks to other team members is not efficient (this is a

point for improvement reported by an interviewed part-timer).
• More meetings with the team, for instance daily.
• Better communication with external parties such as banking firms, but also

customers.
• Team members would like to select their own tasks from the backlog, instead

of asking the project manager what has priority.
• One of the directors indicated he wants the team to become more self-

managing, specifically in an informal manner, such as arranging getaways
and social as well as professional gatherings.

Stakeholder requirements

Only the organization requires some reporting on finances and revenue.

Standards and conventions

No standards and conventions are set, but the project manager has specified that
code should be readable and follow a known naming scheme. He also specified
standards and conventions would be useful to include in the methodology.

Increment length

Development is not performed in time-boxes or increments, but major releases
happen every two to three weeks. Smaller releases, containing minor improve-
ments and bug-fixes, occur more often, variating from every two days to weekly.

Length of tasks

Tasks assigned to developers usually take an hour to a full day for a single team
member to complete.

Richard Cornelissen 61

CHAPTER 6. CASE DESCRIPTION

New requirements

New requirements arrive at the project through the domain expert or through
an external party.Small defects are often found by customers and reported over
email or over the phone. External parties, such as insurance companies, can lead
to new requirements, for instance when financial products are to be added to
the software.

Changes in Dutch law also lead to new requirements as large as entire features.

6.1.5 Summary

In summary, the case project has a low criticality, a small number of people that
are distributed in adjacent rooms, and a very light methodology they have not
adjusted to the growth of the project size. Furthermore, a list of goals have
been indicated by the directors and the project manager, as well as a number of
points of improvement with regards to the current methodology.

• A better and longer roadmap, so the team can see the commitment required
from them.

• Developers want the ability to take on tasks of their choosing.
• The help desk wants better communication with the development team to

make it clearer how and when to asks for help.
• One part-timer indicated passing along tasks in the currently used method-

ology is unclear.
• More meetings with team members.

Additionally, more long-term changes to the methodology and project have been
identified:

• Creating a better structure of the methodology and create a better role
distinction.

• Creating an understanding of which team member has which knowledge on
the project.

• Increasing predictability of development, shortening lead times, and improv-
ing quality.

• Attaining a methodology that is efficient for both team members and software
development.

• Promoting self-management within the team, specifically on informal topics,
such as social gatherings.

• Improving communication with external parties.

62 Richard Cornelissen

6.2. FIRST ITERATION

6.2 First iteration

This section describes the first iteration of using the methodology-growing frame-
work within Findesk. An attempt at introducing a new practice was performed
first. Based on how well the team adopted the new practice, the first reflection
workshop was prepared with a proposal of new practices.

6.2.1 First practice attempt

In order to assess how well team members cope with a change in their method-
ology, the Daily Standup was added to their methodology. This practice also
fits with one of the goals identified in the project inventory. Every Tuesday to
Friday, team members gathered at around 9:00 PM to discuss what they had
done the previous day, will do the current day, and whether they have any im-
pediments that block their progress. To not further change the methodology,
the daily standup meeting was not held on Mondays, which was reserved for the
weekly team gathering.

Although no measurements of social adoption were made, the team appeared to
have fully adopted the Daily Standup within a week. As such, the first reflection
workshop was prepared by creating a proposal with changes to the methodology.

6.2.2 Preparation of the reflection workshop

The first reflection workshop is prepared with the composition of a proposal.
The goals from the inventory that will be addressed by the proposal are “more
commitment”, the “ability to select own tasks”, and “clearer help desk procedures”.
The proposal was composed in collaboration with the project manager. As the
project has low criticality and a low project size, with team members located in
adjacent rooms, the focus is on keeping the methodology light. Below is a list of
practices included in the first proposal, including the reasons for why they were
selected. These practices are described in Appendix B.

Pair Programming

The summer months were scheduled for maintenance. In this period, team mem-
bers would indicate parts of the system they felt could be improved. As these
tasks were relatively small but difficult, Pair Programming was selected for use
with each of these tasks. This allowed team members to collaborate on a single

Richard Cornelissen 63

CHAPTER 6. CASE DESCRIPTION

task, brainstorm refinements, clarify ideas, and to take initiative when the other
team member is stuck.

Visualize Workflow

Visualizing the workflow allows the project manager to queue upcoming work
items, thus making the commitment the team has to take on in the short term
more visible. Furthermore, the board enables team members to select their own
tasks from the queue. The proposal also contained the following specifics for the
board:

• The board will have swim-lanes for each feature and one only for issues and
defects.

• The board will depict a workflow consisting of the columns “To do”, “Im-
plementation”, “Testing”, and “Done”. This workflow was created while dis-
cussing the proposal.

• Cards on the board will contain a title, description, and an identifier for the
issue tracking system.

MoSCoW Prioritization

This requirements prioritization scheme was selected to identify work items that
must be implemented within a feature before a release can be made. The priority
of requirements will be visible on the cards on the board.

Doing it Right

Doing it Right is a principle for allowing additional time to be spent on ensuring
the quality of the product. During the inventory, Doing it Right was mentioned
as a principle in use that should not be discarded. However, only a single team
member indicated the practice being in place. It is therefore included in the
proposal to discuss with the team whether they agree on applying this practice.

In contrast to the rest of the proposal, Doing it Right is not a practice and is
therefore not included in the practice library.

Daily Standup

Daily standup meetings were tried out as a first attempt at changing the method-
ology within the team. The practice was easily adopted and will be kept in order
to better communication between team members. Therefore, it will be kept in-
cluded in the methodology, but was not on the agenda of the first reflection
workshop.

64 Richard Cornelissen

6.2. FIRST ITERATION

6.2.3 First reflection workshop

A coarse-grained version of the proposal was sent to all team members a week
before the first reflection workshop. Team members were asked to also provide
additional topics and possible practices they would like to be discussed.

Additional topics

The following additional topics, including a practice called Seasons of the Day,
have been added to the agenda of the first workshop.

• Customer involvement. Presentations for customers about the planned mile-
stones were being held at the moment the first workshop was being sched-
uled. During these, a discussion with end-users led to a number of possible
improvements that have later been added to the system. This manner of cus-
tomer involvement was considered useful by the team member holding the
discussion and will therefore be discussed during the reflection workshop.

• Seasons of the Day. This is a practice (or principle) described by one of the di-
rectors where the morning is used for development and progress, without dis-
tractions. Meetings, customer communication, and other non-development
tasks would strictly be performed in the afternoon.

• Workspaces within the organization. This topic was included because the
number of team members is steadily growing and team members are prefer-
ably put in the same room as much as possible.

• Communication between the help desk and the development team. The help
desk was responsible for accepting calls, but referred to the development
team for more detailed questions and issues. This topic was added to the
agenda to discuss better ways for communication, as they are divided in
separate rooms.

Reflection workshop

Above, the prepared proposal and additional topics were described that together
make up the agenda of the first reflection workshop. These have been put on
the board visualized in Table 6.1. To avoid confusion with the board used with
Visualize Workflow, this board will be referred to as the methodology board. The
contents of the proposal were added to the Upcoming column and the additional
topics were added to the Deferred column. As the Daily Standup was already in
use at the time, it has been placed in the Trying column initially. One hour was
scheduled for the reflection workshop, during which the following goals, attained
from the project inventory, were presented first.

Richard Cornelissen 65

CHAPTER 6. CASE DESCRIPTION

Deferred Upcoming Trying Keep Discard

• Customer
involve-
ment

• Seasons of
the Day

•
Workspaces

• Help desk

• Pair Pro-
gramming

• Visualize
Workflow

• MoSCoW
Prioritiza-
tion

• Doing it
Right

• Daily
Standup

Table 6.1: Methodology board at the beginning of the first reflection workshop.

• More visibility of commitment so team members can see where they are
headed.

• The ability to take on tasks themselves, instead of continuously asking the
project manager for new work.

• Better communications and agreements on tasks with the help desk.

After presenting the goals and the proposal, the team collaboratively decided
how they wanted to apply the practices within their methodology. To do so, an
open discussion was held with the entire team in a single room. The discussion
was led together with the project manager to give everyone the opportunity to
speak. Unfortunately, both directors and the business analyst were unable to
attend.

The decisions made during the reflection workshop are visualized on the method-
ology board of Table 6.2. First, items in the Trying column were discussed, which
contained the Daily Standup. Team members agreed to move the Daily Standup
to the Keep column. They did add a card to shorten the standup meeting to
the Upcoming column. These kinds of improvements on selected practices are
displayed in italic.

Team members decided to place Doing it Right, Pair Programming, Seasons of
the Day, and customer involvement in the Deferred column for the following
reasons:

• Team members seemed unsure how to apply Doing it Right in practice, as
it would affect many other parts of the methodology. One suggestion that
everyone did agree on was that a “Definition of Done” must be made in order

66 Richard Cornelissen

6.2. FIRST ITERATION

to clear when something is actually “done right”. A Definition of Done is a
check-list containing criteria for when an item of work is completed.

• Although all team members agreed on the usefulness of Pair Programming,
for now, they agreed to postpone it as it was still uncertain what the main-
tenance period would entail.

• To apply Seasons of the Day, new agreements would have had to be made
with the help desk on when to ask developers for help on questions of cus-
tomers. As there were already many discussions on how to improve the
situation, Seasons of the Day was deferred.

• The discussion on how to better involve the customer and how to find out
their preferences remained inconclusive, as team members were uncertain
how this would be applied in practice. Furthermore, it would be necessary
to first find customers that would be willing to help with the development
efforts. They did agree it was necessary to explore how the customer could
give more input on development. Two ideas were named in particular:

– Acceptance testing by customers of new features.
– Letting customers review wireframes of new parts of the system.

Team members agreed on using the practices Visualize Workflow and MoSCoW
prioritization, which were put in the Upcoming column to be tried during the
next few weeks. Additionally, they wanted work items with database changes
to be visibly marked on the methodology board, as they needed more attention
before a release could be placed. A card was placed in the Upcoming column to
do so.

One of the identified goals was to improve communication with the help desk
and make clearer agreements on how tasks coming from the help desk would
be performed or passed on. The discussion on this topic made clear that there
were already a number of ideas, as well as a number of planned changes. For
instance, they were planning on identifying the topics that were requested most
often by customers and whether a manual of the product would help decreasing
the workload of the help desk. As this discussion went on for too long, it was
postponed for later. It was not added to the board, as it seemed unclear what
could be changed at this moment.

6.2.4 Changing the methodology

After the first reflection workshop, agreed upon changes were implemented grad-
ually. The shortened Daily Standup was affective immediately and was applied

Richard Cornelissen 67

CHAPTER 6. CASE DESCRIPTION

Deferred Upcoming Trying Keep Discard

• Doing it
Right

• Pair Pro-
graming

• Seasons of
the Day

• Customer
involve-
ment

• Visualize
Workflow

• Work
items with
database
changes
marked

• MoSCoW
Prioritiza-
tion

• Shorter
Daily
Standups

• Daily
Standup

Table 6.2: Methodology board after the first reflection workshop.

by notifying the speaker when his story was becoming too long. Over time, the
Daily Standup has been shortened to around 15 minutes, short enough to not
feel time consuming.

The upcoming changes were limited to the Visualize Workflow and MoSCoW
Prioritization practices. The workflow has been outlined on a blackboard that
was already available in the workspace, containing the columns “To do”, “Imple-
mentation”, “Testing”, and “Done”.

Within two weeks, team members indicated the need for additional columns to
better see the state of work items. The workflow was adjusted to the following
successive states: “To do”, “Implementation”, “Testing”, “Review”, “Acceptance”,
“Done”, and “Released”. The Review state indicates the Project Manager will
look into the changesets associated with a work item and can test them if nec-
essary. The Acceptance state is meant for acceptance testing by the domain
expert, after which he can indicate possible improvements before new function-
ality is released. Finally, the Released state is used to indicate that work items
are moved into production and are available to the customer. This state was
added especially so team members can see whether found defects are already
fixed in production. These changes were also added to the methodology board.

68 Richard Cornelissen

6.3. SECOND ITERATION

6.3 Second iteration

This section describes the second iteration of using the methodology-growing
framework at Findesk. The second reflection workshop was prepared by measur-
ing the social adoption of the Daily Standup and Visualize Workflow practices.

6.3.1 Preparation of the reflection workshop

To prepare for the second reflection workshop, the levels of social adoption of
the Daily Standup and Visualize Workflow practices have been measured.

Team members are only interviewed on practices they have applied. For the
Daily Standup, these were seven in total, including all developers, the project
manager/analyst, and the graphical interface designer. Visualize Workflow was
used mostly by the project manager, graphical interface designer, and three of
the developers.

The MoSCoW prioritization practice remained unused at the time and was thus
not included in the measurement of the level of social adoption. This was dis-
cussed during the reflection workshop.

Team members were asked to fill in the seven-point Likert scale questionnaires
and give reasons for their answers. Furthermore, they were asked to indicate
what they think could be improved on the practices. The results of the interviews
are discussed below. The complete interview form is available in Appendix D.

Measured social adoption

Figure 6.1 shows the measured levels of social adoption for the Daily Standup
and Visualize Workflow practices.

According to the results, the Daily Standup is held often, although not yet at
every opportunity, as evident by questions SIFU1 and SIFU3. Furthermore, not
all team members seem to regard it as a common activity at the moment of the
interview (SIFU2). According to SICU1, the instructions are followed consis-
tently, though some interviewees indicated no instructions have been provided.
The results of SICU2 have been ignored, as the associated question was formu-
lated incorrectly, insinuating the existence of a precise description of the Daily
Standup, which was never provided.

The results of the questionnaire shows the board visualizing the workflow is
used reasonably well, but can still be improved, as shown by SIFU1 and SIFU3.

Richard Cornelissen 69

CHAPTER 6. CASE DESCRIPTION

(a) Daily Standup (b) Visualize Workflow

Figure 6.1: Measured levels of social adoption for the Daily Standup and Visu-
alize Workflow.

SIFU2 shows the use of the board is indicated as a common activity, though the
answers show some variability. According to SICU1, the instructions are followed
consistently by most interviewees, though some indicate the instructions are not
fully clear yet. The results of SICU2 have been ignored for Visualize Workflow
as well.

Although the results for Visualize Workflow appear positive, the number of team
members that indicated they use the board remains low. It is therefore possible
the practice remains unadopted for the other team members.

Interviewees have indicated many possible points for improvements while an-
swering the questionnaire:

• The workflow for work items from other principles (e.g. graphical interface
design) has not been established and it could be possible to include this on
the board.

• A project and issue tracking system called JIRA is available, but its role in
combination with the board is not fully decided.

• Other team members should be encouraged to be present during the daily
standup meeting. Often, only the developers and project manager are present.

• The board appears too crowded with work items, both in progress as queued.
• Usage of the board is often unclear. For example, it is unclear who is allowed

to add work items to the board.
• Not everyone is using the board, which makes it difficult to see progress of

all work items.
• The mix of coarse- and fine-grained work items, combined with no breakdown

of the coarse-grained work items, make development speed obscure.
• The board can be used as guidance during stand-up meetings.

70 Richard Cornelissen

6.3. SECOND ITERATION

• Some work items arriving by mail, phone or after a discussion do not end up
on the board.

• Descriptions of work items are not always understandable for everyone.
• The Acceptance column is a bottleneck and sometimes performed within the

development team, rather than by upper management.
• People often enter the stand-up meeting halfway through.

Most of these points for improvement have been discussed with the team during
the second reflection workshop.

6.3.2 Second reflection workshop

All team members were sent an invitation to attend the second reflection work-
shop, which included the following agenda:

• Improvements to Visualize Workshop that were indicated during the inter-
views.

• The items that were placed in the deferred column on the board: Doing it
Right, Pair Programming, Seasons of the Day, and Customer involvement.

• Continuing the help desk discussion of the last reflection workshop.
• Additionally, standards and conventions for software development were added

to the agenda. At this point, they were only set informally.

Reflection workshop

One hour was scheduled for the second reflection workshop, which was attended
by the entire team except for one of the directors and a part-time developer.
Table 6.3 shows the methodology board at the beginning of the workshop.

The results of the measurement of the level of social adoption were presented
at the beginning of the workshop. After this, the items in the Trying column
were discussed. Both Visualize Workflow and shorter Daily Standup meetings
were moved to the Keep column. During the measurement of the level of social
adoption, though, some team members indicated the standup meeting can be
shortened still. The new review, acceptance and released columns were also
moved to the Keep column.

Next, the items present in the Upcoming column were discussed.

• The MoSCoW Prioritization is moved to the Discard column as it would
remain unused. The analyst indicated the work items that are queued on
the board are almost always the highest priority tasks at that moment.

Richard Cornelissen 71

CHAPTER 6. CASE DESCRIPTION

Deferred Upcoming Trying Keep Discard

• Doing it
Right

• Pair Pro-
graming

• Seasons of
the Day

• Customer
involve-
ment

• Work
items with
database
changes
marked

• MoSCoW
Prioritiza-
tion

• Shorter
Daily
Standups

• Visualize
Workflow

• New
columns:
review,
accep-
tance,
released

• Daily
Standup

Table 6.3: Methodology board at the beginning of the second reflection work-
shop.

• The marking of database changes was not yet adopted. During the discus-
sion, participants agreed to also include additional markings, such as highest
priority and blocking tasks. The card Work items with database changes
marked was replaced with Marking properties of work items.

The results of the measurement of the levels of social adoption were discussed
next, which have led to additional items on the methodology board shown in
Table 6.4.

• Bug fixes were blocked in the Acceptance column. Eventually, they were
moved to the Done column without acceptance testing so they could be
released. The team decided bug fixes would skip the Acceptance column so
they could be released quickly. A card for this change was added to the
Trying column immediately.

• Team members wanted to hold daily standup meetings near the board to
easily discuss the tasks they were performing and planned to take on. This
was added to the Trying column immediately.

• Seasons of the Day was moved to the Upcoming column. Team members
decided they wanted the morning to focus on their work. Any help desk
calls would be handled by developers in the afternoon if necessary.

• Customer involvement was moved to Upcoming and the usability researcher
was made responsible for finding ways to receive feedback from customers.
The director/domain expert decided it was necessary to receive more feed-

72 Richard Cornelissen

6.3. SECOND ITERATION

back from customers.
• The team discussed improvements on the Visualize Workflow practice, which

led to the following cards being added to the Upcoming column:

– The team wanted less active swimlanes.
– Team members wanted to break coarse work items into smaller, finer

tasks.
– Two additional columns for specification and graphical design were to be

added to the board.
– Marking of additional properties on work items.

• The domain expert was made responsible of performing acceptance testing
before functionality is released to customers, added to the Upcoming column.

• Standards and conventions were added to the Upcoming column as the need
for which was indicated during the project inventory.

• At this point, there were already a number of unit tests available that were
used as regression tests on the system. However, developers indicated new
functionality is not always unit tested adequately. A card for this was added
to the Deferred column, as team members wanted to further discuss unit
testing later on.

• Doing it Right and Pair Programming remained Deferred as no time was left
to discuss this in detail. Furthermore, team members did not see the need
to discuss these topics at this point.

Table 6.4 shows the contents of the methodology board at the end of the reflection
workshop. Changes in italic indicate improvements on existing practices.

6.3.3 Changing the methodology

Over the next few weeks, team members started applying the selected improve-
ments. Immediately, the “Specification” and “Design” columns were added to
the workflow and existing standards and conventions for writing code were se-
lected and sent to all developers. The number of swimlanes on the board was
decreased by removing those representing small or currently blocked features
under development.

During this time, the focus of the author changed from facilitating the method-
ology changes to recording the results of the case study. The team became less
focused on applying and improving the selected practices. Although not mea-
sured, the adoption of these changes remained low. The team did perform an

Richard Cornelissen 73

CHAPTER 6. CASE DESCRIPTION

Deferred Upcoming Trying Keep Discard

• Doing it
Right

• Pair Pro-
graming

• Unit
testing

• Seasons of
the Day

• Customer
involve-
ment

• Less
swimlanes

• Task
breakdown

• Columns
for specifi-
cation and
graphical
design

• Work item
types
visible on
board

• Work item
properties
marked

• Standards
and con-
ventions

•
Acceptance
testing by
domain
expert

• Daily
Standup
at board

• Issues do
not need
acceptance
column

• Daily
Standup

• Shorter
Daily
Standups

• Visualize
Workflow

• New
columns:
review,
accep-
tance,
released

• MoSCoW
Prioritiza-
tion

Table 6.4: Methodology board after the second reflection workshop.

74 Richard Cornelissen

6.4. REFLECTION ON THE METHODOLOGY

intermediate reflection workshop on how to change the methodology, although
it was unprepared.

6.4 Reflection on the methodology

The methodology at Findesk before applying the methodology-growing frame-
work consisted of the description given in Section 6.1.4. There were weekly team
gatherings to discuss what has been achieved the previous week and what is
planned for the upcoming week. Furthermore, the project manager was respon-
sible for assigning tasks to team members.

During the project inventory, team members indicated a number of possible im-
provements of the methodology. Amongst others, these include a better insight
in the backlog, more regular team meetings and own selection of tasks. The full
list is visible in Section 6.1.4.

Applying the methodology-growing framework has improved the methodology
according to these preferences. Team members are now able to select their own
tasks from the “To do” column of the board, which also indicates which tasks
are scheduled for implementation. The team now holds daily standup meetings,
where they discuss progress and impediments.

During the period after the second reflection workshop, the author of this thesis
has stopped facilitating use of the framework, as described in Section 6.3.3. From
this experience, a team member that facilitates use of the framework appears
necessary. This team member would be responsible for keeping up the discipline
required to improve the methodology and help the team improve its methodology.

Richard Cornelissen 75

Chapter 7

Evaluation

Three surveys have been held to evaluate the design of the proposed
methodology-growing framework. The questionnaires used for these
surveys, as well as the results, are discussed in this chapter.

§
Surveys were completed by three target groups to evaluate the methodology-
growing framework:

• Employees at Topicus have completed a survey to confirm whether the de-
sign of the framework is in line with the way they want to adjust their
methodology.

• The team members of Findesk, who have had experience in applying the
framework, have completed a survey to confirm whether the framework al-
lowed them to improved their methodology.

• A number of employees experienced with software projects have completed
an extended version of the survey Findesk team members completed. This
survey confirmed whether they feel the framework is usable in practice for
improving methodologies of software projects.

Survey results are visualized in a diverging stacked bar chart. These charts show
the percentage or number of participants that gave a certain answer. Positive
answers are displayed in green on the left of the centre line, negative answers on
the right and in red. This shows the spread of positive and negative opinions.

7.1 Employee survey

A survey was held at various departments of Topicus in order to confirm whether
the goals of the proposed framework match with how employees prefer to attain

77

CHAPTER 7. EVALUATION

a methodology. Specifically, whether employees want to collaborate to attain an
adequate methodology, and whether they find it worthwhile to collaborate on
this.

The survey was kept short at six statements to ensure a high number of respon-
dents. For each statement, participants were asked to give their opinion using
a six-point Likert scale with strongly agree, agree, partly agree, partly disagree,
disagree, and strongly disagree as possible answers. They were also asked to add
comments if they want to clarify their answers. Below, each statement is first
described, after which its results are discussed. A copy of the survey (in Dutch)
as was handed to the participants is also added in Appendix E.1.

7.1.1 Survey results

The survey has been completed by 105 employees at Topicus. Figure 7.1 con-
tains a diverging stacked bar chart showing the spread of positive and negative
opinions. A table containing the results of this survey is available in Appendix
F.1.

1%	

30%	

44%	

23%	

29%	

8%	

4%	

52%	

49%	

50%	

52%	

23%	

30%	

15%	

7%	

26%	

16%	

24%	

18%	

2%	

1%	

3%	

35%	

39%	

1%	

10%	

8%	

A	

B	

C	

D	

E	

F	

Strongly	 agree	 Agree	 Partly	 agree	 Partly	 disagree	 Disagree	 Strongly	 disagree	

Figure 7.1: Chart of employee survey results.

Methodology selection

The first three statements assess how employees want to attain a methodology:

A) I want management to select a methodology for me and my team.

B) I want to determine my own methodology, independent of the rest of my
team.

C) I want to determine the methodology in collaboration with my team.

78 Richard Cornelissen

7.1. EMPLOYEE SURVEY

As shown in Figure 7.1, about 70% of the participants partially to strongly
disagree with statement A. However, a significant number of participants (about
30%) have indicated they (partly) agree. Comments that were included indicate
employees want management to select a coarse-grained methodology which is
adopted and fine-tuned by the team itself. At the very least, employees want to
participate with management on the selection of the methodology.

Around 65% of the participants indicate they partially to strongly disagree with
having a methodology independent of the rest of the team. Around 30% of the
respondents however indicate they partly agree with selecting their own way of
working. Furthermore, 4% agrees and 1% strongly agrees with the statement.
Comments indicate that some of them, such as graphical interface designers
and senior developers, have different schedules and can have responsibilities on
different projects. Their work does not necessarily follow the same iterations as
development teams and they therefore need an independent way of working, at
least partly.

Respondents overall agree with collaborating with their team on the methodol-
ogy, as shown in Figure 7.1. Only 2% of the participants partially disagree.

Combined, the results yield three conclusions:

• The respondents who indicated they want management to select their method-
ology also want to collaborate with their team on the methodology.

• The respondents who have indicated they want to select their own method-
ology independently also want to collaborate with their team on the method-
ology.

• Almost all respondents prefer to collaborate with their team on how to shape
their methodology.

D) I believe it is worthwhile to regularly reflect on how we work as a team
and to improve our way of working

The methodology-growing framework uses periodically held reflection workshops
with the entire team to improve their methodology. As this activity requires
time and effort, employees are asked whether they find this regular collaborate
reflection worthwhile.

From the results shown in Figure 7.1, respondents generally agree it is worthwhile
to regularly reflect with their team on the methodology in order to improve it.

Richard Cornelissen 79

CHAPTER 7. EVALUATION

E) I believe it is worth the effort to actively adjust my methodology and to
explore new practices

In applying the proposed framework, team members are required to actively
adjust their methodology, as well as to explore new practices. Employees are
asked whether they find it worthwhile to do so. Statement F confirms whether
team members want to propose and introduce new practices, not only trying out
new practices.

As shown in Figure 7.1, participants overall agree with it being worthwhile to
actively adjust their methodology and to explore new practices.

F) I want to have the possibility to propose and introduce new practices
within my team

The proposed framework allows team members to propose and introduce new
practices within their team. Employees are asked for their opinion in order to
confirm whether they would want this possibility.

Participants agree on wanting the possibility to propose and introduce new prac-
tices within their team. As can be seen in Figure 7.1, the majority (52%) agrees
with the statement and 29% of the respondents even strongly agree.

7.1.2 Summary

The designed framework is in line with how participants envision improving the
methodology. Participants generally agree on the following:

• Collaborating as a team to determine their methodology.
• Regular reflection being worthwhile to improve the methodology.
• Actively adjusting the methodology and exploring new practices being worth-

while to improve the methodology.
• They want to have the possibility to propose and introduce new practices

within the team.

Respondents want to collaborate with their team to determine their methodol-
ogy. However, some also indicate they would like management to select their
methodology, at least partially, as well as wanting to select their own method-
ology independent of the rest of the team. Although some comments from par-
ticipants indicate why they would want to do so, additional research would be
necessary to conclude if and how the proposed framework would need to be
adjusted.

80 Richard Cornelissen

7.2. TEAM MEMBER & EXPERIENCED EMPLOYEE SURVEY

7.2 Team member & experienced employee survey

Aside from the survey held at different departments of Topicus, two other surveys
were held to evaluate the methodology-growing framework. Team members at
Findesk, the case project described in Chapter 6, were asked for their opinion on
the proposed methodology-growing framework and if it allowed them to improve
their methodology. Furthermore, the experienced employees that also helped
in the design of the framework, as explained in Section 6, have completed an
extended version of the same survey.

The survey consisted of the statements below. For each statement, participants
were asked to give their opinion using a six-point Likert scale with strongly agree,
agree, partly agree, partly disagree, disagree, and strongly disagree as possible
answers. They were also asked to add comments if they want to clarify their
answers. Below, each statement is first described, after which its results are
discussed. A copy of these surveys (in Dutch) as was handed to the participants
is available in Appendixes E.2 and E.3.

7.2.1 Survey results

The survey has been completed by nine team members of Findesk and all six
experienced employees. Figure 7.2 contains a diverging stacked bar chart showing
the spread of positive and negative opinions for the survey completed by the team
members of Findesk. Appendix F.2 contains a table of the results for the survey
performed on the Findesk team members.

Figure 7.3 shows the same type of graph for the surveys completed by the expe-
rienced employees. Similarly, a table of the results for the survey completed by
the experienced employees is included in Appendix F.3.

A) The framework enables teams to develop a methodology that suits their
work

Team members from Findesk generally agree with the proposed framework al-
lowing teams to develop a methodology that suits their work. Results displayed
in Figure 7.2 show some doubts, as three respondents only partly agree and
one partly disagrees. A comment from a partly disagreeing participant indicates
uncertainty if the framework will result in fixed procedures and methods.

As shown in Figure 7.3, interviewed experienced employees respond more posi-
tive. Four of them agree and two strongly agree the framework allows teams to

Richard Cornelissen 81

CHAPTER 7. EVALUATION

1	

3	

2	

3	

4	

4	

1	

4	

5	

5	

4	

6	

1	

5	

7	

1	

4	

5	

3	

2	

1	

2	

3	

1	

2	

3	

3	

1	

1	

1	

4	

2	

1	

1	

1	

2	

A	

B	

C	

D	

E	

F	

G	

H	

I	

J	

K	

Strongly	 agree	 Agree	 Partly	 agree	 Partly	 disagree	 Disagree	 Strongly	 disagree	

Figure 7.2: Chart of team member survey results.

develop a suitable methodology.

B) The framework enables team members to adjust the methodology to
their goals

Seven of the nine team members agree or partially agree the framework allows
them to adjust the methodology to their goals. A partially agreeing respon-
dent indicates that because the framework requires a group effort, not all team
members will ever get exactly what they want individually. The two negatively
responding team members, unfortunately, have provided no explanation for their
opinion.

All six interviewed experienced employees, however, agree the framework allows
team members to adjust their methodology to their goals.

C) To attain a methodology that suits the project, iterative improvement
of the methodology is essential

The methodology-growing framework uses iteratively held reflection workshops
where the methodology is improved. Although team members are not fully
positive on statements A and B, they do agree overall that iterative improvement
is essential for attaining a suitable methodology. As shown in Figure 7.2, five
respondents agree and three even fully agree with iterative improvement being
essential.

Participating experienced employees generally agree with the necessity of itera-

82 Richard Cornelissen

7.2. TEAM MEMBER & EXPERIENCED EMPLOYEE SURVEY

2	

3	

4	

2	

2	

2	

1	

1	

1	

1	

1	

4	

6	

2	

2	

4	

2	

2	

5	

2	

5	

4	

5	

4	

5	

6	

1	

1	

2	

3	

1	

1	

1	

1	

1	

A	

B	

C	

D	

E	

F	

G	

H	

I	

J	

K	

L	

M	

N	

O	

Strongly	 agree	 Agree	 Partly	 agree	 Partly	 disagree	 Disagree	 Strongly	 disagree	

Figure 7.3: Chart of survey results of experienced employees.

tive improvement for attaining a suitable methodology. Figure 7.3 shows two of
them agree, three strongly agree, and one partially agrees.

D) Workshops where decisions are made collaboratively are usable to
iteratively improve methodologies

Statement C finds out whether team members find iterative improvement of
the methodology important for tailoring it to the project. If so, this statement
confirms whether the use of reflection workshops is a feasible approach to perform
the iterative improvement.

Figure 7.2 shows team members agree overall with reflection workshops allowing
for iterative improvement of the methodology. One respondent disagrees, but
has left no comments to explain why. One comment of a strongly agreeing
respondent indicates that it does require the entire team to be present, willing,
and able to perform a reflection workshop. From the experienced employees,
most strongly agree reflection workshops are a feasible way to iteratively improve
the methodology of a project.

Richard Cornelissen 83

CHAPTER 7. EVALUATION

E) A proposal with changes to the methodology, with input from the team,
is a good preparation for workshops

The first reflection workshop held in the case project described in Chapter 6
was prepared with the creation of a proposal. This proposal contained some
changes that met the identified goals of team members, as well as a few discus-
sion points they have entered themselves. Results show that a proposal with
changes, including suggestions from the team, is considered a good preparation
for reflection workshops. Six of the nine responding team members agree and
the remainder even fully agrees with using proposals for reflection workshops.
One comment says that a proposal results in a directed discussion.

The interviewed experienced employees agree a proposal of changes is a good
preparation for reflection workshops, as visualized in Figure 7.3. One of the four
agreeing respondents indicated using proposals can accelerate improvement of
the methodology.

F) The workshops result in a better methodology than management
selection

Four of the team members strongly agree that using reflection workshops results
in a better methodology than selection by management. Only one team mem-
ber partially disagrees, but has left no comment explaining his opinion. One
strongly agreeing team member indicated he feels management should facilitate
in selecting the methodology, and not instruct what it should be.

The experienced employees generally agree using reflection workshops results in
a better methodology than selection by management. The one partially agreeing
respondent indicated that though the chance of attaining a better methodology
is higher using reflection workshops, it is not fully certain. One interviewee
disagrees with this statement, commenting that vision by management is also
important.

G) The workshops result in better adoption of a methodology than
management selection

The opinions on statement F indicate there exists some doubts on whether work-
shops result in better methodologies, both by team members and experienced
employees. The opinions on this statement, however, indicate both groups do
expect the use of reflection workshops to increase adoption of the methodology
within the team.

One of the partially agreeing experienced employees, the same interviewee who

84 Richard Cornelissen

7.2. TEAM MEMBER & EXPERIENCED EMPLOYEE SURVEY

partially agreed with statement F, again indicated the chance of improved adop-
tion is higher than when management selects.

H) Holding workshops is worth the effort to attain a better methodology

As the results of Figures 7.2 and 7.3 show, the team members and experienced
employees all agree reflection workshops are worth the effort to attain an im-
proved methodology. One of the experienced employees commented reflection
workshops are worthwhile until the methodology of the team has been crystal-
lized, i.e. no further improvements are necessary.

I) Holding workshops is sufficient to improve methodologies collaboratively

Both groups find reflection workshops to improve the methodology and its adop-
tion within a project (statements F and G). Furthermore, they also find reflection
workshops worthwhile to hold (statement H). However, respondents also indicate
the workshops alone are not sufficient to collaboratively improve the methodol-
ogy. Two team members have commented there should be more focus on actually
applying the methodology and that holding reflection workshops is only part of
the process to improve the methodology.

Comments from experienced employees indicate only holding reflection work-
shops is not sufficient to improve a methodology. As shown in Figure 7.3, one
of them disagrees, indicating knowledge on methodologies is also necessary for
improving a methodology. One partially agreeing respondents indicates only
holding workshops would be insufficient and indicates commitment is necessary.

J) Measuring social adoption of newly selected practices is sufficient input
for further workshops

As shown in Figure 7.2, team members generally agree with this statement. Two
team members indicate they partially disagree, but have not added comments
to explain their opinion. Compared to their opinion on other statements, team
members are less positive as none strongly agree with this statement.

Experienced employees, on the other hand, agree measuring adoption of newly
selected practices is sufficient input for reflection workshops, as shown in Figure
7.3.

K) The framework is usable in practice to develop or improve the
methodology of projects

Figure 7.2 shows team members find the framework is usable to be applied in
practice. One team member partially disagrees with this statement, but has not

Richard Cornelissen 85

CHAPTER 7. EVALUATION

added an explanation for this opinion. Compared to other statements, team
members are less positive as none strongly agree with this statement.

Experienced employees have a slightly more positive opinion on this statement.
Most agree the proposed methodology-growing framework is usable in practice.
However, only one respondent strongly agrees and one merely partially agrees
with this statement. No respondent gave comments on their opinion.

7.2.2 Additional survey results

Below are statements that have been included only in the questionnaires of the
experienced employees. These statements are about the project inventory and
the practice library. As team members have not directly applied these parts of
the framework in practice, their opinion has not been asked.

L) The project inventory collects useful properties of the project for
improving the methodology

During interviews, the experienced employees have been explained what proper-
ties of projects are included and how interviews are held. Results show respon-
dents all respondents agree the project inventory collects properties of projects
that are useful for improving its methodology.

M) Performing the project inventory is worth the effort to attain a better
methodology

The interviewed experienced employees are asked whether they find performing
the project inventory is worthwhile to improve a methodology.

Results show respondents agree performing the project inventory is worth the
effort to attain a better methodology.

N) The examples in the practice library are useful suggestions for
improving the methodology

The respondents have been explained and have discussed on the practice library
and how it can be used within the methodology-growing framework. Therefore,
they are asked whether they find the available examples can be useful suggestions
for improving the methodology.

Figure 7.3 shows positive opinions on the usefulness of the practice library.

86 Richard Cornelissen

7.2. TEAM MEMBER & EXPERIENCED EMPLOYEE SURVEY

O) Purposes, prerequisites, necessary commitment and tailoring of
practices are a useful guideline for creating a proposal for workshops

Following statement N, interviewed respondents are asked whether they find the
appended properties of practices in the library useful.

All interviewed experienced employees agree appending practices with their pur-
pose, prerequisites, necessary commitment and tailoring of practices is useful for
creating a proposal.

7.2.3 Summary

Teammembers are very positive on performing iterative improvements of method-
ologies. They also see reflection workshops useful for achieving this. The reflec-
tion workshops are not seen as sufficient, though, one comment indicating the
need for more focus on actually applying the methodology. Creating a proposal
with changes to the methodology and allowing team members to provide input
is seen as a good preparation for these workshops. Measuring social adoption
is shown to be at least useful for preparing reflection workshops. However, not
every respondent agrees on only performing this measurement to be sufficient.

Interviewed experienced employees have an overall positive opinion on the methodology-
growing framework. Figure 7.3 shows only statements F and I gain slightly less
positive reactions. The comments on these statements indicate management
does still require a role in the process of improving the methodology.

Both groups of respondents are positive on the usability of the methodology-
growing framework in practice.

Richard Cornelissen 87

Chapter 8

Conclusion

This chapter concludes the research described in this thesis. The
research questions are answered and the contribution of this thesis is
discussed.

§
In this thesis, ways to improve methodologies of software projects have been
explored. This has led to the design of a framework to support organizations in
attaining adequate agile software development methodologies for both new and
existing software projects.

The research questions that have directed the design of the proposed framework
are answered in Section 8.1. The results of the performed research and the
contributions of this thesis to software engineering are discussed in Section 8.2.
Furthermore, we provide recommendations for organizations trying to attain a
suitable methodology in Section 8.3 and discuss the limitations of this research
in Section 8.4.

8.1 Conclusions

Section 1.2 proposes the two research questions that determine the focus of this
thesis.

Identifying and incorporating practices

The first research question, “For a given software project, how can suitable soft-
ware development practices be identified and incorporated into a coherent method-
ology?”, is answered by discussing its three subquestions.

1.a) How can software development practices be documented?

89

CHAPTER 8. CONCLUSION

This thesis builds upon the SEMAT initiative, which defines methodologies as a
composition of practices. The SEMAT Kernel provides a metamodel with which
methodologies and practices can be composed, simulated, applied, compared,
evaluated, measured, taught, and researched [16, 19, 24].

Software development practices can be identified from methodologies from liter-
ature and from existing projects. These practices can be documented and reused
with other methodologies. When reused, documented practices can be tailored
to the project, instead of tailoring an entire methodology.

1.b) How can usage criteria of documented practices be described?

To select practices for incorporation within a methodology, the criteria under
which they can be applied needs to be known.

We propose to extend documented practices with the following descriptions:

• The purpose of the practice is described. The purpose of a practice should
match with what the project and team is trying to improve or attain.

• The prerequisites of the practice indicate when a practice can be incorporated
in the methodology and project. To meet the prerequisites of a practice, it
can be necessary to either adjust the project or to tailor the practice.

• The necessary commitment of a practice describes what needs to be per-
formed to correctly apply it. This also indicates the methodology weight
that will be added when incorporating the practice.

• A description of how the practice can be tailored. This gives suggestions on
what can be adjusted to make the practice better suitable to a project.

Adding these descriptions can aid both the selection and the tailoring of prac-
tices.

1.c) How can software development practices be incorporated into a
coherent methodology?

The way practices can be incorporated into a methodology depends on the
project. We have proposed a list of questions that can be used as a checklist
to incorporate practices into a methodology. A second checklist is proposed to
guide all decisions on the methodology. Amongst others, these questions assert
the following:

• Whether practices are likely to be adopted and meet the goals of the team.
• Whether there is overlap between practices.
• Whether the ceremony and weight of the methodology fits the project.
• Whether there is a bottleneck situation that can be improved.

90 Richard Cornelissen

8.1. CONCLUSIONS

Project
properties

System and project history, team culture, criticality,
priorities, budget, requirement stability, customer
availability, planned milestones, environment, problem
domain complexity, current backlog

Team member
properties

People involved, problem domain experience, software
development experience, methodology experience,
willingness to change the methodology

Solution
properties

Solution complexity, maintainability

Methodology
properties

Current methodology, things to keep, things to discard
or change, stakeholder requirements, standards and
conventions, increment length, length of tasks, new
requirements

Table 8.1: Summary of project properties.

Section 5.1 contains the entire checklists.

Subquestion 2.d describes how practices can be adopted by the team by preparing
and holding reflection workshops.

Selecting and adopting practices

The second research question, “How can software development practices be se-
lected and adopted in both new and existing software projects?”, is answered by
answering its subquestions.

2.a) Which properties of software projects are important for making
decisions on a methodology?

In this thesis, we propose four groups of project properties that are important
for making decisions on a methodology:

• Those about the project itself.
• Those about its team members.
• Those about the developed solution.
• Those about its current methodology.

The properties under these groups are shown in Table 8.1. Chapter 4 provides
descriptions of all these properties.

2.b) How do identified properties of software projects apply to new
or existing software projects?

The identified properties all influence decisions on the methodology differently
and can apply to new or existing software projects differently. Each project

Richard Cornelissen 91

CHAPTER 8. CONCLUSION

property includes a description of its possible influence in Chapter 4.

Many of the project properties, though, are still unknown at the beginning of
a software project. The team can indicate what they expect for properties, but
decisions upon them are likely to be made when they become more clear.

It is not yet known how unknown properties of new projects will affect the project
and methodology, as the methodology-growing framework has only been applied
with an existing project.

2.c) How do identified properties of software projects affect decisions
regarding a methodology?

Documented practices are extended with their prerequisites. Prerequisites can
point to project properties to indicate if a practice is suitable for the project.
The identified properties of software projects thus influences if practices can be
incorporated in a methodology.

In this thesis, we propose to use the methodology design principles defined by
Cockburn as guidelines for making decisions on a methodology [8]. These are
introduced in Chapter 2 and aid decisions on the methodology as a whole, not
just on whether and how certain practices can be incorporated. The design
principles also rely on the properties of the project where they are applied. For
instance, according to the second design principle, excess methodology weight is
costly. Whether methodology weight is excess depends on the problem domain
complexity and the team size.

Chapter 4 describes the possible influence of each project property on the method-
ology.

2.d) By what method can software development practices be adopted
in a methodology?

In this thesis, we propose a methodology-growing framework to support orga-
nizations in attaining a methodology for both new and existing projects. The
major focus of this framework is on the adoption of an effective methodology by
the team, not to attain a theoretically sound methodology.

The framework uses periodically held reflection workshops to collaboratively
make decisions on the methodology. During the reflection workshops, the team
decides whether and how to incorporate software development practices in the
methodology. Agreed changes are to be applied gradually afterwards.

92 Richard Cornelissen

8.2. CONTRIBUTION

8.2 Contribution

This section summarizes the contribution of this thesis to software engineering.
The methodology-growing technique does not cover the following:

• A manner of composing methodologies.
• Guidance and suggestions on what software development practices can be

applied.
• Support for both newly starting and existing software projects.

This thesis proposes a framework able to support organizations in attaining
adequate agile software development methodologies for new and existing software
projects. In summary, this methodology-growing framework extends the original
technique as follows:

Following the SEMAT initiative, we propose to define methodologies as a com-
position of software development practices. Practices are defined as a repeatable
approach that provides guidance to deal with some dimension of software devel-
opment. They can be documented and reused. With this approach, practices
that are suitable for a project can be identified and incorporated in its method-
ology.

The incrementally held reflection workshops of the methodology-growing tech-
nique are also included in the framework. Selection and improvement of practices
incorporated in the methodology can be performed either during while preparing
these workshops. Furthermore, we propose to make an inventory of the prop-
erties of a software project to aid in making decisions on a methodology. This
inventory is created by holding interviews with team members before holding
the first reflection workshop.

Case study and evaluation

The methodology-growing framework has been applied at a small-scale, two
year old software project at Topicus in Deventer, The Netherlands. A survey
was held with its team members, as well as with a group of six experienced
employees. Through the survey, both team members and experienced employees
indicated the methodology-growing framework was usable in practice to improve
methodologies of projects.

Another survey was held with 105 employees at Topicus. The results of this
survey show the methodology-growing framework is in line with how employees
would want to improve their methodology. Employees prefer to collaboratively

Richard Cornelissen 93

CHAPTER 8. CONCLUSION

select the methodology above selection by management. They also find it worth-
while to regularly reflect on their way of working, as well as to actively adjust it
and to explore new possibilities in improving it. Lastly, employees indicate they
want the possibility to propose and introduce new practices within their team.

8.3 Business recommendations

In this thesis, ways to improve software development methodologies of projects
are explored and combined in the methodology-growing framework. Whether the
framework is applied completely or not, the following is a list of recommendations
for projects trying to attain a suitable methodology.

Iterative and collaborative improvement

A methodology, or way of working, is often set at the start of a new project and
is rarely consciously adjusted to changing situations. Furthermore, the method-
ology does not exist as a static entity, but manifests itself in the minds of the
team members and in their habits, which can change either consciously or un-
consciously. To respond to circumstances and to keep the way of working known
to all team members, it is important to iteratively and collaboratively improve
the methodology. In doing so, team members can synchronize the methodology
and adjust it to new circumstances together.

Facilitator

Using a methodology, as well as adjusting it, requires discipline, which is hard
to preserve when responsibility is divided between all team members. It is rec-
ommended to make a single team member responsible for arranging iterative
improvements and performing decided adjustments on the methodology. Most
likely, this responsibility can be given to a project management role.

This team member sees to it that the team applies the methodology. Further-
more, if team members have a problem with some parts of the methodology,
they can discuss this with the facilitator. The author of this thesis performed
the role of the facilitator for the case project of Chapter 6.

Reflect on the methodology

To improve the methodology of a project, it is important to let the team reflect
on previous experiences. Reflect on what has been improved and tried out with
the way of working thus far. In doing so, team members can indicate what

94 Richard Cornelissen

8.4. LIMITATIONS AND FUTURE WORK

they feel should be kept and what should be changed or discarded. It is also
important to assert whether there are any parts of the methodology that remain
unadopted, to find out why, and to either alter or discard these parts.

Keep knowledge up to date

It is necessary to keep up knowledge on methodologies and on trends in software
development. Doing so will enable team members to identify new and better
practices to develop software, and to improve the practices they already apply.

Let management facilitate instead of decide

According to studies, methodologies can remain unadopted when management
selects it [14]. Surveys held at Topicus also indicate employees want to collabo-
rate on shaping their methodology, instead of letting management select one. Re-
spondents do find management should have a role in selecting the methodology,
but instead of making decisions, management should collaborate and facilitate.

It is worthwhile to improve the methodology

Lastly, both literature and held surveys agree it is worthwhile to improve the
methodology within a project. Using an inappropriate or unadopted methodol-
ogy can result in failure of the software project [33]. This can be prevented by
iteratively improving the methodology in collaboration.

8.4 Limitations and future work

This section discusses the limitations of the research performed for this thesis.

First and foremost, this thesis only considers methodologies and practices that
fall under the agile philosophy. Surveys show up to 80% of the IT industry is
applying an agile methodology. Still, this does not entail other methodologies,
often referred to as traditional methodologies, are not useful anymore.

The methodology-growing framework has only been applied at a single project.
This project had a small project size, a low criticality, a small problem size
and already had a very light methodology. The team members were overall
experienced in software development and the problem domain, though they had
low experience with methodologies. This can and will be a very different story for
other projects. There will especially be a difference for newly starting projects,
which do not yet have a methodology with which to work.

Richard Cornelissen 95

CHAPTER 8. CONCLUSION

This thesis is also limited because it has only been applied at a single organi-
zation. The culture at Topicus is very collaborative and employees are open to
ideas. Most of them have themselves graduated not so long ago. Furthermore,
the size of the organization can also be of influence. With around 400 employ-
ees, Topicus is relatively small and still manages to use direct communication
for most interactions.

The surveys held to evaluate the design of the methodology-growing framework
have indicated a number of open issues.

• A survey held amongst employees indicates there exists a preference for man-
agement to select a coarse-grained methodology and for the team to work
out the finer details collaboratively. Whether and how the framework should
be adjusted to this result is yet unknown.

• The same survey indicates a significant number of employees at least partly
want to make decisions on their way of working independently. Again,
whether and how the framework should be adjusted to this result is not yet
known. With a light methodology, however, team members have more space
for making decisions on their way of working than with a heavy methodology.

• Surveys with team members and experience employees indicate that holding
reflection workshops is not enough for improving the methodology. More
focus can be necessary on actually applying the methodology and carrying
out changes on it. In this thesis, we have also referred to the appointment
of a facilitator role responsible for helping team members apply changes to
their methodology. Further research on this task is necessary, though.

• The methodology-growing framework describes methods to prepare for re-
flection workshops. These preparations can discover ways to improve the
methodology. Of these, only the composition of a proposal and the mea-
surement of social adoption have been applied at Findesk, both only once.
Of course, other methods for discovering methodology improvements can be
added as well.

Finally, the timespan at which the methodology-growing framework has been
applied at Findesk has been short. The long-term effects of preparing and per-
forming reflection workshops are still unclear.

96 Richard Cornelissen

8.5. CONCLUDING REMARKS

8.5 Concluding remarks

In this thesis, we have proposed a framework that enables team members to
iteratively improve their methodology to better fit it to the project, its changing
environment, and their own preferences. Writings by Alistair Cockburn and
David J. Anderson have heavily influenced the creation of this framework. In
our opinion, the idea of continuously improving the way of working to attain
and keep a suitable methodology is not only useful, but even necessary. Only in
rare occasions are the project and its environment stable enough to never have
to adjust the way of working.

Richard Cornelissen 97

Bibliography

[1] Ambler, S. W. (2006). Survey says: Agile works in practice. Dr. Dobb’s
Journal, 31(9):62–64.

[2] Ambler, S. W. (2010). Introduction to Kanban. Available
online at http://www.drdobbs.com/architecture-and-design/

introduction-to-kanban/225702051.

[3] Anderson, D. J. (2010). Kanban: Successful Evolutionary Change For Your
Technology Business. Blue Hole Press, Sequim, WA, USA.

[4] Avison, D. E. and Fitzgerald, G. (2006). Information system development:
methodologies, techniques & tools. McGraw-Hill, London, UK.

[5] Beck, K. and Andres, C. (2004). Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, Reading, MA, USA, second edition.

[6] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,
Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., and
Thomas, D. (2001). Manifesto for Agile Software Development. Available
online at http://agilemanifesto.org/.

[7] Cockburn, A. (2000). Selecting a project’s methodology. IEEE Software,
17(4):64–71.

[8] Cockburn, A. (2006). Agile Software Development: The Cooperative Game
(2nd Edition) (Agile Software Development Series). Addison-Wesley Profes-
sional, Upper Saddle River, NJ, USA.

[9] DSDM Consortium and others (2008). DSDM Atern The Handbook. DSDM
Consortium, Ashford, UK.

[10] Dybå, T., Moe, N. B., and Arisholm, E. (2005). Measuring software method-
ology usage: challenges of conceptualization and operationalization. In 2005
International Symposium on Empirical Software Engineering, 2005., number
7465, pages 432–442. IEEE.

99

http://www.drdobbs.com/architecture-and-design/introduction-to-kanban/225702051
http://www.drdobbs.com/architecture-and-design/introduction-to-kanban/225702051
http://agilemanifesto.org/

Bibliography

[11] Fitzgerald, B. (1997). The use of systems development methodologies in
practice: a field study. Information Systems Journal, 7(3):201–212.

[12] Fitzgerald, B. (1998). An empirical investigation into the adoption of sys-
tems development methodologies. Information & Management, 34(6):317–328.

[13] Hardy, C. J., Thompson, J. B., and Edwards, H. M. (1995). The use,
limitations and customization of structured systems development methods in
the United Kingdom. Information and Software Technology, 37(9):467–477.

[14] Huisman, M. and Iivari, J. (2006). Deployment of systems development
methodologies: Perceptual congruence between IS managers and systems de-
velopers. Information & Management, 43(1):29–49.

[15] Ivar Jacobson International (2012). EssWork Practice Workbench (Ver-
sion 1.1.0). [Software]. Available online at http://www.ivarjacobson.com/

Practice_Workbench_Download.

[16] Jacobson, I. (2013). The Essence of Software Engineering: Applying the
SEMAT Kernel.

[17] Jacobson, I., Huang, S., Kajko-Mattsson, M., McMahon, P. E., and Sey-
mour, E. (2012). Semat - Three Year Vision. Programming and Computer
Software, 38(1):1–12.

[18] Jacobson, I., Meyer, B., and Soley, R. (2009a). Call for action: the SEMAT
initiative. Dr. Dobb’s Journal, 10. Avalable online at http://semat.org/

?page_id=2.

[19] Jacobson, I., Meyer, B., and Soley, R. (2009b). Software Engi-
neering Method and Theory - A Vision Statement. Available on-
line at http://blog.paluno.uni-due.de/semat.org/wp-content/uploads/
2012/03/SEMAT-vision.pdf.

[20] Jacobson, I., Ng, P. W., and Spence, I. (2007). Enough of Processes - Lets
do Practices. Journal of Object Technology, 6(6).

[21] Kniberg, H. and Skarin, M. (2009). Kanban and Scrum - Making the Most
of Both. C4Media, Los Angeles, CA, USA.

[22] Myers, M. D. and Newman, M. (2007). The qualitative interview in IS
research: Examining the craft. Information and Organization, 17(1):2–26.

[23] Object Management Group (2008). Software & Systems Process Engineer-
ing Meta-Model Specification (SPEM), Version 2.0.

[24] Object Management Group (2013). Essence - Kernel and Language for
Software Engineering Methods. Technical report.

100 Richard Cornelissen

http://www.ivarjacobson.com/Practice_Workbench_Download
http://www.ivarjacobson.com/Practice_Workbench_Download
http://semat.org/?page_id=2
http://semat.org/?page_id=2
http://blog.paluno.uni-due.de/semat.org/wp-content/uploads/2012/03/SEMAT-vision.pdf
http://blog.paluno.uni-due.de/semat.org/wp-content/uploads/2012/03/SEMAT-vision.pdf

Bibliography

[25] Riemenschneider, C. K., Hardgrave, B. C., and Davis, F. D. (2002). Ex-
plaining Software Developer Acceptance of Methodologies: A Comparison
of Five Theoretical Models. IEEE Transactions on Software Engineering,
28(12):1135–1145.

[26] Schwaber, C., Laganza, G., and D’Silva, D. (2007). The Truth About Agile
Processes: Frank Answers to Frequently Asked Questions. Forrester Report.

[27] Schwaber, K. and Beedle, M. (2008). Agile Software Development with
Scrum. Prentice Hall, Upper Saddle River, NJ, USA.

[28] Serena (2012). There is More to Agile than Development. Available online
at http://www.serena.com/index.php/en/solutions/app-dev-delivery/

agile-development/agile-infographic.

[29] Shine Technologies (2003). Agile Methodologies: Survey results.
Available online at http://www.shinetech.com/download/attachments/98/
ShineTechAgileSurvey2003-01-17.pdf.

[30] Vavpotič, D. and Bajec, M. (2009). An Approach for Concurrent Evalua-
tion of Technical and Social Aspects of Software Development Methodologies.
Information and Software Technology, 51(2):528–545.

[31] Vavpotič, D. and Vasilecas, O. (2012). Selecting a Methodology for Busi-
ness Information Systems Development: Decision Model and Tool Support.
Computer Science and Information Systems, 9(1):135–164.

[32] VersionOne (2013). 7th Annual State of Agile Develop-
ment Survey. Available online at http://www.versionone.com/

state-of-agile-survey-results/.

[33] Wynekoop, J. L. and Russo, N. L. (1995). Systems Development Methodolo-
gies: Unanswered Questions. Journal of Information Technology, 10(2):65–73.

Richard Cornelissen 101

http://www.serena.com/index.php/en/solutions/app-dev-delivery/agile-development/agile-infographic
http://www.serena.com/index.php/en/solutions/app-dev-delivery/agile-development/agile-infographic
http://www.shinetech.com/download/attachments/98/ShineTechAgileSurvey2003-01-17.pdf
http://www.shinetech.com/download/attachments/98/ShineTechAgileSurvey2003-01-17.pdf
http://www.versionone.com/state-of-agile-survey-results/
http://www.versionone.com/state-of-agile-survey-results/

Appendixes

103

104

A.1. FIRST INTERVIEW

Appendix A

Experienced employee interviews

A.1 First interview

Expert review 1 – Project Inventory

Interviewee:
Roles and responsibilities of interviewee:

Years of experience in the
field of software
development:
Years of experience with
using software development
methodologies:
Opinion of these
experiences with
methodologies:
Own evaluation of knowledge on methodologies:
Very knowledgable � � � � � No knowledge
Have sent documents been
read?

� Yes
� No

Changes on current inventory contents/missing in the inventory:

Usefulness of development of the method:
Very useful � � � � � Not useful
Missing in the method:

1

Richard Cornelissen 105

APPENDIX A. EXPERIENCED EMPLOYEE INTERVIEWS

Would you like to be
interviewed again?

� Yes
� No

Would you be interested in
using the method on your
own project?

� Yes
� No

Anything else:

2

106 Richard Cornelissen

A.2. SECOND INTERVIEW

A.2 Second interview

Expert review 2 – Methodology-Growing Frame-
work

Interviewee:
Have sent documents been
read?

� Yes
� No

Creation of proposal:

First workshop and documentation:

Changing the work process:

Future workshops and during increments:

1

Richard Cornelissen 107

APPENDIX A. EXPERIENCED EMPLOYEE INTERVIEWS

Opinion of usefulness of the framework:
Very useful � � � � � Not useful
Missing in the framework:

Would you like to be
interviewed again?

� Yes
� No

Would you be interested in
using the method on your
own project?

� Yes
� No

Anything else:

2

108 Richard Cornelissen

Appendix B

Practice Library

This appendix contains practices in text format which were documented using
the EssWork Practice Workbench [15].

For each practice, an overview is added in SEMAT notation, displaying the
alphas it extends and its additional sub-alphas and work products [24]. Fur-
thermore, extended activity spaces and the activities defined for these spaces
are displayed. Next, for each defined sub-alpha, its possible states are explained
and, for each work product, its possible levels of detail.

For each activity in a practice, its accountable competency and alpha inputs
are explained. The states of alphas and levels of details of work products after
performing the activity are also listed.

Lastly, the usage criteria of each practice are described (see Section 3.2).

For both the overview and documentation, alphas, activity spaces, and compe-
tencies from the SEMAT Kernel are written in italic.

109

B.1. WEEKLY CYCLE

B.1 Weekly Cycle

With the Weekly Cycle, teams reflect on work done, plan work, and implement
new functionality weekly. This practice is described in the Extreme Program-
ming methodology [5].

The week is a widely shared time scale. By planning work each week, the team
is focused on Friday. By Wednesday, if it is clear the selected tasks won’t be
completed and ready to deploy by Friday, the team still has the time to focus
on completing only the most valuable functionality.

The weekly heartbeat gives a platform for team and individual experiments. For
instance, when combined with Pair Programming, the team can try switching
pairs every hour for a week and discuss their experience during the next Weekly
Planning Meeting.

Weekly Cycle

1..*

Deploy the
System

Deploy
Increment

Week
Backlog

1

Prepare to do
the Work

Weekly Planning
Meeting

Software
System

Week

Work

Weekly
Increment1

Figure B.1: Weekly Cycle in SEMAT notation.

Richard Cornelissen 111

APPENDIX B. PRACTICE LIBRARY

B.1.1 Usage criteria

Purpose

• Focus to finish a deployable system every Friday.
• Have short iterations and thus receive feedback from customers often.
• Letting teams reflect on their progress often.
• Perform and reflect on experiments within their workplace, such as changing

details to the methodology, weekly.

Prerequisites

• Availability of customers for selecting tasks.
• The User Stories practice or a similar practice that has task breakdown and

estimation.

Necessary commitment

• Weekly meetings on Monday to schedule work.
• Reaching deployable software weekly.
• Creating Weekly Increments which divide developed functionality in smaller

parts.
• Keeping track of a Week Backlog of tasks.

Tailoring

• The Weekly Cycle can be combined with Test-First Programming, in which
tests are written before work items are implemented.

• The Weekly Cycle can be combined with acceptance testing, in which the
customer tests the functionality of the completed Weekly Increment.

• Some people start their week on Tuesdays or Wednesday. The weekly meeting
can be moved as long as it will not pressure the team to work over the
weekend.

• Reduce the time necessary for the planning meeting. When applying the
Weekly Cycle initially, planning meetings can take hours.

112 Richard Cornelissen

B.1. WEEKLY CYCLE

B.1.2 Alphas (things to work with)

Week (sub-alpha under Work)

The Weekly Cycle timeboxes development in iterations of a week. During this
week, a set of tasks is selected for implementation. At the end of the week,
a potentially deployable increment is completed. During the week, some tasks
might be dropped to ensure a deployable product will be ready by the end of
the week.

Possible states

A Week is first Planned, where the team reflects on previous week(s) and tasks
are selected for the upcoming week. At the beginning of the next week, progress
is reviewed again and the Week has been Closed.

Planned The Week is in this state when:

• The customer has selected tasks to be implemented.
• Current progress has been discussed and reviewed.

In Progress The Week is in this state when:

• The team has started implementing selected tasks.

Concluded The Week is in this state when:

• Planned tasks are implemented. Note that during the week, planning
might have shifted.

Closed The Week is in this state when:

• Progress made in this week has been discussed and reviewed.

Richard Cornelissen 113

APPENDIX B. PRACTICE LIBRARY

B.1.3 Work products (artifacts to maintain)

Weekly Increment (work product under Software System)

The Weekly Increment contains the completed functionality of the selected tasks
in the Week Backlog of the same Week. The Software System is developed by
completing Weekly Increments every week.

Possible levels of detail

The Weekly Increment can reach the following levels.

Planned The Weekly Increment has reached this level when:

• Tasks to be finished in the upcoming increment are known.

Complete The Weekly Increment has reached this level when:

• All planned tasks have been completed and their functionality has been
added to the increment.

Week Backlog (work product under Week)

The Week Backlog contains all selected tasks to be implemented during the
course of the week.

Possible levels of detail

The Week Backlog can reach the following levels.

Filled The Week Backlog has reached this level when:

• Tasks have been selected for the upcoming week.

Completed The Week Backlog has reached this level when:

• All selected tasks in the Week Backlog have been implemented (changes
in the planning taken into account).

114 Richard Cornelissen

B.1. WEEKLY CYCLE

B.1.4 Activities (things to do)

Weekly Planning Meeting (activity under Prepare to do the Work)

The purpose of the Weekly Planning Meeting is to review progress and let the
customer pick a week’s worth of tasks for implementation. Team members sign
up for tasks and estimate them. It is possible task breakdown takes happens
during the planning meeting as well. The Weekly Planning Meeting is held every
first working day of the week.

• Accountable competency
The Stakeholder Representation is accountable for performing this activity
and responsible for selecting tasks to be implemented. The entire team is
also present during the Weekly Planning Meeting.

• Alpha inputs
The Weekly Planning Meeting activity performs the following operation(s):

Requirements Tasks are specified from requirements.

• Completion criteria
This activity is complete when the team knows what it will be implementing
for the upcoming week. This includes achieving the following:

– The Week sub-alpha is Planned.
– The Week Backlog work product is Filled.
– The Weekly Increment work product is Planned.

Deploy Increment (activity under Deploy the System)

The purpose of Deploy Increment is to deploy the functionality in the Weekly
Increment. Preferably, the new functionality is deployed automatically.

• Accountable competency
Development is responsible for deployment and, if available, the automatic
deployment.

• Alpha inputs
The Deploy Increment activity performs the following operations:

Software System The Software System is deployed.

• Completion criteria
This activity is complete when the functionality in the Weekly Increment
has been deployed. This includes achieving the following:

– The Software System alpha becomes Operational.

Richard Cornelissen 115

APPENDIX B. PRACTICE LIBRARY

– The Week sub-alpha is Concluded.
– The Weekly Increment work product is Complete.

116 Richard Cornelissen

B.2. DAILY STANDUP

B.2 Daily Standup

Daily Standup Meetings are 15-minute meetings held in the morning to quickly
communicate what every team member has done, is going to do, and if there
are impediments that block work. Daily team meetings help teams synchronize
their work, check planned progress versus actual progress, plan the next working
day, and resolve impediments before they impact progress. The Daily Standup
meeting is present in the Scrum methodology, but is also mentioned in other
methodologies such as the Kanban Method [3, 27].

Daily
Standup

Work

Day

1..*

Coordinate
Activity

Daily Standup
Meeting

Figure B.2: Daily Standup in SEMAT notation.

Richard Cornelissen 117

APPENDIX B. PRACTICE LIBRARY

B.2.1 Usage criteria

Purpose

• Synchronize the work of team members daily.
• Check whether set goals are still reachable.
• Plan the upcoming working days.
• Communicate impediments before they affect progress.

Prerequisites

• Team members need to be located close enough, preferably in the same room
or on the same floor.

• All team members need to be present at the time of the daily meeting.

Necessary commitment

• Fifteen minutes every morning to hold the stand-up meeting.

Tailoring

• Additional standup meetings can be held if it is necessary to discuss progress
or if impediments are discovered.

• This practice can be combined with Visualize Workflow (see Appendix B.6)
by holding Daily Standup Meetings at the Card Wall. Team members can
discuss the Index Cards currently in progress.

118 Richard Cornelissen

B.2. DAILY STANDUP

B.2.2 Alphas (things to work with)

Day (sub-alpha under Work)

Work is discussed every day, giving a form of daily iterations. Note that these
iterations do not necessarily result in daily product increments.

Possible states

The day is started with a Daily Standup Meeting, resulting in the Day alpha
reaching the Planned State. The Day is Closed when its progress has been
discussed in the next Daily Standup Meeting.

Planned The Day is in this state when:

• The Daily Standup Meeting activity is performed

Closed The Day is in this state when:

• The next Day is Planned and the progress made during this Day is
discussed.

Richard Cornelissen 119

APPENDIX B. PRACTICE LIBRARY

B.2.3 Activities (things to do)

Daily Standup Meeting (activity under Coordinate activity)

The Daily Standup Meeting is held in order to:

• Clarify what has been done the previous day.
• State the plans for this day.
• Indicate blocking issues and impediments.

Discussing this daily, within 15 minutes, helps keep the team synchronized with
development and resolve impediments together, before they affect progress.

• Accountable competency
Management ensures the Daily Standup Meeting is held within the fixed
timeframe and that issues and other lengthy topics are discussed afterwards
if necessary.

• Alpha inputs
The Daily Standup Meeting activity performs the following operations:

Requirements Progress of achieving the requirements is discussed.
Day The progress of the previous Day is discussed.

• Completion criteria
This activity is complete when the Daily Standup Meeting is held and the
current Day is Planned. This includes achieving the following:

– The Day sub-alpha is Planned.
– The previous Day sub-alpha is Closed.

120 Richard Cornelissen

B.3. MOSCOW PRIORITIZATION

B.3 MoSCoW Prioritization

Prioritization of requirements and tasks in levels that specifically tell what hap-
pens if they are not met or executed.

Four levels are defined:

• Must Have – crucial for the project and, for high-level requirements, represent
the Minimum Usable Subset (MUS).

• Should Have – important but not vital.
• Could Have – wanted or desired but less important.
• Won’t Have this Time – these are agreed not to be delivered.

This practice is included in the DSDM Atern methodology [9]. The MoSCoW
Prioritization extends the Requirements alpha within the Kernel with a Priori-
tized state, which is described below.

MoSCoW
Prioritization

Understand the
Requirements

Agree MoSCoW
Rules

Prioritization
Rules

1

Prepare to do
the Work

Prioritize
Requirements

Require-
ments

Figure B.3: MoSCoW Prioritization in SEMAT notation.

Richard Cornelissen 121

APPENDIX B. PRACTICE LIBRARY

B.3.1 Usage criteria

Purpose

• Make priority levels of requirements understandable and specific.
• Make it understandable what it means when a requirement or activity has

not been met.
• Have a Minimum Usable Subset (MUS) of Must Have requirements that are

guaranteed to be delivered by the project.

Prerequisites

• A large enough set of requirements must be clear, i.e. the backlog must be
large enough to prioritize.

• High availability of the customer or its representative is necessary for (re-
)prioritizing the requirements.

• Development needs to be timeboxed for requirements to be reprioritized after
completing an increment.

Necessary commitment

• Setting clear prioritization rules for Must Have, Should Have, Could Have
and Won’t Have this Time with the customer.

• Reprioritizing requirements after each timebox.

Tailoring

• Reprioritize requirements independent of increments, for instance when de-
livery is continuous instead of incremental. This does require enough re-
quirements are prioritized as Must and Should Haves at all times to ensure
the team focuses on high priority requirements. Prioritization then happens
in the context of recent development.

• A team member can be responsible for estimating priority of requirements
for customers. The team member must have enough experience with the
problem domain to be able to do so.

122 Richard Cornelissen

B.3. MOSCOW PRIORITIZATION

B.3.2 Alphas (things to work with)

Requirements

The MoSCoW Prioritization practices extends the Requirements alpha by adding
the Prioritized state to it.

Prioritized Requirements reach this state when:

• Requirements are divided into four sets:

– Must Have.
– Should Have.
– Could Have.
– Won’t Have this Time.

• The Prioritize Requirements activity is performed.

Richard Cornelissen 123

APPENDIX B. PRACTICE LIBRARY

B.3.3 Work products (artifacts to maintain)

Prioritization Rules (work product under Requirements)

The Prioritization Rules work product contains the rules with which Require-
ments are prioritized during the Prioritize Requirements activity.

Possible levels of detail

The Prioritization Rules work product can reach the following levels.

None Set The Prioritization Rules work product has reached this level when:

• There are no rules set for dividing requirements into Must Have, Should
Have, Could Have and Won’t Have this Time.

Rules Set The Prioritization Rules work product has reached this level when:

• The Agree MoSCoW Rules activity is performed.
• Rules are set for dividing requirements into Must Have, Should Have,

Could Have and Won’t Have this Time.

Sections

Must Have Description of when requirements can be prioritized as Must Have.
Should Have Description of when requirements can be prioritized as Should

Have.
Could Have Description of when requirements can be prioritized as Could

Have.
Won’t Have this Time Description of when requirements can be prioritized

as Won’t Have this Time.

124 Richard Cornelissen

B.3. MOSCOW PRIORITIZATION

B.3.4 Activities (things to do)

Agree MoSCoW Rules (activity under Understand the Requirements)

Agree on the prioritization rules for Requirements. Below is an example of
possible definitions for Must Have, Should Have, Could Have, and Won’t Have
this Time. The Must Have definition is said to be non-negotiable, as this will
have a critical impact on the success of the project.

Must Have Requirements for which the following holds:

• Cannot deliver on target date without this.
• No point in delivering on target date without this.
• Not legal without it.
• Unsafe without it.
• Cannot deliver the business case without it.

Should Have Requirements for which the following holds:

• Important but not vital.
• May be painful to leave out, but the solution is still viable.
• May need some kind of workaround, e.g. management of expectations,

some inefficiency, an existing solution, paperwork, etc.

Could Have Requirements for which the following holds:

• Wanted or desirable but less important.
• Less impact if left out (compared to a Should Have).

Won’t Have this Time These are requirements the team has agreed it will
not deliver.

• Accountable competency
Management is accountable for discussing and agreeing prioritization rules
with the Stakeholder Representative.

• Alpha inputs
The Agree MoSCoW Rules activity performs the following operation(s):

Requirements The Requirements that will have to be prioritized. The
Requirements themselves will be used to discuss when one is a Must
Have, a Should Have, etc.

• Completion criteria
This activity is complete when rules for assigning priority are agreed upon.
This includes achieving the following:

– The Prioritization Rules work product reaches the Rules Set state.

Richard Cornelissen 125

APPENDIX B. PRACTICE LIBRARY

Prioritize Requirements (activity under Prepare to do the Work)

At the end of each increment, as well as when first adopting this practice, prior-
itize the still unsatisfied requirements (again) to prepare for the next increment.
Note that although a requirement can be a Must Have for the entire project, it
can assigned a lower priority for an increment if it will be developed later on.

• Accountable competency
The Stakeholder Representative is responsible for prioritizing requirements,
as he is able to determine what has priority and what is the Minimum Usable
Set.
Management is responsible for challenging whether a requirement is a Must
Have, as requirements in the Minimum Usable Set will have a critical impact
on the success of the project.

• Alpha inputs
The Prioritize Requirements activity performs the following operations:

Requirements The Requirements that are prioritized.

• Completion criteria
This activity is complete when Requirements are prioritized according to the
Prioritization Rules. This includes achieving the following:

– The Requirements alpha reaches the Prioritized state.

126 Richard Cornelissen

B.4. PAIR PROGRAMMING

B.4 Pair Programming

Pair Programming allows team members to collaborate in pairs on a single task.

This practice allows pairs to:

• Keep each other on the task.
• Brainstorm refinements to the system.
• Clarify ideas.
• Take initiative when the partner is stuck, thus lowering frustration.
• Hold each other accountable to the team’s practices.

With Pair Programming, code is written with two team members at one machine.
It is important that pairs give each other enough space and that pairs are rotated
often. If a pair member needs to explore something on his or her own, this should
be allowed. After exploration, bring the resulting idea back to the team and, if
accepted, the pair starts working together again.

Pair Programming is described in the Extreme Programming methodology [5].
It has no work products.

Pair
Programming

Team

Pair

0..*

Coordinate
Activity

Form Pair

Adjourn Pair

Figure B.4: Pair Programming in SEMAT notation.

Richard Cornelissen 127

APPENDIX B. PRACTICE LIBRARY

B.4.1 Usage criteria

Purpose

• Team members are divided into pairs so that they:

– Keep each other on the task.
– Brainstorm refinements to the system.
– Clarify each other’s ideas.
– Take initiative when the partner is stuck.
– Hold each other accountable to the team’s way of working.

Prerequisites

• Team members must be allowed to work alone on an idea, as long as they
return with the idea (not the code) when they are done exploring.

• Team members must be willing to form pairs.
• Team members must be allowed to indicate if they are uncomfortable pairing

with a team member.

Necessary commitment

• Assigning tasks to formed pairs of team members.

Tailoring

• Pairs can be rotated every so often, for instance every hour.
• Pair programming can be used only when a team member indicates he needs

help on a problem.

128 Richard Cornelissen

B.4. PAIR PROGRAMMING

B.4.2 Alphas (things to work with)

Pair (sub-alpha under Team)

The team is split into Pairs to develop software on one machine.

Possible states

A Pair is first Formed by performing the Form Pair activity. When they have
started their assigned tasks, the Pair is in the Working state. When they have
completed their assigned tasks, the Pair is Adjourned.

Formed The Pair is in this state when:

• Two team members are assigned to as a Pair.

Working The Pair is in this state when:

• The Pair is working collaboratively to develop software.

Adjourned The Pair is in this state when:

• The assigned tasks of the Pair is completed and the Pair is disbanded.

Richard Cornelissen 129

APPENDIX B. PRACTICE LIBRARY

B.4.3 Activities (things to do)

Form Pair (activity under Coordinate Activity)

Form pairs from team members so two programmers develop behind the same
machine.

• Accountable competency
Management is responsible for forming pairs of developers.

• Alpha inputs
The Form Pair activity performs the following operation(s).

Team The team is (partly) grouped into pairs.

• Completion criteria
This activity is complete when a pair has been formed. This includes achiev-
ing the following:

– The Pair alpha is Formed.

Adjourn Pair (activity under Coordinate Activity)

Adjourn pairs when they are finished with their assigned tasks and are not given
new tasks. The developers can then form a new pair or continue with tasks on
their own.

• Accountable competency
Management is responsible for deciding when a pair is adjourned. If pairs
have tasks assigned, they can be adjourned by default if these tasks are
completed.

• Alpha inputs
The Form Pair activity performs the following operation(s).

Pair The pair is adjourned.

• Completion criteria
This activity is complete when a pair has been adjourned. This includes
achieving the following:

– The Pair alpha is Adjourned.

130 Richard Cornelissen

B.5. SEASONS OF THE DAY

B.5 Seasons of the Day

This practice allows teams to focus on progress of tasks in the morning, without
distractions. The afternoon can be used for meetings, discussions, etc.

Each day is considered as an entire year of seasons:

• The morning is the spring, in which the team can concentrate on tasks.
• The lunch break is the summer, in which the team can rest.
• The afternoon is seen as the autumn, during which focus is lower and dis-

tractions are allowed.
• The evening is seen as the winter for sleep.

This practice divides each working day in the morning for focused work, the
lunch break for resting, and the afternoon for communication. Adopting this
practice will therefore influence other practices of the methodology.

Seasons of
the Day

Work

Day

1..*

Figure B.5: Seasons of the Day in SEMAT notation.

Richard Cornelissen 131

APPENDIX B. PRACTICE LIBRARY

B.5.1 Usage criteria

Purpose

• Having the morning for focusing on completing assigned tasks without dis-
tractions.

Prerequisites

• The possibility to avoid distractions in the morning by deferring them to the
afternoon.

• A small team in close proximity, preferably a single room for all development
efforts.

Necessary commitment

• Moving any appointments to the afternoon.
• Making arrangements with the rest of the team, for instance the help desk,

to avoid distractions in the morning.

Tailoring

• The team can select different time blocks for focused work and for communi-
cation. For instance, they can select to hold meetings only on Mondays and
Fridays and reply to calls from customers only after 3 p.m.

132 Richard Cornelissen

B.5. SEASONS OF THE DAY

B.5.2 Alphas (things to work with)

Day (sub-alpha under Work)

Each day has a different focus for the morning and afternoon. In the morning,
distractions are to be avoided completely, focusing entirely on the assigned tasks.
Meetings and discussions should be held in the afternoon.

Possible states

A Day first starts in the morning (or Spring), during which the team can con-
centrate on their tasks without distractions. The team rests during the lunch
break (or Summer) and allows distractions, meetings, discussions, etc. in the
afternoon (or Autumn).

Spring The Day is in this state in the morning. The morning is used for
focusing on assigned tasks without distractions.

Summer The Day is in this state during the lunch break. The lunch break
allows the team to rest from their focused morning.

Autumn The Day is in this state in the afternoon. The afternoon allows for
distractions, meetings, and discussions.

Winter The Day is in this state in the evening. The evening is outside of
working hours. Team members do not have any responsibility towards the
project.

Richard Cornelissen 133

B.6. VISUALIZE WORKFLOW

B.6 Visualize Workflow

Visualizing the workflow enables the team to track work items along the project’s
workflow. Visualize Workflow is described in The Kanban Method, which con-
tains a set of practices to improve the throughput of a project [3].

To apply this practice, tasks are specified on cards, which are put on a card wall.
The card wall is divided in columns, representing the workflow of the project.
For instance, queued cards first move to development, followed by testing, done,
and finally deployed.

Visualize
Workflow

Require-
ments

Work Item

1..*

Track
Progress

Queue Work
Item

Track Work
Item

Card Wall
1

Index Card

1

Complete
Work Item

Clear Done

Prepare to do
the Work

Shape Card
Wall

Figure B.6: Visualize Workflow in SEMAT notation.

Richard Cornelissen 135

APPENDIX B. PRACTICE LIBRARY

B.6.1 Usage criteria

Purpose

• Track work items along the workflow of the project.
• Visualize work items on physical index cards which can be put on a card

wall representing this workflow.
• Visualize impediments by cards that are stuck in a column.
• Identify possible improvements for the project, such as optimizing bottleneck

activities, visualized by an overcrowded column on the card wall.

Prerequisites

• The team should be located close together, with the developers preferably
in the same room.

• A card wall in the same room as the developers.

Necessary commitment

• Creating an outline of the workflow within the project.
• Shaping a card wall according to this workflow.
• Queuing and tracking work items along the workflow.
• Clearing index cards whose associated work has been completed and de-

ployed.

Tailoring

• This practice can be combined with the Limit Work in Progress practice,
also from the Kanban Method. Progress can be limited by setting a limit to
the number of cards in each column of the card wall.

• Use an alternative of a card wall, such as a software system that has the
functionality of a card wall.

• Visualize Workflow can be combined with practices that describe work items
in a specific form, such as User Stories or Use Cases, which are then described
on the index cards.

• Use horizontal swimlanes along the card wall to group certain work items,
such as those belonging to a specific feature.

136 Richard Cornelissen

B.6. VISUALIZE WORKFLOW

B.6.2 Alphas (things to work with)

Work Item (sub-alpha under Requirements)

A Work Item describes an item of work necessary for completing a requirement.

Possible states

A Work Item is first Created when it becomes known to the team. When it is
Queued, an Index Card is Written that references to the Work Item and added
to the "To Do" column of the Card Wall.

When progress of the Work Item is started, the In Progress state is reached. The
associated Index Card is put into an "In Progress" column of the Card Wall.
This indicates the current progress of the Work Item. After all necessary work
is done, the Index Card is moved to the "Done" column. Correspondingly, the
Work Item reaches the Done state.

Finally, for instance when a release takes place, the Card Wall is cleared and
Index Cards that no longer contributing to current development are removed
from the Card Wall.

Created The Work Item is in this state when:

• The item of work becomes known to the team.

Queued The Work Item is in this state when:

• An Index Card describing the Work Item is written.
• The Index Card is added to the “To Do” column of the Card Wall.

In Progress The Work Item is in this state when:

• The associated Index Card is moved from the “To Do” column into one
of the “In Progress” columns.

• Progress of the Work Item has started.

Done The Work Item is in this state when:

• The associated work is completed.
• The associated Index Card is moved to the “Done” column of the Card

Wall.

Richard Cornelissen 137

APPENDIX B. PRACTICE LIBRARY

B.6.3 Work products (artifacts to maintain)

Card Wall (work product under Requirements)

The Card Wall visualizes Index Cards within the outline of the project’s work-
flow.

Possible levels of detail

The Card Wall only has the Shape Decided state, as its shape is decided when it
is created. The Card Wall can be created and shaped by performing the Shape
Card Wall activity.

Shape Decided The Card Wall has reached this level when:

• The Shape Card Wall activity has been performed.
• Its columns give a detailed outline of the workflow.

Sections

The Card Wall contains three Sections.

To Do The column of the Card Wall where Index Cards are queued.
In Progress The columns of the Card Wall that contain Index Cards whose

associated Work Items are in progress.
Done The column where Index Cards of completed Work Items are put.

Index Card (work product under Work Item)

An Index Card describes a Work Item. Index Cards are tangible card to be
placed on the Card Wall, where it follows the set workflow of the project.

Possible levels of detail

The Index Card can reach the following levels.

Written The Index Card has reached this level when:

• A card describing the associated Work Item is written.
• The card is added to the Card Wall’s “To Do” column.

Cleared The Index Card has reached this level when:

• The associated Work Item is completed.
• The Clear Done activity is performed.

138 Richard Cornelissen

B.6. VISUALIZE WORKFLOW

B.6.4 Activities (things to do)

Shape Card Wall (activity under Prepare to do the Work)

Shaping the Card Wall can be done so that:

• The Card Wall shows an outline of the workflow.
• Index cards can be put in states on the Card Wall.
• Progress of work items can be visualized on the Card Wall.

To outline the workflow, it may be necessary to perform Value Stream Mapping
or a similar technique. Later on, the Card Wall can be fine-tuned to better fit
the workflow, as using the Card Wall will make details more clear.

• Accountable competency
Management will make an outline of the workflow and visualize it on the
Card Wall.

• Alpha inputs
The Shape Card Wall activity performs the following operation(s):

Way of Working The outline of the workflow is created from the Way of
Working within the project.

• Completion criteria
This activity is complete when the Card Wall shows the outline of the work
process. This includes achieving the following:

– The Card Wall reaches the “Shaped decided” level of detail

Queue Work Item (activity under Track Progress)

Work Items are written on an Index Card and queued so that:

• An Index Card is added to the "To Do" column of the Card Wall.
• Items of work become known to the development team.
• Team members can select this item of work to begin its progress.

Queueing a Work Item means physically writing an Index Card and putting it
on the Card Wall’s "To Do" column.

• Accountable competency
Management is responsible for selecting which items of work to queue to
ensure the team will focus on those tasks first.

• Alpha inputs
The Queue Work Item activity performs the following operations:

Work Item An Index Card for a Work Item is written and put on the
board.

Richard Cornelissen 139

APPENDIX B. PRACTICE LIBRARY

• Completion criteria
This activity is complete when an Index Card is put on the Card Wall. This
includes achieving the following:

– The Work Item sub-alpha becomes Queued.
– The Index Card work product is Written.

Track Work item (activity under Track Progress)

Tracking Work Items is achieved by moving the associated Index Cards along
the Card Wall’s "In Progress" states. This visualizes the Work Item’s progress
along the workflow of the project.

• Accountable competency
Development is responsible for taking on Work Items and moving the asso-
ciated Index Cards on the Card Wall.

• Alpha inputs
The Track Work Item activity performs the following operations:

Work Item The Work Item that is tracked with an Index Card on the
Card Wall.

• Completion criteria
This activity is completed whenever an Index Card is moved from or be-
tween "In Progress" columns on the Card Wall. This includes achieving the
following:

– The Work Item sub-alpha is In Progress.

Complete Work Item (activity under Track Progress)

When completing work on a Work Item, the associated Index Card is moved to
the "Done" column on the Card Wall.

• Accountable competency
Development is responsible for finishing items of work and moving the asso-
ciated Index Card to the "Done" column.

• Alpha inputs
The Complete Work Item activity performs the following operations:

Work Item The Work Item of which the work is completed.

• Completion criteria
This activity is complete when the associated task is done. This includes
achieving the following:

– The Work Item sub-alpha reaches the Done state.

140 Richard Cornelissen

B.6. VISUALIZE WORKFLOW

Clear Done (activity under Track Progress)

Clearing the "Done" column (often when deploying or releasing a new system)
on the Card Wall is done so that only the Work Items whose functionality have
yet to be deployed are still visible.

Clearing this column prevents a "Done" column containing old cards that do not
visualize the current state of development.

• Accountable competency
As Management is responsible for deciding when to release or deploy what
new functionality, they are also responsible for clearing the "Done" column.

• Alpha inputs
The Clear Done activity performs the following operations:

Work Item The Work Items whose Index Cards are cleared from the
“Done” column.

• Completion criteria
This activity is performed when a release or deployment is done and old
cards need to be removed from the "Done" column. This includes achieving
the following:

– The Software System alpha becomes Operational.
– The Index Card work product becomes Cleared.

Richard Cornelissen 141

Appendix C

Project inventory interview

Interviewee:
Roles and responsibilities of interviewee:

Time on the project:
Years of experience in
the field of software
development:
Own evaluation of competence with current roles and responsibilities:
Very competent © © © © © Not competent

Years of experience
with using (agile)
software development
methodologies:
Own evaluation of knowledge on (agile) methodologies:
Very knowledgable © © © © © No knowledge

Perceived team culture:
Very participative © © © © © Very autocratic

Willingness to change the work process and methodology:
Very
willing

© © © © © Not
willing

143

APPENDIX C. PROJECT INVENTORY INTERVIEW

Goal for using the framework:

Number, roles and FTE of people involved:

Distribution of people
involved:

© Same room
© Same floor
© Same building
© Distributed nationally
© Distributed globally

Project priorities: Other project priorities:
© Time to market
© Low costs
© Correctness
© Traceability

Cost limitations (budget):
Very strict © © © © © Very sufficient

System criticality: © Loss of comfort
© Loss of discretionary monies
© Loss of essential monies
© Loss of life

Problem domain complexity:

Maintainability and difficulty of adding new (major) features to current solution:
Very easy © © © © © Very difficult

144 Richard Cornelissen

Complexity of current solution (according to measured software metrics?):

Increment length
(number of weeks):
Length of lowest-level
tasks (hours or days):
Stability of requirements:
Very predictable © © © © © Very unpredictable

Arrival of new requirements in the project:

Current backlog size
(estimated duration):
Tightness to standards
and conventions:

© Loose, no standards and
conventions set
© Standards and conventions are set
© Strict, use is monitored for
correspondence

Short project history:

Planned milestones: Other planned milestones:
© Maintenance only
© Minor upgrades
© Major upgrades
© New versions

Richard Cornelissen 145

APPENDIX C. PROJECT INVENTORY INTERVIEW

Customer collaboration (availability and overall communication):
Very collaborative © © © © © Not collaborative

Requirements from stakeholders (in terms of deliverables):

Other projects, organizations and external parties involved (the environment):

Stability of environment:
Very predictable © © © © © Very unpredictable

Currently used methodology (as a basic workflow):

Things in the project and methodology to keep:

Things in the project and methodology to change or discard:

Anything else:

146 Richard Cornelissen

Appendix D

Social adoption measurement form

Interviewee:
Daily Standup Meeting
Given the opportunity to use Daily Standup Meeting, how often do you use it?

Never 20% or
less

20-40% 40-60% 60-80% 80% or
more

Always

© © © © © © ©
Use of Daily Standup Meeting is encouraged as a common activity within the team
Disagree © © © © © © © Agree

Use of Daily Standup Meeting is routine and is used at every opportunity
Disagree © © © © © © © Agree

I consistently follow the instructions of Daily Standup Meeting when I use it
Disagree © © © © © © © Agree

Instructions of Daily Standup Meeting are precisely described
Disagree © © © © © © © Agree

147

APPENDIX D. SOCIAL ADOPTION MEASUREMENT FORM

Kanban board
Given the opportunity to use Kanban board, how often do you use it?

Never 20% or
less

20-40% 40-60% 60-80% 80% or
more

Always

© © © © © © ©
Use of Kanban board is encouraged as a common activity within the team
Disagree © © © © © © © Agree

Use of Kanban board is routine and is used at every opportunity
Disagree © © © © © © © Agree

I consistently follow the instructions of Kanban board when I use it
Disagree © © © © © © © Agree

Instructions of Kanban board are precisely described
Disagree © © © © © © © Agree

Can the changed work
process have negative
impact on the success
of the project (and the
increment currently
under development)?

© Yes
© No

Anything else:

148 Richard Cornelissen

149

APPENDIX E. QUESTIONNAIRES

Appendix E

Questionnaires

E.1 Evaluation by employees

Enquêteformulier!
Voor mijn afstuderen doe ik onderzoek naar werkwijzen binnen een project. Om projecten te ondersteunen een
passende werkwijze te krijgen is een framework ontwikkeld. Deze enquête wordt afgenomen om te controleren of
het ontwerp van dit framework in lijn is met hoe teamleden hun eigen werkwijze zouden willen aanpassen.

Bij voorbaat mijn dank voor het invullen!

Richard Cornelissen
Afstudeerder en part-time developer
Topicus Findesk

 Zeer
eens Eens Deels

eens
Deels

oneens Oneens Zeer
oneens

Ik wil dat management voor mij en mijn team een
werkwijze selecteert. ☐ ☐ ☐ ☐ ☐ ☐

Ik wil zelf mijn eigen werkwijze bepalen,
onafhankelijk van de rest van mijn team. ☐ ☐ ☐ ☐ ☐ ☐
Ik wil gezamenlijk met mijn team onze werkwijze
beslissen. ☐ ☐ ☐ ☐ ☐ ☐
Ik vind het de moeite waard om regelmatig met mijn
team op onze werkwijze te reflecteren en deze te
verbeteren.

☐ ☐ ☐ ☐ ☐ ☐

Ik vind het de moeite waard om mijn werkwijze actief
aan te passen en nieuwe werkwijzen te verkennen. ☐ ☐ ☐ ☐ ☐ ☐

Ik wil de mogelijkheid hebben om nieuwe werkwijzen
binnen mijn team voor te stellen en te introduceren. ☐ ☐ ☐ ☐ ☐ ☐

Overige opmerkingen:

150 Richard Cornelissen

E.1. EVALUATION BY EMPLOYEES

Richard Cornelissen 151

E.2. EVALUATION AT FINDESK

E.2 Evaluation at Findesk

Z.O.Z.$!$

Findesk(enquêteformulier!
Enquête omtrent een framework voor het in samenwerking verkrijgen van een passende methodologie.
Onder elke vraag is ruimte voor extra opmerkingen en redenen voor antwoorden.

Bij voorbaat mijn dank voor het invullen!

Richard Cornelissen
Afstudeerder en part-time developer
Topicus Findesk
$

 Zeer
eens Eens Deels

eens
Deels

oneens Oneens Zeer
oneens

Het framework geeft teams de mogelijkheid een
methodologie te ontwikkelen die bij hun werk past. ☐ ☐ ☐ ☐ ☐ ☐

Het framework geeft teamleden de mogelijkheid de
methodologie naar hun doelen aan te passen. ☐ ☐ ☐ ☐ ☐ ☐

Om een methodologie passend te maken aan een
project is het iteratief verbeteren hiervan essentieel. ☐ ☐ ☐ ☐ ☐ ☐

Voor het iteratief verbeteren zijn workshops voor
gezamenlijke beslissingen met het team bruikbaar. ☐ ☐ ☐ ☐ ☐ ☐

Een proposal met wijzigingen, met invulling van het
team, is een goede voorbereiding voor de workshop. ☐ ☐ ☐ ☐ ☐ ☐

$
$ $

Richard Cornelissen 153

APPENDIX E. QUESTIONNAIRES

 Zeer
eens Eens Deels

eens
Deels

oneens Oneens Zeer
oneens

De workshops zorgen voor een betere methodologie
dan wanneer management een methodologie kiest. ☐ ☐ ☐ ☐ ☐ ☐

De workshops zorgen voor betere adoptie van een
methodologie dan wanneer het management kiest. ☐ ☐ ☐ ☐ ☐ ☐

Het houden van workshops is de moeite waard om
tot een betere methodologie te komen. ☐ ☐ ☐ ☐ ☐ ☐

Het houden van workshops is voldoende om
gezamenlijk de methodologie te verbeteren. ☐ ☐ ☐ ☐ ☐ ☐

Het meten van adoptie van nieuwe practices is een
passende invulling voor verdere workshops. ☐ ☐ ☐ ☐ ☐ ☐

Het framework is bruikbaar om in de praktijk de
methodologie van projecten te creëren of verbeteren. ☐ ☐ ☐ ☐ ☐ ☐

$

154 Richard Cornelissen

E.3. EVALUATION WITH EXPERIENCED EMPLOYEES

E.3 Evaluation with experienced employees

Expert'enquêteformulier!
Enquête omtrent een framework voor het in samenwerking verkrijgen van een passende methodologie.
Onder elke vraag is ruimte voor extra opmerkingen en redenen voor antwoorden.

Bij voorbaat mijn dank voor het invullen!

Richard Cornelissen
Afstudeerder en part-time developer
Topicus Findesk

 Zeer
eens Eens Deels

eens
Deels

oneens Oneens Zeer
oneens

Het framework geeft teams de mogelijkheid een
methodologie te ontwikkelen die bij hun werk past. ☐ ☐ ☐ ☐ ☐ ☐

Het framework geeft teamleden de mogelijkheid de
methodologie naar hun doelen aan te passen. ☐ ☐ ☐ ☐ ☐ ☐

De inventarisatie verzamelt nuttige eigenschappen
van het project ter verbetering van de methodologie. ☐ ☐ ☐ ☐ ☐ ☐

Het uitvoeren van de inventarisatie is de moeite
waard om tot een betere methodologie te komen. ☐ ☐ ☐ ☐ ☐ ☐

Om een methodologie passend te maken aan een
project is het iteratief verbeteren hiervan essentieel. ☐ ☐ ☐ ☐ ☐ ☐

Voor het iteratief verbeteren zijn workshops voor
gezamenlijke beslissingen met het team bruikbaar. ☐ ☐ ☐ ☐ ☐ ☐

Een proposal met wijzigingen, met invulling van het
team, is een goede voorbereiding voor de workshop. ☐ ☐ ☐ ☐ ☐ ☐

!
! !

Richard Cornelissen 155

APPENDIX E. QUESTIONNAIRES

!
 Zeer

eens Eens Deels
eens

Deels
oneens Oneens Zeer

oneens

De bijgevoegde practice-voorbeelden zijn nuttig voor
suggesties ter verbetering van de methodologie. ☐ ☐ ☐ ☐ ☐ ☐

Doelen, voorwaarden, nodige commitment en
variaties van practices zijn een nuttige leidraad voor
het maken van een proposal.

☐ ☐ ☐ ☐ ☐ ☐

De workshops zorgen voor een betere methodologie
dan wanneer management een methodologie kiest. ☐ ☐ ☐ ☐ ☐ ☐

De workshops zorgen voor betere adoptie van een
methodologie dan wanneer het management kiest. ☐ ☐ ☐ ☐ ☐ ☐

Het houden van workshops is de moeite waard om
tot een betere methodologie te komen. ☐ ☐ ☐ ☐ ☐ ☐

Het houden van workshops is voldoende om
gezamenlijk de methodologie te verbeteren. ☐ ☐ ☐ ☐ ☐ ☐

Het meten van adoptie van nieuwe practices is een
passende invulling voor verdere workshops. ☐ ☐ ☐ ☐ ☐ ☐

Het framework is bruikbaar om in de praktijk de
methodologie van projecten te creëren of verbeteren. ☐ ☐ ☐ ☐ ☐ ☐

!

156 Richard Cornelissen

Appendix F

Survey results

This appendix contains the raw results of the surveys discussed in Chapter 7.
For each question, the number of answers for each point is displayed. A small
graph is added for each question to visualize the spread of the answers.

F.1 Employee survey results

A B C D E F

Strongly

agree

1 32 46 24 30

Agree 8 4 55 51 53 55

Partly

agree

24 32 16 7 27 17

Partly

disagree

25 19 2 1 3

Disagree 37 41 1

Strongly

disagree

11 8

157

APPENDIX F. SURVEY RESULTS

F.2 Findesk team member survey results

A B C D E F

Strongly

agree

1 3 2 3 4

Agree 4 5 5 4 6 1

Partly

agree

3 2 1 2 3

Partly

disagree

1 1 1

Disagree 1 1

Strongly

disagree

G H I J K

Strongly

agree

4 1

Agree 5 7 1 4 5

Partly

agree

1 2 3 3

Partly

disagree

4 2 1

Disagree 2

Strongly

disagree

158 Richard Cornelissen

F.3. EXPERIENCED EMPLOYEE SURVEY RESULTS

F.3 Experienced employee survey results

A B C D E

Strongly

agree

2 3 4 2

Agree 4 6 2 2 4

Partly

agree

1

Partly

disagree

Disagree

Strongly

disagree

F G H I J

Strongly

agree

2 2 1

Agree 2 2 5 2 5

Partly

agree

1 2 3 1

Partly

disagree

Disagree 1 1

Strongly

disagree

Richard Cornelissen 159

APPENDIX F. SURVEY RESULTS

K L M N O

Strongly

agree

1 1 1 1

Agree 4 5 4 5 6

Partly

agree

1 1

Partly

disagree

Disagree

Strongly

disagree

160 Richard Cornelissen

F.3. EXPERIENCED EMPLOYEE SURVEY RESULTS

Richard Cornelissen 161

	1 Introduction & Motivation
	1.1 Background
	1.2 Research objectives
	1.2.1 Main objective
	1.2.2 Research questions
	1.2.3 Definitions

	1.3 Approach
	1.4 Evaluation approach

	2 Methodology Design
	2.1 Conceptual terms
	2.2 Methodology design principles
	1. Interactive, face-to-face communication is the cheapest and fastest channel for exchanging information
	2. Excess methodology weight is costly
	3. Larger teams need heavier methodologies
	4. Greater ceremony is appropriate for projects with greater criticality
	5. Increasing feedback and communication reduces the need for intermediate deliverables
	6. Discipline, skills and understanding counter process, formality and documentation
	7. Efficiency is expendable in non-bottleneck activities

	3 Methodology Composition
	3.1 SEMAT Kernel
	3.1.1 Alphas
	3.1.2 Activity spaces

	3.2 Practice library
	3.2.1 Purpose
	3.2.2 Prerequisites
	3.2.3 Necessary commitment
	3.2.4 Tailoring

	3.3 Documenting software development practices

	4 Project Inventory
	4.1 Project properties
	4.2 Team member properties
	4.3 Solution properties
	4.4 Methodology properties
	4.5 Project inventory interview

	5 Methodology-Growing Framework
	5.1 Composing the methodology
	5.2 Applying the framework
	Step 1. Project inventory
	Step 2. First practice attempt
	Step 3. Preparing reflection workshops
	Step 4. Holding reflection workshops
	Step 5. Changing the methodology
	Step 6. Middle of the increment

	5.3 Start of a new project
	5.3.1 First proposal
	5.3.2 First reflection workshop
	5.3.3 First practice attempt

	5.4 Summary

	6 Case Description
	6.1 Project inventory
	6.1.1 Project properties
	6.1.2 Team member properties
	6.1.3 Solution properties
	6.1.4 Methodology properties
	6.1.5 Summary

	6.2 First iteration
	6.2.1 First practice attempt
	6.2.2 Preparation of the reflection workshop
	6.2.3 First reflection workshop
	6.2.4 Changing the methodology

	6.3 Second iteration
	6.3.1 Preparation of the reflection workshop
	6.3.2 Second reflection workshop
	6.3.3 Changing the methodology

	6.4 Reflection on the methodology

	7 Evaluation
	7.1 Employee survey
	7.1.1 Survey results
	7.1.2 Summary

	7.2 Team member & experienced employee survey
	7.2.1 Survey results
	7.2.2 Additional survey results
	7.2.3 Summary

	8 Conclusion
	8.1 Conclusions
	8.2 Contribution
	8.3 Business recommendations
	8.4 Limitations and future work
	8.5 Concluding remarks

	Bibliography
	A Experienced employee interviews
	A.1 First interview
	A.2 Second interview

	B Practice Library
	B.1 Weekly Cycle
	B.1.1 Usage criteria
	B.1.2 Alphas (things to work with)
	B.1.3 Work products (artifacts to maintain)
	B.1.4 Activities (things to do)

	B.2 Daily Standup
	B.2.1 Usage criteria
	B.2.2 Alphas (things to work with)
	B.2.3 Activities (things to do)

	B.3 MoSCoW Prioritization
	B.3.1 Usage criteria
	B.3.2 Alphas (things to work with)
	B.3.3 Work products (artifacts to maintain)
	B.3.4 Activities (things to do)

	B.4 Pair Programming
	B.4.1 Usage criteria
	B.4.2 Alphas (things to work with)
	B.4.3 Activities (things to do)

	B.5 Seasons of the Day
	B.5.1 Usage criteria
	B.5.2 Alphas (things to work with)

	B.6 Visualize Workflow
	B.6.1 Usage criteria
	B.6.2 Alphas (things to work with)
	B.6.3 Work products (artifacts to maintain)
	B.6.4 Activities (things to do)

	C Project inventory interview
	D Social adoption measurement form
	E Questionnaires
	E.1 Evaluation by employees
	E.2 Evaluation at Findesk
	E.3 Evaluation with experienced employees

	F Survey results
	F.1 Employee survey results
	F.2 Findesk team member survey results
	F.3 Experienced employee survey results

