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UTFM – a Next Generation Language and Tool for Feature

Modeling

Vincent Weber, MSc

University of Twente, 2014

Supervisor: Dr. Pim van den Broek

An important aspect of variability management in software product lines is through feature

modeling, in which relations between different features are specified. Over the year exten-

sions of classical feature models have been proposed, however never properly combined and

implemented. We propose the next generation feature modeling language: UTFM (Univer-

sity of Twente/University of Texas Feature Models), that entail generalized classical feature

models with instance and group cardinalities, extended with feature replication, feature

attributes (arithmetic, boolean and string attributes) and complex cross-tree constraints.

The language explicitly separates type declarations, defining feature types, hierarchi-

cal relations, attributes and constraints, from model configurations. Configurations consist

of instance declarations of feature types and value assignments to feature attributes. We

explain our interpretation of the semantics of nested feature replication. We introduce a

local scope to features and explain how such a scope influences the constraint language used

vi



in cross-tree constraints, as well as how this leads to a language that has similar behavior

as an attribute grammar. Along we propose the automated analysis operation constraint

propagation. An algorithm for propagating determinable values to instances and attributes

based on provided configurations. The propagation algorithm is supported by an unfolding

process that makes undecided instances in a configuration explicit.

To validate the proposed language and analysis operations an proof-of-concept tool

is implemented. In order to check satisfiability of configurations the tool translates UTFM

models to Z3 decision problems (an off-the-shelf SMT theorem prover). To translate the

models to the decision problems an UTFM to Z3 mapping is described for the various

semantics. Furthermore two examples are provided that show case the capabilities of UTFM.

As a whole, the UTFM language and tool, set a step forward to converge feature mod-

els with advanced semantics towards standards, furthermore to enrich variability modeling

using feature models.
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Chapter 1

Introduction

Producing individual tailored software products efficiently is know in software engineer-

ing as software product lines (SPL) or software product families. Customizing reusable

artifacts is the key, where the focus is on features functionalities that are shared among

members. The software product line engineering paradigm models and manages variability,

i.e. commonalities and differences in the applications in terms of requirements, architecture,

components and test artifacts [27].

Kang et al. [23] introduced feature modeling in their Feature Oriented Domain

Analysis (FODA) publication. Feature models (FM) represent the relations between the

features of a product line in a hierarchical way. Legal combinations of features are in 1:1

correspondence with products of a product line, thereby describing an entire family of

products in a single model. Figure 1.1, published by Benavides et al. [7], illustrates a basic

example of a feature model describing various mobile phones, with variability in screens

and media features. As explained in the legend of the figure, certain features are mandatory,

while others are optional, and some features are dependent of another, and some are mutual

exclusive. By selecting features a configuration is made of the feature model.

The information in a FM can be used in various ways, and the process of extracting

and analyzing a model or configuration can be automated with the use of tools. Especially in
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refer the reader to [69] for a detailed survey on the
different feature model languages. Below, we review the
most well known notations for those languages.

2.1. Basic feature models

We group as basic feature models those allowing the
following relationships among features:

� Mandatory. A child feature has a mandatory relation-
ships with its parent when the child is included in all
products in which its parent feature appears. For
instance, every mobile phone system in our example
must provide support for calls.
� Optional. A child feature has an optional relationship

with its parent when the child can be optionally
included in all products in which its parent feature
appears. In the example, software for mobile phones
may optionally include support for GPS.
� Alternative. A set of child features have an alternative

relationship with their parent when only one feature of
the children can be selected when its parent feature is
part of the product. In the example, mobile phones
may include support for a basic, colour or high

resolution screen but only one of them.
� Or. A set of child features have an or-relationship with

their parent when one or more of them can be included
in the products in which its parent feature appears. In
Fig. 1, whenever Media is selected, Camera, MP3 or both
can be selected.

Notice that a child feature can only appear in a product
if its parent feature does. The root feature is a part of all
the products within the software product line. In addition
to the parental relationships between features, a feature
model can also contain cross-tree constraints between
features. These are typically in the form:

� Requires. If a feature A requires a feature B, the
inclusion of A in a product implies the inclusion of B
in such product. Mobile phones including a camera

must include support for a high resolution screen.

� Excludes. If a feature A excludes a feature B, both
features cannot be part of the same product. GPS and
basic screen are incompatible features.

More complex cross-tree relationships have been
proposed later in the literature [5] allowing constraints
in the form of generic propositional formulas, e.g. ‘‘A and B
implies not C’’.

2.2. Cardinality-based feature models

Some authors propose extending FODA feature models
with UML-like multiplicities (so-called cardinalities)
[28,65]. Their main motivation was driven by practical
applications [26] and ‘‘conceptual completeness’’. The
new relationships introduced in this notation are defined
as follows:

� Feature cardinality. A feature cardinality is a sequence
of intervals denoted [n..m] with n as lower bound and
m as upper bound. These intervals determine the
number of instances of the feature that can be part of a
product. This relationship may be used as a general-
ization of the original mandatory ([1,1]) and optional
([0,1]) relationships defined in FODA.
� Group cardinality. A group cardinality is an interval

denoted /n: :mS, with n as lower bound and m as
upper bound limiting the number of child features that
can be part of a product when its parent feature is
selected. Thus, an alternative relationship is equivalent
to a /1: :1S group cardinality and an or-relationship is
equivalent to /1: :NS, being N the number of features
in the relationship.

2.3. Extended feature models

Sometimes it is necessary to extend feature models to
include more information about features. This informa-
tion is added in terms of so-called feature attributes. This
type of models where additional information is included
are called extended, advanced or attributed feature models.

ARTICLE IN PRESS

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3

Mandatory

Optional

Alternative

Or

Requires

Excludes

High resolution

Fig. 1. A sample feature model.

D. Benavides et al. / Information Systems 35 (2010) 615–636 617

Figure 1.1: Classical feature model of a Car [7].

large-scale feature models automated analyses is unavoidable as manually analysis will be

an infeasible task due to the large computing complexity of the analysis [5]. The automated

analysis operations performed by tools can vary from detecting contradictions in a model,

searching for all possible products, and providing optimizations of a model [7].

The operations to perform the analysis all follow the same process, a feature model

is used as input, either with a configuration, and is processed by a compiler. The intermediate

representation that is returned by the compiler is then passed on to an off-the-shelf-solver

or a tool which performs the analysis operation and returns the result of the analysis. The

intermediate representations of the feature models are in general satisibility problems, which

the solvers try to validate. Representations that have been used in the past are propositional

logic [], constraint programming [], linear programming [] and generalized feature trees [].

1.1 Next generation feature modeling

In the domain of feature modeling a distinction can be made between classical feature

modeling and a newer, next generation, feature modeling. The semantics of classical feature

modeling are fairly basic as can be seen in Figure 1.1, however over the years researchers

2



started adding extra semantics to feature models such as cardinalities, feature attributes and

allow feature replication (cloning). These new semantics have not matured to the point that

they also regarded as classical semantics.

An attempt has been made recently to unite many concepts for a the next generation

feature models in Common Variability Language [], however unfortunately this proposal has

been stranded (i.e. discontinued as the basis of an OMG standard). This attempt shows us that

there is interest in uniting the parallel researches to work towards more standards in feature

modeling. In our work we attempt to do provide a full implementation and description of a

next generation feature modeling language, University Twente/University of Texas Feature

Modeling (UTFM).

1.2 Motivation

To date much is unclear on how to interpret the advanced semantics of feature models and

how they should be properly integrated with each other. Better insight in the possibilities that

richer semantics bring leads to a better understanding of the effects of richer semantics on

the structure of a feature modeling language. The implementation of languages could lead to

new standards in feature modeling, which would make it more likely that better tools will

be developed as the research field becomes less experimental. In order to proceed in such a

direction we propose the next generation feature modeling language UTFM and implement

a proof-of-concept tool for our proposed language and analysis operations.

1.3 Problem Statement

Defining a feature modeling language with advanced functionality poses two main challenges.

The first challenge comes forth from the absence of standards in feature modeling, the second

from the interference between the different advanced semantics.

Research of feature modeling has not diverged to standards, on the contrary recent

3



publications has branched and made the research field more fragmented. Due to the different

publications on additional semantics for classical feature modeling it is unclear: 1. to which

extend is it possible to add additional functionality; 2. what should this language look like;

3. to what kind of satisfiability porblem should a feature model be translated; 4. what are

practical examples that can be used to showcase the functionality of the language. The

different interpretations of feature attributes and feature replication have been published

using different syntax, makes it hard to compare the proposals. Besides the lack of consensus

on what feature modeling language with advanced semantics should entail the translation

from model to satisfiability problem adds more complexity to the equation. The spectrum

of interpretations has also not lead to model examples that are used as standard examples

through different publications which would make comparison of interpretations easier.

The versatility has not lead to a feature modeling language that implements advanced

feature modeling functionality in a single language. Attempts to unify previous proposals

of advanced semantics have not been finalized. The absence of successful proposals for

advanced feature modeling languages leads to the suggestion that the combinations of

attribute and replication semantics to implementations challenges. UTFM is required to

integrate these semantics without interfering with each other. The challenge designing UTFM

is to sort out these differences and make design decisions and implement a proof-of-concept

tool accordingly.

1.4 Research Goals

The main goal of our work is to develop a full implementation of the feature modeling

language UTFM that bundles previously proposed advanced feature modeling semantics

besides the classical semantics. Our point of reference is classical feature modeling along

with advanced semantical concepts that have been published. In order to incrementally

advance in going from our point of reference to the proposed research goal we define the

following three sub-goals:

4



1. define the semantics and syntax of UTFM;

2. implement a parser and automated analysis tool for the UTFM language;

3. provide examples that demonstrates the capabilities of the functionality of the lan-

guage.

1.5 Methodology

First through a process of trail-and-error an overview is made on the semantics of the designed

language, how the different advanced semantics of feature modeling can be combined without

interfering with other semantics. Through this process a series of design decisions are made

which lead to the structure of UTFM. By defining a context-free grammar the syntax of the

language is specified.

Secondly by developing a tool which automates the validation of constructed feature

models in UTFM, and implements automated reasoning operations shows the feasibility of

the previously stated modeling language. Additionally, by performing automated reasoning,

it demonstrates that current off-the-shelf theorem provers are capable of analysing advanced

semantics of feature models.

For the third sub-goal examples demonstrate possible usage of UTFM language

combining advanced feature modeling semantics in a practical problem domain.

1.6 Contributions

Within this thesis the feature modeling language UTFM is presented that implements feature

attribute, feature replication and complex cross-tree constraint semantics. For the language a

textual and graphical syntax are provided. Furthermore a tool is implemented that performs

automated analysis on feature models written in UTFM using the off-the-shelf theorem
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prover Z3 1.

1.7 Outline of Thesis

Chapter 2 starts of with the introduction to the semantics and syntax of UTFM, which are

described by providing a mapping from classical feature models to the proposed language.

Furthermore it elaborates on the automatic reasoning process: constraint propagating and

the supporting unfolding algorithm.

Chapter 3 discusses how UTFM supports the replication of features and how feature

models can be constraint when more then one instances are present in a product configuration.

Along it is explained how multiple instances, and cardinalities of features are interpreted and

how it impacts automated reasoning.

In Chapter 4 the last semantics of UTFM are explained with the introduction of

feature attributes. It is explained how attributes are declared for features and instances and

how these attributes constraint configurations. This is followed by a description on the

automated analysis of features that have attributes.

The proof-of-concept tool is introduced in Chapter 5. The functionality of tool as

well as how to execute these operations are described. Furthermore the implementation

structure of the tool is elaborated.

Chapter 6 provides examples that showcase the potential of the UTFM language.

Chapter 7, the related work section describes the latest research that is published

with regard to feature modeling with advanced semantics and automated analysis. These

works are placed in context with our proposed language.

Chapter 8 concludes the thesis by providing the final discussion and summary of the

contributions that are made. In the end recommendations are made on the direction of future

research and possible enhancements of UTFM language and tool.

1https://github.com/vweber/UTFM
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Chapter 2

Classical Feature Models

In this chapter we explain classical feature modeling in UTFM language.

1. We review ideas originally proposed by Kang in 1990 and those added by others

through 2006, that we regard as classical feature modeling;

2. We explain the structure of how models in UTFM are declared and configured;

3. A set of translation rules is given to map classical feature models to UTFM, showing

that UTFM preserves classical capabilities;

4. The theorem prover Z3 is introduced along with rules to translate UTFM specifications

to Z3 specifications. Z3 performs automated reasoning on UTFM feature models;

These topics provide insights into the fundamental concepts of UTFM, which are used in

future chapters to introduce new (or more precise) semantics in UTFM feature models and

automated reasoning.

2.1 Classical Semantics

Feature Models. In 1990, Kang et al. [23] introduced feature models to encode the program

membership of SPLs. His ideas were gradually refined by others (Benavides et al. [10],
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Czarnecki et al. [15] and Batory et al. [4]) to what we now regard today as classical feature

models. These models deal with three central concepts: features, hierarchical structure, and

cross-tree constraints. We describe how classical feature models are interpreted in the past.

Features. A feature is an increment in functionality. A feature model enumerates the

features used in a software product line. Every program in an SPL is identified by a

unique set of features. This set of features is called a configuration and each feature in

the set is said to be selected.

Hierarchical Structure. Features are related to each other by a tree structure, starting with

a root feature and descending downward using parent-child relations to produce a

hierarchy. A key rule of configurations is that if a child feature is selected, its parent

feature must also be selected.

The children of a parent form a group relation w.r.t. the parent. There are three

different groups: or, and, and alternative relations. An or relation requires one or

more children to be selected in a configuration. An alternative relation requires

precisely one child to be selected, and an and relation requires all children to be

selected (with the exception of children that are labeled as optional).

Czarnecki et al. [14] generalized the group relation by adding cardinalities, whose

syntax is similar to multiplicities in class diagrams of UML. A cardinality is an ordered

pair [l..u] of integers, where l ≤ u. Value l is the lower bound on the number of

children that must be selected in a group and u is the upper bound, this is called the

group cardinality of a relation. Besides cardinality for group relations, Czarnecki et

al. [15] introduces feature cardinality, to specify the amount of allowed clones of a

feature. Assuming classical feature models do not entail feature replication, there

are only optional features ([0..1] feature cardinality) and mandatory features ([1..1]

feature cardinality).

We interpret the cardinalities l and u with regard to the different group relations
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as follows: suppose a parent node has n children, of which k are optional. An or

relationship is indicated by the cardinality [1..n], an and relationship has the cardinality

[(n−k)..n] (where n−k are the mandatory features), and an alternative relationship is

[1..1], where all child features in the group relation have a feature cardinality (defining

whether the feature is optional or mandatory).

Cross-Tree Constraints. Not all relationships among features can be expressed as parent-

child. Features that are selected in one branch of a tree may preclude or demand

the selection of features in other branches. Cross-tree constraints express such re-

lationships. At first cross-tree constraints entailed requires and excludes predicates

that related two features. Batory [4] proposed that cross-tree constraints can be arbi-

trary propositional formulas. Some tools today still only allow requires and excludes

constraints, e.g., KConfig [34, 37].

Figure 2.1a illustrates a classical feature model, provided by Apel et al. [1]. This

model uses different group relations and is constrained by two propositional formulas. In

the Figure legend, exclusive or relations are identical to the alternative relations described

earlier. Figure 2.1b illustrates the same feature model using group relations and cardinalities.

This figure is not provided by Apel, but created by us.

Configurations. Products of a product line are specified by configurations of a feature model.

We mentioned earlier that a configuration is a subset of features that have been selected.

The configuration represents a product, or products, in which those features are present.

Benavides et al. [7] formalizes it as: there is a set of features F and a 2-tuple configuration

(S,R), where S the set of selected features, R the set of removed features such that S,R⊆ F,

and S∩R=∅. In a full or complete configuration every feature of the model is either selected

or removed (S∪R= F); it is a partial configuration otherwise (S∪R⊂ F). Batory [4] said

features were undecided when features are neither selected or removed. We regard this as

S∪R∪U= F, where U is the set of undecided features. A valid full configuration requires
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(a) Classical feature model from Apel et al. [1].

(b) Modified with group cardinality.

Figure 2.1: Classical Feature Models

that its selected features satisfy all feature model constraints; the full configuration is invalid

otherwise. A partial configuration is valid if it can be configured further (by converting

undecided features into selected or removed) to produce a valid full configuration. A partial

configuration is invalid otherwise.

2.2 UTFM Type Declarations and Configurations

Classical feature models and their configurations distinguished (albeit implicitly) between a

feature type declaration (the feature model) and feature type instances (configurations). With

the introduction of UTFM we make the same distinction, but explicitly, as we separate their
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concerns. The feature model type declaration (FMTD) of UTFM subsumes (and as we will

see later chapters, goes beyond) the semantics of classical feature models. In the following

sections, we introduce the UTFM constraint language, and then UTFM configurations. We

limit our discussion of UTFM concepts to just describe classical semantics. Therefore we

make assumptions, which in the future we will retract to achieve generality.

2.2.1 Type Declaration

A FMTD specifies the structure and constraints of a UTFM.

Features. A “feature” in a FMTD denotes a feature type; it has no configuration information.

Instances of a feature type are actual features in a product, sometimes called feature

replicas. Classical feature models use singleton feature types: types that have precisely

one instance. (It was for this reason that feature types and feature instances were not

clearly distinguished in classical models).

More generally, each feature type in a FMTD has an instance cardinality that defines

the lower and upper bound on the number of its instances that may be permitted in

a product. Using the cardinality notation defined earlier ([l..u] means l is a lower

bound on the number of instances and u is the upper bound), a mandatory feature has

the cardinality [1..u] and an optional feature has [0..u].1 In classical models, instance

cardinalities are either mandatory or optional, and under the assumption that there can

only be a single instance of a type, the upper bound is 1.

In classical feature modeling, a feature A meant “A” is the name of the feature type

and “A” is the name of its sole instance. However in UTFM, with the possibility of

feature replication, this means A (a non-indexed term) denotes a feature type and Ai

(an indexed term) denote the ith instance of A. All instances of a type have unique

names via their index values.2

1When instance cardinality was introduced, it was decided to leave out redundant syntax [14]. For UTFM,
we decided to always express instance and group cardinalities, consistency is valued over conciseness.

2UTFM and the tool do not require the Ai name convention for instances; any name is permitted for an
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Hierarchical Structure. All group relations (and-, or-, alternative-) are replaced by a

general group relation with a [l..u] group cardinality. This means that both feature

types and group relations have cardinality specifications in a FMTD. A group relation

is part of the declaration of a parent feature type and is associated with one or more

child feature types.

CrossTree Constraints. Cross-tree constraints expressed in propositional logic, not limited

to elementary requires and excludes statements. They are declared within the local

scope of feature types and therefore are no longer regarded as global constraints.

This restriction makes the translation of classical cross-tree constraints to FMTD

more elaborate; the benefits for doing so are explained in later sections. Figure 2.2

illustrates how a constraint belongs to a feature type, annotated with a dashed line to

the owner. The constraint language of UTFM and possible operations are explained in

Section 2.2.2.

Figure 2.2 shows the FMTD representation of the classical feature model of Fig-

ure 2.1b. All group relations have been replaced with group cardinalities and each feature

type has an instance cardinality. Every instance cardinality is mandatory [1..1] or optional

[0..1] in relation to its parent. Cross-tree constraints are specified in a parallelogram, within

the scope of the root feature. Also our notation is similar to that of the Common Variability

Modeling (CVL) [25] proposal for cross-tree constraints.

2.2.2 Constraint Language

Cross-tree constraints written in UTFM are boolean expressions that are required to hold

within the scope of a feature type. Expressions can either be a propositional formula or a

boolean operation on a feature type. Propositional logic constructs included in the constraint

instance. It is not even required to specify global unique names for instances, just unique names for instances
within a group relation. The unique identifier for an instance is its path in the configuration. For the sake of
clarity and to avoid ambiguous examples, every instance in our examples have unique names to show explicitly
that every instance is unique.
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Figure 2.2: Feature model type declaration of the GraphLibrary example (Figure 2.1).

language are: and, or, implies, and not. As we will ultimately deal with sets of feature type

instances, we reference instances via operation calls. For now we only introduce a single

boolean operation for types: exists.3 Figure 2.3 states the context-free grammar for UTFM

constraint language for classical feature models. A complete grammar of the constraint

language is provided in Appendix A.4.

Exists(FeatureType) :: Bool. Operation exists returns a boolean value indicating if there

exists a selected instance of the specified type: true if there is at least one selected

instance of the feature type in the configuration, otherwise false.4

Let parent P denote a feature type for which a cross-tree constraint has been defined, and

let C be a child of P. The expression exists(C) defined at P returns true if there is at least

one child instance C for the parent instance of type P that is selected in the configuration,

otherwise false. If the P instance has multiple child instances of C selected exists also returns

true, this is however outside the scope of classical feature models.

As a concrete example, Figure 2.4 declares that each parent P instance requires at

least one A child or at least one B child instance. Constraints on the selection of Child
3There is also a forall operation which is introduced later in Chapter 3. At this point, exists and forall are

semantically indistinguishable as feature types have at most one instance.
4UTFM permits types with no instances, or instances with a false or undecided selection value. This is

discussed in the next subsection on UTFM configurations.
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1 <Constraint > ::= <BooleanExpr > ";"
2
3 <BooleanExpr > ::= <BooleanFormula >
4
5 <BooleanFormula > ::= <BooleanProp > "and" <BooleanProp >
6 | <BooleanProp > "or" <BooleanProp >
7 | <BooleanProp > "implies" <BooleanProp >
8 | "not" <BooleanProp >
9

10 <BooleanProp > ::= <BooleanOp >
11
12 <BooleanOp > ::= "exists(" <FeatureRef > ")"
13 | "exists(" <FeatureRef > "." <BooleanOp > ")"
14 | "forall(" <FeatureRef > ")"
15 | "forall(" <FeatureRef > "." <BooleanOp > ")"
16
17 <FeatureRef > ::= <String >

Figure 2.3: Context-free grammar or UTFM constraint language for classical models.

instances are defined as constraints at the feature type that has the Child type in its group

relation.

Figure 2.4: Simple example of exists operations.

Operations on feature types can be nested. Figure 2.2 illustrates a more complicated

constraint (reproduced in Figure 2.5) with nested exists operations. The nested operation

exists(Algorithm.exists(MST)) asks if a GraphLibrary instance has a child Algorithm

instance that has a child MST instance – or more compactly, if the GraphLibrary instance

has a selected MST instance. The explanation of the implicitly-conjoined constraints in

Figure 2.5 is:

• If an instance of MST is selected then selected instances of Undirected and Weighted

14



are required for the first expression to be true.

• If an instance of Cycle is selected, it is required that an instance of Directed is also

selected.

Figure 2.5: More complicated constraints.

A complete textual specification of Figure 2.2 in the UTFM language is given in

Figure 2.6. In the textual language curly braces are added to avoid ambiguity in the hierarchy

of the model. The mapping of classical feature models to UTFM is explained in the next

section. A context-free grammar for specifing FMTD’s is proved in Appendix A.1.

2.2.3 Configurations

A FMTD represents the set of all legal products for an SPL. Specifying a product is the

process of configuration. A configuration consists of instances of feature types. Every

instance has a selection value that is either true if the feature instance is present in a

configuration, false if the instance is not. The default selection value of an instance is

undecided. If the selection value is set to true we say the instance is selected, if the selection

value is not undecided anymore an instance is configured. As the default selection value of

instances is undecided, omitting the specification of undecided instances is allowed.

We require that every feature instance be given a distinct name within a group

relation. As mentioned earlier, instance i for feature type A has name Ai, although our

language and tool admits non-numbered names. So given feature types parent P, child C and

grandchild G, the unique path for grandchildren instances would be Pi.Cj.Gk.
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1 [1..1] GraphLibrary
2 constraints:
3 exists(Algorithm.exists(MST)) implies exists(EdgeType.exists(

Undirected)) and exists(Weighted);
4 exists(Algorithm.exists(Cycle)) implies exists(EdgeType.exists(

Directed));
5 group [1..4]:
6 [1..1] EdgeType
7 group [0..1]: {
8 [0..1] Directed
9 [0..1] Undirected

10 }
11 [0..1] Search
12 group [0..1]: {
13 [0..1] BFS
14 [0..1] DFS
15 }
16 [0..1] Weighted
17 [0..1] Algorithm
18 group [1..4]:
19 [0..1] Cycle
20 [0..1] ShortestPath
21 [0..1] MST
22 group [1..1]: {
23 [0..1] Prim
24 [0..1] Kruskal
25 }
26 [0..1] Transpose

Figure 2.6: FMTD of Figure 2.2.

Instance declarations have the following syntax: (undecided) GraphLibrary :

GraphLibrary1. An instance of the type GraphLibrary is declared with the name GraphLibrary1

and has an undecided selection value that needs to be configured. The selection value could

be replaced by (true) or (false), however to make the language more concise it is allowed

to omit the selection value for selected instances. A configuration of Figure 2.2 is given in

Figure 2.7, also a graphical representation of the configuration is provided in Figure 2.8.

The classifications that were made for configurations of classical feature modeling

can also be defined for UTFM. Configurations are either full or partial and are valid or

invalid with regard to its type declaration.
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1 GraphLibrary : GraphLibrary1
2 group:
3 EdgeType : EdgeType1
4 group: {
5 Undirected : Undirected1
6 }
7 Weighted : Weighted1
8 Algorithm : Algorithm1
9 group:

10 MST : MST1
11 group:
12 Prim : Prim1

Figure 2.7: Configuration of Figure 2.6 in UTFM.

[1..4]

[1..1]

[1..1][1..1]

[1..1] GraphLibrary

[1..1] EdgeType

[0..1] Directed [0..1] Undirected

[0..1] Search

[0..1] BFS [0..1] DFS

[0..1] Weighted

[0..4]

[1..1] Algorithm

[0..1] ShorteestPath [0..1] MST[0..1] Cycle [0..1] Transpose

[0..1] Prim [0..1] Kruskal

[0..1] syntaxHighlighting

[1..1] syntaxDefintionFile

[0..1]

[1..1] EdgeType

[0..1] Directed [0..1] Undirected

[0..1] Undirected

(true) EdgeType : ETInst

(true) Undirected : UInst

(true) Undirected : UInst

Unfolding Constraint
Propagation

FMTD

Configuration0

Configuration1

[1..1] P

[0..1] A [0..1] B [0..1] C

[0..2]

exists(A) or exists(B)

[1..1]

[1..1] InternetConnection

[0..1] Powerline [0..1] ADSL [0..1] Wireless

Int price;
String connectionName;

 
price = 20 + sum(Powerline.price) +

sum(ADSL.price) +
sum(Wireless.price)

Int price;

price >= 100;
price <= 200;

Int price;

price >= 100;
price <= 200;

Int price;

price >= 150;
price <= 250;

[1..1] P

[0..1] C

[0..1] G

Int x;
 

x = sum(C.sum(z));

Int z;

[1..1] P

[0..1] C

[0..1] G

Int x;
 

x = sum(C.y);

Int z;

Int y;
 

y = sum(G.z);

exists(Algorithm.exists(MST)) implies
    (exists(EdgeType.exists(Undirected)) 
    and exists(Weighted))

exists(Algorithm.exists(Cycle)) implies
    exists(EdgeType.exists(Directed))

exists(Algorithm.exists(MST)) implies
    (exists(EdgeType.exists(Undirected)) 
         and exists(Weighted))
 
exists(Algorithm.exists(Cycle)) implies
    exists(EdgeType.exists(Directed))

GraphLibrary : GraphLibrary1

Weighted : Weighted1EdgeType : EdgeType1

Undirected : Undirected1

Algorithm : Algorithm1

MST : MST1

Prim : Prim1

Figure 2.8: Graphical representation of Figure 2.7.

Full configuration. A full configuration represents a single product, implying that there are

no unconfigured instances in the configuration (no undecided).

Partial configuration. On the other hand in a partial configuration there are undecided

instances, and the configuration describes one or more products.

Valid configuration. If a configuration is valid, all instance selections and removals do not

invalidate the UTFM.

Invalid configuration. Instance selections and removals violate the constraints of the

UTFM.
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While by default instances are undecided, we are unable to specify a full configu-

rations, because implicitly there are always unconfigured instances. All configurations in

UTFM are therefore partial configurations. From this point on full configurations will be

called products, a configuration of a FMTD in which only selected instances are specified.

By default everything else in a product is assumed false, and is omitted from the product

specification. A similar approach is described in the configuration process for GUIDSL [4].

The configuration presented in Figure 2.7 and Figure 2.8 is partial and valid. If we

convert the domain from configuration to product in the example, the figure represents a

valid and full configuration, in other words a valid product. The context-free grammar for

specifying configurations is provided in Appendix A.2, for products in Appendix A.3. The

difference between these grammars is the removal of the selection value for products.

2.3 Mapping to UTFM

The next step is to show how classical semantics are integrated into the UTFM language

and to provide the mapping from the first to the second. An example of such a translation is

given in original Figure 2.1b to translation Figure 2.2:

Features. Each feature that is declared in a classical feature model is mapped to a feature

type in a FMTD. These feature types are either optional [0..1] or mandatory [1..1].

Hierarchical Structure. The hierarchical tree structure of the classical feature models is

also the basis of the UTFM language. Parent-child relationships are translated to

a general group relation with a cardinality [l..u]. The lower bound l of the group

cardinality will be the number of mandatory instances and the upper bound u is the

sum of mandatory and optional instances.

Cross-Tree Constraints. The introduction of a scope for feature types affects the way

cross-tree constraints are specified. Classical constraints were defined globally, while

constraints in UTFM are written from the perspective of a constrained feature type (as
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previously discussed in Section 2.2.2). Mapping classical constraints we translate A

requires B to A implies B, and A excludes B to (A implies not B) and (B implies

not A). Propositional logic in classical feature models does not need a conversion.

A feature reference is mapped by (nested) exists operations up to the corresponding

feature type.

The configuration language of UTFM is fairly small as it specifies instances and their

selection value. Selected classical features are mapped to instances of their corresponding

feature type with the selection variable set to true and other features to instances with the

values false, or undecided in case of a partial configuration.

2.4 Automated Analysis with Z3

To analyze a type declaration along with its configuration we map both in a Z3 decision

problem. The Z3 theorem prover is written by Microsoft Research and implements a

Satisfiability Modulo Theories (SMT) problem solver, in which different logical theories

are combined and translated to a satisfiability (SAT) problem [16, 30]. In Z3, theories

such as propositional logic, linear algebra, arrays, data structure and quantifier theory

are combined and integrated with different decision procedures to form a sophisticated

specification language. A Z3 decision problem (or Z3 model) is tested by the theorem prover

for satisfiability. If the Z3 model is satisfiable it can be concluded that the configuration is

valid with regard to the provided type declaration, no constraints are valiolated and there is

at least one possible product.

A Z3 model consists of two types of expressions: declarations and assertions.

Declarations define variables and functions. Asserts assign values to variables, or constrain

variables by describing a relation between them. The syntax of Z3 should be read as a

functional programming language, first a function name is given (for example: =>, and, or,

cardinality), followed by function parameters.
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Figure 2.9 shows a basic Z3 satisfiability problem, involving instances A1 and B1, and

possible constraint A and B. Lines 1–2 declare the instances, Lines 4–5 assert the constraint

to the model and that instance A1 is true. Running the problem in the prover 5 shows that it

is satisfiable. Adding the following assertion (assert (not B1)) results in an unsatisfiable

problem.

1 (declare -const A1 Bool)
2 (declare -const B1 Bool)
3
4 (assert (and A1 B1))
5 (assert A1)
6
7 (check -sat)

Figure 2.9: Very basic Z3 satisfiability problem.

Variable declarations and assertions are straightforward, Z3 functions are interpreted

as follows: Figure 2.10 declares function isSelected with a single parameter of type Bool

that returns an Int. The value of the returned Int is decided by a if-then-else construct (if x

then 1 else 0; ite x 1 0). The function returns 1 if an instance is selected, otherwise 0. The

purpose of this function is explained in the next subsection.

1 (define -fun cardinality ((x Bool)) Int (ite x 1 0))

Figure 2.10: Cardinality function.

Z3 requires all declarations to be listed first, followed by assertions. The order within

the series of declarations and asserts are provided does not matter as the model is evaluated

as a whole and the state of the model does not change imperatively. After the final assert

expression, the theorem prover is asked to check whether the model is satisfiable and to

present a satisfying model if there is one. It is currently not possible to iterate over the

satisfying models in Z3.

5online Z3 prover: http://rise4fun.com/z3
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2.4.1 Translating to Z3

Functions can be nested as arguments to other functions, as in functional programming. The

mapping of GraphLibrary to Z3 is explained in Table 2.1. The table shows the translation

using snippets of the FMTD and the configuration of the running example in Figure 2.2

and Figure 2.8. The Z3 code examples that are referenced in the table use the isSelected

function that is declared in Figure 2.10 and is explained in this subsection at item Cardinality

Evaluation.

Instances & Instance Cardinality. For every instance in the configuration that has a selec-

tion value true there is a variable declared and asserted in the Z3 model. Instances

that are undecided are only declared in the model, no value is asserted. Instances that

have a false selection value have no translation. A false instance never changes the

outcome of translated semantics in a Z3 model (exists is regarded as an or operation,

cardinality constraints only count selected instances)6, and hence can be omitted in

the Z3 model, however remain part of the configuration.

For every feature type, an instance cardinality variable is declared, representing the

amount of selected instances. The upper- and lower bound of the cardinality are

translated to assertions that constrain the bounds on the cardinality value. An example

of such a mapping is demonstrated in the first row of Table 2.1 (instance: Figure 2.11

Line 1, Line 4; instance cardinality: Line 2, Lines 6–8).

Group Relationship & Group Cardinality. Each selected child instance requires their

parent instance to be selected. Therefore, for every parent-child relation an implication

is asserted in the model: Child => Parent (written in Z3: (=> Child Parent)).

A group cardinality is declared in the same fashion as an instance cardinality. The

second row in Table 2.1 (relation: Figure 2.12 Lines 9–10; group cardinality: Line 4,

Lines 12–14) illustrates an example of this mapping.

6As we explain later, forall operations are regarded as conjunctions of implications, therefore also do not
contradict this statement.
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Semantics FMTD Configuration Z3

Instance & Instance
Cardinality

[1..4]

[1..1]

[1..1][1..1]

[1..1] GraphLibrary

[1..1] EdgeType

[0..1] Directed [0..1] Undirected

[0..1] Search

[0..1] BFS [0..1] DFS

[0..1] Weighted

[0..4]

[1..1] Algorithm

[0..1] ShorteestPath [0..1] MST[0..1] Cycle [0..1] Transpose

[0..1] Prim [0..1] Kruskal

[0..1] syntaxHighlighting

[1..1] syntaxDefintionFile

[0..1]

[1..1] EdgeType

[0..1] Directed [0..1] Undirected

[0..1] Undirected

(true) EdgeType : ETInst

(true) Undirected : UInst

(true) Undirected : UInst

Unfolding Constraint
Propagation

FMTD

Configuration0

Configuration1

[1..1] P

[0..1] A [0..1] B [0..1] C

[0..2]

exists(A) or exists(B)

[1..1]

[1..1] InternetConnection

[0..1] Powerline [0..1] ADSL [0..1] Wireless

Int price;
String connectionName;

 
price = 20 + sum(Powerline.price) +

sum(ADSL.price) +
sum(Wireless.price)

Int price;

price >= 100;
price <= 200;

Int price;

price >= 100;
price <= 200;

Int price;

price >= 150;
price <= 250;

[1..1] P

[0..1] C

[0..1] G

Int x;
 

x = sum(C.sum(z));

Int z;

[1..1] P

[0..1] C

[0..1] G

Int x;
 

x = sum(C.y);

Int z;

Int y;
 

y = sum(G.z);

exists(Algorithm.exists(MST)) implies
    (exists(EdgeType.exists(Undirected)) 
    and exists(Weighted))

exists(Algorithm.exists(Cycle)) implies
    exists(EdgeType.exists(Directed))

exists(Algorithm.exists(MST)) implies
    (exists(EdgeType.exists(Undirected)) 
         and exists(Weighted))
 
exists(Algorithm.exists(Cycle)) implies
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exists(Algorithm.exists(Cycle)) implies
    exists(EdgeType.exists(Directed))

exists(Algorithm.exists(MST)) implies
    (exists(EdgeType.exists(Undirected)) 
         and exists(Weighted))
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Figure 2.12

Cross-tree Constraint
exists(Algorithm.exists(Cycle))

Figure 2.13
=> exists(EdgeType.exists(Directed));

Table 2.1: Examples of mapping from UTFM to Z3.

1 (declare -const Undirected1 Bool)
2 (declare -const Undirected.InstanceCardinality Int)
3
4 (assert Undirected1)
5
6 (assert (= Undirected.InstanceCardinality (isSelected Undirected1)))
7 (assert (>= Undirected.InstanceCardinality 0))
8 (assert (<= Undirected.InstanceCardinality 1))

Figure 2.11: Instance and instance cardinality in Z3.

1 (declare -const EdgeType1 Bool)
2 (declare -const EdgeType1.Directed1 Bool)
3 (declare -const EdgeType1.Undirected1 Bool)
4 (declare -const EdgeType1.GroupCardinality Int)
5
6 (assert EdgeType1)
7 (assert EdgeType1.Undirected1)
8
9 (assert (=> EdgeType1.Directed1 EdgeType1))

10 (assert (=> EdgeType1.Undirected1 EdgeType1))
11
12 (assert (= EdgeType1.GroupCardinality (+ (isSelected EdgeType1.

Directed1) (isSelected EdgeType1.Undirected1))))
13 (assert (>= EdgeType1.GroupCardinality 0))
14 (assert (<= EdgeType1.GroupCardinality 1))

Figure 2.12: Group and group cardinality in Z3.
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Cardinality Evaluation. To evaluate the cardinality constraints of an instance or a group,

the isSelected function is called. Defined in Figure 2.10, it has a boolean input

parameter: the variable declaration of an instance (selection value), and returns an

integer: 1 if the instance variable is selected (true) and 0 otherwise. The sum of all

isSelected function calls on the instances involved is asserted to the corresponding

cardinality variable. This cardinality variable is thereafter asserted to be equal or

higher than the lower bound and equal or lower than the upper bound of the cardinality

constraint specified in the type declaration. Examples on the cardinality mapping

with the isSelected function are given in the first and second row of Table 2.1 (In-

stance cardinality: Figure 2.11 Line 2, Lines 6–8; group cardinality: Figure 2.12

Line 4, Lines 12–14). In the satisfying model found when validating Figure 2.12

EdgeType1.Directed1 is false.

Cross-Tree Constraints. Cross-tree constraints consist of propositional formulas combined

with exists() operations. These operations return a boolean value on whether there

exists a selected instance in the configuration. An exists operation is translated to a

logical or formula with a the types’ declared instances as propositions. However since

there are only singleton feature types, such formulas consist of a single proposition,

ie a reference to a single instance variable. These (nested) feature type references

are mapped to their unique name, through their path in the configuration. This is

illustrated in row three of Table 2.1 (cross-tree constraint: Figure 2.13).

1 (assert (=> GraphLibrary1.Algorithm1.Cycle1 GraphLibrary1.EdgeType1.
Directed1))

Figure 2.13: Cross-tree constraint in Z3.
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2.4.2 Automated Analysis

With the ability to check validity of configurations with an off-the-shelf solver, we define

a process for a automated analysis operation on UTFM models in Figure 2.14. The first

step in the process, parsing and validating, requires a FMTD and a configuration. Both are

parsed and type checked before they are translated to Z3, to be checked for satisfiability.

After validating that there is a satisfing model, there is the choice to perform constraint

propagation with or without unfolding the configuration. The propagation process returns a

new configuration (Configuration∗). The configuration could be configured further and

iterate through the analysis process. The three steps for automated analysis are: validating,

unfolding, and constraint propagation.

Figure 2.14: Automated analysis process.

Parsing & Validating. After parsing and type checking the type declaration and configura-

tion are interpreted. Using the mapping rules discussed in the previous subsection the model

is translated to Z3. If the configuration is invalid with regard to the provided type declaration

the analysis process is terminated. Otherwise the process continues with constraint propaga-

tion or the unfolding algorithm. As the latter is followed by constraint propagation as well,

we elaborate on this operation first.

Constraint Propagation. A fundamental concept in classical feature modeling tools is for

users to never specify an configuration that fails to satisfy all feature model constraints

[18]. Only valid partial configurations can be specified. This capability is accomplished by

constraint propagation: all facts that are inferrable from a given set of facts are determined

(so that a user cannot specify facts that contradict with feature model constraints). Constraint
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propagation is performed using Janota’s algorithm [21]. The referenced algorithm reasons

on features with a selection value, in UTFM the analysis is performed on instances, this does

not affect the algorithm. The Janota’s algorithm is summarized in the following points:

• if there is a valid configuration for which an undecided instance can be true and

another valid configuration for which that instance can be false: the instance remains

undecided. That is, a user has the freedom to decide whether or not to select the

instance at a future time.

• if the only remaining valid configurations require the instance to be true, the instance

is asserted true.

• if the only remaining valid configurations require the instance to be false, the instance

is asserted false.

• there are no valid configurations (no matter the selection value of the instance), then

there is a contradiction in the feature model or with the current configuration as no

products are possible.

The UTFM interpretation of the algorithm asserts for each undecided instance in the con-

figuration consecutively true and false and validates the models in the Z3 prover. Based on

returned satisfiability of the models the instance becomes configured or remains unconfig-

ured.

In Figure 2.15 we provide a configuration of the GraphLibrary FMTD (Figure 2.2).

In the configuration there are several undecided instances which the algorithm will try to

configure through constraint propagation. Figure 2.16 shows the result from the algorithm,

three instances are propagated, two remain undecided. The first cross-tree constraint implies

that the instances Undirected1 and Weighted1 must be propagated to true. Due to this

propagation, Directed1 is propagated to false. Because the group cardinality of EdgeType1

does not permit Directed1 to be true as well. As a result the instance Cycle1 is also
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propagated to false, this instance is not allowed to be true, due to the second cross-tree

constraint. It implies that if Cycle1 is true there has to be a Directed instance selected,

which is not possible in the current configuration. Both Prim1 and Kruskal1 remain

undecided as valid configurations are possible with either instance selected while the other

is not selected.

1 GraphLibrary : GraphLibrary1
2 group:
3 EdgeType : EdgeType1
4 group: {
5 (undecided) Undirected : Undirected1
6 (undecided) Directed : Directed1
7 }
8 (undecided) Weighted : Weighted1
9 Algorithm : Algorithm1

10 group:
11 (undecided) Cycle : Cycle1
12 MST : MST1
13 group:
14 (undecided) Prim : Prim1
15 (undecided) Kruskal : Kruskal1

Figure 2.15: Configuration of Figure 2.7.

1 GraphLibrary : GraphLibrary1
2 group:
3 EdgeType : EdgeType1
4 group: {
5 Undirected : Undirected1
6 (false) Directed : Directed1
7 }
8 Weighted : Weighted1
9 Algorithm : Algorithm1

10 group:
11 (false) Cycle : Cycle1
12 MST : MST1
13 group:
14 (undecided) Prim : Prim1
15 (undecided) Kruskal : Kruskal1

Figure 2.16: Propagated configuration of Figure 2.15.

Unfolding. For the constraint propagation process to do anything there need to be uncon-

figured instances (explicitly declared undecided instances). Additionally, in order for the
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process to considers all possible propagations, all possible instances have to be declared in a

configuration. To obtain such a configuration we introduce the unfolding process, to generate

maximum instances for all feature types. The algorithm generates instances up to the upper

bound of a feature types’ instance cardinality. We assume that this is the maximum, even

though in theory there are implicitly, infinitely many undecided instances. The process is

called unfolding as the instance tree will be unfolded in every node.

Algorithm 2.1 Unfolding Algorithm
1: procedure UNFOLDING(Instance i)
2: FeatureType ft← getFeatureType(i)
3: FeatureType[ ] group← getChildTypes(ft)
4: for each childType in group do
5: (Int lower, Int upper)← getInstanceCardinality(childType)
6: Instance[ ] instances← getChildInstances(i,childType)
7: for count(instances) < upper do
8: Instance new← generateInstance(childType, “undecided”)
9: instances← instances ∪ [new]

10: setChildInstances(i,childType, instances)
11: for each instance in instances do
12: if selection(instance) = “true” or selection(instance) = “undecided” then
13: UNFOLDING(instance of feature tree)
14: main
15: Instance i← root instance
16: UNFOLDING(i)

The process is based on three steps, and starts in the root instance of a configuration:

(1) Forall child feature types in the group relation of the instance, the algorithm checks if

there are as many instances configured as the upper bound of the instance cardinality

as the feature types permits;

(2) If this is not the case, instances of the child feature type are generated with the selection

value set to undecided. For feature type A with instance cardinality [l..u], instances

are generated until Au. In classical feature models there is just A1.
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(3) The process recursively proceeds to step 1 for all true or undecided instances7

The described unfolding process is provided in pseudo code in Algorithm 2.1. The algorithm

uses the following functions:

getFeatureType(Instance) Returns the feature type of the provided instance;

getChildTypes(FeatureType) Returns the set of feature types that are children of the given

feature type;

getInstanceCardinality(FeatureType) Returns the instance cardinality of a feature type;

getChildInstances(Instance,FeatureType) Returns the instances of a particular feature

type from the group relation of the provided instance, this is a set of instances;

setChildInstances(Instance,FeatureType,Instances) Assigns the set of instances for

FeatureType of the parent Instance to Instances;

generateInstance(FeatureType,Selection) Returns a generated instance of a feature

type, the instance has a generated name, and the given selection value;

selection(Instance) Returns the selection value of an instance.

The constraint language uses exists, which suggests that we need to introduce

quantifications to the problem model. By unfolding and mapping exists(A) predicates to

Z3 disjunctive assertions A1∨A2∨ . . .∨Au, we avoid first-order logic in Z3 decision problems

and use equivalent propositional formulae. Using the unfolding algorithm during automated

analysis of configuration, all possible products are considered against the set of specified

constraints in the type declaration. Our proposed semantics on instances have been reduced

to a well-known (and simpler) problem that makes use of propositional logic [4].

The configuration provided in Figure 2.16 is unfolded in Figure 2.17. Notice how the

generated instance have a randomized name. By configuring all undecided instances to false
7False instances do not have to be unfolded. Possible child instances are all propagated to false and will

never be selected for the product.
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the configuration is completely configured. We can regard this as the end of a configuration

process. By using this configuration as input for the unfolding and propagating operations

an isomorphic configuration is returned (Figure 2.18), no instances are generated, none are

propagated. By omitting everything but the selected instances in the configuration we obtain

the product specification (full configuration) illustrated in Figure 2.19 (notice the similarity

with Figure 2.7, however this configuration represents a set of products).

1 GraphLibrary : GraphLibrary1
2 group:
3 EdgeType : EdgeType1
4 group: {
5 Undirected : Undirected1
6 (false) Directed : Directed1
7 }
8 (undecided) Search : Search54356
9 group: {

10 (undecided) BFS : BFS89334
11 (undecided) DFS : DFS26730
12 }
13 Weighted : Weighted1
14 Algorithm : Algorithm1
15 group:
16 (false) Cycle : Cycle1
17 (undecided) ShortestPath : ShortestPath92124
18 MST : MST1
19 group: {
20 (undecided) Prim : Prim1
21 (undecided) Kruskal : Kruskal1
22 }
23 (undecided) Transpose : Transpose42166

Figure 2.17: Unfolded configuration of Figure 2.16.
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1 GraphLibrary : GraphLibrary1
2 group:
3 EdgeType : EdgeType1
4 group: {
5 Undirected : Undirected1
6 (false) Directed : Directed1
7 }
8 (false) Search : Search54356
9 Weighted : Weighted1

10 Algorithm : Algorithm1
11 group:
12 (false) Cycle : Cycle1
13 (false) ShortestPath : ShortestPath92124
14 MST : MST1
15 group: {
16 (true) Prim : Prim1
17 (false) Kruskal : Kruskal1
18 }
19 (false) Transpose : Transpose42166

Figure 2.18: Full configuration of Figure 2.17.

1 GraphLibrary : GraphLibrary1
2 group:
3 EdgeType : EdgeType1
4 group: {
5 Undirected : Undirected1
6 }
7 Weighted : Weighted1
8 Algorithm : Algorithm1
9 group:

10 MST : MST1
11 group:
12 Prim : Prim1

Figure 2.19: Product specification of Figure 2.18.
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Chapter 3

Feature Replication

We allow feature replication to UTFM and describe how it affects our type declarations and

the analysis of its configurations:

1. We explain how previous researchers have defined feature replication;

2. We give our interpretation of replication and how is it manifested in UTFM;

3. We show the effect of replication on the analysis of models and their translation to Z3.

Feature replication has a significant influence on the design of UTFM, which explains design

decisions made in the previous chapter as much as it forces restrictions on the language, that

will surface when we extend UTFM with feature attributes in Chapter 4.

3.1 Replication of Features

Czarnecki et al. in 2005 [14] first introduced the notion of having multiple clones of a feature.

Feature cardinality allowed the cloning of classical features, in UTFM vocabulary this is

translated to: feature replication which allows there to be multiple instances of a feature

type in a configuration. Czarnecki’s proposal distinguishes differences between features,

not all features are clonable. There are features in group relations and solitary features,
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where only the solitary features are clonable. Examples of constraints on features with

replication were provided and written in Object Constraint Language (OCL), however no

language for cross-tree constraints (other than examples in OCL) was provided. Also no

complete mapping of semantics and constraints to OCL was provided. Figure 3.1 illustrates

a proposed example of feature replication; we overlook the presence of feature attributes and

references to feature models. In this example, it is possible to replicate, for example, the

feature StoreFront or PaymentMethod, and for any of their replicas (or instances) there

can be multiple grandchildren. For each of the StoreFront replica’s PaymentMethodRef

and ShippingMethodRef can be replicated. This is regarded as nested replication.

Catalog�

Payment
MethodRef

(ref)

[1..∗]

SFPayment

Shipping
MethodRef

(ref)

[1..∗]

SFShipping

StoreFront

Gateway
Ref(ref)
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Debit
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Purchase
Order

PaymentType

PaymentMethod(String)

Cyber
Source
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Detection
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Payment

Rate
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Shipping
Method
(String)
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Shipping

BackOffice
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Figure 1: A sample feature model

ture models. We argue that Object Constraint Lan-
guage (OCL) [20] is adequate for expressing such con-
straints and support our claim with a number of sam-
ple constraints.

2. We identify a set of facilities based on constraint satis-
faction that can be provided by feature modeling and
feature-based configuration tools.

3. We describe a prototype supporting several of such
facilities based on Binary Decision Diagrams (BDDs)
and report on our experience with the prototype. Of
particular notice is the user interface of the prototype
configurator, which visually distinguishes between user
and machine configuration choices.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the necessary background information on cardi-
nality-based feature models, including some recent changes
to the notation. The special requirements of cardinality-
based feature modeling on expressing additional constraints
are discussed in Section 3. Section 4 give examples of addi-
tional constraints on cardinality-based feature models and
shows that they can be adequately expressed in OCL. Sec-
tion 5 classifies constraint satisfaction algorithms and fea-
ture modeling and feature-based configuration facilities based
on such algorithms. A prototype implementing some of
these facilities and our experience with the prototype are
described in Section 6. Related work is discussed Section 7,
and Section 8 closes with conclusions and direction for future
work.

2. BACKGROUND: CARDINALITY-BASED
FEATURE MODELING

Cardinality-based feature modeling integrates a number
of extensions to the original FODA notation. An example
of a cardinality-based feature model describing a family of
electronic shops is given in Figure 1. The notation is sum-
marized in Table 1. A brief explanation of the notation
follows.
A cardinality-based feature model is a hierarchy of fea-

tures, where each feature has a feature cardinality. A fea-
ture cardinality is an interval of the form [m..n], where
m ∈ Z ∧ n ∈ Z ∪ {∗} ∧ 0 ≤ m ∧ (m ≤ n ∨ n = ∗).
Feature cardinality denotes how many clones of the feature

(with its entire subtree) can be included as children of the
feature’s parent when specifying a concrete configuration.
Note that we allow a feature cardinality to have as an up-
per bound the Kleene star *. Such an upper bound denotes
the possibility to take a feature an unbounded number of
times. Features with the cardinality [1..1] are referred to as
mandatory, whereas features with the cardinality [0..1] are
called optional. For example, Payment is a mandatory fea-
ture, whereas Shipping is an optional feature. Features with
a cardinality having an upper bound larger than one can be
cloned during configuration. Features under a cloned fea-
ture can still be configured if they have variability. Cloning
is useful if a configuration needs to include multiple copies
of a part, where each part may be differently configured.
For example, the configuration of an electronic shop may
include multiple store fronts that may be configured differ-
ently, for example, by having different selections of payments
and shipping methods, if any.

Additionally, features can be arranged into feature groups,
where each feature group has a group cardinality. A group
cardinality is an interval of the form 〈m–n〉, where m,n ∈
Z∧0 ≤ m ≤ n ≤ k, where k is the number of features in the
group. Group cardinality denotes how many group members
can be selected. For example, at least and at most one of the
features CreditCard, DebitCard, and PurchaseOrder must
be selected as a subfeature of PaymentType.

A feature can have an attribute type, indicating that an
attribute value can be specified during configuration (un-
less the value is already present). We allow at most one
attribute per feature. If several attributes are needed, a
set of subfeatures, where each subfeature has an attribute,
can be introduced. The attribute type can be a basic type,
such as String or Integer, or FRef, which denotes the set of
all references to features in a given configuration. We also
refer to an attribute with the type FRef as a feature ref-
erence attribute. For example, our sample feature model in
Figure 1 uses string attributes to represent names of pay-
ment methods and shipping methods, and a float attribute
to represent the rate of a shipping method. Furthermore,
feature reference attributes are used in PaymentMethodRef

and ShippingMethodRef to point to predefined payment and
shipping methods in the back office, i.e., clones of Payment-
Method and ShippingMethod. Although a feature reference
can point to any feature in a configuration, we will later
show how to restrict the attributes to point to any of the

2

Figure 3.1: Feature model with replication from [15].

The Common Variability Language (CVL) [25] was recently proposed and abandoned

as an OMG standard for feature modeling. CVL entails feature replication, feature attributes,

along with a constraint language for cross-tree constraints. Having only an informal descrip-

tion, it was not specified how nested replicated features were to be evaluated with regard to

model constraints. Only a few examples were given; a formal specification of CVL was not

provided.
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3.2 Multiple Instances in UTFM

The structure of UTFM, explained in the previous chapter does not have to be changed to

support multiple instances of features; just lifting the restriction of allowing only singleton

features is needed. The foundation of UTFM to support replication was laid out in the

previous chapter: (1) instance cardinality; (2) the introduction of operations on feature types

in the constraint language; (3) and a local scope for feature types and constraints rather than

global cross-tree constraints.

3.2.1 Type Declaration

As described in Chapter 2, cardinalities are evaluated against the number of selected instances

in a configuration in the scope of a parent instance. This is however an explicit choice as

nested feature replication can be interpreted in different ways. The paper by Michel et al.

published in 2011 [26], describes different interpretations of the semantics of group and

instance cardinalities with regard to feature replication. They provide a two by two matrix

with on the axis:

Level. The level is set to either global or local. The cardinality of a feature model is counted

globally for the entire model, or it is counted locally for each instance.

Scope. The scope is set to either types or instances. Does the group cardinality is applied

on instances or types.

Figure 3.2 shows on the right different interpretations of the type declaration provided

on the left, based on level and scope. The classification is provided in [26] and is translated

to UTFM for consistency. The interpretations are valid configurations that are possible

under the assumed semantics. In the publication by Michel et al. they choose to interpret

cardinality with the level set to local and the scope set to types (bottom right in Figure 3.2).

Our interpretation also has the level set to local but differ as we apply cardinality to instances
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Figure 3.2: Classification of different cardinality interpretations.

(top right). The motivation for their choice was based on being able to specify optionality

for feature types. They argue that this is closer to the classical interpretation of optional

feature. Our motivation to set the scope to instances is that the language is more expressible.

The optionality of feature types is easily translated with the introduction of extra optional

singleton feature types. While the other way around, restricting the total amount of child

instances with a scope set to types can’t be expressed easily (the same feature types need

to be declared multiple times, or complex constraints need to be introduced to the type

declaration).

In the publications by Czarnecki et al. [14, 15] on cardinalities the interpretation of

nested replication is not thoroughly explained, this is also omitted in the CVL proposal [25].

Therefore it is impossible for us to demonstrate that we preserved prior semantics for feature

replication in UTFM. Or make assumptions on their interpretation of level and scope.

3.2.2 Constraint Language

Given that multiple instances of a feature type is allowed, the logical operation forall can

now be introduced to the UTFM constraint language:

Forall(FeatureType). Operation forall is a boolean expression and returns true if an ex-
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pression is evaluated true for every selected instance of a feature type that is referenced,

otherwise false. FeatureType can be any child feature type of the referenced parent

type with either a nested operation or an expression. In the case there are no selected

instances forall returns true, as no constraint is violated.1

An exists operation is the logical equivalent of a disjunction between configured instances.2

An forall operation is equivalent to a conjunction of implications for configured instances.

These implications are interpreted as: if the instance is selected in a configuration then the

expression given in the forall should hold. A forall operation constrains all true selected

instances of a feature type.

Let P,C,G be feature types, where P is a parent, C its child, and G a child of C

(equivalently G is a grandchild of P). Consider the expression forall(C). It means: for a

given P instance, all selected C instances should be true (“Ci implies Ci”). Such constraints

are trivial as they are always true. Forall with nested operations or expressions such

as forall(C.exists(G)), are interpreted as: for a given P instance, all of its selected C

instances must have a selected G instance (“Ci implies Ci.exists(G)”). Figure 3.3 (graphical)

and Figure 3.4 (textual) illustrate more complex constraints using forall operations. The

constraints stated in the examples are described in natural language as follows:

(a) For a given instance of P, if an instance of X is selected then for every selected child C

a grandchild G is required to be selected.

(b) For a given instance of P, either all selected C child instances have a X instance

configured to true or there is an Y instance selected.

The type declaration of Figure 3.3a is provided in Figure 3.4a, and for Figure 3.3b in

Figure 3.4b.

1These semantics can be compared to how universal quantifiers in first-order logic in the beginning are
always valued as true and therefore are evaluated as true when quantified over an empty domain [29].

2Remember that not all instances in a configuration need to be selected.
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(a) (b)

Figure 3.3: Forall operation examples.

1 [1..1] P
2 constraints:
3 exists(X) implies

forall(C.exists(G)
);

4 group [1..3]:
5 [0..1] X
6 [1..3] C
7 group [0..2]:
8 [0..2] G

(a)

1 [1..1] P
2 constraints:
3 forall(C.exists(X)) or

exists(Y);
4 group [1..3]:
5 [1..3] C
6 group [1..2]: {
7 [1..2] G
8 [0..1] X
9 }

10 [0..1] Y

(b)

Figure 3.4: Type declarations for Figure 3.3.

3.2.3 Configuration

No new syntax needs to be introduced to FMTD to specify multiple instances. Where

ever singular instances were declared, multiple instances can be declared and for each of

their child instances, recursively. The new constraints with regard to multiple instances are

explained gradually through configuration examples of Figure 3.3b provided in Figure 3.5.

The first of the configurations, Figure 3.5a, is a valid partial configuration, as with

further configuration of instances one or more products can be described. Implicitly there are

undecided instances of the X and Y feature types for which it is still to configure them to true.

Therefore the constraint forall(C.exists(X)) or exists(Y); is not violated, rendering the

configuration otherwise to invalid. Another valid configuration is provided in Figure 3.5b.

The difference between Figure 3.5a and Figure 3.5b is that the second can be interpreted as a
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1 P:P1
2 group:
3 C:C1
4 group:
5 G:G1

(a)

1 P:P1
2 group:
3 C:C1
4 group: {
5 G:G1
6 G:G2
7 }
8 Y:Y1

(b)

1 P:P1
2 group:
3 C:C1
4 group: {
5 G:G1
6 G:G2
7 }
8 C:C2
9 group: {

10 G:G3
11 G:G4
12 }
13 C:C3
14 group: {
15 G:G5
16 G:G6
17 }

(c)

1 P:P1
2 group:
3 C:C1
4 group: {
5 G:G1
6 (false) G:G2
7 X:X1
8 }
9 (undecided) C:C2

10 group: {
11 (undecided) X:X2
12 }
13 (undecided) Y:Y1

(d)

Figure 3.5: Multiple configurations of Figure 3.3b.

full configuration, as a product, while the first can not3.

Figure 3.5c provides a configuration that is invalid. The constraint of P1 is violated

as no instance of X or Y has been selected in configuration, while the instance cardinalities

do not allow the selecting of more instances to satisfy the constraint. Finally, Figure 3.5d

also shows a valid partial configuration, however, besides selected instances, we removed

the instance G2 (configured to false), and explicitly declared the undecided instances C2, X2

and Y1.
3Remember that for product specifications only selected instances are stated, and implicitly all other instances

are assumed not to be selected.
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3.3 Automated Analysis with Z3

The process of automated analysis of configurations remains as stated in the previous chapter,

Section 2.4.1. We translate the forall operation and clarify constraint propagation through an

example.

3.3.1 Translating to Z3

We show in Chapter 2 how exists operations are defined and translated to Z3 for singular

instances. The translation of an exists(C) operation with four C instances is provided in

Figure 3.6; an propositional or formula with selection variables as primitive terms. The forall

operation translates in a similar fashion to a conjunction of implications. The implication

consists of the instances of the feature type to ensure that they are selected, and if so, the

consequent (the second proposition) must be true. This proposition is either a nested boolean

operation or an expression (just a feature type reference results in a trivial implication; Xi

implies Xi).

1 (assert
2 (or P1.C1
3 (or P1.C2
4 (or P1.C3 P1.C4)
5 ) ) )

Figure 3.6: Z3 translation of an exists operation on a non singular feature type.

The translation of the constraint of Figure 3.3b, forall(C.exists(X)) or exists(Y);

, that uses a forall operation, is provided in Figure 3.7. The translation is based on the con-

figuration specified in Figure 3.5d, in which two C instances are declared, with each an

X instance. Translated to Z3 the assert on the Z3 model representing the forall operation,

consists of a conjunction of two implications. These conjunctions are, along with the Y

instance, propositions in an or expression. For the stated assert statement to be true the Z3

theorem prover will assign either C2 and X2 to true, Y1 to true or all three instances to false

(in the configuration C1 and X1 are already selected, other instances are undecided).
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1 (assert
2 (or
3 (and
4 (=> P1.C1 P1.C1.X1)
5 (and
6 (=> P1.C2 P1.C2.X2)))
7 P1.Y1
8 )
9 )

Figure 3.7: Z3 translation of cross-tree constraint of Figure 3.3b using Figure 3.5d .

3.3.2 Constraint Propagation

We continue using the type declaration of Figure 3.3b as a running example, for now to

illustrate the unfolding and propagating process. The unfolded configuration of Figure 3.5a,

is provided in Figure 3.8a. Notice that the generated undecided instance have a randomized

instance name. Also note that the unfolding algorithm only generates instances up to the

maximum of the instance cardinality while in theory it could generate infinitely undecided

instances, in the process of making the undecided explicit.

In this unfolded configuration we select the instances G93423, C64210 and X81274

and run the propagating process, the result is provided in Figure 3.8b. Due to the constraint

that is declared in the type declaration the Y instance is propagated to true (Line 21). Other

instances are propagated to false (Line 7, Lines 15–19), the group cardinalities do not permit

more instances to be selected. The instances G01182 and G28399 remain undecided as the

algorithm is not able to determine which of these is certainly selected for the configuration.
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1 P:P1
2 group:
3 C:C1
4 group: {
5 G:G1
6 (undecided) G:G93423
7 (undecided) X:X54744
8 }
9 (undecided) C:C64210

10 group: {
11 (undecided) G:G01182
12 (undecided) G:G28399
13 (undecided) X:X81274
14 }
15 (undecided) C:C91828
16 group: {
17 (undecided) G:G56252
18 (undecided) G:G11563
19 (undecided) X:X79162
20 }
21 (undecided) Y:Y59676

(a) Unfolded configuration of Figure 3.5a.

1 P:P1
2 group:
3 C:C1
4 group: {
5 G:G1
6 G:G93423
7 (false) X:X54744
8 }
9 C:C64210

10 group: {
11 (undecided) G:G01182
12 (undecided) G:G28399
13 X:X81274
14 }
15 (false) C:C91828
16 group: {
17 (false) G:G56252
18 (false) G:G11563
19 (false) X:X79162
20 }
21 Y:Y59676

(b) Propagated configuration.

Figure 3.8
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Chapter 4

Attributed Feature Models

We extend the UTFM language with attributes in this chapter. We describe:

1. The classical semantics for attributed feature models;

2. How attributes extend the UTFM language;

3. A translation of classical attributed feature models to UTFM;

4. And how attribute semantics of UTFM translate to Z3 and work in automated analysis

of attributed feature models.

In these section we elaborate on feature attributes in UTFM, an important building block for

the constraint language of UTFM.

4.1 Classical Attributed Feature Models

As with classical feature models in Chapter 2, we require UTFM to be backwards compatible

with Attributed Feature Models published previously. Classical feature models did not allow

features to have attributes, even though their presence and usage had been discussed by

Kang et al. in 1998 as non-functional features [24]. Attributed or advanced feature models
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were first introduced by Czarnecki et al. [14, 15] and Benavides et al. in 2005 [4]. They

added arithmetic and string attributes and constraints on these attributes to classical notion

of feature modeling.

Arithmetic & String Attributes. From these proposals, each with differences in syntax

and semantics, we summarize that each attribute has a name, domain and value and

is related to a single feature. The domains for arithmetic attributes are discrete or

continuous: integer or real. In [14], string attributes are introduced to specify the

names of options used in the implementation of products. An example of Benavides’s

attributed feature model is shown in Figure 4.1.

Consider the full product of the HIS product line example presented formerly with
the same functional features. It is possible to offer several products with the same func-
tional features but different extra–functional features, for instance: �� High quality full
product: a product with full functionality and high quality: high availability and relia-
bility and high cost too. ��� Basic quality full product: a product with full functionality
but lower quality: lower availability and reliability and lower cost too.

To date, we have not found any proposal dealing with functional and extra–functional
features in the same model. However, there are some works in the literature that suggest
the need of dealing with extra–functional features: Kang et. al have been suggesting the
need to take into account extra–functional features since 1990 [11, pag. 38] when they
depicted a classification of features, although they did not provide a way to do it. Later,
in 1998 Kang et. al [12] made an explicit reference to what they called ’non–functional’
features (a possible type of what we call extra–functional features). However the authors
still did not propose a way to solve it. In 2001 Kang et. al [5], proposed some guide-
lines for feature modelling: in [5, pag. 19], the authors once again made the distinction
between functional and quality features and pointed out the need of a specific method
to include extra–functional features, but they did not provide this specific method on
this occasion either.

2.3 A Notation for Extended Feature Models

We propose to extend Czarneki’s feature models with extra–functional features and
improve previous vague notations proposed in [20] by allowing relations amongst at-
tributes. Using the HIS example, every feature may have one or more attribute relations,
for example, the price (����� ) and development time (expressed in hours) (����� )
taking a range of values in both a discrete or continuous domain (integer or real for
example). Thus, it would be possible to decorate the graphical feature model with this
kind of information. Figure 2 illustrates a piece of the feature model of figure 1 with
extra–functional features with our own notation inspired by [20].

Services

Video on
Demand

Internet
Conection

ADSL WirelessPower Line

DTIME in {1000..2000} DTIME in {1500..2500} DTIME in {3000..4000}

PRICE in {100..200} PRICE in {100..200} PRICE in {150..250}

DTIME in {18000..25000}

PRICE in {80..100}

DTIME = POWERLINE.DTIME +
ADSL.DTIME + WIRELESS.DTIME

PRICE = 20 + POWERLINE.PRICE
+ ADSL.PRICE +

WIRELESS.PRICE

DTIME = VIDEO.DTIME +
INTERNET.DTIME

PRICE =  VIDEO.PRICE + INTERNET.PRICE

Figure 2. Extended feature model for an SPL in the HIS domainFigure 4.1: Attributed feature model by Benavides et al.[7].

Arithmetic constraints. As Figure 4.1 shows, declarations of an attributes can be con-

strained by a range of possible values. The constrained specifies an upper- and a

lower bound of the valid values of the attribute. Furthermore, attribute values can be

constrained to a certain value that is based on an arithmetic expression defined using

arithmetic attributes of other features. Besides the introduction of string attributes

there are no string constraints provided in [15].
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4.2 Attributes in UTFM

Introducing attributes into the UTFM language requires an extension of the syntax and

semantics previously defined. Attributes are declared in the FMTD and are assigned values

during configuration. For each instance, of a feature type, the attribute set (declared and

constrained in the type declaration) has values. This is consistent with prior work on

attributes in classical feature models where features just had singular instances.

4.2.1 Type Declaration Extensions for Attributes

Attribute declarations are specified in the type declaration and consist of a name and a type

(domain of the attribute). Four attribute types are distinguished in UTFM: integer, real,

boolean and string. All attributes (regardless of their type) must have unique names with

respect to their feature type. When an instance is created all attributes have their value set to

undecided, unless a specific value is provided in the configuration. An undecided value can

be determined by constraint propagation or configured at a later stage.1 Each attribute can

be referenced in arithmetic constraints of the FMTD.

Integer Attributes. Integer attributes are declared as type Int. In configurations of a type

declaration integer values are assigned to these attributes.

Real Attributes. Real attributes (declared as Real) are used in the same fashion as integer

attributes. In arithmetic expressions both integer and real attributes can be mixed; type

casting an integer to a real in a configuration does not change the value, the other way

around will result in dropping the decimal value of the real, the value is not rounded

to the nearest integer.

Boolean Attributes. Boolean attributes (declared as Bool) have not thoroughly made their

way into attributed feature models. Yet boolean attributes play an important role in

1Z3 allows undecided attributes (integer, real and boolean) as the prover will look for possible values for the
attributes through resolution to get to a satisfiable model.
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substitution possibilities in the FMTD constraint language, which is explained in the

Substitution item of Section 4.2.2. Furthermore boolean attributes can be used to

reduce2 feature models in a process explained by Classen et al. [11], in which features

types are replaced by boolean attributes.

String Attributes. String attributes (declared as String) provide possibilities to specify

options, names, descriptions, etc. for instances, providing extra information for the

implementation of a product. These attributes can’t be referenced in constraints.

A portion of Figure 4.1 (namely the InternetConnection subtree) is shown in Figure 4.2,

where attribute declarations are specified in the same parallelogram as cross-tree constraints,

separated by a horizontal line; attributes above the line, constraints thereunder. The UTFM

syntax to declare attributes is an “attributes:” statement followed by attribute declarations.

The translation of Figure 4.2 to UTFM is given in Figure 4.3. In the FMTD a string and

boolean attribute have been added to InternetConnection to illustrate the possibilities.

In anticipation of the next subsection that elaborates on cross-tree constraints and

UTFM constraint language, we briefly note the following on the constraints in the Figure 4.2.

It is impossible to directly reference the values of attributes of instances in a type declaration,

therefore a sum operation is called on a feature type. Sum returns the sum of all price

attributes of the selected instances of the referenced feature type (either: Powerline, ADSL

or Wireless).

4.2.2 Constraint Language Extensions for Attributes

The FMTD constraint language is extended with new operations: assign, equality and

inequality expressions.

Assign Expression. The value of an attribute can be based on an expression. As in other

languages, the syntax for assigning a value is: name= expression;, where name is
2Reducing a feature model is reducing the total number of feature types in a model and the (maximum or

average) depth of the model.

44



Figure 4.2: Part of the graphical FTMD representation of Service feature model (Figure 4.1).

1 [1..1] InternetConnection
2 attributes:
3 Int price;
4 Bool option;
5 String connectionName;
6 constraints:
7 price = 20 + (sum(Powerline.price) + (sum(ADSL.price) + sum(

Wireless.price)));
8 group [1..1]:
9 [0..1] PowerLine

10 attributes:
11 Int price;
12 constraints:
13 price >= 100;
14 price <= 200;
15 [0..1] ADSL
16 attributes:
17 Int price;
18 constraints:
19 price >= 100;
20 price <= 200;
21 [0..1] Wireless
22 attributes:
23 Int price;
24 constraints:
25 price >= 150;
26 price <= 250;

Figure 4.3: Part of the FMTD of Service feature model (Figure 4.1).

the name of an attribute of the feature type and expression is an expression that returns

a value that is in the domain of the attribute. An assign expression is considered
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a constraint that is required to be true for a valid configuration. Key to an assign

expression, in contrast to an equality expression, is that it deduces a value for an

attribute. Assign expressions are not allowed inside other expressions. Figure 4.3

Line 7 illustrates a assign expression, other more basic assignments are:

price= 205;

connectionName= "TestConnection";

options= false;

Equality Expression. The syntax of an equality expression is expression== expression.

The difference is that on the left side of the equality sign there is an expression that

is evaluated against the right side. Both left and right expressions are required to be

of the same type and the equality expression itself returns a boolean value. Equal-

ity expressions are allowed as constraints on their own or as propositions in other

expressions. An example of an equality expression is:

(sum(Video.price)+sum(Internet.price)) == 300;

Inequality Expression. Inequality expressions compare two expressions and return a boolean

value. Possible arithmetic inequality operations are: less than (<), Less than or equal

(<=), greater than (>), or greater than or equal (>=), and for both arithmetic and

boolean expressions not equal to (! =). These expressions are used in the same way as

equality expressions. Examples of inequality are Figure 4.3 Lines 13–14, Lines 19–20,

Lines 25–26.

For arithmetic attributes and constraints, we introduce arithmetic operations. UTFM imple-

ments the following: sum, max, and min, as well as new semantics for the boolean operations:
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exists and forall. The context free grammar provided in Figure 2.3 has been extended with

the attribute constraints in Figure 4.4, the complete grammar for the cosntraint language is

provided in Appendix A.4.

sum(FeatureType.Attribute). The operation sum has an attribute reference as parameter

and returns an integer. Given parent feature type P, and child C with attribute a, the

sum operation written in a constraint of P would be: sum(C.a). Sum returns the sum of

all a attribute values of Cj instances that are selected in a configuration.3 In case there

are no selected instances of C, sum returns 0;

max(FeatureType.Attribute). The operation max(C.a) returns the maximum value of

the a attributes of the selected C instances. In the case that there are no selected C

instances, max returns 0;

max(ArithmeticExpr, ArithmeticExpr). It is also possible to call a max operation with

two arithmetic expressions as parameters. Such expressions can either be an Int or

Real attribute or value, or more complex arithmetic expression. The largest value of

either of the expressions is returned;

min(FeatureType.Attribute). The min operation is similar to the max operation in any

way, except that it returns the lowest value of the attributes that are referenced;

min(ArithmeticExpr, ArithmeticExpr) Also the min operation with arithmetic expres-

sions as parameters is similar to max, however it returns the lowest evaluation of both

expressions.

exists(FeatureType.Attribute). Besides the introduction of arithmetic operation the

boolean operation exists is extended with additional semantics too. If child C

has an Bool attribute b, then an operation exists(C.b) can be specified,, or there are

3Instances of C that are undecided influence the return value of sum(C.a). Value optimization of arithmetic
attributes is not possible yet, in UTFM as well in the current stable version of the Z3 theorem prover (4.3.0). We
mention optimization as future work in Section 8.2.2.

47



no selected C instances, that returns true if there exists a selected C instance that has a

b attribute that is true. If no such an instance of C exists, or there are no selected C

instances, the operation returns false.

forall(FeatureType.Attribute). As for exists, forall(C.b) returns true if for every

selected C instance attribute b is true, otherwise false. If there are no selected C

instances, forall returns true.

To elaborate more on the possibilities of sum operations we introduce parent feature P, child

C and D both with an attribute x and grandchild G (child of C) with attribute y. First we write

a constraint in natural language followed by its equivalent in UTFM.

• The sum of all x attributes of every selected C instance of a P instance is required to

be less than 100:

sum(C.x)< 100;

• For every instance of P, the sum of the x values of its children plus the sum of the y

values of its G grandchildren is greater than 200:

(sum(C.x)+sum(C.sum(G.y)))> 200;

• For every P instance, the maximum of the x attributes of C and D can not exceed 100:

(max(max(C.x),max(D.x))<= 100;

Resemblance with Attribute Grammar

Chapter 2 introduced a local scope to feature types, with regard to how constraints and

attributes are specified. This decision, to introduce a limited scope, has a big impact on

writing constraints. A local scope, in contrast with a global scope for constraints, is necessary
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1 <Constraint > ::= ... | <String > "=" <BooleanExpr > ";"
2 | <String > "=" <BooleanProp > ";"
3 | <String > "=" <ArithExpr > ";"
4 | <String > "=" <ArithProp > ";"
5 <BooleanExpr > ::= ... | <BooleanProp >
6 | <BooleanProp > "==" <BooleanProp >
7 | <BooleanProp > "!=" <BooleanProp >
8 | <ArithProp > "==" <ArithProp >
9 | <ArithProp > "!=" <ArithProp >

10 | <ArithProp > "<=" <ArithProp >
11 | <ArithProp > "<" <ArithProp >
12 | <ArithProp > ">=" <ArithProp >
13 | <ArithProp > ">" <ArithProp >
14 <BooleanProp > ::= <BooleanOp >
15 | <AttributeRef >
16 | <ParentRef >
17 | <Bool >
18 | "(" <BooleanExpr > ")"
19 <BooleanOp > ::= ... | "exists(" <FeatureRef > "." <AttributeRef > ")"
20 | "exists(" <FeatureRef > ".(" <BooleanExpr > "))"
21 | "forall(" <FeatureRef > "." <AttributeRef > ")"
22 | "forall(" <FeatureRef > ".(" <BooleanExpr > "))"
23 <ArithExpr > ::= <ArithProp > "+" <ArithProp >
24 | <ArithProp > "-" <ArithProp >
25 | <ArithProp > "*" <ArithProp >
26 | <ArithProp > "/" <ArithProp >
27 <ArithProp > ::= <ArithOp >
28 | <AttributeRef >
29 | <ParentRef >
30 | <Number >
31 | "(" <ArithExpr > ")"
32 <ArithOp > ::= "sum(" <FeatureRef > "." <AttributeRef > ")"
33 | "sum(" <FeatureRef > "." <ArithOp > ")"
34 | "sum(" <FeatureRef > "." <ArithExpr > ")"
35 | "max(" <FeatureRef > "." <AttributeRef > ")"
36 | "max(" <FeatureRef > "." <ArithOp > ")"
37 | "max(" <FeatureRef > "." <ArithExpr > ")"
38 | "max(" <ArithProp > "," <ArithProp > ")"
39 | "min(" <FeatureRef > "." <AttributeRef > ")"
40 | "min(" <FeatureRef > "." <ArithOp > ")"
41 | "min(" <FeatureRef > "." <ArithExpr > ")"
42 | "min(" <ArithProp > "," <ArithProp > ")"
43 <ParentRef > ::= "parent." <AttributeRef >
44 | "parent." <ParentRef >
45 <AttributeRef > ::= <String >
46 <Number > ::= <Integer > | <Real >

Figure 4.4: Constraint language grammar of Figure 2.3 extended to support attributes.
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as it enforces to describe paths, the context of references, in constraints. Mainly due nested

replication introduces the same feature types in different branches a context is necessary.

Also our adopted name convention, only requiring unique names with regard to the parent

relation, requires explicit specified context for constraints, considering glocal references are

not unique.

Constraints are declared in the scope of a feature type where they are only allowed

to reference their own attributes, their children attributes, and their parents attributes. A

reference to a parent attribute is made by stating parent followed by the attribute name of

the parent feature type, for instance: parent.attribute. By allowing references only to

a parent or child attributes for each feature type, the feature model has similarities with

an attribute grammar, in which there are synthesized- and inherited attributes. In attribute

grammars, attributes are defined for grammar rules. These attributes are allowed to use

the synthesized values from their non-terminal symbols, or the inherited values given by

their parent node. UTFM attributes can be interpreted as, while having an attribute value,

having a synthesizable and inhertable value. However we allow both to be used intertwined,

however being less restrictive as formal attribute grammars. We take notice feature models in

UTFM resemble attribute grammars, which is in line with previous publications that showed

classical feature models can be written as grammars [4]. We conclude that feature models in

UTFM can be regarded as attributed grammars.

Substitution

In contrast to what we just explained, we’ve seen in previous examples, that it is possible to

nest operations and expressions in constraints. This seems contradicting with the informal

attributed grammar semantics. The nesting of operations and expressions is allowed by the

rules of substitution. It is allowed to substitute attributes in a reference, with the expression

that assigns a value to the attribute, if defined as an assign expression in the child feature type.

For x = exists(C), a reference to x could be substituted by exists(C). Substitution of
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attributes leads to a denser type declaration as explicit declarations of attributes are allowed

to be skipped.

Figure 4.5 illustrates an example FMTD without and with a substituted attribute. The

attribute y has been substituted in the constraint of P for the expression that was assigned to

y. In both examples the attribute x of an instance of P equals the sum of all z attributes of G

instances, children of any C instance. A nested exists operation such as exists(C.exists(G))

returns whether there is a grandchild (G) for any of the children (C) of parent P.

Another example: C has an attribute z and constraint z= sum(G.y)> 100 , where

P is constrained by exists(C.z). When z is substituted in P the result for the constraint is

exists(C.(sum(G.y)> 100)) . The expresses the constraint that there needs to be a C where

the sum of the y attributes of its’ children (G instances) is larger then 100.

(a) FMTD without substitution. (b) FMTD where y has been substituted.

Figure 4.5: Substitution example.

4.2.3 Configurations with Attributes

Attributes are assigned values in configurations. If there is no configuration value for an

attribute of an instance, the attribute remains undecided. Attribute configurations are declared

after an “attributes:” statement, just as in type declarations. An example configuration of

InternetConnection example (Figure 4.3) is given in Figure 4.6. Different attribute values de-

scribe different product configurations, in this line of thoughts undecided attributes describe

many products. Therefore in for the domain op product specifications (full configurations)

all attributes need to be configured. Through constraint propagation it is possible to con-

clude that the price attribute is 225 and is added to the configuration of Figure 4.6. As all
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attributes have been configured, it is allowed to translate the configuration to a valid product

specification.

1 InternetConnection : InternetConnection1
2 attributes:
3 option = false;
4 connectionName = "Example Connection";
5 group:
6 Wireless : Wireless1
7 attributes:
8 price = 205;

Figure 4.6: Example configuration of Figure 4.3.

4.2.4 Mapping Classical Attributed Feature Models to UFTM

The translation of Benavides attributed feature models to UTFM is straightforward. For the

mapping we use examples from Figure 4.3.

Attribute Declaration. UTFM requires that attributes are explicitly declared, with a name

and a domain. Every attribute that is used in an attributed feature model is therefore

declared in a feature type. In the running example, all feature types have two attributes:

DTime and Price, both of type integer.

Constraints. The running example declares each attribute declaration with a range of possi-

ble values (Price in 100..200). The corresponding arithmetic constraints to specify

the allowed range are: price>= 100; price<= 200;. The arithmetic constraint of

Service is mapped to: price= 20+(sum(PowerLine.price)+(sum(ADSL.price)+

sum(Wireless.price)));. The mapping for boolean constraints is already described

in Section 2.3.
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4.3 Automated Analysis with Z3

The introduction of attributes and arithmetic constraints makes the Z3 model richer. In order

to check satisfiability of a model with arithmetic attributes, the theorem prover searches for

possible integer and real values for the attributes if they are not provided in the configuration,

in order to satisfy all specified assert statements. Boolean attributes had already been

introduced, and correspond to propositional logic in Z3. String attributes have no logic

counterpart in Z3, therefore have no influence on the satisfiability of the model. The Z3

translation for boolean and propositional logic has been explained in Section 2.4.1.

4.3.1 Mapping to Z3

Table 4.1 illustrates the mapping of attribute semantics to Z3 from the running example

Figure 4.3. As arithmetic expressions are defined in the same way as boolean expressions,

but with different sub expressions, and different (nested) operations. Besides the three

examples in Table 4.1, we provide the Z3 mapping of the different arithmetic operations.

The declaration and assert statements for attributes are illustrated in row 1 and 2.

Arithmetic asserts use the same structure as boolean asserts in Z3; the function or operation

name first, followed by its parameters. In these parameters expressions can be nested. Row

3 of Table 4.1 refers to an example of nested expressions in Z3. The mapping of a sum

operation consists of nested addition expressions for every instance of the feature type. Each

referenced instances’ attribute value is multiplied by the cardinality function of the instance.

Therefore returns 0 when the instance is not selected, otherwise the attribute value. In

case the istance is not selected nothing is added to the sum; the instance is not part of the

configuration and should not add value to the expression.

1 (declare -const price Int)
2 (assert (= price 250))

Figure 4.7: Z3 arithmetic attribute.
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Semantics FMTD Configuration Z3
Arithmetic attribute Int price; price= 250; Figure 4.7
Boolean attribute Bool option; option= false; Figure 4.8

Arithmetic constraints
price= 20+(sum(Powerline.price)+

Figure 4.9
(sum(ADSL.price)+sum(Wireless.price)));

Table 4.1: Examples of mapping from UTFM to Z3.

1 (declare -const option Bool)
2 (assert (= option false))

Figure 4.8: Z3 boolean attribute.

1 (assert (= InternetConncetion1.price
2 (+ 20
3 (+ (* (cardinality InternetConnection1.PowerLine1)
4 InternetConnection1.PowerLine1.price)
5 (+ (* (cardinality InternetConnection1.ADSL1)
6 InternetConnection1.ADSL1.price)
7 (* (cardinality InternetConnection1.Wireless1)
8 InternetConnection1.Wireless.price)
9 )

10 )
11 )
12 ))

Figure 4.9: Z3 arithmetic constraint.

Max and Min

The max and min operations are very similar, and both use a Z3 function to translate

their semantics to the problem model. The declaration of these functions can be found in

Figure 4.10. Both functions take two arithmetic values and return either the maximum of the

minimum of the two. The arithmetic values can either be a attribute reference, or a nested

arithmetic operation, or a number value, either Int or Real. The translation of average

operations used the same construct as a sum operation, however this value is divided by the

amount of selected instances, which are counted by the isSelected function. An attribute

reference is specified in a way we’ve already seen in sum operations, the attribute value is

multiplied by the value of the isSelected function. If the attribute is of a selected instance
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the attribute value is returned, otherwise it returns 0. Figure 4.11 illustrates the previous

mentioned constraints (max(max(C.x),max(D.x))<= 100; mapped to Z3.

1 (define -fun maxAttr ((x Real) (y Real)) Real (ite (< x y) y x))
2 (define -fun minAttr ((x Real) (y Real)) Real (ite (> x y) y x))

Figure 4.10: Z3 maximum and minimum functions.

1 (assert (<=
2 (maxAttr
3 (maxAttr
4 (* (cardinality P1.C1) P1.C1.x)
5 (* (cardinality P1.C2) P1.C2.x))
6 (maxAttr
7 (* (cardinality P1.D1) P1.D1.x)
8 (* (cardinality P1.D2) P1.D2.x))
9 )

10 100
11 )

Figure 4.11: Z3 maximum and average example.

4.3.2 Constraint Propagation

Besides selection values of instances, there is the possibility to derive the value of attributes

through constraint propagation. The implementation of constraint propagation for attributes

is an extension of the algorithm described in previous Section 2.4.1. The propagation al-

gorithm, based on Janota’s algorithm, is extended by also propagating assign expressions.

For such expressions it is possible to derive the value from a satisfying model. Based

on a given configuration, an value is assigned to a variable in a satisfying model, this

value is propagated in the returned configuration of the propagation process. After con-

straint propagation of configuration file Figure 4.6 the value 225 is propagated to attribute

InternetConnection1.price. The configuration file that is returned after constraint prop-

agation, provide in Figure 4.12, as a valid and full configuration. If the input configuration

file had declared an instance of a different InternetConnection (Powerline or ADSL) the
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propagated price would be different.

1 InternetConnection : InternetConnection1
2 attributes:
3 price = 225;
4 connectionName = "Example Connection";
5 group:
6 (false) PowerLine : PowerLine82231
7 (false) ADSL : ADSL19283
8 Wireless : Wireless1
9 attributes:

10 price = 205;

Figure 4.12: Configuration after constraint propagation of Figure 4.6.
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Chapter 5

UTFM Tool

We have implemented the UTFM language as a tool. In this chapter:

1. We explain the functionality of the tool;

2. We show how it is to be used;

3. We provide insight in the structure within the tool.

The source code of the UTFM is published on GitHub, a collaboration and versioning

code platform; https://github.com/vweber/UTFM . Through the GitHub landing page a

pre-compiled windows version of the tool can be downloaded. Installation and compilation

instructions are also included on the website. The source code is published under the GNU

General Public Licence 1.

5.1 Functionality and Tool usage

The main purpose of the UTFM tool is to enable the analysis of feature models that are

too complex (and labor intense) to validate by hand. Also implementing a compiler for the

language and automating the analysis process shows that the proposed theory is feasible. It

1http://www.gnu.org/copyleft/gpl.html
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is implemented as a command line tool, that reads and writes UTFM files and is controlled

by providing command-line options.

UTFM tool works with FMTD’s (uses utfm file extension), configurations (utfmc

file extension) and products (utfmp file extension). The full array of command-line options

that are supported are explained in Appendix B, and legal combinations of these options are

provided in Table 5.1. The tool outputs configuration or product files, or writes errors to the

error log file, based on the provided execution options.

# Use Case Command Line Execution Possible output
1 Validating FMTD utfm −t < FMTD Filepath> Errors

2 Validating configuration
utfm −t < FMTD Filepath> −c
< Configuration Filepath>

Configuration,
Errors

3 Validating product
utfm −t < FMTD Filepath> −p
< Product Filepath>

Product, Errors

4
Map configuration to
product

utfm −t < FMTD Filepath> −c
< Configuration Filepath>−f Product, Errors

5 Propagate configuration
utfm −t < FMTD Filepath> −c
< Configuration Filepath>−r

Configuration,
Errors

6
Unfold & propagate
configuration

utfm −t < FMTD Filepath> −c
< Configuration Filepath>−u
−r

Configuration,
Errors

Table 5.1: Overview of use cases with corresponding UTFM commands and output.

The automated analysis operations that are implemented in the software are: vali-

dating type declarations, configurations and products, mapping configurations to products,

unfolding configurations and propagating constraints on configurations. We demonstrate

the functionality of the UTFM tool through six use cases. An overview of the tool and the

different internal processes that are used throughout the use cases are provided in Figure 5.1.

The different control flows in the tool are explained in this section. In the next section we

look at the implementation of the tool more in depth.

1. Validate FMTD. The automation of validating type declarations. Type declarations need

to be sentences of the grammar of all possible type declarations (Appendix A.1).
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Figure 5.1: Overview on analysis processes in the tool .

Besides that the type declaration is required to be syntactically correct it also needs

to satisfy all naming requirements: such as unique names for all child types of a

parent and all attributes of a feature type. Furthermore the type declaration is type

checked. As the tool only parses the type declaration while not validating it against

a configuration (or product), the type declaration is not tested for contradictions (no

valid configurations).

Figure 5.2 shows the process of validating a type declaration. The tool requires an

FMTD file and returns errors if the type declaration is invalid. Row 1 of Table 5.1

shows how this automated process is to be executed on the command line using the

UTFM tool.

Figure 5.2: Validating type declarations.
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2. Validate Configuration. In this process, both type declaration and configuration file are

parsed and type checked. A configuration is mapped against a type declaration and is

valid if no constraints specified in the FMTD are violated. The actual validation of the

feature model and configuration is done by translating both files to Z3 (Section 2.4.1,

Section 3.3.1, Section 4.3.1) and checked whether the generated decision problem is

satisfiable. If so, the configuration is printed to a separate configuration file. Otherwise,

errors are written to an error log file. Figure 5.3 presents the described process in the

UTFM tool, row 2 of Table 5.1 the command line execution options.

Figure 5.3: Validating configurations.

3. Validate Product. The validation of products is automated as well. Compared to the

previous use case a product is mapped against a type declaration instead of a configu-

ration. The Z3 translation of the FMTD and product are checked for satisfiability. If

satisfiable the product is pretty printed in a separate file, otherwise errors are written

to the error log. Figure 5.4 illustrates this process. Row 3 of Table 5.1 provides the

command line.

4. Translate Configuration to Product. The process to translate a configuration to a prod-

uct requires a type declaration and a configuration file and produces a product file.

During the automated process the domain of the configuration is converted to that of

products. In products it is only allowed to specify selected instances. All undecided

and false configured instances are removed from the configuration and everything that
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Figure 5.4: Validating products.

is not explicitly true is assumed not selected for the product. After the conversion the

product is tested for satisfiability. Figure 5.5 shows the described process and row 4 of

Table 5.1 the command line execution options.

Figure 5.5: Translating configurations to products.

5. Propagate a Configuration. The process of constraint propagation is described in this

following use case. First the original configuration file is validated with regard to its

type declaration. Second, if the configuration is satisfiable, the propagation algorithm

(which we discussed earlier in Section 2.4.1) is invoked. The propagated configuration

is printed in a separate configuration file. Figure 5.6 shows the process, row 5 of

Table 5.1 the execution options for the UTFM tool.

6. Unfold and propagate a Configuration. By adding an additional option the process de-

61



Figure 5.6: Propagating constraints for configurations.

scribed in the previous use case is extended with a unfolding step. After validation

of the provided configuration, the configuration is unfolded, up till the upper bound

instance cardinality the implicit undecided instances are made explicit in the configura-

tion. For all these generated undecided instances the constraint propagation algorithm

tries to propagate constraints. The process of this use case is described in Figure 5.7,

on row 6 of Table 5.1 the command line options for the execution of the UTFM tool

are provided.

Figure 5.7: Unfolding and propagating constraints for configurations.

5.2 Implementation

The UTFM tool is written in the functional language Haskell. As became clear that UTFM

resembled the semantics of an attribute grammar, we explored implementations of such

grammars and came across the Haskell implementation of attribute grammars published
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by the University of Utrecht (UU) 2. Advantages of Haskell are that we are able to write

dense and powerful algorithms for data manipulation and have increased performance for

the analysis processes through lazy evaluation. Therefore we decided to implement the tool

using Haskell and the UU attribute grammar libraries. These libraries provide a framework

and examples to implement a parser and interpreter that produces and walks an attributed

parse tree. Another important external component of the UTFM tool is the Z3 theorem

solver 3 that is used to check satisfiability of feature models and configurations.

Figure 5.8 provides an overview of the tool’s internal structure. The figure displays

how input data traverses to the different internal processes and leads to the output described

in the use cases in the previous section. In the tool structure we distinguish two main

components the parser and the interpreter.

Figure 5.8: Internal structure of the UTFM tool .

The parser performs the lexical and syntactical analysis, followed by error checking.
2http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
3http://z3.codeplex.com/
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As in a typical parser design the language files are first translated to tokens, and eventually

put together in a parse tree. Next the parse tree is checked for unique names and the cross-tree

constraints are type checked. Finally the parser merges the type declaration with the possible

configuration and product parse trees to a single parse tree that is used in the interpreter.

Analysis of parse trees uses two techniques: through the functionality of the attribute

grammar and by walking down the tree (a tree walker). Through the inherited and synthesized

attributes of the parse tree it is easy to generate different representations of the tree, mainly

due to the UUAG pretty print functionality. However it is not possible to change the structure

of the tree. For such changes in the structure, for example adding or removing instances in

the tree, we need tree walkers. The tree walkers start in the root and walk along the branches

of the tree where the algorithm might change the data types. As the structure of the tree

changes, the values of the attributes of the attributed tree change as well.

The interpreter component receives a parse tree from the parser, that is assumed a

correctly specified UTFM feature model, with possible configuration data. This however

does not mean that the configuration or product specification actually represents one or more

products. It is still possible that the configuration is invalid or that the type declaration

contains contradictions in which case there are no valid configurations possible.

To check validity, a Z3 representation is generated from the attributed tree and

checked for satisfiability with the Z3 solver. Based on the execution options that are provided

by the user it is possible for other processes to be called; unfolding, propagating or converting

the domain of a configuration to a product domain. These processes are all tree walkers as

they change the tree structure. Once interpretation of the parse tree has finished the tool

prints a configuration or product file to the file system if the execution options permit this.
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Chapter 6

Examples

We demonstrate how the UTFM language could be used in practice.

1. We provide examples that makes use of a combination of feature replication, attributes

and complex cross-tree constraints;

2. How the examples describe practical problem domains in which UTFM could be used.

The described software product lines are in the domains: mobile device interfaces and subsea

oil production systems (based on work from Behjati et al [6]).

6.1 Mobile Device Interface SPL

Mobile phones and devices come in many shapes, different screen sizes, using tailored

software and interfaces. Some devices are operated using touch gestures on the screen,

others might use buttons for input. An interface for example can contain several pages

through which can be navigated, and all pages contain/present different information. The

following examples are about mobile device interfaces, but note the examples provided are

only a small subset of possible extensions that could arise in practice. The variability and

restrictions that we focus on can be categorized as content, navigation and size restrictions.
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Content. In principle anything can be displayed through an interface. It is a matter of detail

to which extent it will be specified in the feature model. One can think of possible

content such as text, headlines, images, video’s and forms. Also the layout of the

content is configurable.

Navigation. The possibilities to navigate through the interface affects feature choices

through out the type declaration.

Size Restrictions. All the content within the interface needs to be properly displayed, there-

fore size restriction of the different content elements should hold. These restrictions

vary on the types of features that have been configured in the model.

6.1.1 Entities

To get a better understanding of what entities are represented in the model, a list of the

entities and their description follows. The descriptions state what the entity represents

and how different configurations of the entity could be created for different products. The

relations between the different entities are depicted in Figure 6.1.

Window. The Window feature is the root feature of the interface, representing the actual

window of the mobile device, containing information such as size and resolution and

interface settings.

Page. A Window can contain multiple Page’s which contain the content that is displayed.

Through the interface a user can navigate through the different pages.

Navigation. The Navigation feature represents the variability possibilities to navigate

through the interface, in our example possible options are navigation by gestures on

the touch screen or through tabs such as in a browser.

Stylesheet. The Stylesheet is used to configure the way the interface is styled, for instance

font sizes and background colors of the pages.
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GridLayout. The way a Page is layout in the interface depends on the Layout that is

selected. In our current example we only have a GridLayout however any other type

of layout method can be added. A grid layout can be explained as a three by three

matrix where in each cell content can be placed. Through the layout configuration the

content is positioned with relation to each other. Figure 6.2a describes such the matrix

of a GridLayout.

GridObject. Configurations of the GridObject feature type represent the actual content

displayed in the interface. In our example there are only Text and Image as types

for the content objects. A margin separates objects from one another, in a way that is

described in Figure 6.2b.

GridPosition. The position of a object in the GridLayout is determined by configuring of

two GridPosition instances, for instance Top and Left, or Center and Middle.

As the type declaration is too large to be displayed in a single figure, Figure 6.1 only

shows the features and their group relations, no attributes or constraints are provided. In the

following subsections we introduce these attributes and constraints along with to the role

they fulfill in the example.

6.1.2 Navigation

An interface on a mobile device can be navigated in different ways, attributes and constraints

regarding the specification of navigation variability is provided in Figure 6.3. In this example

product line there is the choice between navigating with touch gestures (used in most

smartphones) by swiping across the screen or by using tabs (used in internet browsers). This

variability is specified in Navigation with optional children GestureNav and TabsNav.

In the case that gesture navigation is selected it is required that all Page’s have at least

one Gesture instance selected underneath. Gesture is either a swipe right or a swipe left

gesture (boolean variable swipeRight is false is read as swipe left), where destination is the
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Figure 6.1: Window FMTD.

(a) Possible GridPosition
combinations.

(b) GridObject visual inter-
pretation.

Figure 6.2

name of the Page that is navigated to when the gesture is made. For the implementation of

interfaces that use a navigation through tabs the name attribute of each Page could be used.

When content is larger then the size of the screen, the content is displayed by

scrolling though it for most devices. Scrolling is usually done by making touch gestures in

an up- or downwards direction. In Figure 6.7 attributes and constraints are introduced to
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Figure 6.3: Window navigation constraints.

defines the extra constraints put upon the model when scrolling is not possible. The model

is constrained that the content can not be taller then the window size, when the scrollable

attribute is set to false in Window. As UTFM permits constraints to be written in various

ways Figure 6.7 provides two possible specifications. The constraint of Figure 6.4a is read

as: if not scrollable then for every Page the height should not exceed the height of Window,

and the constraint of Figure 6.4b is read as: if not scrollable then the highest height of Page

should not exceed the height of Window.

(a) (b)

Figure 6.4: Possible scrollability constraints.

6.1.3 Window Size

Whether the constraints are met in the previous subsection is based on the height values

of the instances of Page. These height and width values are based on the content that is

specified underneath that of their Page; more specifically in the layout that is chosen for the
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Page, in our example only GridLayout is provided. Figure 6.5 shows the type declaration

with attributes and constraints to determine the window size, additional constraints are given

in Figure 6.6 that were to large to display in Figure 6.5.

Figure 6.5: Window size constraints.

Figure 6.6: Complex constraints to constraint the window size.

Within a GridLayout Object’s are placed of a certain Type, our example is limited

to either Text or Image. For the content objects the dimensions are set and these values

will be propagated through the configuration through the constraints. An GridObject has
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(a) Hierarchical type declaration.

(b) Simple type dec-
laration.

Figure 6.7

a height and width, and an margin that defines the space around an GridObject. The size

of an GridObject is copied to the GridPosition children, which is necessary to calculate

the maximum size of the grid, in which GridObject’s can be stacked above or besides one

another.

6.1.4 Stylesheet

Window has a Stylesheet feature type that entails the configuration of the visual style of the

interface. The variability of visual styles is almost endless considering all the different color

combinations, sizes and other visual aspects, for example the language CSS (Cascading

Style Sheets1) that is used to write style sheets for websites is very extensive. In our interface

example we assume that CSS is used to define style sheets.

There are different ways to express the variability in UTFM, through types declara-

tions and configurations. The first choice is whether the variability of CSS is translated to

type declarations or use a single attribute to define the content of the stylesheet. We restrict

ourselves to only define the font size of text and the background color. The example interface

needs three possible product options, either with a regular font size, a larger font size for

visual impaired users, and a smaller font. All options should have a white background,

however the color can be defined in CSS in natural language, in a hexdecimal notation and

1http://www.w3.org/Style/CSS/
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1 (undefined) Stylesheet : Smaller
2 group: {
3 (undefined) FontSize : Fontsize1
4 attributes:
5 size = 11;
6 (undefined) BackgroundColor : BackgroundColor1
7 group: {
8 (undefined) Natural : Natural1
9 attributes:

10 color = "white";
11 }
12 }
13 (undefined) Stylesheet : Regular
14 group: {
15 (undefined) FontSize : Fontsize2
16 attributes:
17 size = 12;
18 (undefined) BackgroundColor : BackgroundColor2
19 group: {
20 (undefined) Hex : Hex1
21 attributes:
22 code = "#FFFFFF";
23 }
24 }
25 (undefined) Stylesheet : Larger
26 group: {
27 (undefined) FontSize : Fontsize3
28 attributes:
29 size = 14;
30 (undefined) BackgroundColor : BackgroundColor3
31 group: {
32 (undefined) RGB : RGB1
33 attributes:
34 value = "RGB(255,255,255)";
35 }
36 }

Figure 6.8: Stylesheet configurations of Figure 6.7a.

in a red, green, blue color combination notation (RGB). Figure 6.7a expresses the variability

though hierarchical type declarations, while Figure 6.7b shows Stylesheet with a single

attribute for a CSS style sheet.

In the configuration process there will only be one instance selected of the Stylesheet

type, however it is possible to define multiple instances, which could be reused in a future

configuration process of a different product. In Figure ?? and Figure ?? the three options
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1 (undefined) Stylesheet : Smaller
2 attributes:
3 body = "font -size: 11pt; background -color: white;";
4 (undefined) Stylesheet : Regular
5 attributes:
6 body = "font -size: 12pt; background -color: #FFFFFF;";
7 (undefined) Stylesheet : Larger
8 attributes:
9 body = "font -size: 14pt; background -color: rbg(255,255,255);";

Figure 6.9: Stylesheet configuration of Figure 6.7b.

(regular, larger and smaller) are provided. In the provided figures all instances are unde-

cided, however during the configuration of a product, one of the instances could be selected,

whereas the others are set to false (or left undecided and will be propagated to false during

the propagation process). On the other hand besides these three, a new Stylesheet instance

could be declared and selected if there are specific needs for a product.

6.1.5 Tool execution

To execute the Mobile Interface example we use the UTFM command-line tool is the follow-

ing way: utfm −t . \var \MobileInterface.utfm −c . \var \MobileInterface.utfmc

The example type declaration and configuration are provided in the var directory of

the tool. To view the Z3 decision problem that is generated to check satisfiability, open the

temporary .smt2 file in the tmp directory of the tool. For the MobileInterface example

we see that close to two thousand declare statements are generated and another thousand

asserts. As the configuration of the model becomes larger more assert statements will be

added to the decision problem.

6.2 Subsea Oil Production SPL

The recent work by Behjati et al. [6] proposes a model-based approach to describe reference

architectures of SPL’s and configure such architectures. A class-like modeling methodology
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SimPl is introduced that uses the constructs from Unified Modeling Language (UML2). In

their publication it is argued that ”feature models are not easily amenable to capturing all

kinds of architectural variabilities” and therefore not applicable to their problem domain.

The running example, Figure 6.10, that is used to showcase SimPl is in the subsea oil

production domain, a product line with an industrial background. As the example is large

we only use the fragment of the model presented in figure 3 on page 6 of the publication.

The described components in their running example are abstract top-level components, and

for their function in the problem domain we refer to their description provided in chapters 2

and 3 [6].

25:6 R. Behjati et al.

Fig. 3. A fragment of the SimPL model (reference architecture) for the subsea oil production family.

Table I. Product-Line Modeling (PLM) Concepts and their Equivalent
Constructs in SimPL

PLM Concept SimPL Construct
Reference architecture SimPL model

Component types Classes & configuration units
Configurable features Properties & template parameters

Components Objects
Configurable parameters Object parameters

Constraints OCL expressions

The variability view captures the set of system variabilities using a collection of
template packages. Each template package, in this context, is named a configuration
unit and is related to exactly one class in the system design view. A template parameter
of a template package represents a configurable feature and describes a variability in
the value, type, or cardinality of a property defined in the context of the corresponding
class.

In addition to the two views described previously, each SimPL model has a repository
of OCL expressions [OMG 2012]. These OCL expressions specify constraints among
the values, types, or cardinalities of different properties of different classes. These
OCL constraints are part of the product-family commonalities and must hold for all
the products in the family. Table I summarizes the product-line modeling concepts and
their equivalent constructs in the SimPL methodology.

In the rest of this section, we first present a fragment of a subsea product-family
model that is used as our running example in the rest of the article. Then, we present a
model of a small subsea product derived from that product family. Finally, we present
a classification of configurable features. Based on this classification we then describe
the configuration process in subsequent sections.

3.1. Reference Architecture for a Family of Subsea Systems

Figure 3 shows a fragment of a SimPL model representing the simplified reference
architecture of a family of subsea oil production systems1 described in Section 2. In a

1This example is a sanitized fragment of a subsea oil production case study [Behjati et al. 2013].

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 25, Pub. date: May 2014.

Figure 6.10: The subsea oil production system fragment from [6].

Figure 6.11: UTFM representation of the subsea oil production SPL fragment.

Since we have extended the semantic capabilities of feature models we provided
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an reference architecture that entails similar variability as the SimPl model. Figure 6.11

describes the UTFM implementation of the subsea oil production system SPL fragment

described in [6]. Nearly all semantics of the SimPL model are translated to the UTFM

type declaration, exceptions or notes are listed below regarding: aggregations, associations,

enumerations and the Kleene star. The type declaration of Figure 6.11 is provided in

Figure 6.12.

1 [1..1] SubseaProdSystem
2 group [0..99]:
3 [0..99] SemApp
4 attributes:
5 Int semAppId;
6 Int semIndex;
7 group [1..99]: {
8 [1..99] DeviceController
9 attributes:

10 Int ebIndex;
11 Int pinIndex;
12 }
13 [1..99] XmasTree
14 group [3..99]:
15 [1..99] SEM
16 attributes:
17 Int semId;
18 Int eBoard;
19 Int semAppIndex;
20 [1..99] Device
21 attributes:
22 Int deviceId;
23 [1..99] ElectronicConnection
24 attributes:
25 Int ebIndex;
26 Int pinIndex;
27 Int semIndex;
28 String deviceIds;

Figure 6.12: FMTD translation of SimPL fragment in Figure 6.11.

Notes with regard to semantical translations from SimPL (class diagram) to UTFM:

Aggregations. The aggregations between classes are translated to group relations between

features. The aggregated class is the child of the parent feature that represents the class

that owns the aggregation relation. The multiplicity of the aggregation is translated to
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the group cardinality of the group relation.

Associations. Between classes the association relations are translated to feature attributes in

UTFM. Each feature that is part of an association relation has an id attribute (Integer),

which is used as an index in other features. In the SimPL model there are one-to-one

associations and one-to-many. Referencing a single index is done with an Integer

attribute in a feature type, referencing many on the other hand is translated to a String

attribute; the string contains a list of indexes. In the SimPL model association relations

assume that indexes reference id’s, this is however not explicitly stated and a direct

translation of such constraints in UTFM is not possible. The constraint language does

not entail operations to specify such constraints, extra syntax could be added to define

foreign keys for associations.

Enumerations. The example uses an enumeration datatype. Hence in most programming

languages an enumeration is implemented as an integer, we’ve translated the enumera-

tion to an integer attribute as well.

Kleene star. Cardinalities in UTFM, in contrast to UML multiplicities, do not permit an

infinite upper bound. In multiplicities such an upper bound is described by a Kleene

star. In our example we have translate the Kleene star to 99.

The classes in Figure 6.10 are abstractions of more variability then is described in

the fragment. Inheritance for features is not supported in UTFM, therefore we refrain our

example to just this fragment. With the subsea oil production SPL example we provide

evidence that in our proposed language we reduce the gap between feature models and

other reference architecture models such as SimPL. The translation is not very polished

and requires more elegant solutions for the translation of relations, enumerations, and

multiplicities.

Behjati’s publication also covers a possible configuration of the SimPl fragment. This

configuration is provided in Figure 6.13 (figure 4, page 7 of [6]) and the UTFM translation
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in Figure 6.14. In this example we have assumed that all id’s for the features have the value

1, and the second entry of the enumeration is represented by the value 2.Architecture-Level Configuration of Large-Scale Embedded Software Systems 25:7

Fig. 4. Model of a simple product belonging to the product-family model in Figure 3.

subsea oil production system, namely, SubseaProdSystem, the main computation re-
sources are the Subsea Electronic Modules (SEMs) which provide electronics, execution
platforms, and the software required for controlling subsea devices. SEMs and Devices
are contained by XmasTrees. Devices controlled by each SEM are connected to the elec-
tronic boards of that SEM. Software deployed on an SEM, referred to as SemApp, is
responsible for controlling and monitoring the devices connected to that SEM. SemApp
is composed of a number of DeviceControllers, which is a software class responsible
for communicating with, and controlling or monitoring a particular device. The system
design view in Figure 3 represents the elements and the relationships discussed before.

The variability view in the SimPL methodology is a collection of template packages.
The upper part in Figure 3 shows a fragment of the variability view for the subsea oil
production family. In order to remain concise, we have shown only two template pack-
ages in the figure, which should be enough for the reader to understand the underlying
principles. The package SystemConfigurationUnit represents the configuration unit re-
lated to the class SubseaProdSystem. Template parameters of this package specify the
configurable features of the component type modeled by the class SubseaProdSystem.
These configurable features are: the number of XmasTrees (xTs) and the number of
SEM applications (semApps).

As mentioned earlier, the SimPL model may include OCL constraints as well. Two
example OCL constraints related to the model in Figure 3 are given nextm.

context ElectronicConnection inv PinRange
pinIndex >= 0 and sem.eBoards->asSequence()->

at(ebIndex+1).numOfPins > pinIndex

context ElectronicConnection inv BoardIndRange
ebIndex >= 0 and ebIndex < sem.eBoards->size()

The first constraint states that the value of the pinIndex of each device-to-SEM
connection must be valid, that is, the pinIndex of a connection between a device and
an SEM cannot exceed the number of pins of the electronic board through which the
device is connected to its SEM. The second constraint specifies the valid range for the
ebIndex of each device-to-SEM connection, that is, the ebIndex of a connection between
an device and an SEM cannot exceed the number of electronic boards on its SEM.

3.2. A Subsea Oil Production System

Figure 4 shows a model of a small subsea oil production system created by configuring
the reference architecture given in Figure 3. The product shown in Figure 4 is cre-
ated by configuring a total of ten configurable parameters. The topmost component in
this product is an instance of the class SubseaProdSystem and is named toySps. This
component is configured by setting both the number of its Xmas trees (i.e., XmasTree)
and the number of its SEM applications (i.e., SemApp) to one. The components xt1 and

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 3, Article 25, Pub. date: May 2014.

Figure 6.13: Configuration of SimPL fragment Figure 6.10.

1 SubseProdSystem:ToySps
2 group:
3 SemApp:SemAppA
4 attribtes:
5 semAppId: 1;
6 semIndex: 1;
7 XmasTree:xt1
8 group:
9 SEM:SemA

10 attributes:
11 semId: 1;
12 semAppIndex: 1;
13 eBoard: 2;
14 Device:S1
15 attributes:
16 deviceId: 1;
17 ElectronicConnection:SemAs1
18 attributes:
19 ebIndex: 0;
20 pinIndex: 0;
21 semIndex: 1;
22 deviceIds: "[1]";

Figure 6.14: Configuration translation of SimPL configuration in Figure 6.13.
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Chapter 7

Related Work

We present the relations of previously published work in regard to the work presented in this

thesis.

1. We provide an overview of publications that our work is based on;

2. Furthermore we describe the relation with our work to the research done in parallel to

ours.

These topics provide insights into the field and current state of feature modeling and provides

readers material for literature review.

Feature modeling was first introduced in 1990 by the work of Kang et al.[23] named

Feature-Oriented Domain Analysis (FODA), thereafter these initial concepts were refined

by Griss et al. in 1998 [17] and Van Gurp et al. in 2001 [36]. In their work they refined the

relationships among features. This led to the set of parent-child and cross-tree relationships

that are regarded as the classical concepts in feature models that are mapped to UTFM in

Chapter 2. Batory published in 2005[4] how basic cross-tree relations can be concatenated

with propositional logic in more expressive cross-tree constraints. Furthermore the semantics

of feature models are mapped to propositional logic making it possible to perform automated

analysis with an off-the-shelf solver. Elements of this mapping and possible concatenation
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of constraints are still used in our mapping to Z3.

The introduction of cardinality constraints made an effort to introduce modeling

concepts from UML into the languages. Cardinality, a UML-like multiplicity, is introduced

by Czarnecki and Eisenecker in 2000 [13] and Riebisch et al. in 2002 [31]. Czarnecki et

al. motivate the need for cardinality to describe group relationships in feature models by

explaining how they aid in generative programming applications in industry [12]. At a later

stage Czarnecki et al. introduce cardinality to describe optionality and the replication of

features [14]. In the publication by Michel et al. in 2011 [26] an ambiguity in semantics

with regard to nested replicated features is described, which is not addressed in any previous

work. UTFM uses cardinality constraints and provides interpretations for nested replication

that avoid the ambiguity described by Michel.

The need for additional information in feature models was already expressed in

Kang’s FODA publication and his 1998 report by Kang et al. [24] where the first form

of feature attributes were introduced as non-functional features. In the publications by

Benavides et al.[10, 9] and Czarnecki and Kim[15] in 2005 feature attributes were introduced,

each a different syntax and level of expressiveness. In Chapter 4 the syntax and semantics of

attributes in UTFM are described.

Advancing towards automated analysis feature models were mapped to satisfiability

(SAT) problems, first described in propositional logic by Batory [4] and Benavides et al. in

2005 [9], and shortly after in binary search diagrams (BDD) by Czarnecki and Kim [15] and

Benavides et al. [8] However these logical representations are not able to translate arithmetic

attributes to a SAT problem, hence can only be part of the solution for automated reasoning

for UTFM.

Arithmetic attributes were mapped to constraint satisfication problems (CSP) using

constraint programming by Benavides et al. in 2005 [9]. The off-the-shelf solvers that are

used to validate CSP’s are able to deal with numerical values such as integers and intervals.

In another publication by Benavides et al. [8] a comparison is made between the performance
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of automated reasoning on feature models using either propositional logic, BDD’s or CSP’s.

Satisfiability Modulo Theory (SMT) can be seen as a form of CSP. One of the most recent

implemented SMT theorem provers is Z3 from Microsoft Research[16] which is used to

validate SMT problems mapped from UTFM.

Another method to perform automated analysis on feature models is through linear

programming, where the FM is presented as a mathematical model consisting of linear

relationships. Linear programming is a special case of mathematical programming/optimiza-

tion, which is specifically good in finding optimal solutions in mathematical models. The

first mapping of feature models to linear programming problems is published by Van den

Broek [35] and uses Integer programming, a extension of linear programming. Another

method with regard to linear programming and mathematical optimization is the research

from Henneberg that uses pseudo-boolean satisfiability [19] As it is possible to express

arithmetic attributes and constraints, linear programming has enough expressiveness to be

mapped to from UTFM for automated reasoning.

The following literature reviews shed light on alternative publications, regarding

the course of feature modeling research. Schobbens et al. [33] made an overview on the

semantics of feature modeling in 2006, Kang et al. [22] provide a similar overview in 2010,

two decades after the publication of FODA. Also in 2010 Benavides et al. [7] provided a

systematic overview on automated analysis. With regard to the different textual languages

and logical representations Classen et al. [11] provided an overview on the extend of

implemented semantics in different languages.

Hubaux published in 2012 [20] a work flow process to configure feature models,

furthermore an algorithm to detect contradictions while configuring a feature model. The

limitations in their work are that feature attributes are only partly implemented and feature

replication is not supported. They state that implementation of such, would require a

complete adaptation of the semantic domain and significant revision of the constraint system,

and is therefore postponed to future work. Our work presents an outline and implementation
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of mentioned adaptations and revisions for feature models.

The optimization of configurations for large sized feature models has been discussed

in publications by Pohl et al. (2011) [28] and Sayyad et al. (2013) [32]. With regard to the

introduction of feature replication in UTFM, resulting in more complex and bigger feature

models, research towards more optimized automated analysis is necessary. Interesting in the

work by Sayyad is the use of off-the-shelf solver Z3.

The OMG attempt, Common Variability Language (CVL)[25], to standardize a

variability modeling language has stranded as a proposal in 2012. The language proposed an

all-round variability modeling language, besides describing feature models it also abstractly

describes the implementation of the product line. The goal of this approach was to bring the

problem domain and solution domain of software product lines closer to each other. CVL

has been an inspiration for the graphical syntax that has been used throughout our work,

while furthermore it provided a starting point to determine which semantics should be part

of a next-generation feature modeling language.

Classen et al. [11] proposed in 2011 the text-based feature modeling language

Textual Variability Language (TVL). The language entails classical and attributed feature

models, however does not support feature replication. The interpration of attributes and

constraints is different then from UTFM. Constraints on attributes are evaluated in TVL even

if a feature is not selected. Additionally the language was made for rich syntax expression,

while UTFM is more strict and consize (using the same language constructs).

The language Clafer, proposed by Bak [2],[3] is a class modeling language with

first class support for feature modeling. The models described in Clafer are closer to the

implemenation of product lines. Constraints specified in the models are written in Alloy1.

As Clafer uses different semantic concepts there is no mapping from Clafer to feature models

provided, making it hard to compare the language to UTFM.

1http://alloy.mit.edu
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Chapter 8

Conclusion and Future Work

This thesis is written with the goal to design a feature modeling language with advanced

semantics, such as feature attributes, replication and complex constraints, and explore how

analysis operations on such models can be automated. The syntax, semantics, and analysis

operations of our proposed language UTFM are laid out and illustrated with examples.

Furthermore the thesis is accompanied with the UTFM tool that is created to implement the

described language and analysis operations.

In this chapter we provide a summary of our work and conclude with some final

words with regards to our results. We end this thesis by discussing future endeavors that

could follow up on our presented research.

8.1 Results and Conclusion

Feature modeling for software product lines diverged until around 2005 to general accepted

standards with regard to syntax and semantics for the modeling languages. As researchers

proposed advanced semantics, feature modeling converged in different directions while

attempts to unify the different advanced semantic concepts fell short or converged even

more from the established classical standards. Besides the introduction of new semantics,
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the research for more advanced and powerful off-the-shelf solvers continued creating op-

portunities for better automated analysis of feature models. In our work we propose the

language UTFM to fill the gap in semantic consensus, and describe automated processes for

the analysis of such feature models using the Z3 theorem prover.

In the UTFM language a clear distinction between the type declaration and a feature

model configuration is made. Feature model type declarations (FMTD) specify feature types,

their group relations, attributes and constraints. Classical semantics for features are sustained

while features just have an instance cardinality and group relations a group cardinality. This

introduced instance cardinality also allows for feature replication. On the other hand in a

configuration, instances of feature types are specified along with value assignments for the

attributes of these instances. A configuration is valid when no constraints specified in the

FMTD are violated.

We elaborate on the semantics of nested feature replication and conclude that group

cardinality counts the amount of selected instances in a configuration and that each instance

has a local value for its group cardinality. This interpretation of cardinality semantics does

not restrict the expressiveness of the language and proves to be the most concise option.

The UTFM language supports integer, real, boolean and string feature attributes. Feature

types have a local scope which means that constraints can only reference attribute values of

themselves, their parents and their children. As constraints reference feature types, instead

of instances or instance attribute values, these references are always followed by operations

in the constraint language. This constraint language is still dense, as not much syntactic

sugar has been added.

For automated validation of the feature model the type declarations and configu-

rations are mapped to a Z3 decision problem. The Z3 theorem solver checks models for

satisfiability. If a model is satisfiable, a configuration of the type declaration is valid and

represents one or more products. This technique is used to perform automated constraint

propagation on configurations. We describe the unfolding algorithm that explicitly defines
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default instances to maximize the propagation process. These analysis operations and au-

tomated validation of feature models are implemented in a proof-of-concept UTFM tool1 .

Finally, examples from in a practical and industrial problem domain are provided to showcase

the capabilities of the proposed language.

8.2 Future Work

8.2.1 Reuse and Modularization

When describing larger SPL’s the feature models tend to get large and complex hierarchies

too. In order to cope with growing complexity and to keep feature models clear, larger

models could be split up in several models where one model imports another. An import

construct has already been mentioned in the work by Kang et al. in 1998 [24] with the

introduction of a layered feature model. Feature import (or feature reference) semantics

could be the first step of the modularization of feature types where features models become

reusable objects. For modularizing feature types it might be a good practice to introduce

public and private feature attributes, attributes that can be referenced outside of the module

or strictly internal attributes. The seperation of FMTD’s and configurations also raises the

question on how modularization affects the configuration of such models.

8.2.2 Optimization

Future work on optimization is two folded. The variability of feature models grows exponen-

tially as more features are introduced to the model. Within the UTFM tool optimizations

could lead to better performances for the validation of configurations. A possible optimiza-

tion is for the set of instances of a feature type to becomes a sorted list. Sorting the list of

instances on their selection value, combined with extra Z3 assertions on the satisfiability

model that enforces undecided instance to behave in a sorted fashion could lead to perfor-

1https://github.com/vweber/UTFM
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mance enhancement as there is less redundancy in the model. As we’ve seen in the related

work chapter (Chapter 7) recent publications [32] suggest optimizations for the analysis of

feature models, it could be investigated to which extend these optimizations are relevant for

our Z3 decision problems.

On the other hand there are opportunities to define optimal values for attributes. In

the current UTFM language it is only possible to assign static values to the attributes of

instances. Introducing language constructs to search for minimum or maximum values, or

other limits, for attributes add to the expressiveness of configuration. Instead of reducing the

complexity, search for optimal values increases the complexity of the search problem. In the

current stable release of Z3 (4.3.0), value optimization has not been build in, however they

are developing this for future releases.

8.2.3 Integer Programming

Currently our type declarations and configurations are translated to Z3 decision problems.

However since we’ve translated the exists and forall operations for feature replication from a

first-order logic problem to a propositional logic problem and further only define arithmetic

problems, satisfiability of models could also be checked with integer programming (IP).

The first steps on mapping feature models to IP problems have already been made [35].

When such initiatives are extended with a translation of complex constraints to IP problems,

quantitative analysis of the performance of UTFM to Z3 or IP problems could be made.

8.2.4 Front-end

The UTFM tool is a command line tool that does nothing more then performing analysis

operations. Type declarations, configurations and products need to be specified before

execution. To avoid syntactical incorrect UTFM files and define configuration processes a

front-end should be developed that uses the UTFM tool as a backbone. A front-end should

lead to less errors as a front-end onlu permits to specify legal specifications. Furthermore
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as an instance is configured in the front-end, in the background a constrait propagation

operation could be run, and present the consequences of the configuration to the user real

time.
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Appendix A

Context-free Grammars UTFM

87



A.1 Type declaration

1 <Type > ::= <Feature >
2
3 <Feature > ::= <Name >
4 [ "attributes:" <AttributesBlock > ]
5 [ "constraints:" <ConstraintsBlock > ]
6 [ "group" <Cardinality > ":" <FeaturesBlock > ]
7
8 <Features > ::= <Feature >
9 | <Features > <Feature >

10
11 <AttributesBlock > ::= <Attributes >
12 | "{" <Attributes > "}"
13
14 <ConstraintsBlock > ::= <Constraints >
15 | "{" <Constraints > "}"
16
17 <FeaturesBlock > ::= <Features >
18 | "{" <Features > "}"
19
20 <Cardinality > = "[" <Int> ".." <Int> "]"
21
22 <Attribute > ::= "Int" <Name > ";"
23 | "String" <Name > ";"
24 | "Bool" <Name > ";"
25 | "Real"<Name > ";"
26
27 <Attributes > ::= <Attribute >
28 | <Attributes > <Attribute >
29
30 <Constraints > ::= <Constraint >
31 | <Constraints > <Constraint >

Figure A.1: Context-free grammar of FMTD’s.
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A.2 Configuration

1 <Configuration > ::= <Instance >
2
3 <Instance > ::= [<Selection >] <TypeName > ":" <Name >
4 [ "attributes:" <AttributesBlock > ]
5 [ "group:" <InstancesBlock >]
6
7 <Instances > ::= <Instance >
8 | <Instances > <Instance >
9

10 <InstancesBlock > ::= <Instances >
11 | "{" <Instances > "}"
12
13 <AttributesBlock > ::= <Attributes >
14 | "{" <Attributes > "}"
15
16 <Attribute > ::= <Name > "=" <Value > ";"
17
18 <Attributes > ::= <Attribute >
19 | <Attributes > <Attribute >
20
21 <Selection > ::= "(true)"
22 | "(false)"
23 | "(undecided)"
24
25 <Value > ::= <Bool > | <Integer > | <Real > | <String >
26
27 <TypeName > ::= <String >
28
29 <Name > ::= <String >

Figure A.2: Context-free grammar of Configurations.
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A.3 Product

1 <Configuration > ::= <Instance >
2
3 <Instance > ::= <TypeName > ":" <Name >
4 [ "attributes:" <AttributesBlock > ]
5 [ "group:" <InstancesBlock >]
6
7 <Instances > ::= <Instance >
8 | <Instances > <Instance >
9

10 <InstancesBlock > ::= <Instances >
11 | "{" <Instances > "}"
12
13 <AttributesBlock > ::= <Attributes >
14 | "{" <Attributes > "}"
15
16 <Attribute > ::= <Name > "=" <Value > ";"
17
18 <Attributes > ::= <Attribute >
19 | <Attributes > <Attribute >
20
21 <Value > ::= <Bool > | <Integer > | <Real > | <String >
22
23 <TypeName > ::= <String >
24
25 <Name > ::= <String >

Figure A.3: Context-free grammar of Products.
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A.4 Constraint Language

1 <Constraint > ::= <BooleanExpr > ";"
2 | <String > "=" <BooleanExpr > ";"
3 | <String > "=" <BooleanProp > ";"
4 | <String > "=" <ArithExpr > ";"
5 | <String > "=" <ArithProp > ";"
6
7 <BooleanExpr > ::= <BooleanFormula >
8 | <BooleanProp >
9 | <BooleanProp > "==" <BooleanProp >

10 | <BooleanProp > "!=" <BooleanProp >
11 | <ArithProp > "==" <ArithProp >
12 | <ArithProp > "!=" <ArithProp >
13 | <ArithProp > "<=" <ArithProp >
14 | <ArithProp > "<" <ArithProp >
15 | <ArithProp > ">=" <ArithProp >
16 | <ArithProp > ">" <ArithProp >
17
18 <BooleanFormula > ::= <BooleanProp > "and" <BooleanProp >
19 | <BooleanProp > "or" <BooleanProp >
20 | <BooleanProp > "implies" <BooleanProp >
21 | "not" <BooleanProp >
22
23 <BooleanProp > ::= <BooleanOp >
24 | <AttributeRef >
25 | <ParentRef >
26 | <Bool >
27 | "(" <BooleanExpr > ")"
28
29 <BooleanOp > ::= "exists(" <FeatureRef > ")"
30 | "exists(" <FeatureRef > "." <BooleanOp > ")"
31 | "exists(" <FeatureRef > "." <AttributeRef > ")"
32 | "exists(" <FeatureRef > ".(" <BooleanExpr > "))"
33 | "forall(" <FeatureRef > ")"
34 | "forall(" <FeatureRef > "." <BooleanOp > ")"
35 | "forall(" <FeatureRef > "." <AttributeRef > ")"
36 | "forall(" <FeatureRef > ".(" <BooleanExpr > "))"
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37 <ArithExpr > ::= <ArithProp > "+" <ArithProp >
38 | <ArithProp > "-" <ArithProp >
39 | <ArithProp > "*" <ArithProp >
40 | <ArithProp > "/" <ArithProp >
41
42 <ArithProp > ::= <ArithOp >
43 | <AttributeRef >
44 | <ParentRef >
45 | <Number >
46 | "(" <ArithExpr > ")"
47
48 <ArithOp > ::= "sum(" <FeatureRef > "." <AttributeRef > ")"
49 | "max(" <FeatureRef > "." <AttributeRef > ")"
50 | "max(" <ArithProp > "," <ArithProp > ")"
51 | "min(" <FeatureRef > "." <AttributeRef > ")"
52 | "min(" <ArithProp > "," <ArithProp > ")"
53 | "average(" <FeatureRef > "." <AttributeRef > ")"
54
55 <ParentRef > ::= "parent." <AttributeRef >
56 | "parent." <ParentRef >
57
58 <FeatureRef > ::= <String >
59
60 <AttributeRef > ::= <String >
61
62 <Number > ::= <Integer > | <Real >
63
64 <Bool > ::= "true" | "false"

Figure A.4: Context-free grammar of the Constraint Language.
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Appendix B

Tool Execution Options

Option Name Description

-t <file.utfm> Type declaration
validate a type declaration, provide
the filepath to the FMTD.

-c <file.utfmc> Configuration
validate a configuration against a
type declaration, provide the filepath
to the configuration.

-p <file.utfmp> Product
validate a product against a type dec-
laration, provide the filepath to the
product specification.

-u Unfold Unfold a configuration.

-r
Constraint Prop-
agation

Propagate constraints on a configu-
ration.

-f
Full configura-
tion

Change the domain of a partial con-
figuration to a full configuration
(product).

Table B.1: Execution options UTFM tool.
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[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented

Software Product Lines. Springer, 2013. page 35.

[2] Kacper Bak. Clafer: a unified language for class and feature modeling. Technical

report, Technical report, Generative Software Development Lab, 2010.

[3] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and meta-models

in clafer: mixed, specialized, and coupled. In Software Language Engineering, pages

102–122. Springer, 2011.

[4] Don Batory. Feature models, grammars, and propositional formulas. In Software

Product Lines Conference, Lecture Notes in Computer Sciences, vol.3714, pages 7–20.

Springer, 2005.

[5] Don Batory, David Benavides, and Antonio Ruiz-Cortes. Automated analysis of feature

models: challenges ahead. Communications of the ACM, 49(12):45–47, 2006.

[6] Razieh Behjati, Shiva Nejati, and Lionel C Briand. Architecture-level configuration of

large-scale embedded software systems. ACM Transactions on Software Engineering

and Methodology (TOSEM), 23(3):25, 2014.

[7] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of

feature models 20 years later: A literature review. Information Systems, 35(6):615–636,

2010.

94



[8] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. A first step

towards a framework for the automated analysis of feature models. Proc. Managing

Variability for Software Product Lines: Working With Variability Mechanisms, pages

39–47, 2006.

[9] David Benavides, Pablo Trinidad, and Antonio Ruiz Cortés. Using constraint pro-

gramming to reason on feature models. In The Seventeenth Conference on Software

Engineering and Knowledge Engineering, SEKE 2005, pages 677–682, 2005.

[10] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated reasoning

on feature models. In Advanced Information Systems Engineering, pages 491–503.

Springer, 2005.

[11] Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based approach to

feature modelling: Syntax and semantics of tvl. Science of Computer Programming,

76(12):1130–1143, 2011.

[12] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich Eisenecker. Gen-

erative programming for embedded software: An industrial experience report. In

Generative Programming and Component Engineering, pages 156–172. Springer,

2002.

[13] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools,

and Applications. Addison-Wesley, Reading, MA, USA, 2000.

[14] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-

based feature models and their specialization. Software process: Improvement and

practice, 10(1):7–29, 2005.

[15] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature modeling

and constraints: A progress report. In International Workshop on Software Factories,

pages 16–20, 2005.

95



[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,

2008.

[17] Martin L Griss, John Favaro, and Massimo d’Alessandro. Integrating feature modeling

with the rseb. In Software Reuse, 1998. Proceedings. Fifth International Conference

on, pages 76–85. IEEE, 1998.

[18] Adithya Hemakumar. Finding contradictions in feature models. In Software Product

Lines, 12th International Conference, SPLC 2008, Limerick, Ireland, September 8-12,

2008, Proceedings. Second Volume (Workshops), pages 183–190, 2008.

[19] Sebastian Henneberg. Next-generation feature models with pseudo-boolean sat solvers.

Master’s Thesis, University of Passau, Germany, 2011.

[20] Arnaud Hubaux et al. Feature-based configuration: Collaborative, dependable, and

controlled. University of Namur, Belgium, 2012.
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