
MASTER’S THESIS

Symbolic Model Checking using
Zero-suppressed Decision Diagrams

Author:

Maryam HAJIGHASEMI

Graduate committee:

Prof. Jaco VAN DE POL

Prof. Arend RENSINK

Tom VAN DIJK , MSc.

November 2014

Abstract
Formal Methods and Tools Group

Department or Computer Science

Master of Science

Symbolic Model Checking using Zero-suppressed Decision Diagrams

by Maryam HAJIGHASEMI

Symbolic model checking represents the set of states and transition relation as Boolean func-

tions, using Binary Decision Diagrams (BDDs). One alternative to common BDDs are Zero-

suppressed Decision Diagrams (ZDDs), which are BDDs based on a new reduction rule. The

efficiency of ZDD representation, in comparison with the original BDD, is noticeable especially

for sparse state spaces, in which the actual number of existing states is much smaller than the

total number of possible states.

To the best of our knowledge, the current implementation for ZDDs is using fixed set of vari-

ables, i.e., domain for all possible diagrams. This may result in increase of size for each diagram.

The main goal of this project is to develop an implementation of ZDDs with possibility of hav-

ing different domains for specific diagrams. The secondary goal is to investigate the efficiency

of ZDDs in comparison with BDDs, e.g. memory usage and running time, for reachability

algorithm.

http://fmt.cs.utwente.nl/ //)
http://www.utwente.nl/onderwijs/ewi //)

Contents

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 Preliminaries 3
2.1 Model Checking . 3

2.1.1 Reachability Algorithm . 4
2.2 Binary Decision Diagrams . 5
2.3 Zero-Suppressed Binary Decision Diagram 7
2.4 CUDD . 10
2.5 Sylvan . 12

3 Implementation of ZDDs 14
3.1 Notations . 14
3.2 Converting BDD to ZDD . 15
3.3 Extend operation . 16
3.4 ITE operation . 17
3.5 Not operation . 20
3.6 Exist (∃) operation . 21
3.7 Rename operation . 22
3.8 RelProd operation . 24
3.9 RelProdS operation . 27

4 Experiments 29
4.1 Setups . 29
4.2 Sokobon models . 31

4.2.1 Results . 32
4.3 BEEM models . 35

4.3.1 Results . 36

5 Related work 41

iii

Contents iv

6 Conclusions and Future Work 43
6.1 Conclusions . 43
6.2 Future Work . 44

A Correctness Proofs 45
A.1 Extend Operation . 46
A.2 ITE Operation . 47
A.3 Not Operation . 52
A.4 Exist Operation . 54
A.5 Rename Operation . 57
A.6 RelProd Operation . 59
A.7 RelProdS Operation . 61

Bibliography 63

List of Figures

2.1 Music player state graph . 4
2.2 BDD representation of F = (x1 ∨ x2) ∧ x3 6
2.3 Apply reduction rules on F = (x1 ∧ x2) ∨ x2 7
2.4 ZDD pD-deletion rule . 8
2.5 Simple ZDD examples . 8
2.6 BDD and ZDD representation F = x1x2x′2 on different domains 9
2.7 ZDD and BDD representation of F and F ′ . 10
2.8 ZDD representation of x1x2 ∨ x1x2 with different domains Σ and Σ′ 11
2.9 ZDD representation of ∃Σ.(x1x2x′2) using different methods 12
2.10 Representing set X = {x1, x2, x3} in Sylvan 13

4.1 Transition relation size of Sokoban examples for ZDD and BDD 33
4.2 Size of reached states in different iteration for BEEM models 33
4.3 Size of transition relation groups for BEEM models 37
4.4 Correlation between the reduction of number of calls to gc and speedup, i.e.,

the decrease in computation time by using ZDD (s) 38
4.5 Speedup by percentage of reduction in number of times gc is called using ZDD 38

v

List of Tables

2.1 Mandatory operations for reachability algorithm 5

3.1 Calculating Boolean operations using ITE . 18

4.1 Number of iterations for the reachability algorithm and number of nodes for
BDD and ZDD representation of reachable states for Sokoban screens 31

4.2 Number of iterations and groups of transition relation for the reachability algo-
rithm and number of nodes representing reachable states using BDD and ZDD
for BEEM database models . 31

4.3 Used memory for Sokoban models in number of used buckets 33
4.4 Computation time of Sokoban examples (ms) 34
4.5 Number of times RelProdS operation called 34
4.6 CPU profile of screen.387 using ZDD and BDD 35
4.7 Computation time of Sokoban examples using garbage collection (ms) 36
4.8 CPU profile of schedule_world.3.8 using ZDD and BDD 39
4.9 Computation time of BEEM models using BDD and ZDD 39
4.10 Number of function calls for ITE and OR operations using BDD and ZDD for

BEEM models . 40

vi

Chapter 1

Introduction

Model checking is a formal verification technique used to verify whether a given model of a

system satisfies certain desired properties. It is applied in areas like hardware verification and

software engineering. Nowadays, model checking is used for realistic designs, with a large

number of components. This leads to exponential growth of state space model of the system,

which is called state explosion problem. Using Boolean formulas to represent sets and relations,

rather than individual elements for each state, helps to avoid this problem. This method is called

symbolic model checking [18].

Binary Decision Diagrams (BDDs) are used in symbolic model checking to represent Boolean

formulas. Various existing packages have implemented the necessary operations to use BDDs,

like BuDDy [17], CUDD [27], and Sylvan [29]. One alternative to common BDDs are Zero-

suppressed Decision Diagram (ZDD) [22]. ZDD encompasses all the characteristics of BDD

except that it benefits from a new reduction rule. This new reduction rule causes a notice-

able improvement in the space consumption, in comparison to the original BDD. This happens

specifically for sparse state spaces, i.e., when the number of states are much smaller than the

number of possible states that may appear. Although ZDDs have been used in several areas, in

the model checking applications, it has been used only for Petri-nets, since their state spaces are

very sparse [31].

In this project we investigated how ZDDs could be exploited for symbolic model checking.

One core challenge was that there is no existing complete package for this purpose. CUDD

and EXTRA [24] are the only two packages that support ZDDs, but there are two problems

with using these ZDD implementations for model checking. One is that the set of variables,

i.e., domain, is fixed and same for all decision diagrams, which reduces the efficiency of ZDD.

Another problem is that some required functions for reachability implementation are missing in

CUDD, and are implemented in different way as expected in EXTRA, such as ∃. In Section 2.4,

both problems are explained in detail.

1

Chapter 1. Introduction 2

So as the first step of this project we implemented a ZDD library that supports the needed op-

erations for model checking, especially for the reachability algorithm, in Sylvan [29], a parallel

BDD library. We chose Sylvan since it uses the BDD structure which is reusable for ZDDs.

Moreover, addition of the domain attribute is easy to handle in it. Then we compared the perfor-

mance of ZDDs and BDDs as two ways of representing sets of states, and transition relations.

We performed our experiments with several models of Sokoban puzzles and from the BEEM

database [26], which is a database for explicit model checking, using our implemented ZDD

package as an extension of Sylvan. We compared the results with the implementation of the

same algorithm using the BDD operations of Sylvan. The results show that ZDDs are efficient

on memory usage in the reachability algorithm. We also had speedup using ZDDs for some

examples, but it/ did not occur for all cases.

Chapter 2 introduces BDDs and ZDDs. This chapter also explains the required operations for

reachability. The ZDD algorithms and implementation of operations like ITE, Not, Exist and

Rename are explained in chapter 3. Chapter 4 describes reachability analyses on models from

the BEEM database and some Sokoban example. These experiments compare BDDs and ZDDs

in both execution time and memory usage. Some ZDD applications in other areas are collected

in chapter 5, and chapter 6 concludes the report and represents possible ideas for future work.

Chapter 2

Preliminaries

This chapter introduces the background knowledge of model checking and Binary Decision

Diagram (BDD) in Sections 2.1 and 2.2. We also discuss ZDDs in details in Section 2.3, and

limitations of CUDD for reachability algorithm in Section 2.4.

2.1 Model Checking

Model checking is a technique for verifying specific properties of a system. The purpose is to

check whether given properties hold for a given model of a system. For example, if a system

suffers from a deadlock or if it meets a safety requirement, or if there is a possibility of reaching

a specific state in the state graph.

A model describes all possible behaviors of a system. Many systems can be modeled as state

graphs, which can be defined as a tuple (S, T, I,Σ) where S is a set of states, T is a transition

relation, I ⊆ S is a set of initial states, and Σ is the set of variables, i.e., domain.

Each state in S is a valuation of variables in Σ. Let Σ = {x1, x2} in which x1 and x2 are

Boolean variables, then for instance, x1x2 represents a state, where x1 is False and x2 is True.

We can define a subset of all possible states by using Boolean function F . For instance, F = x1

represents the set of states in which x1 is True.

A transition relation T , is a binary relation, T ⊆ S × S, for which we use Boolean functions as

representation. Let s, s′ be a vector of variables in X , then T (s, s′) represents transitions from

the set of states s to the set of states s′. For example, T (s, s′) = x1x
′
1x
′
2 shows there are two

transitions from states {x1x2, x1x2} to x1x2.

Example 2.1. Consider a simple music player with three operations, represented by a set of

states {Play, Pause, Stop}. We start with the instrument being stopped, Stop state. It is not

3

Chapter 2. Preliminaries 4

possible to Pause when the music is stopped. The following state graph models this music

player using 3 states and 5 transition relations.

PlayStopstart Pause

We use Boolean variables to represent states and transitions, i.e., we assign each state with a

boolean string:

0100start 10

Now by using two Boolean variables x1, x2, we can easily show each state as follows:

x1x2x1x2start x1x2

FIGURE 2.1: Music player state graph

Model checking can be divided in two categories: explicit-state, and symbolic model checking.

The former is being done by enumerating and storing all states individually, whereas the latter

represents the set of states, and transition relations as Boolean functions. In this report we use

symbolic model checking.

2.1.1 Reachability Algorithm

Reachability analysis is one of the main processes of model checking. The goal is to find all

reachable states from an initial set of states I with transition relation T . We can use the set of

reachable states to verify whether certain properties hold or not. State s is a reachable state, if

there is a path from one of the states in I to s, according to a given transition relation T . To

calculate all reachable states, starting from initial states we find the next reachable states using

transitions, the process continues until no new reachable state is found. Since we are assume

that the state space in finite, this process is guaranteed to terminate.

Chapter 2. Preliminaries 5

In Example2.1, the initial state is x1x2, and in the first iteration, state x1x2 is reachable. In the

second iteration, state x1x2 is also reachable. Since in the third iteration we have the same set

of reachable states, the algorithm terminates. The reachability Algorithm 1 is as follows:

Algorithm 1 Reachability algorithm
1: function REACHABILITY(I ,T ,Σ,Σ′)
2: . I: initial state, T : transition relations, variables in Σ′ renamed with Σ
3: states, new ← I
4: while new 6= ∅ do
5: new ← ∃Σ.(new ∧ T)[Σ′ \ Σ] . calculate reachable state in the next iteration
6: states← states ∨ new . add new reachable states
7: return states

In this algorithm we find new reachable states in line 7. First new ∧ T finds the possible transi-

tions from reached states in the last iteration. Then we abstract the set of variables in Σ, using

∃Σ (it is also known as Exist in this report), that results in the next reachable states in do-

main Σ′. All variables in Σ′ are substituted by variables in Σ, using Rename operation, to have

reachable states in the next iteration. In line 8, these new reached states are added to previous

ones. Table 2.1 shows the required operations for reachability algorithm and the corresponding

line that is used in the algorithm.

Operation name used in line
1 Union 8
2 Intersect 7
3 Exist(∃) 7
4 Rename 7

TABLE 2.1: Mandatory operations for reachability algorithm

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDD), were firstly proposed by Akers in [3] and later developed by

Bryant [7]. A BDD is a graph for representing Boolean functions with restriction on the ordering

of variables in the graph. It can be used to store sets of states in symbolic model checking. A

Shannon decomposition of a Boolean function, as defined below, can be represented by a BDD,

which is a directed, acyclic graph.

Shannon decomposition and cofactor: Let F be a boolean function on Σ = {x1, x2, . . . , xn}.
The following identity is Shannon decomposition of F with respect to xi:

F = (xi ∧ Fxi=1) ∨ (xi ∧ Fxi=0)

Chapter 2. Preliminaries 6

where Fxi=1 and Fxi=0 are F with the argument xi equal to 1, and 0, respectively. Which is

also defined as follows:

Fxi=v(x1, . . . , xi−1, xi, . . . , xn) = F (x1, . . . , xi−1, v, . . . , xn)

A BDD has two types of nodes, terminal and non-terminal. A terminal node represents a con-

stant value of 0 or 1, it has no outgoing edges. A non-terminal node represents an input variable

index, and it has two outgoing edges labeled 0 and 1. The one labeled 0 (0-edge) points to the

sub-graph Fx=0, and other one (1-edge) points to the sub-graph Fx=1.

In this report, we use rectangles as terminal nodes with 0 or 1 labels, and non-terminal nodes

are represented by circles containing the variable index. A dashed edge indicates a 0-edge and

solid edge indicates a 1-edge.

An Ordered BDD is a BDD where there is a total ordering ≺ over the set of variables. Which

means if xi ≺ xj , then all nodes with xi precede all nodes with xj .

Figure 2.2 shows the step by step BDD representation of the Boolean function F = (x1 ∨ x2)∧
x3. The variable ordering in this graph is x1 ≺ x2 ≺ x3. According to the ordering we start

from x1, and we have Fx1=1 = x3 (Figure 2.2(a)) and Fx1=0 = x2 ∧ x3 (Figure 2.2(b)). The

result of applying the Shannon decomposition is F = (x1 ∧ x3) ∨ (x1 ∧ x2 ∧ x3). To complete

the representation of F by a BDD, the mentioned procedure should be repeated for x2 and x3.

The final BDD is given in Figure 2.2(c).

(a) x3 (b) x2 ∧ x3 (c) (x1 ∨ x2) ∧ x3

FIGURE 2.2: BDD representation of F = (x1 ∨ x2) ∧ x3

An ordered BDD is reduced if it satisfies two conditions: it should not contain any redundant

nodes and it should not include any duplicate sub-graphs. A node in a BDD is called redundant

node if it has two identical children. If the two mentioned conditions holds in a BDD it is called

Reduced Ordered BDD (ROBDD). For instance, Figure 2.2(c) is an ordered BDD but not a

ROBDD, since x2 is a redundant node. In order to reduce a BDD, two rules should be applied:

1. S-deletion rule: All redundant nodes must be deleted.

Chapter 2. Preliminaries 7

2. Merging rule: All duplicate sub-graphs must be deleted by sharing the sub-graphs among

upper nodes.

Figure 2.3, illustrates how to use these rules to reduce a BDD. All three BDDs represent the

same Boolean function F = (x1 ∧ x2) ∨ x2. The colored nodes in Figure 2.3(a) are duplicated

sub-graphs, which are eliminated by applying the merging rule in Figure 2.3(b). In the new

generated BDD x1 is a redundant node, and should be eliminated. Figure 2.3(c) represent an

ROBDD, where both redundant node and duplicated sub-graphs are deleted.

(a) Node sharing (b) Node deletion (c)

FIGURE 2.3: Apply reduction rules on F = (x1 ∧ x2) ∨ x2

Applying reduction rules on an Ordered BDD guarantees a unique representation for an arbitrary

given function. Therefore, a Reduced Ordered BDD provides us a canonical representation of

Boolean functions. In this thesis we assume all BDDs are ROBDDs.

2.3 Zero-Suppressed Binary Decision Diagram

Zero-suppressed binary Decision Diagrams (ZDD) have been introduced by Minato in [19].

A ZDD is a BDD with a different deletion rule which is based on positive Davio expansion.

Although this expansion forms the basic idea behind reduction rule in ZDD, however, ZDDs are

constructed based on Shannon decomposition.

Positive Davio expansion: Let F be a boolean function on Σ = {x1, . . . , xn}. The following

identity is the positive Davio expansion of F with respect to xi, where x⊕y = (x∧y)∨(x∧y):

F = Fxi=0 ⊕ xi(Fxi=0 ⊕ Fxi=1)

ZDDs reduce using pD-deletion rule [14], which is explained as below.

pD-deletion rule: A node x should be deleted, if its 1-edge points to a 0-terminal, and its 0-

edge points to a node Fx=0. Since, by positive Davio decomposition rule we have F = Fx=0, all

edges leading to x should be redirected to the node Fx=0. This process is shown in Figure 2.4.

Chapter 2. Preliminaries 8

FIGURE 2.4: ZDD pD-deletion rule

This deletion rule is asymmetric with respect to 0-edge and 1-edge of a node. In the other word,

we do not eliminate nodes whose 0-edge points to a 0-terminal. Note that S-deletion rule is not

being used here any more, so nodes whose two edges point to the same node must be kept in

the diagram. Examples of simple ZDDs are given in Figure 2.5. For instance, in Figure 2.5(c)

the absence of variable x2 for negative evaluation of x1 is because the 1-edge of x2 points to the

0-terminal.

(a) x (b) x (c) x1x2 (d) x1x2

FIGURE 2.5: Simple ZDD examples

Same as BDDs, to have a unique representation of ZDDs, the variable ordering should also be

fixed, since using different ordering simply changes the decision diagram. For a ZDD, input

domain should also be fixed, otherwise it can be considered as a representation of different

functions. If a variable doesn’t appear in a Boolean formula, it can be both 0 and 1. This means

the corresponding node is redundant in decision diagram. Since redundant nodes are eliminated

in BDDs, adding new variables to domain does not affect the canonical representation of a

function. However, since in ZDDs we don’t eliminate redundant nodes, therefore the domain

should be fixed. The following theorem ensure the uniqueness of ZDD.

Theorem 2.1. ZDD can uniquely represent a Boolean function if the variable domain and or-

dering are fixed[22].

In a path of a Decision Diagram variables are divided into three categories:

• Positive: variables with value 1.

• Negative: variables with value 0.

• don’t care: variables with both 0 and 1 value.

Chapter 2. Preliminaries 9

In a BDD, reduced variables in a path from root to a terminal node, are don’t care variables.

This means that the related node is redundant, and deleted because of S-deletion rule. In a

ZDD, variables that are skipped in a path from root to a terminal node, has negative value, and

deleted based on pD-deletion rule.

In the music player example, outgoing transitions from Play state are F = x1x2x′2(x′1 ∨ x′1) =

x1x2x′2. Figures 2.6(a) and 2.6(b) show BDD and ZDD representation of these transitions on

Σ = {x1, x2, x
′
1, x
′
2}, respectively. In this example x1 and x′2 are negative, x2 is positive

and x′1 is don’t care. In case of using different domains to represent the same function F ,

like Σ′ = {x1, x2, x3, x
′
1, x
′
2, x
′
3}, then x3 and x′3 are also don’t care. So the same BDD still

represents F , but the ZDD representation is different as shown in Figure 2.6(c). As a result, a

fixed domain is necessary to represent a Boolean formula uniquely by ZDDs.

(a) BDD on Σ and Σ′ domain (b) ZDD on Σ domain (c) ZDD on Σ′ domain

FIGURE 2.6: BDD and ZDD representation F = x1x2x′
2 on different domains

The main advantage of ZDDs is that it is more efficient for sparse state space comparing to

BDDs [22]. Which means the number of states are much smaller than the number of possible

states that may appear. In the other words, most of the variables are assigned to zero in the

Boolean formula. For instance, back to our music player example with the outgoing transitions

from Play on Σ′ = {x1, x2, x3, x
′
1, x
′
2, x
′
3} domain. The music player can be also abstracted

as follows. Then the transition is F ′ = x1x2x3x′2x
′
3. As we can see in Figure 2.7, same ZDD

represent both F and F ′, since F ′ had two more negative node than F which are suppressed in

ZDD. However, the BDD representation of F ′ has 5 nodes while only 2 nodes need to represent

it by ZDD.

x1x2x3x1x2x3start x1x2x3

Chapter 2. Preliminaries 10

In this simple example, there are two solutions that both ZDDs and BDDs can represent the

same function in different ways, and one of them become more efficient. But there are many

cases that are more complex and sparse. In these cases ZDDs may be more efficient than BDDs,

in both memory usage and computation time. Example of it can be found in chapter 4.

(a) BDD for F = x1x2x′
2 (b) BDD for F ′ = x1x2x3x′

2x
′
3 (c) ZDD for bothF and F ′

FIGURE 2.7: ZDD and BDD representation of F and F ′

2.4 CUDD

CUDD[27] is a package supporting three types of decision diagram: BDD, ADD [4] and ZDD.

It is one of the well-known packages for BDD, and it has all basic functions that are needed

to use BDDs for model checking, while it has limited functions for ZDDs. There are couple

of ZDD procedures in the CUDD package that covers the basic operations for ZDDs, such as

Union, Intersect, and If Then Else(ITE). As mentioned in table 2.1, implementing the reachabil-

ity algorithm needs some additional operations, namely, ∃, which remove some variables from

a DD, and Rename that substitutes a variable with another one in DD. These two operations are

not supported in CUDD.

EXTRA[24] library is an extension of CUDD package. It uses the same structure as CUDD

and adds some of the missing functions in CUDD like ∃ and Rename. There is a list of ZDD

procedures that EXTRA adds to CUDD in [25]. So all the mandatory functions for reachability

algorithm are supported by EXTRA .

But there are still two problems that prevent us from using the ZDD implementation of EXTRA,

for symbolic model checking: (i) The domain attribute is fixed for all defined decision diagrams.

(ii) The ∃ operation result is not as expected for relational product implementation, since the

domain does not change properly that is a consequence of the first problem.

Chapter 2. Preliminaries 11

As described in Section 2.3, ZDD representation of a set of states, requires having a specified

domain of variables, while for BDDs it is not necessary. In CUDD same domain of variables

is considered for all ZDDs, that includes all defined variables. So the domain includes all the

variables from 0 to the largest defined variable in the implementation. For example, if the

initialized number of ZDD variables is 5 then the domain Σ is {x0, x1, x2, x3, x4, x5}. This

property limits the selection of domain variables. For instance, it is not possible to set the

domain to be a set of odd numbers or ranging between 5 to 10, instead of all possible values for

variables. This will cause the generation of large diagrams, and hence decreases the efficiency

of ZDDs.

As we have seen before, if the state space of a model is represented by Σ = {x1, . . . , xn}, then

the related transition relations represents using twice variable in Σ including both xi and x′i for

each variable, that represent the current and next value of each variable, respectively.

While in CUDD, all variables are included in both cases, where half of them are don’t care

variables for state space representation. In the music player example 2.1, being in Play or

Pause state formulates as F = x1x2 ∨ x1x2, where the domain can be either Σ = {x1, x2} or

Σ′ = {x1, x2, x
′
1, x
′
2}. The following figures show representation of same function using two

different domains.

(a) Σ = {x1, x2} (b) Σ′ = {x1, x2, x′
1, x

′
2}

FIGURE 2.8: ZDD representation of x1x2 ∨ x1x2 with different domains Σ and Σ′

The second problem relates to the implementation of ZDD operations in CUDD. Consider the

following example for reachability algorithm, that whether the Pause state is reachable from

Play state in music player Example 2.1. The following state diagram represents the simplified

version of the example,where the initial state is I = x1x2 and the outgoing transitions from this

state are T = x1x2x′2.

x1x2

start

x1x2 x1x2

Chapter 2. Preliminaries 12

Reachable states from Play calculate in three steps based on Algorithm 1. First step is finding

possible transitions from initial states using "I ∧ T ", which is equal to T in this case. Next step

is abstracting current state variables domain, which is Σ = {x1, x2}, using ∃ function (Chapter

3.6). The last step is renaming x′1 to x1 and x′2 to x2. The second step is calculated as follows.

∃Σ.(T) = ∃Σ.(x1x2x′2) = x′2

According to the definition of ∃X.ZΣ (f), where ZΣ (f) is the ZDD representation of f with

domain variables Σ, variables in X remove from Boolean formula f . And the resulting domain

can be either the same as the input domain (Σ), or excluding abstracted variables (Σ−X). The

BDD representations of both methods are the same. For the first method, abstracted variables

consider as don’t care variables, that reduce in BDD. In the other method, these variables are

not part of the result domain, so again are not present in diagram (see Chapter 2.3). But the

ZDD representations are different, and are shown in Figure 2.9(a) and 2.9(b). The problem with

(a) using same domain as input
Σ = {x1, x2, x′

1, x
′
2}

(b) remove abstracted variables
from domain Σ′ = {x′

1, x
′
2}

(c) using EXTRA implementation
Σ = {x1, x2, x′

1, x
′
2}

FIGURE 2.9: ZDD representation of ∃Σ.(x1x2x′
2) using different methods

EXTRA library is that, the domain is fixed but the result is the same as removing the variables

from the domain. For example, the result of ∃Σ.(x1x2x′2), is as shown in Figure 2.9(c), using

EXTRA implementation of ∃. But as mentioned earlier the domain should be the same as input

domain. This makes wrong interpretation of the result. As the variables are parts of the domain

and are not presented in the diagram, they are considered as negative variables instead of don’t

cares. Because of these two problems we decided to develop a new implementation of ZDDs

without the mentioned problems for existing implementation.

2.5 Sylvan

Sylvan is a parallel BDD package implemented using lock-less data structures and work-stealing

[30]. In Sylvan, BDD operations include recursive tasks, which can be done in parallel. Most

Chapter 2. Preliminaries 13

FIGURE 2.10: Representing set X = {x1, x2, x3} in Sylvan

of the time for each node representing e.g. xi, in the BDD, the operation is recursively called

over the two sub-graphs, namely for Fxi=0 and Fxi=1. In Sylvan, these two function calls are

calculated in parallel.

BDD operations include three memory operations, which make a massive use of memory. These

three operations are cache lookup, cache store, and hash table lookup. The results of BDD

operations are stored in an operation cache, which is a hash table that overwrites new data on

old one in case of collision. Moreover, the BDD nodes are also stored in a unique table, which

is a hash table with garbage collection support.

Sylvan also supports a set of variables and its related operations. This set of variables can be

used as a domain as well. For example, the set X = {x1, x2, · · · , xn} is represented by the

Boolean function F = x1 ∨ x2 ∨ · · · ∨ xn, which is stored using BDDs. Figure 2.10 is an

example of a set representation in Sylvan. We also use the same set as representation for the

ZDD domain in our implementation.

Chapter 3

Implementation of ZDDs

This chapter discusses the implementation of important ZDD operations for model checking.

First, the used notations in the algorithms are represented. Then we present how to convert

BDDs to ZDDs and vice versa. Next section is about ITE algorithm, which can be used to

calculate Boolean operations such as And and Or. The Rename, Exist and RelProd algo-

rithms are explained in next sections. Rename operation substitutes some Boolean variables of

a ZDD with new variables. Exist operation calculates the ZDD representation of a Boolean

function after abstracting a set of variables from it.

3.1 Notations

In this section we introduce the notations that we use in definitions and correctness proofs.

Assuming that f is a Boolean formula with Boolean variables Σ = {x1, x2,}, V a set of

Boolean variables and ZΣ set of ZDDs with Σ domain, then BDD, ZDD, the top node of a

ZDD, and empty domain are represented as follows:

BΣ(f) BDD for boolean formula f under Σ domain

ZΣ (f) ZDD for boolean formula f under Σ domain

A.t the top node (lowest level) in A as a ZDD

∅ the empty domain

In ZDD implementations, the method CreateNode(CN) is used to create or reuse ZDD

nodes, which has the specification

CN(x,ZΣ (f) ,ZΣ (g)) = ZΣ∪x ((x ∧ f) ∨ (x ∧ g))

14

Chapter 3. Implementation of ZDDs 15

This method creates a ZDD, which x is its top node, and two edges that point to g and f , expect

when g = 0 it immediately return f as the result. f is the same as Fx=1, and g is Fx=0 regarding

to Shannon decomposition. We will assume the notation < x,ZΣ (f) ,ZΣ (g) > as shorthand

for CN(x,ZΣ (f) ,ZΣ (g)).

Most BDD and ZDD operations are recursive using Shannon decomposition . These operations

use sub-problems where a selected variable x, is assigned to 0 or 1, and calculate the result

recursively based on these sub-problems.

In the following, it is defined how a ZDD is created recursively based on a Boolean formula,

using the explained reduction rules in chapter 2.

Definition 3.1. Let f be a Boolean formula and fx=v use for Boolean formula f , where variable

x is assigned to v, and v ∈ {1, 0}. Then ZΣ (f) definition is as follows:

Z∅ (f) =

{
1 if f = 1

0 if f = 0

Z(x,Σ) (f) =

{
ZΣ (fx=0) if ZΣ (fx=1) = 0

< x,ZΣ (fx=1) ,ZΣ (fx=0) > Otherwise

Definition 3.2 explains that the Boolean function that represented by the ZDD under domain Σ

can be obtained by Z−1
Σ operation.

Definition 3.2. Let x be the smallest variable (the lowest level) in the domain Σ. Then Z−1
Σ is

defined as follows, where vΣ, v ∈ {0, 1} is the ZDD representation of v with the domain Σ:

Z−1
Σ (A) =

{
1 if A = 1Σ

0 if A = 0Σ

Z−1
Σ (A) =

{
(x ∧ Z−1

Σ′ (Ax=1)) ∨ (x ∧ Z−1
Σ′ (Ax=0)) x = A.t

x ∧ Z−1
Σ′ (A) x < A.t

3.2 Converting BDD to ZDD

One method for verification of a ZDD operation is converting a BDD to ZDD, do the same op-

eration on both of them. Then convert the result back to BDD and check if they are equal. These

conversion can be calculated using BDD-To-ZDD (B2Z) and ZDD-To-BDD (Z2B) operations,

which have the types and specifications

B2Z : BΣ˚→ ZΣ

B2Z(BΣ(f)) = ZΣ (f)

Chapter 3. Implementation of ZDDs 16

Z2B : ZΣ˚→ BΣ

Z2B(ZΣ (f)) = BΣ(f)

Definition 3.3. Let x be the top variable in Σ and let A = B(x,Σ′)(f). Then B2Z is defined as

follows:

B2Z(A) =

A if Σ = ∅
< x,B2Z(A,Σ′),B2Z(A,Σ′) > if A = 0 Or A = 1 Or x < A.t

< x,B2Z(Ax=1,Σ
′),B2Z(Ax=0,Σ

′) > if x = A.t

In this operation if the domain is empty, it means that BDD is only a terminal node, which is

the same in ZDD. But variables that does not show up in a BDD, are removed by S − rule

(redundant rule). These variables do not eliminate in ZDD, thus we should create them as nodes

that both edges point to a same sub-graph. In the other cases we create the nodes recursively

based on Shannon decomposition, and if the 1-edge points to 0 the CN operation will eliminate

this node, using pD − deletionrule.

Definition 3.4. Let x be the top variable in Σ and let A = B(x,Σ′)(f). Assume BCN be the

same as CN operation, but creates a node based on BDD reduction rules. Then Z2B is defined

as follows:

Z2B(A) =

A if Σ = ∅
BCN(x, 0,Z2B(A,Σ′)) if A = 0 ∨A = 1 ∨ x < A.t

BCN(x,Z2B(Ax=1,Σ
′),Z2B(Ax=0,Σ

′)) if x = A.t

In conversion of ZDDs to BDDs, if the level k is skipped in a path in ZDD, then there is a node

p at level k that its 1-edge points to 0 in the equivalent BDD. Otherwise the same node is created

in BDD, except the domain is empty.

3.3 Extend operation

In some cases it is needed to change the domain of a ZDD without changing the Boolean func-

tion, to match the conditions as an input of an operation like ITE, which all its input should have

the same domain (see section 3.4). Extending the domain does not affect the BDD representa-

tion, since these new variables are assumed to be don’t care. However, extension of the domain

of a ZDD changes its representation. All added variables to domain should also add to the ZDD.

It is not efficient to use more nodes to represent the same Boolean function, but sometimes it is

needed to match the requirements of other operations. Extend(EXT) operation has type and

Chapter 3. Implementation of ZDDs 17

specification
EXT : ZΣ, (x : V)→ ZΣ∪x

EXT(ZΣ (f) , x) = ZΣ∪x (f)

Definition 3.5. Let A = ZΣ (f), and let y be the top variable of A. Then EXT is defined as

follows:

EXT(A, x) =

A x = y

< x,A,A > x < y

< y,EXT(Ay=1, x),EXT(Ay=0, x) > x > y

Theorem 3.6. The result of EXT(ZΣ (f) , x) is equal to ZΣ∪x (f).

(Proof): See Appendix A.1.

Theorem 3.7. The result of EXT(A, x) is a reduced ordered ZDD, if A is a reduced ordered

ZDD.

Proof. For case 1 it is true, since A is reduced ordered ZDD. Result in case 2 is ordered ZDD

if x is less than all variables in A. According to the condition of case 2, x is less than the top

node of A, and A is ordered so x is less than all variables in A. In case 3, the result is only a

reduced ordered ZDD, if y is less than all variables in EXT(Ay=v, x), and if EXT(Ay=v, x) is a

reduced ordered ZDD. Ay=v can only have variables greater than y which are in Σ′, since it is

represented by an ordered ZDD and y is the top node of A. As A is a reduced ordered ZDD,

Ay=v is also a reduced ordered ZDD. So y is less than all variables in EXT(Ay=v, x).

3.4 ITE operation

If-Then-Else (ITE) operation is one of the basic Boolean operations. Other Boolean opera-

tors such as ∧, ∨ and ⊕ can also be calculated using this operation, which has the type and

specification

ITE : ZΣ,ZΣ,ZΣ → ZΣ

ITE(ZΣ (f) ,ZΣ (g) ,ZΣ (h)) = ZΣ

(
(f ∨ g) ∧ (f ∨ h)

)
The result of this operation, is based on three ZDDs: A, B and C. If A is true then the result

will be equal to B, else it is equal to C. We assumed that the domain of these three ZDDs are

the same, otherwise the calculation would be more complex. The following table shows some

of Boolean operations calculation using ITE.

Chapter 3. Implementation of ZDDs 18

Boolean Operation ITE equivalence
f ∧ g ITE(ZΣ (f) ,ZΣ (g) , 0Σ)
f ∨ g ITE(ZΣ (f) , 1Σ,ZΣ (g))

f ∧ g ITE(ZΣ (f) , 0Σ,ZΣ (g))

f ∧ g ITE(ZΣ (f) ,ZΣ (g) , 1Σ)

f ∨ g ITE(ZΣ (f) , 0Σ,ZΣ (g))
f ⊕ g ITE(ZΣ (f) ,ZΣ (g) ,ZΣ (g))
f → g ITE(ZΣ (f) ,ZΣ (g) , 1Σ)

TABLE 3.1: Calculating Boolean operations using ITE

Definition 3.8. Assume A = ZΣ (f) , B = ZΣ (g) , C = ZΣ (h), which are well-formed ZDDs.

Let Ax=v be shorthand for ZΣ′ (fx=v) and ITEx=v be shorthand for ITE(Ax=v, Bx=v, Cx=v)

with v ∈ {0, 1}. Also let x be top variable in Σ. Then ITE is defined as follows:

ITE(A,B,C) =

C A = 0Σ

B A = 1Σ

B B = C

A B = 1Σ ∧ C = 0Σ

Not(A) B = 0Σ ∧ C = 1Σ

< x, 0Σ′ ,ITEx=0 > (B.t 6= x ∧ C.t 6= x)∨
(A.t 6= x ∧B.t = x ∧ C.t 6= x)

< x,Cx=1,ITEx=0 > A.t 6= x ∧ C.t = x

< x,ITE(Ax=1, Bx=1, 0
′
Σ),ITEx=0 > A.t = x ∧B.t = x ∧ C.t 6= x

< x,ITE(Ax=1, 0
′
Σ, Cx=1),ITEx=0 > A.t = x ∧B.t 6= x ∧ C.t = x

< x,ITEx=1,ITEx=0 > A.t = x ∧B.t = x ∧ C.t = x

Note. Note that in the above definition all cases except the terminal cases are the simplified

version of

< x,ITEx=1,ITEx=0 >

Theorem 3.9. The result of ITE(ZΣ (f) ,ZΣ (g) ,ZΣ (h)) is equal to ZΣ

(
(f ∨ g) ∧ (f ∨ h)

)
.

(Proof): See Appendix A.2.

Theorem 3.10. The result of ITE(A,B,C) is a reduced ordered ZDD,if A, B and C are re-

duced ordered ZDDs.

Proof. For case 1, 2, 3 and 4 it is true, since A, B and C are reduced ordered ZDDs. For

case 5, according to Section 3.5 the result of Not(A) is a reduced ordered ZDD, if A is a

reduced ordered ZDD, which is true based on the definition. In the other cases, the result of

< x,Fx=1, Fx=0 > is a reduced ordered ZDD, if both Fx=0 and Fx=1are ordered ZDDs, and if

Chapter 3. Implementation of ZDDs 19

x is less than all variables in Fx=0 and Fx=1. As A,B and C are ordered ZDDs, Ax=v, Bx=v

and Cx=v are also reduced ordered ZDDs. x is the top variable of Σ, so it is also the top variable

of A,B and C. Therefore, all variables in Ax=v, Bx=v and Cx=v, which are reduced ordered

ZDDs, are more than x. Based on this, we can conclude that Fx=0 and Fx=1 in cases 6 to 10 are

ordered and all of their variables are greater than x. Then the result of CN is a reduced ordered

ZDD, so the ITE result is also a reduced ordered ZDD.

Implementation. The ITE implementation is as follows

Algorithm 2 ITE implementation
function ITE(A,B,C)

. Terminal cases
if A = zddZero(A.dom) then return C

if A = zddOne(A.dom) then return B

if B = C then return B

if (B = zddOne(A.dom) and C = zddZero(A.dom)) then return A

if (B = zddZero(A.dom) and C = zddOne(A.dom)) then return N(A)

if A = C then return C = zddZero(A.dom)

if A = B then return B = zddOne(A.dom)

. Cache Checking
if IsInCache(ITE, A,B,C) then return result

. Remove top variable from inputs
x← TopVar(A.dom)
Al ← Lowedge(A, x) , Bl ← Lowedge(B, x) , Cl ← Lowedge(C, x)
Ah ← Highedge(A, x), Bh ← Highedge(B, x), Ch ← Highedge(C, x)

. Top node calculation
At ← TopNode(A) , Bt ← TopNode(B) , Ct ← TopNode(C)

. Recursive calculation
if (x = Bt and x 6= Ct) or (x 6= At and x 6= Bt and x 6= Ct) then

Rh ← zddZero(A.dom− x)

if (x 6= At and x = Ct) then Rh ← Ch

if (x = At and x = Bt and x 6= Ct) then Rh ← ITE(Ah, Bh,zddZero(A.dom− x))

if (x = At and x 6= Bt and x = Ct) then Rh ← ITE(Ah,zddZero(A.dom− x), Ch)

if (x = At and x = Bt and x = Ct) then Rh ← ITE(Ah, Bh, Ch)

Rl ← ITE(Al, Bl, Cl)
. result calculation

result← CN(x,Rh, Rl)
. Add result to cache

PutInCache(ITE, A,B,C, result)
return result

In the implementation of ITE we use caching to reduce the number of function calls, to make

it more efficient. Also we use the following rules to simplify the calculation for some special

Chapter 3. Implementation of ZDDs 20

cases. These rules help to find the result without calculation or improve using cached data.

ITE(A,B,A)→ ITE(A,B, 0Σ)

ITE(A,A,C)→ ITE(A, 1Σ, C)

In BDD operations we usually check if the variables are equal to 0 or 1, which sometimes helps

to stop unnecessary further calculations. As we have seen in this section, we also used these

values as an input of ITE operation to calculate different Boolean operations. In BDDs Boolean

function f = 0 and f = 1 represented by 0 and 1 terminal, respectively. But based on ZDD

definition Boolean formula f = 1, represents as a complete graph including all variables in

ZDD domains. Creating this diagram needs some calculation, which we called the operation

zddOne.

We implemented the Or operation that calculated using ITE with a B parameter equal to 1Σ.

We tried to avoid extra computation by re-implementing these operations. The Or definition is

the same as ITE, the only difference is that we knew B = 1Σ.

3.5 Not operation

Another important ZDD operation is negation. This operation calculate the complement of a

ZDD in a specific domain. It has the type and specification

Not(N) : ZΣ → ZΣ

N(ZΣ (f)) = ZΣ

(
f
)

Definition 3.11. Let vΣ be shorthand for ZΣ (v) , v ∈ {0, 1}, x be the top variable in Σ, Σ′ =

Σ− x, and let A = ZΣ (f). Then N is defined as follows:

N(A) =

0Σ A = 1Σ

1Σ A = 0Σ

< x, 1Σ′ ,N(Ax=0,Σ
′) > x 6= A.t

< x,N(Ax=1,Σ
′),N(Ax=0,Σ

′) > x = A.t

Theorem 3.12. The result of N(ZΣ (f)) is equal to ZΣ

(
f
)
.

(Proof): See Appendix A.3.

Theorem 3.13. The result of N(A) is a reduced ordered ZDD, if A is a reduced ordered ZDD.

Proof. For case 1 and case 2, it is true, since 0Σ and 1Σ are by definition reduced ordered ZDDs.

In cases 3 and 4 the CreateNode operation is used, so the result is a reduced ordered ZDD,

Chapter 3. Implementation of ZDDs 21

if in case 3 x is less than all variables in 1Σ′ and N(Ax=0,Σ
′). And in case 4 x is less than all

variables in N(Ax=1,Σ
′) and N(Ax=0,Σ

′). In addition, N(Ax=0,Σ
′) and N(Ax=1,Σ

′) should

also be reduced ordered ZDD. As A is an ordered ZDD, Ax=v is also ordered ZDD. x is the top

variable of A, so all variables in Ax=v,which is represented by ordered ZDD, are more than x.

So x is less than all variables in N(Ax=v,Σ
′). x is also less than variables in 1Σ′ , since it only

can contain variables in Σ′, that are greater than x as mentioned before. Therefore the result of

N(A) is a reduced ordered ZDD.

Implementation. The algorithm 3 shows Not implementation.

Algorithm 3 Not implementation
function N(A)

. Terminal cases
if A = zddOne(A.dom) then return zddZero(A.dom)

if A = zddZero(A.dom) then return zddOne(A.dom)

. Cache Checking
if IsInCache(N, A) then return result

. Remove top variable from inputs
x← TopVar(A.dom)
Al ← Lowedge(A, x) ,Ah ← Highedge(A, x)
At ← TopNode(A)

. Recursive calculation
if x < At then Rh ← 1Σ

if x = At then Rh ← N(Ah)

Rl ← N(Al)
. result calculation

result← CN(x,Rh, Rl)
. Add result to cache

PutInCache(N, A, result)
return result

3.6 Exist (∃) operation

One of the methods used in the reachability algorithm is quantification. Both ∃ and ∀ can be

calculated by Exist(EX) operation, which has the specification

EX : ZΣ, x : V→ ZΣ−x

EX(ZΣ (f) , X) = ZΣ−X (∃X.f)

By using EX and Not operations, ∀ can be calculated using the rule

∀X.A = ∃X.N(A)

Chapter 3. Implementation of ZDDs 22

Definition 3.14. Let A = ZΣ (f) be a well-formed ZDD, vΣ be shorthand for ZΣ (v) and let

EXx=v be shorthand for EX(Ax=v,Σ
′, X), where v ∈ {0, 1} and Σ′ = Σ− x. Also let x be the

top variable in domain Σ. Then EX will be defined as follows:

EX(A,Σ, X) =

0Σ−X A = 0Σ

1Σ−X A = 1Σ

ITE(EXx=1, 1Σ′−X ,EXx=0,Σ
′ −X) A.t = x ∧ x ∈ X

< x,EXx=1,EXx=0 > A.t = x ∧ x 6∈ X

< x, 0,EXx=0 > A.t 6= x ∧ x 6∈ X

EXx=0 A.t 6= x ∧ x ∈ X

Theorem 3.15. The result of EX(ZΣ (f) , X) is equal to ZΣ−X (∃X.f).

(Proof): See Appendix A.4.

Theorem 3.16. The result of EX(A,X) is a reduced ordered ZDD, if A is a reduced ordered

ZDD.

Proof. For case 1 and case 2, it is true, since 0Σ−X and 1Σ−X are by definition reduced ordered

ZDDs. For case 3, the result of ITE is reduced and ordered, if EXx=0 and EXx=1 are reduced

ordered ZDDs. EXx=v,v ∈ {0, 1} is reduced and ordered, since Ax=v is a reduced ordered

ZDDs. So it is true for case 3 as well. In addition to this condition, if x is less than all variables

in EXx=0 and EXx=1, the theorem is also true for case 4. As Ax=v is a reduced ordered ZDD

and x is the top variable in A, x is less than all variables in Ax=v. It is also true for the last case,

since EXx=0 is reduced and ordered.

Implementation. The algorithm 4 shows EX implementation. In this implementation, following

rule is considered to use cached date more efficient. The rule stops the calculation when there is

not any variable to be quantified.

EX(A, ∅)→ A

3.7 Rename operation

Renaming some variables with another is another operation that is used in reachability algo-

rithm. It is usually assumed that variables are renamed with new variables that are not in current

domain. The Rename(R) operation for ZDD has the specification

R : ZΣ, (x : V) ⊆ Σ, (x′ : V′) ∩ Σ = ∅ → Z(Σ−x)∪x′

R(ZΣ (f) , x, x′) = Z(Σ−x)∪x′ (f)

Chapter 3. Implementation of ZDDs 23

Algorithm 4 Exist implementation
function EX(A,X)

. Terminal cases
if A = zddZero(A.dom) then return zddZero(A.dom−X)

if A = zddOne(A.dom) then return zddOne(A.dom−X)

if X = 0 then return A

. Cache Checking
if IsInCache(EX, A,X) then return result

. Remove top variable from inputs
x← TopVar(A.dom)
Al ← Lowedge(A, x) ,Ah ← Highedge(A, x)
At ← TopNode(A)

. Recursive calculation
Rl ← EX(Al, X − x)
if x = At then Rh ← EX(Ah, X − x)

. result calculation
if (x = At and x ∈ X) then result← ITE(Rh,zddOne(A.dom−X), Rl)

if (x = At and x 6∈ X) then result← CN(x,Rh, Rl)

if x 6= At then
Rl.dom = A.dom
result← Rl

. Add result to cache
PutInCache(EX, A,X, result)
return result

Each variable can be replaced with any variable, and the CreateNode does not support order-

ing. Which means the new variable may be placed with in a wrong ordering. So we assume the

new variables have the same ordering as before. For example, if all the variables in the domain

are odd, each of them can rename with its next even number, that results an ordered ZDD. The

case that each variable can be replaced with any other variable is also possible. But then we

should use ITE instead of CreateNode to order variables, which needs inputs with the same

domain. So we should extend the domain of each new variable, which makes the calculation

more complex and inefficient.

Definition 3.17. Let A = ZΣ (f) be a well-formed ZDD, where x is the top level of Σ, and

let y be the top variable of A. We also assume that substituting x with x′ does not change the

ordering. Then R will be defined as follows:

R(A, x, x′) =

Z(Σ−x)∪x′ (f [x/x′]) A = 0Σ ∨A = 1Σ

< y,R(Ay=1, x, x
′),R(Ay=0, x, x

′) > y < x

< x′, Ax=1, Ax=0 > y = x

< x′, 0, Ax=0 > y > x

Theorem 3.18. The result of R(ZΣ (f) , x, x′) is equal to Z(Σ−x)∪x′ (f [x/x′]).

Chapter 3. Implementation of ZDDs 24

(Proof): See Appendix A.5.

Theorem 3.19. The result of R(A, x, x′) is a reduced ordered ZDD, if A is a reduced ordered

ZDD.

Proof. For case 1 it is true, since the result is 0Σ or 1Σ which are by definition reduced ordered

ZDDs. The result in case 2 is an ordered ZDD, if y be less than all variables in R(Ay=v, x, x
′),

and if R(Ay=v, x, x
′) is an ordered ZDD. Since A is ordered, Ax=v is also anordered ZDD.

For case 3 it is true, if Ax=v is ordered and all variables in Ax=v are greater than x′. As

mentioned before Ax=v is ordered. We assumed x′ can is used with the same order as x, then if

x is less than all variables in Ax=v, x′ should have the same property. As Ax=v is ordered and

x = y is the top variable of A, then all variables in Ax=v are greater than x. Therefore there

are greater than x′, too. In case 4, x′ is suppressed because 1-edge is pointing to zero. So x′

does not effect on ordering. The theorem is also true for this case, if the result of EX(A,Σ, x) is

reduced ordered ZDD, which is true since A is a reduced ordered ZDD.

Implementation. The algorithm 5 shows Rename implementation. In the implementation, the

case that input ZDD is equal to terminal node 1 is also considered, since the representation does

not change by renaming a variable and the domain should only become updated.

3.8 RelProd operation

Reachability algorithm which is explained in chapter 2.1.1, used three steps to find the next

reachable states using current reached states SΣ and transition relations TΣ,Σ′ . First step is

finding possible transitions from current states. This can be calculated using SΣ ∧ TΣ,Σ′ , as

it limits transitions. The reachable states S′Σ′ is the result of extracting the Σ variables from

the result, by ∃Σ. This represents the next states in domain Σ′, which should be renamed with

variables in Σ.

Usually the first two steps are calculated in one, using the relational product of current states

SΣ and transition relation TΣ,Σ′ . For Boolean functions f and g , and Σ as a set of variables the

relational product is defined as, ∃Σ(f ∧ g). The RelProd(RP) operation for ZDD has the type

and specification
RP : ZΣ,ZΣ, (x : V)→ ZΣ−X

RP(ZΣ (f) ,ZΣ (h) , X) = ZΣ−X (∃X.(f ∧ h))

Chapter 3. Implementation of ZDDs 25

Algorithm 5 Rename implementation
function RENAME(A, x, x′)

. Terminal cases
if A = zddZero(A.dom) then return zddZero((A.dom− x) ∪ x′)

if A = zddOne(A.dom) then return zddOne((A.dom− x) ∪ x′)

if A = 1 then . Terminal node 1
A.dom = (A.dom− x) ∪ x′

return A

. Cache Checking
if IsInCache(Rename, A, x, x′) then return result

. Remove top node from input
At ← TopNode(A)
Al ← Lowedge(A,At) ,Ah ← Highedge(A,At)

. Recursive calculation
if x > At then

Rh ← Rename(Ah, x, x
′)

Rl ← Rename(Al, x, x
′)

. result calculation
if x > At then result← CN(A.t,Rh, Rl)

if x = At then result← CN(x′, Ah, Al)

if x < At then
result← EX(A, x)
result.dom← result.dom ∪ x′

. Add result to cache
PutInCache(Rename, A, x, x′, result)
return result

Definition 3.20. Let A = ZΣ (f) and B = ZΣ (h) be well-formed ZDDs, RPx=v be the short-

hand for RP(Ax=v, Bx=v,Σ
′, X), and vΣ be the shorthand for ZΣ (v) , v ∈ {0, 1}. Let x be the

top variable in domain Σ. Then the definition of RP is as follows:

RP(A,B,Σ, X) =

1Σ−X A = 1Σ ∧B = 1Σ

0Σ−X A = 0 ∨B = 0

ITE(RPx=0, 1Σ−X ,RPx=1) x ∈ X

< x,RPx=1,RPx=0 > x 6∈ X ∧ x = A.t ∧ x = B.t

< x, 0,RPx=0 > Otherwise

Note. In RelProd definition, it is assumed that A and B have the same domain Σ.

Theorem 3.21. The result of RP(ZΣ (f) ,ZΣ (h) , X) is equal to ZΣ−X (∃X.(f ∧ h)).

(Proof): See Appendix A.6.

Theorem 3.22. The result of RP(A,B,X) is a reduced ordered ZDD, if A and B are reduced

ordered ZDDs.

Chapter 3. Implementation of ZDDs 26

Proof. For case 1 and case 2 it is true, since 0Σ−X and 1Σ−X are by definition reduced ordered

ZDDs. For case 3, it is also true, if Ax=v and Bx=v are reduced ordered ZDDs, which is true

since A and B are reduced and ordered. Therefore the result of RPx=v is also represented by a

reduced ordered ZDD, so the result of ITE is also ordered and reduced. In the other two cases,

the CreateNode result is reduced and ordered, if x is less than the variables in RPx=v, and

if RPx=v is a reduced ordered ZDD, which has been discussed already. Ax=v and Bx=v are

reduced ordered ZDDs and x is the top variable of A and B, so x is less than all variables in

Ax=v and Bx=v. As a result, x is also less than all variables of RPx=v. Therefore, the result of

RP is a reduced ordered ZDD for these cases as well.

Implementation. The algorithm 6 shows RelProd implementation.

Algorithm 6 RelProd implementation
function RELPROD(A,B,X)

. Terminal cases
if (A = zddZero(A.dom) or B = zddZero(A.dom)) then

return zddZero(A.dom−X)

if (A = zddOne(A.dom) and B = zddOne(A.dom)) then
return zddOne(A.dom−X)

. Cache Checking
if IsInCache(RelProd, A,B,X) then return result

. Remove top node from input
x← TopVar(A.dom)
Al ← Lowedge(A, x) , Bl ← Lowedge(B, x)
Ah ← Highedge(A, x), Bh ← Highedge(B, x)

if x ∈ X then . Recursive calculation for x ∈ X
Rl ← RelProd(Al, Bl, X)
if Rl = zddOne(A.dom−X) then return zddOne(A.dom−X)
else

Rh ← RelProd(Ah, Bh, X)
result← Or(Rl, Rh)

else . Recursive calculation for x 6∈ X
Rl ← RelProd(Al, Bl, X)
if (x = At and x = Bt) then Rh ← RelProd(Ah, Bh, X)
elseRh = 0
result← CN(x,Rh, Rl)

. Add result to cache
PutInCache(RelProd, A,B,X, result)
return result

Chapter 3. Implementation of ZDDs 27

3.9 RelProdS operation

In [29], RelProdS operation is introduced, which calculates both relational product (RelProd)

and substitution(Rename).

The RelProdS(RPS) operation for ZDD has the type and specification

RPS : ZΣ,ZΣ′ , (x : V), (s : 〈V′,V′′〉)→ Z(Σ∪Σ′−X)[S]

RPS(ZΣ (f) ,ZΣ′ (h) , X, S) = Z(Σ∪Σ′−X)[S] (∃X.(f ∧ h)[S])

Definition 3.23. Let A = ZΣ (f), B = ZΣ′ (h) be well-formed ZDDs, and RPSx=v be the

shorthand for RPS(Ax=v, Bx=v, X, S), vΣ be the shorthand for ZΣ (v) , v ∈ {0, 1}, and x =

max(Σ.t,Σ′.t). It is also assumed that renaming each x with S(x) will not change the ordering.

Then the definition of RPS is as follows:

RPS(A,B,X, S) =

1(Σ∪Σ′−X)[S] A = 1Σ ∧B = 1Σ′

0(Σ∪Σ′−X)[S] A = 0Σ ∨B = 0Σ′

ITE(RPSx=0, 1(Σ∪Σ′−X−x)[S],RPSx=1) x ∈ X

< S(x),RPSx=1,RPSx=0 > Otherwise

Note. In RelProdS definition, A and B can have the different domains Σ and Σ′, respectively.

Theorem 3.24. The result of RPS(ZΣ (f) ,ZΣ′ (h) , X, S) is equal toZ(Σ∪Σ′−X)[S] (∃X.(f ∧ h)[S]).

(Proof): See Appendix A.7.

Theorem 3.25. The result of RPS(A,B,X, S) is a reduced ordered ZDD, if A and B be reduced

ordered ZDDs.

Proof. For case 1 and case 2 it is true, since 0(Σ∪Σ′−X)[S] and 1(Σ∪Σ′−X)[S] are by definition

reduced ordered ZDDs. For case 3, it is also true, if Ax=v and Bx=v are reduced ordered ZDDs.

This is true since A and B are by definition ordered and reduced. Therefore the result of RPSx=v

is also represented by a reduced ordered ZDD, so the result of ITE is also ordered and reduced.

The result of case 4 is a reduced ordered ZDD, if S(x) is less than all variables in RPSx=v, and

RPSx=v is represented by a reduced ordered ZDD. It is assumed that substituting x with §(x)

does not change the ordering. Therefore, if x is less than all variables in RPSx=v, then S(x)

is also less than them. Ax=v and Bx=v are reduced ordered ZDDs and x is the top variable of

A and B, so x is less than all variables in Ax=v and Bx=v. Therefore, x is also less than all

variables of RPx=v, which is the same for S(x). Moreover, RPSx=v is represented by a reduced

ordered ZDD, as discussed earlier, so the theorem is also true for the last case.

Chapter 3. Implementation of ZDDs 28

Implementation. The algorithm 7 shows RelProdS implementation. It is assumed that the

expected result domain is pre-calculated, and is part of input variables, which is indicated as Σ.

In this way we can check the cache without calculation.

Algorithm 7 RelProdS implementation
function RELPRODS(A,B,X, S,Σ)

. Terminal cases
if (A = zddZero(A.dom) or B = zddZero(A.dom)) then

return zddZero(Σ)

if (A = zddOne(A.dom) and B = zddOne(A.dom)) then
return zddOne(Σ)

. Cache Checking
if IsInCache(RelProdS, A,B,X, S,Σ) then return result

. Remove top node from input
x← TopVar(A,B)
Al ← Lowedge(A, x) , Bl ← Lowedge(B, x)
Ah ← Highedge(A, x), Bh ← Highedge(B, x)

if x ∈ X then . Recursive calculation for x ∈ X
Rl ← RelProdS(Al, Bl, X, S,Σ− x)
if Rl = zddOne(Σ) then return zddOne(Σ)
else

Rh ← RelProdS(Ah, Bh, X, S,Σ− x)
result← Or(Rl, Rh)

else . Recursive calculation for x 6∈ X
Rl ← RelProdS(Al, Bl, X, S, (Σ− x) ∪ S(x))
Rh ← RelProdS(Ah, Bh, X, S, (Σ− x) ∪ S(x))
result← CN(x,Rh, Rl)

. Add result to cache
PutInCache(RelProdS, A,B,X, S,Σ, result)
return result

Chapter 4

Experiments

This chapter discusses our experiments. First the design of experiment for each set of mod-

els is explained. Then the result of these experiments are compared, for both cases of using

BDD and ZDD implementation in Sylvan for finding the reachable state space of two sets of

models: Sokoban puzzle and BEEM database [26]. In both cases we discuss how the memory

and computation time varies using ZDDs and BDDs, in different steps of the algorithm. Some

investigations are also done to improve the computation time of ZDDs.

4.1 Setups

The goal of this experiment is to investigate the efficiency of ZDDs in symbolic model checking.

We used our implementation of ZDD operations and the existing BDD library in Sylvan. We

measured computation time for each run. We also compared memory usage by measuring the

size of used hash table and the number of nodes that are used for representing the final reachable

state space, and transition relations for different models. We compared the size of these diagrams

using BDDs and using ZDDs.

We did some measuring for each run, for example the size of reachable states in different it-

eration and the number of calling each function. Since ZDDs and BDDs represent the same

formula with diagrams of different sizes, the calculation of execution time should exclude the

time needed to compute the size of each diagram. So measuring execution time is done sepa-

rately from measuring the memory usage. In addition, we used the gperftools CPU profiler [2]

to measure and analyze the runtime behavior of the program.

29

Chapter 4. Experiments 30

Reachability algorithm We implemented the reachability algorithm, given in Algorithm 8

to find all reachable states in a model. We modify the algorithm in Section 2.1.1 using the

RelProdS operation explained in Section 3.9.

Algorithm 8 Reachability algorithm
1: function REACHABILITY(I ,T ,Σ,Σ′)
2: states, new ← I
3: while new 6= ∅ do
4: new ← RelProdS(T,Σ,Σ′)
5: states← states ∨ new

return states

As we describe in Section 4.3, the BEEM models’ transition relations are divided into couple of

groups depending on the model. So the reachability algorithm is modified for this experiment

to check all the transition groups in each iteration. There is a loop inside the main iteration,

to calculate reachable states from each group of transitions. See Algorithm 9 for the modified

version.

Algorithm 9 Modified version of reachability algorithm for BEEM models
1: function REACHABILITY(I ,Tgroup,Σ,Σ′)
2: states, new ← I
3: while new 6= ∅ do
4: old← new, new ← ∅,
5: for i = 1 to number of groups do
6: a← Diff(RelProdS(old, Tgroup[i],Σ,Σ′), states)
7: new ← new ∨ a

8: states← states ∨ new

9: return states

Impelementation We did our experiments based on the implemented ZDD operations us-

ing Sylvan library, explained in Chapter 2.5. ZDD operations are implemented as explained

in Chapter 3. We extended the Sylvan library to support ZDDs as well, for symbolic model

checking.

Models We executed the reachability algorithm on different models, to compare the efficiency

of BDD and ZDD for symbolic model checking. We did our experiments on two sets of models,

Sokoban puzzles and BEEM database [26]. Section 4.2 explains more about Sokoban puzzles

and how we model them. The BEEM database is a database for explicit model checking. For

each of them, we made a selection on models with different sizes of state space. Table 4.1

and 4.2 represent some information about the selected models. In this table, Iterations is the

number of needed iterations to find all reachable states in the reachability algorithm. State is

the number of reachable states in the model. BDDnodes and ZDDnodes are the number of

Chapter 4. Experiments 31

Model Iterations States BDD nodes ZDD nodes % improvement
Screen.107 109 10,165 753 369 51.00%
Screen.1001 111 127,509 4080 2260 44.61%
Screen.387 172 1,235,214 4465 2706 39.40%
Screen.372 233 10,992,856 11578 6562 43.32%
Screen.792 174 117,434,655 32879 22546 31.43%
Screen.747 218 1,307,942,326 257344 196046 23.82%
Screen.38 267 12,197,960,188 130986 85183 34.97%

TABLE 4.1: Number of iterations for the reachability algorithm and number of nodes for BDD
and ZDD representation of reachable states for Sokoban screens

Model Group Iterations States BDD nodes ZDD nodes % improvement
anderson.1 1292 6 352664 22221 6783 69.47%
anderson.6 180 18 18306917 75220 33328 55.69%
anderson.8 245 34 538699029 285064 125575 55.95%
scheduleworld.2 17 26 1570340 18779 3196 82.98%
scheduleworld.3 24 34 166649331 28500 5220 81.68%
at.5 50 33 31999440 156785 59699 61.92%
at.6 94 33 160589600 420526 174863 58.42%
at.7 56 33 819243816 986322 392439 60.21%
collision.4 167 37 41465643 38327 8001 79.12%
collision.5 180 37 4139765993 29537 8729 70.45%

TABLE 4.2: Number of iterations and groups of transition relation for the reachability al-
gorithm and number of nodes representing reachable states using BDD and ZDD for BEEM

database models

required nodes to represent the final reachable states using BDD and ZDD, respectively. The

last column, i.e., improvement is the reduction percentage in number of nodes to represent

reachable states using ZDD instead of BDD.

Architecture The experiments are performed on a cluster with 16 Intel Xeon X5550 @ 2.67GHz

processors, each with 4 cores, and 72GB total memory .

4.2 Sokobon models

Sokoban is a puzzle, where a player should push some boxes to specific defined locations, i.e.,

goals, on a board. The board is partitioned in square cells, where each of them models either a

floor or a wall. A floor cell may or may not contain a box, and player can move into a cell if it

is empty or by pushing the box to an adjacent cell, if the cell is filled with the box. Moreover,

boxes can not be pushed into walls or other boxes. The goal locations for boxes are also marked

on some floor squares. The following is an example of Sokobon puzzle board.

Chapter 4. Experiments 32

In the first experiment, we used the reachability algorithm to find all possible positions for the

player and boxes in the board, given their initial locations. Since there are four options for each

squares, we need two Boolean variables x1 and x2 to represent the state of a cell, as described

in Section 2.1. Here is how we encode the state of each cell:

Square condition x1x2

empty 00

box 01

player 10

wall 11

We chose this encoding based on the definition of ZDD, that eliminates nodes with value 0. So

we assigned x1 = 0, x2 = 0 to empty squares, since most of squares are empty. And because

walls do not change and are not used in state specification, we assigned value 1 to the variables

for representing walls (x1 = 1, x2 = 1). The other two possible evaluations also assigned to

the players and boxes. So the number of ones in the representation of a state is equal to the total

number of boxes and players in the board.

4.2.1 Results

Table 4.1 shows the size of BDDs and ZDDs representing the reachable set of states for different

Sokoban models. As we expected ZDDs represent the same set of states, using less number of

nodes in comparison to BDDs. We also keep track of the size of transition relation, during

defining new transitions. Figure 4.1 represents the number of nodes used to represent transition

relation in different steps of creating the final transition relation. We also measured how much

memory is used by each method to complete reachability algorithm. As Table 4.3 shows the

memory usage of ZDDs is about half of BDDs. Figure 4.2 represents the size of reachable states

in each iteration of reachability algorithm, that also illustrates ZDDs efficiency in using memory

in comparison with BDDs , for Sokoban puzzles.

As we have seen the size of transitions, the mid and final reachable state was smaller using ZDD

representation instead of BDDs. So ideally we expected to have less computation time using

Chapter 4. Experiments 33

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28 31 34 37

 N
um

be
r o

f n
od

es
 T

Iterations of adding new transition

s107-zdd

s1001-zdd

s387-zdd

s372-zdd

s107-bdd

s1001-bdd

s387-bdd

s372-bdd

FIGURE 4.1: Transition relation size of Sokoban examples for ZDD and BDD

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	 61	 66	 71	 76	 81	 86	

Re
ac
he

d	
st
at
e	
si
ze
	

Reachability	 itera0on	

107-‐zdd	

107-‐bdd	

(a) screen.107

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

1	 6	 11
	

16
	

21
	

26
	

31
	

36
	

41
	

46
	

51
	

56
	

61
	

66
	

71
	

76
	

81
	

86
	

91
	

96
	

10
1	

10
6	

11
1	

Re
ac
he

d	
st
at
e	
si
ze
	

Reachability	 itera0on	

387-‐zdd	

387-‐bdd	

(b) screen.387

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	 61	 66	 71	 76	 81	 86	

Re
ac
he

d	
st
at
e	
si
ze
	

Reachability	 itera0on	

1001-‐zdd	

1001-‐bdd	

(c) screen.1001

0	

50000	

100000	

150000	

200000	

250000	

1	 11
	

21
	

31
	

41
	

51
	

61
	

71
	

81
	

91
	

10
1	

11
1	

12
1	

13
1	

14
1	

15
1	

16
1	

17
1	

18
1	

19
1	

20
1	

21
1	

22
1	

Re
ac
he

d	
st
at
e	
si
ze
	

Reachability	 itera0on	

372-‐zdd	

372-‐bdd	

(d) screen.372

FIGURE 4.2: Size of reached states in different iteration for BEEM models

Model BDD ZDD
screen.107 72,008 35,112
screen.1001 370,993 197,596
screen.387 2,200,884 1,149,400
screen.372 12,293,742 6,035,300
screen.792 132,756,758 76,052,580

TABLE 4.3: Used memory for Sokoban models in number of used buckets

Chapter 4. Experiments 34

Model BDD ZDD
screen.107 2,861 2,882
screen.1001 3,100 3,084
screen.387 4,846 4,614
screen.372 17,919 14,883
screen.792 184,411 156,642

TABLE 4.4: Computation time of Sokoban examples (ms)

Model ZDD BDD
screen.107 499,630 499,674
screen.1001 3,338,329 3,338,373
screen.387 20,261,938 20,263,440
screen.372 110,698,226 110,699,813
screen.792 1,380,276,935 1,379,945,068

TABLE 4.5: Number of times RelProdS operation called

ZDDs, but as Table 4.4 shows the computation time is almost the same using both methods.

Although the memory consumption shows a great improvement, we need to investigate why

computation time does not decrease when there are less number of nodes.

The following provides some possible explanation for why the computation time has not im-

proved:

• The implemented operations for ZDDs are based on domain variables, which means the

operations recursively call sub-graphs according to the variables in domain of a ZDD in-

stead of variables showing up in the diagram. This may cause an effect on execution

time, since although the ZDD is smaller, it has the same domain as BDD. We test this

hypothesis by comparing the number of time each function is called using both methods.

Table 4.5 illustrates how often RelProdS operation is called, as one of the main oper-

ation in reachability algorithm. Based on these results, the number of function calls are

quite the same for ZDDs and BDDs, which may be the reason of having the same time.

We also measure how much time the entire process has spent in each function. Table 4.6

shows the percentage of time spent in a certain operation during the experiment using

ZDDs and BDDs. Since the number of used node is less in ZDD, llmsset_lookup

operation that creates nodes in hash table, call 10% less, while it spend the same percent-

age of time for caching. Calculation of RelProdS and ITE for BDD, in total is almost

the same as ZDD calculation of RelProdS and Or. The saved time for creating nodes, is

spend for finding the level of a node and calculating the set without its top variable, which

both are used for domain calculation. So there is a possibility that we can have speedup

for ZDDs by optimizing domain calculation.

Chapter 4. Experiments 35

operation BDD% ZDD% description
llmsset_lookup 23.4 13.4 creating nodes in hash table
llci_get_tag 14.3 14.3 retrieving from memoization cache

relprods 16.4 20.5 calculating RelProdS
hash_mul 13.1 11.2 hashing function

memcpy 13.1 14.7 copy or fill block of memory
ite 9 - calculating ITE
or - 5.8 calculating Or

__nss_hosts_lookup 2.5 4.9
llci_put_tag 2 1.8 putting in memoization cache

sylvan_var - 3.6 get the level of a node
sylvan_set_next - 3.1 calculate set without top variable

sum 93.8 93.3

TABLE 4.6: CPU profile of screen.387 using ZDD and BDD

We also investigated the effect of using operations in which it recursively call sub-graphs

according to the variables showing up in the diagram, for the BEEM database. The related

result is represented in Section 4.3.1.

• Since its an ongoing work, some of our ZDD operations may not yet be as efficient as

BDD operations of Sylvan. Therefore, we may have more execution time for ZDDs.

• Also, if we would use garbage collection, it would be possible to run large examples,

otherwise the program usually gets out of memory. Garbage collection calls when the

memory is quite full, and using it will take some time to clear the hash table. So if we

use less memory, we need to call garbage collection less and save some time as a result

in comparison to the same algorithm using more memory. So we expect less computation

time for ZDD, since the memory usage is half of BDD. We did not use garbage collection

in this experiment, and that’s why it was not doable for larger examples. So there is

a hypothesis that doing the same experiment on larger example and including garbage

collection will result in a better execution time for ZDDs.

We used garbage collection to find reachable states of these models, to check whether it

can make a different. Table 4.7 represents the new results, that confirms the hypothesis of

using garbage collection improve the result of ZDDs for larger examples.

4.3 BEEM models

We used the BEEM database [26], [1] models where transition relations are divided in to n

groups, where n depends on the model . Algorithm 9 is used instead of the original reachability

algorithm for these models, and find the reachable states in each iteration, in n steps.

Chapter 4. Experiments 36

Model BDD ZDD
screen.107 2,375 2,389
screen.1001 2,574 2,579
screen.387 4,187 3,984
screen.372 14,855 12,982
screen.792 174,551 147,008
screen.747 3,130,416 2,374,375
screen.38 15,657,673 10,241,960

TABLE 4.7: Computation time of Sokoban examples using garbage collection (ms)

First these transition relation groups are calculated using LTSmin [6], a model checking toolset.

The full command is:

dve2lts-sym -rgs --vset=sylvan <model.dve> --save-transitions

=<file.bdd>

Then we generated the related BDDs for initial state and all transition relation groups, based on

the generated file.bdd. After that, we converted BDDs to ZDDs using B2Z operation, as

explained in Section 3.2.

In this experiment, we pre-computed the ZDD and BDD initial states and transition relation first,

to focus on reachability algorithm. Otherwise, we would end up measuring the performance of

generating the initial DDs and converting BDDs to ZDDs, which were not our interest. So the

execution times used in the following is only related to reachability algorithm not generating

diagrams.

4.3.1 Results

The size of BDDs and ZDDs representing the reachable set of states for different BEEM models

are shown in Table 4.2. The same as Sokoban results, the number of nodes using ZDD is less

than BDD to represent the set of reachable states. Figure 4.3 represent the size of each group of

transition relation for couple of examples. As we can see, ZDD representations are smaller than

BDDs for all groups. For some groups of transitions, BDDs are much larger than ZDDs. We

investigated why we have these peaks in BDDs but not in ZDDs.

Each generated group of transitions for a model only includes variables that are used on the

related Boolean formula. Which means don’t care variables are not part of the domain. So the

number of variables in the domain of each transition group can be different from the others. The

existing peaks in BDD results, is related to transition groups with more variables. But most of

them are assigned to zero that results in a major increase in the size of BDDs. However, it does

not affect the size of ZDDs.

Chapter 4. Experiments 37

0	

500	

1000	

1500	

2000	

2500	

0	 1	 2	 3	 4	 5	

N
um

be
r	
of
	 n
od

es
	

Transi0on	 group	 index	

BDD	

ZDD	

(a) anderson.1.8

0	

100	

200	

300	

400	

500	

600	

700	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	

N
um

be
r	
of
	 n
od

es
	

Transi0on	 group	 index	

BDD	

ZDD	

(b) anderson.6.4

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

N
um

be
r	
of
	 n
od

es
	

Transi0on	 group	 index	

BDD	

ZDD	

(c) anderson.8.4

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	 22	 24	
N
um

be
r	
of
	 n
od

es
	

Transi0on	 group	 index	

BDD	

ZDD	

(d) ScheduleWorld.2.8

FIGURE 4.3: Size of transition relation groups for BEEM models

We also measured the computation time of reachability algorithm for some of the BEEM database

models. The columns BDD and ZDD-ITE in Table 4.9 depicts the results of this experiment,

which for larger models ZDDs find all reachable states in less time in comparison to BDDs.

This is, to some extent, different from the results that we had for Sokoban examples of previous

section, for which we did not have a noticeable improvement in the computation time, in spite

of the fact that the same data structure and operations are used for both cases.

As we mentioned earlier, there is a possibility that ZDDs have better performance when we

use garbage collection, which clears the hash table when it is full. In this experiment we have

used garbage collection. So the reduction of computation time could be linked to this fact. By

measuring the number of times that the garbage collection (gc) is called for each model using

ZDD and BDD, we can find out whether the improvement of execution time is related to gc. As

it is shown in Figure 4.4 , there is a relation between the reduction in the number of times that

the hash table becomes full (that results in calling gc) and the obtained speedup. Therefore the

performance of ZDDs is better than BDDs, since they use less memory that results in calling gc

less. Figure 4.5 represents the percentage of ZDD improvement in computation time versus to

percentage of its improvement in number of calls to gc comparing with BDD.

Table 4.8 shows the percentage of time spent in a certain operation during the experiment

using ZDDs and BDDs. The same as Sokoban example, ZDDs spent less time for creating

nodes. However, in this case it use cached data more, and also it spend about two time more

Chapter 4. Experiments 38

0	

100	

200	

300	

400	

500	

600	

0	 5	 10	 15	 20	 25	

t(
BD

D
)-‐
t(
ZD

D
)	

#gc(BDD)-‐#gc(ZDD)	

anderson.1	

anderson.6	

schedule.2.8	

at.5	

collision.4	

at.6	

schedule.3.8	

collision.5	

anderson.8	

at.7	

FIGURE 4.4: Correlation between the reduction of number of calls to gc and speedup, i.e., the
decrease in computation time by using ZDD (s)

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

0%	 20%	 40%	 60%	 80%	 100%	

Sp
ee
du

p	
	

	 Reduc)on	 #gc	 using	 ZDD	

anderson.1	

anderson.6	

schedule.2.8	

at.5	

collision.4	

at.6	

schedule.3.8	

collision.5	

anderson.8	

at.7	

FIGURE 4.5: Speedup by percentage of reduction in number of times gc is called using ZDD

in RelProdS operation. Domain calculation in ZDD also takes about 7% of the computation

time, using sylvan_set_next and sylvan_var.

Several implementations are investigated for ZDD operations, to reduce the ZDD computation

time. Tables 4.9 and 4.10 show the results of different implementations, where ZDD-ITE shows

the results for using ITE operation for Or, And, and Diff, which is the same as BDD. As men-

tioned in Section 3.4, there is also a separate implementation for Or operation, which prevents

calling zddOne operation unnecessarily. The results of using this operation are represented as

ZDD-Or in these figures. As explained in the Sokoban experiment, there is a possibility that

the execution time can speed up by traversing through the diagram according to the appeared

variables in the diagram itself instead of traversing through the domain variables. To assess this,

Chapter 4. Experiments 39

operation BDD% ZDD% description
llmsset_lookup 36.2 11.9 creating nodes in hash table

hash_mul 18.2 19.2 hashing function
ite 13.4 7.7 calculating ITE
or - 4.2 calculating Or

llci_get_tag 9.5 17.6 retrieving from memoization cache
relprods 6.9 15.9 calculating RelProdS

__nss_hosts_lookup 2.4 3.7
llci_put_tag 2.2 3.7 putting in memoization cache

llmsset_rehash_bucket 1.1 - mapping existing items to new buckets
memset-cpy 1.9 2.7 copy or fill block of memory
sylvan_var - 5.3 get the level of a node

sylvan_set_next - 1.9 calculate set without top variable
sum 92% 93.8%

TABLE 4.8: CPU profile of schedule_world.3.8 using ZDD and BDD

Model BDD ZDD-ITE ZDD-or ZDD-skip
anderson.1 1.5 1.8 1.3 1.2
anderson.6 12.9 12.9 12.9 10.0
schedule.2.8 6.1 5.0 4.5 5.1
at.5 42.5 34.2 32.0 27.2
collision.4 176.9 134.2 125.0 105.8
at.6 170.1 133.7 126.1 108.5
schedule.3.8 200.4 83.7 85.6 58.8
collision.5 912.1 424.4 419.6 343.9
anderson.8 93.5 81.7 75.8 65.8
at.7 709.0 410.9 374.8 324.0

TABLE 4.9: Computation time of BEEM models using BDD and ZDD

we modified the Or operation as an example, to skip domain variables that do not show up in

the diagram. ZDD-skip is related to the result of using this method for Or operation.

It is obvious from Table 4.10, that the number of function calls is reduced by skipping unused

variables, since there are smaller numbers in column ZDD-skip in compare with both ZDD-ITE

and ZDD-or. This also affects on the execution time and helps speeding up using ZDD. So we

may have better performance using ZDD, by changing other operations as well. However, using

a specific implementation for Or operation, does not have too much influence on both execution

time and function calls. The tables also illustrates that there is a relation between the number of

function calls and the execution time. By decreasing the number of function calls, the execution

time decreases.

Chapter 4. Experiments 40

Model BDD ZDD-ITE ZDD-or ZDD-skip
anderson.1 2,944,976 5,331,802 3,054,581 2,475,173
anderson.6 30,002,641 35,015,784 33,405,964 22,727,626
schedule.2.8 16,952,579 19,119,358 18,359,734 9,417,068
at.5 100,578,435 114,291,168 101,179,670 69,713,839
collision.4 481,120,675 526,511,631 457,870,260 321,199,791
at.6 416,970,328 462,999,565 410,561,120 296,568,050
schedule.3.8 576,702,703 411,924,160 399,459,312 202,934,785
collision.5 2,487,369,371 1,836,328,817 1,681,405,138 1,122,717,622
anderson.8 202,249,412 226,623,320 225,108,906 153,652,632
at.7 1,644,914,192 1,376,672,146 1,187,195,396 852,809,898

TABLE 4.10: Number of function calls for ITE and OR operations using BDD and ZDD for
BEEM models

Chapter 5

Related work

ZDDs are used in different areas. In [22], several applications of ZDD are mentioned. The

first category is related to representing the unate cube sets [20], where only positive literals

are allowed. Unate cube sets are used to solve problems like the N-queen problem, which can

be solved N-times smaller by representing cube sets using ZDDs instead of BDDs. However,

the knight’s tour problem as another famous combinatorial chess problem, do not benefit from

ZDDs. The solution of this problem contains 64 edges from the 156 edges, which is not a sparse

graph. So we can expect that ZDDs do not have remarkable effect on it.

ZDDs are also used to represent the cube sets (two-level logic), where each cube is a combina-

tion of positive and negative literals for input variables. Boolean functions can be represented

by cube sets. As explained in [22], cube sets can be used to generate multi-level logic for

logic synthesis systems. The problem with this is that there are cases where the cube set rep-

resentations grow exponentially with the number of inputs. For instance, parity functions and

full-adders behave like this. Using the OBDD-based technique [11] makes an improvement in

both computation time and memory usage. ZDDs are suitable for these kind of applications,

where the multi-level logic can quickly be generated from cube sets, even for parity functions

and full-adders.

In [31], a method for CTL model checking of Petri nets using ZDD is proposed. As the state

space of Petri nets are usually sparse, ZDDs are useful for their manipulation. They also propose

special operations to compute the reachable states for Petri nets. Their experimental results

show that the size of ZDDs is two or three times smaller than the original BDDs, for symbolic

manipulation of Petri nets.

Another usage of ZDDs is presented in [21], for representing polynomial formulas. The idea

behind it is to break degrees and coefficients of each variable in to sum of 2’s exponential

numbers. For instance, the polynomial 5x2 + 2x10y can be written as x2 + 22x2 + 21x2x8y1.

41

Chapter 5. Related work 42

Then this combination can efficiently represented by ZDDs, using five variables 21, 22, x2, x8,

and y1.

Based on [25], ZDD is also used to different problems such as:

• To solve graph optimization problems like maximal clique [9].

• To represent cubes and essential primes in two-level SOP minimization [8].

• To solve unate covering problem arising in multi-layer planar routing [13] .

• To find dichotomy-based constraint encoding [12] [10].

• To represent and manipulate regular expressions under length constraint [15].

• In symbolic traversal of finite state machines [28].

• In pass-transistor logic synthesis [5].

• In finding all disjoint-support decomposition of completely specified logic functions [23].

• For unate decomposition of Boolean functions [16].

Chapter 6

Conclusions and Future Work

This chapter presents the conclusion of our work and some ideas as future challenges.

6.1 Conclusions

In Chapter 2, we introduced ZDD as a representation of Boolean functions, and explained the

requirements of implementing reachability algorithm. Then we discussed about CUDD package

as an available implementation of ZDD, and its strong and weak points to be used for model

checking. CUDD is one of the known packages for BDDs, but it considers a fixed domain of

variables for all diagrams, which is not suitable for ZDDs. There is also an extension for CUDD,

called EXTRA, with more ZDD operations. However, still the same problem exist on EXTRA.

We used some examples to explain this issue and some other reasons that we did not choose

CUDD for our experiment.

In Chapter 3, we designed and implemented ZDD operations as an extension of Sylvan, such as

ITE,Exist, and RelProdS. Moreover, we proved the correctness of these operations. Also

a domain attribute was considered for each ZDD to avoid the problems on CUDD.

In chapter 4, we compared the performance of the reachability algorithm using ZDDs and BDDs,

for a set of models in Sokoban puzzles and BEEM database. The results show an effective im-

provement in memory usage by using ZDDs. In fact the memory usage is about half time less

than BDDs. ZDDs use less nodes to represent the same set of states, as well as transition rela-

tions. Moreover, the execution time also reduced for large cases. According to our experiments,

since we need to use garbage collection for large models, ZDDs can save some time by calling

garbage collection less than BDDs, which is a result of using less memory.

Additionally, we investigated how ZDDs can benefit from having less nodes to speedup. We

found out the number of function calls is almost the same for both, in spite of the fact that the

43

Chapter 6. Conclusions and Future Work 44

number of nodes decreased. This is happening since the functions are recursively called based

on existing variables in the domain, which is the same for both ZDDs and BDDs. We modified

one of the operations to skip variables that are in the domain but not in the diagram, to check

whether it reduces the computation time. This resulted the speedup of ZDDs, which suggests

that it may be beneficial to apply this modification on all operations.

6.2 Future Work

We also have some ideas for future investigation:

1. The computation time can be improved by skipping variables in the domain that are not

used in the ZDD representation, while the caching is same as before. This will reduce the

number of function calls.

2. Exploring the effect of using garbage collection for a larger set of Sokoban models, can

prove or disprove improvement of ZDD execution time in comparison to BDD.

3. As we have seen in the experiments, about 7% of execution time is spent on operations that

are mostly used for calculating the domain. Optimizing domain calculation may reduce

the usage of these operations.

4. As mentioned earlier zddOne is not as trivial as it is for BDDs. Assume a ZDD with

domain X = {x1, ..., xn}, If we store the domain variables using zddOne(X) instead of

x1 ∨ ...∨xn, then we always have the result of zddOne for the related domain. This will

avoid us from calculating it every time.

5. We can extend the current implementation of the operations so that they support inputs

with different domains; specifically for operations like ITE and RelProd. It may reduce

the number of calls to Extend operation, which is used to match the domains. However,

this extension does not affect on our experiment results, since RelProdS already sup-

ports different domains and we only use ITE for cases with the same domains.

6. Comparing CUDD and Sylvan-ZDD in both memory usage and computation time to in-

vestigate the effect of the domain attribute used in our implementation, would be interest-

ing.

7. Parallelism of ZDD could improve its computation time.

Appendix A

Correctness Proofs

Based on the ZDD definition, we have the following rules, which are referred in the proofs:

R.1 ZΣ (f) = 0←→ f = 0

R.2 ZΣ (f) = 1Σ ←→ f = 1

R.3 ZΣ (f) = ZΣ (g)←→ f = g

R.4 (Σ.t = x ∧A.t 6= x)←→ fx=1 = 0

We also assumed following equivalence in the proofs:

f ≡ (x ∧ fx=1) ∨ (x ∧ fx=0) Shannon decomposition

(f ∧ g)x=v ≡ fx=v ∧ gx=v Distribution of restriction over ∧
(f ∨ g)x=v ≡ fx=v ∨ gx=v Distribution of restriction over ∨
∃x.f ≡ fx=0 ∨ fx=1 Definition of ∃
∃x.(f ∨ g) ≡ ∃x.f ∨ ∃x.g Distribution of ∃ over ∨

(A−B) ∪ C ≡ (A ∪ C)− (B − C) Distribution of ∪ over − for sets

45

Appendix A.1 Extend Operation 46

A.1 Extend Operation

Definition A.1. Let A = ZΣ (f), and let y be the top variable of A. Then EXT will be defined

as follows:

EXT(A, x) =

A x = y

< x,A,A > x < y

< y,EXT(Ay=1, x),EXT(Ay=0, x) > x > y

Theorem A.2. The result of EXT(ZΣ (f) , x) is equal to ZΣ∪x (f).

Proof. By induction on the size of A. We assume the induction hypothesis EXT(ZΣ−y (fy=v) , x) ≡
Z(Σ−y)∪x (fy=v), where v ∈ {0, 1}. There are five cases:

1. If x = y, then the function returns A = ZΣ (f) = ZΣ∪x (f), Since y ∈ Σ and x = y then

Σ ∪ x = Σ.

2. If x < y, then the function returns < x,A,A >

1
= < x,ZΣ (f) ,ZΣ (f) >

2
= ZΣ∪x ((x ∧ f) ∨ (x ∧ f))

3
= ZΣ∪x (f)

Step 1: by definition of A. Step 2: by definition of CreateNode. Step 3: by logical

equation.

3. If x > y, then the function returns < y,EXT(Ay=1, x),EXT(Ay=0, x) >

1
= < y,Z(Σ−y)∪x (fy=1)),Z(Σ−y)∪x (fy=0)) >

2
= Z(Σ−y)∪x∪y ((y ∧ fy=1) ∨ (y ∧ fy=0))

3
= ZΣ∪x ((y ∧ fy=1) ∨ (y ∧ fy=0))

4
= ZΣ∪x (f)

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by

logical equation. Step 4: by Shannon decomposition.

Appendix A.2 ITE Operation 47

A.2 ITE Operation

Definition A.3. Assume A = ZΣ (f) , B = ZΣ (g) , C = ZΣ (h), which are well-formed ZDDs

. Let Ax=v be shorthand for ZΣ′ (fx=v) and ITEx=v be shorthand for ITE(Ax=v, Bx=v, Cx=v)

with v ∈ {0, 1}. Also let x be top variable in Σ. Then ITE is defined as follows:

Note. Note that in the following definition all cases except the terminal cases are the simplified

version of

< x,ITEx=1,ITEx=0 >

ITE(A,B,C) =

C A = 0Σ

B A = 1Σ

B B = C

A B = 1Σ ∧ C = 0Σ

Not(A) B = 0Σ ∧ C = 1Σ

< x, 0Σ′ ,ITEx=0 > (B.t 6= x ∧ C.t 6= x)∨
(A.t 6= x ∧B.t = x ∧ C.t 6= x)

< x,Cx=1,ITEx=0 > A.t 6= x ∧ C.t = x

< x,ITE(Ax=1, Bx=1, 0
′
Σ),ITEx=0 > A.t = x ∧B.t = x ∧ C.t 6= x

< x,ITE(Ax=1, 0
′
Σ, Cx=1),ITEx=0 > A.t = x ∧B.t 6= x ∧ C.t = x

< x,ITEx=1,ITEx=0 > A.t = x ∧B.t = x ∧ C.t = x

Theorem A.4. The result of ITE(ZΣ (f) ,ZΣ (g) ,ZΣ (h)) is equal to ZΣ

(
(f ∨ g) ∧ (f ∨ h)

)
.

Proof. By induction on the size of Σ. We assume the induction hypothesis

ITE(Ax=v, Bx=v, Cx=v)≡ ZΣ′
(
(fx=v ∧ gx=v) ∨ (fx=v ∧ hx=v)

)
≡ ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=v

)
(by distribution over restriction). There are nine cases:

1. If A = 0Σ, then the function returns

C
1
= ZΣ (h)

2
= ZΣ ((0 ∧ g) ∨ (1 ∧ h))

3
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)
Step 1: by definition of C. Step 2: by logic equivalent. Step 3: as f = 0, using rule R.1.

Appendix A.2 ITE Operation 48

2. If A = 1Σ, then the function returns

B
1
= ZΣ (g)

2
= ZΣ ((1 ∧ g) ∨ (0 ∧ h))

3
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)
Step 1: by definition of B. Step 2: by logic equivalent. Step 3: as f = 1, using rule R.2.

3. If B = C, then the function returns

B
1
= ZΣ (g)

2
= ZΣ

(
(f ∧ g) ∨ (f ∧ g)

)
3
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)
Step 1:by definition of B. Step 2: by logic equivalent. Step 3: by rule R.3.

4. If B = 1Σ, C = 0Σ, then the function returns

A
1
= ZΣ (f)

2
= ZΣ

(
(f ∧ 1) ∨ (f ∧ 0)

)
3
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)
Step 1: by definition of A. Step 2: by logic equivalent. Step 3: by definition of B and C,

and rules R.1, and R.2.

5. If B = 0Σ, C = 1Σ, then the function returns

A
1
= ZΣ

(
f
)

2
= ZΣ

(
(f ∧ 0) ∨ (f ∧ 1)

)
3
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)
Step 1: by definition of A. Step 2: by logic equivalent. Step 3: by definition of B and C,

and rules R.1, and R.2.

6. If B.t 6= x,C.t 6= x Or A.t 6= x,B.t = x,C.t 6= x, then the function returns

Appendix A.2 ITE Operation 49

< x, 0′Σ,ITEx=0 >

1
= < x, 0′Σ,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

2
= ZΣ′∪x

(
(x ∧ 0) ∨

(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
3
= ZΣ

(
(x ∧ 0) ∨

(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
4
= ZΣ

(
(x ∧ (0 ∨ (fx=1 ∧ 0)) ∨

(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
5
= ZΣ

(
(x ∧ (0 ∨ (fx=1 ∧ hx=1)) ∨

(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
6
= ZΣ

(
(x ∧

(
(fx=1 ∧ gx=1) ∨ (fx=1 ∧ hx=1

)
) ∨
(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
7
= ZΣ

(
(x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=1

) ∨
(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
8
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by

assumption A,B, and C are well-formed ZDDs. Step 4: by logical equation. Step 5:

as C.t 6= x, x has negative value in h (rule R.4). Step 6: as A.t 6= x OrB.t 6= x, x

has negative value in f or g. Step 7: distribution of restriction. Step 8: by Shannon

decomposition.

7. If A.t 6= x,C.t = x, then the function returns

< x,Cx=1,ITEx=0 >

1
= < x,ZΣ′ (hx=1) ,ZΣ′

([
(f ∧ g) ∨ (f ∧ h)

]
x=0

)
>

2
= ZΣ

(
(x ∧ hx=1) ∨ (x ∧ [(f ∧ g) ∨ (f ∧ h)]x=0)

)
3
= ZΣ

(
(x ∧ [(0 ∧ gx=0) ∨ (1 ∧ hx=1)]) ∨ (x ∧ [(f ∧ g) ∨ (f ∧ h)]x=0)

)
4
= ZΣ

((
x ∧

[
(fx=1 ∧ gx=1) ∨ (fx=1 ∧ hx=1)

])
∨ (x ∧ [(f ∧ g) ∨ (f ∧ h)]x=0)

)
5
= ZΣ

((
x ∧

[
(f ∧ g) ∨ (f ∧ h)

]
x=1

)
∨ (x ∧ [(f ∧ g) ∨ (f ∧ h)]x=0)

)
6
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)
Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by logic

equation. Step 4: as A.t 6= x, x has negative value in f (rule R.4). Step 5: by distribution

of restriction. Step 6: by Shannon decomposition.

8. If A.t = x,B.t = x,C.t 6= x, then the function returns

Appendix A.2 ITE Operation 50

< x,ITE(Ax=1, Bx=1, 0
′
Σ),ITEx=0 >

1
= < x,ZΣ′

(
(fx=1 ∧ gx=1) ∨ (fx=1 ∧ 0)

)
,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

2
= < x,ZΣ′

(
(fx=1 ∧ gx=1) ∨ (fx=1 ∧ hx=1)

)
,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

3
= < x,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=1

)
,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

4
= ZΣ′∪x

((
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=1

)
∨
(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
5
= ZΣ′∪x

(
(f ∧ g) ∨ (f ∧ h)

)
6
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)

Step 1: by induction hypothesis. Step 2: as C.t 6= x, x has negative value in h. Step 3:

by distribution of restriction. Step 4: by definition of CreateNode. Step 5: by Shannon

decomposition. Step6: by assumption A,B,and C are well-formed ZDDs.

9. If A.t = x,B.t 6= x,C.t = x, then the function returns

< x,ITE(Ax=1, 0
′
Σ, Cx=1),ITEx=0 >

1
= < x,ZΣ′

(
(fx=1 ∧ 0) ∨ (fx=1 ∧ hx=1)

)
,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

2
= < x,ZΣ′

(
(fx=1 ∧ gx=1) ∨ (fx=1 ∧ hx=1)

)
,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

3
= < x,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=1

)
,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

4
= ZΣ′∪x

((
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=1

)
∨
(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
5
= ZΣ′∪x

(
(f ∧ g) ∨ (f ∧ h)

)
6
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)

Step 1: by induction hypothesis. Step 2: as B.t 6= x, x has negative value in g. Step 3:

by distribution of restriction. Step 4: by definition of CreateNode. Step 5: by Shannon

decomposition. Step6: by assumption A,B,and C are well-formed ZDDs.

10. If A.t = x,B.t = x,C.t = x, then the function returns

< x,ITEx=1,ITEx=0 >

1
= < x,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=1

)
,ZΣ′

((
(f ∧ g) ∨ (f ∧ h)

)
x=0

)
>

2
= ZΣ′∪x

((
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=1

)
∨
(
x ∧

(
(f ∧ g) ∨ (f ∧ h)

)
x=0

))
3
= ZΣ′∪x

(
(f ∧ g) ∨ (f ∧ h)

)
4
= ZΣ

(
(f ∧ g) ∨ (f ∧ h)

)

Appendix A.2 ITE Operation 51

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 5: by

Shannon decomposition. Step6: by by assumption A,B,and C are well-formed ZDDs.

Appendix A.3 Not Operation 52

A.3 Not Operation

Definition A.5. Let vΣ be shorthand for ZΣ (v) , v ∈ {0, 1}, x be the top variable in Σ and let

A = ZΣ (f). Then N is defined as follows:

N(A) =

0Σ A = 1Σ

1Σ A = 0Σ

< x, 1Σ′ , N(Ax=0,Σ
′) > x 6= A.t

< x,N(Ax=1,Σ
′), N(Ax=0,Σ

′) > x = A.t

Theorem A.6. The result of N(ZΣ (f)) is equal to ZΣ

(
f
)
.

Proof. By induction on the size of Σ. We assume the induction hypothesis N(Ax=v)≡ ZΣ′
(
fx=v

)
,

Ax=v = ZΣ′ (fx=v), where Σ′ = Σ \ {x}. There are four cases:

1. If A = 1Σ, then the function returns 0Σ = ZΣ (0) = ZΣ

(
1
)

= ZΣ

(
f
)
, since 0 = 1 and

rules R.2.

2. If A = 0Σ, then the function returns 1Σ = ZΣ (1) = ZΣ

(
0
)

= ZΣ

(
f
)

, since 1 = 0 and

rules R.1.

3. If x 6= A.t, then the function returns < x, 1Σ′ , N(Ax = 0,Σ′) >

1
= < x,ZΣ′ (1) , N(Ax = 0,Σ′) >

2
= < x,ZΣ′ (1) ,ZΣ′

(
f
)
>

3
= ZΣ′∪x

(
(x ∧ 1) ∨ (x ∧ f)

)
4
= ZΣ

(
(x ∧ 1) ∨ (x ∧ f)

)
5
= ZΣ

(
x ∨ (x ∧ f)

)
6
= ZΣ

(
x ∨ f

)
7
= ZΣ

(
f
)

Step 1: by definition of 1Σ. Step 2: by induction hypothesis. Step 3: by definition of

CreateNode. Step 4: by assumption A is a well-formed ZDD. Step 5,6: by logical

equivalence. Step 7: as x < A.t, x has negative value in f (rule R.4).

Appendix A.3 Not Operation 53

4. If x = A.t, then the function returns < x,N(Ax=1,Σ
′), N(Ax=0,Σ

′) >

1
= < x,ZΣ′

(
fx=1

)
,ZΣ′

(
fx=0

)
>

2
= ZΣ′∪x

(
(x ∧ fx=1) ∨ (x ∧ fx=0)

)
3
= ZΣ

(
(x ∧ fx=1) ∨ (x ∧ fx=0)

)
4
= ZΣ

(
(x ∨ fx=1) ∧ (x ∨ fx=0)

)
5
= ZΣ

(
(x ∧ fx=1) ∧ (x ∧ fx=0)

)
6
= ZΣ

(
(x ∧ fx=1) ∨ (x ∧ fx=0)

)
7
= ZΣ

(
f
)

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by

assumption A is a well-formed ZDD. Step 4: by Shannon expansion rule. Step 5,6: by

logical equivalent. Step 7: by Shannon decomposition

Appendix A.4 Exist Operation 54

A.4 Exist Operation

Definition A.7. Let A = ZΣ (f) be a well-formed ZDD, vΣ be shorthand for ZΣ (v) and let

EXx=v be shorthand for EX(Ax=v,Σ
′, X), where v ∈ {0, 1}. Also let x be the top variable in

domain Σ. Then EX will be defined as follows:

EX(A,Σ, X) =

0Σ−X A = 0Σ

1Σ−X A = 1Σ

ITE(EXx=1, 1Σ′−X ,EXx=0,Σ
′ −X) A.t = x ∧ x ∈ X

< x,EXx=1,EXx=0 > A.t = x ∧ x 6∈ X

< x, 0,EXx=0 > A.t 6= x ∧ x 6∈ X

EXx=0 A.t 6= x ∧ x ∈ X

Theorem A.8. The result of EX(ZΣ (f) , X) is equal to ZΣ−X (∃X.f).

Proof. By induction on the size of Σ. We assume the induction hypothesis EX(ZΣ′ (fx=v) , X) ≡
ZΣ−X (∃X.fx=v). There are five cases:

1. If A = 0, then the function returns 0 = ZΣ−X (0) = ZΣ−X (∃X.0) = ZΣ−X (∃X.f), by

rule R.1.

2. If A = 1Σ, then the function returns 1Σ−X = ZΣ−X (1) = ZΣ−X (∃X.1) = ZΣ−X (∃X.f),

by rule R.2.

3. If A.t = x ∧ x ∈ X , then the function returns ITE(EXx=1, 1Σ′−X ,EXx=0,Σ
′ −X)

1
= ITE(ZΣ′−X (∃X.fx=1) ,ZΣ′−X (1) ,ZΣ′−X (∃X.fx=0) ,Σ′ −X)

2
= ZΣ′−X

(
(∃X.fx=1 ∧ 1) ∨ (∃X.fx=1 ∧ ∃X.fx=0)

)
3
= ZΣ′−X (∃X.(fx=1) ∨ ∃X.(fx=0)))

4
= ZΣ′−X (∃X.(fx=0 ∨ fx=1))

5
= ZΣ′−X (∃X∃x.f)

6
= ZΣ′−X (∃X.f)

7
= ZΣ−X (∃X.f)

Step 1: by induction hypothesis. Step 2: by definition of ITE. Step 3: by logical equation.

Step 4: by distribution of ∃ over ∨. Step 5: by definition of ∃. Step 6,7: as x ∈ X .

Appendix A.4 Exist Operation 55

4. If A.t = x ∧ x 6∈ X , then the function returns < x,EXx=1,EXx=0 >

1
= < x,ZΣ′−X (∃X.fx=1) ,ZΣ′−X (∃X.fx=0) >

2
= Z(Σ′−X)∪x ((x ∧ ∃X.fx=1) ∨ (x ∧ ∃X.fx=0))

3
= Z(Σ−X) ((x ∧ ∃X.fx=1) ∨ (x ∧ ∃X.fx=0))

4
= ZΣ−X ((∃X.(x ∧ fx=1)) ∨ (∃X.(x ∧ fx=0)))

5
= ZΣ−X (∃X.((x ∧ fx=1) ∨ (x ∧ fx=0)))

6
= ZΣ−X (∃X.f)

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by

distribution ∪ over − and since x 6∈ X Step 4: as x 6∈ X . Step 5: by distribution of ∃
over ∨. Step 6: by Shannon decomposition.

5. If A.t 6= x ∧ x 6∈ X , then the function returns < x, 0,EXx=0 >

1
= < x, 0,ZΣ′−X (∃X.fx=0) >

2
= Z(Σ′−X)∪x ((x ∧ 0) ∨ (x ∧ ∃X.fx=0))

3
= ZΣ−X ((x ∧ 0) ∨ (x ∧ ∃X.fx=0)))

4
= ZΣ−X ((x ∧ ∃X.fx=1) ∨ (x ∧ ∃X.fx=0)))

5
= ZΣ−X (∃X.f))

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by

distribution ∪ over − and since x 6∈ X . Step 4: by rule R.4. Step 5: by Shannon

decomposition.

6. If A.t 6= x ∧ x ∈ X , then the function returns EXx=0

1
= ZΣ′−X (∃X.fx=0)

2
= ZΣ−X (∃X.fx=0)

3
= ZΣ−X (∃X.(fx=0 ∨ 0))

4
= ZΣ−X (∃X.(fx=0 ∨ fx=1))

5
= ZΣ−X (∃X.∃x.f)

6
= ZΣ−X (∃X.f)

Appendix A.4 Exist Operation 56

Step 1: by induction hypothesis. Step 2: as x ∈ X . Step 3: by logical equivalence. Step

4: by rule R.4. Step 5: by definition of ∃. Step 6: as x ∈ X

Appendix A.5 Rename Operation 57

A.5 Rename Operation

Definition A.9. Let A = ZΣ (f) be a well-formed ZDD, where x is the top level of Σ, and

let y be the top variable of A. We also assume that substituting x with x′ does not change the

ordering. Then R will be defined as follows:

R(A, x, x′) =

Z(Σ−x)∪x′ (f [x/x′]) A = 0 ∨A = 1

< y,R(Ay=1, x, x
′),R(Ay=0, x, x

′) > y < x

< x′, Ax=1, Ax=0 > y = x

< x′, 0, Ax=0 > y > x

Theorem A.10. The result of R(ZΣ (f) , x, x′) is equal to Z(Σ−x)∪x′ (f [x/x′]).

Proof. By induction on the size of Σ. We assume the induction hypothesis R(ZΣ (fx=v) , x, x′) ≡
Z(Σ−x)∪x′ (fx=v[x/x′]). There are four cases:

1. If A = 0 Or A = 1, then Z(Σ−x)∪x′ (f [x/x′])

2. If y < x, then < y,R(Ay=1, x, x
′),R(Ay=0, x, x

′) >

1
= < y,Z(Σ−y−x)∪x′

(
fy=1[x/x′]

)
,Z(Σ−y−x)∪x′

(
fy=0[x/x′]

)
>

2
= Z(Σ−y−x)∪x′∪y

(
(y ∧ fy=1[x/x′]) ∨ (y ∧ fy=0[x/x′])

)
3
= Z(Σ−x)∪x′

(
(y ∧ fy=1[x/x′]) ∨ (y ∧ fy=0[x/x′])

)
4
= Z(Σ−x)∪x′

(
f [x/x′]

)
Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by

assumption,A is a well-formed ZDD. Step 4: by Shannon decomposition.

3. If y = x, then < x′, Ax=1, Ax=0 >

1
= < x′,Z(Σ−x) (fx=1) ,ZΣ−x (fx=0) >

2
= Z(Σ−x)∪x′

(
(x′ ∧ fx=1) ∨ (x′ ∧ fx=0)

)
3
= Z(Σ−x)∪x′

(
(x′ ∧ fx′=1[x/x′]) ∨ (x′ ∧ fx′=0[x/x′])

)
4
= Z(Σ−x)∪x′

(
f [x/x′]

)
Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3:as x

doesn’t appear in fx=v, by renaming x with x′ it does not change . Step 4: by Shannon

decomposition.

Appendix A.5 Rename Operation 58

4. If y > x, then < x′, 0, Ax=0 >

1
= < x′, 0,ZΣ−x (fx=0) >

2
= Z(Σ−x)∪x′

(
(x′ ∧ 0) ∨ (x′ ∧ fx=0)

)
3
= Z(Σ−x)∪x′

(
(x′ ∧ fx=1) ∨ (x′ ∧ fx=0)

)
4
= Z(Σ−x)∪x′

(
(x′ ∧ fx′=1[x/x′]) ∨ (x′ ∧ fx′=0[x/x′])

)
5
= Z(Σ−x)∪x′

(
f [x/x′]

)

Step 1: by definition. Step 2: by definition of CreateNode. Step 3: as A.t > x, x has

negative value in f (rule R.4). Step 4: as x doesn’t appear in fx=v, by renaming x with x′

it does not change . Step 5: by Shannon decomposition.

Appendix A.6 RelProd Operation 59

A.6 RelProd Operation

Definition A.11. Let A = ZΣ (f) and B = ZΣ (h) be well-formed ZDDs, RPx=v be the

shorthand for RP(Ax=v, Bx=v,Σ
′, X), and vΣ be the shorthand for ZΣ (v) , v ∈ {0, 1}. x be

the top variable in domain Σ. Then the definition of RP is as follows:

RP(A,B,Σ, X) =

1Σ−X A = 1Σ, B = 1Σ

0Σ−X A = 0 ∨B = 0

ITE(RPx=0,ZΣ−X (1) ,RPx=1) x ∈ X

< x,RPx=1,RPx=0 > x 6∈ X,x = A.t, x = B.t

< x, 0,RPx=0 > Otherwise

Note. In RelProd definition, it is assumed that A and B have the same domain Σ.

Theorem A.12. The result of RP(ZΣ (f) ,ZΣ (h) , X) is equal to ZΣ−X (∃X.(f ∧ h)).

Proof. By induction on the size of Σ. We assume the induction hypothesis

RP(ZΣ (fx=v) ,ZΣ (hx=v) , X) ≡ ZΣ−X−x (∃X.(fx=v ∧ hx=v)) ≡ ZΣ−X−x (∃X.(f ∧ h)x=v),

by distribution of restriction over ∧. There are five cases:

1. If A = 1Σ and B = 1Σ, then the function returns ZΣ−X (1) = ZΣ−X (1 ∧ 1) =

ZΣ−X (∃X.(1 ∧ 1)) = ZΣ−X (∃X.(f ∧ h)), by rule R.2.

2. If A = 0, then the function returnsZΣ−X (0) = ZΣ−X (∃X.0) = ZΣ−X (∃X.(0 ∧ h)) =

ZΣ−X (∃X.(f ∧ h)) , by rule R.1.

If B = 0, then the function returnsZΣ−X (0) = ZΣ−X (∃X.0) = ZΣ−X (∃X.(f ∧ 0)) =

ZΣ−X (∃X.(f ∧ h)) , by rule R.1.

3. If x ∈ X , then the function returns ITE(RPx=0,ZΣ−X−x (1) ,RPx=1)

1
= ITE(ZΣ−X−x (∃X.(f ∧ h)x=0) ,ZΣ−X (1) ,ZΣ−X−x (∃X.(f ∧ h)x=1))

2
= ITE(ZΣ−X (∃X.(f ∧ h)x=0) ,ZΣ−X (1) ,ZΣ−X (∃X.(f ∧ h)x=1))

3
= ZΣ−X

(
(∃X.(f ∧ h)x=0 ∧ 1) ∨

(
∃X.(f ∧ h)x=0 ∧ ∃X.(f ∧ h)x=1

))
4
= ZΣ−X ((∃X.(f ∧ h)x=0) ∨ (∃X.(f ∧ h)x=1))

5
= ZΣ−X (∃X. ((f ∧ h)x=0 ∨ (f ∧ h)x=1))

6
= ZΣ−X (∃X.∃x.(f ∧ h))

7
= ZΣ−X (∃X.(f ∧ h))

Appendix A.6 RelProd Operation 60

Step 1: by induction hypothesis. Step 2 : as x ∈ X . Step 3: by definition of ITE. Step 4:

by logical equation. Step 5: by distribution of ∃ over ∨. Step 6: by definition of ∃. Step

7: as x ∈ X .

4. If x 6∈ X and x = A.t and x = B.t, then the function returns < x,RPx=1,RPx=0 >

1
= < x,ZΣ′−X−x (∃X. (f ∧ h)x=1) ,ZΣ′−X−x (∃X. (f ∧ h)x=0) >

2
= Z(Σ′−X−x)∪x ((x ∧ ∃X.(f ∧ h)x=1) ∨ (x ∧ ∃X.(f ∧ h)x=0))

3
= Z(Σ′−X)∪x ((x ∧ ∃X.(f ∧ h)x=1) ∨ (x ∧ ∃X.(f ∧ h)x=0))

4
= ZΣ−X ((x ∧ ∃X.(f ∧ h)x=1) ∨ (x ∧ ∃X.(f ∧ h)x=0))

5
= ZΣ−X (∃X. (x ∧ (f ∧ h)x=1) ∨ ∃X. (x ∧ (f ∧ h)x=0))

6
= ZΣ−X (∃X. ((x ∧ (f ∧ h)x=1) ∨ (x ∧ (f ∧ h)x=0)))

7
= ZΣ−X (∃X.(f ∧ h))

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: as

x 6∈ Σ′. Step 4: by distribution ∪ over − and since x 6∈ X . Step 5: as x 6∈ X . Step 6: by

distribution of ∃ over ∨. Step 7: by Shannon decomposition.

5. If x 6∈ X and (x 6= A.t ∨ x 6= B.t), then the function returns < x, 0,RPx=0 >

1
= < x, 0,ZΣ′−X−x (∃X. (f ∧ h)x=0) >

2
= Z(Σ′−X−x)∪x ((x ∧ 0) ∨ (x ∧ ∃X.(f ∧ h)x=0)) >

3
= Z(Σ′−X)∪x ((x ∧ 0) ∨ (x ∧ ∃X.(f ∧ h)x=0)) >

4
= Z(Σ−X) ((x ∧ 0) ∨ (x ∧ ∃X.(f ∧ h)x=0)) >

5
= Z(Σ−X) ((x ∧ ∃X.(fx=1 ∧ hx=1)) ∨ (x ∧ ∃X.(f ∧ h)x=0)) >

6
= Z(Σ−X) ((x ∧ ∃X.(f ∧ h)x=1) ∨ (x ∧ ∃X.(f ∧ h)x=0)) >

7
= Z(Σ−X) (∃X.(x ∧ (f ∧ h)x=1) ∨ ∃X.(x ∧ (f ∧ h)x=0)) >

8
= Z(Σ−X) (∃X. ((x ∧ (f ∧ h)x=1) ∨ (x ∧ (f ∧ h)x=0))) >

9
= ZΣ−X (∃X.(f ∧ h))

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: as

x 6∈ Σ′. Step 4: by distribution ∪ over − and since x 6∈ X . Step 5: if x 6= A.t, then fx=1

is 0. And if x 6= B.t, then hx=1 is 0(rule R.4). Step 6: by distribution of restriction. Step

7: as x 6∈ X . Step 8: by distribution of ∃ over ∨. Step 9: by Shannon decomposition.

Appendix A.7 RelProdS Operation 61

A.7 RelProdS Operation

Definition A.13. Let A = ZΣ (f), B = ZΣ′ (h) be well-formed ZDDs, and RPSx=v be the

shorthand for RPS(Ax=v, Bx=v, X, S), vΣ be the shorthand for ZΣ (v) , v ∈ {0, 1}, and x =

max(Σ.t,Σ′.t). It is also assumed that renaming each x with S(x) will not change the ordering.

Then the definition of RPS is as follows:

RPS(A,B,X, S) =

1(Σ∪Σ′−X)[S] A = 1Σ, B = 1Σ′

0(Σ∪Σ′−X)[S] A = 0Σ ∨B = 0Σ′

ITE(RPSx=0, 1(Σ∪Σ′−X−x)[S],RPSx=1) x ∈ X

< S(x),RPSx=1,RPSx=0 > Otherwise

Note. In RelProdS definition, A and B can have the different domains Σ and Σ′, respectively.

Theorem A.14. The result of RPS(ZΣ (f) ,ZΣ′ (h) , X, S) is equal toZ(Σ∪Σ′−X)[S] (∃X.(f ∧ h)[S]).

Proof. By induction on the size of Σ and Σ′, we assume the induction hypothesis

RPS(ZΣ (fx=v) ,ZΣ′ (hx=v) , X, S) ≡ Z(Σ∪Σ′−X−x)[S] (∃X.(fx=v ∧ hx=v))

≡ Z(Σ∪Σ′−X−x)[S] (∃X.(f ∧ h)x=v) (by distribution of restriction over ∧).

Also let Σ′′ and Σ′′−x be shorthand for (Σ∪Σ′−X)[S] and (Σ∪Σ′−X−x)[S], respectively.

There are four cases:

1. If A = 1Σ And B = 1Σ′ , then the function returns 1Σ′′ = ZΣ′′ (1) = ZΣ′′ (1 ∧ 1) =

ZΣ′′ (∃X.(1 ∧ 1)[S]) = ZΣ′′ (∃X.(f ∧ h)[S]), by rule R.2.

2. If A = 0Σ, then the function returns 0Σ′′ = ZΣ′′ (0) = ZΣ′′ (∃X.0[S]) = ZΣ′′ (∃X.(0 ∧ h)[S]) =

ZΣ′′ (∃X.(f ∧ h)[S]), by rule R.1.

If B = 0Σ′ , then the function returns 0Σ′′ = ZΣ′′ (0) = ZΣ′′ (∃X.0[S]) = ZΣ′′ (∃X.(f ∧ 0)[S]) =

ZΣ′′ (∃X.(f ∧ h)[S]), by rule R.1.

Appendix A.7 RelProdS Operation 62

3. If x ∈ X , then the function returns ITE(RPSx=0, 1Σ′′−x,RPSx=1)

1
= ITE(ZΣ′′−x (∃X.(f ∧ h)x=0[S]) ,ZΣ′′−x (1) ,ZΣ′′−x (∃X.(f ∧ h)x=1[S]))

2
= ZΣ′′−x

(
(∃X.(f ∧ h)x=0[S] ∧ 1) ∨

(
∃X.(f ∧ h)x=0[S] ∧ ∃X.(f ∧ h)x=1[S]

))
3
= ZΣ′′

(
(∃X.(f ∧ h)x=0[S] ∧ 1) ∨

(
∃X.(f ∧ h)x=0[S] ∧ ∃X.(f ∧ h)x=1[S]

))
4
= ZΣ′′ ((∃X.(f ∧ h)x=0[S]) ∨ (∃X.(f ∧ h)x=1[S]))

5
= ZΣ′′ (∃X. ((f ∧ h)x=0[S] ∨ (f ∧ h)x=1[S]))

6
= ZΣ′′ (∃X.∃x.(f ∧ h)[S])

7
= ZΣ′′ (∃X.(f ∧ h)[S])

Step 1: by induction hypothesis. Step 2: by definition of ITE. Step 3: as x ∈ X . Step 4:

by logical equation. Step 5: by distribution of ∃ over ∨. Step 6: by definition of ∃. Step

7: as x ∈ X .

4. If x 6∈ X , then the function returns < S(x),RPSx=1,RPSx=0 >

1
= < S(x),ZΣ′′−x (∃X.(f ∧ h)x=1) ,ZΣ′′−x (∃X.(f ∧ h)x=0) >

2
= Z(Σ∪Σ′−X−x)[S]∪S(x)

(
(S(x) ∧ 0) ∨ (S(x) ∧ ∃X.(f ∧ h)x=0)

)
3
= Z(Σ∪Σ′−X)[S]

(
(S(x) ∧ 0) ∨ (S(x) ∧ ∃X.(f ∧ h)x=0)

)
4
= ZΣ′′

(
(S(x) ∧ ∃X.(fx=1 ∧ hx=1)) ∨ (S(x) ∧ ∃X.(f ∧ h)x=0)

)
5
= ZΣ′′

(
(S(x) ∧ ∃X.(f ∧ h)x=1) ∨ (S(x) ∧ ∃X.(f ∧ h)x=0)

)
6
= ZΣ′′

(
∃X.(S(x) ∧ (f ∧ h)x=1) ∨ ∃X.(S(x) ∧ (f ∧ h)x=0)

)
7
= ZΣ′′

(
∃X.

(
(S(x) ∧ (f ∧ h)x=1) ∨ (S(x) ∧ (f ∧ h)x=0)

))
8
= ZΣ′′ (∃X.(f ∧ h))

Step 1: by induction hypothesis. Step 2: by definition of CreateNode. Step 3: by

substitution definition. Step 4: if x 6= A.t, then fx=1 is 0 (rule R.4). And if x 6= B.t, then

hx=1 is 0. Step 5: by distribution of restriction. Step 6: as x 6∈ X . Step 7: by distribution

of ∃ over ∨. Step 8: by Shannon decomposition.

Bibliography

[1] BEEM database. http://anna.fi.muni.cz/models/.

[2] gperftools: A set of performance tools for c++ developers. https://code.google.

com/p/gperftools/.

[3] S.B. Akers. Binary decision diagrams. volume C-27, pages 509–516. IEEE Computer

Society, June 1978.

[4] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.

Algebraic decision diagrams and their applications, 1993.

[5] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli. Decision diagrams

and pass transistor logic synthesis. In In Int’l Workshop on Logic Synth, Stanford, CA,

USA, 1997. Stanford University.

[6] Stefan Blom, Jaco van de Pol, and Michael Weber. Ltsmin: Distributed and sym-

bolic reachability. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Ver-

ification, volume 6174 of Lecture Notes in Computer Science, pages 354–359, Berlin,

Germany, July 2010. Springer Verlag. See also Technical Report TR-CTIT-09-30

(http://eprints.eemcs.utwente.nl/15703/).

[7] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.

volume 24, pages 293–318, New York, NY, USA, September 1992. ACM.

[8] O. Coudert. Two-level logic minimization: an overview. volume 17, pages 97 – 140.

Elsevier Science Publishers B. V., 1994.

[9] O. Coudert. Solving graph optimization problems with ZBDDs. In European Design and

Test Conference, 1997. ED TC 97. Proceedings, pages 224–228. IEEE Computer Society,

1997.

[10] O. Coudert. A new paradigm for dichotomy-based constrained encoding. In Design, Au-

tomation and Test in Europe, 1998., Proceedings, pages 830–834. IEEE Computer Society,

1998.

63

http://anna.fi.muni.cz/models/
https://code.google.com/p/gperftools/
https://code.google.com/p/gperftools/

Bibliography 64

[11] O. Coudert and J. C. Madre. Implicit and incremental computation of primes and essential

primes of boolean functions. In Proceedings of the 29th ACM/IEEE Design Automation

Conference, DAC ’92, pages 36–39, Los Alamitos, CA, USA, 1992. IEEE Computer So-

ciety Press.

[12] O. Coudert and C.-J.R. Shi. Exact dichotomy-based constrained encoding. In Computer

Design: VLSI in Computers and Processors, 1996. ICCD ’96. Proceedings., 1996 IEEE

International Conference on, pages 426–431, 1996.

[13] O. Coudert and C.-J.R. Shi. Exact multi-layer topological planar routing. In Custom

Integrated Circuits Conference, 1996., Proceedings of the IEEE 1996, pages 179–182,

1996.

[14] R. Drechsler and D. Sieling. Special section on BDD binary decision diagrams in theory

and practice. pages 112–136. Springer-Verlag, 2001.

[15] S. Ishihara and S. Minato. Manipulation of regular expressions under length constraints

using Zero-suppressed BDDs. In Design Automation Conference, 1995. Proceedings of

the ASP-DAC ’95/CHDL ’95/VLSI ’95., IFIP International Conference on Hardware De-

scription Languages. IFIP International Conference on Very Large Scal, pages 391–396.

IEEE Computer Society, 1995.

[16] J. Jacob and A. Mishchenko. Unate decomposition of boolean functions. In PROC. IWLS

’01, pages 66–71, 2001.

[17] J. Lind-Nielsen. Buddy: A binary decision diagram library. http://sourceforge.

net/projects/buddy/.

[18] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.

PhD thesis, Pittsburgh, PA, USA, 1992. UMI Order No. GAX92-24209.

[19] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In

Design Automation, 1993. 30th Conference on, pages 272–277. IEEE Computer Society,

June 1993.

[20] S. Minato. Calculation of unate cube set algebra using Zero-suppressed BDDs. In Design

Automation, 1994. 31st Conference on, pages 420–424. IEEE Computer Society, 1994.

[21] S. Minato. Implicit manipulation of polynomials using Zero-suppressed BDDs. In Euro-

pean Design and Test Conference, 1995. ED TC 1995, Proceedings., pages 449–454. IEEE

Computer Society, 1995.

[22] S. Minato. Zero-suppressed BDDs and their applications. volume 3, pages 156–170.

Springer-Verlag, 2001.

http://sourceforge.net/projects/buddy/
http://sourceforge.net/projects/buddy/

Bibliography 65

[23] S. Minato and G. De Micheli. Finding all simple disjunctive decompositions using irre-

dundant sum-of-products forms. In ICCAD’98, pages 111–117. IEEE, 1998.

[24] A. Mishchenko. Extra v. 2.0: Software library extending cudd package: Release 2.3.1.

http://web.cecs.pdx.edu/~alanmi/research/extra.htm.

[25] A. Mishchenko. An introduction to zero-suppressed binary decision diagrams. Technical

report, in ‘Proceedings of the 12th Symposium on the Integration of Symbolic Computa-

tion and Mechanized Reasoning, 2001.

[26] R. Pelánek. Beem: Benchmarks for explicit model checkers. In Proceedings of the 14th

International SPIN Conference on Model Checking Software, pages 263–267, Berlin, Hei-

delberg, 2007. Springer-Verlag.

[27] F. Somenzi. Cudd : Colorado university decision diagram package, release 2.5.0. http:

//vlsi.colorado.edu/~fabio/CUDD/.

[28] M. Tomisaka and T. YONEDA. Partial order reduction in symbolic state space traversal

using ZBDDs. IEICE Trans. Fundamentals, pages 1–8, 1999.

[29] T. van Dijk. The parallelization of binary decision diagram operations for model checking.

http://essay.utwente.nl/61650/, 2012.

[30] T. van Dijk, A.W. Laarman, and J.C. van de Pol. Multi-core BDD operations for symbolic

reachability. In K. Heljanko and W.J. Knottenbelt, editors, 11th International Workshop

on Parallel and Distributed Methods in verifiCation, PDMC 2012, Electronic Proceedings

in Theoretical Computer Science. eptcs.org, September 2012.

[31] T. Yoneda, H. Hatori, A. Takahara, and S. Minato. BDDs vs. Zero-suppressed BDDs: for

CTL symbolic model checking of Petri nets. In Mandayam Srivas and Albert Camilleri,

editors, Formal Methods in Computer-Aided Design, volume 1166 of Lecture Notes in

Computer Science, pages 435–449. Springer Berlin Heidelberg, 1996.

http://web.cecs.pdx.edu/~alanmi/research/extra.htm
http: //vlsi.colorado.edu/~fabio/CUDD/
http: //vlsi.colorado.edu/~fabio/CUDD/
http://essay.utwente.nl/61650/

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Model Checking
	2.1.1 Reachability Algorithm

	2.2 Binary Decision Diagrams
	2.3 Zero-Suppressed Binary Decision Diagram
	2.4 CUDD
	2.5 Sylvan

	3 Implementation of ZDDs
	3.1 Notations
	3.2 Converting BDD to ZDD
	3.3 Extend operation
	3.4 ITE operation
	3.5 Not operation
	3.6 Exist () operation
	3.7 Rename operation
	3.8 RelProd operation
	3.9 RelProdS operation

	4 Experiments
	4.1 Setups
	4.2 Sokobon models
	4.2.1 Results

	4.3 BEEM models
	4.3.1 Results

	5 Related work
	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	A Correctness Proofs
	A.1 Extend Operation
	A.2 ITE Operation
	A.3 Not Operation
	A.4 Exist Operation
	A.5 Rename Operation
	A.6 RelProd Operation
	A.7 RelProdS Operation

	Bibliography

