
Master’s Thesis

Modelling and Verification of a Shortest Path
Tree Protocol for Wireless Sensor Networks

Towards a Platform for Formal Verification Experiments

Wouter M. Everse

July 6, 2009

Master’s Thesis

Modelling and Verification of a Shortest Path
Tree Protocol for Wireless Sensor Networks

Towards a Platform for Formal Verification Experiments

Wouter M. Everse
eversewm@cs.utwente.nl

University of Twente
Computer Science

s0116521

Graduation Committee:
Dr. Ir. Rom Langerak (1st supervisor)
Dr. Mariëlle Stoelinga (2nd supervisor)

Ir. Leon Evers (3rd supervisor)

July 6, 2009

Abstract

Wireless Sensor Networks (WSNs) are ad-hoc wireless networks of typically hundreds or
even thousands of small low-cost sensor nodes, that communicate in a wireless way. A
sensor node is a small autonomous unit, often running on batteries, with hardware to
sense environmental characteristics, a processor and a radio transceiver [33]. All nodes
send their sensor data to a central gateway node for future analysis.

Existing network protocols are not suitable for the WSN setting, since they often require
a lot of information exchange and bookkeeping. Therefore, dedicated WSN protocols are
required and their correctness and robustness is essential. However, only few techniques
are available to support the design of these protocols. One possibility is to mathemat-
ically prove that the design is correct, but this usually requires many assumptions and
simplifications. Another possibility is simulation and testing, but this may not uncover
all undesirable aspects of a protocol. We therefore formulated the following main re-
search question: Is formal verification (and more specifically: Model Checking) suitable
for supporting the design of WSN protocols?.

In order to find an answer to this question, we took a concept design of a WSN protocol
(developed at the University of Twente). It is a routing protocol that attempts to build
a Shortest Path Tree (SPT) in a distributed fashion. We first made this protocol explicit
by specifying both an informal and formal description. Then we constructed models of it
for the state-of-the-art model checkers UPPAAL, SPIN and PRISM. The main correctness
properties that we checked for these models were deadlock freedom, correct parent selection
and correct distance computation. Furthermore, we performed verification experiments
with variants of the protocol.

The main results of this research project are an informal and formal specification of the
given protocol, models for the different tools, together with correctness properties, a fea-
sibility limit of 4 nodes, the idea of formal experiments and valuable insights in modelling
and verification of this protocol and of WSN protocols in general. No errors were found in
the protocol.

The answer to our research question has two sides: based on our research, the limitations
found and on the current state of the art, the answer is negative. On the other hand,
experimentation using formal verification turned out to be a powerful tool to support
WSN protocol design. Further research is required to find suitable abstraction techniques
to exploit the quantitative character of the verification.

Master’s Thesis - W.M. Everse i

Preface

‘Things should be made as simple as possible, but not simpler.’
Albert Einstein (1879-1955)

Apparently, you were curious enough to open up this thesis and start reading. Now
I am wondering whether that is because of the nice front page, the interesting title,
the rather intimidating number of pages, or maybe just out of politeness to me?
Nevertheless, it took me blood, sweat and tears but I am proud about the result
and I thank you in advance for your interest.

This thesis is the result of the research project I carried out at the University of
Twente, in order to earn my Master’s degree. It took me almost twenty months
to finish it, which is a considerable amount of time. A period in which I learned a
lot, the primary thing being the field knowledge required to perform this research.
Secondary, I learned a lot about doing research, setting scope and determining
research approach as well. Moreover, I acquired the necessary LATEX and ‘MacBook’
skills as well. More important however is that I am now enriched with valuable
experience about myself, such as insights about my personality and about my view
and interpretation of ‘the big bad world’. I even think that it is not too much to
say that it changed my perception positively.

Without the support, sympathy and understanding of the people near me, I would
not have been able to successfully complete this project, this thesis and even this
study. First of all, I would like to sincerely thank my girlfriend Marjolein (‘Jootje’)
for her unlimited support, her patience and her ability to inspire and motivate me
over and over again. I would also like to thank my supervisors Rom Langerak,
Mariëlle Stoelinga and Leon Evers, for their support, feedback and guidance. A
special thank to Rom (1st supervisor), his no-nonsense approach, sharp ideas and
our meetings and discussions were very useful to me. I would also like to thank
Stefan Blom and Theo Ruys for their useful support and feedback. Furthermore,
I would like to thank my parents, brothers, parents-in-law, sister-in-law, friends,
family, fellow students and of course my colleagues at the ‘Hogeschool Zeeland’. I
probably forgot to mention some people here: my apologies and thank you too!

Master’s Thesis - W.M. Everse ii

Contents

1 Introduction 1
1.1 Project Definition . 1

1.1.1 Problem Statement . 2
1.1.2 Motivation and Objective 3

1.2 Research Questions . 4
1.3 Approach . 4
1.4 Main Results and Contributions 5
1.5 Thesis Structure . 6

2 Background 7
2.1 Wireless Sensor Networks . 7

2.1.1 Sensor Nodes . 8
2.1.2 Mobile Ad-hoc Networks 9
2.1.3 Applications . 10

2.2 Network Protocols . 10
2.3 Graph Theory . 12

2.3.1 Graphs and Trees . 12
2.3.2 Dijkstra’s Algorithm 13

2.4 Formal Methods . 17
2.4.1 The Need for Formal Methods 17
2.4.2 Validation and Verification Techniques 18
2.4.3 More on Model Checking 20

2.5 Related Work . 23
2.5.1 Formal Protocol Analysis 23
2.5.2 Routing in WSNs . 24

Master’s Thesis - W.M. Everse iv

CONTENTS

3 The SPT Protocol for WSNs 26
3.1 Introduction to WSN Routing 26

3.1.1 Unsuitability of Existing Routing Protocols 27
3.1.2 Routing Protocol Categories 27

3.2 Informal Protocol Description 28
3.2.1 The ETX Routing Metric 28
3.2.2 Unknown ETXs . 30
3.2.3 Distributed Operation 30
3.2.4 The Gateway and the SPT 32
3.2.5 Matlab Implementation 32

3.3 Formal Protocol Specification 34
3.3.1 Pseudo Code . 34
3.3.2 Recursive Characterization 36

4 Verification using UPPAAL 38
4.1 Tool Introduction . 38

4.1.1 Underlying Theory . 39
4.1.2 Tool Motivation . 39

4.2 Model Construction . 40
4.2.1 Protocol Model V1 . 41
4.2.2 Protocol Model V2 . 47
4.2.3 Protocol Model V3 . 49
4.2.4 Adding Execution Order 53

4.3 Verification . 54
4.3.1 Verification Parameters 55
4.3.2 Deadlock Freedom . 57
4.3.3 Correct Parent and Distance 60
4.3.4 Verification Cluster . 64

4.4 Conclusions . 65
4.4.1 UPPAAL Experiences 65
4.4.2 The Models . 67
4.4.3 The SPT Protocol . 68

5 Verification using SPIN 69
5.1 Tool Introduction . 69

5.1.1 Underlying Theory . 70
5.1.2 Tool Motivation . 71

5.2 Model Construction . 72
5.2.1 Protocol Model . 72

5.3 Verification . 79
5.3.1 Verification Parameters 81
5.3.2 Deadlock Freedom . 82
5.3.3 Correct Parent and Distance 85

5.4 Conclusion . 89

Master’s Thesis - W.M. Everse v

CONTENTS

5.4.1 SPIN Experiences . 89
5.4.2 The Model . 91
5.4.3 The SPT Protocol . 92

6 The Hidden Problem 93
6.1 The Keyword hidden . 93
6.2 Hidden Matrices . 94

6.2.1 Backtracking the State Space 95
6.2.2 Backtracking and hidden 95
6.2.3 The Hidden Problem in our Model 96
6.2.4 Consequences . 98

6.3 Solution Directions . 98
6.3.1 Naive Approach . 99
6.3.2 Partial Hiding . 101
6.3.3 Controlled Branching 103

6.4 Conclusion . 107
6.4.1 Solutions and Further Research 108
6.4.2 Learned Lessons . 109

7 Verification using PRISM 110
7.1 Tool Introduction . 110

7.1.1 Underlying Theory . 111
7.1.2 Tool Motivation . 112

7.2 Model Construction . 113
7.2.1 Protocol Model . 114

7.3 Verification . 118
7.3.1 Build Problems . 119
7.3.2 Verification Attempts 121

7.4 Conclusion . 123
7.4.1 PRISM Experiences . 123
7.4.2 The Model . 124
7.4.3 The SPT Protocol . 125

8 Variants and Experiments 126
8.1 Verification Experiments . 126

8.1.1 Experimentation . 127
8.2 Disconnected Gateway and Parent Cycles 128

8.2.1 Disconnected Gateway Experiments 128
8.2.2 Notes on Parent Cycles 130

8.3 Infinite Memory Assumption 131
8.3.1 Finite Sliding Window Variants 131
8.3.2 Neighbourhood Management 138

8.4 Conclusion . 140
8.4.1 Future Work . 141

Master’s Thesis - W.M. Everse vi

CONTENTS

9 Conclusion and Future Work 142
9.1 Summary of Results . 142
9.2 Conclusions . 144

9.2.1 Sub Questions . 144
9.2.2 Main Research Question 147

9.3 Main Contributions . 148
9.4 Future Research . 149

A Matlab Implementation of the SPT Protocol 150
A.1 Source . 150
A.2 Plots . 153

B UPPAAL Models, Simulation and Verification Results 157
B.1 Protocol Model V1 . 157
B.2 Protocol Model V2 . 159
B.3 Protocol Model V3 . 161
B.4 Validation by Simulation . 164

B.4.1 Protocol Model V1 . 164
B.4.2 Protocol Model V2 & V3 166

B.5 Verification Results . 167
B.5.1 Deadlock Freedom . 167
B.5.2 Correct Parent and Distance 170

C SPIN Model, Simulation and Verification Results 174
C.1 Protocol Model . 174
C.2 Validation by Simulation . 177
C.3 Verification Results . 180

C.3.1 Deadlock Freedom . 180
C.3.2 Correct Parent and Distance 181
C.3.3 Stored and Matched States 184

D PRISM Model, Simulation and Verification Results 186
D.1 Protocol Model . 186

D.1.1 Model V2 . 186
D.1.2 Model V3 (Fixed Order) 188

D.2 Validation by Simulation . 190
D.2.1 Workaround Zero Dividing 191

D.3 Verification Examples . 192

E SPIN Models of Protocol Variations 193
E.1 Finite Sliding Window Variant MA 193
E.2 Finite Sliding Window Variant WMA 196
E.3 Finite Sliding Window Variant EWMA 200
E.4 Neighbourhood Management Variant 202

Master’s Thesis - W.M. Everse vii

CONTENTS

List of Acronyms 206

List of Figures 208

List of Tables 210

Bibliography 214

Master’s Thesis - W.M. Everse viii

CHAPTER 1

Introduction

This chapter will introduce you to my Master’s project, which I carried out at
the Formal Methods and Tools (FMT) group of the department of Computer
Science (CS) at the University of Twente. First the project definition is
given, followed by the project motivation. Subsequent sections elaborate on
the research questions and the research approach. Finally, the structure of
the rest of this thesis is sketched. The purpose of this chapter is to give an
introduction rather than to elaborate on all concepts and terminology, as
this is done in the next chapter.

1.1 Project Definition

This thesis is about my research project, entitled:

Modelling and verification of a Shortest Path Tree (SPT) protocol
for Wireless Sensor Networks (WSNs).

The protocol that is referred to is a concept network protocol, developed at
the University of Twente. Tanenbaum [52] defines a protocol in computer
networks to be ‘an agreement between the communicating parties on how
communication is to proceed’. A protocol is thus a set of rules and conven-
tions that describes how to communicate. The protocol that we consider is
implemented in Matlab as proof of concept by my third supervisor Leon
Evers of the Pervasive Systems (PS) group. It is a routing protocol for WSNs:
it finds the shortest paths between nodes of the network. Detailed informal
and formal descriptions of the protocol are given in chapter 3.

WSNs are ad-hoc wireless networks of typically hundreds or even thousands
of small low-cost sensor nodes, that communicate in a wireless way. A sensor

Master’s Thesis - W.M. Everse 1

CHAPTER 1. INTRODUCTION

node – also known as ‘mote’ – is a small autonomous unit, often running on
batteries, with hardware to sense environmental characteristics, a processor
and a radio transceiver [33]. The software used on these nodes (e.g. for
communication or for processing) should be as energy efficient as possible
because of the limited battery life. Moreover, as opposed to conventional ad-
hoc network nodes, WSN nodes are also restricted in their amount of memory
and in their computational power. These tight restrictions together with the
dynamically changing nature of WSNs form the main reason why the existing
network protocols are not suitable for this setting [26].

The area of WSNs is, although relatively young, a very active research area,
mainly because of the enormous application potential of such networks. This
is a result of the fact that WSNs offer a data collection potential at spatial
and temporal unprecedented scales, which is not feasible with other instru-
mentation [54]. Examples of these applications are climate monitoring in
forests and natural reserves, intruder detection in large areas or buildings,
flood detection, control and management of transport and logistic processes,
etc. More examples are found in for instance [14, 28, 36, 46].

The third important term in the project title is modelling and verification
(of the protocol). In a nutshell, this involves the construction of a model (of
the protocol) in order to verify its functionality. We will elaborate more on
each of these three terms in the sequel of this chapter and in the following
chapter.

1.1.1 Problem Statement

WSNs are deployed more and more and the deployment itself already brings
configuration problems, such as performance problems, short circuits, un-
known software bugs, wrong sensor readings etc. [47, 49]. Therefore, the
availability of correct WSN protocols is essential and, as a result, correctness
proofs for these protocols are important. Correctness proofs also support
protocol designers in their work by establishing confidence in the protocol
design.

It turns out to be rather difficult and time consuming (if not infeasible) to
prove WSN protocols mathematically correct. Thus most of the time, only
strongly idealized or simplified protocols are mathematically proven to be
correct. An example of such an idealization in the protocol we consider is
that the amount of memory of the sensor nodes is assumed to be infinite, in
order to be able to prove that the protocol converges to a stable situation. In
reality, the amount of memory of a sensor node is of course far from infinite:
it is relatively small. Another example of a simplification is the assumption
that the topology is static. But what if the topology is dynamically chang-
ing? In general, one can state that ‘provable’ protocol versions are often

Master’s Thesis - W.M. Everse 2

CHAPTER 1. INTRODUCTION

not ready to be directly implemented in practice, due the assumptions and
simplifications that were applied in order to deliver a mathematical proof.

Another way of proving correctness of a model is using a computer aided
technique: formal verification. The behaviour of a protocol is modelled and
every possible state of this model is automatically checked for errors. Among
others, one problem of this approach is the modelling of the unreliable links
in WSNs: messages might get lost which results in much more states of the
system. A related problem is the infamous state space explosion problem
which is inherent to model checking: the number of states to be checked
grows exponentially in various components of the model, such as the number
of variables or the number of parallel components in a concurrent system
[3]. The problem is that a system consisting of too many states cannot be
automatically checked due to time and memory limitations. An important
characteristic of this approach is that the verification is only as good as the
model [9]: the successful verification of a system property on a wrong or
faulty model of a system is of course rather useless.

Both approaches suffer from various problems and this clearly obstructs us
in our quest for proving correctness of WSN protocols. However, the model
checking approach is more flexible and lends itself for formal experiments.
Therefore, a combination of these approaches might lead us to a solution.

1.1.2 Motivation and Objective

The subtitle of this thesis is “Towards a Platform for Formal Verification
Experiments”. This subtitle defines an eventual general objective of this re-
search project: a platform or methodology to be able to perform verification
experiments with WSN protocols. Such a platform would enable researchers
to model a strongly idealized (provable) protocol and perform formal verifi-
cation experiments with variants of it (more realistic versions) rather easily
and quickly. This may eliminate the need for mathematically proving such
a more realistic version, which is in general much harder. Moreover, such a
platform could serve as part of a toolkit for supporting the design of WSN

protocols and as such, simplify the work of protocol designers.

The objective of this project is to take the first essential steps that are
required in the process of developing a platform or methodology for formal
verification experiments with WSN protocols, to support the design of these
protocols. We want to explore the boundaries, the possibilities and the
problems encountered while modelling and verifying WSN protocols. These
experiences then can be used in the development of such a platform or
methodology.

Master’s Thesis - W.M. Everse 3

CHAPTER 1. INTRODUCTION

1.2 Research Questions

The scope of this research project as described above is rather wide. We
narrowed it by stating a main research question and dividing it into sub
questions. The main question that arises from the problem statement and
project motivation is:

Is formal verification (specifically: Model Checking) suitable for
supporting the design of protocols for WSNs?

In order to answer this question, we formulated the following sub questions:

1. What are the boundaries, problems and experiences of modelling the
protocol?

2. What are the boundaries, problems and experiences of verifying the
protocol?

3. What aspects are best modelled/verified using which verification tool?

4. How does the topology of a network influence the results?

5. How does the number of nodes influence the results?

6. Is the protocol under consideration correct?

7. What recommendations about a platform for formal verification exper-
iments for WSN protocols can be given w.r.t. the gained experience?

These questions clearly specify the objectives and the research direction.
We reconsider them in the concluding chapter (ch. 9) of this thesis.

1.3 Approach

The approach followed to reach the described goal and to find answers to the
research questions is the following. We started with a literature study to be-
come familiar with the concepts and terminology used in the field. Then the
given protocol design was made explicit by specifying both an informal and
a formal description of an idealized version of the protocol. This idealized
protocol has been mathematically proven correct by my supervisors and it
served as case study throughout our research project. We constructed mod-
els of this protocol and verified these models, whilst carefully documenting
every useful detail of this process.

In order to further narrow the scope of our research, we selected three
state-of-the-art model checking tools to model the (idealized) protocol for
and to perform simulations and verifications with. The tools we selected

Master’s Thesis - W.M. Everse 4

CHAPTER 1. INTRODUCTION

are the Uppsala-Aalborg Model Checker (UPPAAL), the Simple Promela
Interpreter (SPIN) and the Probabilistic Symbolic Model Checker (PRISM).
The main motivation for using specifically these tools was their coverage
of three different important paradigms within the area of model checking:
respectively real-time model checking, distributed model checking and prob-
abilistic model checking. Moreover, their popularity in this area also played
an important role. After modelling and verification of the protocol using
these tools, we performed some interesting experiments with more realistic
variants of the protocol.

1.4 Main Results and Contributions

In this section we concisely summarize the main results and the main con-
tributions of this research project. These are further explained in the con-
cluding chapter of this thesis (ch. 9).

Main results:

• A clear informal and formal description of the protocol;

• Problematic aspects of modelling the protocol are link quality (prob-
abilism), message broadcast and distance computation;

• The feasibility of a verification run depends heavily on the topology
under consideration (especially the number of directed links and their
quality);

• The process of verification of a model of the protocol has many input
parameters, resulting in an instance explosion of possible verification
runs.

• We created two UPPAAL models (V2 & V3), a SPIN model (with some
variants) and a PRISM model, with associated correctness properties;

• Both UPPAAL (model V2) and SPIN are maximally capable to verify
a completely connected 4-node topology with 10% links. The SPIN

model has better probability approximation; Useful verification of the
PRISM model turned out to be infeasible;

• We did not find any errors in the protocol.

Main contributions:

• Current state of the art formal verification techniques can handle only
very restricted WSN configurations of maximally four or five nodes.

Master’s Thesis - W.M. Everse 5

CHAPTER 1. INTRODUCTION

This induces the need for suitable abstraction techniques. These ab-
straction techniques should account for the quantity of the probabilis-
tic link behaviour. The qualitative character of verification of WSN

protocols changes and becomes more quantitative. More research is
required to find suitable abstraction techniques that account for this
quantitative aspect.

• We introduced the idea of a methodology or platform that supports
the design of WSN protocols. This would be of great help for protocol
designers. We propose a platform containing three stages:

1. Mathematical proof of a (strongly) simplified protocol design;

2. Matlab simulation to validate (possibly less simplified) protocol
behaviour, in particular large scenarios;

3. Formal verification experiments using model checking, to experi-
ment with (more realistic, less simplified) variants of the protocol.

1.5 Thesis Structure

The next chapter contains the necessary background information of the re-
search project: it thoroughly elaborates on wireless sensor networks and
their applications, network protocols, graph theory, formal methods (and
specifically model checking) and related work. In the third chapter we in-
troduce the protocol by describing it both informally and formally. Then,
the subsequent four chapters elaborate on modelling and verification of the
protocol: one chapter about UPPAAL, two about SPIN and one about PRISM.
Chapter 8 describes the formal experiments that we performed with our
initial SPIN model and with variants of it. These variants implement more
realistic aspects in the original protocol. Finally, the last chapter summa-
rizes the main results, conclusions (answers to the research questions) and
contributions. It also lists future work.

Master’s Thesis - W.M. Everse 6

CHAPTER 2

Background

This chapter covers the necessary background for a thorough understanding
of this thesis. It sketches the context of the research project and it intro-
duces the terminology used. We first elaborate on Wireless Sensor Networks
and their applications. Then we continue with a paragraph on network pro-
tocols. Next, the portion of graph theory required for the proper under-
standing of subsequent chapters is presented. In the subsequent section we
consider formal methods and techniques for software verification, such as
model checking. We finish this chapter with a discussion on related work.

2.1 Wireless Sensor Networks

As stated in the introduction, WSNs are networks of typically a large number
of small low-cost sensor nodes, that communicate in a wireless way. Figure
2.1 shows us a representation of a WSN.

gateway

sensor node

radio range

hop

data processor

WSN

Figure 2.1: Wireless Sensor Network

Master’s Thesis - W.M. Everse 7

CHAPTER 2. BACKGROUND

The elements that constitute any network are usually referred to as net-
work nodes or simply nodes. The nodes that comprise a WSN are equipped
with sensors to sense for instance temperature, vibrations, light, humidity,
pressure etc. In figure 2.1 these sensor nodes are represented by the small
empty circles. The bigger dashed circle denotes the wireless range of the
radio transceiver of the node in its center. Below we elaborate on sensor
nodes and on a special type of sensor node: the gateway node (the black
circle in fig. 2.1).

2.1.1 Sensor Nodes

According to Leskovec et al. [33], a sensor node – also known as ‘mote’ –
is a small autonomous device, often running on batteries, with hardware to
sense environmental characteristics, a processor and a radio transceiver (to
transfer measurement data to a central base station). As an example, figure
2.2(a) shows the Ambient µNode, which is developed at the University of
Twente. Figure 2.2(b) depicts a typical high-level sensor node architecture.

(a) The Ambient µNode

power
supply

s
e
n
s
o
r
s

A
D
C

memory

micro
processor

radio

(b) High-level Sensor Node Architecture

Figure 2.2: Sensor Node

Figure 2.2(b) shows us that a sensor node is intelligent since it contains a mi-
croprocessor. This intelligence is used to improve the quality of sensor read-
ings (for example by discarding faulty readings). Additional motivation for
adding intelligence is that the node should be able to operate autonomously:
it should for instance be able to make decisions about routing when a neigh-
bour dies. Moreover, adding intelligence allows for more efficient operation,
implementation of new functionality and even accountability for business
logic [7].

Besides the microprocessor, a sensor node consists of a limited amount of
memory, a collection of sensors connected to one or more Analog-to-Digital

Master’s Thesis - W.M. Everse 8

CHAPTER 2. BACKGROUND

Converters (ADCs) and of course a wireless radio transceiver for communi-
cation. It is powered by a limited-lifetime power source, typically batteries.
More concrete (i.e. lower level) architectures of sensor nodes are often lay-
ered modular systems [12, 20, 35, 39].

The size of sensor nodes largely varies and depends on the application area.
The average size is around that of a box of matches. As with other tech-
nical devices, sensor nodes become smaller and smaller whilst technology
advances. For example, Chee et al. [12] describe the architecture and im-
plementation of the PicoCube, a 1cm3 wireless sensing device powered by
harvested energy. In the area of smart surroundings, there are even de-
vices smaller than a few cubic millimeters that constitute networks known
as Smart Dust [48].

The Gateway Node

As can be seen in figure 2.1, WSNs contain a dedicated node called the
gateway (represented by the small black circle). It is typically connected to
an external power supply rather than running on, for instance, battery power
like the other nodes. The gateway is the central base station mentioned
above, it functions as a sink: all nodes send their sensor data to it. Once at
the gateway, these data are either analyzed locally or forwarded (for example
via the internet) for future processing (the data processor in fig. 2.1). There
may be several gateway nodes in a WSN.

The nodes in a sensor network need to send their sensor data wirelessly to
a central gateway node. Therefore they need to be able to communicate
via intermediate nodes, since the majority of the nodes will not be in the
wireless range of the gateway. A direct link between two nodes is called a
hop (fig. 2.1) and this type of communication is therefore called multihop
communication.

2.1.2 Mobile Ad-hoc Networks

Mobile Ad-hoc Networks (MANETs) are multihop wireless networks of mo-
bile nodes [40]. The communication between nodes takes place in an ad-hoc
fashion, meaning that there is no fixed infrastructure for communication
(in contrast to wired networks). Nodes rather spontaneously establish wire-
less communication channels between each other, based on information of
neighbours. This self-configuration takes place dynamically and in a decen-
tralized, distributed manner. In general, the nodes of a WSN are mobile and
WSNs fall into the class of MANETs. A strongly related class of networks is
that of mesh networks, the difference being that in mesh networks nodes are
not mobile.

Master’s Thesis - W.M. Everse 9

CHAPTER 2. BACKGROUND

2.1.3 Applications

As already stated in the introduction, WSNs offer a data collection poten-
tial at spatial and temporal unprecedented scales, which is not feasible with
other instrumentation [54]. In general, there are two typical application
classes for WSNs: data collection and event-detection. The former class
is the more conventional one of monitoring, which historically stems from
military application (battlefield monitoring). Examples are systems that
monitor all kinds of (environmental) properties. There are systems for (e.g.
climate) monitoring in vineyards, forests, natural reserves and for moni-
toring pollution in the sea. A concrete example of these so-called ‘habitat
monitoring systems’ is a WSN consisting of 32 nodes on Great Duck Island,
off the coast of Maine, used to monitor seabirds nesting behaviour without
human disturbance. [36].

An example of a WSN in its event-detection role is one that is used as an
intruder detection system, either in a particular area or in a building. For-
est fire detection or flood detection are also examples in this class. Data-
collection and event-detection are often also combined, for example in WSNs
that monitor seismic properties [54].

In general, WSNs can cover a large area and sense all kinds of properties
at relatively high resolutions. Therefore, the potential of WSN application
is enormous and still growing as it is more and more recognized. WSN ap-
plication areas include environmental monitoring, medical monitoring, for
instance as with Harvard’s MoteTrack system [34], military applications
such as battlefield monitoring, transportation (control and management of
transport and logistics processes [14]), entertainment (intelligent light con-
trol, [43]), security and safety (e.g. person tracking, monitoring condition of
buildings) etc. Clearly, there are numerous application scenarios for WSNs.

2.2 Network Protocols

To reduce network design complexity, networks are often organized in sev-
eral stacked layers, following the (in computer science) well-known concepts
of information hiding and abstraction [52]. A layer provides its services to
the adjacent higher layer, while hiding the implementation details of these
services, and it uses services of the adjacent lower layer. Layers at the top
of the network stack provide more abstract services, layers at the bottom
of the stack offer more concrete services. Layer n on one node communi-
cates with layer n on another node according to a layer n protocol (figure
2.3). Tanenbaum [52] defines a protocol in computer networks to be ‘an
agreement between the communicating parties on how communication is to
proceed’. A protocol is thus a set of rules and conventions that describe

Master’s Thesis - W.M. Everse 10

CHAPTER 2. BACKGROUND

how to communicate. If the protocol is violated, the communication be-
comes much more complex, if not impossible. A list of protocols used by a
certain system, one protocol per layer, is called a protocol stack.

Layer k

Layer k-1

Layer k+1

Layer k

Layer k-1

Layer k+1

Services provided by layer k

Virtual communication
according layer k protocol

Layer 1Layer 1

Node A Node B

Physical network
(physical communication)

packet H(k) H(k-1) ... H(1)

Virtual communication
according layer k-1 protocol

Figure 2.3: Layered network principle (based on Tanenbaum [52])

Figure 2.3 is a representation of the abstract principle of layered networks. It
makes clear that the direct communication between two layers k of different
nodes, according to a layer k protocol, is only virtual. The actual physical
communication happens of course over the physical network. For instance,
when layer k of node A communicates with (i.e. sends a data packet to)
layer k of node B, the packet travels from layer k downwards the stack of
node A, via the physical connection (which might be any kind of connection,
wired or wireless) and, once arrived at node B, upwards the stack to layer
k of node B. Every layer of node A adds a header to the packet and every
layer of node B removes and interprets the corresponding header. For the
details we refer to the literature [52].

Well-known models that illustrate the layered network principle explained
in the previous paragraph are the Open Systems Interconnection (OSI) Ref-
erence Model and its simplified version, the TCP/IP Reference Model1. For
the details we refer again to Tanenbaum [52]. Both models have a Network
Layer containing routing protocols, and it is this layer to which our SPT

protocol belongs.
1Transmission Control Protocol (TCP), Internet Protocol (IP)

Master’s Thesis - W.M. Everse 11

CHAPTER 2. BACKGROUND

2.3 Graph Theory

This section presents the portion of graph theory that is required for a good
understanding of the subsequent chapters.

2.3.1 Graphs and Trees

A graph is a mathematical structure that consists of a set of vertices and a
set of edges. A real world analogy is for example a road map with a set of
towns (the vertex set) and a set of roads (the edge set) that connects them.
Another example is a network with nodes (vertices) and links between the
nodes (edges). Of course roads and links can either be one-way or two-way.
This translates to respectively a directed graph (containing directed edges)
and an undirected graph, in which there is no notion of direction. In both
cases the edge set is a set of pairs of vertices: ordered pairs in a directed
graph and unordered pairs for the undirected case. It follows that the edge
set is a binary relation on vertices. A convenient way of representing a
graph is by using a picture. Figure 2.4 shows an example of a simple graph
consisting of six vertices and eight edges.

1

2

4

6

5

3

Figure 2.4: Example of a simple graph

The following definition is based on the definition of a graph of Grimaldi
[18].

Definition 1 (Graph) A graph G is a pair (V,E) consisting of a finite,
non-empty set of vertices V and a set of edges E ⊆ V × V . We write
G = (V,E) to denote such a graph. We call G a directed graph if E is a
set of ordered pairs of V . If E is a set of unordered pairs, G is called an
undirected graph.

The example graph in figure 2.4 is an undirected graph because there is
no notion of the direction of the edges. Therefore edge (2,4) cannot be

Master’s Thesis - W.M. Everse 12

CHAPTER 2. BACKGROUND

distinguished from edge (4,2): they are considered equal. The vertices and
edges of the graph in figure 2.4 are enumerated below:

• vertex set V = {1, 2, 3, 4, 5, 6}, and

• edge set E = {(1, 2), (1, 3), (1, 5), (2, 4), (3, 4), (3, 6), (4, 6), (5, 6)}.

A path in a graph is a sequence of adjacent vertices (i.e. vertices connected
by edges), in which no vertex occurs more than once. A path in our example
graph is for instance the sequence {2,1,3,6,4}. A connected graph is one in
which there is a path between every pair of distinct vertices. A complete
graph is one in which there is an edge between every pair of distinct vertices:
it has 1

2n(n − 1) undirected edges for n vertices. Another term we will use
is a cycle: a path that starts and ends at the same vertex, for example
{2,1,3,6,4,2} but also {3,6,4,3}.

A weighted graph is a graph of which every edge is associated with a certain
weight, a positive number (fig. 2.5(a)). The weight of an edge for example
may represent the distance between the two vertices, or the cost (e.g. fuel,
hours, time, etc.) to get from one vertex to another. A path in a weighted
graph has a certain cost, that is the sum of the weights associated to the
edges that connect the vertices in the path. Now we define two more concepts
from graph theory: a tree and a spanning tree.

Definition 2 (Tree) An undirected graph G = (V,E) is called a tree if it
is connected and contains no cycles.

Definition 3 (Spanning Tree) A tree T = (VT , ET) is called a spanning
tree of a graph G = (VG, EG) if VT = VG and ET ⊆ EG.

An example of a spanning tree can be seen in figure 2.5(b). The thick lines
together with the vertices form a spanning tree of the example graph we saw
earlier. Of course other spanning trees are also possible in this graph. The
cost of a weighted tree is the sum of its edges, so the tree of figure 2.5(b)
would have a cost of 5 + 3 + 1 + 4 + 5 = 18 in figure 2.5(a).

2.3.2 Dijkstra’s Algorithm

The Shortest Path Tree protocol that will be described in chapter 3 enables
all nodes of a network to find a shortest path to a certain root node (the
gateway). In this section, a well-known algorithm for finding shortest paths
(i.e. paths of minimal cost) in a graph is intuitively explained in order
to provide the necessary background for our protocol. The algorithm for
finding these shortest paths between a certain vertex and all of the other
vertices of a connected weighted graph, is the Shortest Path Algorithm of

Master’s Thesis - W.M. Everse 13

CHAPTER 2. BACKGROUND

1

2

4

6

5

3

1

52

5

3
1

2

4

(a) a weighted graph

1

2

4

6

5

3

(b) a spanning tree of the example graph
in figure 2.4

Figure 2.5: Weighted graph and Spanning Tree

the Dutch computer scientist Edsger Wybe Dijkstra (1930-2002) [2, 18]. As
said, here the algorithm is explained intuitively and concise. For a detailed
formal description, the reader is referred to the literature on which we based
the rest of this section [2, 18].

Defining Notation

Given a weighted graph G = (V,E,w) with w = E × N a function that
associates nonnegative integers to edges, for each edge e = (x, y) ∈ E,
we interpret the associated weight w(e) (sometimes for convenience also
denoted as w(x, y)) as the distance between vertices x and y. If (x, y) /∈ E,
we define w(x, y) = ∞. The weight of a path π = v1v2...vn of n vertices
equals the sum of the weights of the edges that comprise the path, that is
w(π) = w(v1, v2) + w(v2, v3) + ...+ w(vn−1, vn). If no path between v1 and
v2 has weight less than w(π), then π is called a shortest path. Following
Grimaldi [18], we write d(a, b) with a, b ∈ V for the distance (weight) of a
shortest path in G from a to b. If no such path exists, d(a, b) =∞. For all
a ∈ V, d(a, a) = 0.

The Problem

Given a connected weighted graph G = (V,E,w) as described above, and a
source vertex s ∈ V , the problem is to find a shortest path from s to every
other vertex v ∈ V .

Master’s Thesis - W.M. Everse 14

CHAPTER 2. BACKGROUND

Dijkstra’s Solution

Dijkstra’s solution to this problem is a greedy algorithm, which means that it
finds the best results (shortest paths) globally (for all vertices of the graph)
by obtaining the best result locally. It starts with the given source vertex s
and ‘branches out’ by selecting certain edges that lead to new vertices. The
selection is done locally based on the weight of the edges: it always chooses
an edge to a vertex that appears to be ‘closest’ to s [2]. This results in a
tree, more specifically, in a Shortest Path Tree (SPT).

Definition 4 (Shortest Path Tree (SPT)) A Shortest Path Tree (SPT)
of a connected weighted graph G = (V,E,w) is a spanning tree of G, con-
sisting of a vertex s, called the root node or root vertex, and a shortest path
from s to every other vertex of G.

The vertices of the graph are thought of as they were divided in three disjoint
sets:

1. a set T of tree vertices that are in the SPT constructed so far,

2. a set F of fringe vertices that are adjacent to any vertex in T ,

3. a set U of unseen vertices, containing all others.

Initially, all vertices are classified as unseen. Then the source vertex s is
(re)classified as tree and all vertices adjacent to s as fringe. Now the algo-
rithm proceeds as follows from figure 2.6.

Data: G = (V,E,w) and s ∈ V
Result: T is a SPT of G
T := {s}, F := {x|x ∈ V, (s, x) ∈ E}, U := V − T − F ; // init1

while |F | > 0 do2

d(s, v) := mint∈T,v∈F {d(s, t) + w(t, v)};3

F := F − v; T := T + v ; // v becomes tree4

forall (v, u) ∈ E with u ∈ U do5

U := U − u and F := F + u ; // u becomes fringe6

end7

end8

Figure 2.6: Dijkstra’s Shortest Path Algorithm

That is, while there are fringe vertices, select an edge between a tree vertex
t and a fringe vertex v, such that d(s, t) +w(t, v) is a minimum (line 3), and
reclassify v as tree (add vertex v to the tree, line 4). Define the distance of a
shortest path from s to v: d(s, v) = d(s, t) + w(t, v) (line 3). Now reclassify
all unseen vertices adjacent to v as fringe (lines 5-7) and iterate.

Master’s Thesis - W.M. Everse 15

CHAPTER 2. BACKGROUND

Note that there may be more than one shortest path from vertex a to vertex
b in a graph. Therefore, a SPT need not be unique. The SPT should not be
confused with the widely known Minimum Spanning Tree (MST):

Definition 5 (Minimum Spanning Tree (MST)) Given a connected
weighted graph G = (V,E,w), a Minimum Spanning Tree (MST) is a span-
ning tree of G of minimal weight.

The MST can be found by following for example Prim’s MST algorithm,
which actually has quite some aspects in common with Dijkstra’s shortest
path algorithm [2]. Further discussion of these algorithms is out of the scope
of this project, more information can be found in the literature [2, 18].

We conclude this section with an example of both trees: figure 2.7 shows
in thick lines both the MST and a SPT with root node 1, in the case of our
example graph from figure 2.4. The MST has total weight 9, and there is
no spanning tree that weighs less. The numbers to the upper right of each
vertex in 2.7(b) denote the distance of the shortest path to the root (the
vertex labelled 1). The reader is invited to apply Dijkstra’s Algorithm to
the example graph to determine the SPT with the source vertex labelled 6.
It turns out to be equal to the MST. In other words, the MST of the example
graph contains the shortest paths from source vertex 6 to each of the other
vertices.

1

2

4

6

5

3

1

52

5

3
1

2

4

(a) The MST of the example graph

1

2

4

6

5

3

1

52

5

3
1

2

4

1

5

2

5

3

root

(b) SPT with root 1 in the example graph

Figure 2.7: Special spanning trees of the example graph

Master’s Thesis - W.M. Everse 16

CHAPTER 2. BACKGROUND

2.4 Formal Methods

The field of Formal Methods in the context of Computer Science (CS) covers
all approaches for specification and verification of software systems, based
on mathematical formalisms [50]. According to Ruys [50], “The aim is
to establish system correctness with mathematical rigour. Using formal
methods, system designs can be defined in terms of precise and unambiguous
specifications that provide the basis for a systematic analysis.”. This section
will provide some background on formal methods, especially why they are
needed and which common methods there are.

2.4.1 The Need for Formal Methods

Our lives are impregnated with all kinds of Information and Communication
Technology (ICT) systems. For example, we rely for a large amount on the
functioning of smart cards, handhelds, mobile phones, television systems,
Digital Versatile Disc (DVD) recorders, the Internet and so on. Clearly,
computers are ubiquitous nowadays. Moreover, we also rely heavily on more
and more safety-critical systems, like for instance the control software in our
cars, traffic control and alert systems and medical systems at home and in
hospitals. Even the proper operation of chemical and nuclear plants relies
vastly on software [3].

Without relying on such ICT systems, it is practically very hard to partic-
ipate well in current society. Therefore, we are annoyed if something (for
example our mobile phone) does not function properly. This malfunctioning
is caused by software and/or hardware errors, which often have substantial
(negative) financial consequences for manufacturers. For example, a bug in
Intel’s Pentium II processor (in its floating point division unit) was good for
a loss of about $475 million plus a severely damaged reputation [3]. Correct
ICT systems are essential for the survival of a company. Besides annoyance
and financial impact, safety-critical systems that contain errors obviously
may have a far more severe impact, involving one or more human lives.
There is the notorious example of the Therac-25 radiation therapy machine,
that caused the death of six cancer patients between 1985 and 1987. Here
software errors caused the exposure of the patients to an overdose of radi-
ation. Another example of a well-known fatal failure caused by a software
error is the crash of an Ariane 5 rocket in 1996 (37 seconds after launch) [3].

In general, hardware and software systems are widely used in applications
where failure is unacceptable [50]. On top of this, ICT systems still continue
to grow in size and complexity. Therefore the probability that errors are
getting introduced also increases. It will be clear that the reliability of ICT

systems has become very important: it became a key issue in the system’s
design process.

Master’s Thesis - W.M. Everse 17

CHAPTER 2. BACKGROUND

2.4.2 Validation and Verification Techniques

Formal methods are concerned with the unambiguous specification and au-
tomated validation and/or verification of software systems based on math-
ematical formalisms. The terms validation and verification are often con-
fused. A well-known trick to remember the difference originates from Boehm
[6]: validation corresponds to the query “are we building the right thing?”
whereas verification answers the question “are we building the thing right?”.
The former is thus related to a real-world user’s perspective (compliance to
user requirements), while the latter is concerned with compliance to the
software development process.

Important validation and verification techniques based on formal methods
are simulation, testing and formal verification (in particular model checking
and theorem proving) [25, 50]. In the sequel of this section we shortly discuss
each of these techniques.

Simulation

Simulation is a validation technique that is concerned with some executable
model of the system under consideration. A software tool called a simulator
executes the model following some scenarios (sets of possible system inputs)
to determine the behaviour. This provides insight to the reactions of the
system on certain inputs. The scenarios may be provided by the user or may
be randomly generated. Simulation is typically useful for a quick assessment
of a design, but not to show the presence of subtle errors as it is infeasible
to simulate all possible scenarios [25].

Testing

Testing is the traditional way of validating the correctness of a design.
In practice, it is probably the most frequently used validation technique.
Testing is the process of stimulating the so called Implementation Under
Test (IUT) with well-chosen input while observing its output. The observed
output is then checked to conform to the required output that follows from
the system specification. The input is in practice often obtained in a rather
ad-hoc and heuristic manner and requires experience. Structured Testing,
however, is concerned with more structural techniques for black box test-
ing (e.g. equivalence partitioning, boundary value analysis) and white box
testing (e.g. statement coverage, branch coverage).

As opposed to simulation that is based on a model of the system, tests are
performed on a real implementation. Testing is similar to simulation in that
it is incomplete: it is impossible to observe all possible outputs [25]. Testing

Master’s Thesis - W.M. Everse 18

CHAPTER 2. BACKGROUND

provides insight in the quality of the implementation and helps assessing the
risk of putting the implementation into operation.

Formal Verification

Formal verification techniques prove that a (model of a) system operates
correctly, in contrast to testing and simulation. These techniques are based
on the construction of a formal model (i.e. a mathematical model) of the
system which represents the possible behaviour. The correctness require-
ments are stated as properties in a formal property specification language.
Then it is checked whether the specification of the model (the system’s pos-
sible behaviour) “contains” the desired behaviour (specified as correctness
property). This can be unambiguously and explicitly checked since we are
dealing with formal specifications [3]. It is important to note that formal
verification techniques are only as good as the model.

As opposed to testing and simulation, formal verification techniques are
capable to exhaustively check the behaviour of the system (model) under
consideration. Two fundamental formal verification techniques are Model
Checking and (Automatic) Theorem Proving. They are shortly discussed
below.

Model Checking

In Baier and Katoen [3], model checking is defined to be an automated
technique that, given a finite-state model of a system and a formal property,
systematically checks whether this property holds for that model. Slightly
more formally: given a finite-state model M and a property φ stated in
some formal notation (e.g. temporal logic), model checking is the process
of systematically checking the validity of the property, i.e. M |= φ [50].
This is called the verification question. Model checking is a process that is
computer aided: given M and φ, a computer tool called a model checker
performs the check. If the property does not hold for the given model (i.e.
M 6|= φ), a counterexample is provided that indicates how the error state of
the model was reached. An example of a correctness property to check is
that no deadlocks occur. In section 2.4.3 below, we will take a closer look
at Model Checking.

Theorem Proving

Another prominent formal verification technique is Theorem Proving. Again
we have the verification question M |= φ with M a system model and φ a
correctness property. The system model is now expressed as a formal proof
system existing of axioms and inference rules, expressed in some mathemat-
ical logic. Property φ is also expressed in that same logic. Theorem Proving

Master’s Thesis - W.M. Everse 19

CHAPTER 2. BACKGROUND

is the process of showing that φ is a logical consequence of M , i.e. finding a
derivation of φ by applying rules from M , starting with axiom(s) from M . A
theorem prover is a computer tool that assists in this process of constructing
a proof. Compared to a model checker, a theorem prover is less automatic
since user interaction is typically required during proof construction. On
the other hand, theorem provers are not restricted to finite state spaces.

Summarizing, given a model M and correctness property φ, simulation and
testing check whether M |= φ for some executions of M . Model checking
checks M |= φ exhaustively and systematically by checking that each reach-
able state in M satisfies φ. Theorem proving checks whether M |= φ by the
construction of a formal proof of M , satisfying φ.

2.4.3 More on Model Checking

In this subsection we elaborate slightly on model checking, since this verifi-
cation technique is used extensively during this research project. For tech-
nical details of model checking, search algorithms, property specification
languages etc. we refer to the literature (for example the excellent book
Principles of Model Checking by Baier and Katoen [3]).

Model Checking Phases

The model checking process can be divided into the following phases [3]:

• Modelling phase – in which the system under consideration is modelled
using the model description language of the model checker of choice.
During model construction, it is often possible to perform some simu-
lations, as a first sanity check. The properties to be checked are also
formalized in this phase, using the property specification language sup-
ported by the model checker.

• Running phase – in which the model checker systematically and ex-
haustively checks the validity of the given property for the constructed
model.

• Analysis phase – in which the result of running the model checker is
analyzed:

– Property violated: analyze the generated counterexample by sim-
ulation and refine the model, the design or the property by iter-
ating (restart the modelling phase).

– Out of memory: try to reduce the model by iterating (restart the
modelling phase).

– Property satisfied: check the next property (if any) by iterating
(restart the running phase with the next property).

Master’s Thesis - W.M. Everse 20

CHAPTER 2. BACKGROUND

System
Specification

Model M Desired
Properties φ

Desired
Properties φ

Desired
Properties φ

Model Checker

OK NOK

Counterexample

State
Space

1. Modelling

2. Running

3. Analyzing

iteration

system
modelling

requirements
modelling

Figure 2.8: Schematic view of the Model Checking principle

These phases are also denoted in figure 2.8. The figure is a schematic view
of the model checking principle. In fact, this is the classical view on model
checking; a fast growing other view is that of software model checking in
which the model to check is (either automated or not) abstracted from a
system implementation (i.e. from program code). In this thesis, we focus
on the classical view.

State Space Explosion

In the running phase in figure 2.8, there is an ellipse labelled “state space”.
The state space is the collection of reachable states of the model, generated
by the model checker. Therefore it is connected (using dashed lines) to both
the model and the model checker. The state space explosion is a notorious
problem of the model checking approach: the number of states of a model
is exponential in both the number of variables and the number of parallel
components of the model. This causes an extremely large number of states
to be generated for a model of a realistic system [3]. The state space of a
practical model is often too big to fit in computer memory. This prevents
the model checker from exploring every state to check the given property
and the verification is aborted.

There are several optimization techniques to combat the state space explo-
sion, such as model abstraction, partial order reduction and other reductions

Master’s Thesis - W.M. Everse 21

CHAPTER 2. BACKGROUND

through equivalence, memory management techniques, symbolic techniques,
etc. It is out of the scope of this thesis to discuss them here. Instead, we will
refer to the literature, for example Baier and Katoen [3], Katoen [25], Ruys
[50].

Benefits and Limitations

We conclude this section with some benefits and some limitations of model
checking [3, 25].

Benefits:

• Model checking is based on a sound mathematical foundation.

• Unlike testing and simulation, it is not vulnerable to the likelihood
that an error is exposed. This means that even rare errors will be
found by model checking while they often remain undiscovered during
testing and simulation.

• In case of property violation, it provides a counterexample (diagnostic
information) which is very useful for debugging.

• Partial verification is possible: verification against a partial specifica-
tion is possible since properties can be checked individually.

Model checking of course also comes with some limitations:

• Model checking is only as good as the model: the successful verification
of a system property on a wrong or faulty model of a system is rather
useless.

• It suffers from the notorious state space explosion problem described
above.

• It may require some expertise in finding the right abstractions in order
to reduce system models and to state correctness properties.

• In general, systems with an arbitrary number of components or pa-
rameterized systems cannot be checked. If, for instance, a protocol is
verified to be correct for 2 and 3 processes it cannot provide an answer
for the verification of the protocol for n processes (arbitrary n).

It can be concluded that model checking can provide a significant increase
in the level of confidence of a system design, since it is an effective technique
to expose potential design errors [3].

Master’s Thesis - W.M. Everse 22

CHAPTER 2. BACKGROUND

2.5 Related Work

This section provides an overview of relevant work in the field. Most of
the many work on WSNs has been performed in the last decade. Therefore
the demand for correct protocols and theoretical foundation also rapidly
increased. Moreover, WSNs come with many network challenges (e.g. unre-
liability, mobility, efficiency) which motivated many research. This resulted
in a huge amount of mostly separately developed WSN protocols, which have
limited interoperability because of different assumptions about network ar-
chitecture. In this light, a platform or methodology for formal verification
experiments with WSN protocols would be very useful. However, in the
literature there are only few reports on this topic. Kim, Kim, Lee, Ahn,
Song, and Won [27] describe an automatic verification framework for the
development of WSN protocols, but this is based on testing and test case
generation, rather than on verification using model checking. There is no
framework or platform that we know of for formal verification experiments
with WSN protocols.

2.5.1 Formal Protocol Analysis

Many protocols (or portions thereof) have been formally verified: for ex-
ample Kusy and Abdelwahed [30] describe the modelling and verification of
a portion of the Flooding Time Synchronization Protocol (FTSP) using the
SPIN model checker. They assumed ideal channels (no message loss) and
an ideal network (no node failures) and were able to check the protocol up
to and including 4 nodes. This illustrates a common problem with model
checking protocols: due to the state space explosion, it is often only possible
to verify just a few nodes, in this case only 4.

The work of Wibling, Parrow, and Pears [55] evaluates the model checkers
SPIN and UPPAAL using the verification of a MANET routing protocol as a
case study. This is closely related to our work since important modelling and
verification issues are considered, such as modelling broadcast, connectivity
and topology changes. Verification using either SPIN or UPPAAL was feasible
for scenarios up to and including 4 nodes. In addition, UPPAAL was able to
successfully verify one scenario of 5 nodes.

Câmara, Loureiro, and Filali [10] describe a methodology for formal verifi-
cation of routing protocols for ad hoc networks. In contrast to most other
work, their solution does not model any particular network topology, but
rather focuses on the possible implications of a topology on the behaviour
of the protocol: the so called topology abstraction. This methodology is
useful for confirming the existence of functional problems but it does not
help determining protocol limits. Another drawback is that error scenarios
must be evaluated manually.

Master’s Thesis - W.M. Everse 23

CHAPTER 2. BACKGROUND

Interesting work with a different intent is that of McIver and Fehnker [38],
in which the benefits of applying formal analysis to wireless networks are
explored. It is concluded that formality makes assumptions explicit and
that the exhaustive search of model checking can illustrate weaknesses in
the system effectively and provide lower and upper bounds on quantita-
tive behaviour, without the need for using large numbers of simulations.
Fehnker, van Hoesel, and Mader [16] worked on the modelling and verifi-
cation of a medium access control protocol (i.e. the Lightweight Medium
Access Control (LMAC) protocol for WSNs) using the model checker UPPAAL.
Their results are the improvement of the protocol and its description, and
the discovery of some faults in the protocol. An example of formal verifi-
cation using the probabilistic model checker PRISM, is the work of Fehnker
and Gao on “formal verification and simulation for performance analysis for
probabilistic broadcast protocols” [17]. This work describes the modelling
and verification of a gossiping protocol. A model of 9 nodes was checked,
more nodes exceeded the capabilities of PRISM. The results were validated in
larger network settings using Monte Carlo simulation (implemented in Mat-
lab). Formality making assumptions explicit was also experienced during
their research. In work on “the graphical modelling for simulation and for-
mal analysis of WSN protocols”, Fehnker, Fruth, and McIver [15] argue that
context-dependent details such as distance between nodes and node density
militate against a clear and modular formal specification and therefore are
difficult to add to a formal model. They argue that the simplest way of
expressing the spatial relationships is graphically and translate a graphic
model to a formal PRISM model with reception probabilities that account
for the spatial details.

2.5.2 Routing in WSNs

Besides formal analysis of protocols for MANETs or WSNs, the work by Woo
et al. [56] entitled “Taming the underlying challenges of reliable multihop
routing in sensor networks” turned out to be very relevant. The paper de-
scribes the routing problem for WSNs and discusses the underlying design
issues of routing protocols, such as routing metrics, link quality estimation
and neighbourhood management. Different approaches to address these is-
sues are explained and evaluated in an empirical study. This work inspired
the development of our SPT protocol and provides useful insights in the
internals of both the protocol and WSNs. Another contributor to these valu-
able insights is the work of Polastre et al. [45]. A unifying link protocol is
proposed in order to improve the limited interoperability of the numerous
protocols that recently have been developed for WSNs.

Another closely related work is the PhD thesis of Wu [57] which is a disser-
tation on “reliable routing protocols for dynamic wireless ad hoc and sensor

Master’s Thesis - W.M. Everse 24

CHAPTER 2. BACKGROUND

networks”. Although it does not focus on the verification of routing pro-
tocols, it provides valuable information about routing and related issues in
MANETs and WSNs and about the routing protocols used in the field. It also
provides an overview of protocol categories. We will elaborate on this in
the next chapter. The main contributions of the thesis are a highly reliable,
low traffic WSN routing protocol, a cross-layered approach to routing in high
mobility sensor networks and a data-centric approach to get aggregated data
from source to destination with high efficiency.

Master’s Thesis - W.M. Everse 25

CHAPTER 3

The SPT Protocol for WSNs

This chapter is a detailed explanation of the Shortest Path Tree (SPT) proto-
col that served as our case study. We start with an introduction to routing
and the routing problem in Wireless Sensor Networks (WSNs). Then we
continue with an informal description of our protocol, after which we will
present its formal specification.

3.1 Introduction to WSN Routing

An important task of the nodes in a WSN is to send the data obtained by
their sensors through the network to a special node: the gateway G (of
which there may be several). Once there, these data are either forwarded
via for instance internet (for future processing) or directly processed (stored,
analyzed et cetera). Since a WSN typically consists of many nodes and only
one (or few) gateways, it is very plausible that the majority of the ordinary
nodes are outside of the wireless range of a gateway node. Moreover, since
WSNs fall in the class of Mobile Ad-hoc Networks (MANETs) there is no
central infrastructure. Therefore, each node should be able to act as a
router : on receive of messages for the gateway from a neighbouring node
(i.e. any node within a node’s wireless range), the node should be able to
forward these messages such that they will eventually arrive at the gateway,
via a (multi-hop) path that is as efficient as possible (based on some routing
metric). The nodes must be able to determine such paths themselves.

To fulfil this routing functionality, each node needs to select a neighbour-
ing node to forward messages for the gateway to. Because of the energy
constraints in a WSN, this selection should be done in such a way that the

Master’s Thesis - W.M. Everse 26

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

messages will arrive at the gateway as energy efficient as possible. Com-
bining this with the fact that every message transmission in a WSN takes
a relatively large amount of energy, results in a selection of a neighbour-
ing node such that it is on a path to the gateway that minimizes the total
number of message transmissions. But because of the extremely unreliable
wireless links [11] between nodes in a WSN, the number of message trans-
missions along a path to the gateway is not simply the number of hops to
the gateway.

3.1.1 Unsuitability of Existing Routing Protocols

Why can we not simply use the existing routing protocols that are used in
conventional (wireless) networks? WSNs are a special type of MANETs but
introduce additional challenges in the design of protocols and software. This
is a result of their unique characteristics such as the usually large number of
nodes and the severe resource limitations of the nodes, in combination with
the dynamically changing topology, unreliable links and high probability for
node failure. Especially, routing in WSNs is very challenging because tradi-
tional (wireless) network protocols are unsuitable due to the aforementioned
characteristics [57]. Traditional network routing protocols as Open Shortest
Path First (OSPF) and the Routing Information Protocol (RIP) are based on
the two major routing algorithms Link State and Distance Vector respec-
tively [29], which require a lot of information exchange and bookkeeping.
This is infeasible in WSNs due to the resource constraints and the usually
large number of nodes. Even most MANET protocols, optimized for mobile
networks are not suitable for WSNs, as they still require too much compu-
tational effort, energy and bookkeeping. Moreover, these protocols often
assume the layered convention of network architecture, that in WSNs might
be be broken for efficiency reasons [57].

3.1.2 Routing Protocol Categories

This subsection provides a short overview of routing protocol categories
based on the taxonomy described by Wu [57]. MANET routing protocols
can be divided in to categories: table-driven protocols and on-demand pro-
tocols. The former category contains routing protocols that maintain a
consistent and up-to-date view of the network, for example the Wireless
Routing Protocol (WRP). Table-driven protocols are less suitable for dy-
namic WSNs as they converge very slowly after topology changes. The latter
category comprises protocols that only create routes when required (on de-
mand), thereby reducing control overhead. An example of an on-demand
protocol is Ad hoc On demand Distance Vector (AODV). AODV is loop-free,
self-starting and it scales well.

For WSN routing protocols, three categories can be distinguished: flat,

Master’s Thesis - W.M. Everse 27

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

location-based and hierarchical. Direct Diffusion (DD) falls into the first
category, it is a flat routing protocol, meaning that all sensor nodes are
peers of each other, they all have the same functionality. DD combines
data coming from different sources along the route to the gateway, and by
doing so, eliminates redundancy and minimizes the number of transmis-
sions. Location-based protocols reduce control overhead by making rout-
ing decisions on cached geographical information (often from Global Po-
sitioning System (GPS)). An example is Geographic and Energy Aware
Routing (GEAR). The third and last category is that of hierarchical routing
protocols, of which Low Energy Adaptive Clustering Hierarchy (LEACH) is
an example. Nodes are classified into hierarchical groups of functionality.
This allows for example for using “the most healthy” nodes as “backbone”
routers and giving less healthy nodes (e.g. slower links, lower energy) a less
intensive task.

Armed with the general knowledge about routing in WSNs that was presented
in this section, we now continue with the informal description of our SPT

protocol that is referred to in the title of this thesis.

3.2 Informal Protocol Description

This section provides an intuitive description of the SPT protocol that we
used as case study. The protocol was developed at the University of Twente
and implemented rather abstract in Matlab by Leon Evers, as a proof of
concept. It is a network-level routing protocol for WSNs that enables each
node to select a neighbour node that is its parent in the global SPT rooted
at the gateway. Recall from chapter 2 that a SPT is not necessarily unique
for a graph: sometimes a node can make a selection out of several options.

3.2.1 The ETX Routing Metric

As defined in the section on Graph Theory in the previous chapter, a shortest
path tree in a weighted graph is a spanning tree, containing the shortest
paths from a selected root node to every other node of the graph. In order
to apply this theory to WSNs, we need an abstract view on WSNs: namely
that of a weighted graph.

If we abstract from the physical details of a WSN, the remaining structure
can be viewed as a complete graph, as in figure 3.1. The unreliable wireless
medium induces that a sent message arrives at its destination with a certain
probability (which may equal zero). In our abstract WSN (i.e. the complete
graph in figure 3.1(a)), there is a probability pij associated to every edge
(i, j): a message sent by node i arrives at node j with probability pij . In
other words: each link has a certain link quality. We assume this link quality

Master’s Thesis - W.M. Everse 28

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

to be symmetric, that is pij = pji. In figure 3.1(a), the link between node
2 and node 3 for example, has the associated probability 1

100 and is thus
expected to deliver only 1 out of 100 messages: it is highly unreliable.

0 1

2 3

p = 1/2

p = 1/3

p = 1/6

p = 1/4

p = 1/2

p = 1/100

(a) Link Qualities

0 1

2 3

2

3

100

2

6

4

(b) ETXs (weights)

Figure 3.1: An abstract model of a WSN of 4 nodes: a WSN corresponds to a complete graph

Given this view on WSNs, the routing metric that our protocol uses to base
its calculation of shortest paths on, is the expected number of message trans-
missions needed to get the message across. If the successful transmission of
a message over a link (i, j) has probability pij , then the expected number
of transmissions necessary to be sure of at least one successful transmission
(the message gets across the link) equals the inverse of this link probability
(i.e. 1

pij
).

This metric is in fact a simplified version of the Expected Transmission
Count (ETX) routing metric, invented by De Couto [13] in 2004 and mean-
while a known metric in the field [11, 24, 45]. De Couto [13] defines the ETX

to be 1
pf×pr with pf and pr being the forward and reverse probability of a

link respectively. This is a consequence from the fact that message reception
is normally acknowledged: pf corresponds to the transmission of a message
and pr corresponds to the returned acknowledgement (of reception of the
message) from the receiver, thus in reversed direction. In our protocol we
do not account for acknowledgements: we simply rule out their influence.

The ETX values can be considered the weights in our complete graph (fig.
3.1(b)) as they are a measure for the cost of the links. So now we are able to
construct an ETX-based Shortest Path Tree. Figure 3.2 shows the construc-
tion of a SPT rooted at the gateway. Unless stated otherwise, throughout
this work, the gateway will have id and label 0.

Note that the SPT may and will change dynamically due to fluctuating link
qualities, as a result of the unreliable wireless medium and possibly also as
a result of physical movement of the nodes.

Master’s Thesis - W.M. Everse 29

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

0 1

2 3

2

3

100

2

6

4

(a)

0 1

2 3

2

3

100

2

6

4
2

(b)

0 1

2 3

2

3

100

2

6

4
2

3

(c)

0 1

2 3

2

3

100

2

6

4
2

3

5

(d)

Figure 3.2: ETX-based SPT construction

3.2.2 Unknown ETXs

As shown before, the SPT can be easily built-up when having global infor-
mation of the network (all ETX values). However, the (distributed) protocol
runs locally on each node and thus only can obtain local information of the
network. Moreover, the ETX values are unknown initially.

To solve the problem of unknown ETX values, a node needs to measure the
link quality of the links to its neighbours1. By computing the inverse of
the measured link quality, an approximation of the ETX is obtained. This
measuring of the link quality is accomplished by a periodical broadcast of
a probe message containing a node identification number. In other words:
time is divided in slots (which we call message rounds) and every message
round, each node broadcasts a probe message containing its id.

The link quality of a link from node i to node j according to node i (perceived
by node i after M message rounds) is the fraction of M probe messages that
is sent by j and received by node i. Observe that strictly spoken, a node
thus uses the quality of the incoming link for the quality of the outgoing
link.

3.2.3 Distributed Operation

To enable a node to select a correct neighbour as its parent in the SPT, the
perceived link qualities to its neighbours do not suffice. It will also need
the ETX values of the rest of the network to determine which neighbour is
on a shortest path to the gateway. This problem is solved by including the
ETX-to-gateway G (as perceived so far) in each probe message. We prefer
to speak about the distance-to-G : in the sequel of this thesis we will mainly
use the more intuitive term distance wherever we mean ETX. To see how
the inclusion of the perceived distance to the gateway solves the problem of
distributed shortest path finding, consider the following example, illustrated
by figure 3.3.

1A node is a neighbour of another node if the latter ‘can hear’ the former.

Master’s Thesis - W.M. Everse 30

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

i

b

ca

d

M = 4

2

1

4

1

6

3

8

4

9

78
8

msgs that came across
from d to i

dist-to-G of c

?

Figure 3.3: The principle of the protocol: the question mark will be 7 in this case (the minimum
of the computed distances-to-G: 8, 8, 7, 9).

The figure depicts the situation after four message rounds (M = 4). In
each of these four message rounds, nodes a, b, c, d and i broadcasted probe
messages with their id and their perceived distance to the gateway. At the
end of each message round, the nodes determine their shortest distance to
the gateway, based on the received information. We assume that nodes
a, b, c and d already found that their shortest distance-to-G is resp. 4, 6, 3
and 8 in earlier message rounds. We now focus on node i: let us see how
it determines its shortest distance to the gateway. Each node maintains a
message round counter and counters for the received number of messages
per neighbour. This enables node i to compute its own distance-to-G via
each of its neighbours, and to select the neighbour for which a minimum is
found.

In the situation of the figure, node i’s counter for the number of received
probe messages from node a equals 1, so the link to a is considered to have a
quality of 1

4 and the corresponding ETX (distance) is 4. We assume that the
message that node i received from node a also contained a’s distance-to-G of
4, and therefore node i computes its distance-to-G via a to be 4+4 = 8. In a
similar way, it computes the distances via nodes b, c and d to be respectively
8, 7 and 9 (as indicated within the dashed circle). Consequently, node i now
selects node c as its parent because this results in a minimum distance to
the gateway of 7.

Note that there is an important assumption about the way of sending data
messages (i.e. sensor data) to the gateway: node i selected parent c and
transmits the same data message 4 times, since it estimates the link to c of
quality 1

4 (in this case). Once at node c, it is forwarded in a similar way.

Master’s Thesis - W.M. Everse 31

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

3.2.4 The Gateway and the SPT

All nodes start with their distance-to-G initialized to infinity, except for the
gateway. Obviously, the gateway’s distance to the gateway is invariantly
equal to zero. Therefore, it does not have to compute anything (and it
thus does not have to listen to probe messages). Except for this reduced
behaviour, the gateway is the same as other nodes: it just periodically sends
its messages, saying “I am G and my distance-to-G is 0”. In other words:
the gateway is the initiator (and thus the root) of the SPT building process.

The shortest path tree at a certain point in time is never explicitly present,
so why is it called an ‘shortest path tree’ protocol? The answer lies in the
fact that the spanning tree at any point in time can be constructed from
the edges obtained by ‘asking’ a node to which of its neighbours it currently
would send a message that is to be forwarded to the gateway (i.e. “who
is your selected parent?”). That will be the node for which it found the
minimum distance (at that point in time). The tree found in this way is
an approximation of the SPT. As longer the protocol runs, the better the
approximation (in a static topology).

3.2.5 Matlab Implementation

As stated at the beginning of this section, a very abstract version of the
protocol was implemented in the mathematical software Matlab by Leon
Evers. This implementation is used to perform simulations with. This
subsection is a short explanation of the implementation, which is contained
in the appendices of this thesis (appendix A).

Matlab stands for Matrix Laboratory and it is a high-performance lan-
guage for technical computing. It integrates computation, visualization and
programming in an intuitive environment, using familiar mathematical no-
tation. Typical uses include math and computation, algorithm development,
modelling, simulation and prototyping, data analysis and visualization, sci-
entific and engineering graphics and even application development. The
basic data element is a matrix that does not require dimensioning [37].

Matlab allows for efficient specification of our protocol by means of ma-
trices. The implementation randomly generates node positions for a fixed
number of nodes. Based on these positions, it builds a distance matrix that
contains distances between every pair of nodes. Using these distances it cal-
culates the receive probability between all node pairs (based on an s-curve
of distance vs. receive probability, derived from the empirical study in [56]).
The implementation then plots the optimal SPT tree based on these data. It
continues with iteratively (per message round) executing the protocol, while
plotting the chosen tree (or forest, i.e. a collection of trees) each message

Master’s Thesis - W.M. Everse 32

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

round (this allows for visual comparison to the optimal tree). After a pre-set
number of message rounds the node positions are shuffled randomly (and
distance, receive probability and the optimal tree are re-computed), while
the protocol continues operation. This allows for observing the reaction to
a topology change: does it converge to the new tree and how fast does it
converge? After a fixed number of message rounds it finishes, while plotting
statistics on the average quality of the chosen tree and the percentage of
correct parents.

This proof of concept provides useful insight in the protocol’s internals and
dynamics. Moreover, confidence in the correctness of the (implementation of
the) protocol is established. It is also useful for experimentation, to improve
performance by tuning parameters etc. The source of this implementation
can be found in appendix A, together with some screen shots of the generated
plots.

Master’s Thesis - W.M. Everse 33

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

3.3 Formal Protocol Specification

My supervisor Mariëlle Stoelinga initiated a draft version of the formal spec-
ification of the SPT protocol. The specification (which is in a more definitive
form in this section) comprises the protocol in pseudo code, together with a
sound recursive characterization. We start with table 3.1, which introduces
the reader to the notation used.

G : The gateway node
N : The number of nodes in the network
M : Counter for the number of message rounds (time units)

i, j, f : Index variables denoting arbitrary nodes, 1 ≤ i, j, f ≤ N
d : Auxiliary variable denoting the distance in a message
pij : The probability that a message from node i arrives at node

j, we assume pij = pji.
RMi [j] : The number of messages from node j received by node i.

Note that this defines the link quality of the link between
nodes i and j, as perceived by i after M time units (i.e. the
fraction RMi [j]

M of messages sent by j that has been received
by i). The inverse of the link quality is the expected number
of transmissions needed for a message to get across.

DM
i [j] : Distance (total ETX) from node j to G, according to node i’s

information after M time units. DM
i [i] is the distance-to-G

from i itself after M time units.
msgMi [j] : Message that node i sends to j in round M . Message loss is

denoted by ⊥ (i.e. msgMi [j] = ⊥ if the message gets lost).
parent : Denotes the currently chosen neighbour to forward messages

for the gateway to.

Table 3.1: Notation used in the formal specification of the protocol

3.3.1 Pseudo Code

De pseudo code of the protocol is divided in code for the gateway node and
code for any other node present in the network. The code for the gateway
node (denoted G) simply represents a single thread, which sends periodically
a message, containing the gateway’s identification and its distance-to-G (our
synonym for the total ETX to the gateway), which of course is invariantly
equal to zero:

Master’s Thesis - W.M. Everse 34

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

G’s Active Thread

for ever do1

Send(G, 0); // broadcast probe msg2

Wait(1); // wait for 1 time unit3

end4

Figure 3.4: Pseudo code of the gateway’s active thread

The code for node i, i 6= G, is divided in three parts: the initialization,
a passive thread and an active thread. Observe that the subscript index
i and the superscript M used in the notation in table 3.1 (for example in
DM
i [j]) are not necessary here and thus omitted. However, their presence

in the table will be justified in the recursive characterization of the next
subsection.

Node i’s initialization

M := 0;1

∀j : D[j] :=∞;2

∀j : R[j] := 0;3

Figure 3.5: Pseudo code of node i’s initialization (i 6= G).

Node i’s Passive Thread

for ever do1

(j, d)← Receive(); // wait until receive2

R[j] + +; // count received msg of j3

D[j] := d; // record dist-to-G of j4

end5

Figure 3.6: Pseudo code of node i’s passive thread (i 6= G).

The function call on line 2 listens to the wireless channel for probe messages
of other nodes. If such a probe message is received, it delivers the message
as a tuple (j, d) with j the id of the sender of the message and d the distance-
to-G of the sender (as perceived so far by the sender).

Master’s Thesis - W.M. Everse 35

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

Node i’s Active Thread

for ever do1

Send(i, D[i]); // broadcast probe msg2

M := M + 1; // update msg round number3

Wait(1); // wait for 1 time unit4

D[i] := min1≤f≤N,i6=f

{
M
R[f] +D[f]

}
; // compute dist-to-G5

parent := fmin; // set parent6

end7

Figure 3.7: Pseudo code of node i’s active thread (i 6= G).

The distance computation on line 5 is important here. One might think that
it is more efficient to do this on message reception. However, the distance
must be updated each message round, regardless of whether a message is
received: that way the distance decreases if messages arrive and it increases
as long as no messages are received. The variable f is used to range over all
node ids and fmin in line 6 is the node id for which the minimum is reached
in line 5.

3.3.2 Recursive Characterization

A more abstract way of formally specifying a protocol, is to characterize
the behaviour mathematically. Our SPT protocol is conveniently specified
recursively, because of its periodicity (i.e. message rounds). This results
in a concise specification of mathematical rigour, that abstracts away from
implementation details such as the location of functionality (e.g. different
threads). A recursive definition consists of a non-inductive basis and one or
more inductive clauses (that induce the recursion).

The basis of this recursive characterization corresponds to the initialization
part of the pseudo code above. The inductive clauses correspond to the
active and passive threads of a node. Below we explain the inductive clauses
in more detail.

Basis

R0
i [j] = 0 (3.1)

D0
i [j] =

{
0 if i = G
∞ otherwise

(3.2)

Master’s Thesis - W.M. Everse 36

CHAPTER 3. THE SPT PROTOCOL FOR WSNs

Inductive clauses

msgM+1
i [j] =

{
d = DM

i [i] with probability pij
⊥ with probability 1− pij

(3.3)

RM+1
i [j] =

{
RMi [j] if msgM+1

j [i] = ⊥
RMi [j] + 1 if msgM+1

j [i] = d
(3.4)

DM+1
i [j] =

{
DM
i [j] if i 6= j and msgM+1

j [i] = ⊥
d if i 6= j and msgM+1

j [i] = d
(3.5)

DM+1
i [i] = min

1≤f≤N,i6=f

{
M + 1
RM+1
i [f]

+DM+1
i [f]

}
(3.6)

The variable msgM+1
i [j] (3.3) introduces the probability of message arrival

pij . This is essential as we deal with an unreliable wireless medium. The
message sent by node i to node j will get across with probability pij and it
will get lost with probability 1− pij . Note that in equations 3.4 and 3.5, we
need msgM+1

j [i] instead of msgM+1
i [j] (recall that we assume pij = pji).

As stated in table 3.1, the variable RM+1
i [j] of clause 3.4 is a message counter

for determining the link quality. The link quality of the link between nodes
i and j (as perceived by i and after M message rounds) is defined to be
RMi [j]
M .

The distance is computed as follows: if node i did not receive anything from
node j in a message round, then the distance of j to G as perceived by i
does not change (first line of equation 3.5). If it did receive a message then
the distance of j to G as perceived by i is set to the distance d contained in
the message (second line of equation 3.5).

What remains for node i is to determine its own distance to the gateway.
This is the distance of a shortest path to the gateway starting from node
i itself. Such a path is a combination of the distance of a path from a
neighbour to the gateway and the expected number of messages based on
the measured quality of the link to that neighbour (equation 3.6). Note that

the latter is the inverse (M+1
RM+1
i [n]

) of the link quality (R
M+1
i [n]
M+1).

Master’s Thesis - W.M. Everse 37

CHAPTER 4

Verification using UPPAAL

In the previous chapters, we discussed the background of this research
project and the details of the Shortest Path Tree (SPT) protocol, which
functions as our case study. We learned from chapter 3 that we are given
an idealized routing protocol description, which has been mathematically
proven correct by my supervisors and implemented and simulated using
Matlab. Therefore, there is already considerable confidence in its correct-
ness. We are now going to formally verify this protocol, on the one hand
to increase (or decrease) our confidence in its correctness, and on the other
hand, to document experiences and boundaries of the used tools. The focus
is mainly on the latter, as the ultimate goal is to explore the possibilities for
developing a platform for formal verification experiments.

This chapter discusses our modelling and verification activities and the re-
sults, using the model checking tool UPPAAL. Chapters 5 and 7 do the same
for resp. SPIN and PRISM. Each of these chapters introduces the tool and
motivates why it has been chosen. This tool introduction is then followed by
an elaboration on modelling our protocol using the considered tool, which in
turn is followed by a section about the verification experiences and results.
Each of these three chapters ends with a summarizing section that reports
the modelling and verification experiences and (sub)conclusions.

4.1 Tool Introduction

The Uppsala-Aalborg Model Checker (UPPAAL) is a tool suite for modelling,
validation and automatic verification of real-time systems. The tool is devel-
oped in collaboration between the Department of Information Technology

Master’s Thesis - W.M. Everse 38

CHAPTER 4. VERIFICATION USING UPPAAL

at Uppsala University, Sweden and the Department of Computer Science
at Aalborg University in Denmark. UPPAAL’s first version was released in
1995 [5, 32] and it has been in constant development since. The current
official release is UPPAAL 4.0.7 (Nov. 24, 2008), which is a mature prod-
uct. It is freely available at http://www.uppaal.com for non-commercial
applications.

4.1.1 Underlying Theory

The underlying theory is that of timed automata. In general, an UPPAAL

model is a network consisting of timed automata composed in parallel, which
can be constructed, simulated and verified [4]. A timed automaton is a finite-
state machine extended with clocks: it is a sextuple (L, l0, C,A,E, I) with a
set of locations L, an initial location l0, a set of clocks C, a set A of actions,
co-actions and the internal τ -action, a set E of edges between locations and
a function I to assign invariants to locations.

The UPPAAL modelling language extends traditional timed automata with
a rich set of extra features. Among these are constants, bounded integer
variables, binary synchronization, broadcast channels, urgent locations and
urgent synchronization, committed locations and array variables [4]. These
additional features have proven to be very useful for model construction.
To specify correctness properties, UPPAAL uses a query language that is
a subset of the temporal logic Computation Tree Logic (CTL). It allows
for specification of path formulae and state formulae, but nesting of path
formulae is not possible.

We refer to the literature for further details about and explanation of the
UPPAAL modelling language, syntax and semantics of timed automata, UP-

PAAL’s query language, et cetera [4].

4.1.2 Tool Motivation

The choice for UPPAAL is mainly made based on the fact that it is a very
well-documented, mature, state-of-the-art tool with an intuitive Graphical
User Interface (GUI) and a not so steep learning curve. It enables the user
rather easily to graphically define timed automata that represent the differ-
ent processes to be modelled.

An additional part of the motivation is that UPPAAL has been used success-
fully for several industrial case studies [4], e.g. Bang & Olufsen Audio/Video
Protocol, Bounded Retransmission Protocol, Philips Audio Protocol, Root
Contention Protocol [51], etc. Moreover, UPPAAL is used in several studies
mentioned in the related work section of chapter 2 (e.g. [16, 55]).

Master’s Thesis - W.M. Everse 39

http://www.uppaal.com

CHAPTER 4. VERIFICATION USING UPPAAL

At first, an additional reason was that UPPAAL is a real-time model checker
and our protocol has certain timing aspects (message rounds). However, as
we proceed with this chapter, it will become clear that we hardly exploited
any of the timing features of UPPAAL because we wanted our model to be
comparable to the models for the other tools (i.e. SPIN, PRISM).

We used UPPAAL version 4.06 (rev. 2987), released March 2007. Figure 4.1
depicts UPPAAL’s GUI, to get a first impression of the tool. The hardware
used is a 13.3” MacBook (Intel Core2Duo processor on 2 GHz, 2 GB RAM)
running Mac OS X 10.5 Leopard.

Figure 4.1: The GUI of UPPAAL 4.0.6 in edit mode

4.2 Model Construction

In this section we elaborate on the process of constructing a model of our
SPT protocol using UPPAAL. The difficulties and challenges encountered are
pointed out and the models we constructed are explained in detail. We
took an iterative approach to modelling the protocol: we started with a
simple model that lacked a lot of of important functionality, and iteratively

Master’s Thesis - W.M. Everse 40

CHAPTER 4. VERIFICATION USING UPPAAL

increased complexity by adding functionality. The upcoming three subsec-
tions illustrate that approach. The fourth subsection introduces a common
problem with communication protocol models: the execution order of the
nodes causes a blow-up of the number of states. It also presents our prag-
matic solution to this problem.

Unlike the subsequent chapters, this chapter rather extensively describes
the modelling process. This allows for becoming familiar with modelling
in general and with the protocol and its ‘ins and outs’. We continuously
validated our results and ideas using UPPAAL’s built-in simulator. Appendix
B contains an overview of and insight into this simulation process.

Before moving to the model construction process, let us first explain some
additional terminology of UPPAAL. A model of any system in UPPAAL is a
network of extended timed automata that represent the different processes of
the system. They are graphically specified in so called templates. A template
is in fact a class of processes (extended timed automata): a process is an
instance of a template. Template instances (processes) are created with a
process declaration. These processes can then be composed (in parallel) into
a system: a system declaration. Templates may be parameterized: each
formal parameter in the template is substituted for its actual value (which
is passed as an argument in the process declaration). Variables used in
templates must be declared either globally or locally: global declarations
hold for all templates, local declarations are local to a certain template.

4.2.1 Protocol Model V1

To become familiar with a tool and its possibilities and restrictions, it is
often a good idea to start with the construction of some naive try-out mod-
els. Such try-outs lack important behaviour but they introduce the model
constructor to the various aspects and difficulties that he or she will have
to find solutions for, sooner or later. After experimenting with UPPAAL and
building some try-out models, we made the following observations, on which
we based the first version of our SPT protocol model.

1. A straightforward approach to start modelling the protocol is to sim-
ply map each single thread to a single process. This would result in
a process for the gateway’s active thread (page 35) and separate pro-
cesses for both the passive and the active threads of a node (p. 35
and 36). This would be a bad start w.r.t. the state space explosion
problem: a model of only two nodes and the gateway, already results
in a parallel composition of five processes! It turned out that it is
much more intuitive, more efficient and more practical to model a sin-
gle node as a single process that mimics the behaviour of both the
passive and the active thread.

Master’s Thesis - W.M. Everse 41

CHAPTER 4. VERIFICATION USING UPPAAL

2. The gateway should not be modelled separately: it is in principle a
normal node with some restrictions on its behaviour (unlike ordinary
nodes it does not have a passive thread and it does not need initial-
ization).

3. The arrays for distance-to-G and receive counters should be modelled
as local arrays (local to each node) instead of globally. Further, a node
should have a local round number and a local clock.

4. UPPAAL provides support for the primitive data types integer and
boolean. The protocol however requires us to model probabilities
(link quality) which are fractions (floating point numbers) rather than
integers. We therefore decided to model link qualities as percentages.

5. There should be a global constant number to represent infinite distance
and some mechanism that initializes the entries of the local distance
array of each node to this number.

6. There should be a global constant to set the maximum number of
message rounds to be executed, otherwise verification is infinite.

These observations led to a first serious protocol model that can be simulated
and verified, although it is simplified in several ways: every node can hear
every other node with 100% link quality.

Listings 4.1 – 4.3 together with figure 4.2 show the entire UPPAAL model.
This comprises global declarations, local declarations, the node template
and the system declaration (the entire source of the UPPAAL models can also
be found in appendix B). Declarations are specified textually in UPPAAL’s
editor, which supports code colouring. Templates are specified graphically
in the editor, by drawing locations and edges. In the sequel we walk through
the elements of the model and elaborate on the details of it.

Global Declarations

Variables and functions that are declared globally are available for all tem-
plates (instances) in the system. This is useful for defining general param-
eters of the protocol (such as the number of nodes), but also for modelling
the message channel and the message itself. The global declarations are
printed in listing 4.1. The C-style block and line comments speak for their-
selves. Pay some attention to the type definition of type Node_id (line 20),
which is defined to be the integer interval [0, N − 1]. This interval consists
of N values that are used as node identification numbers (ids). The node
template is (as we will see soon) parameterized with a variable of this type
and that results in a system with N node processes (instances of the node
template) with the respective node ids i = 0, i = 1, i = 2,. . . , i = (N − 1).

Master’s Thesis - W.M. Everse 42

CHAPTER 4. VERIFICATION USING UPPAAL

1 /∗∗∗∗∗
2 Sho r t e s t Path Tree p r o t o c o l f o r W i r e l e s s Senso r Networks
3 Author : W.M. Eve r s e
4
5 Simple model
6 A l l nodes can hea r each o th e r w i th l i n k q u a l i t y o f 100%
7 Nodes ope r a t e s y n ch r onou s l y
8 ∗∗∗∗∗/
9

10 // Number o f nodes , i n c l u d i n g gateway (s) G
11 const i n t N = 4 ;
12
13 // Maximum number o f message rounds
14 const i n t MAX M = 10 ;
15
16 // Big number to r e p r e s e n t ’ i n f i n i t e ’ d i s t a n c e
17 const i n t MAX DIST = 10000 ;
18
19 // De f i n e type Node id , paramete r o f Node temp la t e
20 t y p ed e f i n t [0 ,N−1] Node id ;
21
22 // S yn c h r o n i z a t i o n channe l to model message s end i ng / r e c e i v i n g
23 b roadca s t chan send ;
24
25 // Model a message as a s t r u c t
26 // msg . s i d = sende r i d and msg . d i s t = d i s t a n c e
27 meta s t r u c t{
28 Node id s i d ;
29 i n t d i s t ;
30 } msg ;
31
32 // Determine whether the g i v en node i s a gateway node
33 boo l i sGateway (Node id node) {
34 r e t u r n node == 0 ;
35 }

Listing 4.1: UPPAAL Model V1 - Global Declarations

Another interesting global declaration is the broadcast channel (line 23), a
useful feature of UPPAAL. This is a synchronization channel but unlike con-
ventional binary synchronization, it synchronizes with all processes available
for synchronization (instead of just one). If there is no process to synchro-
nize with, it can still be executed (i.e. broadcast sync is non-blocking).
In this model, the channel send is used for synchronized broadcasting of
messages. A sending node performs a transition with label send! and all
receiving nodes at the same time perform a transition send? (as we will see
below in the node template).

The probe messages of the protocol are modelled as a C-like struct, a struc-
ture consisting of a node id (to denote the sender) and a distance (lines 27–
30). A node that is going to broadcast a probe message sets the msg.s_id
field to its own id and the msg.dist field to its perceived dist-to-G (D[i])
and starts broadcasting. Note that keyword meta precedes the message
definition, which means that we do not want UPPAAL to consider message
content as part of the states of our system (because it is duplicate informa-
tion).

Finally, the global function isGateway(Node_id node) (l. 33) is a user-
defined function (introduced in UPPAAL version 4.0) and can be directly
called from automaton transitions and other user-defined functions. It takes

Master’s Thesis - W.M. Everse 43

CHAPTER 4. VERIFICATION USING UPPAAL

one argument being of type Node_id and returns true if it equals 0. In other
words: this model contains exactly one gateway node, which is the node with
id i = 0.

Local Declarations

Before we move to the node template itself, we will first discuss the cor-
responding local declarations. These are declarations of items used in the
template (they are local to the template thus cannot be used by for instance
another template). The local declarations of our node template are printed
in listing 4.2. The node template is parameterized but UPPAAL shows pa-
rameters separately from the local declarations. In fact, parameters are
special local declarations so we added them here, entirely at the top in com-
mented code, for illustrative purposes. In this case there is one parameter:
a constant i of type Node_id. This enables us to create an instance (a
process) with a specific value (of type Node_id) for i. Moreover, UPPAAL

enables us to create an instance for each possible value of type Node_id, by
not specifying a value for i at all. We return to this later.

1 /∗ <parameter>con s t Node id i</parameter> ∗/ // e x p l a i n e d i n t e x t
2
3 // Node c l o c k
4 c l o c k x ;
5
6 // Loca l round number
7 i n t M;
8
9 // Dis t−to−G per node (D[y] = d i s t−to−G from y , p e r c e i v e d by t h i s node)

10 i n t D[Node id] = {MAX DIST , MAX DIST , MAX DIST , MAX DIST} ;
11
12 // Msg coun t e r s pe r node (R [y] = #messages r e c e i v e d from node y)
13 i n t R [Node id] ;
14
15 // The s e l e c t e d pa r en t
16 meta Node id pa r en t ;
17
18 // Funct i on to de t e rm ine the minimum d i s t a n c e
19 i n t getMinimum (){
20 meta i n t m inva l = MAX DIST ; // To ho ld the min . found so f a r
21 meta i n t t r y ; // To ho ld the nex t v a l u e
22 i f (i sGateway (i)) r e t u r n 0 ; // Minimum d i s t−to−G of G i s 0
23 i f (M == 0) r e t u r n MAX DIST ; // F i r s t round r e t u r n MAX DIST
24 f o r (j : Node id){
25 i f (R [j] > 0 && j != i && D[j] < MAX DIST){
26 t r y = M/R[j] + D[j] ;
27 i f ((M % R[j]) >= (R[j] / 2)) t r y++; // Round to n e a r e s t i n t
28 i f (t r y <= minva l){
29 minva l = t r y ;
30 pa r en t = j ;
31 }
32 }
33 }
34 r e t u r n minva l ; // Return the min . found
35 }
36
37 // Funct i on execu ted on message r e c e p t i o n
38 vo i d r e c e i v e (){
39 R[msg . s i d]++; // I n c r e a s e msg coun t e r o f s ende r
40 D[msg . s i d] = msg . d i s t ; // Update Dis t−to−G of s ende r
41 }

Listing 4.2: UPPAAL Model V1 - Local Node Declarations

Master’s Thesis - W.M. Everse 44

CHAPTER 4. VERIFICATION USING UPPAAL

Besides its id i, a node has a local clock and a local round number. It
also maintains local arrays containing a dist-to-G (initialized to MAX_DIST)
and a message counter for each node, and a (meta) field for the currently
selected parent. Furthermore, a node has two local functions. The function
getMinimum() computes and returns the minimum distance of this node to
the gateway (implementing equation 3.6 on page 37). Function receive()
is called on message reception and saves the message content and updates
the message counter (which corresponds to line 3 and 4 of the passive thread
in figure 3.6 on page 35).

The function getMinimum() (lines 19–35) needs some more explanation.
As said, it computes and returns the minimum distance of a path to the
gateway, based on the perceived information so far. To achieve this, the
for-loop ranges over all entries of the local node arrays. That is: for each
node, the distance of a path via that node to the gateway is computed and
the minimum is returned. This computation (try = M/R[j]+D[j]) involves
a fractional: the inverse of the link quality (i.e. the expected number of
transmissions for a message to come across). Since UPPAAL does not support
floating point numbers, this fractional results in just the integer part. This
is always the nearest smaller integer while we rather want it to be rounded
to the nearest integer. Therefore line 27 is added: if the remainder of the
division is greater or equal than half the denominator, then the result should
be increased with one. Subsequently it is checked whether the result is a
minimum (so far) and if so, the parent field is set to the node for which the
minimum is reached (corresponding to fmin in fig. 3.7, p. 36).

Node Template

wait
x <= 1

!isGateway(i)
send?

receive()
x==1 && M<MAX_M

send!

D[i] = getMinimum(),
msg.s_id = i,
msg.dist = D[i],
x = 0,
M++

Figure 4.2: UPPAAL Model V1 - Node Template

Figure 4.2 depicts the node template. It consists of just one location and
two edges, one for each thread. The left edge corresponds to the passive

Master’s Thesis - W.M. Everse 45

CHAPTER 4. VERIFICATION USING UPPAAL

thread and the right one to the active thread. Edges may be annotated with
selections, guards, synchronizations and updates. Selections can be used to
non-deterministically bind a value of a given type to a given identifier. We
did not use such a selection on any of the edges in the automaton of fig 4.2.

The Passive Thread Edge

As mentioned above, the instance of the node template with id i = 0 is de-
fined to be the gateway. The different behaviour of the gateway is achieved
by using a guard on the receive edge in the automaton. A guard is a boolean
expression and must evaluate to true for the associated edge to be en-
abled. The guard on the right edge (in the form of the boolean function
isGateway(Node_id node)) is only true for ordinary nodes with i > 0.
The receive edge in the automaton of the gateway node (i.e. the node with
i = 0) is thus always disabled. In other words: a gateway never receives
probe messages of this protocol.

This passive thread edge also bears a synchronization label and an update
label. The latter contains a call to receive(), we already saw that this
function updates the receive counter and records the message content. The
former (send?) is to synchronize with another process containing an edge
bearing the label send!, where “synchronize” means that both edges are
fired at the same time (if both are enabled). According to the UPPAAL

manual, “The intuition is that two processes can synchronize on enabled
edges annotated with complementary synchronization labels, i.e. two edges
in different processes can synchronize if the guards of both edges are satisfied,
and they have synchronization labels e1? and e2! respectively, where e1 and
e2 evaluate to the same channel. (. . .) The update expression on an edge
synchronizing on e1! is executed before the update expression on an edge
synchronizing on e2?” [4]. Our global broadcast channel send thus allows
us to synchronize a sending node (send!) with all receiving nodes (send?).
Doing so, probe message broadcast is simulated.

The Active Thread Edge

The guard on the right edge (the active thread) ensures that this edge is
only enabled whenever local clock x equals 1 and the local message round
number is less than the maximum number of message rounds MAX_M (a global
constant to bound verification and random simulations, as we will see later).
Further, this edge is annotated with the synchronization label send!, the
complement of the one on the passive thread edge. The update label, fi-
nally, contains 5 update expressions to update respectively the node’s own
distance-to-G, the message contents, the local clock x (reset) and the local
message round counter M.

Master’s Thesis - W.M. Everse 46

CHAPTER 4. VERIFICATION USING UPPAAL

Location Invariants

The location in this template is labelled “wait” and has the location invari-
ant x<=1. This means that a process of this template can only be in this
location whenever the value of local clock x is smaller or equal to 1. A pro-
cess whose local clock equals 1 must take the right edge of the automaton
due to the guard x==1 on this edge. This way message rounds are simulated.
Note that we thus (mis)use time in UPPAAL, the model is synchronous and
discrete. We will return on this later on.

System Declaration

1 // This i n s t a n t i a t e s t emp la t e Node (con s t Node id i)
2 // f o r a l l v a l u e s i n Node id .
3 system Node ;

Listing 4.3: UPPAAL Model V1 - System Declaration

The model that UPPAAL will use during simulation and verification is the
model that is specified in the system declaration (listing 4.3). The processes
to be composed (in parallel) into a system are simply listed behind the
system keyword. Processes are named instances of templates: the process
declaration p1=Node(1); creates a process named p1, which is an instance
of the Node template with i = 1. A system is thus a parallel composition
of concurrent processes (e.g. p1||p2||p3) together with global and local
variables and channels. However, in listing 4.3 we use a feature of UPPAAL:
as said before, specifying a parameterized template without actual values
will result in all possible instances of the template w.r.t. the type of the
parameter. In our case, we only have one template to list (i.e. Node), for
which we do not specify an actual value for the parameter.

Note that we therefore can control the number of processes that will be com-
posed into a system simply by changing our global variable N. For example,
setting N = 4 results in the type Node_id containing the values 0, 1, 2 and
3. Composing the node template into a system (the way it is done in listing
4.3) will now result in an instance for every possible value of the template’s
parameter i: we thus always obtain N processes.

4.2.2 Protocol Model V2

In our first version of the model, every node can hear every other node with
link qualities of 100%. This does not properly reflect the characteristics of
a Wireless Sensor Network (WSN). We therefore created a second version of
our model. This subsection explains the extensions w.r.t. version 1 of our
model. The source of the entire model is contained in appendix B.

Master’s Thesis - W.M. Everse 47

CHAPTER 4. VERIFICATION USING UPPAAL

Version 2 of our model allows for specification of connectivity between the
nodes in a connectivity matrix : a N × N matrix C that defines the link
quality between all node pairs as a percentage. This matrix is symmetric
as the protocol assumes the link quality from A to B to be the same as the
quality from B to A. We declared a global constant 2-dimensional array of
integers (from 0 to 100) with dimensions Node_id × Node_id. This rare
form of dimensioning is possible in UPPAAL and results in the values of the
type to be used for the indices of the array (i.e. int[0,N-1]). An example
of such a global declaration of array C (with initializer) is contained in listing
4.4.

1 // Symmetr ic c o n n e c t i v i t y mat r i x w i th p e r c e n t a g e s
2 // i f C [x] [y]==100 then x can hea r y wi th q u a l i t y o f 100%
3 const i n t [0 , 1 0 0] C [Node id] [Node id] = {
4 { 0 , 15 , 10 , 90} ,
5 {15 , 0 , 0 , 33} ,
6 {10 , 0 , 0 , 0} ,
7 {90 , 33 , 0 , 0}
8 } ;

Listing 4.4: UPPAAL Model V2 - Global Connectivity Matrix

Since the array is declared as a constant, it must be initialized. We already
saw an example of an array initializer in the local declarations: it initial-
izes all entries of the dist-to-G array with the value of the global constant
MAX_DIST. In the case of listing 4.4, the initializer specifies a 4 × 4 array,
the corresponding number of nodes N equals 4 and both dimensions of the
array are indexed 0, 1, 2, 3. The example topology specified by this initial-
izer is depicted in figure 4.3. Note that whenever we change the number of
nodes N in our model, we should update this array initializer to reflect our
connectivity wishes and to match the new number of nodes. We should also
update the initializer of the local dist-to-G array to match the new number
of nodes.

0 1

32

90%

15%

33%10%

Figure 4.3: 4-node topology specified by the array initializer in listing 4.4

Master’s Thesis - W.M. Everse 48

CHAPTER 4. VERIFICATION USING UPPAAL

It is now possible to add connectivity information to the model, but what
still remains is that it should be taken into account somewhere. That is,
either on message sending or on message reception. We found the latter
more intuitive and easier to implement, since message reception is modelled
using the dedicated node function receive(). For each link, the model
should ensure a certain percentage of message loss (i.e. 100% minus the
given percentage in the connectivity matrix). In order to realize this, we
took a “message loss balancing approach”: the model itself balances the
actual message loss ratio around the implied value. The modified node
function receive() is listed in listing 4.5.

1 // This coun t e r i s used to r e a l i z e l i n k q u a l i t i e s , s e e r e c e i v e () below
2 meta i n t l o s t f r om [Node id] ;
3
4 // Funct i on execu ted on message r e c e p t i o n
5 // I t a l s o e n f o r c e s the g i v en l i n k q u a l i t i e s (from connec t i on mat r i x)
6 vo i d r e c e i v e (){
7 // Compute the c u r r e n t e n f o r c e d l o s t r a t i o
8 i n t l o s t r a t i o = 100 ∗ l o s t f r om [msg . s i d] / (M+1) ;
9 i f (l o s t r a t i o < (100 − C[i] [msg . s i d]))

10 l o s t f r om [msg . s i d]++; // The message got l o s t
11 e l s e
12 { // Message r e c e i v e d
13 R[msg . s i d]++; // I n c r e a s e msg coun t e r o f s ende r
14 D[msg . s i d] = msg . d i s t ; // Update Dis t−to−G of s ende r
15 }
16 }

Listing 4.5: UPPAAL Model V2 - Message Loss Balancing

How does this ‘message loss balancing’ work? To determine the actual mes-
sage loss ratio it is necessary to keep track of the total number of messages
that is sent (which corresponds to the message round number M) and the
number of messages that have been discarded in the past. This is imple-
mented as follows. We added an array lost_from[Node_id] to the lo-
cal node declarations, to keep track of the number of lost messages so far
(Node(i).lost_from[j] == 20 means that node i lost 20 messages from
node j). Every time a message comes in, the current loss ratio is determined
(line 8). This is compared to the ratio implied by the connectivity matrix
(i.e. 100% minus the given link quality for that link). If the actual loss ratio
is smaller than what it should be (the derived loss ratio), the message is
discarded (and the loss ratio thus increases, line 10). Otherwise the message
is passed (‘received’) and the message counter and distance corresponding
to the sender of the message are updated (lines 13 and 14).

4.2.3 Protocol Model V3

Version 2 of our protocol model ‘balances’ the loss rate between every node
pair according to the connectivity matrix. This rather “artificial” method
simulates the probability pij that a message arrives at its destination. This
works, but the method is very predictable and deterministic (we know in

Master’s Thesis - W.M. Everse 49

CHAPTER 4. VERIFICATION USING UPPAAL

advance which message gets lost). This in contrast to the real stochastic
nature of message loss on wireless channels. Therefore we created a third
version of our model (appendix B).

Version 3 of our model attempts to model the message loss unpredictably
by defining an explicit non-deterministic process for each link. The only
way of introducing unpredictability in UPPAAL is using non-determinism.
The automata in the models presented so far were deterministic: in a single
automaton is no situation in which two or more edges are enabled at the
same time. If there is such a situation, unpredictable behaviour is introduced
since the edge to be fired will be chosen non-deterministically by UPPAAL.

In the following we will explain the modelling of explicit links (i.e. a sep-
arate process for each concrete link) using a simple non-deterministic link
template. We further propose a general template to avoid a lot of manual
labour.

Explicit Link Processes

In the previous models, links between nodes are modelled implicitly using a
broadcast synchronization channel. In order to introduce non-determinism
in message delivery, our approach was to model the links explicitly, by con-
structing a non-deterministic process for each link. That would enable the
following example scenario: if a link has a given quality of 75%, its message
loss should be 25%: 1 out of 4 messages sent over this link should get lost.
This specific link process should thus non-deterministically decide which one
of the four messages to discard. The result is that it is not predictable in
advance anymore which message gets lost.

Explicit links need parameters src and tgt of type Node_id that indicate the
id of the source and target nodes of the link. Note that these links are thus
unidirectional. The link is an intermediary process in the parallel composi-
tion: src||link||tgt. On one end, the sending node (with id i=src) syn-
chronizes with a link process by executing a send[i]! action. Now the mes-
sage is “in” the link. If the link (non-deterministically) decides to deliver the
message, it synchronizes with the receiving node by executing a recv[tgt]!
action. Note that we now need a broadcast synchronization channel for
each node for both sending and receiving (i.e. we declare two global arrays:
broadcast chan send[Node_id], broadcast chan recv[Node_id]).

An example of a UPPAAL template for such a non-deterministic link process
is depicted in figure 4.4. It represents a link of quality 50%: it should discard
50% of the message that are sent over it. Starting from the initial location
in the center, there is a choice for either the left or the right branch. In
the left branch, the first of two messages is lost (the send[src]? action

Master’s Thesis - W.M. Everse 50

CHAPTER 4. VERIFICATION USING UPPAAL

send[src]?

recv[tgt]!send[src]?

recv[tgt]!

send[src]? send[src]?

Figure 4.4: Non-deterministic template for a link with quality of 50%

is not followed by a recv[tgt]! action), the second is delivered properly.
The right branch does the inverse. Note the locations marked with a C,
these are committed locations and ensure that message passing stays atomic.
Committed locations are an additional feature of UPPAAL. According to the
manual ([4]), a state of the composed UPPAAL system is committed if any
of the locations in the state is committed. A committed state cannot delay
and the next transition must involve an outgoing edge of at least one of the
committed locations.

We can now for example declare an UPPAAL system by composing a source
node process, a link process and a target node process:

1 s ou r c e = Node (0) ;
2 l i n k 0 1 = Link50 (0 , 1) ;
3 t a r g e t = Node (1) ;
4 system source , l i n k01 , t a r g e t ;

Listing 4.6: Example System Declaration

In the system above, the template Link50 from figure 4.4 is instantiated
with actual values 0 and 1 for the parameters src and tgt.

Generalized non-deterministic link templates

Building the link templates as depicted in figure 4.4 is rather naive and
inefficient: it requires us to build a template for all possible kinds of links.
Moreover, specific link qualities result in templates with many locations and
branches: for example a template representing a link of 662

3 discards one
out of three messages, which results in already 3 branches and 13 locations.
Therefore we searched for a generalization.

The approach followed above to construct non-deterministic link templates
can be generalized using two more parameters u and v for the link template.
It then should ensure that u out of v messages are properly delivered and

Master’s Thesis - W.M. Everse 51

CHAPTER 4. VERIFICATION USING UPPAAL

that the remaining v − u messages get lost. Figure 4.5 depicts our solution
template, the corresponding local declarations are listed in listing 4.7.

recv[tgt]!
checkreset()

s<u
send[src]?
s++, t++

(u-s < v-t)
send[src]?
t++,
checkreset()

Figure 4.5: Generalized non-deterministic template: u of v messages gets across

Starting in the initial location, the template consists of two branches. The
upper branch delivers an incoming message properly (send[src]? followed
by recv[tgt]!). The lower branch causes a message to get lost. The gen-
eralized link ensures that the upper branch is taken u times and the lower
branch thus v− u times. This is realized with guards, using two local coun-
ters (lst. 4.7): s counts the number of messages that are properly delivered
(that came across the link) and t counts the total number of attempts (to
send a message over this link), modulo v. This modulo v is realized using
the local function checkreset(), which is called from both branches.

1 /∗ <parameter>con s t Node id s r c , con s t Node id tgt , con s t i n t u , con s t i n t v</parameter> ∗/
2 /∗∗∗∗∗
3 L i nkAcc r o s s
4
5 Nond e t e rm i n i s t i c p r o c e s s t ha t r e p r e s e n t s an u n i d i r e c t i o n a l l i n k
6 between two nodes (pa ramete r s ’ s r c ’ and ’ tgt ’) .
7
8 The q u a l i t y o f t h i s l i n k i s de te rm ined by pa ramete r s u and v :
9 u on v messages ge t a c r o s s . Which ones i s d e c i d ed

10 n o n d e t e r m i n i s t i c a l l y .
11 ∗∗∗∗∗/
12
13 // count s number o f messages t ha t came a c r o s s
14 i n t [0 , u] s = 0 ;
15
16 // count s p e r i o d
17 i n t [0 , v] t = 0 ;
18
19 // r e s e t s c oun t e r s i f v msgs pas sed
20 vo i d c h e c k r e s e t (){
21 i f (t==v){
22 s =0;
23 t =0;
24 }
25 }

Listing 4.7: Local declarations of link template of model V3

So far, we have two functional UPPAAL models (V2 and V3), both based
on model V1. Model V2 allows for specification of link qualities through a
rather deterministic method using a connectivity matrix, while in model V3
this is done using explicit non-deterministic link processes for each (unidi-
rectional) link. We continuously validated the behaviour of our ideas using

Master’s Thesis - W.M. Everse 52

CHAPTER 4. VERIFICATION USING UPPAAL

the simulator of UPPAAL, which showed us that the models indeed behave
as expected (see appendix B for simulation results).

4.2.4 Adding Execution Order

While simulating our models, we noticed that small topologies already result
in many possible states of the model. This is what is called the state space
explosion problem which we described in chapter 2. The number of states
of the composed system is exponential in both the number of variables and
the number of parallel processes. This is a problem since most automatic
verification techniques require the generation, exploration and storage of all
possible states, while resources (memory, time) are limited.

Our models have to deal with many parallel processes since the bigger the
topology, the more parallel processes need to be composed into a system.
In order to be able to simulate (and verify) a network that is as large as
possible, we thus need to reduce the number of states as much as possi-
ble. Current model checking tools by default apply automatic state space
reduction techniques such as Partial Order Reduction (POR) and so does UP-

PAAL[4]. The tools also contribute by using efficient data structures and by
applying memory reductions. In addition, the user of of a tool can of course
manually contribute to a minimal state space by minimizing the number
of variables, variable ranges and parallel processes. We already account for
these things during construction and as a consequence we cannot gain much
by further minimization. There is however yet another possibility to rather
drastically reduce the number of states of our models.

Models that consist of many similar parallel processes often exhibit much
symmetry in the state space ([19]), and so do our models: all node processes
are very similar, they only differ in their identifier i. This similarity induces
behavioural equivalent execution orders: executing process A followed by
B is equivalent to executing B followed by A, i.e. both executions result in
equivalent states of the model! In fact, this requires us to prove the existence
of an equivalence relation. We postpone this to future work.

In our models, a message round is just a period of time in which every
node broadcasts a probe message exactly once (executes the active thread).
Within one message round, the order in which the nodes broadcast is not
fixed: all different orders are possible. This corresponds to all permutations
of the node identifiers: there are N ! different possibilities per message round
for N nodes. The order in which the nodes broadcast does however not mat-
ter: all permutations are behavioural equivalent! This allows for executing
only one of all possibilities each message round, causing a drastic reduction
of the number of states.

Master’s Thesis - W.M. Everse 53

CHAPTER 4. VERIFICATION USING UPPAAL

POR is a state space reduction technique that exploits (partial) equivalence
of all possible interleavings of actions of parallel processes [3]. In contrast,
the kind of reduction we described above is of a higher abstraction level: it is
concerned with interleaving of parallel processes rather than with the inter-
leaving of single actions within parallel processes. POR is a fully automatic
technique implemented in model checkers, but it can not detect the higher
level behavioural equivalence. It is possible however for model checker tools
to account for this kind of symmetry but the modeller needs to specify the
equivalent behaviour by using scalar sets[19]. Scalar sets are sets of integer-
like elements with a limited number of operations (assignment and identity
testing). We tried to update our models by using these scalar sets, but using
them breaks important functionality (distance recording, computation and
message counting). Building a complete new protocol model using scalar
sets might be interesting, we added it to future work.

Instead, we followed a pragmatic approach to solve this problem. We man-
ually modified our models in order to fix the execution order within each
message round. As can be seen in appendix B we added a global variable
turn and a global constant boolean NOTURN to toggle between fixed and
unfixed execution order. If NOTURN==false, the process to execute is the
process with identifier equal to turn. After execution, turn is increased
(modulo N) such that the next process can execute. The initial value of
turn determines the node process to execute first. The effect of fixed order
execution can be seen in appendix B, and is discussed later on.

4.3 Verification

This section describes the verification process using UPPAAL. We verified
models V2 (connectivity matrix) and V3 (non-deterministic links) using sev-
eral correctness properties. The detailed results are contained in appendix
B. Here we provide a global overview of the results, point out noteworthy
results and discuss them.

UPPAAL’s Java GUI is connected to its model checking engine via TCP/IP

(implementing a client-server architecture). Therefore, the two components
may also be run on different machines. The engine runs locally by default
and there is a stand-alone version for the command-line [4].

A model is verified against a requirement specification. This specification
is expressed as a property in a simplified version of the temporal logic CTL.
CTL consists of state and path formulae but UPPAAL does not allow nesting
of path formulae. A state formula is an expression that can be evaluated
for an individual state. Path formulae quantify over paths in the model.
Path formulae can be classified in reachability (does there exist a path such

Master’s Thesis - W.M. Everse 54

CHAPTER 4. VERIFICATION USING UPPAAL

that . . .), safety (something bad never happens or, equivalently, something
good is invariantly true) and liveness properties (something will eventually
happen) [4].

We used UPPAAL version 4.06 (rev. 2987), released March 2007. The hard-
ware used is a 13.3” MacBook (Intel Core2Duo processor on 2 GHz, 2 GB
RAM) running Mac OS X 10.5 Leopard. We ran the verification engine
locally, but on the command line since this allows for easily timing the ver-
ification and getting informative statistics about the verification. Further,
all possible verification settings are the defaults, unless stated otherwise.

An example of a command line verification using UPPAAL:

time verifyta -u chain_10p_cm.xml noDeadlock.q

where:

• time is a Unix utility for measuring the duration of the execution of
a particular command (in this case verifyta). When the command
finishes, it outputs the real time, user time and system time. We
reported the real time measured by time in our results.

• verifyta is the stand-alone version of the model checking engine of
UPPAAL (version as mentioned above).

• -u is an option of the verifier to “Show summary after verification (in-
correct for liveness properties)”. The summary provides information
about the number of states stored and explored.

• chain_10p_cm.xml is a file that contains the UPPAAL model to be
verified.

• noDeadlock.q is a property file, that contains one or more requirement
specifications in UPPAAL’s query language. verifyta will check all
properties in this file.

4.3.1 Verification Parameters

The verification process depends on a number of parameter values defined in
our models as well as some external factors (e.g. different models, topologies,
properties). This causes an instance explosion of potential models to verify,
since we can vary endlessly with the values of these inputs. This subsection
defines the input parameters of our verification process. Since it is infeasible
to verify all possible instances, we indicate which instances we verified by
defining for which values of the input parameters we did a verification.

The parameters of the verification process are enumerated below, together
with the selected values for verification.

Master’s Thesis - W.M. Everse 55

CHAPTER 4. VERIFICATION USING UPPAAL

1. Models – The models to verify. Since protocol model V1 lacks impor-
tant functionality we verified models V2 and V3.

2. Properties – Besides some incidental other properties (on which we re-
port later on), we structurally verified the following properties: dead-
lock freedom, correct parent selection and correct distance computa-
tion.

3. Number of nodes – We are interested in boundaries so we start with
N=2 nodes and increase this parameter until the verification becomes
infeasible.

4. Topologies – The kind of topology, i.e. how the nodes are arranged
and connected (node configuration and link qualities). We came up
with five interesting topologies which are depicted in figure 4.6.

5. Maximum number of message rounds – Without the global constant
MAX_M in our models, verification would never end. The value denotes
the maximum number of message rounds to be executed. We verified
instances with MAX_M equal to 10, 20, 50 and 100.

6. Precision – The global constant ACCURACY of our models is used to reg-
ulate the precision of the distance computation in the receive function,
since UPPAAL does not support floating point numbers. We used val-
ues 1 and 10 (the former results in integer precision, the latter results
in a precision of 1 position behind the decimal point).

7. Execution order – As described at the end of the model construction
section, fixing the order of execution of nodes within a message round
should (in theory) drastically decrease the number of states. We com-
pared verification runs with and without a fixed execution order.

The types of topologies we verified are depicted in figure 4.6 using four nodes.
It is rather simple to extend these to another number of nodes, while ensuring
that the characteristics of the type are maintained. 4.6(a) corresponds to a
complete graph. For n nodes it contains 1

2n(n − 1) undirected edges since
there is a link between each pair of nodes. 4.6(b) is a topology type in which
the nodes are connected ‘chain-wise’ (n − 1 edges). 4.6(c) and 4.6(d) are
specific topologies of 4 nodes in which two SPTs with root node 0 might be
found. The latter’s link qualities are wider spread and might induce precision
problems since the distance computation involves fractionals. Finally, 4.6(e)
is a topology in which node 0 (which is typically the gateway) has relatively
bad links to the rest of the nodes, which are mutually well-connected.

In the sequel we will provide an overview of the verification results we ob-
tained. The detailed results are contained in appendix B. Here we attempt to

Master’s Thesis - W.M. Everse 56

CHAPTER 4. VERIFICATION USING UPPAAL

0 1

32

x%

x%

x%

x%

x%

x%

(a) complete

0 1

32

x%

x%

x%

(b) chain

0 1

32

50%

25%

50%

50%20%

(c) multiple SPTs

0 1

32

90%

15%

80%

18%10%

(d) multiple SPTs

0 1

32

y%x%

x%

x%

y<<x

y%

y%

(e) bad gateway

Figure 4.6: Interesting topologies for verification

describe the results more globally, based on interpretations of these detailed
verification results. We point out trends, give explanations and formulate
preliminary conclusions.

4.3.2 Deadlock Freedom

A deadlock is a situation in which a complete system model is in a terminal
state, although at least one process is not in its local terminal location. A
typical deadlock example originated by Dijkstra is called The Dining Philiso-
phers: five philosophers (whose lives are all about eating and thinking) are
sitting at a round table with a bowl of rice in the middle and a single chop-
stick in between two neighbouring philosophers. To eat rice, two chopsticks
are needed thus at any time, only one of two neighbours can eat. Now a
deadlock occurs when all philosophers possess a single chopstick: no one can
eat! The solution is a fair ‘eating protocol’ such that all philosophers can
eat and think infinitely often [3].

Translated to UPPAAL models, a deadlock is a state of the composed system
in which there are no outgoing action transitions, neither from the state itself
or any of its delay successors (clock delay). UPPAAL’s query language defines
a special formula consisting of the keyword deadlock, that is satisfied in a
deadlocked state [4].

Master’s Thesis - W.M. Everse 57

CHAPTER 4. VERIFICATION USING UPPAAL

When verifying a new model it is often a good idea to start with a check
for deadlocks. This is a good sanity check for the model as deadlocks that
are found often indicate model design errors or errors in the system that
is modelled: the user is forced to investigate the source of the deadlock.
Moreover, all states of the model must be checked in order to give a verdict
about deadlock presence or absence: the total number of reachable states of
the model is determined.

Our models actually do have a deadlock state (as defined by the UPPAAL

tutorial [4]). It is the state in which all nodes reached MAX_M. So we specify
the property: the only deadlock state that occurs is the one in which all
nodes have reached the maximum number of message rounds MAX_M:

A[] deadlock imply (forall(i:Node_id) Node(i).M == MAX_M)

This can be read as follows: on all paths, it is always the case that if a
deadlock state occurs, it is the state in which for all nodes hold that their
local message round counter M equals MAX_M. Note that:

• The phrase On all paths, it is always the case that. . . corresponds to
A[] and is about every reachable state: the semantics of a composed
system in UPPAAL (a network of timed automata) is defined as a tran-
sition system. The property must hold in every state on every path in
the transition system.

• This property is called a safety property, meaning that something bad
does never happen or, equivalently: something good is invariantly true.

• UPPAAL allows us to use expressions like forall() such that we can
easily quantify over all nodes.

Protocol Model V2

Tables B.1 – B.4 in appendix B display the results of the verification runs we
performed on protocol model V2, considering this deadlock freedom prop-
erty. The property is satisfied for each run, i.e. the only deadlock scenario
that occurred is the one in which MAX_M is reached. The tables show the
number of states of the model that the verifier of UPPAAL stored and ex-
plored in order to determine this outcome, together with the time it took
on our hardware. Tables B.1 and B.2 show the results for the complete
topology of figure 4.6(a), with all links 100% and all links 10% respectively.
Tables B.3 and B.4 show the results for the chain topology of figure 4.6(b),
also with all links 100% and all links 10% respectively.

The fact that the property is satisfied for all runs that ended normally is
of course good news and increases our confidence in this model. However,

Master’s Thesis - W.M. Everse 58

CHAPTER 4. VERIFICATION USING UPPAAL

it is much more interesting to look at the relations between the results of
different runs.

If we take a close look at table B.1, the following observations can be made:

• For 50 message rounds, verifying 4 nodes results in 1277 states and
verifying 8 nodes results in 146117 states of the model. These runs
took approximately 0.105 and 26.7 seconds respectively.

• The number of states grows exponentially in the number of nodes.

• The number of states grows proportionally in the number of message
rounds.

• Verifying with the global constant ACCURACY set to 1 instead of 10
causes a decrease of the number of states: a verification with N=6 and
MAX_M=50 results in 3753 instead of 11957 states. The difference in the
amount of states grows fast in the number of nodes, but is independent
of MAX_M.

• Fixing execution order results in a tremendous gain in the number of
states: an ordered run with N=8 and MAX_M=50 results in 401 states
instead of 146117 states.

• Results of verification runs with fixed execution order are independent
of the value of ACCURACY.

• Number of states for fixed execution order sO = N ·MAX M + 1

The observations about execution order and accuracy indicate that fixing
the execution order in this deterministic model results in a rather trivial
verification. When fixing execution order, there is only one process that can
execute at any time: there is no branching in the state space! It consists
just of a sole path of states: an initial state and MAX_M times N successive
states.

Table B.2 shows what happens if the link quality is low (complete topology
and all links 10%): the message loss balancing approach combined with the
low link qualities causes the number of states to grow exponentially (instead
of proportionally in the previous case) for increasing MAX_M. Compared to
the previous topology, this is what could be expected because many new
model states are generated because of lost messages.

Table B.3 displays the results for chain topologies with links of quality 100%.
We expected that these verification runs would result in less states of the
model compared to the complete 100% case since there are less links. The
results however show the contrary: there is a fixed amount of states more

Master’s Thesis - W.M. Everse 59

CHAPTER 4. VERIFICATION USING UPPAAL

compared to the completely connected case (of table B.1). The difference in
the number of states depends on N. This unexpected result is a consequence
of our message loss balancing approach: in the complete 100% case, mes-
sage are never lost. As soon as messages do get lost, additional states are
generated. Our expectation about a relation between number of links and
number of states is right for the 10% complete and chain cases, as becomes
clear from B.4.

Protocol Model V3

Tables B.5 – B.8 in appendix B display the results of the verification runs
we performed on our non-deterministic protocol model V3. The property
for deadlock freedom is again satisfied for each run, i.e. the only deadlock
scenario that occurred is the one in which MAX_M is reached. The tables
again show the number of states and the time taken by the corresponding
verification run, for the same topologies as verified with model V2.

An instance of model V3 contains more processes compared to model V2
for the same topology and number of nodes, because of the presence of the
explicit link processes. Therefore we expected that the number of nodes
that can be verified using this V3 model would be less. This expectation is
confirmed by the results.

We observed that a verification run of model V2 with fixed process exe-
cution order is rather trivial, due to the absence of branching in the state
space. This is however not the case with model V3, as (besides execution
orders) the non-determinism in the link processes causes additional branch-
ing. Moreover, the observation that verifying a chain topology results in
more model states than verifying the corresponding complete topology also
does not hold for model V3. In model V3 this results in less states, as we
already expected to be the case with model V2.

4.3.3 Correct Parent and Distance

As we explained in section 2.3, a SPT need not be unique since there may be
several paths (from a node to the gateway) of the same distance (total ETX).
For particular topologies it is thus possible that a node has several options
for parent selection. To check whether all nodes found a correct parent we
use a global function isCorrectParent(i,j) that returns true if the given
node index j is a correct parent of the given node index i. Of course, the
correct parents (i.e. node ids for which the function should return true) are
to be set manually by the user before verification, according to the topology
that is to be verified. We can call this function from a correctness property
and, by doing so, check for correct parent selection. Note that checking such

Master’s Thesis - W.M. Everse 60

CHAPTER 4. VERIFICATION USING UPPAAL

a property will result in a certain confidence level w.r.t the correct operation
of the protocol, but also w.r.t the correctness of the models.

Another way to determine correct operation of the protocol (c.q the model)
is to check if the nodes do find their correct distance to the gateway. This
way we abstract from which parent (and whether this is a correct one) is
chosen. To be able to easily check for the correct distance to the gateway,
we make use of a function isCorrectDistanceToG(i,d) that returns true
if the given d is the correct dist-to-G of the given node index i. Again,
the distances that are correct for the topology to be verified are to be set
manually by the user before verification. Moreover, the function enables us
to specify an upper and a lower epsilon εl and εu such that it returns true if
the given d is between dc − εl and dc + εu, where dc is the shortest distance
w.r.t the topology verified. This tolerance is very useful since distances
computed by the nodes will fluctuate more or less as the computation is
based on perceived link qualities.

Please note that the manually assigned distances depend on the value of
global constant ACCURACY since floating point numbers are not supported. If
the minimum distance for a node in a certain topology for example evaluates
to 2.303 then it should be set to 2 for ACCURACY=1 and to 23 for ACCURACY=10.

The source code of these functions can be found in the global declarations
of both model V2 (page 159) and V3 (page 161) in appendix B.

We will now describe the properties that make use of these functions. First
of all, it is of course interesting to check whether the nodes manage to select a
correct parent (or compute the correct distance) at all, during a verification
run. We can check this by verifying the following liveness properties:

A<> forall(i:Node_id) isCorrectParent(i, Node(i).parent)

A<> forall(i:Node_id) isCorrectDistanceToG(i, Node(i).D[i])

This can be read as follows: along all paths (A), eventually (<>) a state
is reached in which for each node holds that its parent is a correct parent
(or its computed dist-to-G falls in the given distance interval). In other
words: each node eventually selects a correct parent or computes the correct
distance (with a certain tolerance). Note that these properties may not hold
for models with small values for MAX_M, since the protocol needs some time
(i.e. message rounds) to sufficiently approximate the link qualities which are
needed for distance computation and parent selection. This type of liveness
(something good will eventually happen) is called bounded liveness since
each verification run is artificially terminated after MAX_M message rounds
have passed by.

Master’s Thesis - W.M. Everse 61

CHAPTER 4. VERIFICATION USING UPPAAL

The preceding properties indicate whether on each path in the state space
a state is reached in which all nodes found a correct parent or distance.
If this is the case, we do however not know at which point in time this
occurred. Moreover, after such a state on a path, there may be many states
in which the property does not hold though. In order to check whether all
nodes selected a correct parent1 at the end of each path (i.e. when all nodes
reached MAX_M), the following property can be used.

A<> forall(i:Node_id)
(Node(i).M == MAX_M) && isCorrectParent(i, Node(i).parent)

This property says as much as: along all paths eventually a state is reached
in which each node selected a correct parent after MAX_M message rounds.
The added condition thus enforces that there are no successor states of the
states in which the property holds: it is the terminal state of each path.
This enables us to experiment with the value of MAX_M and by doing so, to
get some insights in the number of message rounds that are needed for the
nodes to select correct parents.

Executing experiments with this property requires us to continuously change
the model (the value of MAX_M), save the model and re-verify the model. We
can improve this by converting the property to an almost equivalent safety
property and subsequently use a variant of it. In words, the safety property
says: along all paths it is always the case (i.e. in each state) that whenever
all nodes reached MAX_M, they also all selected a correct parent.

A[] (forall(i:Node_id) Node(i).M == MAX_M) imply
(forall(j:Node_id) isCorrectParent(j, Node(j).parent))

This property is almost equivalent to the preceding liveness property, except
for the fact that in this case the property does not ensure that there are states
in which each node reached MAX_M at all (as a result of the implication). A
general difference between checking liveness properties and safety properties
is that for the latter always the entire state space must be explored, while a
positive answer to the former may be found after exploring it only partially.

A useful variant of the preceding safety property is the following:

A[] (forall(i:Node_id) Node(i).M >= x) imply
(forall(j:Node_id) isCorrectParent(j, Node(j).parent))

1 In the sequel of this discussion we only mention parent checking: we omit the prop-
erties for checking the correct distance, since they can be easily obtained by substituting
the distance checking function for the parent checking function.

Master’s Thesis - W.M. Everse 62

CHAPTER 4. VERIFICATION USING UPPAAL

This property allows us to determine a threshold message round number
MT : along all paths it is always the case that if all nodes reached message
round x (i.e. MT), they all selected a correct parent and keep selecting a
correct parent up to message round MAX_M.
As said, the properties for correct distance checking are similar but use
the distance function. All properties are contained and numbered in sec-
tion B.5.2 together with detailed results of verifying them. Verification was
mostly done from the GUI, since it has a useful feature that allows to import
an error trace into the simulator such that it can be investigated manually.

Verification Results

We verified model V2 and model V3 for three 4-node topologies. First we
verified a rather arbitrary topology that can be obtained by substituting
33% for 18% in topology 4.6(d) on page 57. Second, we verified topology
4.6(c) which has two SPTs and simple link qualities. Third, we verified
4.6(d), which is also a topology with two SPTs, but with more complex link
qualities resulting in fractions in distance computation. We refer to B.5.2
for the detailed results. Here we will shortly discuss the global results.

First of all, an important result is that the protocol finds correct parents and
distances for each node. Of course this is only guaranteed for the topologies
we verified, but it results in a higher level of confidence in the protocol and
in both of our models V2 and V3. Moreover, the fact that multiple SPTs
are present in the second and third topology does not really influence the
verification results: the protocol handles this well.

The most interesting results are the ones obtained from checking for a mes-
sage round threshold: if we compare the results of parent checking and
distance checking, we see that the former requires less resources and is thus
to prefer (tables B.13 shows that, for the single-SPT topology, only 10 mes-
sage rounds are needed to select correct parents, whereas B.14 shows that
as much as 128 rounds are needed to compute the correct distance with tol-
erance 1). This can be explained as follows: checking for correct distances
requires a more accurate measurement of the link quality and thus takes
more message rounds. For parent selection the distance computation can be
less accurate.

Another important result is also established using the properties for deter-
mining a message round threshold, namely that the protocol stabilizes and
not continuously builds a different tree. For example, with MAX_M=50 and
ACCURACY=10, we find that from 10 message rounds on, the protocol keeps
selecting the correct parent in the single-SPT topology, up to message round
50. This indicates that the protocol found and maintained a stable SPT after
ten message rounds until the end of the verification run.

Master’s Thesis - W.M. Everse 63

CHAPTER 4. VERIFICATION USING UPPAAL

Property 8, that checks the message round threshold for correct distances,
shows that some fluctuation in distance computation occurs: the property
cannot be satisfied for εl = εu = 0 in topologies 1 and 3. A simulation
run did learn us that this is a result of the computation of the dist-to-G
of node 2: the result keeps fluctuating between 23 and 24 (it should be
13 + 11 = 24), even for values of MAX_M of 5000! This is caused by the 80%
link, which induces a distance (ETX) of 1000

80 = 12.5. Apparently, the protocol
(probably combined with the rounding) causes this to evaluate sometimes
to 12 rather than 13. This is not a severe problem since parent selection is
not influenced in this case. However, there might be topologies in which it
will form a problem (e.g. topologies with many of such links).

As a final global result, we see that model V2 and V3 perform well in both
parent selection and distance computation. A disadvantage of model V2 is
that link probabilities are modelled rather predictable, in contrast to real
probabilistic behaviour. Model V3 improves this using non-determinism, but
at the price of more processes (resulting in less feasible verification runs).

4.3.4 Verification Cluster

The faculty Electrical Engineering, Mathematics and Computer Science
(EEMCS) of the University of Twente owns a verification cluster consist-
ing of several machines equipped with powerful hardware. As an attempt to
move some boundaries in feasible verification, we did some verification runs
on the server named “BIG1” in this cluster. It is equipped with Intel’s Dual
Quad Core Xeon 3.00GHz (64bit) with 1333FSB, 64GB RAM memory and
2 harddisks of 160GB.

Unfortunately, there is no distributed version of UPPAAL available to run on
our cluster. Moreover, there isn’t also a 64bit version of UPPAAL. Since 32bit
UPPAAL can only address 232 = 4GB of the server’s total memory amount of
64GB. We therefore did not expect great performance gain. The hardware
on this verification server is however more powerful than our own hardware
so we did a few verification runs to document the difference. We again used
the stand-alone version of UPPAAL’s verification engine verifyta.

The table B.2 on page 168 contains an entry saying ‘oom’, which means ‘out
of memory’. The run corresponding to this entry was verified on BIG1 and
reached the 4GB limit, which was indicated by an out of memory message.
The two italicized rows of table B.4 contain results of verification runs that
were also verified on server BIG1. A run (N=4, MAX_M=50) which is infeasible
on our normal hardware was actually feasible on the verification server, it
took about 15 minutes to verify over 26 million states. The same run, but
with ACCURACY set to 1, was actually feasible on our hardware and took about
253 seconds to verify 4,33 million states. The same run on server BIG1 took

Master’s Thesis - W.M. Everse 64

CHAPTER 4. VERIFICATION USING UPPAAL

144 seconds. We gained 109 seconds, that is 43%. This is considerable but
still not enough: the number of states of our models grows too fast, causing
the 4GB memory limit to be reached. Most of the time, verification on BIG1
thus results in waiting to see an out of memory message. Therefore we did
not do more verification runs on the server.

4.4 Conclusions

In this section we will summarize our experiences, problems and results
encountered in this chapter. We will first enumerate our experiences with
UPPAAL and its usability. Next, a number of conclusions about the UPPAAL

models are enumerated together with the main results of their verification.
We finalize this chapter with some concluding remarks about the protocol.

4.4.1 UPPAAL Experiences

Compared to many other academic tools, the quality of Uppsala-Aalborg
Model Checker (UPPAAL) is relatively high. Its look and feel together with
the completeness and documentation give a rather robust impression. It is
relatively easy for a beginner to get started due to the intuitive GUI and
the very complete help function. The underlying theory of timed automata
is rather complex but only few knowledge of it is required. Below we enu-
merated our findings about UPPAAL for model construction, simulation and
verification.

Model Construction

• An UPPAAL model consists of global declarations, process templates
with local declarations and a system definition.

• The use of parameterizable process templates allows for creation of
many similar processes and for flexibility in process instantiation (us-
ing parameters and even partial instantiation).

• UPPAAL’s modelling language is a quite expressive C++/Java-like lan-
guage with powerful user-defined functions.

• Only integer and Boolean data types are supported, floating point
numbers are not supported.

• It is rather difficult to model probabilistic behaviour.

• Message broadcast is easily modelled using the powerful and very use-
ful language concept of broadcast synchronization channels.

• UPPAAL comes with a syntax checker that generates useful error de-
scriptions.

Master’s Thesis - W.M. Everse 65

CHAPTER 4. VERIFICATION USING UPPAAL

• Models are saved in well-defined XML files (supporting potentially easy
portability).

Simulation

• UPPAAL contains a powerful simulator that allows for validation of the
model’s behaviour.

• Random simulation with variable speed is supported.

• Generated simulation traces can be saved to and loaded from files.

• The simulator displays all or a selected set of variable values per system
state.

• System states are also visually represented.

• Error traces of the verifier can be imported in the simulator for detailed
examination.

• Message sequence charts graphically show the sequence of transitions.

Verification

• UPPAAL’s Java GUI is connected to its model checking engine via
TCP/IP (implementing a client-server architecture).

• Correctness properties are specified in a simplified version of CTL (no
nesting of path formulæ).

• There is no 64-bit version of UPPAAL’s verifier available.

• There is no distributed version of UPPAAL’s verifier available, although
the developers do mention2 the existence of a distributed version on a
cluster of Aalborg University.

• The GUI does not report on additional verification statistics after a
verification run (such as the number of states, time elapsed etc.).

• The stand-alone command line version of the verifier verifyta does
provide an option (-u) to show a (short) summary of verification statis-
tics, and allows for timing the verification.

UPPAAL is a real-time model checker but we did not fully exploit its timing
functionality. In fact we just misused a local clock variable since its value
only alternates between 0 and 1.

2http://tech.groups.yahoo.com/group/uppaal/messages

Master’s Thesis - W.M. Everse 66

http://tech.groups.yahoo.com/group/uppaal/messages

CHAPTER 4. VERIFICATION USING UPPAAL

4.4.2 The Models

The enumeration below contains observations and conclusions about our
UPPAAL models:

• The concept of unreliable links having a certain link quality is not
easily modelled in the UPPAAL modelling language. In model V2 the
probabilism is imitated by a highly predictable message loss balanc-
ing approach, whereas in model V3 we used a less predictable non-
deterministic approach.

• Since floating point numbers are not supported, link qualities were
specified as percentages. A global constant ACCURACY was introduced
to obtain a more precise distance computation.

• The asynchronous, continuous-time protocol was modelled as a syn-
chronous, discrete-time system in an attempt to keep the state space
as small as possible. We thus implicitly assumed absence of clock drift.

Results and conclusions about the verification of these models are collected
below:

• Both models are deadlock free, besides the terminal state in which all
nodes reached MAX_M.

• In both models, correct parents are selected (w.r.t. the SPT rooted at
the gateway) for the verified topologies.

• In both models, correct distances to the gateway are computed (w.r.t.
the SPT rooted at the gateway and w.r.t. certain tolerance bounds)
for the verified topologies.

• The number of nodes that can be verified within reasonable time de-
pends heavily on the topology under consideration and the link qual-
ities therein. Comparing all results, we see that verifying a complete
topology with 10% links is possible up to 4 nodes. This is however a
rather difficult topo.

• A problem with verifying network protocols is the instance explosion
of topologies and the infeasibility to verify all possibilities. A pos-
sible solution is to design a model that abstracts away from specific
topologies [10].

• Decreasing the value of the global constant ACCURACY reduces the num-
ber of generated states at the price of a less accurate distance compu-
tation.

Master’s Thesis - W.M. Everse 67

CHAPTER 4. VERIFICATION USING UPPAAL

• Verification using more powerful hardware does not result in a signif-
icant gain in time.

• Using model V2 to verify the protocol results in a smaller state space
compared to using model V3 for the same topology, since model V3
requires more parallel processes. Model V2 however uses a very poor
and predictable mechanism for simulating link qualities.

• Checking for correct parent selection is preferable above checking for
correct distance, since it requires less resources: a parent can be se-
lected correctly without exactly computed distances. Therefore it is
often the case that all nodes found a correct parent earlier then they
all found the correct distance.

4.4.3 The SPT Protocol

We did not found severe errors in the SPT protocol, which increases con-
fidence in its correctness. It does however not prove its correctness since
we can only verify the protocol for certain interesting topologies, not for all
possible ones.

Specification and modelling of the protocol resulted in an improvement of the
protocol and its description (chapter 3). Originally, the passive thread was
specified to save link qualities instead of just numbers of messages per node.
This is however redundant information and causes unnecessary overhead:
just counting the number of messages received from other nodes suffices.

Our verification process showed that there may be fluctuation in distance
computation of the protocol. This often does not form a problem since
it fluctuates around the correct value. If the fluctuation is relatively high
and all link qualities are near to each other, this may influence the parent
selection process. In that case errors might occur.

Note that we did not model any form of message collision. That is because
the protocol does not account for collision. The philosophy is that it is
inherent to WSNs that messages get lost, independent of the source of the
message loss.

Master’s Thesis - W.M. Everse 68

CHAPTER 5

Verification using SPIN

This chapter describes our modelling and verification activities using the
model checker SPIN. The structure of this chapter is similar to the previous
chapter: we will first introduce the reader to the tool and its underlying
theory and motivate why it has been chosen. Then we elaborate on our
final SPIN model and subsequently we report on the verification experiences
and results. Finally, we summarize our findings in the concluding section.

The previous chapter extensively introduced many of the issues encountered
when modelling and verifying the SPT protocol (e.g. modelling broadcast,
execution order, accuracy of distance computation). We refer to these if
necessary and focus here on modelling and verification with SPIN.

5.1 Tool Introduction

The Simple Promela Interpreter (SPIN) is an efficient model checker for
distributed software systems, essentially a command line tool, written in
American National Standards Institute (ANSI) standard C. It is developed
mainly by Gerard J. Holzmann at Bell Labs in the eighties and nineties and
still continues to evolve [22]. SPIN’s first version was released in 1991, accom-
panying the first book about it, written by Holzmann [23]. In April 2002,
the prestigious Software System Award 2001 of the Association for Comput-
ing Machinery (ACM) went to SPIN, assigning it the status of breakthrough
software system (as Unix, TeX, SmallTalk and TCP/IP). The current official
release is SPIN 5.1.7 (Dec. 23, 2008), with default graphical front-end XSpin
5.1.0 (Oct. 9, 2008). It is freely available at http://spinroot.com.

Master’s Thesis - W.M. Everse 69

http://spinroot.com

CHAPTER 5. VERIFICATION USING SPIN

5.1.1 Underlying Theory

The underlying theory is a variation of the theory of finite automata, known
as the theory of ω-automata [22]. In general, a SPIN model is the parallel
composition of a number of ω-automata. An ω-automaton is a finite state
automaton with the acceptance conditions not only covering finite execu-
tions, but also infinite ones.

A finite state automaton is a quintuple (S, s0, L, T, F) with a finite set of
states S, a distinguished initial state s0 ∈ S, a finite set of labels L, a set
T ⊆ (S×L×S) of transitions between states and a set F ⊆ S of final states.
A run of such an automaton is an ordered set of adjacent transitions. A run
is called accepting if it is finite and its final transition ends in a state in F
(i.e. is a final or accepting state). An ω-automaton has another acceptance
condition: an infinite run or ω-run is called accepting if and only if some
state in F is visited infinitely often (Büchi Acceptance). Additionally, finite
runs are extended with infinitely many self loop transitions (at their final
state) with label ε (called the null action which is added to the set of la-
bels). This is called stutter extension and automata with Büchi acceptance
conditions are called Büchi Automata [22].

The language to specify input models for SPIN in, is called Process Meta
Language (PROMELA), which is a description language rather than an im-
plementation language: the emphasis is on process modelling, not on com-
putation. The building blocks are asynchronous processes, buffered and
unbuffered message channels, synchronizing statements and structured data
[22]. To specify correctness properties (or correctness claims in proper SPIN

terminology), PROMELA provides basic assertions, several state labels and
never claims. A never claim is a special type of PROMELA process describing
undesired behaviour and it thus should never reach the end of its body. It
may be written by hand or it may be automatically generated from Linear
Temporal Logic (LTL) formulæ. LTL is a temporal logic like CTL (of which
a subset is used by UPPAAL). The difference is that in the LTL view, time
is linear: at each moment in time there is a single successor moment. CTL

considers time as a branching, tree-like structure [3]. SPIN does not sup-
port full LTL: the temporal operators next (X) and weak until1(U) are not
supported [22].

We refer to the literature for further details about and explanation of the
model specification language PROMELA, syntax and semantics of Büchi Au-
tomata, LTL, never claim generation, etcetera (for example [3, 22, 53]).

1The weak until differs from the strong until operator in that the former does not
require sub formula q in p U q to become true, in contrast to the latter, which actually
does define that q eventually becomes true.

Master’s Thesis - W.M. Everse 70

CHAPTER 5. VERIFICATION USING SPIN

5.1.2 Tool Motivation

We started the modelling and verification of our protocol using the real-
time model checker UPPAAL (ch. 4). It turned out however, that we did not
exploit the concept of time (we rather misused a clock in the node template
to establish message rounds). UPPAAL is optimized for real-time model
checking (e.g. optimized data structures for clock constraints, symbolic
states, zones, regions). In our discrete-time model, these techniques may
however cause much overhead, since we hardly exploit timing. Therefore
we decided to try another state-of-the-art tool, specialized in distributed
systems, that is, SPIN.

Moreover, SPIN is a mature tool that has been used successfully in numerous
case studies. According to the SPIN site, examples include verification of
the control algorithm for the flood control barrier near Rotterdam in the
Netherlands (in the late nineties), logic verification of data and phone switch
software of Lucent Technologies and even mission critical software: selected
algorithms for a number of space missions were verified using SPIN.

We used SPIN version 5.1.6, dated May 9, 2008 and XSpin version 5.1.0
(April 24, 2008). Figure 5.1 depicts SPIN’s GUI XSpin. The hardware used
is a 13.3” MacBook (Intel Core2Duo processor on 2 GHz, 2 GB RAM)
running Mac OS X 10.5 Leopard.

Figure 5.1: The main screen of the GUI XSpin 5.1.0 of the SPIN model checker

Master’s Thesis - W.M. Everse 71

CHAPTER 5. VERIFICATION USING SPIN

5.2 Model Construction

This section discusses our SPIN model of the SPT protocol. In contrast to
the previous chapter, the final model is presented at once and we highlight
the interesting aspects. First, we explain some terminology about modelling
in PROMELA.

A model for SPIN is written in the specification language PROMELA and
basically consists of data types, message channels and process types called
proctypes (the textual equivalent of templates in UPPAAL). A proctype body
consists of one or more data declarations and one or more statements. The
notion of executability of statements is special and is explained below using
our model. Processes are instantiated from process types which results in
a model of concurrent processes. Each proctype instance has a unique pre-
defined local variable called pid. Processes communicate through the use
of global variables or message channels that are either buffered (i.e. asyn-
chronous communication) or unbuffered (i.e. synchronous communication,
also known as handshake or rendezvous communication). The entire SPIN

model is textually defined in PROMELA in a single file.

5.2.1 Protocol Model

We constructed a SPIN model according to the underlying ideas of the ex-
plicit non-deterministic links in UPPAAL model V3: u out of v messages are
delivered, which ones is decided non-deterministically. To keep things man-
ageable, the model file is split into three parts, presented in listings 5.1 – 5.3.
In the sequel, we walk through these listings and point out the interesting
aspects.

The first part of our PROMELA model, printed in listing 5.1, contains decla-
rations of global constants and variables, as well as the necessary type def-
initions. The global constants2 may look familiar since the same constants
were used in the UPPAAL models. The type definition of type NodeData (lines
11–15) defines the data maintained by each node, which comprises a parent
field for the currently selected parent, an array of received messages counters
and an array for the dist-to-G of each node. Note the convenient way of ini-
tializing all entries of the distance array to the value of constant MAX DIST

(l. 14). Line 17 shows the declaration of a global array of this type NodeData

of length N, which represents all node data. We explicitly decided to declare
this data globally since local data (local to processes) cannot be accessed
from verification properties. This also made us choose for a global message
round variable M, to count the number of passed message rounds.

2In fact, constants are pre-processor macros: each occurrence in the code is replaced
by its defined value.

Master’s Thesis - W.M. Everse 72

CHAPTER 5. VERIFICATION USING SPIN

1 /∗ SPT Pro t o co l model f o r WSNs − W.M. Eve r s e ∗/
2
3 /∗ DEFINE CONSTANTS ∗/
4 #de f i n e N 4 /∗ Number o f nodes ∗/
5 #de f i n e MAX M 100 /∗ Max number o f msg rounds ∗/
6 #de f i n e MAX DIST 10000 /∗ Rep r e s en t s ’ i n f i n i t e ’ d i s t a n c e ∗/
7 #de f i n e ACCURACY 10 /∗ M u l t i p l i c a t i o n f a c t o r ∗/
8 #de f i n e GATEWAY COUNT 1 /∗ Number o f gateways ∗/
9

10 /∗ TYPEDEFS & DECLARATIONS ∗/
11 typede f NodeData{ /∗ Node data : ∗/
12 byte pa r en t = 0 ; /∗ − s e l e c t e d pa r en t ∗/
13 sho r t R[N] = 0 ; /∗ − count s r e c e i v e d msgs (pe r node) ∗/
14 sho r t D[N] = MAX DIST ; /∗ − d i s t−to−G (pe r node) ∗/
15 }
16
17 NodeData nodes [N] ; /∗ A l l node data ∗/
18
19 sho r t M; /∗ G loba l msg round number ∗/
20
21 typede f Tuple {byte u ; byte v}
22 typede f NodeDimTuple{ Tuple to [N] ; }
23 hidden NodeDimTuple C [N] ; /∗ Conn e c t i v i t y Matr ix , NxN ∗/
24 hidden NodeDimTuple H[N] ; /∗ H i s t o r y Matr ix , NxN ∗/
25
26 typede f NodeDimBool{ boo l to [N] ; }
27 hidden NodeDimBool Msgs [N] ; /∗ Message Exchange Matr ix , NxN ∗/
28
29 byte c t r l = N; /∗ Used f o r t r a n s f e r r i n g c o n t r o l ∗/

Listing 5.1: PROMELA Model - Constants, Typedefs and Global Declarations

The model uses a connectivity matrix C and a history matrix H: both N×N

matrices. There is however no data type in PROMELA to directly define a
matrix and arrays of arrays are not supported. Lines 21–24 provide a work
around: a 2-dimensional array (i.e. a matrix) is defined as an array of type
NodeDimTuple, that on its turn is defined to be an array of tuples, using
the typedef construct twice. The tuples (containing bytes u and v) are the
entries of matrix C (and H) and correspond to the parameters u and v of
the generalized link template of UPPAAL model V3: u out of v messages
come across. History matrix H keeps track of the number of messages that
came across so far. We return to the use of these matrices later on. The
keyword hidden prevents SPIN from taking these data into account in the
global system states, similar to UPPAAL’s keyword meta.

Compared to UPPAAL, modelling message broadcast is less easy using SPIN,
since it does not support broadcast channels. Ruys [50] (section 4.11) de-
scribes three approaches to modelling multicast or broadcast protocols for
SPIN: a communication bus, a matrix of channels or a dedicated broadcast
service. Nevertheless, we introduce a fourth approach, using yet another
N×N matrix called Msgs (l. 27). Each message round, its entries indicate
whether the corresponding nodes will receive a probe message. For example:
at the beginning of a message round, an entry Msgs[1].to [2] of this matrix is
set to 1 (i.e. true) if node 2 should receive a message from node 1 that mes-
sage round. We will learn from listing 5.3 below which process is responsible
for updating matrix Msgs.

Master’s Thesis - W.M. Everse 73

CHAPTER 5. VERIFICATION USING SPIN

30 /∗ INLINE DECLARATIONS ∗/
31 i n l i n e i sGateway (i d){ /∗ Check i f i d i s a gateway ∗/
32 (i d < GATEWAY COUNT) ;
33 }
34
35 i n l i n e r e c e i v e (i d){ /∗ Update c oun t e r s i f r e c e i v e d a msg ∗/
36 atomic{
37 do
38 : : (k < N) && (Msgs [k] . to [i d]) −>
39 nodes [i d] . R [k]++;
40 i f
41 : : i sGateway (k) −> nodes [i d] .D[k] = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
42 : : e l s e −> nodes [i d] .D[k]=nodes [k] .D[k]
43 f i ;
44 k++
45 : : (k < N) && ! (Msgs [k] . to [i d]) −> k++
46 : : (k==N) −> k=0; break
47 od
48 }
49 }
50
51 i n l i n e getMinimum (i d){ /∗ Compute minimum d i s t a n c e ∗/
52 atomic{
53 minva l = MAX DIST ;
54 do
55 : : (k < N) −>
56 i f
57 : : (nodes [i d] . R [k] > 0) && (k != i d) && (nodes [i d] .D[k] < MAX DIST) −>
58 t r y = (ACCURACY ∗ M / nodes [i d] . R [k]) + nodes [i d] .D[k] ;
59 t r y = (((ACCURACY∗M)%nodes [i d] . R [k])>=(nodes [i d] . R [k] / 2)−>(t r y +1) : t r y) ;
60 i f
61 : : (t r y <= minva l) −> minva l = t r y ; nodes [i d] . p a r en t = k
62 : : e l s e −> s k i p
63 f i
64 : : e l s e −> s k i p
65 f i ;
66 k++
67 : : (k == N) −> k=0; t r y =0; nodes [i d] .D[i d] = minva l ; break
68 od ;
69 }
70 }
71
72 i n l i n e setC (x , y , p , q){ /∗ Se t s e n t r i e s i n c o n n e c t i v i t y mat r i x C ∗/
73 C[x] . to [y] . u = p ;
74 C[x] . to [y] . v = q ;
75 C[y] . to [x] . u = p ; /∗ Due to symmetry ∗/
76 C[y] . to [x] . v = q ; /∗ Due to symmetry ∗/
77 }
78
79 i n l i n e canLoose (a , b){ /∗ Check i f msgs s t i l l may be l o s t ∗/
80 (C [a] . to [b] . u − H[a] . to [b] . u) < (C [a] . to [b] . v − H[a] . to [b] . v)
81 }
82
83 i n l i n e canSend (c , d){ /∗ Check i f msgs s t i l l may be s en t ∗/
84 H[c] . to [d] . u < C[c] . to [d] . u
85 }
86
87 i n l i n e checkRese t (e , f){ /∗ Reset c oun t e r s when needed ∗/
88 i f /∗ (modulo C [] . to [] . v) ∗/
89 : : (H[e] . to [f] . v == C[e] . to [f] . v) −> H[e] . to [f] . u = 0 ; H[e] . to [f] . v = 0 ;
90 : : e l s e −> s k i p
91 f i
92 }

Listing 5.2: PROMELA Model - Inline Constructs

The next part of our model is printed in listing 5.2. It contains all so-
called inline constructs. An inline construct defines a replacement text for
a symbolic name. It is defined globally, i.e. on proctype level, and is called
like a C procedure. An inline construct can have parameters but it cannot
return a value to the caller and it does not define a new variable scope. Each
invocation is replaced by the body of the corresponding inline (with actual
parameters), much like the pre-processor macros used to define constants.

Master’s Thesis - W.M. Everse 74

CHAPTER 5. VERIFICATION USING SPIN

Listing 5.2 contains seven inline definitions. They are enumerated below
together with the behaviour they specify. It can be observed that large
part of this behaviour corresponds to behaviour that we also specified in the
UPPAAL model. The use of these inline constructs will become clear as soon
as we move to the discussion of the third part of the model: the processes.
For now, we just summarize their behaviour below:

1. isGateway(id) – determines whether the given id is a gateway node id.

2. receive (id) – handles the receive action of node id: all probe messages
of all other nodes in a message round are received at once (delivery in
a certain message round is defined in matrix Msgs).

3. getMinimum(id) – computes the minimum dist-to-G of node id and sets
the corresponding parent.

4. setC(x, y, p, q) – sets entries of the connectivity matrix C. The first
two parameters denote the node ids and the last two indicate the link
quality between these nodes: p out of q messages are delivered. Note
that symmetry of C is ensured.

5. canLoose(a, b) – checks if messages still may be lost according to the
connectivity matrix C and the history matrix H. This corresponds
to the guard on the lower branch of the generalized link template of
UPPAAL model V3 (page 52).

6. canSend(c, d) – checks if messages still may be sent according to the
connectivity matrix C and the history matrix H. This corresponds
to the guard on the upper branch of the generalized link template of
UPPAAL model V3 (p. 52).

7. checkReset(e, f) – resets the values in the history matrix when needed.
This corresponds to the local function checkReset() of the generalized
link template of UPPAAL model V3 (p. 52).

The third and last part of our PROMELA model is printed in listing 5.3. It
comprises the process type declarations and instantiations that specify the
behaviour of the model. The process instances use the global variables and
inline constructs that we showed before. There are two process types in our
model: node() at lines 94–103 and globalSend() at lines 105–142, both without
parameters. In fact, lines 94 and 105 not only define a proctype, but they
also instantiate it immediately. This is indicated by the keyword active.
Line 94 instantiates N processes of proctype node() with pid =0,1,2...(N−1).
Line 105 results in exactly one instance of the proctype globalSend(), with
pid=N. Before illustrating how these N+1 processes behave and interact,

we first need to explain the concept of executability.

Master’s Thesis - W.M. Everse 75

CHAPTER 5. VERIFICATION USING SPIN

93 /∗ PROCESS DECLARATIONS ∗/
94 a c t i v e [N] proctype node (){ /∗ Node p r o c e s s ∗/
95 endN : do
96 : : c t r l == p i d −> /∗ Wait f o r c o n t r o l ∗/
97 byte k ; /∗ Used i n i n l i n e c o n s t r u c t s ∗/
98 sho r t t r y , m inva l ; /∗ Used i n i n l i n e c o n s t r u c t ∗/
99 getMinimum (p i d) ; /∗ Compute minimum d i s t−to−G ∗/

100 r e c e i v e (p i d) ; /∗ ’ r e c e i v e ’ from a l l o t h e r nodes ∗/
101 c t r l++ /∗ Tran s f e r c o n t r o l to nex t p r o c e s s ∗/
102 od
103 }
104
105 a c t i v e proctype g l oba lS end (){ /∗ S imu l a t e s s end i ng g l o b a l l y ∗/
106 byte i , j ;
107
108 d s tep{ /∗ F i l l symmetr ic c o n n e c t i v i t y mat r i x ∗/
109 /∗ Using i n l i n e setC (from , to , u , v) ∗/
110 /∗ a r b i t r a r y topo , un ique SPT [30/18] ∗/
111 setC (0 , 1 , 1 , 7) ; se tC (0 , 2 , 1 , 10) ; setC (0 , 3 , 9 , 10) ;
112 setC (1 , 3 , 3 , 10) ;
113 setC (2 , 3 , 4 , 5)
114 }
115
116 do /∗ For each msg round ∗/
117 : : (M< MAX M) −> atomic{
118 do /∗ F i l l msgs mat r i x ∗/
119 : : (i<N) −> do
120 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
121 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
122 i f
123 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
124 Msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
125 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
126 Msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
127 H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
128 f i ;
129 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
130 checkRese t (i , j) ;
131 j++
132 : : (j==N) −> j =0; break
133 od ;
134 i++
135 : : (i==N) −> i =0; break
136 od ;
137 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
138 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
139 M++
140 : : (M == MAX M) −> break /∗ Max nr o f msg rounds reached , s top ∗/
141 od
142 }

Listing 5.3: PROMELA Model - Process Declarations

Executability

As said before, the notion of executability is special in PROMELA. It is the
basic means in the language for modelling process synchronizations [22].
Any PROMELA statement is either executable or blocked, depending on the
state of the composed system. Assignment and print statements are always
executable. Expressions can be used as statements (for instance at line 138 in
lst. 5.3) and are executable (i.e. passable) if and only if they evaluate to the
boolean value true (which is equivalent to a non-zero integer value). A pro-
cess that reaches a point in its body where it has no executable statements
left, simply blocks.

At any point in time during execution of our model, there is always precisely
one non-blocked (i.e. executable) process. This means that the order of
process execution in the model is fixed. This is achieved using global variable

Master’s Thesis - W.M. Everse 76

CHAPTER 5. VERIFICATION USING SPIN

ctrl which holds a pid of the non-blocked process. It is initialized with the
value of N, resulting in process globalSend() to be the sole executable process
in the initial state of the composed model. Each node process in the system
passes control to the next process by increasing this control variable at the
end of its body (line 101).

An interesting PROMELA construct in the light of executability is the atomic

construct. It is a so-called compound statement: a sequence of statements
that is defined to be executable if and only if its guard (i.e. the first state-
ment of the sequence) is executable. The semantics of the atomic sequence
defines that once it starts executing (i.e. with the first statement of the se-
quence), all steps in the sequence will complete, before any other process is
given the chance to execute (in the interleaving of process executions in the
composed system). Non-determinism is allowed, but if any statement inside
an atomic sequence happens to be unexecutable, the atomicity token is lost
(‘the atomic chain is broken’) and another process can take over control [22].

proctype globalSend()

The single instance of process type globalSend() is considered the main pro-
cess of our model: model execution starts with execution of this process.
First it initializes the connectivity matrix C using inline setC() (l. 108–114).
The construct d step is very similar to the atomic construct and defines an
indivisible sequence of actions. It is however executed in a single determin-
istic step and all of its statements (except for the guard) may explicitly not
be unexecutable, otherwise an error will occur. This avoids the generation
and exploration of the intermediate states. The topology defined by lines
108–114 is depicted in figure 5.2.

0 1

32

9/10

1/7

3/101/10

4/5

Figure 5.2: 4-node topology specified by lines 108 –114 of listing 5.3

The process continues by entering a loop that simulates the broadcast of a
probe message for all nodes in the network at once, per message round. In
other words: every message round (i.e. every loop), it fills the Msgs matrix

Master’s Thesis - W.M. Everse 77

CHAPTER 5. VERIFICATION USING SPIN

with 0’s and 1’s (lines 122–128), transfers control to the first non-gateway
node process (line 137), and waits until all non-gateway node processes have
executed their body (line 138). An entry in the Msgs matrix Msgs[i]. to[j]=1

(or 0) indicates a successful (or unsuccessful) transmission of a probe mes-
sage from node i to node j. The choice between a 0 and a 1 is made non-
deterministically, based on the connectivity and history matrices (similar to
the approach in the non-deterministic link template of UPPAAL model V3
on page 52). Lines 122 – 128 show the PROMELA if construct3 that realizes
this choice, using inline definitions canLoose(i , j) and canSend(i, j) as guards
of its options.

proctype Node()

The broadcast functionality specified in the active thread of the nodes (page
36) is implemented by globalSend(), described above. The remaining node
functionality (dist-to-G computation and message reception) is implemented
in proctype Node().

Initially, all N node processes are blocked due to the unexecutable guard
expression ctrl == pid. The processes that represent gateway nodes (for now
only the process with pid=0) will always remain blocked since, in our pro-
tocol, gateways do not have additional functionality. The first non-gateway
node is enabled as soon as the globalSend() process transfers control to it in
line 137. This node process then first ‘invokes’ inline getMinimum(id), then
inline receive (id) and finally it increases ctrl to transfer control to the next
node process. It then becomes blocked again.

Distance computation and parent selection is handled by getMinimum(id).
This inline construct is very similar to the local node function getMinimum()
in our UPPAAL models: based on the received probe messages of other nodes
(containing perceived dist-to-Gs), it computes its shortest distance to the
gateway and selects the corresponding parent. The rather awkward code (l.
51–70 in lst. 5.2) illustrates that PROMELA focusses on model description
instead of computation.

What remains is how a node ‘receives’ probe messages, i.e. what are the
contents of inline receive (id)? Lines 35–49 in lst. 5.2 provide the answer.
The receive (id) construct walks over the relevant column of the Msgs matrix
(which is filled before by globalSend()). The relevant column is the one that
contains information about whether the current node pid=id received mes-
sages this message round (the ‘to’-column corresponding to pid). For each
received probe message (a ‘1’ in its column), the node updates its ‘received

3A PROMELA if construct can have multiple options (with guards) and it is blocked
if none of its options are executable. An option is executable if its guard is executable. If
multiple options are executable, a choice is made non-deterministically by SPIN.

Master’s Thesis - W.M. Everse 78

CHAPTER 5. VERIFICATION USING SPIN

messages counter’ for the corresponding sender (line 39) and it records the
distance to the gateway of the sender (lines 40–43). In our SPIN model,
message sending is thus simulated by just copying global data based on a
non-deterministic choice of whether a message is received or not.

During model construction, we simulated our model to validate our ideas.
In the appendix about SPIN, that is appendix C, we devoted a section to
the simulation process using SPIN and XSpin. It also contains an example
of the (satisfying) simulation results.

5.3 Verification

This section describes the verification process using SPIN. We verified the
model described in the previous section using correctness properties that are
very similar to the properties that we verified using UPPAAL. The detailed
results are contained in appendix C. Here we provide a global overview of
the results, point out noteworthy results and discuss them.

Figure 5.3: The Basic Verification Options Panel

Verification using SPIN and the XSpin GUI works as follows. The file con-
taining the PROMELA source of the model to be verified is opened in the
editor. XSpin creates a copy of the source in a temporary file called pan in4,
in order to prevent overwriting the original. The verification options can

4Protocol Analyzer (PAN) is the name of SPIN’s earliest predecessor. Now, it is probably
better explained as an acronym for Process Analyzer [22].

Master’s Thesis - W.M. Everse 79

CHAPTER 5. VERIFICATION USING SPIN

be set by selecting ‘Set Verification Options..’ in the ‘Run..’ menu , which
results in the panel depicted in figure 5.3.

SPIN can check safety properties and liveness properties. The former com-
prise state properties as assertions (i.e. PROMELA statements that are al-
ways executable and must evaluate to true) and invalid end state checks
(i.e. deadlock checks, we return on these below). The latter comprises path
properties. Clicking the ‘Run’ button on this panel results in a three-step
process: SPIN generates an (ANSI C) model-specific verifier called pan.c, which
is compiled to obtain an executable verifier. The resulting executable pan

is subsequently executed to perform the actual verification, which is again
timed using the Unix utility time (as with UPPAAL, we reported the ‘real’
time component in our results). Both compilation and execution depend on
the basic and advanced options specified. The advanced verification option
can be accessed using the ‘[Set Advanced Options]’ button, which results in
the panel in figure 5.4. The values in this figure reflect the settings during
our verification runs, unless stated otherwise.

Figure 5.4: The Advanced Verification Options Panel

We used SPIN version 5.1.6, dated May 9, 2008 and XSpin version 5.1.0 (April
24, 2008). The hardware used is a 13.3” MacBook (Intel Core2Duo processor
on 2 GHz, 2 GB RAM) running Mac OS X 10.5 Leopard. The output of

Master’s Thesis - W.M. Everse 80

CHAPTER 5. VERIFICATION USING SPIN

a verification run as described above is orderly displayed by XSpin. The
output for an example verification run (that checked for invalid end states)
is shown in figure 5.5.

Figure 5.5: The Verification Output Window

5.3.1 Verification Parameters

Recall from the previous chapter (UPPAAL, ch. 4) that the verification pro-
cess depends on a number of internal and external parameters. This causes
an instance explosion of potential models to verify, so we have to restrict our-
selves by only verifying instances for some selected set of parameter values.
The (applicable) parameters and their selected values are shortly repeated
below.

1. Properties – we structurally verified the following properties: deadlock
freedom, correct parent selection and correct distance computation.

2. Number of nodes – start with N=2 nodes and increase until infeasible.

3. Topologies – The kind of topology, figure 4.6 is reprinted for conve-
nience in figure 5.6 below.

Master’s Thesis - W.M. Everse 81

CHAPTER 5. VERIFICATION USING SPIN

4. Maximum number of message rounds – We verified instances with
MAX M equal to 10, 20, 50 and 100.

5. Precision – constant ACCURACY equals 1 or 10.

0 1

32

x%

x%

x%

x%

x%

x%

(a) complete

0 1

32

x%

x%

x%

(b) chain

0 1

32

50%

25%

50%

50%20%

(c) multiple SPTs

0 1

32

90%

15%

80%

18%10%

(d) multiple SPTs

0 1

32

y%x%

x%

x%

y<<x

y%

y%

(e) bad gateway

Figure 5.6: Interesting topologies for verification (figure 4.6 reprinted)

In this chapter we do not consider topology 5.6(e). It is considered in chapter
8, which is about verification experiments and protocol variants.

5.3.2 Deadlock Freedom

Recall from the previous chapter that checking for deadlocks is useful be-
cause it might uncover errors in the model and errors in the system that
is modelled (such that the user is forced to investigate the source of the
deadlock). Moreover, all states of the model must be explored which results
in an indication of the size of the generated state space.

As said before, SPIN can check for the occurrence of invalid end states. An
invalid end state is SPIN’s formalization of a system deadlock state. The
notion of a deadlock in SPIN is somewhat more nuanced than in UPPAAL: a
system deadlock is a state of the composed system without successor states,
in which at least one process did not reach a valid local end state. A valid
(local) end state of a process is either the state in which it reached the end
of its body, or any state of the process that is explicitly marked to be a valid

Master’s Thesis - W.M. Everse 82

CHAPTER 5. VERIFICATION USING SPIN

end state. An example of such an explicitly marked end state (using label
endN:) in proctype Node is found on line 95 of listing 5.3 (page 76).

Deadlock freedom cannot be expressed in LTL and SPIN does not define
a special formula for it like UPPAAL does. Instead, SPIN directly supports
checking for deadlocks by providing the option to check for invalid end states,
as shown in figure 5.3.

Verification Results

Tables C.1 – C.3 in appendix C display the results of the verification runs
we performed on our PROMELA model using SPIN, considering deadlock free-
dom. The first result to notice is that SPIN did not find a deadlock state
of the PROMELA model during any of these runs. The table entries show
the number of states generated for the model and the time the verification
took. Tables C.1 and C.2 show the results for the complete topology of
figure 5.6(a) with all links 100% and 10% respectively. Table C.3 shows the
results of the chain topology with all links 10%.

Note that there is no table with the results for a chain topology with all
links 100%. This is because these results equal the results for the complete
topology with all links 100% (C.1). But how can this be explained? After
examining the models and the results we observed that in both cases there
is no branching in the state space since there never is a non-deterministic
choice (due to the 100% links canLoose() is always false). Therefore, the
number of stored states is the same, due to the atomic statements (804
stored states for N=4, MAX M=50). However, these statements do cause a
subtle difference in the number of atomic steps (and thus in the total search
depth): for N=4, MAX M=50, the complete model results in 6385 atomic
steps and the chain model in 5291 atomic steps.

If we take a closer look at table C.1, the following additional observations
can be made:

• It only reports stored states, as opposed to the other tables that also
contain matched states (denoted in italics). The latter are states of the
model that were already explored (and stored by the verifier, thus so
are their successors) and it is not needed to re-explore them. As said
before, there is no branching in the state space due to the 100% links
(no non-deterministic choice). Here, the absence of matched states
thus indicates the absence of cycles in the state space.

• For 50 message rounds, verifying 4 nodes results in 804 states and
verifying 8 nodes results in 1604 states. These runs took approximately
0,09 and 0,10 seconds respectively.

Master’s Thesis - W.M. Everse 83

CHAPTER 5. VERIFICATION USING SPIN

• The number of states grows proportionally in the number of nodes

• The number of states grows proportionally in the number of message
rounds.

• Number of states s = 4 + 4 · N ·MAX M . Apparently, each node
generates 4 states every message round.

• Results of verification runs are independent of the value of ACCURACY.

Table C.2 shows what happens if the link quality is low (complete topology
with all links 10%): the number of stored states is the same as in the 100%
case (4+4·N ·MAX M), but now there are also matched states. The number
of matched states m grows proportionally in the number of message rounds,
but exponentially in the number of nodes. Further examination results in
the formula m = 9

10MAX M · (2N(N−1) − 1). This formula contains some
recognizable elements:

• N(N −1): the number of directed links between N nodes in this topo.

• 9
10 equals 1−p where p is the fraction of messages that comes across, i.e.
the link quality (each link has quality p = 1

10 here). The formula for
the number of matched states yields the exact result of SPIN whenever
MAX M is a multiple of the denominator of the link quality (which is
the period over which the message loss is determined).

The number of matched states thus grows very fast in the number of nodes
(MAX M=50, N=8 yields 3.2 · 1018 matched states)!

Finally, table C.3 displays the results for chain topologies with all links 10%.
Again, the number of stored states equals the previous cases but the number
of matched states is far less compared to the complete topology with 10%
links. This is what we expected since fewer links results in fewer messages
being sent and thus fewer lost messages. We were unable to infer a formula
for the number of matched states in this case.

Stored and Matched States

We were able to state formulæ for the number of stored states s and the
number of matched states m of our model reported by SPIN:

• s = 4 + 4 ·N ·MAX M

• m = p ·MAX M · (2E − 1)

where p is some probability that depends on the link quality and E is the
number of directed edges in the topology under consideration. This indicates

Master’s Thesis - W.M. Everse 84

CHAPTER 5. VERIFICATION USING SPIN

that the number of stored states is independent of the number of links in the
topology. However, the number of matched states grows much faster and
thus determines the feasibility of a verification. Therefore, the determinant
of the feasibility of a verification run is the number of directed edges in the
topology. Section C.3.3 in the appendices experimentally shows that the
number of matched states is independent of the number of nodes. It also
attempts to derive an expression for p, but this attempt was unsuccessful.

UPPAAL vs. SPIN

Our SPIN model is based on the ideas of UPPAAL model V3, with fixed
execution order. If we compare the results of checking deadlock freedom in
UPPAAL model V3 and the SPIN model, we must conclude that SPIN performs
better: it is able to check a complete topology of 5 nodes with links of 10%
within reasonable time (about 7 minutes), while UPPAAL was not able to
check the same topology for more than 3 nodes.

5.3.3 Correct Parent and Distance

In the previous chapter we checked whether the protocol behaves correctly by
checking whether all nodes found a correct parent w.r.t. the SPT or whether
each node found its correct distance (i.e. Expected Transmission Count
(ETX)) to the gateway. We were able to do this rather elegant by making
use of UPPAAL’s user-defined functions. Using SPIN, things are slightly less
elegant but fortunately, not impossible.

As described in the first section of this chapter, correctness properties for
SPIN models must be specified using a subset of the temporal logic LTL. To
this end, XSpin provides a useful LTL property manager (figure 5.7).
The desired model behaviour is expressed as an LTL formula using symbols
that are defined in the ‘Symbol Definition’ field using macros. Figure 5.7
provides an example: the formula [] p, pronounced ‘always p’, with p de-
noting the expression nodes[0].parent==0. In other words: it is always
the case that the parent field of node 0 (which is the gateway) is equal to
0. Once the formula is specified, pushing the ‘Generate’ button results in
the corresponding never claim5. This is a PROMELA process specifying the
behaviour corresponding to the negated formula. According to Holzmann
[22], “a never claim is normally used to specify either finite or infinite sys-
tem behaviour that should never occur”. As can be seen, it is also possible
to specify error behaviour, in which case the never claim is generated from
the formula as typed (i.e. not negated). The generated never claim can be
included into the model to be verified to check if the specified behaviour can

5It is shown in the mid eighties that for every temporal logic formula there exists a
Büchi automaton that accepts precisely those runs that satisfy the formula [22].

Master’s Thesis - W.M. Everse 85

CHAPTER 5. VERIFICATION USING SPIN

Figure 5.7: The LTL Property Manager

occur in the model. SPIN will flag it as an error if an accepting run can be
found that matched the behaviour expressed [22].

We specified a number of LTL properties in order to check whether the model
of the protocol is able to find correct parents and correct distances to the
gateway, for all nodes. We will now present these properties and explain
them. The first property we specified is the following:

[]<> (p && q)

In words: it is always the case that eventually p and q hold. We defined p
as follows:

#define p M==MAX_M

Master’s Thesis - W.M. Everse 86

CHAPTER 5. VERIFICATION USING SPIN

This means that in every state of the model, eventually a state should be
reachable in which the global message round counter M equals the maximum
number of message rounds (i.e. MAX_M message rounds have passed by).
The state in which MAX_M is reached is a final state because verification
terminates in it, as specified by the model. We can now use this (partial)
property for parent checking but also for distance checking, depending on
how q is defined:

#define q nodes[1].parent==u &&
nodes[2].parent==v &&
nodes[3].parent==w

or

#define q nodes[1].D[1]==u &&
nodes[2].D[2]==v &&
nodes[3].D[3]==w

The before-mentioned property together with these definitions of p and q
now expresses that in all states of the model eventually a state can be
reached in which all non-gateway nodes found the specified parent or the
specified distance (i.e. the values specified for u, v and w) after MAX_M mes-
sage rounds. Note that this property may not hold for small values of MAX_M.
The corresponding UPPAAL properties are 3 and 4 in appendix B (section
B.5.2).

As in the UPPAAL case, we also specified LTL properties for SPIN that allow
for determining a threshold message round number MT : it is always the
case that if all nodes reached message round x, they all selected the specified
parent and keep selecting the specified parent up to message round MAX_M (or
computed the specified distance and keep computing the specified distance
up to MAX_M):

[] (p -> q)

where q is defined as before (for resp. parent checking or distance checking).
The symbol definition of p is printed below:

#define p M >= x

with x a specified value that can be adjusted to find MT . The corresponding
UPPAAL properties are 7 and 8 in appendix B (section B.5.2). The LTL

properties explained above are numbered and listed in appendix C, section
C.3.2, together with detailed results of verifying them. We will discuss these
results below.

Master’s Thesis - W.M. Everse 87

CHAPTER 5. VERIFICATION USING SPIN

Verification Results

We verified our PROMELA model of the protocol for three 4-node topologies
(just like we did with UPPAAL). First, we verified a rather arbitrary topology
that can be obtained by substituting 33% for 18% in topology 5.6(d) on page
82. Second, we verified topology 5.6(c) which contains two SPTs and simple
link qualities. Third, we verified 5.6(d), which is also a topology with two
SPTs, but with more complex link qualities resulting in fractions in distance
computation. We refer to tables C.4 and C.5 in section C.3.2 for the detailed
results. Here we will discuss the results more globally.

First of all, it is important to remark that our protocol model finds cor-
rect parents and distances for each node for each verification run we did.
Therefore all runs are labelled OK and as a result, the OK/NOK labels
were omitted in the result tables. This again increases our confidence in
the correctness of the protocol. Moreover, the results also indicate that the
protocol properly handles topologies in which multiple SPTs are present.

The SPIN results also mimic the UPPAAL results regarding the message round
thresholds: finding correct parents requires less accurate measurements of
link quality, as opposed to finding correct distances. Therefore, the thresh-
olds found for parent checking are significantly lower compared to the dis-
tance checking case. More important is that we again may conclude that the
protocol stabilizes. Take for instance topology 1: from 126 message rounds
on and up to MAX_M=500 message rounds, the model finds exact correct
distances for all non-gateway nodes. This means that the SPT found (the
routing tree) will not continuously change. However, for certain link qual-
ities the threshold may become rather high due to fluctuation: in the case
of topology 3 (page 82), the message round threshold for distance checking
is 1001 (with MAX_M=2000). We learned by simulation that the dist-to-G of
node 1 keeps fluctuating between 66 and 67. From round 1001 on, it finally
stays 66 up to round 2000. This is probably a result of the rounding during
distance computation (simulation also showed that it is not the difference
between the two possible parents: different distances via the same parent
also occur).

UPPAAL vs. SPIN

The trends in the SPIN results mimic the trends seen in the UPPAAL case,
which increases the confidence in the results. SPIN is able to check some
runs that are infeasible using UPPAAL. This is the case for topology 3 (fig-
ure 5.6(d)). SPIN also performs the verification runs much quicker, which is
of course more convenient (all runs in SPIN were finished within at most 3
seconds while UPPAAL often needs far more then 10 seconds). On the other
hand, UPPAAL supports user defined functions that we used to rather ele-

Master’s Thesis - W.M. Everse 88

CHAPTER 5. VERIFICATION USING SPIN

gantly check for correct parents and distance. These functions also allowed
for adding a tolerance bound for distance checks rather easily. In SPIN,
things were less elegant, but not impossible. We did however not check
tolerance bounds but this is justified since we actually do not need them:
unlike UPPAAL, SPIN is able to check the exact distances within reasonable
time.

5.4 Conclusion

In this section we summarize our experiences, problems and results encoun-
tered in this chapter. We will first enumerate our experiences with SPIN

and its usability. Next, a number of conclusions about the SPIN model are
enumerated together with the main results of its verification. We finalize
this chapter with some concluding remarks about the protocol.

5.4.1 SPIN Experiences

SPIN is a powerful command line model checker. For many users, the first in-
troduction to the tool is the default graphical interface XSpin, which greatly
improves usability. It is however less easy to start with for a beginner, com-
pared to UPPAAL. This is probably because of the less transparent character
of the website, online documentation, underlying theory and tool implemen-
tation. Therefore, a rather indispensable and highly valuable resource is the
SPIN ‘primer and reference manual’ by Holzmann [22]. Below we enumer-
ate our findings about SPIN, PROMELA and XSpin for model construction,
simulation and verification.

Model Construction

• A SPIN model is written in the specification language PROMELA and
basically consists of data types, message channels, process types and
(dynamic) process instantions.

• PROMELA focusses on process modelling rather than on computation.

• PROMELA’s executability semantics is a basic means for modelling pro-
cess synchronizations.

• There is a theoretical bound on the number of active processes and on
the number of message channels (both max. 255). In practice this is
however hardly a bound.

• PROMELA does not support floating point data types to encourage
abstraction from computational aspects. There is however a possibility
to embed C code.

Master’s Thesis - W.M. Everse 89

CHAPTER 5. VERIFICATION USING SPIN

• Modelling message broadcast requires a considerable amount of effort.
Ruys [50] (section 4.11) describes some approaches and we introduced
yet another approach using a global matrix.

• It is rather difficult to model probabilistic behaviour. But according
to Holzmann [22]: “In a well-designed system, erroneous behaviour
should be impossible, not just improbable”.

• SPIN comes with a PROMELA syntax checker but the error messages
are sometimes very vague.

• PROMELA models are saved in plain text (less structured, compared to
eXtensible Mark up Language (XML), less portable, plain text needs a
specific parser).

• XSpin’s usability really needs revision. For example, some windows
required a resize before displaying all buttons and labels properly,
and it has very poor editor capabilities (scrolling, undo/redo, unsaved
changes, syntax highlighting).

Simulation

• SPIN comes with a simulator to validate the model’s behaviour.

• It supports random, guided and interactive simulation and the possi-
bility to skip simulation steps.

• Generated simulation traces can be saved to and loaded from files.

• Error traces of the verifier can be loaded into the simulator for detailed
examination.

• During interactive simulation, XSpin is capable of indicating current
enabled statements using useful text selections.

• Running a simulation results in many output windows of which posi-
tions and sizes are not remembered.

• All simulation output is often only written to the output windows
when simulation ends (data values, sequence chart).

Verification

• SPIN generates an optimized verifier of a PROMELA model, that can
be compiled and run separately (realizing a significant performance
gain).

• SPIN is able to check safety and liveness properties through the use of
assertions, state labels and never claims.

Master’s Thesis - W.M. Everse 90

CHAPTER 5. VERIFICATION USING SPIN

• Liveness properties are specified in a subset of LTL.

• The specified LTL property is converted into a never claim which is a
PROMELA process describing behaviour that should never occur.

• Local process data cannot be accessed in LTL properties.

• XSpin generates an orderly report of the verification statistics.

5.4.2 The Model

The list below contains observations and conclusions about our SPIN model:

• Our SPIN model is based on the idea of UPPAAL model V3 (non-
deterministic links) with fixed execution order.

• Message broadcast is modelled using a global matrix that indicates
for each node whether it will receive a message. It is updated every
message round by a single process. Each message round, this process
non-deterministically decides (based on given connectivity information
and history) whether a message comes across or not. This implies fixed
send order.

• Each node is modelled by a process that computes distance to the
gateway and processes received messages. The nodes can only execute
in fixed order (fixed receive order).

Results and conclusions about the verification of these models are collected
below:

• For the verified topologies, the model is free of deadlocks (invalid end
states).

• For topologies with solely 100% links, there are no states re-encountered
by SPIN (i.e. matched states), since there is no branching in the
(acyclic, finite) state space.

• The number of stored states s = 4 + 4 ·N ·MAX M .

• The number of matched states m = p ·MAX M · (2E − 1). Here p is
some probability that depends on the link quality and E is the number
of directed edges in the topology under consideration. If all links have
quality q then p = 1− q.

• For the verified topologies, the model selects correct parents (w.r.t.
the SPT rooted at the gateway).

• For the verified topologies, the model computes correct distances to
the gateway (w.r.t. the SPT rooted at the gateway).

Master’s Thesis - W.M. Everse 91

CHAPTER 5. VERIFICATION USING SPIN

• Checking for correct parents is preferable above checking for correct
distances since correct parents are found after fewer message rounds.

• The determinant of the feasibility of a verification run is the number
of directed edges in the topology, rather than the number of nodes. A
verification still ends within reasonable time (say less than 10 minutes)
whenever the number of links is maximally 10 (corresponding to 20
directed edges). This corresponds to an order of magnitude of 107

transitions.

• A topology with 11 links (22 directed edges) already takes more than
20 minutes. This corresponds to an order of magnitude of 108 transi-
tions. The number of message rounds, link qualities and the number
of nodes have less influence.

5.4.3 The SPT Protocol

As was the case with UPPAAL, we did not found severe errors in the SPT

protocol, which increases confidence in its correctness. It does however not
prove its correctness since we can only verify the protocol for certain inter-
esting topologies, not for all possible ones.

Our verification process showed that there may be fluctuation in distance
computation of the protocol. This often does not form a problem since
it fluctuates around the correct value. If the fluctuation is relatively high
and all link qualities are near to each other, this may influence the parent
selection process. In that case errors might occur.

Master’s Thesis - W.M. Everse 92

CHAPTER 6

The Hidden Problem

“The only real mistake is the one from which we learn nothing.”
John Powell

This chapter describes a characteristic subtlety of our SPIN model, which
may appear as a serious flaw to an experienced SPIN/PROMELA expert. The
problem is related to PROMELA’s keyword hidden so we start with describing
its use. Then we recall the use of this keyword in our model and we analyze
the impact and consequences in this particular case. Based on this anal-
ysis we present some solution directions which try to exploit this subtlety.
Finally, we draw conclusions about the learned lessons.

6.1 The Keyword hidden

As explained in chapter 5, we used the PROMELA keyword hidden in our
model. It prevents SPIN from taking the (as hidden) declared data into
account in the global system states. Typical use of hidden variables is for
so-called ‘scratch’ variables. These are auxiliary variables only used for
temporary storage at some point during model execution: their value is not
read later on (their value does not matter during further model execution).
Not hiding such data could needlessly result in a larger reachable state space
[22]. Use of the hidden keyword may thus reduce the number of system states
drastically, resulting in more feasible verifications.

To illustrate this, consider an arbitrary SPIN model that contains the global
declaration: hidden bool b;. Suppose that this model defines a state space of
x states (i.e. the model can be in x different states). Now, if the Boolean
variable b would not be hidden, each new value stored in it would result in a

Master’s Thesis - W.M. Everse 93

CHAPTER 6. THE HIDDEN PROBLEM

new global state of the model! In this particular example, this would result
in twice as much states in the worst case (i.e. 2x), since a Boolean type
has only two possible values. We said worst-case because this is under the
assumption that each possible value of the variable b is actually stored at
least once during execution of the model. Clearly, the impact of (unhiding)
variables of bigger types is worse. Or the other way around: hiding variables
can significantly reduce the size of the state space.

According to Holzmann [22], the hidden keyword should be used with cau-
tion. Hiding too much information from the state descriptor can easily
result in the verifier performing an incomplete search with unreliable out-
come. Moreover, the verifier takes the information for granted and does not
check whether the use of the hidden keyword is unwarranted.

6.2 Hidden Matrices

Recall that our SPIN model works with 3 hidden N×N matrices, each matrix
declared as an array of N arrays of N elements:

typede f Tuple {byte u ; byte v}
typede f NodeDimTuple{ Tuple to [N] ; }
hidden NodeDimTuple C [N] ; /∗ Conn e c t i v i t y Matr ix , NxN ∗/
hidden NodeDimTuple H[N] ; /∗ H i s t o r y Matr ix , NxN ∗/

typede f NodeDimBool{ boo l to [N] ; }
hidden NodeDimBool Msgs [N] ; /∗ Message Exchange Matr ix , NxN ∗/

Listing 6.1: Declaration of 3 hidden matrices

1. A connectivity matrix C[N], defining (symmetric) link qualities of the
links between each node pair;

2. A history matrix H[N] to keep track of the number of delivered probe
messages (so far) between each node pair;

3. A message exchange matrix Msgs[N] which is updated each message
round, indicating whether a probe message is successfully delivered
between each pair of nodes, that round.

We decided to hide these matrices because they are part of the mechanism to
simulate the probabilistic links, rather than part of the protocol we wanted to
verify. After all, the matrices do not contribute to the state of the protocol,
they just enforce an approximation of probabilistic behaviour of the wireless
links between the nodes.

However, in order to be able to effectively verify the SPT protocol, any
model of it should realize two important aspects: on the one hand it should

Master’s Thesis - W.M. Everse 94

CHAPTER 6. THE HIDDEN PROBLEM

of course mimic the protocol behaviour (since that should be verified), and
on the other hand it should also simulate the probabilistic link behaviour,
(since an important task of the protocol is estimating the link qualities,
which obviously requires the link behaviour). Both aspects are essential for
a model of the protocol and thus should both contribute to the state of the
model. Our original motivation to hide the matrices did not account for the
second aspect: the matrices should contribute to the model state but they
are not since they were hidden.

Moreover, these matrices do not function as typical ‘scratch’ variables in
the model (as explained in the previous section). Indeed, they do function
as such for the protocol aspect of the model, but they do explicitly not for
the link aspect: the values actually do matter since they are used later on
during model execution. This often results in a problem during backtracking,
explained below.

6.2.1 Backtracking the State Space

SPIN is an on-the-fly model checker: the model states are generated and
checked at the same time, rather than first generating the complete reachable
state space of the model and then performing the checks. Since there often
is branching in the state space (a state can have several successor states)
there must be an algorithm to explore the states systematically. By default,
SPIN follows the depth-first search algorithm [22], meaning that all states
are explored in a depth-first manner. This works as follows.

The initial state is checked and its successors are generated (‘the initial state
is expanded ’). Then, its first successor is checked and expanded, and then
the first successor resulting from this expansion is checked and expanded,
etcetera, etcetera, until a state is reached that cannot be expanded (it has
no outgoing transitions to successor states). At this point (i.e. the end of
a trace), the algorithm ‘walks back’ over the generated trace of successor
states, until it reaches a state that has still other unexpanded successors
left. This is called backtracking. Now the algorithm continues with checking
and expanding, in the same (depth-first) manner. The process terminates if
all states are expanded and explored.

6.2.2 Backtracking and hidden

If there are hidden variables in the model, problems might occur during
backtracking (if hidden is used wrongly). A state descriptor of a model state
contains the values of all variables, except for the hidden variables (because
that is why they were hidden). The values of the hidden variables can be
thought of as saved outside of the state descriptor. After backtracking,
the algorithm continues with all variable values as prescribed in the state

Master’s Thesis - W.M. Everse 95

CHAPTER 6. THE HIDDEN PROBLEM

descriptor of the state under consideration. Note that the values of the
hidden variables might have been changed since the generation of the state
under consideration (remember that we came there after backtracking). This
is why the values of hidden variables cannot have meaning and should not
be used ‘later on’: after backtracking, the hidden values are (very likely)
changed, which results in an incomplete or unreliable state space exploration.

Figure 6.1 visualizes this: the hidden variable var is changed twice (var ’’)
and after backtracking from state x to state b, the algorithm continues ex-
ploration with the unexpanded successor state y. Therefore, reading the
value of the hidden variable later on would mean that the behaviour of the
model depends on the exploration algorithm of the verifier.

Figure 6.1: A visualization of the hidden problem

6.2.3 The Hidden Problem in our Model

Branching in the state space (a state having multiple successor states, like
for instance state b in figure 6.1) has two possible sources: non-determinism
in the execution order of the processes in the model or non-determinism
explicitly present in one or more processes. In our model, we fixed the
execution order of the processes (using global variable ctrl) so the only
source of branching is the non-determinism in the globalSend process. The
relevant fragment is printed in listing 6.2.

Master’s Thesis - W.M. Everse 96

CHAPTER 6. THE HIDDEN PROBLEM

do /∗ F i l l msgs mat r i x ∗/
: : (i<N) −> do

: : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
: : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/

i f
: : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/

Msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
: : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/

Msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/

f i ;
H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
checkRese t (i , j) ;
j++

: : (j==N) −> j =0; break
od ;
i++

: : (i==N) −> i =0; break
od ;

Listing 6.2: Non-determinism in the globalSend process

The code in listing 6.2 is executed every message round. It non-deterministically
fills the message exchange matrix Msgs, based on the values in the history
matrix H, in order to enforce the given link qualities in the connectivity
matrix C. The number of different states resulting from this code fragment
is determined by the number of possible message exchange matrices. Recall
that this matrix contains Boolean entries indicating whether or not a probe
message comes across between the corresponding node pairs. Of course,
messages can only come across from one node to another if there is a link
defined between them in the connectivity matrix. Therefore, this results
worst-case (i.e. a completely connected topology) in 2N(N−1) message ex-
change matrices (each of the N(N − 1) links between the N nodes can or
cannot deliver a message).

The core of the problem

The model is in a certain state before executing this code fragment (which
is in an atomic construct). It is important to note that, regarding the above,
this state has 2E successor states (with E the number of directed links be-
tween the nodes in the topology that is modelled). But, since these succes-
sors only differ in the hidden matrices Msgs and H, SPIN cannot distinguish
between them: to SPIN, these states are all equal! In other words: only one
of the successors is expanded and explored because the others are matched to
it! We thus have to conclude:

There is no branching in the state space of our model.

Besides the insight stated above, this also explains the formula for the num-
ber of matched states (chapter 5) m = p ·MAX M · (2E − 1): of all 2E

possibilities every message round, only one (this explains the minus 1) is
explored, the rest is matched (E being the number of directed links).

Master’s Thesis - W.M. Everse 97

CHAPTER 6. THE HIDDEN PROBLEM

6.2.4 Consequences

As said in the previous section, any model of our protocol should model two
aspects: the protocol behaviour and the behaviour of the underlying proba-
bilistic links. The latter aspect was already found to be hard to implement
using a non-probabilistic modelling language. We approximated probabilis-
tic behaviour using non-determinism, but by hiding the matrices Msgs and
H, this approximation turns out to be very poor: only one of many possi-
ble probe message sequences is checked. This is explained in the following
example.

For instance, every ten message rounds, a link of quality 1
10 should deliver

exactly one probe message. This message can be delivered in one of every
ten rounds. Our model does not verify all ten possibilities but only one.
Nevertheless, the quantitative aspect of the link quality is maintained (each
possibility results in the desired quality of 1

10) and that is the explanation
why our verification results were correct w.r.t. the expected SPT tree.

Unfortunately, we could not reveal the details of the exploration order of
SPIN, so we do not exactly know the resulting probe message sequence (i.e.
is the message delivered in the first of every ten rounds? Or in the second?
Or maybe just in the tenth?). We do know that the exploration order is
deterministic which indicates that it is always the same periodic message
sequence (i.e. the message is always delivered in for instance every 10th
round).

It could be noted that we did not mention the connectivity matrix C as
part of the problem. This is because hiding the connectivity matrix C does
not have undesired consequences. Indeed, it is used throughout the model
but it is constant (it never changes after the d step construct in which it is
initialized). Hiding it does result in a smaller state descriptor though.

6.3 Solution Directions

Obviously, the problem sketched in the previous section can be solved rather
naive by just ‘unhiding’ the matrices Msgs and H. We elaborate on this
solution in the first subsection below. We also present the results of some
initial experiments that we did using this solution.

Besides the naive solution, it might be interesting to consider other, more
sophisticated solution directions. The second and third subsections below
discuss two slightly more sophisticated solutions, which may have some ad-
vantages compared to the naive approach. Again, we did some initial ex-
periments and we present the results.

Master’s Thesis - W.M. Everse 98

CHAPTER 6. THE HIDDEN PROBLEM

6.3.1 Naive Approach

The most straightforward solution to the problem sketched is to remove the
keyword hidden from the declaration of the Msgs and H matrices. This will
decrease the number of matched states drastically, at the cost of a huge
increase of the state space (stored states). This is a result of the fact that
now all possible values of these matrices result in new model states (there
is branching in the state space).

The number of possible matrices is exponential in the number of nodes: for
2 nodes completely connected, there are 22 = 4 different values for the Msgs

matrix at the very first branching in the state space; a complete topology
of 4 nodes already results in 212 = 4096 different values. Note that due to
the link quality mechanism, there might be fewer different values possible
at later branching points. Note also that the value of matrix H in message
round M depends on its previous value (in round M − 1) and on the value
of matrix Msgs in round M . Therefore, it does not introduce new states
and the number of successor states at a branching is thus determined by the
number of possible different values of matrix Msgs.

It is interesting to do some initial experiments in order to analyze the change
in the number of states in this case. Moreover, an important question is
whether verification remains feasible at all.

Naive Solution Experiments

The description of a set of cohesive experiments in this chapter comprises
five elements: a hypothesis, a motivation thereof, the setup, the results and
a conclusion about the stated hypothesis. These elements are enumerated
below for the experiments concerning the naive solution.

1. Hypothesis: Not hiding matrices Msgs and H in our model will cause
(meaningful) verification to become infeasible. We define ‘meaningful
verification’ as verification of models of at least 3 nodes and M message
rounds, where M ≥ 2vmax and vmax is the largest denominator in the
connectivity matrix C. All link qualities should be less than 1.

2. Motivation:

• The number of reachable states will explode, since the number
of states at a branching is determined by the number of different
values of the Msgs matrix. Moreover, branching occurs every
message round!
• The number of nodes for a meaningful verification is at least 3

in order to show that the protocol is capable to select a correct
parent.

Master’s Thesis - W.M. Everse 99

CHAPTER 6. THE HIDDEN PROBLEM

• The number of message rounds is at least two times the largest de-
nominator in the connectivity matrix in order to allow the prob-
abilism approximation mechanism of the model to simulate at
least two periods for each link.

• It is trivial that link qualities should be less than 1 in order to
activate the probability approximation.

3. Setup: We perform SPIN’s invalid end state check on a complete and
chain topology of respectively N=3 and N=4 nodes with all links 10%
(i.e. 1

10). These topologies can be found in figure 5.6 on page 82.
We compare the results to the original model. Hardware, version and
verification settings of SPIN are as mentioned in chapter 5, page 80.
We report the number of stored and matched states, the number of
MAX M and the time taken by the verification. The value of MAX M is
set to 20 or lower (depending on feasibility). An infeasible verification
is one that runs out of memory (i.e. requiring more physical memory
than the pre-set of 1024 MB).

4. Results: The table below displays the verification results. Each
topology column comprises three sub columns: time, stored/matched
states and the maximum number of message rounds MAX M. The re-
sults in italics are for the corresponding original model (i.e. the same
model with matrices Msgs and H hidden).

Table 6.1: Naive Solution Experiments - results

N Chain Topo 10% Complete Topo 10%
3 1.79s 433228/48205 20 38.5s 6849747/1602681 18

orig 0.08s 244/270 20 0.09s 220/1071 18
4 14.9s 3033672/271486 12 0.36s 69635/0 1

orig 0.09s 196/693 12 0.10s 20/4095 1

5. Conclusion: The results confirm our expectations: the naive solution
causes a huge increase in the number of stored states and a (less) huge
decrease of the number of matched states. Only one verification run
is meaningful (as defined above): the 3-node chain topology. It is
important to note that the corresponding value of MAX M in this run
is not an upper bound for feasibility (in contrast to the MAX M values
of the other verification runs). This result is rather disappointing since
it is not very likely that such a small topology can uncover all potential
problems of the protocol. Therefore the hypothesis is confirmed.

Master’s Thesis - W.M. Everse 100

CHAPTER 6. THE HIDDEN PROBLEM

6.3.2 Partial Hiding

Instead of ‘unhiding’ both matrices, as was done in the preceding subsection,
it may be interesting to investigate the effects of unhiding only one of the
matrices. The philosophy behind it is that the number of possible values for
one matrix is less than for two, resulting in a smaller state space, as there
are less successor states at each branching.

The first option is to unhide the message exchange matrix Msgs while leaving
matrix H hidden. This means that after backtracking to a next successor at
a branching, the value of H is ‘corrupted’. However, this option is justified
since H is used by the probability approximation mechanism to keep track
of the delivered messages (per link) within a periodic number of executed
message rounds (this is the denominator v of the corresponding entry in con-
nectivity matrix C). Every time this periodic number of rounds is executed,
the corresponding entry of H is reset (by the inline construct checkReset()):

i n l i n e checkRese t (e , f){ /∗ Reset c oun t e r s when needed ∗/
i f /∗ (modulo C [] . to [] . v) ∗/
: : (H[e] . to [f] . v == C[e] . to [f] . v) −> H[e] . to [f] . u = 0 ; H[e] . to [f] . v = 0 ;
: : e l s e −> s k i p
f i

}

Indeed, this means that after backtracking a corrupted matrix H is used,
but only for a limited number of message rounds (that is, worst case, the
maximum periodic number of message rounds vmax, i.e. the greatest de-
nominator present in the connectivity matrix). Matrix H just records the
established link qualities for a periodic number of message rounds for each
link, but these values only function as starting point: the probability ap-
proximation mechanism takes decisions based on these values, in order to
enforce the qualities given in the connectivity matrix C. A wrong starting
point will only temporary result in poor quality approximation, which is
rather quickly corrected by the mechanism. Nevertheless, we would like to
call it a feature rather than a bug, as things do appear more unpredictable
to the protocol. Moreover, compared to the naive solution, it will result
in fewer stored states, therefore pushing the feasibility bound somewhat
further.

The second option is to hide the message exchange matrix Msgs while un-
hiding the history matrix H. This is justified since the values in the message
exchange matrix are regenerated every message round (by the globalSend()

process). Like the first option, after backtracking, SPIN continues exploring
the state space with a corrupt message exchange matrix. That is however
only for the duration of one message round. As with the first option, this will
result only temporary in poor quality approximation (w.r.t. the connectivity
matrix), but also in a smaller state space.

Master’s Thesis - W.M. Everse 101

CHAPTER 6. THE HIDDEN PROBLEM

Partial Hiding Experiments

1. Hypothesis: Hiding only one of the matrices H and Msgs in our model
still results in useful model behaviour, but it yields a reduction of the
state space of the model (w.r.t. the naive solution).

2. Motivation:

• Two aspects are modelled: protocol behaviour and probabilistic
link behaviour. Only the latter is affected by the change, but
only temporary. The global resulting link behaviour that is ex-
posed to the protocol part of the model remains as given in the
connectivity matrix C.

• The number of possible values for one matrix is smaller than for
two. Since this number determines the branching degree in the
state space (explained in the previous subsection), there are less
successors states at each branching.

3. Setup: We verify the parents that are selected by the protocol on
each node in three different models:

• HM: the naive solution model (both H and Msgs not hidden);

• HHM: matrix H hidden, matrix Msgs is not hidden;

• HMH: matrix Msgs hidden, matrix H is not hidden.

We verify the chain topology on three nodes connected by 10% links
(see previous subsection). Constant MAX M is set to 30. The verifica-
tion uses the following LTL property:

• []<> (p && q)

• #define p M==MAX_M

• #define q nodes[1].parent==0 && nodes[2].parent==1

• “It is always the case that eventually the maximum number of
message rounds is reached and that node 1 selected parent node
0 and node 2 selected parent node 1.”

We report the time taken by the verification, the number of stored
and matched states, the size of the state vector and the total memory
used.

4. Results: The results are shown in table 6.2. The property was ver-
ified successfully for all models. Of the two ‘partial hiding’ solutions,
hiding matrix Msgs (model HMH) yields the largest reduction of the
state space w.r.t. the naive solution (model HM): the gain in the num-
ber of stored states is 1679666 states. The gain in time is 23.59 seconds

Master’s Thesis - W.M. Everse 102

CHAPTER 6. THE HIDDEN PROBLEM

Table 6.2: Partial Hiding Experiments - results

Model Time(s) Stored/Matched State Vector Memory
HM 65.44 4998243/6414060 116B 661MB

HHM 43.36 3440493/4576634 100B 411MB
HMH 41.85 3318577/4411724 108B 394MB

and the verification requires 267MB less of total memory. Hiding ma-
trix H (model HHM) results in the smallest state descriptor (100B).
The number of matched states as percentage of the number of stored
states is 128% for the naive solution and 133% for both ‘partial hiding’
solutions.

5. Conclusion: The first part of our hypothesis states that the model
behaviour is not significantly affected by partial hiding. This is con-
firmed by our experiments, as the protocol finds correct parents (in-
deed for this very simple, trivial topology but it is a promising start).
The second part of the hypothesis (partial hiding will yield a state
space reduction) is confirmed by the third column of table 6.2.

6.3.3 Controlled Branching

Our first solution direction was presented as a naive solution which caused
maximal branching in the state space: all possible values of the matrices H

and Msgs resulted in a maximal number of successor states at a branching.
The second solution direction tried to restrict the branching degree by re-
ducing the number of successors through hiding part of the possible values
(either values from H or Msgs). This subsection describes a third solution
direction that goes one step further: we try to control the branching degree.

As explained in this chapter, our original model hides matrices H and Msgs

which results in a state space without branching. The idea of controlled
branching is to take this original model as starting point and define an ad-
ditional variable that depends on the value of these matrices. This variable
should not be hidden from the state descriptor, such that the number of
possible values of it determines the branching degree. The number of pos-
sible values stored in this variable is determined by the dependency upon
the matrices H and Msgs: the type of dependency determines the branching
degree. We can thus control the branching degree in the state space by
defining how this new variable depends upon H and Msgs.

The dependency relation between the matrices and the new variable induces
a partitioning of all possible matrix values. The maximal branching degree
(i.e. the number of successors at a branching point) equals the number of

Master’s Thesis - W.M. Everse 103

CHAPTER 6. THE HIDDEN PROBLEM

partitions, rather than the number of all possible matrix values1. In this
light, we can say that our original model only defines one partition that
represents one possible instance of probabilistic behaviour over the message
rounds. It would of course strongly increase our confidence in the protocol
if we could verify a self-controlled number of instances more (for example,
instances that are likely to occur in reality).

Controlling the branching degree allows for tuning the verification without
breaking the link behaviour, nor the protocol behaviour. A low degree re-
sults in few simulated instances of the probabilistic link behaviour, but it
pushes the feasibility bound (larger networks can be verified). Establishing a
high branching degree results in better approximation of the link behaviour,
at the cost of feasibility.

A simple example of a dependency relation in order to control the branching
degree is to use the control variable to store the number of entries of Msgs

containing a ‘1’, each message round (i.e. the number of messages that
will be delivered in a message round). This will result in 1 + E partitions
that group all Msgs matrices that contain resp. 0, 1, 2, . . . , E such entries,
where E is the number of directed edges. So, for a complete topology on
N nodes, this will result in a maximum branching degree of 1 + N(N − 1)
instead of 2N(N−1) (which is the number of possible Msgs matrices). Below,
we experiment with this proof of concept of controlled branching.

Controlled Branching Experiments

1. Hypothesis: Extension of our original model with the Controlled
Branching technique, as described above, results in a state space with
(controllable) branching, while the protocol still finds correct parents
for each possible branch.

2. Motivation:

• In the original model, all successor states at a branching point are
matched (considered equal) since they only differ in the matrices
H and Msgs, which are hidden.

• The branch control variable is not hidden and thus prevents the
matching of all successors. However, successors in the same par-
tition are still considered equal and are therefore still matched.

• The protocol will find correct parents since each branch does es-
tablish the desired link qualities.

1Note that the branching degree is not constant: it is at its maximum at the start
of each period of message rounds and decreases during this period, as a result of the
probability approximation mechanism.

Master’s Thesis - W.M. Everse 104

CHAPTER 6. THE HIDDEN PROBLEM

3. Setup: We started our experiments with a model in which we count
delivered probe messages (as described above) per message round. The
model is our original model but with an additional global integer vari-
able called branchControl. Every time an entry of Msgs is set to 1 (by
process globalSend), it is increased (branchControl++, l. 128).

It is important to note the dummy expression branchControl>=0 in line
119: it is always true. It reads the value of branchControl, and by
doing so, prevents SPIN from recognizing the variable as write-only. It
turned out that otherwise the model is optimized, since SPIN is capable
to detect that the variable is never read. Without this expression, the
desired branching effect does not occur.

116 do /∗ For each msg round ∗/
117 : : (M< MAX M) −> atomic{
118 do /∗ F i l l msgs mat r i x ∗/
119 : : (i<N && branchCont ro l>=0) −> do /∗ Dummy use o f b r anchCon t r o l∗/
120 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
121 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
122 i f
123 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
124 Msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
125 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
126 Msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
127 H[i] . to [j] . u++; /∗ Counts nr o f d e l i v e r e d msgs ∗/
128 b ranchCon t r o l++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
129 f i ;
130 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
131 checkRese t (i , j) ;
132 j++
133 : : (j==N) −> j =0; break
134 od ;
135 i++
136 : : (i==N) −> i =0; break
137 od ;
138 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
139 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
140 M++
141 : : (M == MAX M) −> break /∗ Max nr o f msg rounds reached , s top ∗/
142 od

Listing 6.3: Adjusted portion of the globalSend process

We also try to drastically reduce the branching degree: by inserting
the line ‘branchControl = branchControl%2;’ between lines 137 and 138.
This is a modulo 2 computation: now branchControl can only have two
values, thus there are only two partitions left at each branching point:
namely the two representing all Msgs matrices with an odd resp. and
even number of ‘1’s.

We verified the complete 4-node topology with all links 10% with
SPIN’s invalid end state check. We also verified our arbitrary 4-node
topology (which is depicted again in figure 6.2), in order to check
whether the protocol finds correct parents in this model. The value of
MAX M is set to 20, the other constants were set to their defaults (i.e.
as in the original model).

Master’s Thesis - W.M. Everse 105

CHAPTER 6. THE HIDDEN PROBLEM

0 1

32

9/10

1/7

3/101/10

4/5

Figure 6.2: Arbitrary topo

The LTL property we used to check for correct parents:

• []<> (p && q)

• #define p M==MAX_M

• #define q nodes[1].parent==3 && nodes[2].parent==3 &&
nodes[3].parent==0

• “It is always the case that eventually the maximum number of
message rounds is reached and that nodes 1 and 2 selected parent
node 3 and node 3 selected parent node 0.”

We report the time taken by the verification runs, the number of stored
and matched states, total actual memory usage and the maximum
search depth reached.

4. Results: The different models with Branch Control are indicated
using the prefix BC. These are the details:

• ORIG: the original model (without BC), complete topo, 10%
links, check for invalid end states;

• BCC20: complete topo, 10% links, check for invalid end states;

• BCC20mod: complete topo, 10% links, branchControl modulo 2
as described above (odd/even partitions), check for invalid end
states;

• BCA20p: arbitrary topo from fig. 6.2, check for correct parents;

• BCC20p: complete topo, 10% links, check for correct parents.

The results are presented in table 6.3 below. The fourth experiment
in the table resulted in an error: the protocol did not find correct
parents for all nodes. In the topology under consideration (complete,
all links 10%) all non-gateway nodes should select the gateway (node
0) as parent. According to SPIN however, node 2 has selected node
3 as its parent, after 20 message rounds. This number of rounds is
probably too low, in combination with this low link quality.

Master’s Thesis - W.M. Everse 106

CHAPTER 6. THE HIDDEN PROBLEM

Table 6.3: Controlled Branching Experiments - results

Model Time(s) Stored/Matched Depth Memory
ORIG 0.44 324/73710 2709 32MB

BCC20 21.40 2096070/986902 2760 320MB
BCC20mod 2.06 5544/288508 2684 34MB

BCA20p 107.77 3203561/11287990 3022 456MB
BCC20p error parents incorrect!

5. Conclusion: Controlling the branching in the state space can be ac-
complished using a variable that depends on the values of the hidden
matrices. Moreover, this results in a smaller state space, compared to
the naive and the ‘partial hiding’ solutions (the verification of the same
models is unfeasible w.r.t. memory, for these solutions). A depen-
dency resulting in less possible values for the control variable (such as
in model BCC20mod) results in fewer branches and thus fewer states.
The protocol does find correct parents except for the BCC20p case.
This is a consequence of the low link qualities and the small number of
message rounds: the probability approximation mechanism can only
deliver 2 probe messages per link, resulting in a poor quality estimation
at the nodes. We consider the hypothesis as confirmed. The exper-
iments indicate that Controlled Branching is a complex abstraction
technique that needs extensive future research.

6.4 Conclusion

The problem sketched in this chapter was found in one of the last stages
of this research project. Because of the limited time left at that point of
the project, we decided to analyse its source and the consequences. We
proposed three different solution directions to the problem and did some
initial experiments.

Our original model that was presented in the previous chapter consists of
two important aspects: the protocol behaviour and the underlying link be-
haviour. The main result of the analysis is the insight that there is no
branching in the state space of this model, due to the hidden matrices H

and Msgs. Only one of many instances of the probabilistic link behaviour
is verified (there is only one path in the state space). The quantity of this
instance is correct (i.e. as given in the connectivity matrix). This explains
the correct results of the verification performed (described in the previous
chapter).

The traditional model checking approach aims to prove (the absence of) cer-
tain properties of a model, by checking all possible states the model can be

Master’s Thesis - W.M. Everse 107

CHAPTER 6. THE HIDDEN PROBLEM

in. It is part of the paradigm of mathematical reasoning. This often turns
out to be a problem due to the combinatorial state space explosion. More-
over, model checking practitioners found that is hard to construct flawless
models and properties for realistic systems. This is a consequence of the
lack of methods to bridge the gap between informal system descriptions and
formal models [9]. Brinksma [8] argues that model checking is also part of an
experimental paradigm: the experimental atmosphere of increasing tool per-
formance and determining how much of a problem can be verified. Moreover,
in practice, verification models are constructed using insight, heuristics and
experience; these models can only be validated using experimental methods.

Our approach cannot satisfy the traditional approach to model checking, be-
cause of the implementation of the probability approximation mechanism,
combined with the hidden matrices: many states are wrongly considered to
be equal. Our approach does however satisfy the experimental approach,
which we call ‘bug hunting’: verification can never guarantee total correct-
ness but it can increase or decrease confidence in the model (by showing
presence of bugs).

We can conclude that hiding the matrices Msgs and H in our model has un-
desired effects. The functional behaviour is insufficient but the quantitative
aspect of this behaviour is as desired: the links will have the quality given in
the connectivity matrix. Therefore, our verification results are not useless:
our confidence in the correctness of the protocol is increased by these results
as the protocol finds the correct parents.

6.4.1 Solutions and Further Research

We proposed three solution directions: a naive approach that ‘unhides’ the
hidden matrices, a ‘partial hiding’ approach in which only one of the ma-
trices is ‘unhidden’ and a ‘controlled branching’ approach. The first results
in maximal branching in the state space, the second in a slightly smaller
branching degree and the third in a controllable (customizable) branching
degree.

Using this ‘controlled branching’, well-connected topologies of at most four
nodes can be verified for a limited number of message rounds (up to 20).
However, the determinant of the feasibility of a verification run remains the
number of directed edges: a topology on 5 nodes with less links might also
be feasible.

The ‘controlled branching’ solution direction is the most promising and needs
extensive further research. In order to come to a more feasible verification,
we abstract away from all possible instances of approximated probabilistic
link behaviour. These instances are grouped into partitions by a dependency

Master’s Thesis - W.M. Everse 108

CHAPTER 6. THE HIDDEN PROBLEM

relation. Further research should determine how to define a dependency
resulting in useful partitions. Ideally, each partition should group equivalent
behaviour that is representative and likely to occur in reality.

6.4.2 Learned Lessons

As quoted at the beginning of this chapter, one should learn from made
mistakes. Our concrete lessons learned are the following:

• The keyword hidden can easily result in erroneous or unexpected be-
haviour. It should therefore be used with much caution!

• SPIN optimizes a model before it is verified: a variable that is never
read is recognized as a write-only variable, which is omitted from the
state descriptor. Therefore, we had to add the dummy expression
branchControl>=0 in the third solution direction, to let the model read
the value of branchControl and prevent SPIN from discarding it from the
state.

• Discovering a mistake is usually demotivating but it turns out to be
a gateway to interesting research: without our ‘hidden problem’, we
would not have come to the ‘controlled branching’ solution direction,
which allows for an extra dimension of customization in our verification
process.

• Moreover, analyzing the problem led to thorough insight in the prob-
lem, the model and the verification.

Master’s Thesis - W.M. Everse 109

CHAPTER 7

Verification using PRISM

This chapter describes our modelling and verification activities using the
symbolic model checker PRISM. The structure of this chapter is similar
to that of chapters 4 and 5: we will first introduce the reader to the tool
and its underlying theory and motivate why it has been chosen. Then we
elaborate on the process of model construction with PRISM and subsequently
we report on the verification experiences and results. Finally we summarize
our findings in the concluding section.

The aforementioned chapters extensively introduced many of the issues en-
countered when modelling and verifying the Shortest Path Tree (SPT) pro-
tocol (e.g. modelling broadcast, execution order, link quality). We refer to
these if necessary and focus here on modelling and verification with PRISM.

7.1 Tool Introduction

The Probabilistic Symbolic Model Checker (PRISM) is a tool for formal
modelling and analysis of systems which exhibit random or probabilistic
behaviour. PRISM is developed at the university of Birmingham and allows
for analysing quantitative properties of these so-called stochastic systems
[21]. The first public release of PRISM was version 1.2, dated September
2001. Since then, it has been in constant development. The current version
is 3.2, dated June 15, 2008 in which PRISM’s Graphical User Interface (GUI)
is improved. It is a rather mature tool now which has been successfully
deployed in a wide application domain: from real-time communication pro-
tocols to biological signalling pathways [21]. PRISM is free and open source
software, available at http://www.prismmodelchecker.org.

Master’s Thesis - W.M. Everse 110

http://www.prismmodelchecker.org

CHAPTER 7. VERIFICATION USING PRISM

7.1.1 Underlying Theory

PRISM supports three types of probabilistic models:

• A Discrete-Time Markov Chain (DTMC) is probably the simplest prob-
abilistic model and it is defined as a tuple (S, s0,P) with a set S of
states, an initial state s0 ∈ S and a transition probability matrix
P : S×S → [0, 1], where P(s, s′) is the probability of making a transi-
tion from one state s to another state s′. The sum of the probabilities
from state s must equal 1, i.e.

∑
s′∈S P(s, s′) = 1 for all s ∈ S [31, 42].

In DTMCs, time is modelled as discrete time steps and probabilities
are also discrete [21].

• A Markov Decision Process (MDP) extends a DTMC by allowing both
probabilistic and non-deterministic behaviour: in any state there is a
non-deterministic choice between a number of discrete probability dis-
tributions over states [31]. MDPs allow for modelling of asynchronous
parallel systems.

• A Continuous-Time Markov Chain (CTMC) does not support non-
determinism, but time is modelled in a continuous fashion through
the use of the negative exponential distribution [21]. It is defined as
a tuple (S, s0,R) with a set of states S, an initial state s0 ∈ S and
a transition rate matrix R : S × S → R≥0 where R(s, s′) is the rate
of making a transition from state s to s′. The probability of moving
from s to s′ within t time units is 1− e−R(s,s′)·t [31, 42].

PRISM’s model specification language augments these models with costs and
rewards, which are real values that can be assigned to states and transitions.
This allows for reasoning about quantitative measures like for instance ‘en-
ergy consumption’ or ‘number of messages lost’ [21]. The modelling language
is a simple, state-based language based on the Reactive Modules formalism
[1]. The property specification language for PRISM is based on the tem-
poral logics Probabilistic Computation Tree Logic (PCTL) and Continuous
Stochastic Logic (CSL). The former is a probabilistic extension of CTL used
in the context of DTMCs and MDPs, whereas the latter is used in the con-
text of CTMCs. We refer to the literature for details about these logics (e.g.
[31, 42]).

Explicit vs. Symbolic Model Checking

In contrast to explicit model checkers such as for instance SPIN, PRISM is a
symbolic model checker. Tools in the first category explicitly generate and
explore the states of the model under consideration. However, this often
results in a combinatorial explosion (i.e. the state space explosion prob-
lem, described in chapter 2). Symbolic methods try to avoid this problem

Master’s Thesis - W.M. Everse 111

CHAPTER 7. VERIFICATION USING PRISM

by using a symbolic representation for the state space. All possible sys-
tem states are encoded using a set of boolean variables and a specific set
of states is identified by a propositional formula over these variables. A
common data structure used to represent these sets of states is (some form
of) a Binary Decision Diagram (BDD), since each formula has its unique
BDD representation. The performance of symbolic model checking methods
depends critically on the variable ordering that is chosen for the BDDs, but
since this is an NP-complete problem, there are only heuristics to find a
good ordering. Originally, explicit techniques were used mostly in software
verification settings, whilst symbolic techniques were found mainly in the
hardware domain. We refer to the literature for more information about ex-
plicit vs. symbolic model checking and for the details of symbolic techniques
[3, 22, 31, 44].

7.1.2 Tool Motivation

Using both UPPAAL and SPIN, we found that modelling link qualities (i.e.
probabilities) is a complex rather than a straightforward job. We used
(semi1) non-deterministic behaviour to accomplish an approximation of the
desired stochastic behaviour. However, these tools are in principle not really
suitable to model probabilism. In contrast, a tool that actually is very suit-
able for modelling probabilities is PRISM. It is designed to be a probabilistic
model checker, allowing the verification of systems which exhibit stochastic
behaviour.

Like UPPAAL and SPIN, PRISM is a mature tool which has been used success-
fully to analyse a wide range of case studies in many different application
domains. According to the PRISM website, examples include randomized
distributed algorithms such as the randomized consensus protocol, commu-
nication protocols (e.g. Bluetooth device discovery, IEEE 1394 FireWire
root contention, Gossip protocol), security, biological process modelling and
more.

We used PRISM version 3.2, dated June 15, 2008, compiled from source code
on Mac OS. Figure 7.1 is a screen shot of PRISM’s GUI, to get a first impres-
sion. The hardware used is a 13.3” MacBook (Intel Core2Duo processor on
2 GHz, 2 GB RAM) running Mac OS X 10.5 Leopard.

1Our implementations so far were semi non-deterministic since there is a recurring
period of time (message rounds) over which link qualities are maintained, based on history.

Master’s Thesis - W.M. Everse 112

CHAPTER 7. VERIFICATION USING PRISM

Figure 7.1: The GUI of PRISM 3.2 in edit mode

7.2 Model Construction

This section reports on our modelling activities using PRISM. We describe
the process we went through and point out the difficulties encountered.

A PRISM model is specified textually using a simple, state-based language,
based on the Reactive Modules formalism of Alur and Henzinger [1]. A
system is modelled as the parallel composition of a set of modules that
interact with each other. A module consists of a set of local, finite-range
variables, together with a set of probabilistic guarded commands [21]. The
values of the local variables of a module determine the local state of the
module. The global state of the entire model comprises the local state of all
modules. The behaviour of a module is described by specifying probabilistic
guarded commands, which take the form:

[] guard -> prob1 : update1 + ... + probN : updateN;

A guard is a predicate over all variables in the model (a module can read
other module’s variables). An update is a change of the module’s variable
values (i.e. a state transition), associated with a certain probability. A
module can make a transition (execute an update) if the corresponding

Master’s Thesis - W.M. Everse 113

CHAPTER 7. VERIFICATION USING PRISM

guard is true (and based on the associated probabilities). The type of a
model can be DTMC, MDP or CTMC (denoted resp. dtmc, mdp and ctmc)
and is specified typically at the start of the file. For the former two types,
probabilities on the right hand side of a command must sum up to one.

Each state transition of a module can be synchronized with state transitions
of other modules using synchronization labels. Such a label is placed left to
the guard of a command, inside the square brackets. This allows for forcing
two or more modules to make transitions simultaneously.

7.2.1 Protocol Model

Using UPPAAL and SPIN, we were able to build rather generic models: the
topology and the number of nodes are parameters of the model. We were
able to do so, since both modelling languages support advanced concepts
such as process types, process instantiation and process parameterization.
Unfortunately, PRISM’s modelling language is rather restricted: for instance
basic arrays are not supported, nor is module instantiation and parame-
terization. However, PRISM provides a mechanism called module renaming.
This allows for module duplication by renaming all variables and labels spec-
ified in a module. Module renaming is however less powerful than module
parameterization. Therefore, the PRISM model of our protocol is far less
generic compared to our UPPAAL or SPIN models: the topology cannot be
adjusted in a flexible and convenient way.

1 // nondeterminism in execution order: mdp

2 mdp

3
4 // number of message rounds

5 const int MAX_M;

6
7 //big number representing infinite distance

8 const int MAX_DIST = 10000;

9
10 // bidirectional link qualities

11 const double p01 = 0.15;

12 const double p02 = 0.1;

13 const double p03 = 0.9;

14 const double p12 = 0;

15 const double p13 = 0.33;

16 const double p23 = 0.8;

17
18 //node representations used for parent selection

19 const int n0 = 0;

20 const int n1 = 1;

21 const int n2 = 2;

22 const int n3 = 3;

23
24 // distance to G of G is always 0

25 const int dist00 = 0;

Listing 7.1: PRISM Model V1 - Global Constants

Listing 7.1 shows the first part of our PRISM model. It consists merely of the
definition of global constants for the maximum number of message rounds,
maximum distance, link probabilities, auxiliary node representations and

Master’s Thesis - W.M. Everse 114

CHAPTER 7. VERIFICATION USING PRISM

the distance to the gateway of the gateway itself (which obviously equals 0).
Additionally, it defines the model type to be an MDP since, as we will see
soon, this is a non-deterministic discrete-time model.

26 // gateway node

27 module node0

28 M0 : [0.. MAX_M] init 0; //my msg round counter

29
30 //if (not sent this msg round) & (max round not yet reached),

31 // broadcast a msg (by sync) and increase msg round nr

32 [send0] (M0 <=M1 & M0 <=M2 & M0 <=M3) & (M0 <MAX_M) -> (M0 ’=M0+1);

33 endmodule

Listing 7.2: PRISM Model V1 - Gateway Module

Listing 7.2 shows the PRISM module that models a gateway node. The state
of this module is determined by the local variable M0, which represents a
local message round counter. Its value range is declared to be [0..MAX_M]

and its initial value is 0. The gateway module has just one command that
synchronizes with other modules on the label send0. Message broadcast is
modelled by synchronization, the corresponding label indicates the sending
node. Before explaining this in more detail, let us first turn to the node
module.

34 //node 1

35 module node1

36 dist10 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 0 acc to me

37 dist11 : [0.. MAX_DIST] init MAX_DIST; //my own distance to G

38 dist12 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 2 acc to me

39 dist13 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 3 acc to me

40
41 recv10 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 0

42 recv12 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 2

43 recv13 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 3

44
45 parent1: [0..3]; //the parent node I selected

46
47 M1 : [0.. MAX_M] init 0; //my msg round counter

48
49 //if (not sent this msg round) & (max round not yet reached),

50 // broadcast a msg (by sync), update M1, dist -to-G and parent

51 [send1] (M1 <=M0 & M1 <=M2 & M1 <=M3) & (M1 <MAX_M) ->

52 (M1 ’=M1+1) & (dist11 ’= computedist1) & (parent1 ’= setparent1);

53
54 // receive (sync) msg from node 0 with probability p01

55 [send0] true -> p01: (dist10 ’= dist00) & (recv10 ’= recv10 +10) + (1-p01): true;

56
57 // receive (sync) msg from node 2 with probability p12

58 [send2] true -> p12: (dist12 ’= dist22) & (recv12 ’= recv12 +10) + (1-p12): true;

59
60 // receive (sync) msg from node 3 with probability p13

61 [send3] true -> p13: (dist13 ’= dist33) & (recv13 ’= recv13 +10) + (1-p13): true;

62 endmodule

Listing 7.3: PRISM Model V1 - Node Module

The model we present here is a model of a specific 4-node topology with one
gateway node. The node module printed in listing 7.3 represents one of the
three remaining ‘ordinary’ nodes. Its local state comprises four distance-to-
G variables (one for each node) and three receive counters (to count probe

Master’s Thesis - W.M. Everse 115

CHAPTER 7. VERIFICATION USING PRISM

messages from every possible other node). Note that a node module in
a model of a 5-node topology would have five distance variables and four
receive counters: this illustrates our point that our PRISM models are less
generic than our UPPAAL or SPIN models due to the absence of basic arrays.
The state of the node module further comprises a variable for the selected
parent and, like the gateway module, a local message round counter.

Since this is a model of four nodes, each (non-gateway) node contains four
commands labelled with four synchronization labels (send0 – send3). The
first command models the broadcast of a probe message by the node itself.
The other commands are for receiving a probe message of other nodes. We
explain these two types of commands below.

Broadcast – The event of node1 broadcasting a message is modelled by the
synchronization of all nodes on the label send1. Of course, node1 can only
broadcast if it did not already do so this message round and if it did not yet
reach MAX_M (the guard on line 51, lst. 7.3). If the guard is satisfied, node1
updates its message round counter, its distance-to-G and its selected parent
(line 52, lst. 7.3). These updates happen with a probability of one, since no
probability is specified.

Receive – Theoretically, node1 can receive messages from all other nodes
(including the gateway). Therefore, the event of receiving a probe message
by node1 is modelled by the module synchronization on labels send0, send2
and send3. After all, these labels indicate the broadcast of a probe message
by the corresponding nodes. Receiving a probe message boils down to storing
the message content (distance-to-G of the sender) and updating a receive
counter. This is where link quality comes into play: the relevant updates
are performed with the corresponding probability. The only condition to be
satisfied is the possibility for synchronization, so the guard is always true.

Note that in principle we model a complete topology, since all possible node
interactions (sending and receiving commands) are present. This turned out
to be required for module renaming to be applicable: all node modules must
have the same number of commands and variables. We can still model links
that are not present by simply setting the corresponding probability to 0.
Note also that the gateway module in listing 7.2 is in fact a heavily stripped
node module: it cannot receive probe messages (i.e. besides label send0, no
synchronization with other nodes).

Master’s Thesis - W.M. Everse 116

CHAPTER 7. VERIFICATION USING PRISM

63 // define node 2 by module renaming

64 module node2 = node1 [//send transition:

65 send1=send2 , M1=M2 , M2=M1 , dist11=dist22 , parent1=parent2 ,

66 //recv from node 0 (common neighbour):

67 p01=p02 , dist10=dist20 , recv10=recv20 ,

68 //recv from node 3 (common neighbour):

69 p13=p23 , dist13=dist23 , recv13=recv23 ,

70 //recv from node 1 (reversed):

71 send2=send1 , dist12=dist21 , dist22=dist11 ,recv12=recv21 ,

72 // parent selection:

73 n2=n1

74]endmodule

75
76 // define node 3 by module renaming

77 module node3 = node1 [//send transition:

78 send1=send3 , M1=M3 , M3=M1 , dist11=dist33 , parent1=parent3 ,

79 //recv from node 0 (common neighbour):

80 p01=p03 , dist10=dist30 , recv10=recv30 ,

81 //recv from node 2 (common neighbour):

82 p12=p23 , dist12=dist32 , recv12=recv32 ,

83 //recv from node 1 (reversed):

84 send3=send1 , dist13=dist31 , dist33=dist11 ,recv13=recv31 ,

85 // parent selection

86 n3=n1

87]endmodule

Listing 7.4: PRISM Model V1 - Module Renaming

Listing 7.4 shows the aforementioned module renaming technique. It allows
us to define two more modules by renaming all variables and labels in mod-
ule node1. This must be done carefully and in a structured manner since
renaming easily results in an incorrect module. Fortunately, PRISM provides
a convenient option to view the full parsed model, in which module renam-
ing is already applied. This allows for checking whether the renaming is
specified correctly.

88 // formula for distance computation

89 formula computedist1 = min(ceil (10*M1/recv10 + dist10), ceil (10*M1/recv12 + dist12),

90 ceil (10*M1/recv13 + dist13), MAX_DIST);

91 // formula for parent selection

92 formula setparent1 = (computedist1=ceil (10*M1/recv10 + dist10)) ? n0 :

93 (computedist1=ceil (10*M1/recv12 + dist12)) ? n2 : n3 ;

Listing 7.5: PRISM Model V1 - Formulæ

The final part of this model is printed in listing 7.5. It contains a formula
for distance computation and one for parent selection. Formulæ are used
to avoid code duplication: an expression is linked to an identifier, which
then can be used throughout the model as shorthand for the expression.
According to the PRISM manual, the expansion of formulæ is done prior to
the module renaming process such that the formula contents are renamed,
not the formula itself.

Distance computation – Lines 89 and 90 of listing 7.5 contain the formula
computedist1 for the calculation of the distance to the gateway of node 1.
Note that due to module renaming, this formula also holds for node 2 and
node 3. The dist-to-G of a node is a minimum of three alternatives (in
this 4-node topology) and a fourth alternative (MAX_DIST) to keep the result

Master’s Thesis - W.M. Everse 117

CHAPTER 7. VERIFICATION USING PRISM

in the range of the module’s distance variable (e.g. dist11 for node 1).
Note the multiplication factor of 10 in the distance computation, which is a
workaround to avoid zero dividing. We explain this workaround in detail in
section D.2 of appendix D (it also explains the range of the receive counters).

Parent selection – The formula for parent selection on lines 92 and 93
of listing 7.5 makes use of a common shorthand expression for conditional
expressions (test ? iftrue : iffalse). It determines the parent node for
which the least distance was computed by using the formula for distance
computation. The node representations such as n0 and n2 are required for
proper renaming of this formula for the other modules.

During model construction, we simulated our models to validate the be-
haviour. In appendix D, which is about PRISM, we devoted a section to
the simulation process (section D.2). During simulation of an early version
of our model, we found a flaw in it and we explain how this is solved (the
aforementioned workaround). The first section of appendix D contains two
PRISM models (models V2 and V3) that are based on the model (V1) that
was presented here. This is explained in the next section, which is about
verification of our model.

7.3 Verification

This section contains our verification activities using PRISM. Unfortunately,
we encountered some problems with our model that prevented us from veri-
fying the model in a useful way. We discuss these problems and their causes
below. First, we explain how verification with PRISM works.

Once the model to be verified is specified correctly in PRISM’s modelling
language, and its global behaviour is validated and debugged using the sim-
ulator, the next step towards verification is building it. During the building
process, PRISM builds a probabilistic model from the model specification,
i.e. it computes the set of states (reachable from the initial state(s)) and
the transition matrix. An error is reported if any deadlocked states are
encountered during the build (i.e. reachable states without outgoing transi-
tions). If this is the case, it can be resolved by having PRISM add self-loops
to these states. Once the build process is completed successfully, the model
can be verified.

As already mentioned in the first section of this chapter, the properties to be
checked for the probabilistic model are specified in variants of probabilistic
temporal logics: either PCTL (DTMCs and MDPs) or CSL (CTMCs). PRISM

allows for checking qualitative properties as well as quantitative properties.
The former constitutes properties based on reachability analysis (typically

Master’s Thesis - W.M. Everse 118

CHAPTER 7. VERIFICATION USING PRISM

resulting in true or false), while the latter category involves numerical com-
putation (resulting in a computed value, e.g. a probability) [31]. Examples
of respectively a qualitative and a quantitative property are:

• P>=1 [F terminate] – the system eventually terminates with prob-
ability 1.

• P=? [!mod2ready U mod1ready] – the probability that module 1 is
ready before module 2 is ready.

The labels above (such as terminate,mod1ready,mod2ready) must of course
be defined to determine the corresponding set of states. Furthermore, PRISM

supports so-called experiments, a powerful means for quantitative properties
to compute their value for a range of parameters and plot the results.

7.3.1 Build Problems

The protocol model V1 we came up with for PRISM (as presented in this
chapter) took a considerable amount of effort and required many interme-
diate versions. On the one hand, this is a result of the restricted modelling
language, on the other hand also from some issues related to verification:
building the probabilistic model from our description.

Build Error

At some point we found out that PRISM was unable to construct the specified
model. Instead, during the building process an error was reported:

Error: Probabilities in command 2 of module “node1” sum to
less than one (e.g. 0.85) for some states. Perhaps some of the
updates give out-of-range values. One possible solution is to
strengthen the guard.

It turned out that the guards of the receiving commands (the second, third
and fourth command of the node module) are too weak. Indeed, they are
always true. In theory however, the corresponding commands cannot be
executed in the composed system, since they must be executed synchronously
with a (sending) command (of another module) of which the guard is not
true. In other words: the synchronization mechanism should prevent that
these commands can be executed (and thus preventing the variables to be
updated with an out-of-range value). Moreover, this expected theoretical
behaviour is exactly what is shown by the simulator, so the given error
appeared rather unexpectedly.

The reason that PRISM reports this error is an artefact of the implementation
of the build process: before actually constructing the probabilistic model,

Master’s Thesis - W.M. Everse 119

CHAPTER 7. VERIFICATION USING PRISM

PRISM first performs a number of checks on each module in isolation (among
which the check for variables going out of range). The effects of the parallel
composition of the modules are simply not considered. According to PRISM

developer Dr. Gethin Norman, this greatly simplifies the checks resulting
in a much shorter model construction time. PRISM developer Dr. David
Parker even plans to fix this issue in the future2.

The solution to this problem thus is to ‘strengthen the guards’, as sug-
gested by the error message. Specifically, the variables that do not pass
the out-of-range test are the receive counters that count the received probe
messages (recvxy): the corresponding updates only result in an increase
which causes PRISM to report the out-of-range error, although this never
can occur in the composed system (due to synchronization). Originally,
(without the workaround for zero dividing, see appendix section D.2), it
would be necessary to replace the guards of the receiving commands by the
guards recvxy < MAX_M (with x,y node numbers). However, because of the
workaround, this changes in recvxy < (10*MAX_M-8). The updated model is
model V2 in appendix D.

Build Time

Once we updated the guards, PRISM was able to build the probabilistic model
from our specification. However, for a very basic test specification containing
two ordinary nodes (just broadcasting and receiving), the time taken by
PRISM to construct the model was around 11 minutes! This is excessively
long for such a small and basic model (only 4 states and 5 transitions).

We learned from the PRISM discussion group that this is also related to the
way that PRISM (and symbolic model checkers in general) builds models.
To cite Dr. Parker: “. . . PRISM builds the full ‘potential’ model (including
all possible states). It then computes the set of states that are reachable.
Finally, it restricts the model to these states. In many cases, this turns out
to be a very efficient way to do model construction. In some cases (especially
like this, when there is a small number of reachable states in a potentially
large model), it is less efficient.”

We thus can solve the problem of the very long build time by reducing the
‘potential’ state space of the model. To achieve that, we adjusted the value
of the MAX_DIST constant to 10 instead of 10000. This drastically reduces the
full potential state space, since this constant is used to define the variable
ranges of all distance-to-G variables. Furthermore, we should also keep the
value of the MAX_M constant as low as possible (since it determines the range

2There has been contact with these PRISM developers via the PRISM discussion group
at http://groups.google.com/group/prismmodelchecker

Master’s Thesis - W.M. Everse 120

http://groups.google.com/group/prismmodelchecker

CHAPTER 7. VERIFICATION USING PRISM

of the receive counters). As said, model V2 in the appendix is the updated
version of model V1, which was presented in this chapter. It can be build
(for small values of MAX_M) in reasonable time.

Deterministic Execution Order

In order to reduce the state space of our model, we fixed the execution
order of the modules, just like we did in our UPPAAL and SPIN models. In
model V1 and V2, the execution order of the modules is non-deterministic
(therefore its type is MDP). Model V3 however, which is listed in appendix
D, is model V2 but with deterministic (fixed) order of execution of the
modules. Therefore, model V3 describes a DTMC.

The fixed order is achieved by adding a local variable turnx (where x is a node
number) to each module. It is used to keep track of the node whose turn it is
to broadcast a probe message. All module transitions are synchronized and
each transition of each module updates this local turn variable. Without
the use of a formula to do this, it would result in many duplicate code.
Therefore, we added two new formulæ nextG and next for use in respectively
the gateway module and the node modules to update the turn variable:

// formulae to update turn variable modulo N

formula nextG = func(mod , turn0+1, N);

formula next = func(mod , turn1+1, N);

7.3.2 Verification Attempts

The previous section described some issues of the model building process,
that led to modifications of our original PRISM model (resulting in model
V2 and V3, app. D). The question arises whether these adjusted models are
still valid for our protocol and suitable for verification. In this subsection
we try to answer this question.

Table 7.1 below provides the statistics resulting from building the models V2
and V3 for various values of the maximum number of message rounds MAX_M

(i.e. 1, 2, .., 5), using the command line. The models were built from the
specification in appendix D: with the topology being the 4-node topology
(with unique SPT) that we already saw earlier (fig. 5.6(d) on page 82, with
33% substituted for 18%). The table shows the time taken by the build
process, the number of states and transitions in the resulting model and the
number of encountered deadlock states. In order to be able to actually verify
these models, we need to instruct PRISM to automatically add a self-loop to
each of these deadlock states (using the command line switch -fixdl).

Master’s Thesis - W.M. Everse 121

CHAPTER 7. VERIFICATION USING PRISM

Table 7.1: Build statistics for models V2 and V3 with MAX_DIST=10

Model MAX_M t(s) #states #trans #deadlock
V2 1 0.61 941 1864 432
V3 1 0.50 185 184 128
V2 2 5.48 73057 245944 21024
V3 2 4.31 11673 15544 6624
V2 3 20.8 2995509 10353868 872317
V3 3 11.6 321563 472952 171676
V2 4 210.7 70530565 279743196 15516072
V3 4 32.1 4833212 9692214 1627488
V2 5 (out-of-memory)
V3 5 261.2 45887086 97879544 12695345
V3 6 (out-of-memory)

The table clearly illustrates that building a model (from model specifications
V2 and V3) for values of MAX_M that are higher than 5 is not feasible on our
machine. This means that we are unable to verify the behaviour of the
protocol for 5 or more message rounds. Moreover, the MAX_DIST constant
is set to 10, while it should be a much higher number, now all nodes will
advertise a distance-to-G of maximal 10 (even if it is more). Increasing
MAX_DIST is not an option since that will result in an increasing state space,
which leads to a decreasing bound for the number of message rounds that
can be verified.

On top of all other problems we encountered during modelling and veri-
fication in PRISM, and together with the rather large amount of effort we
already invested in it, this result forced us to draw the hardly honourable
conclusion that serious verification of the protocol using these PRISM models
is not possible.

The third section of appendix D contains two example properties (a check
for deadlock freedom and one for correct parent selection), for illustrative
purposes. The first property could be successfully verified for model V2 with
MAX_M=4 (built in approx. 210 seconds, table 7.1) in about 3.2 seconds. The
verification of the second property did not finish within 15 minutes (for the
same model).

Master’s Thesis - W.M. Everse 122

CHAPTER 7. VERIFICATION USING PRISM

7.4 Conclusion

In this section we summarize our experiences, problems and results encoun-
tered in this chapter. We will first enumerate our experiences with PRISM

and its usability. Next, a number of conclusions about the PRISM models
are enumerated together with the main results of our verification activities.
We finalize this chapter with some concluding remarks about the protocol.

7.4.1 PRISM Experiences

Coming from UPPAAL and SPIN, modelling for PRISM is different. PRISM’s
modelling language is simple but far less expressive. Moreover, PRISM is a
symbolic model checker and this has consequences for the model building
process. Once the model is specified, the entire model must be built which
may take long (the complete potential state space is generated, i.e. all pos-
sible variable valuations). PRISM’s GUI on the other hand, is well-designed
and intuitive.

Model Construction

• A PRISM model is written in PRISM’s modelling language: a simple,
state-based language based on the Reactive Modules principle of Alur
and Henzinger [1].

• A PRISM model is either a DTMC, an MDP or a CTMC and it comprises
constants, variables and modules that may operate synchronized.

• The PRISM language strongly focusses on modelling rather than on
computation (even more than SPIN’s PROMELA).

• PRISM’s modelling language is rather primitive and restricted: basic
arrays are not supported, nor is module instantiation, nor is module
parameterization. This simplicity is inconvenient while modelling.

• The module renaming technique provided by PRISM can be used to
avoid duplicate code, but it is rather primitive (based on a simple text
replace). Renaming turns out a labouring and rather error-prone pro-
cess for the modeller, especially if a module comprises many variables
and labels. In these situations, the ‘parsed model viewer’ provided by
PRISM can thus be of great help.

• As said, PRISM’s GUI is well-designed, intuitive and it feels robust. The
GUI’s model editor immediately provides feedback on the constructed
model by code colouring and instant parsing.

Master’s Thesis - W.M. Everse 123

CHAPTER 7. VERIFICATION USING PRISM

Simulation

• PRISM provides a highly usable simulator for debugging the model’s
behaviour.

• It supports interactive (manual) and automatic simulation (both single
step and multiple steps), as well as backtracking the simulation trace.

• It is not necessary to build the model to simulate its behaviour.

• A generated simulation path can be exported to a text file.

• Prior to simulation, PRISM asks for the value of constants that are left
undefined in the model.

Verification

• A PRISM model can be verified once it has been built successfully from
its specification.

• During the building process, PRISM computes the reachable set of
states from the initial state(s) of the probabilistic model.

• Prior to building, PRISM performs some checks on the model. How-
ever, these checks are performed on each module in isolation (module
synchronization in the composed system is not taken into account).

• During the building process, PRISM first computes the full potential
state space (i.e. all possible variable valuations), after which it com-
putes the reachable states. This is often very efficient, but in some
cases it is less efficient.

• PRISM allows for checking both quantitative and qualitative properties.

• Prior to verification, PRISM asks for the value of constants that are
left undefined in the model.

• PRISM supports so-called experiments that allow for computing and
plotting values for quantitative properties, for a range of model pa-
rameters (i.e. undefined constants).

7.4.2 The Model

Unfortunately and despite our effort, we were unable to construct a useful
protocol model for comparable verification with UPPAAL and SPIN. The
process does however provide valuable insight into modelling and simulation
using PRISM. Below we enumerate observations and conclusions about our
PRISM models.

Master’s Thesis - W.M. Everse 124

CHAPTER 7. VERIFICATION USING PRISM

• Because of the restricted modelling language, our PRISM models are
far less generic, compared to the UPPAAL and SPIN models: nor the
number of nodes, nor the topology that is modelled in a particular
model specification, can be adjusted in a flexible way.

• It is rather hard to express distance computation and parent selection
efficiently. It required us a work-around (described in appendix D) to
prevent zero-dividing.

• Link qualities were easily modelled using probabilities (as expected).

• Model V1 is a 4-node model with one gateway. It is an MDP since the
execution order of the node modules is non-deterministic. This model
could not be built because of incorrect guards and variable ranges that
were too large.

• Model V2 is an updated version of model V1 that can be built (stronger
guards and smaller variable ranges).

• Model V3 is an updated version of model V2: we predefined the exe-
cution order of the modules, thereby turning it into a DTMC.

The models could be built for at most 4 nodes, MAX_DIST=10 and MAX_M=5.
Verification will thus yield useless results since at most five message rounds
are examined. We learned from previous chapters that this is not enough for
a node to compute a reliable distance to the gateway. A simple qualitative
property could be successfully verified but the verification of a quantita-
tive property did not end within 15 minutes (appendix D), even for such a
relatively small model.

7.4.3 The SPT Protocol

Compared to model construction for SPIN or UPPAAL, constructing a model
of the SPT protocol for PRISM was significantly harder and more time-
consuming. Modelling and verification of our protocol using PRISM required
most effort. Based on the results described in this chapter, we cannot con-
clude anything about our protocol.

Master’s Thesis - W.M. Everse 125

CHAPTER 8

Variants and Experiments

As stated in the first chapter, the objective of this research project is to
take the first essential steps that are required in the process of developing a
platform or methodology for formal verification experiments with Wireless
Sensor Network (WSN) protocols. This chapter presents some examples of
concrete experiments, using our SPT protocol.

In the first section below, we explain why there is a need to do formal
verification experiments with WSN protocols. In the subsequent sections we
elaborate on the variants of our protocol we experimented with. We finalize
this chapter, as usual, with a summarizing section with conclusions.

8.1 Verification Experiments

As stated in the problem statement in chapter 1, WSN protocols are rather
complex because of the underlying characteristics of these networks (e.g. un-
reliable links, scarce resources like energy, memory, computational power).
Therefore, it is often the case that a ‘mathematical provable’ protocol (proven
to be correct) cannot be implemented directly in practice. This is the result
of all kinds of assumptions (i.e. abstractions from implementation details),
which were required in order to come to a feasible proof.

This is also the foundation of the need for formal verification experiments
with WSN protocols: the idea is to model the strongly idealized (‘provable’)
protocol and use that as starting point for adding more realistic details.
The behaviour of the more realistic variants obtained in that way can be
verified using model checking experiments. This may eliminate the need for
a mathematical proof of correctness of these variants.

Master’s Thesis - W.M. Everse 126

CHAPTER 8. VARIANTS AND EXPERIMENTS

Another useful application of verification experiments would be the ability
to easily and rather quickly validate changes in the protocol. This would for
example enable a protocol designer with a revolutionary idea for improving
a protocol to rather quickly check his or her brilliance (and, for example, to
rule out some remaining uncertainties). Model checking experiments thus
can be a useful tool to support the design of WSN protocols.

Sometimes, the underlying characteristics of a protocol may give rise to
certain questions that may be answered using experiments. In our case
for example, the SPT protocol is a routing protocol that has to deal with
the underlying link probabilities of the network. Questions that may arise
are: does the parent selection process of the nodes ever result in cycles?
Is it possible for the gateway to become disconnected from the rest of the
network? This would of course be highly undesirable.

8.1.1 Experimentation

The upcoming sections describe some experiments that we did, in order to
show the use of formal experimentation. The structure is as follows: we
start explaining the context and the motivation of some issue(s) concerning
our SPT protocol. This gives rise to a cohesive set of experiments which we
describe by enumerating five elements:

1. Hypothesis – a formulation of our hypothesis about the issue(s),
giving rise to the experiments;

2. Motivation – a summary of the motivation for the hypothesis;

3. Setup – a description of the setup of the verification, since we require
our experiments to be transparent and repeatable;

4. Results – the tabulated results of the experiments;

5. Conclusion – a conclusion based on the results, about the stated
hypothesis.

Section 8.2 describes experiments with the original SPIN model of the SPT

protocol, in order to investigate whether a disconnected gateway can occur.
Next, subsections 8.3.1 and 8.3.2 each report about a variant of the protocol,
for which we had to adjust the model. Both variants resolve an impractical
aspect of the protocol as presented in chapter 3. We searched for interesting
situations during verification of these variants, in particular (temporary)
cycle occurrence and instability or fluctuation.

Master’s Thesis - W.M. Everse 127

CHAPTER 8. VARIANTS AND EXPERIMENTS

8.2 Disconnected Gateway and Parent Cycles

The SPT protocol is a routing protocol: the nodes strive to build a short-
est path tree rooted at the gateway, based on received information from
periodically broadcasted probe messages. The main problem here is the un-
reliable stochastic nature of the underlying wireless links. This unreliability
gives rise to the question whether the entire network is always connected.
A disconnected gateway node for example, is highly undesirable since the
sensor data that should be forwarded to it (for later processing) will just
cycle through the network without getting anywhere.

A general example topology on four nodes that paves the way for a discon-
nected gateway scenario is the one given in figure 8.1.

0 1

32

y%x%

x%

x%

y<<x

y%

y%

Figure 8.1: General topology for illustrating the disconnected gateway scenario

This topology is completely connected but the important thing is that y <<
x: the links between the gateway (node 0) and the rest of the nodes have
quality y, which is significantly less than the quality x of the rest of the links.
An occasional scenario that may occur is the following: suppose that the
probe message broadcasted by the gateway in the very first message round
luckily comes across (and gets at one ore more of the other nodes). As the
links between the gateway and nodes 1, 2 and 3 have a very low quality, it is
very likely that these nodes do not receive anything from the gateway in the
next message rounds. It is however very likely that they do hear from each
other, since they are mutually well-connected. Moreover, they will advertise
to have an attractive distance to the gateway. Therefore, nodes 1, 2 and 3
may select each other as parent and, by doing so, create a parent loop. The
gateway may thus become disconnected: there is no node that selected the
gateway as parent.

8.2.1 Disconnected Gateway Experiments

1. Hypothesis – Situations in which the gateway is disconnected (i.e. in
which there is no node that selected the gateway as parent) do occur
with the SPT protocol.

2. Motivation – These situations are a direct consequence of the prob-
abilistic nature of the wireless links in combination with the protocol

Master’s Thesis - W.M. Everse 128

CHAPTER 8. VARIANTS AND EXPERIMENTS

characteristics, as explained in the scenario above.

3. Setup – The following Linear Temporal Logic (LTL) property is used
to check whether a disconnected gateway scenario occurs:

• [] p

• #define p nodes[1].parent==0 || nodes[2].parent==0 ||
nodes[3].parent==0

• “It is always the case that at least one of the non-gateway nodes
selected the gateway to be its parent”.

We would also like to check whether the gateway becomes connected
again. In other words: verify whether the disconnected gateway sce-
nario is temporary or not. The following LTL property enables us to
do so:

• []<> p

• “It is always the case that eventually p holds”, with p as defined
above.

We verify the topology on four nodes, depicted in figure 8.1, with link
quality parameters x = 9

10 and y = 1
10 .

We check the properties for our original SPIN model (chapter 5) and
for the model with ‘controlled branching’ (by counting the number
of delivered probe messages), that is model BCC20 from chapter 6,
adjusted to the topo from figure 8.1. Model constant MAX M=20,
other constants are set to their defaults.

Hardware, version and verification settings of SPIN are as mentioned in
chapter 5, page 80. We report the given counterexample if properties
are violated, or just false. Otherwise we report true.

4. Results – Table 8.1 displays the results. The counterexamples are
abbreviated: n1.p denotes the parent selected by node 1. Both coun-
terexamples are equal and occur in message round 14 (M=13): nodes 1
and 2 selected parent node 3 and node 3 selected parent node 2.

Table 8.1: Disconnected Gateway Experiments - results

Model: [] p []<> p
ORIG M=13: n1.p=n2.p=3, n3.p=2 true

BCC20 M=13: n1.p=n2.p=3, n3.p=2 false

Master’s Thesis - W.M. Everse 129

CHAPTER 8. VARIANTS AND EXPERIMENTS

5. Conclusion – the hypothesis stated that a disconnected gateway sit-
uation is possible, and this is confirmed by our experiments. Moreover,
this situation is only temporary in the original model. This in contrast
to the model with branch control: SPIN finds a path in the state space
on which the gateway does not become connected again! Both models
simulated 20 message rounds, so now the impact of the branch con-
trolled model becomes clear: in the original model, only one instance of
probabilistic link behaviour is exposed to the protocol part, in which
(luckily) the gateway becomes connected again. In the branch con-
trolled model, more instances of probabilistic behaviour are exposed
to the protocol part, resulting in a path that violates the property.
This violation is however a result of the relatively small number of
simulated message rounds (i.e. 20).

8.2.2 Notes on Parent Cycles

In a disconnected gateway situation, there is no node that selected the gate-
way as its parent. All nodes must have selected some parent so there must
be a cycle: for example node x1 has parent x2, which has parent xi, . . . ,
which has parent x1 again. The presence of such cycles is of course highly
undesirable as the purpose of the protocol is to enable the nodes to route
sensor data messages to the gateway. However, such situations might be
acceptable if we would know that the parent cycles are only temporary.

Of course, parent cycles of ordinary nodes might also occur when the gate-
way is connected. In theory, such cycles can comprise an arbitrary number
of nodes, up to the number of non-gateway nodes in the network. Since
there are many possible instances of these cycles, it is hard to check for
their absence in a general way. It is however perfectly possible to check
for instance the absence of all possible parent cycles of two (non-gateway)
nodes in a topology of N nodes and a single gateway (there are at most
1
2(N − 1)(N − 2) such cycles).

As said, the temporary occurrence of parent cycles might be acceptable, but
if cycles occur too frequently or persist long enough, network performance
will degrade drastically. Adding extra nodes (ordinary nodes or even extra
gateway nodes) to the network might be a solution to this problem. Model
checking experiments might be helpful to determine parts of the network
that are likely to induce parent cycles, such that extra nodes can be added
there, in order to decrease the probability of parent cycles occurrence. This
topic might be interesting for future research.

Master’s Thesis - W.M. Everse 130

CHAPTER 8. VARIANTS AND EXPERIMENTS

8.3 Infinite Memory Assumption

As often is the case with WSN protocols, the SPT protocol presented in
chapter 3 is idealized in the sense that it is based on some important as-
sumptions. These assumptions were made to be able to mathematically
prove its correctness. For example, it assumes symmetric link qualities. An-
other important assumption, that we are going to concentrate on in this
section, is the infinite memory assumption: our SPT protocol disregards the
restricted amount of memory available to a sensor node. This is indicated by
the unbounded number of executed message rounds and by the unbounded
number of neighbours about which information is stored. Both aspects are
discussed in the subsequent subsections.

8.3.1 Finite Sliding Window Variants

The SPT protocol assumes an infinite window of message rounds over which
it computes (estimates) link quality. In reality however, it is necessary that
the window is finite due to memory constraints of the nodes. Moreover, the
protocol should adapt to potential changes in the topology quickly and this
is bothered by endlessly probing the link quality. An approach to solve this
is by making the window finite and thus introducing a sliding window.

The SPT protocol as described in chapter 3 assumes an infinite window: the
distance to the gateway is computed based on all data perceived ever, i.e.
from the very moment that the network became operational (fig. 3.7, page
36). Therefore the nodes need to store at least the (unbounded) message
round number and the (unbounded) number of received messages per neigh-
bour. This is of course not feasible in a real sensor network, since there
will be a time that the nodes run out of memory (especially sensor network
nodes, because of their resource constraints).

In our SPIN model of the protocol, we had to restrict this ‘infinity’ by defining
constant MAX M for the maximum number of message rounds to be executed.
This is required to be sure that the verification terminates. By setting
this constant to a large number, we could simulate an infinite window of
message rounds over which distance is computed. In fact, the nodes compute
a cumulative moving average of the link quality (over an ever increasing
window).

We would like to modify the protocol such that this source of infiniteness is
eliminated, since that would be one step closer to a practical implementation.
The idea is too fix the window size over which link quality is computed:
nodes will compute a simple moving average of the link quality over a sliding
window of a fixed number of message rounds. This means that old enough
data is simply discarded. If we modify our original mode as described, we

Master’s Thesis - W.M. Everse 131

CHAPTER 8. VARIANTS AND EXPERIMENTS

can easily perform all kinds of verification experiments: does the protocol
still function correct? Do nodes find correct parents? Do nodes find correct
distances-to-G? What is a good size for the sliding window? What happens
if the window is too small or too big? Can we think of and implement other
strategies to estimate link quality?

This last question might also be interesting w.r.t. topology changes: how
fast does the protocol adapt to these changes? Instead of the simple moving
average of link quality over a sliding window, we can of course also try to
use a Weighted Moving Average (WMA) or even an Exponential Weighted
Moving Average (EWMA). Below we concisely discuss the basic changes to
our SPIN model in order to implement a finite sliding window with a simple
Moving Average (MA). The full Process Meta Language (PROMELA) sources
of that model, as well as our models with WMA and EWMA, can be found in
appendix E.

Model Changes

The changes to our SPIN model start with renaming constant MAX M to
WIN SIZE, the number of message rounds in a window. We also add a new
constant MAX WIN to hold the maximum number of executed windows (sim-
ilar to the function of MAX M: for termination of verification). Further, we
added a global variable to count the number of passed windows1 (l.13). The
changes can be found in listing 8.1:

4 /∗ DEFINE CONSTANTS ∗/
5 #de f i n e N 4 /∗ Number o f nodes ∗/
6 #de f i n e WIN SIZE 10 /∗ Window s i z e i n msg rounds ∗/
7 #de f i n e MAX WIN 10 /∗ Max number o f windows ∗/
8 #de f i n e MAX DIST 10000 /∗ Rep r e s en t s ’ i n f i n i t e ’ d i s t a n c e ∗/
9 #de f i n e ACCURACY 10 /∗ M u l t i p l i c a t i o n f a c t o r ∗/

10 #de f i n e GATEWAY COUNT 1 /∗ Number o f gateways ∗/
11
12 /∗ TYPEDEFS & DECLARATIONS ∗/
13 l o c a l byte WIN CNT = 0 ; /∗ Counts the nr o f pas sed windows ∗/
14
15 typede f NodeData{ /∗ Node data : ∗/
16 byte pa r en t = 0 ; /∗ − s e l e c t e d pa r en t ∗/
17 byte R[N] ; /∗ − count s r e c e i v e d msgs (pe r node) ∗/
18 chan W[N] = [WIN SIZE] of {boo l } ; /∗ − most r e c e n t window wi th r e c v i n f o (pe r node) ∗/
19 sho r t D[N] = MAX DIST ; /∗ − d i s t−to−G (pe r node) ∗/
20 }
21
22 NodeData nodes [N] ; /∗ A l l node data ∗/

Listing 8.1: Changed constants and declarations

To realize a finite sliding window of message rounds, each node has to main-
tain information about which messages it received in the most recent win-
dow (and from which nodes). In other words: instead of the information

1The PROMELA keyword local indicates that this global variable is accessed by only
one process: SPIN’s Partial Order Reduction (POR) algorithm can take advantage thereof.

Master’s Thesis - W.M. Everse 132

CHAPTER 8. VARIANTS AND EXPERIMENTS

whether or not it received a message in the current message round (Boolean
matrix Msgs), a node now needs this information for the WIN SIZE most re-
cent message rounds. In fact, the Msgs matrix needs a third dimension of
size WIN SIZE. Since we found it more natural to store this information at
the nodes, we added an array of buffered message channels (or queues) to
the NodeData type definition (l.18). These channels are of capacity WIN SIZE

and function here like first-in-first-out queues of Booleans (i.e. the Booleans
from the matrix Msgs).

Listing 8.2 shows the changed inline construct receive (id). It updates the
received messages counter (l.53) and appends the ‘new info’ to the queue
(l.55). ‘New info’ corresponds to whether or not this node (id) received a
message from sender k this message round (the corresponding Boolean entry
from the Msgs matrix). Note that the received messages counter just contains
the number of 1’s in the queue, i.e. the number of received messages in the
last MAX WIN message rounds.

41 i n l i n e r e c e i v e (i d){ /∗ Update c oun t e r s i f r e c e i v e d a msg ∗/
42 atomic{
43 do
44 : : (k < N) −>
45 r = msgs [k] . to [i d] ; /∗ Msg recvd t h i s msg round ? ∗/
46
47 i f
48 : : n f u l l (nodes [i d] .W[k]) −> /∗ I f queue i s not f u l l y e t ∗/
49 x=0
50 : : f u l l (nodes [i d] .W[k]) −> /∗ I f queue i s f u l l ∗/
51 nodes [i d] .W[k] ? x ; /∗ Get o l d e s t msg round i n f o ∗/
52 f i ;
53 nodes [i d] . R [k] = r−x+nodes [i d] . R [k] ; /∗ Update coun t e r ∗/
54
55 nodes [i d] .W[k] ! r ; /∗ Append most r e c e n t i n f o to queue ∗/
56
57 i f
58 : : r −> i f /∗ Update p e r c e i v e d d i s t a n c e i f r e c vd ∗/
59 : : i sGateway (k)−> nodes [i d] .D[k] = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
60 : : e l s e −> nodes [i d] .D[k]=nodes [k] .D[k]
61 f i
62 : : e l s e −> s k i p
63 f i ;
64
65 k++
66 : : (k==N) −> k=0; r =0; break
67 od
68 }
69 }

Listing 8.2: Changed inline construct receive ()

Of course, the distance computation is slightly changed too: instead of the
message round number M, we should now use the window size. Moreover, if
the number of rounds is less than WIN SIZE (at the start of the protocol), we
should use that number instead of M. We use the length of the corresponding
queue, since it satisfies these needs (l.78 in listing 8.3).

Master’s Thesis - W.M. Everse 133

CHAPTER 8. VARIANTS AND EXPERIMENTS

78 l = l e n (nodes [i d] .W[k]) ;
79 t r y = (ACCURACY ∗ l / nodes [i d] . R [k]) + nodes [i d] .D[k] ;
80 t r y = (((ACCURACY∗ l)%nodes [i d] . R [k])>=(nodes [i d] . R [k] / 2) −>(t r y +1) : t r y) ;

Listing 8.3: Changed distance computation

Finally, the changed part of the globalSend process is rather straightforward.
It is printed in listing 8.4. If WIN SIZE message rounds are executed, M is
reset and WIN CNT is increased (line 175). If MAX WIN windows passed by,
the process terminates (line 176).

149 do /∗ For each msg round ∗/
150 : : (M<WIN SIZE) &&
151 (WIN CNT<MAX WIN) −> atomic{
152 do /∗ F i l l msgs mat r i x ∗/
153 : : (i<N) −> do
154 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
155 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
156 i f
157 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
158 msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
159 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
160 msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
161 H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
162 f i ;
163 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
164 checkRese t (i , j) ;
165 j++
166 : : (j==N) −> j =0; break
167 od ;
168 i++
169 : : (i==N) −> i =0; break
170 od ;
171 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
172 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
173 M++
174 : : (M==WIN SIZE) && (WIN CNT<MAX WIN) −> /∗ A window pas sed by , r e s e t ∗/
175 M=0; WIN CNT++
176 : : (WIN CNT==MAX WIN) −> break /∗ Max nr o f windows reached , s top ∗/
177 od

Listing 8.4: Changed part of the globalSend process

We also constructed a finite window model in which the nodes maintain a
WMA of the link quality, rather than the described simple MA. In the latter
case, all data is equally important: MA smoothens fluctuations and empha-
sizes the direction of a trend. In the WMA case, older data is less important
compared to more recent data (with linear decreasing weights). Translated
to our protocol, this means that results (i.e. whether a message is received
or not) from older message rounds weigh less than more recent results. Fi-
nally, we also constructed a finite window model that uses some form of a
EWMA. As with WMA, older data is less important but the weighting fac-
tor (or smoothing factor) decreases exponentially. EWMA is also known as
exponential smoothing or discounting. More information about Time Series
Analysis can be found in the e-handbook of NIST/SEMATECH [41]. The
PROMELA source of these models can be found in appendix E.

Master’s Thesis - W.M. Everse 134

CHAPTER 8. VARIANTS AND EXPERIMENTS

Verification Experiments

During modelling, we validated our ideas about the three finite sliding win-
dow models using SPIN’s simulator mode. We also performed invalid end
state checks (deadlock freedom): invalid end states were found in neither
of these models (for different values of parameters such as topology, max-
imum number of rounds, window size, etc.). Moreover, we sporadically
verified whether the nodes selected correct parents. They actually did in
most cases that we verified, with a sufficiently large window size and num-
ber of maximum windows. Because of limited time, we did not structure
these experiments and we therefore do not further discuss the results here.
Nevertheless, these results were promising and increased our confidence in
these models. Instead, we now move to another set of experiments that may
answer an interesting question.

The question is: does the finite window variant of the protocol still result
in a stable situation? The original protocol converges to a stable situation
(i.e. one in which the parent relationships between the nodes form a Shortest
Path Tree (SPT) rooted at the gateway). This is mathematically provable by
using the so-called Law of Large Numbers (LLN), a well-known theorem from
probability theory: given a random variable (link quality) that is periodically
sampled (reception of probe messages each message round), it describes the
convergency of the sample mean (estimated link quality) to the expected
value of the variable, as the number of samples (message rounds) increases.

The problem that is introduced in the finite window variant is that the
number of samples stops increasing when it reached the window size. This
may result in an estimated link quality that is not close enough to the
expected value. Therefore, the estimated link quality may fluctuate, which
will cause the nodes to keep changing their selected parent forever: no stable
situation is reached anymore.

1. Hypothesis – The finite sliding window may prevent the protocol to
reach a stable situation (w.r.t. selected parents), resulting in nodes
that keep changing their parent ‘forever’.

2. Motivation – In the original protocol, reaching a stable situation
w.r.t. selected parents is based on an ever increasing number of probes
(samples) of the link quality, such that the sample mean converges to
the actual link quality. A finite window variant of the protocol may
prevent this convergency, since the number of probes (i.e. the window
size) is limited. If the window size is to small, this may result in
a fluctuating link quality approximation which causes the nodes to
continuously switch parents (parent instability).

3. Setup

Master’s Thesis - W.M. Everse 135

CHAPTER 8. VARIANTS AND EXPERIMENTS

• The model under consideration is the finite sliding window model
with a simple MA link quality estimator, as described above (source
code in first section of appendix E).

• The topology under consideration is our arbitrary topology, de-
picted again in figure 8.2.

0 1

32

9/10

1/7

3/101/10

4/5

Figure 8.2: Arbitrary topo

• In order to find unstable situations, check the following LTL prop-
erties: []<>p (p1) and [](q->p) (p2) with:

– #define p nodes[1].parent==3 && nodes[2].parent==3
nodes[3].parent==0

– #define q r > x

– #define r M + WIN_SIZE*WIN_CNT

– ‘It is always the case that eventually correct parents are se-
lected’ and ‘it is always the case that correct parents are
selected if the number of passed message rounds r is greater
than a given value x’.

The first property will tell us whether the protocol is able to
select correct parents for different values of model parameters
WIN SIZE and MAX WIN; the second property reveals the influence
of the number of executed message rounds (in fact the number of
samples) on parent selection. It is a way to check for convergency
of the sample mean.

• Hardware, version and verification settings of SPIN are as men-
tioned in chapter 5, page 80.

• We report true (t) or false (f) for the checked properties, for
different values of parameters WIN SIZE and MAX WIN.

4. Results – The tabulated results of the experiments can be found in
tables 8.2 and 8.3 below.

5. Conclusion – The observations and conclusions following from the
results of these experiments are enumerated below:

Master’s Thesis - W.M. Everse 136

CHAPTER 8. VARIANTS AND EXPERIMENTS

Table 8.2: Finite Sliding Window Experiments - results for p1

Property 1: [] <> p

MAX WIN: 3 4 5 6 7 8 30 31
WIN SIZE=5 f t f t t t t f
WIN SIZE=10 t t t t t t t t

Table 8.3: Finite Sliding Window Experiments - results for p2

Property 2: [](q− > p)
x: 5 10 50 100

WIN SIZE=5 f f f f
WIN SIZE=10 f t t t
WIN SIZE=15 f f f f
WIN SIZE=20 f t t t

(a) Table 8.2 shows us that in a model with a window size of five
message rounds, the result of the checked property (always even-
tually correct parents selected) depends on the value of constant
MAX WIN. This indicates instability of the parent tree, since the
correct stable parent tree was found and is lost later on, while
the protocol progresses. This is probably a result of the small
window size.

(b) Indeed, table 8.3 shows that in a model with WIN SIZE=5, the pro-
tocol is unable to select correct parents, even after 100 rounds.
This indicates that there is no proper convergency towards the
expected value possible, when considering only the last five mes-
sage rounds.

(c) Table 8.2 also shows us what happens in a model with a win-
dow size of ten rounds: here the protocol finds correct parents
for all values of MAX WIN in the table. This situation seems sta-
ble. Moreover, the results in 8.3 confirm this suspicion, since it
is always the case that the protocol finds correct parents if the
number of passed message rounds is greater than 10.

(d) The lower two rows of table 8.3 support the idea that stable
situations do occur if the window size is a multiple of the largest
divider in the connectivity matrix (10 in this case). If this is the
case, this would probably be a consequence of the periodicity in
our implementation of the probability approximation mechanism
of the model.

(e) The results of these experiments make it very plausible that un-
stable situations, in which nodes keep switching parents, do occur
so we consider the hypothesis to be confirmed.

Master’s Thesis - W.M. Everse 137

CHAPTER 8. VARIANTS AND EXPERIMENTS

8.3.2 Neighbourhood Management

As said before, the SPT protocol as presented assumes infinite memory. One
source of excessive memory use is discussed in the previous subsection: the
infinite window of message rounds. There is another, inefficient memory
consuming aspect of the protocol: each node maintains information of all
other nodes. In large, high-density networks this is not desirable or even
not feasible. Although this aspect is theoretically speaking finite, we can
significantly reduce the memory consumption by restricting the number of
neighbouring nodes of which each node maintains information. Moreover,
this will also result in a reduction in energy consumption.

Indeed, there is a need for neighbourhood management: nodes should only
maintain information about a (carefully) selected set of neighbours, stored
in a (fixed-size) neighbour table. Neighbourhood management as such has
aspects in common with cache management. The central question is, as
stated in [56], “how does a node determine, over time, in which nodes it
should invest its limited neighbour table resources to maintain link statis-
tics?” This table is the only place where a node maintains link statistics, so
how does a potential neighbour, that is not in the table yet, conquer a place
in the table?

Three essential components of neighbourhood management are insertion,
reinforcement and eviction [56]:

• Insertion – Once a probe message is received from an ‘unknown’ neigh-
bour (i.e. one that is not in the table yet), it must be determined
whether to insert it. This may be done based on for instance geo-
graphical information, signal strength associated with the message, a
simple statistical method, preference, etc. The insertion policy should
avoid a high insertion rate.

• Reinforcement – on reception of a probe message from a known neigh-
bour, its corresponding entry in the neighbour table must be rein-
forced. The specific action that is performed on a table entry that is
reinforced depends on the eviction policy.

• Eviction – if a new candidate neighbour node is found, which is not in
the (fully populated) neighbour table yet, an old entry with neighbour
information must be evicted (discarded). There are several policies to
do so. One is based on the FREQUENCY algorithm, that keeps a
frequency count of all entries [56]: reinforcement increases this count,
and every new candidate for insertion in a full table causes the fre-
quency count of all entries to decrease. If the frequency count of an
entry becomes 0, the entry is dropped, and the next candidate for
insertion can be inserted.

Master’s Thesis - W.M. Everse 138

CHAPTER 8. VARIANTS AND EXPERIMENTS

Adding neighbourhood management to our model turned out to be rather
challenging. We implemented a simple form of neighbourhood management
in our SPIN model of chapter 5. The full source of this variant is contained
in appendix E. Here we will concisely discuss the interesting aspects of mod-
elling neighbourhood management.

Minor changes required for neighbourhood management include adding a
constant NEIGHBOURS for the number of neighbours in the neighbour table,
defining a type Neighbour for containing neighbour data (that is maintained
by each node for each neighbour) and modifying the NodeData type definition
such that it contains a field for the dist-to-G of a node and a so-called neigh-
bour table: an array NBTable of NEIGHBOURS entries of type Neighbour. Also,
instead of ranging over all possible nodes, the inline construct getMinimum()

(that computes the minimum dist-to-G) now should range over the entries
in the neighbour table of the node under consideration.

57 i n l i n e manageNeighbour (id , nb){ /∗ Manage ne i ghbou r nb ∗/
58 byte c ; /∗ Range ove r ne i ghbou r e n t r i e s i n NBTable ∗/
59 byte i n d e x ; /∗ NBTable i nd ex o f e n t r y to be updated ∗/
60
61 c=0; i nd ex=−1;
62 do /∗ Find an en t r y to update ∗/
63 : : (c<NEIGHBOURS) −>
64 i f /∗ I f nb i n NBTable : s e t i nd e x to r e i n f o r c e , ∗/
65 /∗ or i f i n d e x not se t , to 1 s t e n t r y w i th F==0 ∗/
66 : : (nodes [i d] . NBTable [c] . ID == nb) | | (i nd ex==−1 && nodes [i d] . NBTable [c] . F == 0) −>
67 i n d e x = c
68 : : e l s e −> s k i p
69 f i ;
70 c++
71 : : (c==NEIGHBOURS) −> c=0; break
72 od ;
73
74 i f
75 : : (i nd e x < 0) −> /∗ I f t a b l e f u l l and no en t r y w i th F==0, ∗/
76 do /∗ d e c r e a s e a l l f r e qu en c y coun t e r s ∗/
77 : : (c < NEIGHBOURS) −> nodes [i d] . NBTable [c] . F−−; c++
78 : : (c == NEIGHBOURS) −> c=0; break
79 od
80 : : e l s e −> /∗ Re i n f o r c e or r e p l a c e ∗/
81 nodes [i d] . NBTable [i nd e x] . R =
82 ((nodes [i d] . NBTable [i nd e x] . ID == nb) −> (nodes [i d] . NBTable [i nd e x] . R+1) : 1) ;
83 nodes [i d] . NBTable [i nd e x] . F =
84 ((nodes [i d] . NBTable [i nd e x] . ID == nb) −> (nodes [i d] . NBTable [i nd e x] . F+1) : 1) ;
85 nodes [i d] . NBTable [i nd e x] . ID = nb ; /∗ Update ID ∗/
86 i f /∗ Update d i s t−to−G ∗/
87 : : i sGateway (nb) −> nodes [i d] . NBTable [i nd e x] .D = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
88 : : e l s e −> nodes [i d] . NBTable [i nd e x] .D = nodes [nb] .D
89 f i
90 f i ;
91 }

Listing 8.5: Neighbourhood Management - inline construct ManageNeighbour()

In order to implement the logic for neighbourhood management, we added
an inline construct manageNeighbour() (figure 8.5). This poor man’s proce-
dure manages the neighbour table by maintaining the policies for insertion,
reinforcement and eviction. Every time a node (indicated by parameter id)
receives a probe message (from a sender indicated by nb), this construct is
executed. Senders are stored in the table until it is full (naive insertion).
If a sender is already in the table, its frequency count F is increased (rein-

Master’s Thesis - W.M. Everse 139

CHAPTER 8. VARIANTS AND EXPERIMENTS

forcement). If a sender is not in the table (i.e. its is a potential neighbour)
and the table is full, all frequency counters are decreased. An entry with a
frequency count of zero is overwritten with the potential neighbour; if there
are no such entries, it is discarded. Entries with a frequency count of zero
thus will sooner or later be overwritten (eviction).

Yet, this variant should be seen as an initial proof of concept that requires
extensive further research. Therefore, and because of limited time, we did
not perform structured experiments with this variant. We do know that
SPIN does not find any invalid end states for this model. Simulation did
however show that correct parent selection depends heavily on the number
of neighbours in the table, as well as on the topology under consideration.
Parent selection seems correct if the size of the neighbour table equals (not
surprisingly) N−1 and, more promising, N−2, with N the number of nodes.
Moreover, in this case of simple neighbourhood management, it is very likely
that the protocol does not converge to a stable situation since the neighbour
table contents may change continuously.

8.4 Conclusion

Formal verification experiments with WSN protocols would have several ben-
efits. First, they can answer questions about the protocol or its underlying
characteristics. Second, they provide a light-weight method to rather quickly
validate changes or additions to the protocol. Third, they may eliminate
mathematical proof of less idealized variants of the protocol.

This chapter illustrated the use of verification experiments. We presented
a basic template for a cohesive set of experiments, containing a hypothesis
and its motivation, the (repeatable) setup for the experiments and their
tabulated results, and a conclusion that either confirms or rejects the stated
hypothesis.

We experimented with disconnected gateway scenarios, with finite sliding
window variants of the protocol and with (modelling) neighbourhood man-
agement. The basic template for the experiments turned out to be very
useful as it provides a method for scoping and structuring the experiments.
Experimentation resulted in interesting conclusions:

• Disconnected gateway situations do occur, but these are only tempo-
rary situations.

• Parent cycles do occur.

• Estimating mean link quality over a finite sliding window of message
rounds can be done in different ways. We implemented a simple cu-
mulative MA, a WMA and an EWMA.

Master’s Thesis - W.M. Everse 140

CHAPTER 8. VARIANTS AND EXPERIMENTS

• Experiments have shown that it is very plausible that unstable sit-
uations (in which nodes keep switching parents) do occur in a finite
sliding window variant of the protocol.

• Adding neighbourhood management to our model turned out to be
rather challenging, mainly due to the implementation of the policies
for insertion, reinforcement and eviction.

• We were able to implement a simple form of neighbourhood manage-
ment, as a proof of concept. Simulation of this variant made it clear
that further research is required.

8.4.1 Future Work

Most of the time, performing formal verification experiments (and probably
experiments in general) turned out to result in additional interesting ques-
tions and more experiments. We summarized some interesting issues below,
which we count in for future work due to time limitations.

• Experiments with parent cycles and with potential solutions to the
problem (e.g. adding more gateway nodes, adding cycle detection);

• Comparison of finite sliding window variants;

• Experiments with finite sliding window models to find optimal config-
uration of parameters;

• Experiments with (less naive) neighbourhood management and im-
proving the implementation, to find characteristics of this variant such
as for instance stabilization and topology dependency;

• Experiments with infinite models: we always verified a bounded (fi-
nite) number of message rounds (or windows), but SPIN may be able
to check some properties on unbounded models;

• Experiments with a combination of the finite sliding window variant
and the neighbourhood management variant;

• Experiments with a dynamically changing topology (w.r.t convergency
to a stable situation);

• Experiments with random node failure, since node failure is a common
event in real WSNs;

• Experiments with asymmetric link quality, as the protocol is based on
symmetric links.

Master’s Thesis - W.M. Everse 141

CHAPTER 9

Conclusion and Future Work

Is formal verification (specifically: Model Checking) suitable for
supporting the design of protocols for WSNs?

This chapter contains the conclusions of our research, as well as directions
for further research. We first summarize all important results of our research
project. Next, we use the results to formulate answers to the sub questions,
which were stated in the introduction (chapter 1). The answers to the
sub questions together suggest an answer to our main research question,
on which we will elaborate subsequently. Finally, we present directions for
future research.

9.1 Summary of Results

We took the first steps towards a platform for formal verification experiments
for WSN protocols by investigating the feasibility of formal verification of
a particular protocol. This section provides an itemized overview of the
important results of our research:

• Modelling Insights – We gathered valuable insights during model con-
struction:

– Insight into problematic aspects of modelling the SPT protocol,
such as link quality (probabilism), message broadcast and dis-
tance computation;

– Insight into the complexity of the model of the SPT protocol and
in complexity reduction techniques, such as fixed execution order
of the nodes (ch. 4) and controlled branching (ch. 6);

Master’s Thesis - W.M. Everse 142

CHAPTER 9. CONCLUSION AND FUTURE WORK

– Insight into model construction for the selected tools, such as un-
derlying theory, flexibility of modelling languages and best prac-
tices.

• Verification Insights – We gathered valuable insights during model
verification:

– Checking for correct parent selection is preferable above checking
for correct distance computation since correct parents are found
after fewer message rounds;

– The feasibility of a verification run depends heavily on the topol-
ogy under consideration (number of nodes and links and link
quality);

– The verification process has many input parameters and this re-
sults in an instance explosion which makes it infeasible to verify
all possibilities.

• Verification Boundaries – Both UPPAAL (model V2) and SPIN are ca-
pable to verify a completely connected 4-node topology with all links
10%, for a limited number of message rounds. However, probability
approximation in the SPIN model is better. Feasibility can be tuned
by changing the number of links between the nodes or by changing
the quality of the links, such that verification of certain topologies of
5 nodes might be feasible as well. Meaningful verification of a PRISM

model turned out to be infeasible.

• Confidence in the SPT Protocol – No errors were found during verifi-
cation of our models.

• Protocol Description – We provided a clear description of the SPT

protocol by specifying both an informal and a formal description (ch.
3).

• Concrete Models and Properties – The construction of models of the
SPT protocol required non-trivial effort, which resulted in a number
of concrete models for UPPAAL, SPIN and PRISM, contained in the ap-
pendices of this thesis (together with the associated correctness prop-
erties).

• Tool Experience – The concluding sections of chapters 4, 5 and 7 con-
tain experiences with the capabilities and properties of the correspond-
ing tool w.r.t. modelling, simulation and verification.

Master’s Thesis - W.M. Everse 143

CHAPTER 9. CONCLUSION AND FUTURE WORK

9.2 Conclusions

In this section we draw conclusions by answering the research questions that
were stated in the introduction. We start with the sub questions after which
we answer the main research question.

9.2.1 Sub Questions

1. What are the boundaries, problems and experiences of modelling the pro-
tocol?

The boundaries of modelling the SPT protocol are determined by the ex-
pressiveness of the modelling language. The UPPAAL model required least
effort, followed by the SPIN model. The PRISM model required most effort.
This correlates with the degree of expressiveness of the respective languages.
Modelling languages are optimized for specification, rather than for compu-
tation. Therefore, the same issues recur in different models.

Problems encountered during modelling were related to modelling message
broadcast (mainly with SPIN and PRISM), modelling probabilistic link be-
haviour (mainly with UPPAAL and SPIN) and modelling distance computa-
tion (mainly with PRISM).

We experienced convenient usability of UPPAAL and PRISM, both come with
a robust and intuitive model editor, in contrast to SPIN. We also experienced
that model construction for PRISM took significantly more effort than it
took for UPPAAL and SPIN. This is a consequence of the rather restricted
modelling language.

2. What are the boundaries, problems and experiences of verifying the pro-
tocol?

The boundaries of verification of the SPT protocol are determined by the
combinatorial state space explosion, as a result of the parallel node pro-
cesses and non-determinism. We tried to restrict this explosion by adding
abstractions as fixed execution order (all models) and controlled branching
(only in SPIN model). Our UPPAAL (model V1) and SPIN models can be
checked up to about 4 nodes (for worst-case topologies: completely con-
nected with low-quality links). We did not manage to construct a useful
PRISM model of that order.

Problems encountered were related to the instance explosion of the verifica-
tion process, caused by many input parameters such as number of message
rounds to be executed, topology (links and quality), number of nodes etc.
A problem encountered with PRISM, is that models must be built from their

Master’s Thesis - W.M. Everse 144

CHAPTER 9. CONCLUSION AND FUTURE WORK

specification, prior to any verification. The build process is rather inefficient
for our type of models (many relatively large variable ranges of a number
of parallel modules). Therefore we could not construct a useful model for
verification.

We experienced that checking for correct parent selection is to be preferred
above checking for correct distance computation, since it requires less re-
sources: the former does not require exactly computed distances. Another
experience is that feasibility of verification depends on many parameters, of
which topology and number of nodes has greatest influence.

3. What aspects are best modelled/verified using which verification tool?

UPPAAL: message broadcast is best modelled using the powerful concept of
broadcast synchronization channels. UPPAAL’s modelling language is quite
expressive: it provides convenient features like parameterizable process tem-
plates, partial instantiation and user-defined functions. Rational numbers
are not supported. UPPAAL’s property specification language allows for con-
venient access to all model variables. UPPAAL is a real-time model checker,
optimized for verification of timing aspects. We hardly exploited its tim-
ing features in our models since we did not focus on timing within the SPT

protocol.

SPIN: implementing message broadcast and distance computation requires
more effort than in the UPPAAL case: native PROMELA (i.e. PROMELA with-
out embedded C-code) is less expressive than UPPAAL’s modelling language.
There is however an option to embed C-code into the models. In contrast
to PRISM, it does support parameterizable process types, which turned out
to be a requirement for constructing more general models.

PRISM: in contrast to the other tools, PRISM is a probabilistic model checker:
it allows for easily modelling link quality (i.e. probabilities). The implemen-
tation of message broadcast and distance computation did however require
most effort (of the three tools). This is a result of the very restricted ex-
pressiveness of PRISM’s modelling language.

4. How does the topology of a network influence the results?

The network topology defines the way in which constituent parts are interre-
lated or arranged. In our models this boils down to the total number of links
within the network and their quality. Obviously, we can conclude that more
links results in more states. It turned out that the number of directed links
(rather than the number of nodes) is the determinant of the feasibility of a
verification run. This is a result of modelling the links as non-deterministic
processes (and of the fact that the execution order of the nodes is fixed).

Master’s Thesis - W.M. Everse 145

CHAPTER 9. CONCLUSION AND FUTURE WORK

Our verification results further show that links of low quality result in more
states, compared to links of high quality.

5. How does the number of nodes influence the results?

As stated in the previous answer, the number of nodes is not the determinant
of the feasibility of a verification run. This is the result of the fixed execution
order of the nodes. Without fixing the order, it would be the determinant
of feasibility, due to the combinatorial explosion of different possibilities
(orders of execution). In that case, the number of model states would be
exponential in the number of nodes. Fixing the order causes this relation to
become linear.

6. Is the protocol under consideration correct?

As said before “model checking is only as good as the model”. Since verifi-
cation models are abstractions of reality and constructed based on insight,
heuristics and experience, we cannot prove the correspondence of our models
to the real protocol design. We can only make this plausible by describing
and motivating our model design decisions. Therefore, we cannot state
that ‘the protocol is correct’. We can however state that it is very likely
that the protocol is correct since we did not find any counterexamples: no
errors were found during formal specification, simulation and verification.
Moreover, confidence in this protocol grows further due to the facts that it
has been proven correct mathematically and implemented and simulated in
Matlab.

7. What recommendations about a platform for formal verification experi-
ments for WSN protocols can be given w.r.t. the gained experience?

Based on the verification results, we recommend SPIN for performing these
experiments. Although model construction may require more effort com-
pared to UPPAAL, it performs better on verification (4 nodes completely
connected with 10% links vs. 3 nodes for UPPAAL, model V2). If the focus
is on timing properties of the protocol, UPPAAL must be used (SPIN and
PRISM do not support time).

We also recommend to investigate suitable abstraction techniques in order
to push the feasibility bound further. Since feasibility depends heavily on
topology, it might be interesting to abstract away from specific topologies,
following for example the idea of Câmara et al. [10]. This may be an ap-
proach to feasible verification using PRISM as well. Further research on this
topic is needed. Other abstractions that might be applicable focus on re-
stricting the number of possible instances of the link behaviour (such as
Controlled Branching, ch. 6), which result in a more quantitative verifica-

Master’s Thesis - W.M. Everse 146

CHAPTER 9. CONCLUSION AND FUTURE WORK

tion. Further research is needed on this topic as well. We return on this
quantitative verification below.

9.2.2 Main Research Question

Now that we answered the sub questions, we move to our main research
question and attempt to answer it.

Is formal verification (specifically: Model Checking) suitable for
supporting the design of protocols for WSNs?

This question is much more complex than one should think at first sight.
Based on our research, it cannot be answered with a simple yes or no. We
first have to define the terms ‘suitable’ and ‘supporting the design’. We
start with the latter.

Designers of WSN protocols have only few tools to check the validity of their
design. A possibility is to mathematically prove that the design is correct,
but this usually requires many assumptions and simplifications. Another
possibility is simulation and testing, for instance using Matlab, as in our
case. This may however not uncover all undesirable aspects of a protocol.
The main research question should be interpreted in this light: supporting
the design of protocols can thus be translated to checking the validity of the
design of protocols.

Whether or not formal verification is suitable for supporting protocol design-
ers in their work, depends on how and to what extent it can be used. The
first term describes the method and its complexity: is the method straight-
forward, usable and easy to understand or does it require expert knowledge
and a lot of experience? The second term indicates the use of formal verifi-
cation in protocol design: does it yield considerable added value in designing
protocols?

Based on our research and on the current state of the art, we tend to answer
negatively to the main question. First of all, we showed that configurations
of at most 4 or 5 nodes can be checked, and it is doubtful whether this lim-
itation still yields enough added value. Furthermore, using formal methods
(i.e. model checking in this case) to validate protocol designs does require
a considerable amount of expert knowledge and experience in model con-
struction and property specification. However, once a model of a protocol
is constructed, and desired properties to be verified are specified, the added
value is experimentation: given the model and properties, it is relatively
easy to experiment with modifications (just push the button). Unfortu-
nately, applying the desired modifications correctly may again require ex-
pert knowledge and experience in order to understand the model. Moreover,

Master’s Thesis - W.M. Everse 147

CHAPTER 9. CONCLUSION AND FUTURE WORK

this is also the case for specifying additional properties and interpreting the
results. We therefore fully agree with the following citation of Theo Ruys
(taken from Ruys [50], page 68):

“Model checkers are often put forward as ‘press-the-button’ tools: given
a model and a property, pressing the ‘verify’ button of the model
checker is sufficient for the tool to prove or disprove the property.
If both the model and the property are readily available, this claim
might be true. However, the formalisation of both the model and the
properties is usually not a trivial task. Furthermore, due to the infa-
mous state space explosion problem, both the model and the property
to be verified should be coded as efficiently as possible for the model
checker that is being used.”

On the other hand, experimentation using formal verification turned out to
be a rather powerful tool that has potential to support the design of pro-
tocols very well. If expert knowledge is available, formal verification may
actually be very suitable, considering the experimental approach. More-
over, some limitations we found may disappear using another modelling
paradigm: we modelled all nodes and their interactions explicitly, but it
may be profitable to attempt a so-called macro-programming approach: ab-
stracting away from separate nodes and messages (similar to the Matlab
model in the appendix).

Based on our research, we must conclude that, using state of the art formal
verification techniques, only small network configurations can be checked.
However, the ‘Hidden Problem’ (ch. 6) provided us with deep insights into
the quantitative character of the verification: the probabilistic links induce
many behaviours of the model and only a representative subset of these
can be checked, instead of all (as shown with the Controlled Branching
technique). Using model checking in this way results in a technique that
fits somewhere between simulation and the traditional (qualitative) view
on model checking. More research is required to find suitable abstraction
techniques, that account for this quantitative character of the verification.

9.3 Main Contributions

In this section we concisely summarize the two main contributions of our
research project.

• Current state of the art formal verification techniques can handle only
very restricted WSN configurations of maximally four or five nodes.
This induces the need for suitable abstraction techniques. These ab-
straction techniques should account for the quantity of the probabilis-
tic link behaviour. The qualitative character of verification of WSN

Master’s Thesis - W.M. Everse 148

CHAPTER 9. CONCLUSION AND FUTURE WORK

protocols changes and becomes more quantitative. More research is
required to find suitable abstraction techniques that account for this
quantitative aspect.

• We introduced the idea of a methodology or platform that supports
the design of WSN protocols. This would be of great help for protocol
designers. We propose a platform containing three stages:

1. Mathematical proof of a (strongly) simplified protocol design;

2. Matlab simulation to validate (possibly less simplified) protocol
behaviour, in particular large scenarios;

3. Formal verification experiments using model checking, to experi-
ment with (more realistic, less simplified) variants of the protocol.

9.4 Future Research

This thesis gives rise to a number of interesting topics for future research.
The main topics are listed below:

• Modelling explicit topologies comes with an instance explosion of pos-
sible topologies. Furthermore, feasibility of the verification depends
heavily on the topology under consideration. Therefore further re-
search should be done to abstract away from specific topologies;

• A promising solution direction for the ‘Hidden Problem’ (described in
chapter 6) is the ‘Controlled Branching’ approach. This abstraction
technique is based on a dependency relation that induces a partitioning
of the probabilistic link behaviour. Future research should determine
how to define this relation such that it results in representative parti-
tions;

• More general: further research can be performed in order to find suit-
able abstraction techniques, that exploit the quantitative character of
the verification of WSN protocols;

• The previous chapter about protocol variants and experiments (ch. 8)
resulted in interesting future work, such as:

– Research on the effect of multiple gateways in a single network
(w.r.t. the disconnected gateway problem);

– Research on neighbourhood management;

– Research on dynamically changing topologies.

Master’s Thesis - W.M. Everse 149

APPENDIX A

Matlab Implementation of the SPT Protocol

This appendix contains the Matlab source of an abstract implementation
of the SPT protocol. It is developed by Leon Evers of the Pervasive Systems
(PS) group of the University of Twente. This section also contains some of
the plots that are generated during a simulation of a network of 200 nodes.

A.1 Source

The Matlab model consists of four source files:

• spanningtree.m – the main file of the implementation, contains tun-
ing parameters and uses the other source files.

• recvperc.m – defines a function that calculates an s-curve of distance
vs. receive probability.

• optimtree.m – describes a function to plot the optimal tree, based on
the generated positions and the aforementioned s-curve.

• constructtree.m – constructs the tree chosen by the protocol and
plots it.

These files are listed below. As can be seen in lines 4–7 of listing A.1,
the number of nodes (constant num) is set to 200 and the total number
of message rounds that will be simulated (constant runtime) equals 800.
Lines 64–76 show that after runtime/4 rounds, the node positions are
shuffled randomly.

Master’s Thesis - W.M. Everse 150

APPENDIX A. MATLAB IMPLEMENTATION OF THE SPT PROTOCOL

1 clear;
2
3 %configuration constants
4 num = 200; % nr of nodes
5 runtime = 800; % nr. message rounds (WE: was 800)
6 roundmsgs = 1; % msgs per round
7 initmsgs = 0; % initial nr of messages before protocol starts
8
9 % random seed initialisation

10 % the line below chooses a fixed random seed
11 s = 1.947383660000000e+009;
12 % uncomment next line to use different random seed
13 %s = rand(’seed’)
14 rand(’seed’, s); % WE: initializes the random generator to method ’seed’ and value s
15
16 txpow = rand(1) ∗ num/2; % transmission power
17
18 % all node positions
19 pos = rand(2,num);
20 %%
21 % ds is distance between all nodes
22 ds = zeros(num,num);
23 for i=1:num;ds (i,1:num) = sqrt((pos(1,i) − pos(1,:)).ˆ2 + (pos(2,i) − pos(2,:)).ˆ2);end;
24
25 % pds contains reception probability from/to all nodes
26 pds = zeros(size(ds));
27 for i=1:numel(ds); pds(i) = recvperc(ds(i), txpow); end;
28
29 %% calculate root link quality and hop count
30 [m, root] = min(sum(pos));
31 [qual hops parent] = optimtree(pos, pds, root, false);
32 notroot = 1:length(qual) 6= root;
33
34 %% plot results
35 figure(2);plot(sortrows([qual; hops]’));
36 title ([’Quality and nr. hops. avg retransmissions = ’ num2str(mean(qual(notroot) ./

hops(notroot)))]);
37 % retransmissions is measure of network density
38
39 %%
40 msgs = false(num, num);
41 msgsum = zeros(num, num);
42 %same parameters based on perceived reception prob
43 nodehops = nan(1,num);
44 nodequal = inf(1,num);
45 nodeparent = uint16(zeros(1,num));
46 rcvprob = zeros(1, num);
47 neighqual = inf(num, num);
48 neighhops = nan(num, num);
49
50 parentcorrectperc = nan(1, runtime);
51 optimdist = nan(1, runtime);
52 nodedist = nan(1, runtime);
53
54 nodehops(root) = 0;
55 nodequal(root) = 0;
56 nodeparent(root) = root;
57
58 rcvprob = zeros(num,num,3);
59 for j = 1:runtime
60 oldqual = nodequal;
61 [msgsum rcvprob neighqual neighhops nodeparent nodehops nodequal] = constructtree(pos, pds,

root, msgsum, rcvprob, neighqual, neighhops, nodeparent, nodehops, nodequal, true);
62 if nodequal == oldqual; break; end
63
64 if j == round(runtime / 4) %reset positions!
65 pos = rand(2,num);
66 ds = zeros(num,num);
67 for i=1:num;ds (i,1:num) = sqrt((pos(1,i) − pos(1,:)).ˆ2 + (pos(2,i) − pos(2,:)).ˆ2);end;
68 pds = zeros(size(ds));
69 for i=1:numel(ds); pds(i) = recvperc(ds(i), txpow); end;
70 [m, root] = min(sum(pos));
71 [qual hops parent] = optimtree(pos, pds, root, true);
72 notroot = 1:length(qual) 6= root;
73 nodehops(root) = 0;
74 nodequal(root) = 0;
75 nodeparent(root) = root;
76 end

Listing A.1: Matlab source - spanningtree.m (part 1/2)

Master’s Thesis - W.M. Everse 151

APPENDIX A. MATLAB IMPLEMENTATION OF THE SPT PROTOCOL

77
78 % figure(4);plot(sortrows([nodequal; nodehops]’));
79 % title ([’Quality and nr. hops after ’ num2str(j) ’ msg rounds’]);
80
81 realqual = nan(1,num);
82 parentpds = zeros(1,num);
83 for i = find(nodeparent > 0)
84 parentpds(i) = pds(nodeparent(i),i);
85 end
86 realqual(root) = 0;
87 for i = 1:num
88 donodes = nodeparent > 0 & isnan(realqual);
89 if sum(donodes) == 0; break; end
90 realqual(donodes) = realqual(nodeparent(donodes)) + 1./parentpds(donodes);
91 end
92 if i == num; disp(’Tree not connected.’);end
93 donodes = ¬isnan(realqual) & notroot;
94 optimdist(j) = mean(qual(donodes) ./ realqual(donodes));
95 nodedist(j) = mean(nodequal(donodes) ./ realqual(donodes));
96 parentcorrectperc(j) = mean(nodeparent(donodes) == parent(donodes));
97 end
98
99 figure(5);plot([optimdist’ nodedist’ parentcorrectperc’]);

100 ylim([0.6 1.01])
101 title(’Average quality of chosen tree’);
102 xlabel(’message rounds’);
103 legend(’optimal / chosen’, ’perceived / chosen’, ’% correct parents’ ,’Location’,’SouthEast’);

Listing A.2: Matlab source - spanningtree.m (part 2/2)

1 function p = recvperc(ds, txpow)
2 %
3 % calculates s−curve of distance vs receive probability.
4 %
5 % to test it, evaluate the next line (select and press F9)
6 % plot(recvperc([1:200]/200, 10))
7
8 p = −ds ./ (ds + exp(4−txpow .∗ ds))+1;

Listing A.3: Matlab source - recvperc.m

1 function [qual hops parent] = optimtree(pos, pds, root, draw)
2
3 num = size(pos,2);
4
5 hops = nan(1,num); % nr. of hops
6 qual = nan(1,num); % total link quality, lower is better
7 parent = uint16(zeros(1,num)); % parent
8
9 % initialize gateway

10 hops(root) = 0;
11 qual(root) = 0;
12 parent(root) = root;
13
14 for i = 1:num
15 %try to improve link quality when adding an extra hop
16 [newqual, newparent] = min(repmat(qual’,1,num) + (1./ pds));
17 % nodes that improve quality
18 goodqual = ¬(newqual ≥ qual);
19 parent(goodqual) = newparent(goodqual);
20 hops(goodqual) = i;
21 oldqual = qual;
22 qual(goodqual) = newqual(goodqual);
23 if qual == oldqual; draw = true; end
24 if draw
25 figure(1); plot(pos(1,:),pos(2,:), ’.’);
26 title(’Optimal tree’);
27 axis equal;
28 axis tight;
29 maxcolor = max(hops) ∗ 1.2;
30 for i = 1:num
31 line([pos(1,i) pos(1,parent(i))], [pos(2,i)

pos(2,parent(i))],’Color’,repmat((hops(i)/maxcolor),3,1));
32 end
33 end
34 if qual == oldqual; break; end
35 end

Listing A.4: Matlab source - optimtree.m

Master’s Thesis - W.M. Everse 152

APPENDIX A. MATLAB IMPLEMENTATION OF THE SPT PROTOCOL

1 function [msgsum rcvprob neighqual neighhops nodeparent nodehops nodequal] = constructtree(pos,
pds, root, msgsum, rcvprob, neighqual, neighhops, nodeparent, nodehops, nodequal, draw)

2
3 alpha = 0.02;
4
5 num = size(pos,2);
6 notroot = 1:num 6= root;
7
8 % messages that arrive this round
9 msgs = rand(size(pds)) ≤ pds;

10 %update local state based on message contents
11 q = repmat(nodequal’,1,num);
12 h = repmat(nodehops’,1,num);
13 neighqual(msgs) = q(msgs);
14 neighhops(msgs) = h(msgs);
15
16 msgsum = msgsum + msgs;
17 j = msgsum(1,1);
18
19 % perceived reception probability
20 %rcvprob = msgsum ./ j;
21
22 % WE: Single Exponential Smoothing:
23 % rcvprob(:,:,1) = rcvprob(:,:,1) .∗ (1−alpha) + msgs .∗ alpha;
24
25 % WE: Some variant of Exponential Smoothing:
26 rcvprob(:,:,3) = rcvprob(:,:,3) .∗ (1−alpha) + msgs .∗ alpha;
27 rcvprob(:,:,2) = rcvprob(:,:,2) .∗ (1−alpha) + rcvprob(:,:,2) .∗ alpha;
28 rcvprob(:,:,1) = 2∗rcvprob(:,:,3) − rcvprob(:,:,2);
29
30 % build tree based on rcvprob
31 [newqual, newparent] = min(neighqual + 1./rcvprob(:,:,1));
32 goodqual = (newqual < Inf) & notroot;
33 nodeparent(goodqual) = newparent(goodqual);
34 nodehops(goodqual) = neighhops(newparent(goodqual) + (find(goodqual)−1).∗num) + 1;
35 nodequal(goodqual) = newqual(goodqual);
36
37 if draw
38 figure(3); plot(pos(1,:),pos(2,:), ’r.’);
39 axis equal;
40 axis tight;
41 title([’Chosen tree after ’ num2str(j) ’ msg rounds’]);
42 % maxcolor = max(nodehops) ∗ 1.2;
43 maxcolor = max(nodequal(nodequal < Inf)) ∗ 1.2;
44 for i = find(nodeparent>0)
45 line([pos(1,i) pos(1,nodeparent(i))], [pos(2,i) pos(2,nodeparent(i))], ’Color’,

repmat([nodequal(i)/maxcolor],3,1));
46 end
47
48 end

Listing A.5: Matlab source - constructtree.m

A.2 Plots

This sections contains some plots generated by an execution run of the
Matlab implementation, as listed in the previous section. 800 message
rounds are simulated.

The first plot shows the optimal tree that is generated based on the randomly
generated node positions and the s-curve of distance vs. receive probability.
The second plot shows the tree chosen by the protocol, after 200 message
rounds, which is actually a very good approximation of the optimal tree.

The next two plots show the optimal tree and the chosen tree after randomly
shuffling node positions (after 200 message rounds). Observe the chaotic
situation to which the protocol is exposed (node positions are shuffled but
the nodes still have the parents based on the old situation).

Master’s Thesis - W.M. Everse 153

APPENDIX A. MATLAB IMPLEMENTATION OF THE SPT PROTOCOL

Figure A.1: The optimal tree w.r.t. the generated node positions

Figure A.2: The chosen tree after simulation of 200 message rounds

Master’s Thesis - W.M. Everse 154

APPENDIX A. MATLAB IMPLEMENTATION OF THE SPT PROTOCOL

Figure A.3: The optimal tree w.r.t. the generated node positions (after shuffling)

Figure A.4: The chosen tree after simulation of 201 message rounds (after shuffling)

Master’s Thesis - W.M. Everse 155

APPENDIX A. MATLAB IMPLEMENTATION OF THE SPT PROTOCOL

The next plot shows the chosen tree after 800 simulated rounds and finally
the last plot shows some statistics (also after 800 rounds).

Figure A.5: The chosen tree after simulation of 800 message rounds

Figure A.6: Statistics

Master’s Thesis - W.M. Everse 156

APPENDIX B

UPPAAL Models, Simulation and Verification Results

This appendix contains the complete source of our UPPAAL models, a section
about the simulation of the behaviour of these models using UPPAAL’s built-
in simulator and a section with detailed verification results.

B.1 Protocol Model V1

1 /∗∗∗∗∗
2 Sho r t e s t Path Tree p r o t o c o l f o r W i r e l e s s Senso r Networks
3 Author : W.M. Eve r s e
4
5 Simple model
6 A l l nodes can hea r each o th e r w i th l i n k q u a l i t y o f 100%
7 Nodes ope r a t e s y n ch r onou s l y
8 ∗∗∗∗∗/
9

10 // Number o f nodes , i n c l u d i n g gateway (s) G
11 const i n t N = 4 ;
12
13 // Maximum number o f message rounds
14 const i n t MAX M = 10 ;
15
16 // Big number to r e p r e s e n t ’ i n f i n i t e ’ d i s t a n c e
17 const i n t MAX DIST = 10000 ;
18
19 // De f i n e type Node id , paramete r o f Node temp la t e
20 t y p ed e f i n t [0 ,N−1] Node id ;
21
22 // S yn c h r o n i z a t i o n channe l to model message s end i ng / r e c e i v i n g
23 b roadca s t chan send ;
24
25 // Model a message as a s t r u c t
26 // msg . s i d = sende r i d and msg . d i s t = d i s t a n c e
27 meta s t r u c t{
28 Node id s i d ;
29 i n t d i s t ;
30 } msg ;
31
32 // Determine whether the g i v en node i s a gateway node
33 boo l i sGateway (Node id node) {
34 r e t u r n node == 0 ;
35 }

Listing B.1: Global declarations of model V1

Master’s Thesis - W.M. Everse 157

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

1 /∗ <parameter>con s t Node id i</parameter> ∗/ // e x p l a i n e d i n t e x t
2
3 // Node c l o c k
4 c l o c k x ;
5
6 // Loca l round number
7 i n t M;
8
9 // Dis t−to−G per node (D[y] = d i s t−to−G from y , p e r c e i v e d by t h i s node)

10 i n t D[Node id] = {MAX DIST , MAX DIST , MAX DIST , MAX DIST} ;
11
12 // Msg coun t e r s pe r node (R [y] = #messages r e c e i v e d from node y)
13 i n t R [Node id] ;
14
15 // The s e l e c t e d pa r en t
16 meta Node id pa r en t ;
17
18 // Funct i on to de t e rm ine the minimum d i s t a n c e
19 i n t getMinimum (){
20 meta i n t m inva l = MAX DIST ; // To ho ld the min . found so f a r
21 meta i n t t r y ; // To ho ld the nex t v a l u e
22 i f (i sGateway (i)) r e t u r n 0 ; // Minimum d i s t−to−G of G i s 0
23 i f (M == 0) r e t u r n MAX DIST ; // F i r s t round r e t u r n MAX DIST
24 f o r (j : Node id){
25 i f (R [j] > 0 && j != i && D[j] < MAX DIST){
26 t r y = M/R[j] + D[j] ;
27 i f ((M % R[j]) >= (R[j] / 2)) t r y++; // Round to n e a r e s t i n t
28 i f (t r y <= minva l){
29 minva l = t r y ;
30 pa r en t = j ;
31 }
32 }
33 }
34 r e t u r n minva l ; // Return the min . found
35 }
36
37 // Funct i on execu ted on message r e c e p t i o n
38 vo i d r e c e i v e (){
39 R[msg . s i d]++; // I n c r e a s e msg coun t e r o f s ende r
40 D[msg . s i d] = msg . d i s t ; // Update Dis t−to−G of s ende r
41 }

Listing B.2: Local declarations of node template of model V1

wait
x <= 1

!isGateway(i)
send?

receive()
x==1 && M<MAX_M

send!

D[i] = getMinimum(),
msg.s_id = i,
msg.dist = D[i],
x = 0,
M++

Figure B.1: Node Template of model V1

1 // This i n s t a n t i a t e s t emp la t e Node (con s t Node id i)
2 // f o r a l l v a l u e s i n Node id .
3 system Node ;

Listing B.3: System declaration of model V1

Master’s Thesis - W.M. Everse 158

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

B.2 Protocol Model V2

1 /∗∗∗∗∗
2 Sho r t e s t Path Tree p r o t o c o l f o r W i r e l e s s Senso r Networks
3 Author : W.M. Eve r s e
4 Conn e c t i v i t y Mat r i x model
5 L ink q u a l i t i e s between nodes a r e d e f i n e d i n p e r c e n t a g e s
6 i n c o n n e c t i v i t y mat r i x C [] [] be low
7 Nodes ope r a t e s y n ch r onou s l y
8 Nodes wi th i<GATEWAY COUNT are gateways
9 ∗∗∗∗∗/

10
11 // Number o f nodes , i n c l u d i n g gateway (s) G
12 const i n t N = 4 ;
13
14 // Number o f gateway nodes
15 const i n t GATEWAY COUNT = 1 ;
16
17 // Maximum number o f message rounds
18 const i n t MAX M = 50 ;
19
20 // Big number to r e p r e s e n t ’ i n f i n i t e ’ d i s t a n c e
21 const i n t MAX DIST = 10000 ;
22
23 // De f i n e type Node id , paramete r o f Node temp la t e
24 t y p ed e f i n t [0 ,N−1] Node id ;
25
26 meta i n t t u rn =3;
27 const boo l NOTURN = t r u e ;
28
29 // Symmetr ic c o n n e c t i v i t y mat r i x w i th p e r c e n t a g e s
30 // i f C [x] [y]==100 then x can hea r y wi th q u a l i t y o f 100%
31 const i n t [0 , 1 0 0] C [Node id] [Node id] = {
32 { 0 , 15 , 10 , 90} ,
33 {15 , 0 , 0 , 33} ,
34 {10 , 0 , 0 , 0} ,
35 {90 , 33 , 0 , 0}
36 } ;
37
38 // S yn c h r o n i z a t i o n channe l to model message s end i ng / r e c e i v i n g
39 b roadca s t chan send ;
40
41 // Model a message as a s t r u c t
42 // msg . s i d = sende r i d and msg . d i s t = d i s t a n c e
43 meta s t r u c t{
44 Node id s i d ;
45 i n t d i s t ;
46 } msg ;
47
48 // Determine whether the g i v en node i s a gateway node
49 boo l i sGateway (Node id node) {
50 r e t u r n node < GATEWAY COUNT;
51 }
52
53 // Constant f o r the accu racy o f the d i s t a n c e computed
54 // 1 , 10 , 100 co r r e s pond s r e s p . to 0 , 1 or 2 p o s i t i o n s beh ind comma
55 const i n t ACCURACY = 10 ;
56
57 /∗∗ The f u n c t i o n s below a r e f o r r e f e r e n c e i n v e r i f i c a t i o n p r o p e r t i e s ∗∗/
58
59 // Set the c o r r e c t d i s t a n c e to G per node i n a r r a y d2G []
60 // You can a l s o s e t an upper and l owe r t o l e r a n c e bound (epsUpper and epsLower)
61 boo l i sCo r r e c tD i s t anc eToG (Node id node , i n t d i s t){
62 const i n t d2G [Node id] = {0 , 67 , 24 , 11} ;
63 const i n t epsUpper = 0 ; //0 = no upper t o l e r a n c e bound
64 const i n t epsLower = 0 ; //0 = no lowe r t o l e r a n c e bound
65
66 r e t u r n (d i s t >= d2G [node]−epsLower) && (d i s t <= d2G [node]+epsUpper) ;
67 }
68
69 // Set the c o r r e c t pa r en t (s) pe r node
70 boo l i s C o r r e c t P a r e n t (Node id node , Node id pa r en t){
71 i f (i sGateway (node)) r e t u r n pa r en t==0;
72 i f (node==1) r e t u r n pa r en t==3 | | pa r en t==0;
73 i f (node==2) r e t u r n pa r en t==3;
74 i f (node==3) r e t u r n pa r en t==0;
75 r e t u r n f a l s e ;
76 }

Listing B.4: Global declarations of model V2

Master’s Thesis - W.M. Everse 159

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

1 /∗ <parameter>con s t Node id i</parameter> ∗/
2
3 // Node c l o c k
4 c l o c k x ;
5
6 // Loca l round number
7 i n t M;
8
9 // Dis t−to−G per node (D[y] = d i s t−to−G from y , p e r c e i v e d by t h i s node)

10 i n t D[Node id] = {MAX DIST , MAX DIST , MAX DIST , MAX DIST} ;
11
12 // Msg coun t e r s pe r node (R [y] = #messages r e c e i v e d from node y)
13 i n t R [Node id] ;
14
15 // The s e l e c t e d pa r en t
16 meta Node id pa r en t ;
17
18 // Funct i on to de t e rm ine the minimum d i s t a n c e
19 i n t getMinimum (){
20 meta i n t m inva l = MAX DIST ; // To ho ld the min . found so f a r
21 meta i n t t r y ; // To ho ld the nex t v a l u e
22 i f (i sGateway (i)) r e t u r n 0 ; // Minimum d i s t−to−G of G i s 0
23 i f (M == 0) r e t u r n MAX DIST ; // F i r s t round r e t u r n MAX DIST
24 f o r (j : Node id){
25 i f (R [j] > 0 && j != i && D[j] < MAX DIST){
26 t r y = ACCURACY ∗ M/R[j] + D[j] ;
27 i f ((ACCURACY ∗ M % R[j]) >= (R[j] / 2)) t r y++; // Round to n e a r e s t i n t e g e r
28 i f (t r y <= minva l){
29 minva l = t r y ;
30 pa r en t = j ;
31 }
32 }
33 }
34 r e t u r n minva l ; // Return the min . found
35 }
36
37 // This coun t e r i s used to r e a l i z e l i n k q u a l i t i e s , s e e r e c e i v e () below
38 meta i n t l o s t f r om [Node id] ;
39
40 // Funct i on execu ted on message r e c e p t i o n
41 // I t a l s o e n f o r c e s the g i v en l i n k q u a l i t i e s (from connec t i on mat r i x)
42 vo i d r e c e i v e (){
43 // Compute the c u r r e n t e n f o r c e d l o s t r a t i o
44 i n t l o s t r a t i o = 100 ∗ l o s t f r om [msg . s i d] / (M+1) ;
45 i f (l o s t r a t i o < (100 − C[i] [msg . s i d]))
46 l o s t f r om [msg . s i d]++; // The message got l o s t
47 e l s e
48 { // Message r e c e i v e d
49 R[msg . s i d]++; // I n c r e a s e msg coun t e r o f s ende r
50 D[msg . s i d] = msg . d i s t ; // Update Dis t−to−G of s ende r
51 }
52 }

Listing B.5: Local declarations of node template of model V2

wait
x <= 1

!isGateway(i)
send?

receive()
x==1 && M<MAX_M &&
 (turn == i || NOTURN)

send!

D[i] = getMinimum(),
msg.s_id = i,
msg.dist = D[i],
x = 0,
M++,
turn = (turn+1)%N

Figure B.2: Node Template of model V2

Master’s Thesis - W.M. Everse 160

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

1 // This i n s t a n t i a t e s t emp la t e Node (con s t Node id i)
2 // f o r a l l v a l u e s i n Node id .
3 system Node ;

Listing B.6: System declaration of model V2

B.3 Protocol Model V3

1 /∗∗∗∗∗
2 Sho r t e s t Path Tree p r o t o c o l f o r W i r e l e s s Senso r Networks
3 Author : W.M. Eve r s e
4 Non−De t e rm i n i s t i c L ink model
5 L i nk s a r e mode l l ed as e x p l i c i t non−d e t e r m i n i s t i c p r o c e s s e s
6 Nodes ope r a t e s y n ch r onou s l y
7 Nodes wi th i<GATEWAY COUNT are gateways
8 ∗∗∗∗∗/
9

10 // Number o f nodes , i n c l u d i n g gateway (s) G
11 const i n t N = 4 ;
12
13 // Number o f gateway nodes
14 const i n t GATEWAY COUNT = 1 ;
15
16 // Maximum number o f message rounds
17 const i n t MAX M = 50 ;
18
19 // Big number to r e p r e s e n t ’ i n f i n i t e ’ d i s t a n c e
20 const i n t MAX DIST = 10000 ;
21
22 // De f i n e type Node id , paramete r o f Node temp la t e
23 t y p ed e f i n t [0 ,N−1] Node id ;
24
25 meta Node id tu rn ;
26 const boo l NOTURN = t r u e ;
27
28 // S yn c h r o n i z a t i o n channe l s to model message s end i ng / r e c e i v i n g
29 b roadca s t chan send [Node id] ;
30 b roadca s t chan r e c v [Node id] ;
31
32 // Model a message as a s t r u c t
33 // msg . s i d = sende r i d and msg . d i s t = d i s t a n c e
34 meta s t r u c t{
35 Node id s i d ;
36 i n t d i s t ;
37 } msg ;
38
39 // Determine whether the g i v en node i s a gateway node
40 boo l i sGateway (Node id node) {
41 r e t u r n node < GATEWAY COUNT;
42 }
43
44 // Constant f o r the accu racy o f the d i s t a n c e computed
45 // 1 , 10 , 100 co r r e s pond s r e s p . to 0 , 1 or 2 p o s i t i o n s beh ind comma
46 const i n t ACCURACY = 10 ;
47
48 /∗∗ The f u n c t i o n s below a r e f o r r e f e r e n c e i n v e r i f i c a t i o n p r o p e r t i e s ∗∗/
49
50 // Set the c o r r e c t d i s t a n c e to G per node i n a r r a y d2G []
51 // You can a l s o s e t an upper and l owe r t o l e r a n c e bound (epsUpper and epsLower)
52 boo l i sCo r r e c tD i s t anc eToG (Node id node , i n t d i s t){
53 const i n t d2G [Node id] = {0 , 41 , 23 , 11} ;
54 const i n t epsUpper = 0 ; //0 = no upper t o l e r a n c e bound
55 const i n t epsLower = 0 ; //0 = no lowe r t o l e r a n c e bound
56
57 r e t u r n (d i s t >= d2G [node]−epsLower) && (d i s t <= d2G [node]+epsUpper) ;
58 }
59
60 // Set the c o r r e c t pa r en t (s) pe r node
61 boo l i s C o r r e c t P a r e n t (Node id node , Node id pa r en t){
62 i f (i sGateway (node)) r e t u r n pa r en t==0;
63 i f (node==1) r e t u r n pa r en t==3 | | pa r en t==0;
64 i f (node==2) r e t u r n pa r en t==3;
65 i f (node==3) r e t u r n pa r en t==0;
66 r e t u r n f a l s e ;
67 }

Listing B.7: Global declarations of model V3

Master’s Thesis - W.M. Everse 161

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

1 /∗ <parameter>con s t Node id i</parameter> ∗/
2
3 // Node c l o c k
4 c l o c k x ;
5
6 // Loca l round number
7 i n t M;
8
9 // Dis t−to−G per node (D[y] = d i s t−to−G from y , p e r c e i v e d by t h i s node)

10 i n t D[Node id] = {MAX DIST , MAX DIST , MAX DIST , MAX DIST} ;
11
12 // Msg coun t e r s pe r node (R [y] = #messages r e c e i v e d from node y)
13 i n t R [Node id] ;
14
15 // The s e l e c t e d pa r en t
16 meta Node id pa r en t ;
17
18 // Funct i on to de t e rm ine the minimum d i s t a n c e
19 i n t getMinimum (){
20 meta i n t m inva l = MAX DIST ; // To ho ld the min . found so f a r
21 meta i n t t r y ; // To ho ld the nex t v a l u e
22 i f (i sGateway (i)) r e t u r n 0 ; // Minimum d i s t−to−G of G i s 0
23 i f (M == 0) r e t u r n MAX DIST ; // F i r s t round r e t u r n MAX DIST
24 f o r (j : Node id){
25 i f (R [j] > 0 && j != i && D[j] < MAX DIST){
26 t r y = ACCURACY ∗ M/R[j] + D[j] ;
27 i f ((ACCURACY ∗ M % R[j]) >= (R[j] / 2)) t r y++; // Round to n e a r e s t i n t e g e r
28 i f (t r y <= minva l){
29 minva l = t r y ;
30 pa r en t = j ;
31 }
32 }
33 }
34 r e t u r n minva l ; // Return the min . found
35 }
36
37 // Funct i on execu ted on message r e c e p t i o n
38 vo i d r e c e i v e (){
39 R[msg . s i d]++; // I n c r e a s e msg coun t e r o f s ende r
40 D[msg . s i d] = msg . d i s t ; // Update Dis t−to−G of s ende r
41 }

Listing B.8: Local declarations of node template of model V3

wait
x <= 1

!isGateway(i)
recv[i]?

receive()
x==1 && M<MAX_M &&
 (turn==i || NOTURN)

send[i]!

D[i] = getMinimum(),
M++,
msg.s_id = i,
msg.dist = D[i],
x = 0,
turn = (turn+1)%N

Figure B.3: Node Template of model V3

Master’s Thesis - W.M. Everse 162

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

1 /∗ <parameter>con s t Node id s r c , con s t Node id tgt , con s t i n t u , con s t i n t v</parameter> ∗/
2 /∗∗∗∗∗
3 L i nkAcc r o s s
4
5 Nond e t e rm i n i s t i c p r o c e s s t ha t r e p r e s e n t s an u n i d i r e c t i o n a l l i n k
6 between two nodes (pa ramete r s ’ s r c ’ and ’ tgt ’) .
7
8 The q u a l i t y o f t h i s l i n k i s de te rm ined by pa ramete r s u and v :
9 u on v messages ge t a c r o s s . Which ones i s d e c i d ed

10 n o n d e t e r m i n i s t i c a l l y .
11 ∗∗∗∗∗/
12
13 // count s number o f messages t ha t came a c r o s s
14 i n t [0 , u] s = 0 ;
15
16 // count s p e r i o d
17 i n t [0 , v] t = 0 ;
18
19 // r e s e t s c oun t e r s i f v msgs pas sed
20 vo i d c h e c k r e s e t (){
21 i f (t==v){
22 s =0;
23 t =0;
24 }
25 }

Listing B.9: Local declarations of link template of model V3

recv[tgt]!
checkreset()

s<u
send[src]?
s++, t++

(u-s < v-t)
send[src]?
t++,
checkreset()

Figure B.4: Link Template of model V3

1 // Dec l a r e l i n k p r o c e s s e s
2 l i n k 0 1 = L inkAc ro s s (0 , 1 , 1 , 7) ; // L ink Qua l i t y = 14,3%
3 l i n k 0 2 = L inkAc ro s s (0 , 2 , 1 , 10) ; // L ink Qua l i t y = 10%
4 l i n k 0 3 = L inkAc ro s s (0 , 3 , 9 , 10) ; // L ink Qua l i t y = 90%
5
6 l i n k 1 3 = L inkAc ro s s (1 , 3 , 1 , 3) ; // L ink Qua l i t y = 33%
7 l i n k 3 1 = L inkAc ro s s (3 , 1 , 1 , 3) ;
8
9 l i n k 2 3 = L inkAc ro s s (2 , 3 , 8 , 10) ; // L ink Qua l i t y = 80%

10 l i n k 3 2 = L inkAc ro s s (3 , 2 , 8 , 10) ;
11
12 // I n s t a n t i a t e t emp la t e Node (con s t Node id i)
13 // f o r a l l v a l u e s i n Node id and the l i n k p r o c e s s e s .
14 system Node ,
15 l i n k 01 , l i n k02 , l i n k03 ,
16 l i n k 13 , l i n k31 ,
17 l i n k 23 , l i n k 3 2 ;

Listing B.10: System declaration of model V3

Master’s Thesis - W.M. Everse 163

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

B.4 Validation by Simulation

We validated the behaviour of our models using the built-in simulator of
UPPAAL. In this section we will provide some insights in the simulation
process and in the results.

Figure B.5 shows a screen shot of the simulator. It consists of four pan-
els, the most left one being the simulation control panel, that shows the
simulation trace so far and allows for either selecting an enabled transition
manually, or running a random simulation. Next of it, we find the variables
panel that shows us all variable values in the current selected state of the
simulation trace. Right of this panel, we see the processes panel that de-
picts a graphical representation of the processes that are composed in the
system under simulation, showing the current state of each process. The
lower rightmost panel is the Message Sequence Chart (MSC) panel which
displays a MSC view of the generated trace.

B.4.1 Protocol Model V1

In the first version of our model, all nodes hear all other nodes with a link
quality of 100%. Figure B.5 shows the initial state of the composed system.
All four nodes can start broadcasting a probe message, therefore there are
four transitions enabled. If we execute the selected transition we can see
the changes in the composed system state, indicating that node 0 did a
broadcast of a probe message and nodes 1, 2 and 3 received this message
(i.e. synchronized) and updated their information according to it (see figure
B.6). These nodes all have their received messages counter for messages from
node 0 (Node(i).R[0] with i=1,2,3) set to 1, and their recorded dist-to-G
of node 0 (Node(i).D[0]) set to 01.

Note that node 0’s local message round counter now equals 1 and that the
3 remaining enabled transitions are the broadcasts of nodes 1, 2 and 3.
When they all have broadcasted a probe message in this message round (i.e.
message round 0) all nodes will be ready to broadcast in message round 1
again. This continues until all local message round counters reached the
value of MAX_M. In that case, there is no enabled transition left and the
composed system is deadlocked : our simulation run ends.

1As node 0 is considered to be the gateway, it follows from its local declarations (line
22 of lst. B.2 on page 158) that it will always broadcast a dist-to-G of 0.

Master’s Thesis - W.M. Everse 164

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

Figure B.5: UPPAAL’s Simulator (initial state of model V1)

Figure B.6: State of model V1 after simulating a broadcast of node 0

Master’s Thesis - W.M. Everse 165

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

B.4.2 Protocol Model V2 & V3

In order to examine the behaviour of our models V2 and V3 we also did a
lot of simulation. Among other things, we did random simulation runs with
MAX_M set to 20 and with the connectivity matrix (of V2) specifying the
4-node topology from figure 4.3 (page 48). We also executed random simu-
lation runs on model V3, configured with the same topology. The contents of
the variable simulation panel (with some less relevant variables omitted, for
example the arrays from node 0 since they are not altered during simulation)
at the end of a random simulation run are depicted in figure B.7.

(a) Protocol model V2 (b) Protocol model V3

Figure B.7: Values of a selected set of variables after simulation of 20 message rounds

Master’s Thesis - W.M. Everse 166

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

Although there are slight differences, both models seem to behave properly:
node 1 selected node 3 as parent on the shortest path to node 0. The other
nodes properly selected node 0 as parent in the routing tree. The distance to
the gateway2 of each node (Node(i).D[i]) sufficiently approximates the real
value. For example, node 3 has a 90% link with node 0. This corresponds to
an ETX value of 100

90 = 11
9 ≈ 1, 11. Node 3 finds Node(3).D[3]=11 because

we multiply all results with a global constant ACCURACY with default value
10. Doing so allows for a more precise result (in this case one digit behind
the decimal point), as UPPAAL does not support floating point numbers.

B.5 Verification Results

Notation used in this section:

• The number of nodes is denoted by N

• The number of message rounds verified is denoted by MAX_M

• The global constant ACCURACY is set to 10 by default. Verification runs
with ACCURACY set to 1 are annotated with the superscript: A1

• Verification runs with ordered process execution are annotated with
the superscript: O and are executed starting with process id 0.

• The time reported is the real time measured by the Unix utility
time

• Table entries with a sole dash (-) indicate that the corresponding ver-
ification run was terminated abnormally (aborted since it did not end
within reasonable time).

• Empty table entries correspond to less interesting verification runs
that we did not execute.

• Occasionally, the big M is used for millions, to abbreviate large num-
bers of states (e.g. 26520000 is abbreviated to 26,52M).

B.5.1 Deadlock Freedom

On all paths, it is always the case that if a deadlock state occurs, it is the
state in which for all nodes hold that their local message round counter M
equals MAX_M:

A[] deadlock imply (forall(i:Node_id) Node(i).M == MAX_M)

2Recall from chapter 3 that this actually is an Expected Transmission Count (ETX)-
value: the expected number of transmissions needed to get a message at the gateway.

Master’s Thesis - W.M. Everse 167

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

Protocol Model V2

Table B.1: UPPAAL V2 Results for topo 4.6(a), p. 57: complete, all links 100%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
2 47 .018 77 .020 167 .022 317 .025
4 677 .063 827 .071 1277 .105 2027 .152
6 9437 1.09 10067 1.17 11957 1.40 15107 1.75
8 135917 24.2 138467 25.2 146117 26.7 158867 28.5

2A1 33 .017 63 .018 153 .021 303 .026
4A1 201 .036 351 .044 801 .073 1551 .126
6A1 1233 .168 1863 .240 3753 .453 6903 .807
4O 41 .021 81 .027 201 .029 401 .035
8O 81 .039 161 .041 401 .060 801 .096
12O 121 .056 241 .081 601 .117 1201 .193
↓

100O 10001 33.7

Table B.2: UPPAAL V2 Results for topo 4.6(a), p. 57: complete, all links 10%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
2 32 .017 91 .020 268 .022 563 .031
3 79 .020 2663 .127 33239 1.46 89459 3.90
4 200 .029 1091653 64 oom 1086 - -

4O 41 .021 81 .027 201 .029 401 .035

Table B.3: UPPAAL V2 Results for topo 4.6(b), p. 57: chain, all links 100%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
3 226 .029 299 .032 509 .042 859 .057
4 1224 .095 1412 .108 1862 .137 2612 .181
5 7634 .620 8254 .677 9184 .749 10734 .871

4A1 266 .035 416 .047 866 .073 1616 .118
4O 41 .022 81 .026 201 .028 401 .038

Table B.4: UPPAAL V2 Results for topo 4.6(b), p. 57: chain, all links 10%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
3 76 .021 1150 .061 62371 2.57 185553 7.69
4 169 .030 18113 .974 - >720 - -

4A1 4,33M 253 5,60M 334
4O 41 .022 81 .024 201 .028 401 .034
4 26,52M 894 oom 1050

4A1 4,33M 144 5,60M 187

Master’s Thesis - W.M. Everse 168

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

Remarks:

• “oom” in tables B.2 and B.4 means “out-of-memory”. This entry is
verified on verification server BIG1 (32-bit UPPAAL induces a 232 = 4
GB memory limit). For more information, please refer to section 4.3.4.

• The two bottom rows (italicized) of table B.4 contain results of ver-
ification runs that were also verified on server BIG1. Again refer to
section 4.3.4 for more information.

Protocol Model V3

Table B.5: UPPAAL V3 Results for topo 4.6(a), p. 57: complete, all links 100%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
2 75 .020 125 .023 275 .026 525 .031
4 5964 .219 7394 .267 11684 .403 18834 .631
5 52845 2.39 60035 2.70 81605 3.70 117555 5.67
6 459510 28.4 494060 30.6 597710 37.3 770460 48.3

2A1 54 .020 104 .021 254 .026 504 .030
4A1 1911 .089 3341 .134 7631 .278 14781 .500
5A1 11454 .541 18644 .868 40214 1.82 76164 3.44
6A1 68469 4.31 103019 6.49 206669 13.9 379419 23.8
2O 31 .021 61 .022 151 .022 301 .025
4O 201 .035 401 .041 1001 .057 2001 .092
5O 481 .053 961 .072 2401 .132 4801 .243
6O 1121 .102 2241 .164 5601 .351 11201 .662
8O 5761 .621 11521 1.20 28801 2.89 57601 5.73

Table B.6: UPPAAL V3 Results for topo 4.6(a), p. 57: complete, all links 10%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
2 95 .021 194 .024 491 .031 986 .042
3 14411 .548 433488 16.0 2,66M 101.1 6,21M 238.8
4 - -

2A1 95 .022 194 .025 491 .030 986 .043
3A1 14411 .550 401736 14.8 930619 34.5 1,09M 41.3
4A1 - -
2O 57 .022 114 .025 285 .025 570 .033
3O 4386 .153 112852 3.76 716401 24.9 1,68M 58.5
4O >6M >400

Master’s Thesis - W.M. Everse 169

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

Table B.7: UPPAAL V3 Results for topo 4.6(b), p. 57: chain, all links 100%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
4 5237 .185 6069 .209 7959 .289 11109 .363
5 43582 1.61 47430 1.89 52680 1.94 61430 2.26
6 392809 17.1 415378 18.0 428788 18.7 451138 19.9

4A1 1129 .057 1759 .078 3649 .135 6799 .229
5A1 4995 .206 6745 .272 11995 .458 20745 .771
6A1 22373 .974 26843 1.17 40253 1.73 62603 2.68
4O 101 .030 201 .035 501 .043 1001 .053
5O 141 .030 281 .034 701 .057 1401 .071
6O 181 .034 361 .043 901 .064 1801 .098
8O 261 .046 521 .061 1301 .098 2601 .161

Table B.8: UPPAAL V3 Results for topo 4.6(b), p. 57: chain, all links 10%

MAX_M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
3 2928 .128 111718 4.07 2,12M 84.1 5,64M 225.8
4 122643 5.79 - >900 - - - -

3A1 2928 .132 101717 3.70 447296 17.0 551774 21.2
4A1 122643 5.92 - >900 - - - -
3O 1049 .049 29498 .940 450982 14.9 1,16M 40.6
4O 26530 .870 - >900 - - - -

B.5.2 Correct Parent and Distance

1. Along all paths eventually a state is reached in which for each node
holds that its parent is a correct parent:

A<> forall(i:Node_id)
isCorrectParent(i, Node(i).parent)

2. Along all paths eventually a state is reached in which for each node
holds that its distance is correct (regarding a certain tolerance εl and
εu, specified in the function):

A<> forall(i:Node_id)
isCorrectDistanceToG(i, Node(i).D[i])

3. Along all paths eventually a state is reached in which each node se-
lected a correct parent after MAX_M message rounds:

A<> forall(i:Node_id)
(Node(i).M == MAX_M) &&
isCorrectParent(i, Node(i).parent)

Master’s Thesis - W.M. Everse 170

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

4. Along all paths eventually a state is reached in which each node com-
puted the correct distance (regarding a certain tolerance) after MAX_M
message rounds:

A<> forall(i:Node_id)
(Node(i).M == MAX_M) &&
isCorrectDistanceToG(i, Node(i).D[i])

5. Along all paths it is always the case that whenever all nodes reached
MAX_M, they also all selected a correct parent:

A[] (forall(i:Node_id) Node(i).M == MAX_M) imply
(forall(j:Node_id)

isCorrectParent(j, Node(j).parent))

6. Along all paths it is always the case that whenever all nodes reached
MAX_M, they also all computed the correct distance:

A[] (forall(i:Node_id) Node(i).M == MAX_M) imply
(forall(j:Node_id)

isCorrectDistanceToG(j, Node(j).D[j])

7. Along all paths it is always the case that if all nodes reached message
round x, they all selected a correct parent and keep selecting a correct
parent up to message round MAX_M:

A[] (forall(i:Node_id) Node(i).M >= x) imply
(forall(j:Node_id)

isCorrectParent(j, Node(j).parent))

8. Along all paths it is always the case that if all nodes reached message
round x, they all computed the correct distance and keep computing
the correct distance up to message round MAX_M:

A[] (forall(i:Node_id) Node(i).M >= x) imply
(forall(j:Node_id)

isCorrectDistanceToG(j, Node(j).D[j])

Master’s Thesis - W.M. Everse 171

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

Notes for the verification runs with these properties:

• We checked three 4-node topologies, in the tables below called T1, T2
and T3. T1 is a unique SPT topology obtained by substituting 33 for
18 in topology 4.6(d), T2 is topology 4.6(c) (two SPTs, simple link
quality values) and T3 is topology 4.6(d) (two SPTs, more complex
link qualities).

• OK means property is satisfied

• NOK means property fails

• In case of parent checking, the function isCorrectParent(i,j) re-
turned true if nodes 0 and 3 selected parent node 0, and if nodes 1
and 2 selected parent node 3. For T2 and T3 it returned also true if
node 1 selected parent 0.

• In case of distance checking, the function isCorrectDistanceToG(i,d)
assumed the following distances (of resp. node 0, 1, 2 and 3):

– Topology T1: 0, 41, 24, 11

– Topology T2: 0, 40, 40, 20

– Topology T3: 0, 67, 24, 11

The values of εu and εl are reported in case of distance checks.

• In some cases the time (in seconds) taken by a verification run is also
reported.

• Unless stated otherwise in the tables below, default settings are:

– ACCURACY=10

– MAX_M=50

– NOTURN=true

• Superscript t0 at the model version indicates that the global constant
NOTURN=false and turn=0 for the entire table row.

• Superscript 800 at the model version indicates that the global constant
MAX_M=800.

Master’s Thesis - W.M. Everse 172

APPENDIX B. UPPAAL MODELS, SIMULATION AND VERIFICATION RESULTS

Table B.9: UPPAAL Model V2 & V3 results for property 1 (correct parents)

P1 T1: 4.6(d)[33/18] T2: 4.6(c) T3: 4.6(d)
V2 .065s, OK .105s, OK .025s, OK
V3 88.3s, OK 34.3s, OK 276.0s, OK

Table B.10: UPPAAL Model V2 & V3 results for property 2 (correct distance)

P2 T1: 4.6(d)[33/18] T2: 4.6(c) T3: 4.6(d)
V2 εu = εl = 0 NOK εu = εl = 0 NOK εu = εl = 0 NOK

εu = 2, εl = 1 OK εu = 1, εl = 0 OK εu = 5, εl = 1 OK

εu = εl = 0 (MAX_M=400) OK εu = εl = 0 (MAX_M=400) OK εu = εl = 0 (MAX_M=400) OK

V3 (>300s) - (>300s) - (>300s) -

turn0,εu = εl = 0 OK turn0 NOK turn0 NOK

turn2 NOK turn0, MAX_M=100,εu = εl = 0 OK turn0, MAX_M=100 NOK

Table B.11: UPPAAL Model V2 & V3 results for property 3 (correct parents)

P3 T1: 4.6(d)[33/18] T2: 4.6(c) T3: 4.6(d)
V2 2.38s OK 6.39s OK 5.37s OK

V3t0 23.1s OK 25.9s OK >404s -

Table B.12: UPPAAL Model V2 & V3 results for property 4 (correct distance)

P4 T1: 4.6(d)[33/18] T2: 4.6(c) T3: 4.6(d)
V2 εu = εl = 0 NOK εu = εl = 0 NOK εu = εl = 0 NOK

εu = 3, εl = 1 OK εu = 1, εl = 0 (MAX_M=100) OK εu = 5, εl = 1 OK

V3t0 εu = εl = 0 NOK εu = εl = 0 NOK εu = εl = 0 NOK

εu = 1, εl = 1 OK εu = 0, εl = 2 OK εu = 3, εl = 6 NOK

εu = 3, εl = 7 -

Table B.13: UPPAAL Model V2 & V3 results for property 7 (correct parents)

P7 T1: 4.6(d)[33/18] T2: 4.6(c) T3: 4.6(d)
V2 1.31s x=10 .615s x=12 2.77s x=4

V3t0 13.9s x=10 13.9s x=22 -

Table B.14: UPPAAL Model V2 & V3 results for property 8 (correct distance)

P8 T1: 4.6(d)[33/18] T2: 4.6(c) T3: 4.6(d)
V2800

εu = 3, εl = 1 x=48 εu = 1, εl = 0 x=86 εu = 2, εl = 1 x=184

εu = 2, εl = 1 x=67 εu = εl = 0 x=88 εu = εl = 1 x=284

εu = 1, εl = 1 x=128 εu = 0, εl = 1 x=584

V3t0 (MAX_M=100) x=43 (MAX_M=100) x=58 -

Master’s Thesis - W.M. Everse 173

APPENDIX C

SPIN Model, Simulation and Verification Results

This appendix contains the complete source of our SPIN model, a section
about the simulation of the behaviour of the model using SPIN’s simulator
mode, and a section with detailed verification results.

C.1 Protocol Model

1 /∗ SPT Pro t o co l model f o r WSNs − W.M. Eve r s e ∗/
2
3 /∗ DEFINE CONSTANTS ∗/
4 #de f i n e N 4 /∗ Number o f nodes ∗/
5 #de f i n e MAX M 100 /∗ Max number o f msg rounds ∗/
6 #de f i n e MAX DIST 10000 /∗ Rep r e s en t s ’ i n f i n i t e ’ d i s t a n c e ∗/
7 #de f i n e ACCURACY 10 /∗ M u l t i p l i c a t i o n f a c t o r ∗/
8 #de f i n e GATEWAY COUNT 1 /∗ Number o f gateways ∗/
9

10 /∗ TYPEDEFS & DECLARATIONS ∗/
11 typede f NodeData{ /∗ Node data : ∗/
12 byte pa r en t = 0 ; /∗ − s e l e c t e d pa r en t ∗/
13 sho r t R[N] = 0 ; /∗ − count s r e c e i v e d msgs (pe r node) ∗/
14 sho r t D[N] = MAX DIST ; /∗ − d i s t−to−G (pe r node) ∗/
15 }
16
17 NodeData nodes [N] ; /∗ A l l node data ∗/
18
19 sho r t M; /∗ G loba l msg round number ∗/
20
21 typede f Tuple {byte u ; byte v}
22 typede f NodeDimTuple{ Tuple to [N] ; }
23 hidden NodeDimTuple C [N] ; /∗ Conn e c t i v i t y Matr ix , NxN ∗/
24 hidden NodeDimTuple H[N] ; /∗ H i s t o r y Matr ix , NxN ∗/
25
26 typede f NodeDimBool{ boo l to [N] ; }
27 hidden NodeDimBool Msgs [N] ; /∗ Message Exchange Matr ix , NxN ∗/
28
29 byte c t r l = N; /∗ Used f o r t r a n s f e r r i n g c o n t r o l ∗/

Listing C.1: PROMELA Model - Constants, Typedefs and Global Declarations

Master’s Thesis - W.M. Everse 174

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

30 /∗ INLINE DECLARATIONS ∗/
31 i n l i n e i sGateway (i d){ /∗ Check i f i d i s a gateway ∗/
32 (i d < GATEWAY COUNT) ;
33 }
34
35 i n l i n e r e c e i v e (i d){ /∗ Update c oun t e r s i f r e c e i v e d a msg ∗/
36 atomic{
37 do
38 : : (k < N) && (Msgs [k] . to [i d]) −>
39 nodes [i d] . R [k]++;
40 i f
41 : : i sGateway (k) −> nodes [i d] .D[k] = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
42 : : e l s e −> nodes [i d] .D[k]=nodes [k] .D[k]
43 f i ;
44 k++
45 : : (k < N) && ! (Msgs [k] . to [i d]) −> k++
46 : : (k==N) −> k=0; break
47 od
48 }
49 }
50
51 i n l i n e getMinimum (i d){ /∗ Compute minimum d i s t a n c e ∗/
52 atomic{
53 minva l = MAX DIST ;
54 do
55 : : (k < N) −>
56 i f
57 : : (nodes [i d] . R [k] > 0) && (k != i d) && (nodes [i d] .D[k] < MAX DIST) −>
58 t r y = (ACCURACY ∗ M / nodes [i d] . R [k]) + nodes [i d] .D[k] ;
59 t r y = (((ACCURACY∗M)%nodes [i d] . R [k])>=(nodes [i d] . R [k] / 2)−>(t r y +1) : t r y) ;
60 i f
61 : : (t r y <= minva l) −> minva l = t r y ; nodes [i d] . p a r en t = k
62 : : e l s e −> s k i p
63 f i
64 : : e l s e −> s k i p
65 f i ;
66 k++
67 : : (k == N) −> k=0; t r y =0; nodes [i d] .D[i d] = minva l ; break
68 od ;
69 }
70 }
71
72 i n l i n e setC (x , y , p , q){ /∗ Se t s e n t r i e s i n c o n n e c t i v i t y mat r i x C ∗/
73 C[x] . to [y] . u = p ;
74 C[x] . to [y] . v = q ;
75 C[y] . to [x] . u = p ; /∗ Due to symmetry ∗/
76 C[y] . to [x] . v = q ; /∗ Due to symmetry ∗/
77 }
78
79 i n l i n e canLoose (a , b){ /∗ Check i f msgs s t i l l may be l o s t ∗/
80 (C [a] . to [b] . u − H[a] . to [b] . u) < (C [a] . to [b] . v − H[a] . to [b] . v)
81 }
82
83 i n l i n e canSend (c , d){ /∗ Check i f msgs s t i l l may be s en t ∗/
84 H[c] . to [d] . u < C[c] . to [d] . u
85 }
86
87 i n l i n e checkRese t (e , f){ /∗ Reset c oun t e r s when needed ∗/
88 i f /∗ (modulo C [] . to [] . v) ∗/
89 : : (H[e] . to [f] . v == C[e] . to [f] . v) −> H[e] . to [f] . u = 0 ; H[e] . to [f] . v = 0 ;
90 : : e l s e −> s k i p
91 f i
92 }

Listing C.2: PROMELA Model - Inline Constructs

Master’s Thesis - W.M. Everse 175

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

93 /∗ PROCESS DECLARATIONS ∗/
94 a c t i v e [N] proctype node (){ /∗ Node p r o c e s s ∗/
95 endN : do
96 : : c t r l == p i d −> /∗ Wait f o r c o n t r o l ∗/
97 byte k ; /∗ Used i n i n l i n e c o n s t r u c t s ∗/
98 sho r t t r y , m inva l ; /∗ Used i n i n l i n e c o n s t r u c t ∗/
99 getMinimum (p i d) ; /∗ Compute minimum d i s t−to−G ∗/

100 r e c e i v e (p i d) ; /∗ ’ r e c e i v e ’ from a l l o t h e r nodes ∗/
101 c t r l++ /∗ Tran s f e r c o n t r o l to nex t p r o c e s s ∗/
102 od
103 }
104
105 a c t i v e proctype g l oba lS end (){ /∗ S imu l a t e s s end i ng g l o b a l l y ∗/
106 byte i , j ;
107
108 d s tep{ /∗ F i l l symmetr ic c o n n e c t i v i t y mat r i x ∗/
109 /∗ Using i n l i n e setC (from , to , u , v) ∗/
110 /∗ a r b i t r a r y topo , un ique SPT [30/18] ∗/
111 setC (0 , 1 , 1 , 7) ; se tC (0 , 2 , 1 , 10) ; setC (0 , 3 , 9 , 10) ;
112 setC (1 , 3 , 3 , 10) ;
113 setC (2 , 3 , 4 , 5)
114 }
115
116 do /∗ For each msg round ∗/
117 : : (M< MAX M) −> atomic{
118 do /∗ F i l l msgs mat r i x ∗/
119 : : (i<N) −> do
120 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
121 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
122 i f
123 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
124 Msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
125 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
126 Msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
127 H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
128 f i ;
129 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
130 checkRese t (i , j) ;
131 j++
132 : : (j==N) −> j =0; break
133 od ;
134 i++
135 : : (i==N) −> i =0; break
136 od ;
137 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
138 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
139 M++
140 : : (M == MAX M) −> break /∗ Max nr o f msg rounds reached , s top ∗/
141 od
142 }

Listing C.3: PROMELA Model - Process Declarations

Master’s Thesis - W.M. Everse 176

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

C.2 Validation by Simulation

During model construction, we validated the behaviour of our PROMELA

model of the protocol using SPIN in simulation mode. The GUI XSpin dis-
plays the simulation options orderly in the ‘Simulation Options’ panel (figure
C.1), accessible via the ‘Set Simulation Parameters..’ action of the ‘Run..’
menu.

Figure C.1: The Simulation Options Panel

As can be seen in the options panel, there are three styles of simulation: ran-
dom, guided and interactive. A random simulation allows for running a sim-
ulation run of the model by letting SPIN decide on which transitions to take
(and resolve non-determinism). A guided simulation needs a pan in . trail 1

file, normally created during a verification run that resulted in a counterex-
ample of a correctness property. The number of steps that should be skipped
before displaying a random or guided simulation can be specified. An inter-
active simulation allows for a custom simulation run, leaving the choice of
which transition to take to the user.

1A model that is opened in XSpin is copied into a file called pan in, in order to avoid
overwriting the original. The file to which a possible counterexample is written during
verification is also called pan in, but with the . trail extension.

Master’s Thesis - W.M. Everse 177

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

Besides the XSpin main window, starting the simulation in XSpin results
in at least three additional windows: a Simulation Output window that
shows the transitions taken, a Data Values window that shows the global
data values, and optionally also the local data values, and a Sequence Chart
window that displays a MSC of the simulation. Unfortunately, the sequence
chart and the data is often only showed at the end of a simulation run,
rather then ‘real-time’ during simulation. Examples of these three windows
and their contents at the end of a random simulation of the model (as
presented above) are shown in figures C.2 – C.4.

Figure C.2: The Simulation Output Window

Figure C.3: The Data Values Window

Master’s Thesis - W.M. Everse 178

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

Figure C.4: The Sequence Chart Window

The figures show the end state of the random simulation run of our model as
we presented it in this thesis. We can check the correctness of this simulation
run by checking the node data values displayed in C.3. The corresponding
topology is depicted below.

0 1

32

9/10

1/7

3/101/10

4/5

Figure C.5: 4-node topology specified by lines 108 –114 of listing C.3

It can be seen (partly) in figure C.3 that this simulation run resulted in
correct values. For instance, both node 1 and node 2 found a correct parent
(i.e. node 3) and they both found the correct distance to the gateway (i.e.
node 1 found 45 and node 2 found 24). Note that the following parameter
settings were used for this simulation: ACCURACY=10, MAX M=100.

An interactive simulation results in one more window: the Select window,
that enables the user to select one of the enabled transitions, whenever there
are several enabled transitions. This select window is shown in figure C.6.

Master’s Thesis - W.M. Everse 179

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

Figure C.6: The Select Window

In figure C.6, there are two enabled transitions. These are the transi-
tions corresponding to the (statement) expressions in the inline constructs
canLoose(a,b) and canSend(c,d) (see listing C.2). Our experience on our Mac-
Book is that this window often needs a small manual resize before it shows
all buttons (enabled transitions) properly.

C.3 Verification Results

Notation used in this section:

• The number of nodes is denoted by N

• The number of message rounds verified is denoted by MAX M

• The global constant ACCURACY is set to 10 by default. Verification
runs with ACCURACY set to 1 are annotated with the superscript: A1

• The time reported is the real time measured by the Unix utility
time, as reported by SPIN’s verification output.

• The number of states reported are the number of stored states as in-
dicated by SPIN. The number of matched states (if any) is reported in
italics (on a new line).

• A down arrow (↓) in the number-of-nodes column indicates similar
results for a higher numbers of nodes

• Table entries with a sole dash (-) indicate that the corresponding ver-
ification run was terminated abnormally (aborted since it did not end
within reasonable time).

• Empty table entries correspond to less interesting verification runs
that we did not execute.

C.3.1 Deadlock Freedom

Absence of deadlock is checked in SPIN by checking for invalid end states.

Master’s Thesis - W.M. Everse 180

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

Table C.1: SPIN–results for topo 5.6(a), p. 82: complete, all links 100%

MAX M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
2 84 .08 164 .08 404 .08 804 .08
4 164 .08 324 .08 804 .09 1604 .10
8 324 .09 644 .09 1604 .10 3204 .13
↓

4A1 164 .08 324 .08 804 .09 1604 .10

Table C.2: SPIN–results for topo 5.6(a), p. 82: complete, all links 10%

MAX M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
2 84 .08 164 .08 404 .08 804 .08

27 54 135 270
4 164 .30 324 .46 804 .99 1604 1.74

36855 73710 184275 368550
5 204 44.6 404 89.3 1004 223 2004 439

9,44M 18,87M 47,19M 94,37M
4A1 164 .30 324 .46 804 .99 1604 1.74

36855 73710 184275 368550

Table C.3: SPIN–results for topo 5.6(b), p. 82: chain, all links 10%

MAX M: 10 20 50 100
N #s t(s) #s t(s) #s t(s) #s t(s)
3 124 .08 244 .08 604 .09 1204 .09

135 270 675 1350
4 164 .09 324 .09 804 .12 1604 .12

567 1134 2835 5670
8 324 1.12 644 2.12 1604 5.12 3204 9.77

147447 294894 737235 1,47M
↓

C.3.2 Correct Parent and Distance

1. It is always the case that eventually a state can be reached in which all
non-gateway nodes found the specified parent (i.e. the values specified
for parameters u, v and w) after MAX_M message rounds:

[]<> (p && q)
#define p M==MAX_M
#define q nodes[1].parent==u &&

nodes[2].parent==v &&
nodes[3].parent==w

Master’s Thesis - W.M. Everse 181

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

2. It is always the case that eventually a state can be reached in which
all non-gateway nodes found the specified distance (i.e. the values
specified for parameters u, v and w) after MAX_M message rounds:

[]<> (p && q)
#define p M==MAX_M
#define q nodes[1].D[1]==u &&

nodes[2].D[2]==v &&
nodes[3].D[3]==w

3. It is always the case that if all nodes reached message round x, they all
selected the specified parent (i.e. the values specified for parameters u,
v and w) and keep selecting the specified parent up to message round
MAX_M:

[] (p -> q)
#define p M >= x
#define q nodes[1].parent==u &&

nodes[2].parent==v &&
nodes[3].parent==w

4. It is always the case that if all nodes reached message round x, they
all computed the specified distance (i.e. the values specified for pa-
rameters u, v and w) and keep computing the specified distance up to
message round MAX_M:

[] (p -> q)
#define p M >= x
#define q nodes[1].D[1]==u &&

nodes[2].D[2]==v &&
nodes[3].D[3]==w

Notes for the verification runs with these properties:

• We checked three 4-node topologies, called T1, T2 and T3:

– T1 is a unique SPT topology obtained by substituting 33 for 18
in topology 5.6(d).

– T2 is topology 5.6(c) (two SPTs, simple link quality values).

– T3 is topology 5.6(d) (two SPTs, more complex link qualities).

• In case of parent checking (properties 1 and 3), property parameters
u, v and w are specified respectively as follows:

– for T1: 3, 3, 0

Master’s Thesis - W.M. Everse 182

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

– for T2 and T3: (3 or 0), 3, 0

• In case of distance checking (properties 2 and 4), property parameters
u, v and w are specified respectively as follows:

– for T1: 41, 24, 11

– for T2: 40, 40, 20

– for T3: 66, 24, 11

• Unless stated otherwise in the tables, the default settings for the ver-
ification runs are MAX M=50 and ACCURACY=10.

• Table entries contain:

– number of states in format: stored/matched(visited)

– number of seconds the run took

– for properties 3 and 4: the value found for parameter x

– value of MAX M if other than 50

• IEC = Invalid End state Check, for comparison purposes.

Table C.4: SPIN results for properties 1 & 3 (correct parents)

T1: 5.6(d)[33/18] T2: 5.6(c) T3: 5.6(d)
P1 1605/27544(2406) 1605/89296(2406) 1605/27208(2406)

0.29s 0.66s 0.29s
P3 804/6487 804/21925 804/6403

0.13s 0.24s 0.13s
x=7 x=5 x=5

IEC 804/6486 804/21924 804/6402
0.12s 0.18s 0.12s

Table C.5: SPIN results for properties 2 & 4 (correct distance)

T1: 5.6(d)[33/18] T2: 5.6(c) T3: 5.6(d)
P2 3205/49568(4806) 1605/89296(2406) 3205/56048(4806)

0.48s 0.66s 0.52s
MAX M=100 MAX M=100

IEC 1604/11592 804/21924 1604/13212
MAX M=100 MAX M=100

0.15 s 0.18s 0.16s
P4 8004/58747 8004/219226 32004/266857

MAX M=500 MAX M=500 MAX M=2000

0.65s 1.68s 2.56s
x=126 x=45 x=1001

Master’s Thesis - W.M. Everse 183

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

C.3.3 Stored and Matched States

This section experimentally validates the results of the found formulæ for the
number of stored states s and the number of matched states m of our model
against the numbers reported by SPIN. It also experimentally shows that the
number of matched states m of our model reported by SPIN is independent
of the number of nodes. Finally, we also attempted to experimentally find
an expression for p in the formula for matched states.

The formulæ:

• s = 4 + 4 ·N ·MAX M

• m = p ·MAX M · (2E − 1)

whereN andMAX M are model parameters denoting respectively the num-
ber of nodes and the maximum number of message rounds to verify. p is
some probability that depends on the link quality and E is the number of
directed edges in the topology under consideration.

We listed SPIN’s output for an invalid end state check of our model with ten
50% links (E = 20 directed links of quality q = 0.5) below. Further, model
parameter MAX M=10 and p = 1− 0.5 = 0.5 (we already saw that p = 1− q
if all links have the same quality q). The topology under consideration is
a ring topology (i.e. a chain topology with an additional link between the
first and the last node of the chain). The remaining links connect arbitrary
pairs of non-neighbouring nodes in the ring. We start with N=5 nodes (thus
completely connected), and increase the number of nodes up to N=10, which
is just a ring of nodes. Finally, we also checked N=11, a ring topo in which
a connection misses: thus just a chain on 11 nodes.

• N=5, formulæ outcome OK: 204/5242875, 25.42s.

• N=6, formulæ outcome OK: 244/5242875, 27.68s.

• N=7, formulæ outcome OK: 284/5242875, 31.48s.

• N=8, formulæ outcome OK: 324/5242875, 32.70s.

• N=9, formulæ outcome OK: 364/5242875, 38.48s.

• N=10, formulæ outcome OK: 404/5242875, 41.23s.

• N=11, formulæ outcome OK: 444/5242875, 45.43s.

The formulæ outcome is equal to the results reported by SPIN, the number of
matched states is constant and it is much bigger than the number of stored

Master’s Thesis - W.M. Everse 184

APPENDIX C. SPIN MODEL, SIMULATION AND VERIFICATION RESULTS

states. The determinant of the feasibility of a verification run is the number
of directed edges in the topology.

What about p in the formula for matched states? We know that for topolo-
gies in which all links have the same quality, say q, p equals 1− q. But what
about topologies in which different link qualities appear? As an attempt to
find an expression for p, we take a very simple topology:

0 1 2
x y

m = p ·MAX M · (24 − 1) = 1500p

x y m p = m
1500 p(%)

3
4

4
4 75 1

20 5.0
3
4 375 1

4 25.0
2
4 450 3

10 30.0
1
4 525 7

20 35.0
0
4 75 1

20 5.0
9
10 150 1

10 10.0
1
10 570 19

50 38.0
1
50 594 99

250 39.6
1

100 597 199
500 39.8

9
10 417 139

500 27.8
99
100 309 103

500 20.6

9
10

1
10 390 13

50 26.0

The formula for the number of matched states for the case with this topology
and MAX M = 100 is on the right of the figure. Below we listed the
experiments we did using this simple scenario. It can be observed that the
first part of the table approaches 40%. We were however unable to derive
an expression for p based on link qualities.

Master’s Thesis - W.M. Everse 185

APPENDIX D

PRISM Model, Simulation and Verification Results

This appendix contains the complete source of our PRISM models and sec-
tions about PRISM’s simulator and verifier.

D.1 Protocol Model

The V1 model presented in chapter 7 could not be built by PRISM. Model
V2 is an updated version of V1, which can be built (more info, see chap. 7).

D.1.1 Model V2

1 // nondeterminism in execution order: mdp

2 mdp

3
4 // number of message rounds

5 const int MAX_M;

6
7 //big number representing infinite distance

8 const int MAX_DIST = 10;

9
10 // bidirectional link qualities

11 const double p01 = 0.15;

12 const double p02 = 0.1;

13 const double p03 = 0.9;

14 const double p12 = 0;

15 const double p13 = 0.33;

16 const double p23 = 0.8;

17
18 //node representations used for parent selection

19 const int n0 = 0;

20 const int n1 = 1;

21 const int n2 = 2;

22 const int n3 = 3;

23
24 // distance to G of G is always 0

25 const int dist00 = 0;

Listing D.1: PRISM Model V2 - Part 1

Master’s Thesis - W.M. Everse 186

APPENDIX D. PRISM MODEL, SIMULATION AND VERIFICATION RESULTS

26 // gateway node

27 module node0

28 M0 : [0.. MAX_M] init 0; //my msg round counter

29
30 //if (not sent this msg round) & (max round not yet reached),

31 // broadcast a msg (by sync) and increase msg round nr

32 [send0] (M0 <=M1 & M0 <=M2 & M0 <=M3) & (M0 <MAX_M) -> (M0 ’=M0+1);

33 endmodule

34
35 //node 1

36 module node1

37 dist10 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 0 acc to me

38 dist11 : [0.. MAX_DIST] init MAX_DIST; //my own distance to G

39 dist12 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 2 acc to me

40 dist13 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 3 acc to me

41
42 recv10 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 0

43 recv12 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 2

44 recv13 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 3

45
46 parent1: [0..3]; //the parent node I selected

47
48 M1 : [0.. MAX_M] init 0; //my msg round counter

49
50 //if (not sent this msg round) & (max round not yet reached),

51 // broadcast a msg (by sync), update M1, dist -to-G and parent

52 [send1] (M1 <=M0 & M1 <=M2 & M1 <=M3) & (M1 <MAX_M) ->

53 (M1 ’=M1+1) & (dist11 ’= computedist1) & (parent1 ’= setparent1);

54
55 // receive (sync) msg from node 0 with probability p01

56 [send0] recv10 <(10* MAX_M -8) -> p01: (dist10 ’= dist00) & (recv10 ’= recv10 +10) + (1-p01):

true;

57
58 // receive (sync) msg from node 2 with probability p12

59 [send2] recv10 <(10* MAX_M -8) -> p12: (dist12 ’= dist22) & (recv12 ’= recv12 +10) + (1-p12):

true;

60
61 // receive (sync) msg from node 3 with probability p13

62 [send3] recv10 <(10* MAX_M -8) -> p13: (dist13 ’= dist33) & (recv13 ’= recv13 +10) + (1-p13):

true;

63 endmodule

64
65
66 // define node 2 by module renaming

67 module node2 = node1 [//send transition:

68 send1=send2 , M1=M2 , M2=M1 , dist11=dist22 , parent1=parent2 ,

69 //recv from node 0 (common neighbour):

70 p01=p02 , dist10=dist20 , recv10=recv20 ,

71 //recv from node 3 (common neighbour):

72 p13=p23 , dist13=dist23 , recv13=recv23 ,

73 //recv from node 1 (reversed):

74 send2=send1 , dist12=dist21 , dist22=dist11 ,recv12=recv21 ,

75 // parent selection:

76 n2=n1

77]endmodule

78
79 // define node 3 by module renaming

80 module node3 = node1 [//send transition:

81 send1=send3 , M1=M3 , M3=M1 , dist11=dist33 , parent1=parent3 ,

82 //recv from node 0 (common neighbour):

83 p01=p03 , dist10=dist30 , recv10=recv30 ,

84 //recv from node 2 (common neighbour):

85 p12=p23 , dist12=dist32 , recv12=recv32 ,

86 //recv from node 1 (reversed):

87 send3=send1 , dist13=dist31 , dist33=dist11 ,recv13=recv31 ,

88 // parent selection

89 n3=n1

90]endmodule

91
92 // formula for distance computation

93 formula computedist1 = min(ceil (10*M1/recv10 + dist10), ceil (10*M1/recv12 + dist12),

94 ceil (10*M1/recv13 + dist13), MAX_DIST);

95 // formula for parent selection

96 formula setparent1 = (computedist1=ceil (10*M1/recv10 + dist10)) ? n0 :

97 (computedist1=ceil (10*M1/recv12 + dist12)) ? n2 : n3 ;

Listing D.2: PRISM Model V2 - Part 2

Master’s Thesis - W.M. Everse 187

APPENDIX D. PRISM MODEL, SIMULATION AND VERIFICATION RESULTS

D.1.2 Model V3 (Fixed Order)

Model V3 is based on model V2, but the execution order of the node modules
is fixed. This is achieved by adding a local variable turnx (where x is a node
number) to each module. It is used to keep track of the node whose turn it
is to broadcast a probe message. Since this eliminates the non-determinism
in the model, the model type is a dtmc instead of a mdp.

1 //fixed execution order , no nondeterminism: dtmc

2 dtmc

3
4 // number of message rounds

5 const int MAX_M;

6
7 //big number representing infinite distance

8 const int MAX_DIST = 10;

9
10 // bidirectional link qualities

11 const double p01 = 0.15;

12 const double p02 = 0.1;

13 const double p03 = 0.9;

14 const double p12 = 0;

15 const double p13 = 0.33;

16 const double p23 = 0.8;

17
18 // number of nodes for modulo computation

19 const int N = 4;

20
21 //node representations used for parent selection

22 const int n0 = 0;

23 const int n1 = 1;

24 const int n2 = 2;

25 const int n3 = 3;

26
27 // distance to G of G is always 0

28 const int dist00 = 0;

29
30 // gateway node

31 module node0

32 M0 : [0.. MAX_M] init 0; //my msg round counter

33 turn0 : [0..N-1] init n0; // indicates whose turn it is

34
35 //if (it is my turn) & (max round not yet reached),

36 // broadcast a msg (by sync), increase msg round & update turn

37 [send0] (turn0=n0) & (M0<MAX_M) -> (M0 ’=M0+1) & (turn0 ’ = nextG);

38
39 // update turn variable mod N

40 [send1] (turn0=n1) -> (turn0 ’= nextG);

41 [send2] (turn0=n2) -> (turn0 ’= nextG);

42 [send3] (turn0=n3) -> (turn0 ’= nextG);

43 endmodule

Listing D.3: PRISM Model V3 - Part 1

Each transition updates the value of the turn variable. Without the use of
a formula to do this, it would result in many duplicate code. Therefore, we
added two new formulæ nextG and next for use in respectively the gateway
module and the node modules to update the turn variable (lines 110-112 in
listing D.4 below).

Master’s Thesis - W.M. Everse 188

APPENDIX D. PRISM MODEL, SIMULATION AND VERIFICATION RESULTS

45
46 //node 1

47 module node1

48 dist10 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 0 acc to me

49 dist11 : [0.. MAX_DIST] init MAX_DIST; //my own distance to G

50 dist12 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 2 acc to me

51 dist13 : [0.. MAX_DIST] init MAX_DIST; // distance to G of node 3 acc to me

52
53 recv10 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 0

54 recv12 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 2

55 recv13 : [1..1+ MAX_M *10] init 1; //#msgs I received from node 3

56
57 parent1: [0..N-1]; //the parent node I selected

58
59 M1 : [0.. MAX_M] init 0; //my msg round counter

60
61 turn1 : [0..N-1] init n0; // indicates whose turn it is

62
63 //if (it is my turn) & (max round not yet reached),

64 // broadcast a msg (by sync), update M1, dist -to-G, parent & turn

65 [send1] (turn1=n1) & (M1<MAX_M) -> (M1 ’=M1+1) & (dist11 ’= computedist1) &

66 (parent1 ’= setparent1) & (turn1 ’= next);

67
68 // receive (sync) msg from node 0 with probability p01

69 [send0] (turn1=n0) & (recv10 <(10* MAX_M -8)) ->

70 p01: (dist10 ’= dist00) & (recv10 ’= recv10 +10) & (turn1 ’= next) +

71 (1-p01): (turn1 ’= next);

72
73 // receive (sync) msg from node 2 with probability p12

74 [send2] (turn1=n2) & (recv12 <(10* MAX_M -8)) ->

75 p12: (dist12 ’= dist22) & (recv12 ’= recv12 +10) & (turn1 ’= next) +

76 (1-p12): (turn1 ’= next);

77
78 // receive (sync) msg from node 3 with probability p13

79 [send3] (turn1=n3) & (recv13 <(10* MAX_M -8)) ->

80 p13: (dist13 ’= dist33) & (recv13 ’= recv13 +10) & (turn1 ’= next) +

81 (1-p13): (turn1 ’= next);

82 endmodule

83
84 // define node 2 by module renaming

85 module node2 = node1 [//send transition:

86 send1=send2 , M1=M2 , M2=M1, dist11=dist22 , parent1=parent2 ,

87 //recv from node 0 (common neighbour):

88 p01=p02 , dist10=dist20 , recv10=recv20 ,

89 //recv from node 3 (common neighbour):

90 p13=p23 , dist13=dist23 , recv13=recv23 ,

91 //recv from node 1 (reversed):

92 send2=send1 , dist12=dist21 , dist22=dist11 ,recv12=recv21 ,

93 // parent selection and turn:

94 n2=n1, n1=n2, turn1=turn2

95]endmodule

96
97 // define node 3 by module renaming

98 module node3 = node1 [//send transition:

99 send1=send3 , M1=M3 , M3=M1, dist11=dist33 , parent1=parent3 ,

100 //recv from node 0 (common neighbour):

101 p01=p03 , dist10=dist30 , recv10=recv30 ,

102 //recv from node 2 (common neighbour):

103 p12=p23 , dist12=dist32 , recv12=recv32 ,

104 //recv from node 1 (reversed):

105 send3=send1 , dist13=dist31 , dist33=dist11 ,recv13=recv31 ,

106 // parent selection and turn:

107 n3=n1, n1=n3, turn1=turn3

108]endmodule

109
110 // formulae to update turn variable modulo N

111 formula nextG = func(mod , turn0+1, N);

112 formula next = func(mod , turn1+1, N);

113
114 // formula for distance computation

115 formula computedist1 = min(ceil (10*M1/recv10 + dist10), ceil (10*M1/recv12 + dist12),

116 ceil (10*M1/recv13 + dist13), MAX_DIST);

117 // formula for parent selection

118 formula setparent1 = (computedist1=ceil (10*M1/recv10 + dist10)) ? n0 :

119 (computedist1=ceil (10*M1/recv12 + dist12)) ? n2 : n3 ;

Listing D.4: PRISM Model V3 - Part 2

Master’s Thesis - W.M. Everse 189

APPENDIX D. PRISM MODEL, SIMULATION AND VERIFICATION RESULTS

D.2 Validation by Simulation

PRISM’s GUI provides a powerful simulator to debug (or validate) the be-
haviour of a model. It is depicted in figure D.1 below. Enabled transitions
together with their associated probabilities are shown and can be selected
manually. Automatic simulation of a number of steps is also possible, and
so is backtracking (a number of steps) on a simulation path. Either the
full state of all modules or a user-selected set of module variables is shown
for each simulated step, thereby visualizing the simulated path. The initial
state is often specified in the model itself but the simulator also allows for
changing it at the start of a new simulation path. It also asks the user for
a value for all undefined constants (such as MAX_M in our model).

Figure D.1: The simulator tab of the PRISM GUI

We used the simulator to validate our ideas about the constructed PRISM

model. Our model V1 for example (as presented in chapter 7) can perfectly
be simulated. As can be seen in the model source, the topology simulated is
our (in the mean time well-known) topology on 4 nodes, figure 5.6(d) on page
82 with 33% substituted for 18%. Automatic simulation often results in for
instance node 1 selecting node 3 as parent node, but not always: sometimes
it selects node 0 as its parent. This is due to the ‘real’ probabilities computed
by PRISM.

Master’s Thesis - W.M. Everse 190

APPENDIX D. PRISM MODEL, SIMULATION AND VERIFICATION RESULTS

D.2.1 Workaround Zero Dividing

This subsection explains the workaround that we applied to avoid zero di-
viding in distance computation. In an early version of our model of a 4-node
topology, the formula for distance computation was as follows:

//node 1 computes its distance

formula computedist1 = min(ceil(M1/recv10 + dist10), ceil(M1/recv12 + dist12),

ceil(M1/recv13 + dist13), MAX_DIST);

Since the receive counters recvxy (where x,y are node numbers) were ini-
tialized to 0, this resulted in zero dividing, which is undesired for obvious
reasons. In PRISM simulation mode, it resulted for instance in arbitrary
large, negative integer values (rather than an error, though). To avoid this,
we modified the formula:

//node 1 computes its distance

formula computedist1 = (recv10 >0 & recv12 >0 & recv13 >0) ? min(ceil(M1/recv10 + dist10),

ceil(M1/recv12 + dist12), ceil(M1/recv13 + dist13), MAX_DIST)

: MAX_DIST;

However, this is of course incorrect: now distance is only computed when a
node received at least one message from all possible neighbours. But this
may never be the case, resulting in a node that never computes its distance-
to-G. A solution could be to check for all possibilities (i.e. did/did not
receive at least one message for each possible neighbour), but the number of
possibilities is exponential in the number of nodes and that would heavily
reduce the extendibility of the model (which was already not very good).

A more convenient solution is a workaround: we initialize the receive coun-
ters recvxy to 1 instead of 0, thus eliminating zero dividing. This however
results in incorrect distance computation: especially in the first few message
rounds, all nodes think that they are very well-connected. To reduce the
impact of this error, we increase the receive counters with 10 (instead of 1)
every time a probe message is received and we multiply the message round
counters with 10 in the formula for distance computation. Now the error
introduced is 10 times smaller and it is simply ignored.

Note that we also had to adjust the declared range of the receive coun-
ters. In order to be able to use this workaround. The range should be
[1..1+MAX_M*10] instead of [0..MAX_M]. Note also that the guards in model
V2 and V3 take this range into account (recvxy < (10*MAX_M-8)).

Master’s Thesis - W.M. Everse 191

APPENDIX D. PRISM MODEL, SIMULATION AND VERIFICATION RESULTS

D.3 Verification Examples

As said in chapter 7, PRISM can add self-loops to deadlock states that are
encountered during model construction (building). These states can be ref-
erenced to from properties, using the state label "deadlock". In our models,
deadlock states should only occur at the ‘end’ of the verification run (when
all nodes reached MAX_M), as it was the case with UPPAAL. Therefore, the
following (qualitative) property can be used to check whether there are any
other (unwanted) deadlocks:

// Property for deadlock freedom

P>=1 [G (" deadlock" => (M0=MAX_M & M1=MAX_M & M2=MAX_M & M3=MAX_M))]

In words: there is a probability of 1 that, whenever a deadlock state is found,
all nodes reached the maximum message round number in that state (i.e. it
is a ‘valid’ deadlock state). Verification of this property for model V2 with
MAX_M=4 in PRISM’s GUI took 3.16 s, resulting in the following window:

Figure D.2: Property details in PRISM’s GUI

Another interesting (quantitative) property to check is the following:

// Property for parent selection

Pmin=? [F parent1=n3]

In words: what is the minimum probability that node 1 eventually selects
node 3 as its parent? Unfortunately, PRISM did not manage to check it
within 15 minutes (for the same model).

Master’s Thesis - W.M. Everse 192

APPENDIX E

SPIN Models of Protocol Variations

This appendix contains the source of our SPIN models of variations of the
SPT protocol.

E.1 Finite Sliding Window Variant MA

This section contains the PROMELA source of the finite sliding window vari-
ant of our original model, with a simple MA of the link quality.

1 /∗ SPT Pro t o co l model f o r WSNs − W.M. Eve r s e ∗/
2 /∗ Expe r iment s w i th f i n i t e s l i d i n g window , SMA ∗/
3
4 /∗ DEFINE CONSTANTS ∗/
5 #de f i n e N 4 /∗ Number o f nodes ∗/
6 #de f i n e WIN SIZE 10 /∗ Window s i z e i n msg rounds ∗/
7 #de f i n e MAX WIN 10 /∗ Max number o f windows ∗/
8 #de f i n e MAX DIST 10000 /∗ Rep r e s en t s ’ i n f i n i t e ’ d i s t a n c e ∗/
9 #de f i n e ACCURACY 10 /∗ M u l t i p l i c a t i o n f a c t o r ∗/

10 #de f i n e GATEWAY COUNT 1 /∗ Number o f gateways ∗/
11
12 /∗ TYPEDEFS & DECLARATIONS ∗/
13 l o c a l byte WIN CNT = 0 ; /∗ Counts the nr o f pas sed windows ∗/
14
15 typede f NodeData{ /∗ Node data : ∗/
16 byte pa r en t = 0 ; /∗ − s e l e c t e d pa r en t ∗/
17 byte R[N] ; /∗ − count s r e c e i v e d msgs (pe r node) ∗/
18 chan W[N] = [WIN SIZE] of {boo l } ; /∗ − most r e c e n t window wi th r e c v i n f o (pe r node) ∗/
19 sho r t D[N] = MAX DIST ; /∗ − d i s t−to−G (pe r node) ∗/
20 }
21
22 NodeData nodes [N] ; /∗ A l l node data ∗/
23
24 l o c a l byte M; /∗ G loba l msg round number ∗/
25
26 typede f Tuple {byte u ; byte v}
27 typede f NodeDimTuple{ Tuple to [N] }
28 hidden NodeDimTuple C [N] ; /∗ Conn e c t i v i t y Matr ix , NxN ∗/
29 hidden NodeDimTuple H[N] ; /∗ H i s t o r y Matr ix , NxN ∗/
30
31 typede f NodeDimBool{ boo l to [N] ; }

Listing E.1: Finite Sliding Window MA - part 1/3

Master’s Thesis - W.M. Everse 193

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

32 hidden NodeDimBool msgs [N] ; /∗ Message Exchange Matr ix , NxN ∗/
33
34 byte c t r l = N; /∗ Used f o r t r a n s f e r r i n g c o n t r o l ∗/
35
36 /∗ INLINE DECLARATIONS ∗/
37 i n l i n e i sGateway (i d){ /∗ Check i f i d i s a gateway ∗/
38 (i d < GATEWAY COUNT) ;
39 }
40
41 i n l i n e r e c e i v e (i d){ /∗ Update c oun t e r s i f r e c e i v e d a msg ∗/
42 atomic{
43 do
44 : : (k < N) −>
45 r = msgs [k] . to [i d] ; /∗ Msg recvd t h i s msg round ? ∗/
46
47 i f
48 : : n f u l l (nodes [i d] .W[k]) −> /∗ I f queue i s not f u l l y e t ∗/
49 x=0
50 : : f u l l (nodes [i d] .W[k]) −> /∗ I f queue i s f u l l ∗/
51 nodes [i d] .W[k] ? x ; /∗ Get o l d e s t msg round i n f o ∗/
52 f i ;
53 nodes [i d] . R [k] = r−x+nodes [i d] . R [k] ; /∗ Update coun t e r ∗/
54
55 nodes [i d] .W[k] ! r ; /∗ Append most r e c e n t i n f o to queue ∗/
56
57 i f
58 : : r −> i f /∗ Update p e r c e i v e d d i s t a n c e i f r e c vd ∗/
59 : : i sGateway (k)−> nodes [i d] .D[k] = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
60 : : e l s e −> nodes [i d] .D[k]=nodes [k] .D[k]
61 f i
62 : : e l s e −> s k i p
63 f i ;
64
65 k++
66 : : (k==N) −> k=0; r =0; break
67 od
68 }
69 }
70
71 i n l i n e getMinimum (i d){ /∗ Compute minimum d i s t a n c e ∗/
72 atomic{
73 minva l = MAX DIST ;
74 do
75 : : (k < N) −>
76 i f
77 : : (nodes [i d] . R [k] > 0) && (k != i d) && (nodes [i d] .D[k] < MAX DIST) −>
78 l = l e n (nodes [i d] .W[k]) ;
79 t r y = (ACCURACY ∗ l / nodes [i d] . R [k]) + nodes [i d] .D[k] ;
80 t r y = (((ACCURACY∗ l)%nodes [i d] . R [k])>=(nodes [i d] . R [k] / 2) −>(t r y +1) : t r y) ;
81 i f
82 : : (t r y <= minva l) −> minva l = t r y ; nodes [i d] . p a r en t = k
83 : : e l s e −> s k i p
84 f i
85 : : e l s e −> s k i p
86 f i ;
87 k++
88 : : (k == N) −> k=0; l =0; t r y =0; nodes [i d] .D[i d] = minva l ; break
89 od ;
90 }
91 }
92
93 i n l i n e setC (x , y , p , q){ /∗ Se t s e n t r i e s i n mat r i x C ∗/
94 C[x] . to [y] . u = p ;
95 C[x] . to [y] . v = q ;
96 C[y] . to [x] . u = p ; /∗ Due to symmetry ∗/
97 C[y] . to [x] . v = q ; /∗ Due to symmetry ∗/
98 }
99

100 i n l i n e canLoose (a , b){ /∗ Check i f msgs s t i l l may be l o s t ∗/
101 (C [a] . to [b] . u − H[a] . to [b] . u) < (C [a] . to [b] . v − H[a] . to [b] . v)
102 }
103
104 i n l i n e canSend (c , d){ /∗ Check i f msgs s t i l l may be s en t ∗/
105 H[c] . to [d] . u < C[c] . to [d] . u
106 }

Listing E.2: Finite Sliding Window MA - part 2/3

Master’s Thesis - W.M. Everse 194

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

107
108 i n l i n e checkRese t (e , f){ /∗ Reset c oun t e r s when needed ∗/
109 i f /∗ (modulo C [] . to [] . v) ∗/
110 : : (H[e] . to [f] . v == C[e] . to [f] . v) −> H[e] . to [f] . u = 0 ; H[e] . to [f] . v = 0 ;
111 : : e l s e −> s k i p
112 f i
113 }
114
115 /∗ PROCESS DECLARATIONS ∗/
116 a c t i v e [N] proctype node (){ /∗ Node p r o c e s s ∗/
117 endN : do
118 : : c t r l == p i d −> /∗ Wait f o r c o n t r o l ∗/
119 byte k , l ; /∗ Used i n i n l i n e c o n s t r u c t s ∗/
120 boo l r , x ; /∗ Used i n i n l i n e c o n s t r u c t ∗/
121 sho r t t r y , m inva l ; /∗ Used i n i n l i n e c o n s t r u c t ∗/
122 getMinimum (p i d) ; /∗ Compute minimum d i s t−to−G ∗/
123 r e c e i v e (p i d) ; /∗ ’ r e c e i v e ’ from a l l o t h e r nodes ∗/
124 c t r l++ /∗ Tran s f e r c o n t r o l to nex t p r o c e s s ∗/
125 od
126 }
127
128 a c t i v e proctype g l oba lS end (){ /∗ S imu l a t e s s end i ng g l o b a l l y ∗/
129 byte i , j ;
130
131 d s tep{ /∗ F i l l symmetr ic c o n n e c t i v i t y mat r i x ∗/
132 /∗ Using i n l i n e setC (from , to , u , v) ∗/
133 /∗ a r b i t r a r y topo , un ique SPT [30/18]
134 setC (0 , 1 , 1 , 7) ; se tC (0 , 2 , 1 , 10) ; setC (0 , 3 , 9 , 10) ;
135 setC (1 , 3 , 3 , 10) ;
136 setC (2 , 3 , 4 , 5)
137 ∗/
138 /∗ a r b i t r a r y topo f i g . 4 . 1 c , mult SPT
139 setC (0 , 1 , 1 , 4) ; se tC (0 , 2 , 1 , 5) ; se tC (0 , 3 , 1 , 2) ;
140 setC (1 , 3 , 1 , 2) ;
141 setC (2 , 3 , 1 , 2)
142 ∗/
143 /∗ a r b i t r a r y topo f i g . 4 . 1 e , d i s c onn e c t e d gateway∗/
144 setC (0 , 1 , 1 , 10) ; setC (0 , 2 , 1 , 10) ; setC (0 , 3 , 1 , 10) ;
145 setC (1 , 2 , 1 , 1) ; se tC (1 , 3 , 1 , 1) ;
146 setC (2 , 3 , 1 , 1)
147 }
148
149 do /∗ For each msg round ∗/
150 : : (M<WIN SIZE) &&
151 (WIN CNT<MAX WIN) −> atomic{
152 do /∗ F i l l msgs mat r i x ∗/
153 : : (i<N) −> do
154 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
155 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
156 i f
157 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
158 msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
159 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
160 msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
161 H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
162 f i ;
163 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
164 checkRese t (i , j) ;
165 j++
166 : : (j==N) −> j =0; break
167 od ;
168 i++
169 : : (i==N) −> i =0; break
170 od ;
171 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
172 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
173 M++
174 : : (M==WIN SIZE) && (WIN CNT<MAX WIN) −> /∗ A window pas sed by , r e s e t ∗/
175 M=0; WIN CNT++
176 : : (WIN CNT==MAX WIN) −> break /∗ Max nr o f windows reached , s top ∗/
177 od
178 }

Listing E.3: Finite Sliding Window MA - part 3/3

Master’s Thesis - W.M. Everse 195

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

E.2 Finite Sliding Window Variant WMA

This section contains the PROMELA source of the finite sliding window vari-
ant of our original model, with a Weighted Moving Average (WMA) of the
link quality: Older data is less important compared to more recent data
(linear decreasing weights). The position of the 0 or 1 in the window (in the
queue) is its weight.

1 /∗ SPT Pro t o co l model f o r WSNs − W.M. Eve r s e ∗/
2 /∗ Expe r iment s w i th f i n i t e s l i d i n g window , WMA ∗/
3
4 /∗ DEFINE CONSTANTS ∗/
5 #de f i n e N 4 /∗ Number o f nodes ∗/
6 #de f i n e WIN SIZE 10 /∗ Window s i z e i n msg rounds ∗/
7 #de f i n e MAX WIN 20 /∗ Max number o f windows ∗/
8 #de f i n e MAX DIST 10000 /∗ Rep r e s en t s ’ i n f i n i t e ’ d i s t a n c e ∗/
9 #de f i n e ACCURACY 10 /∗ M u l t i p l i c a t i o n f a c t o r ∗/

10 #de f i n e GATEWAY COUNT 1 /∗ Number o f gateways ∗/
11
12 /∗ TYPEDEFS & DECLARATIONS ∗/
13 l o c a l byte WIN CNT = 0 ; /∗ Counts the nr o f pas sed windows ∗/
14
15 typede f NodeData{ /∗ Node data : ∗/
16 byte pa r en t = 0 ; /∗ − s e l e c t e d pa r en t ∗/
17 byte ETX[N] = 0 ; /∗ − expec t ed t r a n sm i s s i o n count (pe r node) ∗/
18 chan W[N] = [WIN SIZE] of {boo l } ; /∗ − most r e c e n t window wi th r e c v i n f o (pe r node) ∗/
19 sho r t D[N] = MAX DIST ; /∗ − d i s t−to−G (pe r node) ∗/
20 }
21
22 NodeData nodes [N] ; /∗ A l l node data ∗/
23
24 l o c a l byte M; /∗ G loba l msg round number ∗/
25
26 typede f Tuple {byte u ; byte v}
27 typede f NodeDimTuple{ Tuple to [N] }
28 hidden NodeDimTuple C [N] ; /∗ Conn e c t i v i t y Matr ix , NxN ∗/
29 hidden NodeDimTuple H[N] ; /∗ H i s t o r y Matr ix , NxN ∗/
30
31 typede f NodeDimBool{ boo l to [N] ; }
32 hidden NodeDimBool msgs [N] ; /∗ Message Exchange Matr ix , NxN ∗/
33
34 byte c t r l = N; /∗ Used f o r t r a n s f e r r i n g c o n t r o l ∗/
35
36 /∗ INLINE DECLARATIONS ∗/
37 i n l i n e i sGateway (i d){ /∗ Check i f i d i s a gateway ∗/
38 (i d < GATEWAY COUNT) ;
39 }

Listing E.4: Finite Sliding Window WMA - part 1/4

Master’s Thesis - W.M. Everse 196

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

41 i n l i n e r e c e i v e (i d){ /∗ Update c oun t e r s i f r e c e i v e d a msg ∗/
42 atomic{
43 do
44 : : (k < N) −>
45 r = msgs [k] . to [i d] ; /∗ Msg recvd t h i s msg round ? ∗/
46
47 i f
48 : : f u l l (nodes [i d] .W[k]) −> /∗ I f queue i s f u l l ∗/
49 nodes [i d] .W[k] ? /∗ Di s ca rd o l d e s t msg round i n f o ∗/
50 : : n f u l l (nodes [i d] .W[k]) −>
51 s k i p
52 f i ;
53
54 nodes [i d] .W[k] ! r ; /∗ Append most r e c e n t i n f o to queue∗/
55
56 computeETX(id , k) ;
57
58 i f /∗ Update p e r c e i v e d d i s t a n c e i f r e c vd ∗/
59 : : r −>
60 i f
61 : : i sGateway (k)−>
62 nodes [i d] .D[k] = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
63 : : e l s e −>
64 nodes [i d] .D[k]=nodes [k] .D[k]
65 f i
66 : : e l s e −> s k i p
67 f i ;
68
69 k++
70 : : (k==N) −> k=0; r =0; break
71 od
72 }
73 }
74
75 i n l i n e computeETX(id , k){ /∗ Compute WMA of ETX ∗/
76 do
77 : : (we ight < WIN SIZE) && nempty (nodes [i d] .W[k]) −>
78 nodes [i d] .W[k] ? x ; /∗ Get o l d e s t v a l u e from queue∗/
79 r e s u l t = r e s u l t + we ight∗x ; /∗ Mu l t i p l y by we ight & add to r e s u l t ∗/
80 nodes [i d] .W[k] ! x ; /∗ Put v a l u e back i n queue ∗/
81 we ight++ /∗ Next ∗/
82 : : (we ight == WIN SIZE) | | (empty (nodes [i d] .W[k])) −> break
83 od ;
84
85 i f
86 : : (r e s u l t > 0) −>
87 r e s u l t = we ight ∗(weight−1)/(2∗ r e s u l t) /∗ Compute WMA of ETX ∗/
88 : : e l s e −> r e s u l t = 0 /∗ Nothing r e c e i v e d , s e t to 0 ∗/
89 f i ;
90
91 nodes [i d] . ETX[k] = r e s u l t ; /∗ Save r e s u l t ∗/
92
93 x=0; we ight =0; r e s u l t =0; /∗ Reset v a r i a b l e s ∗/
94 }
95
96 i n l i n e getMinimum (i d){ /∗ Compute minimum d i s t a n c e ∗/
97 /∗ v a r s ’ minva l ’ , ’ t r y ’ and ’ k ’ a r e d e c l a r e d i n node p r o c e s s ∗/
98 atomic{
99 minva l = MAX DIST ;

100 do
101 : : (k < N) −>
102 i f
103 : : (nodes [i d] . ETX[k] > 0) && (k != i d) && (nodes [i d] .D[k] < MAX DIST) −>
104 t r y = nodes [i d] . ETX[k] + nodes [i d] .D[k] ;
105 i f
106 : : (t r y <= minva l) −> minva l = t r y ; nodes [i d] . p a r en t = k
107 : : e l s e −> s k i p
108 f i
109 : : e l s e −> s k i p
110 f i ;
111 k++
112 : : (k == N) −> k=0; t r y =0; nodes [i d] .D[i d] = minva l ; break
113 od ;
114 }
115 }

Listing E.5: Finite Sliding Window WMA - part 2/4

Master’s Thesis - W.M. Everse 197

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

117 i n l i n e setC (x , y , p , q){ /∗ Se t s e n t r i e s i n mat r i x C ∗/
118 C[x] . to [y] . u = p ;
119 C[x] . to [y] . v = q ;
120 C[y] . to [x] . u = p ; /∗ Due to symmetry ∗/
121 C[y] . to [x] . v = q ; /∗ Due to symmetry ∗/
122 }
123
124 i n l i n e canLoose (a , b){ /∗ Check i f msgs s t i l l may be l o s t ∗/
125 (C [a] . to [b] . u − H[a] . to [b] . u) < (C [a] . to [b] . v − H[a] . to [b] . v)
126 }
127
128 i n l i n e canSend (c , d){ /∗ Check i f msgs s t i l l may be s en t ∗/
129 H[c] . to [d] . u < C[c] . to [d] . u
130 }
131
132 i n l i n e checkRese t (e , f){ /∗ Reset c oun t e r s when needed ∗/
133 i f /∗ (modulo C [] . to [] . v) ∗/
134 : : (H[e] . to [f] . v == C[e] . to [f] . v) −> H[e] . to [f] . u = 0 ; H[e] . to [f] . v = 0 ;
135 : : e l s e −> s k i p
136 f i
137 }
138
139 /∗ PROCESS DECLARATIONS ∗/
140 a c t i v e [N] proctype node (){ /∗ Node p r o c e s s ∗/
141 endN : do
142 : : c t r l == p i d −> /∗ Wait f o r c o n t r o l ∗/
143 boo l x ; byte we ight ; sho r t r e s u l t ; /∗ Used i n i n l i n e c o n s t r u c t s ∗/
144 byte k ; /∗ Used i n i n l i n e c o n s t r u c t s ∗/
145 boo l r ; /∗ Used i n i n l i n e c o n s t r u c t ∗/
146 sho r t t r y , m inva l ; /∗ Used i n i n l i n e c o n s t r u c t ∗/
147 getMinimum (p i d) ; /∗ Compute minimum d i s t−to−G ∗/
148 r e c e i v e (p i d) ; /∗ ’ r e c e i v e ’ from a l l o t h e r nodes ∗/
149 c t r l++ /∗ Tran s f e r c o n t r o l to nex t p r o c e s s ∗/
150 od
151 }
152
153 a c t i v e proctype g l oba lS end (){ /∗ S imu l a t e s s end i ng g l o b a l l y ∗/
154 byte i , j ;
155
156 d s tep{ /∗ F i l l symmetr ic c o n n e c t i v i t y mat r i x ∗/
157 /∗ Using i n l i n e setC (from , to , u , v) ∗/
158 /∗ a r b i t r a r y topo , un ique SPT [30/18] ∗/
159 setC (0 , 1 , 1 , 7) ; se tC (0 , 2 , 1 , 10) ; setC (0 , 3 , 9 , 10) ;
160 setC (1 , 3 , 1 , 3) ; /∗ ATTENTION: 1/3 i . s . o . 3/10 ∗/
161 setC (2 , 3 , 4 , 5)
162
163 /∗ t e s t topo , N=2
164 setC (0 , 1 , 5 , 10)
165 ∗/
166 }
167
168 do /∗ For each msg round ∗/
169 : : (M<WIN SIZE) &&
170 (WIN CNT<MAX WIN) −> atomic{
171 do /∗ F i l l msgs mat r i x ∗/
172 : : (i<N) −> do
173 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
174 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
175 i f
176 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
177 msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
178 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
179 msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
180 H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
181 f i ;
182 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
183 checkRese t (i , j) ;
184 j++
185 : : (j==N) −> j =0; break
186 od ;
187 i++

Listing E.6: Finite Sliding Window WMA - part 3/4

Master’s Thesis - W.M. Everse 198

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

188 : : (i==N) −> i =0; break
189 od ;
190 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
191 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
192 M++
193 : : (M==WIN SIZE) && (WIN CNT<MAX WIN) −> /∗ A window pas sed by , r e s e t ∗/
194 M=0; WINDOW CNT++
195 : : (WIN CNT==MAX WIN) −> break /∗ Max nr o f windows reached , s top ∗/
196 od
197 }

Listing E.7: Finite Sliding Window WMA - part 4/4

Master’s Thesis - W.M. Everse 199

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

E.3 Finite Sliding Window Variant EWMA

This section contains the PROMELA source of the finite sliding window vari-
ant of our original model, with an exponentially weighted moving average of
the link quality: older data is less important compared to more recent data
(exponentially decreasing weights).

1 /∗ SPT Pro t o co l model f o r WSNs − W.M. Eve r s e ∗/
2 /∗ Expe r iment s w i th EWMA d i s c o u n t i n g ∗/
3
4 /∗ No ETX/ d i s t an c e , the me t r i c i s now j u s t a l i n k q u a l i t y i n d i c a t o r
5 i . e (the smoothened ave rage) , i t s i n v e r s e may be used as d i s t a n c e i n d i c a t o r ∗/
6
7 /∗ DEFINE CONSTANTS ∗/
8 #de f i n e N 4 /∗ Number o f nodes ∗/
9 #de f i n e MAX M 100 /∗ Max number o f msg rounds ∗/

10 #de f i n e MAX DIST 10000 /∗ Rep r e s en t s ’ i n f i n i t e ’ d i s t a n c e ∗/
11 #de f i n e ACCURACY 100 /∗ M u l t i p l i c a t i o n f a c t o r ∗/
12 #de f i n e GATEWAY COUNT 1 /∗ Number o f gateways ∗/
13 #de f i n e ALPHA 10 /∗ Smoothing f a c t o r (pe r ACCURACY) ∗/
14
15 /∗ TYPEDEFS & DECLARATIONS ∗/
16 typede f NodeData{ /∗ Node data : ∗/
17 byte pa r en t = 0 ; /∗ − s e l e c t e d pa r en t ∗/
18 sho r t S [N] = 0 ; /∗ − q u a l i t y measure , exp smoothened avg (pe r node) ∗/
19 sho r t D[N] = MAX DIST ; /∗ − d i s t−to−G (pe r node) ∗/
20 }
21
22 NodeData nodes [N] ; /∗ A l l node data ∗/
23
24 sho r t M; /∗ G loba l msg round number ∗/
25
26 typede f Tuple {byte u ; byte v}
27 typede f NodeDimTuple{ Tuple to [N] ; }
28 hidden NodeDimTuple C [N] ; /∗ Conn e c t i v i t y Matr ix , NxN ∗/
29 hidden NodeDimTuple H[N] ; /∗ H i s t o r y Matr ix , NxN ∗/
30
31 typede f NodeDimBool{ boo l to [N] ; }
32 hidden NodeDimBool msgs [N] ; /∗ Message Exchange Matr ix , NxN ∗/
33
34 byte c t r l = N; /∗ Used f o r t r a n s f e r r i n g c o n t r o l ∗/
35
36 /∗ INLINE DECLARATIONS ∗/
37 i n l i n e i sGateway (i d){ /∗ Check i f i d i s a gateway ∗/
38 (i d < GATEWAY COUNT) ;
39 }
40
41 i n l i n e r e c e i v e (i d){ /∗ Update c oun t e r s i f r e c e i v e d a msg ∗/
42 atomic{
43 do
44 : : (k < N) && (msgs [k] . to [i d]) −>
45 nodes [i d] . S [k] = ALPHA + ((ACCURACY−ALPHA)∗nodes [i d] . S [k]) /ACCURACY;
46 i f
47 : : i sGateway (k) −> nodes [i d] .D[k] = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
48 : : e l s e −> nodes [i d] .D[k]=nodes [k] .D[k]
49 f i ;
50 k++
51 : : (k < N) && ! (msgs [k] . to [i d]) −>
52 nodes [i d] . S [k] = ((ACCURACY−ALPHA)∗nodes [i d] . S [k]) /ACCURACY; k++
53 : : (k==N) −> k=0; break
54 od
55 }
56 }

Listing E.8: Finite Sliding Window EWMA - part 1/3

Master’s Thesis - W.M. Everse 200

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

57
58 i n l i n e getMinimum (i d){ /∗ Compute minimum d i s t a n c e ∗/
59 /∗ v a r s ’ minva l ’ , ’ t r y ’ and ’ k ’ a r e d e c l a r e d i n node p r o c e s s ∗/
60 atomic{
61 minva l = MAX DIST ;
62 do
63 : : (k < N) −>
64 i f
65 : : (nodes [i d] . S [k] > 0) && (k != i d) && (nodes [i d] .D[k] < MAX DIST) −>
66 t r y = (ACCURACY / nodes [i d] . S [k]) + nodes [i d] .D[k] ;
67 t r y = ((ACCURACY%nodes [i d] . S [k])>=(nodes [i d] . S [k] / 2)−>(t r y +1) : t r y) ;
68 i f
69 : : (t r y <= minva l) −> minva l = t r y ; nodes [i d] . p a r en t = k
70 : : e l s e −> s k i p
71 f i
72 : : e l s e −> s k i p
73 f i ;
74 k++
75 : : (k == N) −> k=0; t r y =0; nodes [i d] .D[i d] = minva l ; break
76 od ;
77 }
78 }
79
80 i n l i n e setC (x , y , p , q){ /∗ Se t s e n t r i e s i n mat r i x C ∗/
81 C[x] . to [y] . u = p ;
82 C[x] . to [y] . v = q ;
83 C[y] . to [x] . u = p ; /∗ Due to symmetry ∗/
84 C[y] . to [x] . v = q ; /∗ Due to symmetry ∗/
85 }
86
87 i n l i n e canLoose (a , b){ /∗ Check i f msgs s t i l l may be l o s t ∗/
88 (C [a] . to [b] . u − H[a] . to [b] . u) < (C [a] . to [b] . v − H[a] . to [b] . v)
89 }
90
91 i n l i n e canSend (c , d){ /∗ Check i f msgs s t i l l may be s en t ∗/
92 H[c] . to [d] . u < C[c] . to [d] . u
93 }
94
95 i n l i n e checkRese t (e , f){ /∗ Reset c oun t e r s when needed ∗/
96 i f /∗ (modulo C [] . to [] . v) ∗/
97 : : (H[e] . to [f] . v == C[e] . to [f] . v) −> H[e] . to [f] . u = 0 ; H[e] . to [f] . v = 0 ;
98 : : e l s e −> s k i p
99 f i

100 }
101
102 /∗ PROCESS DECLARATIONS ∗/
103 a c t i v e [N] proctype node (){ /∗ Node p r o c e s s ∗/
104 endN : do
105 : : c t r l == p i d −> /∗ Wait f o r c o n t r o l ∗/
106 byte k ; /∗ Used i n i n l i n e c o n s t r u c t s ∗/
107 sho r t t r y , m inva l ; /∗ Used i n i n l i n e c o n s t r u c t ∗/
108 getMinimum (p i d) ; /∗ Compute minimum d i s t−to−G ∗/
109 r e c e i v e (p i d) ; /∗ ’ r e c e i v e ’ from a l l o t h e r nodes ∗/
110 c t r l++ /∗ Tran s f e r c o n t r o l to nex t p r o c e s s ∗/
111 od
112 }
113
114 a c t i v e proctype g l oba lS end (){ /∗ S imu l a t e s s end i ng g l o b a l l y ∗/
115 byte i , j ;
116
117 d s tep{ /∗ F i l l symmetr ic c o n n e c t i v i t y mat r i x ∗/
118 /∗ Using i n l i n e setC (from , to , u , v) ∗/
119 /∗ a r b i t r a r y topo f i g . 8 . 2 d , un ique SPT [30/18] ∗/
120 setC (0 , 1 , 1 , 7) ; se tC (0 , 2 , 1 , 10) ; setC (0 , 3 , 9 , 10) ;
121 setC (1 , 3 , 3 , 10) ;
122 setC (2 , 3 , 4 , 5)
123 }

Listing E.9: Finite Sliding Window EWMA - part 2/3

Master’s Thesis - W.M. Everse 201

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

124
125 do /∗ For each message round ∗/
126 : : (M< MAX M) −> atomic{
127 do /∗ F i l l msgs mat r i x ∗/
128 : : (i<N) −> do
129 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
130 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
131 i f
132 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
133 msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
134 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
135 msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
136 H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
137 f i ;
138 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
139 checkRese t (i , j) ;
140 j++
141 : : (j==N) −> j =0; break
142 od ;
143 i++
144 : : (i==N) −> i =0; break
145 od ;
146 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
147 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
148 M++
149 : : (M == MAX M) −> break /∗ Max nr o f msg rounds reached , s top ∗/
150 od
151 }

Listing E.10: Finite Sliding Window EWMA - part 3/3

E.4 Neighbourhood Management Variant

This section contains the PROMELA source of the protocol variant with (sim-
ple) neighbourhood management implemented.

1 /∗ SPT Pro t o co l model f o r WSNs − W.M. Eve r s e ∗/
2 /∗ Expe r iment s w i th s imp l e ne ighbourhood management ∗/
3
4 /∗ DEFINE CONSTANTS ∗/
5 #de f i n e N 4 /∗ Number o f nodes ∗/
6 #de f i n e MAX M 100 /∗ Max number o f msg rounds ∗/
7 #de f i n e MAX DIST 10000 /∗ Rep r e s en t s ’ i n f i n i t e ’ d i s t a n c e ∗/
8 #de f i n e ACCURACY 10 /∗ M u l t i p l i c a t i o n f a c t o r ∗/
9 #de f i n e GATEWAY COUNT 1 /∗ Number o f gateways ∗/

10 #de f i n e NEIGHBOURS 2 /∗ Number o f n e i ghbou r s i n ne i ghbou r t a b l e ∗/
11
12 /∗ TYPEDEFS & DECLARATIONS ∗/
13 typede f Neighbour{ /∗ Neighbour data : ∗/
14 byte ID=255; /∗ − node i d ∗/
15 sho r t R = 0 ; /∗ − number o f r e cvd msgs from ne i ghbou r ∗/
16 sho r t D = MAX DIST ; /∗ − d i s t−to−G of t h i s ne i ghbou r ∗/
17 sho r t F = 0 ; /∗ − f r e qu en c y coun t e r ∗/
18 }

Listing E.11: Neighbourhood Management Variant - part 1/4

Master’s Thesis - W.M. Everse 202

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

19
20 typede f NodeData{ /∗ Node data : ∗/
21 byte pa r en t = 0 ; /∗ − s e l e c t e d pa r en t ∗/
22 sho r t D = MAX DIST ; /∗ − d i s t−to−G of t h i s node∗/
23 Neighbour NBTable [NEIGHBOURS] ; /∗ − ne i ghbou r t a b l e ∗/
24 }
25
26 NodeData nodes [N] ; /∗ A l l node data ∗/
27
28 sho r t M; /∗ G loba l msg round number ∗/
29
30 typede f Tuple {byte u ; byte v}
31 typede f NodeDimTuple{ Tuple to [N] ; }
32 hidden NodeDimTuple C [N] ; /∗ Conn e c t i v i t y Matr ix , NxN ∗/
33 hidden NodeDimTuple H[N] ; /∗ H i s t o r y Matr ix , NxN ∗/
34
35 typede f NodeDimBool{ boo l to [N] ; }
36 hidden NodeDimBool msgs [N] ; /∗ Message Exchange Matr ix , NxN ∗/
37
38 byte c t r l = N; /∗ Used f o r t r a n s f e r r i n g c o n t r o l ∗/
39
40 /∗ INLINE DECLARATIONS ∗/
41 i n l i n e i sGateway (i d){ /∗ Check i f i d i s a gateway ∗/
42 (i d < GATEWAY COUNT) ;
43 }
44
45 i n l i n e r e c e i v e (i d){ /∗ Manage ne i ghbou r i f r e c e i v e d a msg ∗/
46 atomic{
47 do
48 : : (k < N) && (msgs [k] . to [i d]) −>
49 manageNeighbour (id , k) ;
50 k++
51 : : (k < N) && ! (msgs [k] . to [i d]) −> k++
52 : : (k==N) −> k=0; break
53 od
54 }
55 }
56
57 i n l i n e manageNeighbour (id , nb){ /∗ Manage ne i ghbou r nb ∗/
58 byte c ; /∗ Range ove r ne i ghbou r e n t r i e s i n NBTable ∗/
59 byte i n d e x ; /∗ NBTable i nd ex o f e n t r y to be updated ∗/
60
61 c=0; i nd ex=−1;
62 do /∗ Find an en t r y to update ∗/
63 : : (c<NEIGHBOURS) −>
64 i f /∗ I f nb i n NBTable : s e t i nd e x to r e i n f o r c e , ∗/
65 /∗ or i f i n d e x not se t , to 1 s t e n t r y w i th F==0 ∗/
66 : : (nodes [i d] . NBTable [c] . ID == nb) | | (i nd ex==−1 && nodes [i d] . NBTable [c] . F == 0) −>
67 i n d e x = c
68 : : e l s e −> s k i p
69 f i ;
70 c++
71 : : (c==NEIGHBOURS) −> c=0; break
72 od ;
73
74 i f
75 : : (i nd e x < 0) −> /∗ I f t a b l e f u l l and no en t r y w i th F==0, ∗/
76 do /∗ d e c r e a s e a l l f r e qu en c y coun t e r s ∗/
77 : : (c < NEIGHBOURS) −> nodes [i d] . NBTable [c] . F−−; c++
78 : : (c == NEIGHBOURS) −> c=0; break
79 od
80 : : e l s e −> /∗ Re i n f o r c e or r e p l a c e ∗/
81 nodes [i d] . NBTable [i nd e x] . R =
82 ((nodes [i d] . NBTable [i nd e x] . ID == nb) −> (nodes [i d] . NBTable [i nd e x] . R+1) : 1) ;
83 nodes [i d] . NBTable [i nd e x] . F =
84 ((nodes [i d] . NBTable [i nd e x] . ID == nb) −> (nodes [i d] . NBTable [i nd e x] . F+1) : 1) ;
85 nodes [i d] . NBTable [i nd e x] . ID = nb ; /∗ Update ID ∗/
86 i f /∗ Update d i s t−to−G ∗/
87 : : i sGateway (nb) −> nodes [i d] . NBTable [i nd e x] .D = 0 /∗ d i s t−to−G of G i s a lways 0 ∗/
88 : : e l s e −> nodes [i d] . NBTable [i nd e x] .D = nodes [nb] .D
89 f i
90 f i ;
91 }

Listing E.12: Neighbourhood Management Variant - part 2/4

Master’s Thesis - W.M. Everse 203

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

92
93 i n l i n e getMinimum (i d){ /∗ Compute minimum d i s t a n c e ∗/
94 byte k , IDk ;
95 sho r t Rk , Dk , t r y , m inva l ;
96 atomic{
97 minva l = MAX DIST ;
98 do /∗ Range ove r a l l n e i ghbou r s i n NBTable ∗/
99 : : (k < NEIGHBOURS) −>

100 IDk = nodes [i d] . NBTable [k] . ID ; /∗ For r e a d a b i l i t y ∗/
101 Rk = nodes [i d] . NBTable [k] . R ;
102 Dk = nodes [i d] . NBTable [k] .D;
103
104 i f
105 : : (Rk > 0) && (Dk < MAX DIST) −>
106 t r y = (ACCURACY ∗ M / Rk) + Dk ; /∗ Compute d i s t a n c e v i a t h i s ne i ghbou r ∗/
107 t r y = ((M%Rk) >= (Rk/2) −> (t r y +1) : t r y) ;
108 i f /∗ I f minimum found , s e t pa r en t ∗/
109 : : (t r y <=minva l) −> minva l=t r y ; nodes [i d] . p a r en t = IDk ;
110 : : e l s e −> s k i p
111 f i
112 : : e l s e −> s k i p
113 f i ;
114 k++
115 : : (k == NEIGHBOURS) −> k=0; t r y =0; nodes [i d] .D=minva l ; break
116 od ;
117 }
118 }
119
120 i n l i n e setC (x , y , p , q){ /∗ Se t s e n t r i e s i n c o n n e c t i v i t y mat r i x C ∗/
121 C[x] . to [y] . u = p ;
122 C[x] . to [y] . v = q ;
123 C[y] . to [x] . u = p ; /∗ Due to symmetry ∗/
124 C[y] . to [x] . v = q ; /∗ Due to symmetry ∗/
125 }
126
127 i n l i n e canLoose (a , b){ /∗ Check i f msgs s t i l l may be l o s t ∗/
128 (C [a] . to [b] . u − H[a] . to [b] . u) < (C [a] . to [b] . v − H[a] . to [b] . v)
129 }
130
131 i n l i n e canSend (c , d){ /∗ Check i f msgs s t i l l may be s en t ∗/
132 H[c] . to [d] . u < C[c] . to [d] . u
133 }
134
135 i n l i n e checkRese t (e , f){ /∗ Reset c oun t e r s when needed ∗/
136 i f /∗ (modulo C [] . to [] . v) ∗/
137 : : (H[e] . to [f] . v == C[e] . to [f] . v) −> H[e] . to [f] . u = 0 ; H[e] . to [f] . v = 0 ;
138 : : e l s e −> s k i p
139 f i
140 }
141
142 /∗ PROCESS DECLARATIONS ∗/
143 a c t i v e [N] proctype node (){ /∗ Node p r o c e s s ∗/
144 endN : do
145 : : c t r l == p i d −> /∗ Wait f o r c o n t r o l ∗/
146 getMinimum (p i d) ; /∗ Compute minimum d i s t−to−G ∗/
147 r e c e i v e (p i d) ; /∗ ’ r e c e i v e ’ from a l l o t h e r nodes ∗/
148 c t r l++ /∗ Tran s f e r c o n t r o l to nex t p r o c e s s ∗/
149 od
150 }
151
152 a c t i v e proctype g l oba lS end (){ /∗ S imu l a t e s s end i ng g l o b a l l y ∗/
153 byte i , j ;
154
155 d s tep{ /∗ F i l l symmetr ic c o n n e c t i v i t y mat r i x ∗/
156 /∗ Using i n l i n e setC (from , to , u , v) ∗/
157 /∗ a r b i t r a r y topo , un ique SPT [30/18]
158 setC (0 , 1 , 1 , 7) ; se tC (0 , 2 , 1 , 10) ; setC (0 , 3 , 9 , 10) ;
159 setC (1 , 3 , 3 , 10) ;
160 setC (2 , 3 , 4 , 5)
161 ∗/
162 /∗ t e s t topo f o r ne ighbourhood management , complete 3 nodes 50%
163 setC (0 , 1 , 1 , 2) ; se tC (0 , 2 , 1 , 2) ; se tC (1 , 2 , 1 , 2)
164 ∗/
165 /∗ t e s t topo f o r ne ighbourhood management , squa r e 4 nodes 50%
166 setC (0 , 1 , 1 , 2) ; se tC (0 , 2 , 1 , 2) ; se tC (1 , 3 , 1 , 2) ; setC (2 , 3 , 1 , 2)
167 ∗/
168 /∗ t e s t topo f o r ne ighbourhood management , complete 4 nodes 50%
169 setC (0 , 1 , 1 , 2) ; se tC (0 , 2 , 1 , 2) ; se tC (0 , 3 , 1 , 2) ; setC (1 , 2 , 1 , 2) ; se tC (1 , 3 , 1 , 2) ;
170 setC (2 , 3 , 1 , 2)
171 ∗/

Listing E.13: Neighbourhood Management Variant - part 3/4

Master’s Thesis - W.M. Everse 204

APPENDIX E. SPIN MODELS OF PROTOCOL VARIATIONS

172 /∗ t e s t topo f o r ne ighbourhood management , s t a r topo , c e n t e r i s node 1 ∗/
173 setC (1 , 0 , 1 , 2) ;
174 setC (1 , 2 , 1 , 2) ;
175 setC (1 , 3 , 1 , 2)
176 /∗ setC (1 , 4 , 1 , 6) ;
177 setC (1 , 5 , 1 , 6) ;
178 setC (1 , 6 , 1 , 6) ;
179 setC (1 , 7 , 1 , 6)∗/
180 }
181
182 do /∗ For each msg round ∗/
183 : : (M< MAX M) −> atomic{
184 do /∗ F i l l msgs mat r i x ∗/
185 : : (i<N) −> do
186 : : (j < N && C[i] . to [j] . u == 0) −> j++ /∗ No l i n k between i and j ∗/
187 : : (j < N && C[i] . to [j] . u != 0) −> /∗ There i s a l i n k between i and j ∗/
188 i f
189 : : canLoose (i , j) −> /∗ ND−c ho i c e : w r i t e 0 i n msgs mat r i x ∗/
190 msgs [i] . to [j] = 0 /∗ 0 means msg g e t s l o s t ∗/
191 : : canSend (i , j) −> /∗ ND−c ho i c e : w r i t e 1 i n msgs mat r i x ∗/
192 msgs [i] . to [j] = 1 ; /∗ 1 means msg w i l l come a c r o s s ∗/
193 H[i] . to [j] . u++ /∗ Counts nr o f d e l i v e r e d msgs ∗/
194 f i ;
195 H[i] . to [j] . v++; /∗ Counts msg o p p o r t u n i t i e s ∗/
196 checkRese t (i , j) ;
197 j++
198 : : (j==N) −> j =0; break
199 od ;
200 i++
201 : : (i==N) −> i =0; break
202 od ;
203 c t r l = GATEWAY COUNT;} /∗ Tran s f e r c o n t r o l to 1 s t node p r o c e s s ∗/
204 c t r l == p i d ; /∗ Wait f o r c o n t r o l ∗/
205 M++
206 : : (M == MAX M) −> break /∗ Max number o f msg rounds r eached ∗/
207 od
208 }

Listing E.14: Neighbourhood Management Variant - part 4/4

Master’s Thesis - W.M. Everse 205

List of Acronyms

ACM Association for Computing Machinery . 69

ADC Analog-to-Digital Converter . 8

ANSI American National Standards Institute . 69

AODV Ad hoc On demand Distance Vector . 27

BDD Binary Decision Diagram . 112

CS Computer Science . 1

CSL Continuous Stochastic Logic . 111

CTL Computation Tree Logic . 39

CTMC Continuous-Time Markov Chain . 111

DD Direct Diffusion . 28

DTMC Discrete-Time Markov Chain . 111

DVD Digital Versatile Disc . 17

EEMCS Electrical Engineering, Mathematics and Computer Science 64

ETX Expected Transmission Count . 167

EWMA Exponential Weighted Moving Average 132

FMT Formal Methods and Tools . 1

FTSP Flooding Time Synchronization Protocol.23

GEAR Geographic and Energy Aware Routing . 28

GPS Global Positioning System . 28

GUI Graphical User Interface. .110

ICT Information and Communication Technology.17

IP Internet Protocol . 11

IUT Implementation Under Test. .18

LEACH Low Energy Adaptive Clustering Hierarchy 28

Master’s Thesis - W.M. Everse 206

APPENDIX E. LIST OF ACRONYMS

LLN Law of Large Numbers . 135

LMAC Lightweight Medium Access Control . 24

LTL Linear Temporal Logic . 129

MA Moving Average . 132

MANET Mobile Ad-hoc Network . 26

MDP Markov Decision Process . 111

MSC Message Sequence Chart . 164

MST Minimum Spanning Tree . 16

OSI Open Systems Interconnection . 11

OSPF Open Shortest Path First . 27

PAN Protocol Analyzer . 79

PCTL Probabilistic Computation Tree Logic . 111

POR Partial Order Reduction . 132

PRISM Probabilistic Symbolic Model Checker . 110

PROMELA Process Meta Language . 132

PS Pervasive Systems . 150

RIP Routing Information Protocol . 27

SPIN Simple Promela Interpreter . 69

SPT Shortest Path Tree . 110

TCP Transmission Control Protocol . 11

UPPAAL Uppsala-Aalborg Model Checker . 38

WMA Weighted Moving Average . 132

WRP Wireless Routing Protocol . 27

WSN Wireless Sensor Network . 126

XML eXtensible Mark up Language . 90

Master’s Thesis - W.M. Everse 207

List of Figures

2.1 Wireless Sensor Network . 7
2.2 Sensor Node . 8
2.3 Layered network principle (based on Tanenbaum [52]) 11
2.4 Example of a simple graph . 12
2.5 Weighted graph and Spanning Tree 14
2.6 Dijkstra’s Shortest Path Algorithm 15
2.7 Special spanning trees of the example graph 16
2.8 Schematic view of the Model Checking principle 21

3.1 An abstract model of a WSN of 4 nodes: a WSN corresponds
to a complete graph . 29

3.2 ETX-based SPT construction 30
3.3 The principle of the protocol: the question mark will be 7 in

this case (the minimum of the computed distances-to-G: 8, 8,
7, 9). 31

3.4 Pseudo code of the gateway’s active thread 35
3.5 Pseudo code of node i’s initialization (i 6= G). 35
3.6 Pseudo code of node i’s passive thread (i 6= G). 35
3.7 Pseudo code of node i’s active thread (i 6= G). 36

4.1 The GUI of UPPAAL 4.0.6 in edit mode 40
4.2 UPPAAL Model V1 - Node Template 45
4.3 4-node topology specified by the array initializer in listing 4.4 48
4.4 Non-deterministic template for a link with quality of 50% . . 51
4.5 Generalized non-deterministic template: u of v messages gets

across . 52
4.6 Interesting topologies for verification 57

Master’s Thesis - W.M. Everse 208

LIST OF FIGURES

5.1 The main screen of the GUI XSpin 5.1.0 of the SPIN model
checker . 71

5.2 4-node topology specified by lines 108 –114 of listing 5.3 . . . 77
5.3 The Basic Verification Options Panel 79
5.4 The Advanced Verification Options Panel 80
5.5 The Verification Output Window 81
5.6 Interesting topologies for verification (figure 4.6 reprinted) . . 82
5.7 The LTL Property Manager 86

6.1 A visualization of the hidden problem 96
6.2 Arbitrary topo . 106

7.1 The GUI of PRISM 3.2 in edit mode 113

8.1 General topology for illustrating the disconnected gateway
scenario . 128

8.2 Arbitrary topo . 136

A.1 The optimal tree w.r.t. the generated node positions 154
A.2 The chosen tree after simulation of 200 message rounds . . . 154
A.3 The optimal tree w.r.t. the generated node positions (after

shuffling) . 155
A.4 The chosen tree after simulation of 201 message rounds (after

shuffling) . 155
A.5 The chosen tree after simulation of 800 message rounds . . . 156
A.6 Statistics . 156

B.1 Node Template of model V1 158
B.2 Node Template of model V2 160
B.3 Node Template of model V3 162
B.4 Link Template of model V3 163
B.5 UPPAAL’s Simulator (initial state of model V1) 165
B.6 State of model V1 after simulating a broadcast of node 0 . . 165
B.7 Values of a selected set of variables after simulation of 20

message rounds . 166

C.1 The Simulation Options Panel 177
C.2 The Simulation Output Window 178
C.3 The Data Values Window . 178
C.4 The Sequence Chart Window 179
C.5 4-node topology specified by lines 108 –114 of listing C.3 . . . 179
C.6 The Select Window . 180

D.1 The simulator tab of the PRISM GUI 190
D.2 Property details in PRISM’s GUI 192

Master’s Thesis - W.M. Everse 209

List of Tables

3.1 Notation used in the formal specification of the protocol . . . 34

6.1 Naive Solution Experiments - results 100
6.2 Partial Hiding Experiments - results 103
6.3 Controlled Branching Experiments - results 107

7.1 Build statistics for models V2 and V3 with MAX_DIST=10 . . . 122

8.1 Disconnected Gateway Experiments - results 129
8.2 Finite Sliding Window Experiments - results for p1 137
8.3 Finite Sliding Window Experiments - results for p2 137

B.1 UPPAAL V2 Results for topo 4.6(a), p. 57: complete, all links
100% . 168

B.2 UPPAAL V2 Results for topo 4.6(a), p. 57: complete, all links
10% . 168

B.3 UPPAAL V2 Results for topo 4.6(b), p. 57: chain, all links 100%168
B.4 UPPAAL V2 Results for topo 4.6(b), p. 57: chain, all links 10%168
B.5 UPPAAL V3 Results for topo 4.6(a), p. 57: complete, all links

100% . 169
B.6 UPPAAL V3 Results for topo 4.6(a), p. 57: complete, all links

10% . 169
B.7 UPPAAL V3 Results for topo 4.6(b), p. 57: chain, all links 100%170
B.8 UPPAAL V3 Results for topo 4.6(b), p. 57: chain, all links 10%170
B.9 UPPAAL Model V2 & V3 results for property 1 (correct parents)173
B.10 UPPAAL Model V2 & V3 results for property 2 (correct distance)173
B.11 UPPAAL Model V2 & V3 results for property 3 (correct parents)173
B.12 UPPAAL Model V2 & V3 results for property 4 (correct distance)173
B.13 UPPAAL Model V2 & V3 results for property 7 (correct parents)173

Master’s Thesis - W.M. Everse 210

LIST OF TABLES

B.14 UPPAAL Model V2 & V3 results for property 8 (correct distance)173

C.1 SPIN–results for topo 5.6(a), p. 82: complete, all links 100% . 181
C.2 SPIN–results for topo 5.6(a), p. 82: complete, all links 10% . . 181
C.3 SPIN–results for topo 5.6(b), p. 82: chain, all links 10% . . . 181
C.4 SPIN results for properties 1 & 3 (correct parents) 183
C.5 SPIN results for properties 2 & 4 (correct distance) 183

Master’s Thesis - W.M. Everse 211

Listings

4.1 UPPAAL Model V1 - Global Declarations 43
4.2 UPPAAL Model V1 - Local Node Declarations 44
4.3 UPPAAL Model V1 - System Declaration 47
4.4 UPPAAL Model V2 - Global Connectivity Matrix 48
4.5 UPPAAL Model V2 - Message Loss Balancing 49
4.6 Example System Declaration 51
4.7 Local declarations of link template of model V3 52
5.1 PROMELA Model - Constants, Typedefs and Global Declarations 73
5.2 PROMELA Model - Inline Constructs 74
5.3 PROMELA Model - Process Declarations 76
6.1 Declaration of 3 hidden matrices 94
6.2 Non-determinism in the globalSend process 97
models/v7 model.spin . 101
6.3 Adjusted portion of the globalSend process 105
7.1 PRISM Model V1 - Global Constants 114
7.2 PRISM Model V1 - Gateway Module 115
7.3 PRISM Model V1 - Node Module 115
7.4 PRISM Model V1 - Module Renaming 117
7.5 PRISM Model V1 - Formulæ 117
models/modelv801.pm . 121
8.1 Changed constants and declarations 132
8.2 Changed inline construct receive () 133
8.3 Changed distance computation 134
8.4 Changed part of the globalSend process 134
8.5 Neighbourhood Management - inline construct ManageNeigh-

bour() . 139
A.1 Matlab source - spanningtree.m (part 1/2) 151
A.2 Matlab source - spanningtree.m (part 2/2) 152
A.3 Matlab source - recvperc.m 152

Master’s Thesis - W.M. Everse 212

LISTINGS

A.4 Matlab source - optimtree.m 152
A.5 Matlab source - constructtree.m 153
B.1 Global declarations of model V1 157
B.2 Local declarations of node template of model V1 158
B.3 System declaration of model V1 158
B.4 Global declarations of model V2 159
B.5 Local declarations of node template of model V2 160
B.6 System declaration of model V2 161
B.7 Global declarations of model V3 161
B.8 Local declarations of node template of model V3 162
B.9 Local declarations of link template of model V3 163
B.10 System declaration of model V3 163
C.1 PROMELA Model - Constants, Typedefs and Global Declarations174
C.2 PROMELA Model - Inline Constructs 175
C.3 PROMELA Model - Process Declarations 176
D.1 PRISM Model V2 - Part 1 . 186
D.2 PRISM Model V2 - Part 2 . 187
D.3 PRISM Model V3 - Part 1 . 188
D.4 PRISM Model V3 - Part 2 . 189
E.1 Finite Sliding Window MA - part 1/3 193
E.2 Finite Sliding Window MA - part 2/3 194
E.3 Finite Sliding Window MA - part 3/3 195
E.4 Finite Sliding Window WMA - part 1/4 196
E.5 Finite Sliding Window WMA - part 2/4 197
E.6 Finite Sliding Window WMA - part 3/4 198
E.7 Finite Sliding Window WMA - part 4/4 199
E.8 Finite Sliding Window EWMA - part 1/3 200
E.9 Finite Sliding Window EWMA - part 2/3 201
E.10 Finite Sliding Window EWMA - part 3/3 202
E.11 Neighbourhood Management Variant - part 1/4 202
E.12 Neighbourhood Management Variant - part 2/4 203
E.13 Neighbourhood Management Variant - part 3/4 204
E.14 Neighbourhood Management Variant - part 4/4 205

Master’s Thesis - W.M. Everse 213

Bibliography

[1] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7–48, 1999. ISSN 0925-9856. doi:
http://dx.doi.org/10.1023/A:1008739929481.

[2] Sara Baase and Allen Van Gelder. Computer Algorithms: Introduction
to Design and Analysis. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999. ISBN 0201612445. Third Edition.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008. ISBN 026202649X, 9780262026499.

[4] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–
236. Springer–Verlag, September 2004.

[5] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pet-
tersson, and Wang Yi. UPPAAL - a tool suite for automatic verification
of real-time systems. In Hybrid Systems, pages 232–243, 1995. URL
http://www.uppaal.com.

[6] Barry W. Boehm. Software Engineering Economics. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1981. ISBN 0138221227.

[7] P J Boltryk, C J Harris, and N M White. Intelligent sensors – a generic
software approach. Journal of Physics: Conference Series, 15:155–160,
2005. URL http://stacks.iop.org/1742-6596/15/155.

[8] H. Brinksma. Verification is experimentation! Software Tools for Tech-
nology Transfer, 3(2):107–217, 2001. ISSN 1433-2779.

Master’s Thesis - W.M. Everse 214

http://www.uppaal.com
http://stacks.iop.org/1742-6596/15/155

BIBLIOGRAPHY

[9] H. Brinksma and A. H. Mader. On verification modelling of embed-
ded systems. Technical Report TR-CTIT-04-03, University of Twente,
Enschede, January 2004.

[10] Daniel Câmara, Antonio Alfredo F Loureiro, and Fethi Filali. Method-
ology for formal verification of routing protocols for ad hoc wireless
networks. In GLOBECOM 2007, 50th IEEE Global Communications
Conference, November 26-30, 2007, Washington, USA, Nov 2007. doi:
10.1109/GLOCOM.2007.137.

[11] Qing Cao, Lei Fang, Tarek Abdelzaher, John Stankovic, and Sang Son.
Efficiency centric communication model for wireless sensor networks.
In in Proc. IEEE INFOCOM, pages 1–12, 2006.

[12] Yuen-Hui Chee, Mike Koplow, Michael Mark, Nathan Pletcher, Mike
Seeman, Fred Burghardt, Dan Steingart, Jan Rabaey, Paul Wright, and
Seth Sanders. Picocube: a 1 cm3 sensor node powered by harvested en-
ergy. In DAC ’08: Proceedings of the 45th annual conference on Design
automation, pages 114–119, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-115-6. doi: http://doi.acm.org/10.1145/1391469.1391499.

[13] Douglas S. J. De Couto. High-throughput routing for multi-hop wireless
networks. PhD thesis, Massachusetts Institute of Technology, 2004.
Supervisor-Robert T. Morris.

[14] L. Evers, M. J. J. Bijl, M. Marin-Perianu, R. S. Marin-Perianu, and
P. J. M. Havinga. Wireless sensor networks and beyond: A case study
on transport and logistics. Technical Report TR-CTIT-05-26, Univer-
sity of Twente, Enschede, June 2005.

[15] A. Fehnker, M. Fruth, and A. McIver. Graphical modelling for simula-
tion and formal analysis of wireless network protocols. In Proc. Work-
shop on Methods, Models and Tools for Fault-Tolerance (MeMoT’07)
at the 7th International Conference on Integrated Formal Methods
(IFM’07), July 2007.

[16] A. Fehnker, L. F. W. van Hoesel, and A. H. Mader. Modelling and
verification of the lmac protocol for wireless sensor networks. Tech-
nical Report TR-CTIT-07-09, Centre for Telematics and Information
Technology, Enschede, February 2007.

[17] Ansgar Fehnker and Peng Gao. Formal verification and simulation for
performance analysis for probabilistic broadcast protocols. In ADHOC-
NOW, pages 128–141, 2006.

[18] Ralph P. Grimaldi. Discrete and Combinatorial Mathematics: An Ap-
plied Introduction (fifth edition). Pearson Education, Inc. / Addison-

Master’s Thesis - W.M. Everse 215

BIBLIOGRAPHY

Wesley, Boston, MA, USA, 2004. ISBN 0-321-21103-0. International
Edition.

[19] M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. W. Vaan-
drager. Adding symmetry reduction to uppaal. In K. G. Larsen and
P. Niebert, editors, Formal Modeling and Analysis of Timed Systems
(FORMATS’03), number 2791 in LNCS, pages 46–59. Springer–Verlag,
2004.

[20] Jason Lester Hill. System architecture for wireless sensor networks.
PhD thesis, University of California, Berkeley, 2003. Adviser-David E.
Culler.

[21] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In H. Hermanns and
J. Palsberg, editors, Proc. 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’06),
volume 3920 of LNCS, pages 441–444. Springer, 2006.

[22] Gerard J. Holzmann. The SPIN Model Checker : Primer and Ref-
erence Manual. Addison-Wesley Professional, September 2003. ISBN
0321228626.

[23] Gerard J. Holzmann. Design and validation of computer protocols.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991. ISBN 0-13-
539925-4.

[24] Weirong Jiang, Shuping Liu, Yun Zhu, and Zhiming Zhang. Optimizing
routing metrics for large-scale multi-radio mesh networks. Wireless
Communications, Networking and Mobile Computing, 2007. WiCom
2007. International Conference on, pages 1550–1553, September 2007.
doi: 10.1109/WICOM.2007.390.

[25] J.P. Katoen. Concepts, algorithms and tools for model checking.
Lecture notes, Institut für Mathematische Maschinen und Daten-
verarbeitung (Informatik), Friedrich-Alexander-Universität, Erlangen,
Nürnberg, Germany, March 1999.

[26] Maleq Khan, Gopal Pandurangan, and V.S. Anil Kumar. Energy-
efficient distributed constructions of minimum spanning tree for wireless
ad-hoc networks. Technical report, Department of Computer Science,
Purdue University, West Lafayette, Indiana, October 2006.

[27] Taehyun Kim, Jaeho Kim, Sangshin Lee, Ilyeup Ahn, Minan Song,
and Kwangho Won. An automatic protocol verification framework for
the development of wireless sensor networks. In TridentCom ’08: Pro-
ceedings of the 4th International Conference on Testbeds and research

Master’s Thesis - W.M. Everse 216

BIBLIOGRAPHY

infrastructures for the development of networks & communities, pages
1–5, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineer-
ing). ISBN 978-963-9799-24-0.

[28] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet
Chhabra, Mick Flanigan, Nandakishore Kushalnagar, Lama Nachman,
and Mark Yarvis. Design and deployment of industrial sensor net-
works: experiences from a semiconductor plant and the north sea. In
SenSys ’05: Proceedings of the 3rd international conference on Embed-
ded networked sensor systems, pages 64–75, New York, NY, USA, 2005.
ACM. ISBN 1-59593-054-X. doi: http://doi.acm.org/10.1145/1098918.
1098926.

[29] James F. Kurose and Keith W. Ross. Computer Networking: A Top-
Down Approach (4th Edition). Addison Wesley, March 2007. ISBN
0321497708.

[30] B. Kusy and S. Abdelwahed. Ftsp protocol verification using spin. Tech-
nical report, ISIS, Vanderbilt University, Nashville, Tennessee, May
2006.

[31] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic
model checking with PRISM: A hybrid approach. International Journal
on Software Tools for Technology Transfer (STTT), 6(2):128–142, 2004.

[32] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
Oct 1997.

[33] Jure Leskovec, Purnamrita Sarkar, and Carlos Guestrin. Model-
ing link qualities in a sensor network. Informatica (Slovenia), 29
(4):445–452, 2005. URL http://dblp.uni-trier.de/db/journals/
informaticaSI/informaticaSI29.html#LeskovecSG05.

[34] Konrad Lorincz and Matt Welsh. Motetrack: A robust, decentralized
approach to rf-based location tracking. In Thomas Strang and Clau-
dia L. Popien, editors, LoCA, volume 3479 of Lecture Notes in Com-
puter Science, pages 63–82. Springer, 2005.

[35] Dimitrios Lymberopoulos and Andreas Savvides. Xyz: a motion-
enabled, power aware sensor node platform for distributed sensor net-
work applications. In IPSN ’05: Proceedings of the 4th international
symposium on Information processing in sensor networks, page 63, Pis-
cataway, NJ, USA, 2005. IEEE Press. ISBN 0-7803-9202-7.

Master’s Thesis - W.M. Everse 217

http://dblp.uni-trier.de/db/journals/informaticaSI/informaticaSI29.html#LeskovecSG05
http://dblp.uni-trier.de/db/journals/informaticaSI/informaticaSI29.html#LeskovecSG05

BIBLIOGRAPHY

[36] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk,
and John Anderson. Wireless sensor networks for habitat monitoring.
In WSNA ’02: Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 88–97, New York,
NY, USA, 2002. ACM. ISBN 1-58113-589-0. doi: http://doi.acm.org/
10.1145/570738.570751.

[37] The MathWorksTM. Getting started with Matlab R© 7. The Math-
Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, September
2007. URL http://www.mathworks.com.

[38] A.K. McIver and A. Fehnker. Formal techniques for the analysis of wire-
less networks. In In Proc. 2nd Int. Symp. on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA06, 2006.

[39] Geoff V. Merrett, Alex S. Weddell, Nick R. Harris, Bashir M. Al-
Hashimi, and Neil M. White. A structured hardware/software archi-
tecture for embedded sensor nodes. In 17th International Conference
on Computer Communications and Networks, 2008.

[40] Sanket Nesargi and Ravi Prakash. Manetconf: Configuration of hosts
in a mobile ad hoc network. In INFOCOM, 2002.

[41] NIST/SEMATECH. e-handbook of statistical methods. http://
www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm, Jan-
uary 2003. National Institute of Standards and Technology. Handbook
Paragraph 6.4. Introduction to Time Series Analysis. Last visited: June
1, 2009.

[42] H.A. Oldenkamp. Probabilistic model checking - a comparison of tools.
Master’s thesis, University of Twente, May 2007.

[43] Heemin Park, Jeff Burke, and Mani B. Srivastava. Design and imple-
mentation of a wireless sensor network for intelligent light control. In
IPSN ’07: Proceedings of the 6th international conference on Infor-
mation processing in sensor networks, pages 370–379, New York, NY,
USA, 2007. ACM. ISBN 978159593638X. doi: http://dx.doi.org/10.
1145/1236360.1236407. URL http://dx.doi.org/10.1145/1236360.
1236407.

[44] Dave Parker. Implementation of Symbolic Model Checking for Proba-
bilistic Systems. PhD thesis, University of Birmingham, August 2002.

[45] Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David Culler,
Scott Shenker, and Ion Stoica. A unifying link abstraction for wireless
sensor networks. In SenSys ’05: Proceedings of the 3rd international
conference on Embedded networked sensor systems, pages 76–89, New

Master’s Thesis - W.M. Everse 218

http://www.mathworks.com
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://dx.doi.org/10.1145/1236360.1236407
http://dx.doi.org/10.1145/1236360.1236407

BIBLIOGRAPHY

York, NY, USA, 2005. ACM. ISBN 1-59593-054-X. doi: http://doi.
acm.org/10.1145/1098918.1098928.

[46] C. S. Raghavendra, Krishna M. Sivalingam, Ramesh Govindan, and
Parmesh Ramanathan, editors. Proceedings of the Second ACM In-
ternational Conference on Wireless Sensor Networks and Applications,
WSNA 2003, San Diego, CA, USA, September 19, 2003, 2003. ACM.
ISBN 1-58113-764-8.

[47] Matthias Ringwald and Kay Römer. Deployment of sensor networks:
Problems and passive inspection. In Proceedings of the 5th Workshop
on Intelligent Solutions in Embedded Systems (WISES ’07), pages 180–
193, Madrid, Spain, jun 2007.

[48] Kay Römer. Tracking real-world phenomena with smart dust. In 1st
European Workshop on Wireless Sensor Networks (EWSN), pages 28–
43, Berlin, Germany, January 2004. Springer-Verlag. ISBN 3-540-20825-
9.

[49] Kay Römer and Matthias Ringwald. The deployment of sensor net-
works. National Center of Competence in Research for Mobile Infor-
mation and Communication Systems (NCCR-MICS) Newsletter, pages
2–4, feb 2008.

[50] Theo C. Ruys. Towards Effective Model Checking. PhD thesis, Uni-
versity of Twente, Enschede, The Netherlands, March 2001. Promotor:
prof. dr. H. Brinksma, Assistent Promotor: dr. ir. R. Langerak.

[51] D.P.L. Simons and M.I.A. Stoelinga. Mechanical verification of the
IEEE 1394a root contention protocol using Uppaal2k. Springer In-
ternational Journal of Software Tools for Technology Transfer, pages
469–485, 2001.

[52] A.S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle
River, NJ, fourth edition, 2003.

[53] M. Y. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program verification. pages 332–344. IEEE Computer Society
Press, 1986.

[54] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation, pages 381–396, Berkeley, CA, USA, 2006.
USENIX Association. ISBN 1-931971-47-1.

Master’s Thesis - W.M. Everse 219

BIBLIOGRAPHY

[55] Oskar Wibling, Joachim Parrow, and Arnold Neville Pears. Automa-
tized verification of ad hoc routing protocols. In FORTE, pages 343–
358, 2004.

[56] Alec Woo, Terence Tong, and David Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In SenSys
’03: Proceedings of the 1st international conference on Embedded net-
worked sensor systems, pages 14–27, New York, NY, USA, 2003. ACM
Press.

[57] J. Wu. Reliable Routing Protocols for Dynamic Wireless Ad Hoc and
Sensor Networks. PhD thesis, University of Twente, Enschede, the
Netherlands, December 2007.

Master’s Thesis - W.M. Everse 220

	Introduction
	Project Definition
	Problem Statement
	Motivation and Objective

	Research Questions
	Approach
	Main Results and Contributions
	Thesis Structure

	Background
	Wireless Sensor Networks
	Sensor Nodes
	Mobile Ad-hoc Networks
	Applications

	Network Protocols
	Graph Theory
	Graphs and Trees
	Dijkstra's Algorithm

	Formal Methods
	The Need for Formal Methods
	Validation and Verification Techniques
	More on Model Checking

	Related Work
	Formal Protocol Analysis
	Routing in WSNs

	The SPT Protocol for WSNs
	Introduction to WSN Routing
	Unsuitability of Existing Routing Protocols
	Routing Protocol Categories

	Informal Protocol Description
	The ETX Routing Metric
	Unknown ETXs
	Distributed Operation
	The Gateway and the SPT
	Matlab Implementation

	Formal Protocol Specification
	Pseudo Code
	Recursive Characterization

	Verification using UPPAAL
	Tool Introduction
	Underlying Theory
	Tool Motivation

	Model Construction
	Protocol Model V1
	Protocol Model V2
	Protocol Model V3
	Adding Execution Order

	Verification
	Verification Parameters
	Deadlock Freedom
	Correct Parent and Distance
	Verification Cluster

	Conclusions
	UPPAAL Experiences
	The Models
	The SPT Protocol

	Verification using SPIN
	Tool Introduction
	Underlying Theory
	Tool Motivation

	Model Construction
	Protocol Model

	Verification
	Verification Parameters
	Deadlock Freedom
	Correct Parent and Distance

	Conclusion
	SPIN Experiences
	The Model
	The SPT Protocol

	The Hidden Problem
	The Keyword [language=Promela,basicstyle=]|hidden|
	Hidden Matrices
	Backtracking the State Space
	Backtracking and [language=Promela,basicstyle=]|hidden|
	The Hidden Problem in our Model
	Consequences

	Solution Directions
	Naive Approach
	Partial Hiding
	Controlled Branching

	Conclusion
	Solutions and Further Research
	Learned Lessons

	Verification using PRISM
	Tool Introduction
	Underlying Theory
	Tool Motivation

	Model Construction
	Protocol Model

	Verification
	Build Problems
	Verification Attempts

	Conclusion
	PRISM Experiences
	The Model
	The SPT Protocol

	Variants and Experiments
	Verification Experiments
	Experimentation

	Disconnected Gateway and Parent Cycles
	Disconnected Gateway Experiments
	Notes on Parent Cycles

	Infinite Memory Assumption
	Finite Sliding Window Variants
	Neighbourhood Management

	Conclusion
	Future Work

	Conclusion and Future Work
	Summary of Results
	Conclusions
	Sub Questions
	Main Research Question

	Main Contributions
	Future Research

	Matlab Implementation of the SPT Protocol
	Source
	Plots

	UPPAAL Models, Simulation and Verification Results
	Protocol Model V1
	Protocol Model V2
	Protocol Model V3
	Validation by Simulation
	Protocol Model V1
	Protocol Model V2 & V3

	Verification Results
	Deadlock Freedom
	Correct Parent and Distance

	SPIN Model, Simulation and Verification Results
	Protocol Model
	Validation by Simulation
	Verification Results
	Deadlock Freedom
	Correct Parent and Distance
	Stored and Matched States

	PRISM Model, Simulation and Verification Results
	Protocol Model
	Model V2
	Model V3 (Fixed Order)

	Validation by Simulation
	Workaround Zero Dividing

	Verification Examples

	SPIN Models of Protocol Variations
	Finite Sliding Window Variant MA
	Finite Sliding Window Variant WMA
	Finite Sliding Window Variant EWMA
	Neighbourhood Management Variant

	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

