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Prologue

Binary Decision Diagrams (BDDs) are used in symbolic model checking to represent set of

states. Variations of decision diagrams have been introduced as extensions of BDDs. The first

extension is removing the constraint of having only binary values, such as Multi-way Decision

Diagrams (MDDs ) that can have variables with different domains. It is also possible to extend

the range of the encoded function from boolean to integer or real ranges. Both multi-terminal

and edge-valued decision diagrams extend this range.

Meddly is a C++ Library that supports both multi-terminal and edge-valued MDDs, and differ-

ent reduction rules [2]. It is an ongoing project at Iowa State University (ISU), lead by Prof.

Ciardo and Prof. Miner. Currently it supports quasi, fully, and identity-reduction rules. In my

internship, I implemented two new reduction rules, constant and CIdentity reduction rules and

some basic operations that are useful for model checking.

The concepts that were used during implementation are introduced in Chapter 1. In Chapter 2,

the implemented reduction rules and algorithms of some operations are described. This chapter

is specially written to guide other researchers to change/add a reduction rule in Meddly. Finally,

possible conclusion and future works are presented.
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Chapter 1

Decision Diagrams

In this chapter different types of Decision Diagrams (DDs) are discussed. First domain extended

version of Binary DDs (Multi-way DDs) is defined in section 1.1. Then a dimensional extension

is introduced, which is used for transition relations (2L-level MDDs). A terminal range extended

version of MDD called Multi-terminal MDD, is also described in section 1.2. In section 1.3,

Edge-Valued MDDs are explained with an associated value for each edge.

In the following, B is denoted by the set {0, 1} of boolean values, and N,Z,R represent the

natural, integer and real numbers, respectively.

1.1 Multi-way Decision Diagrams (MDDs)

Multi-way DD [4] is an extension of Binary DD [1][3], since it allows different domains for

variables in a decision diagram. Assume variables x1, · · · , xL with an order x1 ≺ · · · ≺ xL,

and the domain X̂ = XL × · · · × X1, then MDDs encode functions of the form X̂ → B.

For each xk, where 1 6 k 6 L, the domain Xk can be one of the following:

• Xk = {0, 1, · · · , nk − 1} for some nk ∈ N

• Xk = N

• Xk = Z

According to this definition, a boolean variable can be defined by specifying Xk = {0, 1}
(nk = 2). Moreover, any other discrete set can also be mapped to natural numbers.

Assuming an arbitrary domain X̂ , and a value τ ∈ {0, 1} called transparent value, an MDD is

an acyclic directed edge-labeled graph where:

2



Chapter 1. Decision Diagrams 3

(A) (B)

FIGURE 1.1: quasi-reduced vs fully-reduced MDD (τ = 0 )

• 0 and 1 are the only terminal nodes (nodes without any outgoing edges), and are at level

0. A terminal node with value τ is called transparent node.

• Each nonterminal node p is at a level k, L ≥ k ≥ 1, which is denoted as p.lvl = k.

• A nonterminal node p at level k has exactly nk outgoing edges, each of which labeled

with a different ik, ik ∈ Xk, and pointing to a node q; where p.lvl > q.lvl. It can be

written as: p[ik] = q. If an edge points to the transparent terminal node τ , it is called a

transparent edge, otherwise it is called opaque.

• A decision diagram is canonical, if there is a unique representation for a given function

that is encoded by a given class of decision diagrams. The following properties should be

satisfied for a canonical representation:

– There should be noduplicate nodes, which means for each nodes p and q at level

k > 0, if p 6= q, then there should be p[ik] 6= q[ik] for some ik ∈ Xk.

– It should be reduced according to one reduction rule, as explained below. For ex-

ample, there should be no redundant nodes in fully-reduced, or a constant node in

c-reduced.

• It is also assumed that there is no transparent non-terminal nodes in DDs. In other words,

for each nodes p at level k > 0, there should be p[ik] 6= τ for some ik ∈ Xk.

Reduction rules Decision diagrams can be reduced in size and some edges can skip levels ac-

cording to a defined reduction rule. Each reduction rule defines an interpretation for skipping

levels in a way that the reduced diagram is canonical. Some reduction rules are based on trans-

parent edge definition. In all cases, it is not allowed to have two nodes in the same level and

the same edges pattern. In Meddly, following are supported reduction rules ρ(k) for level k,

1 ≤ k ≤ L :

• Quasi-reduced (ρ(k) = Q): if the MDD be quasi-reduced at level k, there is no level

skipping (only transparent edges can skip over level k).
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(A) (B)

(C) (D)

FIGURE 1.2: quasi-reduced vs c-reduced and identity-reduced MDD ( τ = 0, c = 1 )

• Fully-reduced (ρ(k) = F ) : The fully-reduction rule does not allow any redundant node,

which is a node p that for all ik ∈ Xk, p[ik] point to a particular node.

In Figure 1.1 the transparent value is considered zero (τ = 0). The left diagram is an

example of quasi-reduced MDD. The colored nodes on it are redundant nodes. These

nodes are reduced on the fully-reduced MDD on the right. The tick lines show edges that

skip some levels.

• c-reduced (ρ(k) = c) : The c-reduction rule skips node p for some constant value c ∈ Xk,

if for all ik 6= c, p[ik] = τ . This means, in a c-reduced MDD there is no node that all of

its edges are transparent except the outgoing edge for value c. This rule generalizes the

zero-suppressed reduction rule, where c is always 0 [6].

An example of this reduction rule is represented in Figure 1.2, where the transparent value

is assumed to be zero (τ = 0) and the constant value to be one (c = 1). The green nodes

are reduced in diagram (B), using the 1-reduction rule, since for all edges ik 6= 1, which

point to zero terminal node or to a node that is also skipped with 1-reduction rule.

• Identity-reduced (ρ(k) = I) : The identity-reduction rule [7] forbids reaching node q at

level k with only one outgoing edge q[i] 6= τ , that is pointed by p[i], where p is a node

at level k + 1. Figure 1.2d, is an example of identity-reduced MDD. All colored nodes in

diagram (C) have the defined attributes. The blue and green nodes are pointed by 1-edge

of their upper level and all edges except 1 lead to the zero terminal node. The blue node

will be reduced as the result, but the green node is not omitted, since it is also pointed

by 3-edge of its upper level. The red node is pointed by two 0-edges, and all of its edges
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(A) (B)

FIGURE 1.3: full vs sparse representation of Figure 1.1a

point to 0. So it satisfies the described properties of identity-reduction rule and will be

reduced.

Each decision diagram can be stored using two representations, full or sparse [4]. These two

representations are given in Figure 1.3, for the quasi-reduced example of Figure 1.1a . In the full

representation, Figure 1.3a, a node is skipped if all of its edges point to the transparent node. In

the sparse representation given in Figure 1.3b, parts of those nodes that are leading to the nodes

pointing to the transparent node are omitted. These parts are colored in Figure 1.3a. Therefore,

this representation is more compact compared to the previous one.

An MDD node p at level k encodes the function fp(i1, · · · , ik) ∈ B, where i1, · · · , ik are an

evaluation for variables x1, · · · , xk, defined recursively by

fp(i1, · · · , ik) =

{
p if k = 0, i.e., p ∈ {0, 1}
gik,p[ik](i1, · · · , ik−1) if k > 0,

where given MDD node q at level h, l ≥ h, and i ∈ Z ,we let

gi,q(i1, · · · , il) =


fq(i1, · · · , il) if l = h

gil,q(i1 · · · , il−1) if q 6= τ ∧ l > h ∧ (ρ(l) = F ∨ (ρ(l) = I ∧ i = il) ∨ ρ(l) = il)

τ otherwise

In the above definition, f returns a terminal value in case node p is a terminal node, and other-

wise calls the recursive function g. If the input node q be at the same level as highest available

level in the given MDD (i.e., which means no level is skipped), function f will be called to

check terminal cases. However, if a level is skipped with one of the reduction rules except the

quasi, the recursive function g is called for the same node until reaching level h where q is in.

If any of these two conditions do not apply to node q, it means this node is a transparent node

with value τ .
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FIGURE 1.4: sparse representation of 2L-level MDD

Symbolic encoding of transition relations: Sets of states can be represented with MDDs,

as a function f : X̂ → B. Transition relations can be represented by functions of the form

X̂ × X̂ → B. If L is the number of variables in domain X̂ , and total number of variables in

an MTMDD is V , then a transition relation needs two sets of L variables (V = 2L), which are

unprimed {x1, · · · , xL} to refer to ”from” states and primed {x′1, · · · , x′L}, which refer to ”to”

states. This 2L-level MDD can be interleaved, where the ordered variables are xL � x′L �
· · · � x1 � x′1. In Figure 1.4, an example of interleaved 2L-level MDDs is represented, where

X̂ = x2 × x1 = {0, 1, 2} × {0, 1}, x2 � x′2 � x1 � x′1, the transitions are as defined on the

left.

1.2 Multi-Terminal MDDs (MTMDDs)

MTMDDs allow arbitrary range X0 that represent possible values for functions which are en-

coded by a decision diagram (terminal nodes). It can be B,N,Z,R≥0, and R. Thus it will

encode functions of the form X̂ → R. The above definition of MDD also holds for MTMDD,

by replacing all Boolean sets for terminal nodes with range X0.

An example of MTMDDs is represented in Figure 1.5 where τ = 0 and c = 1. The left diagrams

are quasi-reduced and the purple nodes are redundant and are skipped in fully-reduced diagram

(A). The green nodes are the ones that all edges ik 6= 1 points to zero. These nodes are skipped

in the c-reduced diagram (B). In the third row, blue edges pointing to blue nodes are identity

edges, which are reduced in the identity-reduced diagram (C).

1.3 Edge-Valued MDDs (EVMDDs)

EVMDDs represent functions with a non-Boolean range, but these values are not found as ter-

minal nodes [4] [5]. Instead, there is a single terminal node Ω with no value, and an integer

value is assigned to each edge of the diagram. Thus each value is distributed over the edges
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(A)

(B)

(C)

FIGURE 1.5: quasi, fully, constant and identity-reduced MTMDD (c = 1, τ = 0)

along a path, and the value of the function is obtained by adding the values along the path to Ω.

In other words, EVMDD encodes the value of terminal nodes over the edges. EVMDDs encode

functions of the form X̂ → Z.

For canonicity, nodes are normalized in a way that 0-edge (outgoing edge from value 0) is

assigned to 0 value. The root node has a ”dangling arc” that will be added to the path value

for function evaluation. Figure 1.6 illustrates an example of EVMDD. Both diagrams in this

Figure represent function f : (x1, x2, x3) → (x1.x2) + x3, where diagram (A) is a canonical

representation. However, diagram (B) is not canonical, since it includes nodes that the 0-edge is

assigned to a non-zero value.

The positive Edge Value MDDs (EV+MDDs) are the same as EVMMDs but with different

normalization rules. All outgoing edge values of a node should be non-negative or ∞+, and

at least one of them be 0. The dangling arc then becomes the minimum value of the encoding

function. Assuming an arbitrary domain X̂ , a range X0, an EV+MDD is an acyclic directed

edge-labeled graph where:
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(A) Canonical (B) non-canonical

FIGURE 1.6: EVMDD representation of function f : {0, 1, 2} × {0, 1} × {0, 1, 2} → Z,
(x1, x2, x3)→ (x1.x2) + x3

• Ω is the only terminal node, and is at level 0. It is also considered as a transparent node.

• Each nonterminal node p is at a level k, L ≥ k ≥ 1( p.lvl = k).

• A nonterminal node p at level k has exactly nk outgoing edges. Each of them labeled

with a different ik, ik ∈ Xk, with value v ∈ X0 (p[ik].val = v), and pointing to a node

q (p[ik].ch = q), where p.lvl > q.lvl. It can be written as: p[ik] = 〈v, q〉. If an edge

points to the transparent terminal node Ω and has value∞+, it is called transparent and

otherwise opaque edge.

• For a canonical representation, the following properties should hold:

– There should not be any transparent non-terminal nodes. In other words, for each

node p at level k > 0, there should be p[ik] 6= 〈∞+,Ω〉 for some ik ∈ Xk.

– No duplicate node is allowed. Given nodes p and q at level k > 0, if p 6= q, then

there should be p[ik] 6= q[ik] for some ik ∈ Xk.

– All edges with∞+ value should point to Ω (if p[ik] = 〈∞+, q〉, then q = Ω).

– As mentioned earlier, all values should be normalized in a way that the minimum

value of the leaving edges of each node be zero ( min{p[ik].val : ik ∈ Xk} = 0 ).

Figure 1.7, represents quasi-reduced, fully-reduced and c-reduced EV+MDD. A redundant node

in EV+MDD is a node where all edges point to the same node, and have the same value. Based

on the normalization rule, there should be an edge with value 0. Therefore all edges of a re-

dundant nodes should be assigned to 0. In diagram (A), which is quasi-reduced, the two purple

nodes are redundant according to this definition. As can be seen, these nodes are skipped in

diagram (B) which illustrates the fully-reduced of the same function.
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(A) (B) (C)

FIGURE 1.7: quasi-reduced, fully-reduced and c-reduced EV+MDDs (c = 0)

A node will be reduced in c-reduced diagram, if for all edges ik 6= c, p[ik] = 〈∞+,Ω〉. The

green nodes in diagram (A) have this attribute and are skipped on diagram (C), which is 0-

reduced (c = 0). As it is shown in all diagrams, edges with value∞+ skip all lower levels.

In EV+MDD, node p at level k will be removed as a identity reduced node, if it is pointed by

an edge from index j of node q that is denoted as q[j].ch = p, and for all ik ∈ Xk \ {j} ,

p[ik] = 〈∞+,Ω〉 and q.lvl = p.lvl + 1.

An EV+MDD node p at level k encodes the function fp(i1, · · · , ik) ∈ Z, where i1, · · · , ik are

evaluations for variables x1, · · · , xk and defined recursively by

fp(i1, · · · , ik) =


0 if k = 0, i.e., p = Ω

p[ik].val + gik,p[ik].ch(i1, · · · , ik−1) if k > 0 and p[ik].val 6=∞+

∞+ otherwise

where given EV+MDD node q at level h, l ≥ h, and i ∈ Z ,we let

gi,q(i1, · · · , il) =


fq(i1, · · · , il) if l = h

gil,q(i1 · · · , il−1) if l > h ∧ (ρ(l) = F ∨ (ρ(l) = I ∧ i = il) ∨ ρ(l) = il)

∞+ otherwise

The difference of this definition with MDD is that the terminal value is calculated recursively

by adding the value of edges, instead of using terminal nodes. Note that the terminal node Ω

has the value 0.

EV∗MDDs are the multiplicative version of EV+MDDs. The transparent edges are the ones

with value 0 and point to Ω. The normalization rule is also different, i.e., values should be
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FIGURE 1.8: EV∗MDD example

normalized so that max{p[ik].val : ik ∈ Xk} = 1. Figure 1.8 represents an example of

EV∗MDD.

An EV∗MDD node p at level k encodes the function fp(i1, · · · , ik), where i1, · · · , ik are evalu-

ations for variables x1, · · · , xk, defined recursively by

fp(i1, · · · , ik) =

{
1 if k = 0, i.e., p = Ω

p[ik].val · gik,p[ik].ch(i1, · · · , ik−1) if k > 0

where given EV∗MDD node q at level h, l ≥ h, and i ∈ Z ,we let

gi,q(i1, · · · , il) =


fq(i1, · · · , il) if l = h

gil,q(i1 · · · , il−1) if l > h ∧ (ρ(l) = F ∨ ρ(l) = I ∧ i = il ∨ ρ(l) = il)

0 otherwise



Chapter 2

Meddly

Multi-terminal and Edge-valued Decision Diagram LibrarY (Meddly) is an open-source C/C++

library, that support MTMDDs and EVMDDs as its name also suggests[2]. In this chapter,

first the Meddly terminology and available reduction rules and operations on different decision

diagrams are introduced. Then in Section 2.2 the new implemented reduction rules and available

operations for them are discussed. Finally, the verification of implemented code using automatic

testing, is represented in Section 2.3.

2.1 Structure of Meddly

As described before, decision diagrams are directed acyclic graphs. In Meddly, DDs can be

used to represent a function with a finite number (K) of variables, and each variable xk can

have finite values 0 · · ·nk. In order to have a canonical representation no duplicate nodes can

appear in DDs and a specific ordering is also required.

Types of DDs :A set of DDs with specific type of DD, an associated domain, and named nodes

is called a forest. The following forms of DDs, with different reduction rules and ranges are

available in Meddly [2]

• MDD : as described in section 1.1, which is a function of form f : X̂ → B

• MxD : this term is used for 2L-level decision diagram concept, described in Section

1.2,with encoding functions f : X̂ × X̂ → B

• MTMDD : encoding functions of form f : X̂ → R, where R can be a subset of N or R
(Section 1.2)

11
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• MTMxD : based on the definitions of MTMDD and MxD, Multi-terminal MxD is also

defined for multi-terminal transition relation which encodes functions of the form f :

X̂ × X̂ → R

• EV+MDD : encoding functions of the form f : X̂ → N ∪ {∞}, which is explained in

Section 1.3

• EV∗MxD : based on the definitions of EV∗MDD and MxD, EV∗MxD is also defined for

edge-valued transition relation which encodes functions of the form f : X̂ × X̂ → R≥0.

Available operations: Meddly supports the following operations for the mentioned forms of

DDs [2]

• Unary: Complement and Copy ( copy a DD from one type to another compatible one )

explained in section 2.2.4

• Binary: (more explanation on section 2.2.2)

– on Booleans: Union, Intersection, Difference.

– on integers and reals: +, -, * , / .

• Relational: =, 6=, <,≤, >,≥, min , max.

• Symbolic: Reachable states can be calculated by Meddly using initial state and transition

relation. One step reachable states are calculated by using Pre-image and Post-image. Pre-

image calculates reachable states in a backward step and Post-image algorithm, which is

also explained in section 2.2.3, calculates reachable states in a forward step.

Reduction rules: Currently Meddly doesn’t support different reduction rules for different levels,

instead it only allows one rule for all levels of a given DD. Meddly supports quasi and fully-

reductions for all types of DDs. In Meddly, identity reduction rule is only supported for relations,

i.e., 2L-level, with a restriction: Identity reduction rule is applied to primed levels and fully

reduction rules is being used for unprimed levels.

Figure 2.1, shows all the reduction rules supported by Meddly. Assume binary variables x and

x′ of a transition relation are skipped. The equivalent quasi reduced diagram is calculated by

replacing each skipped level according to reduction rule definition, from upper levels to the

terminals. In Figure 2.1a, both levels are fully reduced, so if a level is skipped it means that both

edges of the node point to a same node. Thus as the first step, a redundant node is added for

variable x, and the reduction rule is now quasi for this level. The same step is done for both

edges of this node that skip level x′. In Figure 2.1b , for primed and unprimed levels identity and

fully reduction rules are being used, respectively. The first step is the same as described for the

previous example, however for the primed level, the skipped level means x′ has the same value

as x and the other edge points to transparent node 0.
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(A) (B)

FIGURE 2.1: Skipping level interpretation using existing reduction rules in Meddly (sparse
representation )

(A) (B)

FIGURE 2.2: Skipping level interpretation using new reduction rules in Meddly (sparse repre-
sentation )

2.2 The new implemented reduction rules

As mentioned earlier, Meddly is an ongoing project with the aim of supporting different reduc-

tion rules for a variety of DDs, depending on the requirements and features of the input data.

However, it is still constrained to the reduction rules that it supports. The author task for the

first step, was to implement the constant reduction rule for all types of available DDs, defined in

Section 1.1. Figure 2.2a, represents an example of this reduction rule, where binary variables x

and x′ are skipped with constant value 0 (c = 0). Each skipped level for a diagram reduced by

this rule means all edges except the edge from constant value, points to the transparent node.

Therefore, the equivalent quasi reduced node for skipping variable x and x′ has an outgoing

edge from 0.

After adding c-reduction rule now we have all the possible reduction rules supported by Meddly

(i.e., quasi, fully, identity and c-reduction rules), are obtained. Additionally, a combination of

constant and identity rules for different types of DDs for relations, called CIdentity, was also

added in Meddly. In this reduction rule, c-reduction and identity-reduction rules are used to

reduce unprimed and primed levels, respectively. The interpretation of skipping levels for these

reduction rules is shown in Figure 2.2b, which provides the same result as using c-reduction rule.

The given example in Figure 2.3 shows the difference of these two reduction rules in skipping

primed levels.
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FIGURE 2.3: Comparing constant and CIdentity reduction (sparse representation )

Section 2.2.1, describes generation of a diagram using constant and CIdentity reduction rules.

The operations over these diagrams should be supported. The three supported operations, i.e.,

apply base, relational product and copy are explained in Sections 2.2.2, 2.2.3 and 2.2.4,

respectively.

Note that the following sections are written with the focus to help researchers who would like

to add a new reduction rule to Meddly. The challenging effort is to find where the correct places

are to add the new code. Hence, in the following the operations algorithm, and how and where

they should use reduction rule methods are explained .

2.2.1 Adding a new reduction rule

These steps are necessary to add a new rule in Meddly:

• Add the rule name to the enumeration ”reduction rule ” in forest policies and get/set

operations for it

• Define a function that checks, for all types of DDs that whether the input node should be

reduced according to set reduction rule. In this case, the method isConstant checks

if the node reduction rule is Constant, which means the diagram is c-reduced or it is

CIdentity-reduced and the node is in unprimed level,so it still uses c-reduction rule. Then

if the node has the described attribute for c-reduction rule, it returns true, otherwise

false. The existing method isIdenitiy, needs some modifications to check primed

levels of CIdentity as well.

• Modification of CreateReducedNode operation: This operation gets a node and re-

turns the equivalent reduced node according to set reduction rule. Algorithm 1 shows how

it works.

• As described in the next section, operations in Meddly create reduced nodes before cal-

culating the result, hence, there should be a function to create node for the new defined

reduction rule. This is done by functions like initConstantReader that create a
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Algorithm 1 CreateReducedNode implementation
1: function CREATEREDUCEDNODE(in,node) . in: value of variable that is pointed by
2: nnz, c← 0
3: for 1 ≤ i ≤ node.size() do
4: if node[i]!=0 then
5: nnz + +, c← i

6: if nnz = 1 then
7: if IsIdentity(node, in) then return node[in]
8: else if IsConstant(node, c) then return node[c]
9: if nnz = node.levelSize then

10: if IsRedundant(node) then return node[0]

11: if nnz = 0 then return transparentNode

node on the skipped level and then associate all of its children pointing to zero except the

leaving edge from constant value.

2.2.2 Basic operations (Union, Intersection , ...)

All the basic operations for sets such as Union and Intersection are implemented in one base

function in Meddly. In the list of Meddly’s operations, there is an apply base operation that

can be used for some of necessary operations. This is done by overloading the CheckTerminal

operation for each of these operations separately. The base function methodology is shown in

Algorithm 2. In lines 2-3, the terminal cases are checked if the two nodes are either at the same

level or not using the c-reduction rule. Since skipped levels are considered redundant nodes for

checking terminal cases in CheckTerminal function of the implementation, it would result

in a wrong answer for c-reduced diagrams. There are two solutions for this problem: First, ex-

cluding c-reduced diagrams to be checked for terminal cases, when a level is skipped. Second,

implementing a different CheckTerminal function for c-reduced diagrams for each opera-

tion. In this case, the former solution is adopted.

After checking terminal cases the result root node level and size are calculated according to

input values in lines 5-7. Then in lines 9 through 13, if each of two input diagrams skipped the

node in the result level, it will be created with respect to the reduction rule being used. Then for

all children of nodes at the resulting level, the operation will be called recursively from line 16 .

At the end, the reduced version of the resulting node will be calculated in line 17.

In all of the operations, the resulting diagram will be cached to prevent recalculation if the same

operation needs to be done for the same inputs later. Therefore there is a cache checking at the

beginning of each function. This process involves searching for the available cached result. If

the result was not cached before, the progress goes on and at the end the result is added to cache

for later use.
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Algorithm 2 apply base implementation for MDDs
1: function MDD APPLY BASE(A,B)
2: if (!A.isConstantReduced() and !B.isConstantReduced() ) or A.level = B.level

then
3: if CheckTerminal(A,B, res) then return res
4:

5: resultLevel← Max(A.lvl, B.lvl)
6: resultSize← GetSize(resultLevel)
7: result← NodeBuilder(resultLevel, resultSize)
8:

9: if A.lvl 6= resultLevel then . recreate reduced node by Constant or Fully
10: A← A.initReducedNode(resultLevel, A)

11:

12: if B.lvl 6= resultLevel then . recreate reduced node by Constant or Fully
13: B ← B.initReducedNode(resultLevel, B)

14:

15: for 0 ≤ i < resultSize do
16: result[i] = MDD apply base(A[i], B[i])

17: return CreateReducedNode(−1, result)

As Algorithm 3 and 4 show, the implementation of apply base operation for MxD is done in

the same way as MDDs. The difference is that the primed and unprimed levels calculation are

in different functions, since there are more reduction rules for primed levels. Furthermore, in

Meddly a negative value is used as the primed level of an unprimed level using the same positive

value. This makes definition of the next level different. In MDD, the lower level of k is k − 1,

but in MxD if k > 0, which means it is an unprimed level, it will be −k, otherwise −k − 1.

Algorithm 3 apply base implementation for unprimed levels of MxDs
1: function MDD APPLY BASE UNPRIMED(A,B)
2: if CheckTerminal(A,B, res) then return res
3:

4: resultLevel← Max(|A.lvl|, |B.lvl|) . Primed level = - unPrimed level
5: resultSize← GetSize(resultLevel)
6: result← NodeBuilder(resultLevel, resultSize)
7:

8: if A.lvl 6= resultLevel then . recreate reduced node by Constant,CIdentity or Fully
9: A← A.initReducedNode(resultLevel, A)

10:

11: if B.lvl 6= resultLevel then . recreate reduced node by Constant or CIdentity or Fully
12: B ← B.initReducedNode(resultLevel, B)

13:

14: for 0 ≤ i < resultSize do
15: result[i] = MDD apply base primed(i,−resultLevel, A[i], B[i])

16: return CreateReducedNode(−1, result)
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Algorithm 4 apply base implementation for primed levels of MxDs
1: function MDD APPLY BASE PRIMED(in,level,A,B)
2:

3: resultSize← GetSize(level)
4: result← NodeBuilder(level, resultSize)
5:

6: if A.lvl 6= level then . recreate reduced node by Constant, Fully, Identity or CIdentity
7: A← A.initReducedNode(level, in,A)

8:

9: if B.lvl 6= level then . recreate reduced node by Constant , Fully, Identity or CIdentity
10: B ← B.initReducedNode(level, in,B)

11:

12: for 0 ≤ i < resultSize do
13: result[i] = MDD apply base unprimed(A[i], B[i])

14: return CreateReducedNode(in, result)

2.2.3 Relational product

Another important operation for model checking is relational product, which calculates the set

of states that are reachable in one step, using a set of states and a transition relation. Algorithm

5 illustrates how this operation is implemented. The same as apply base operation, it first

checks terminal cases in lines 2-4, initializes resulting level and size in lines 6-8 and then creates

the reduced node in the set (if there is any), in line 11. After this step, it immediately checks

relation for redundant nodes in lines 12 and 13, and if it is the case, the process continues

recursively. Otherwise, if an unprimed level is skipped, it will be created in line 22 and then

it goes through all of its children. For each child the skipping primed level will be created in

lines 27-28. After that, it calculates the result for each child and add all of them together in lines

28-35. At the end, possibility of being reduced is checked in line 36.

2.2.4 Copy

This operation copies a Diagram from one forest to another one. Here, It was used to verify the

correctness of our implementation of new rules. The usage will be explained in more details in

the next section. In Meddly, the Copy operation checks if both source and destination forests

have the same reduction rules. If the reduction rules are the same, it computes the result by

creating the same node in the destination forest. In algorithm 6, the other case is considered,

i.e., when reduction rules are different. As before, this operation check terminal cases in line

2, which are reaching terminal node 0 or the source diagram is an empty set. In both cases the

resulting diagram in any forest would be terminal node 0. The next step, which is in lines 3-5,

creates the reduced node if there is any, and then recursively copies its children to the resulting
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Algorithm 5 setXrel(relational product) implementation
1: function SETXREL(S,R)
2: if R = 0 or S = 0 then return 0 . Terminal cases
3: if R.isTerminal() and S.isTerminal() then
4: return ProcessTerminals(S,R)

5: . result initialization
6: resultLevel← Max(|R.lvl|, S.lvl)
7: resultSize← GetSize(resultLevel)
8: result← NodeBuilder(resultLevel, resultSize)
9:

10: if S.lvl 6= resultLevel then . recreate reduced node by Constant or Fully in Set
11: S ← S.initReducedNode(resultLevel, S)

12: if S.lvl > |R.lvl| then . This level is skipped in relation
13: if !R.isConstantReduced() and !R.isCIdentityReduced() then
14: . Unprimed level reduced by fully
15: for 1 ≤ i < resultSize do
16: result[i] = setXrel(S[i], R)

17: else
18: for 1 ≤ i < resultSize do
19: result[i] = 0

20: . recreate reduced node by Constant, CIdentity or Fully in Relation
21: if R.isPrimed() then
22: R← R.initReducedNode(resultLevel, R)

23: for 0 ≤ iz < R.NumNode() do
24: i← R.index[iz]
25: if S[i]=0 then continue
26: . recreate reduced node by Constant, Fully, Identity or CIdentitiy
27: if IsLevelAbove(−resultLevel, R[iz].lvl) then
28: R← R.initReducedNode(resultLevel, i, R[iz])

29: for 0 ≤ jz < R.NumNode() do
30: j ← R.index[jz]
31: newState← setXrel(S[i], R[jz])
32: if result[j] = 0 then
33: result[j]← newState
34: continue
35: result[j]+ = newState

36: return CreateReducedNode(−1, result)

diagram from source to destination forest in lines 11 and 12. Finally the diagram will be checked

for possibility of being reduced in line 13.
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Algorithm 6 Copy implementation
1: function COPY(in,k,A)
2: if A = 0 or k = 0 then return 0 . Terminal cases
3: if IsLevelAbove(k,A.lvl) then
4: . recreate reduced node by Constant, Fully, Identity or Fully
5: A← A.initReducedNode(k,A)

6:

7: result← NodeBuilder(k,A.NumNode())
8: nextk ← nextk.isRelation ?− k : k − 1
9:

10: for 0 ≤ i < A.NumNode() do . copy children recursively
11: result.index[i]← A.index[i]
12: result[i]← Copy(A.index[i], nextk,A[i])

13: return CreateReducedNode(in, result)

2.3 Testing

The new reduction rules and changed operations need to be tested. In Meddly there is a folder

named ”test” that includes testers for several operations, using different reduction rules. For

example, Copy operation is checked by copying more than 20 randomly generated functions,

from all possible forest to another one, and checks if it has the same result as creating the same

function in the destination forest. The new reduction rules were verified and Copy operation

were adopted for them using the same code.

For the other operations, first different functions were generated , then an operation was chosen

to calculate the result. This was done in two different forests, one with the new reduction rules

and the other using previous rules which were verified before. Then, by copying the result from

one forest to another, the result can be compared and checked whether the operations work

correctly.



Conclusion

We introduced a couple of decision diagram reduction rules, each of which is useful for different

models. We also described the supported DDs and reduction rules in Meddly and how new

reduction rules can be added. This report documents the added reduction rules and help new

developers of Meddly to continue its development.

For future investigations, one can compare the efficiency of new reduction rules, i.e., Constant

and CIdentity , with the results for different data models using different reduction rules. Also,

by assigning reduction rules to each level of DDs, it is probable that the size of DDs decreases.

This can be useful depending on the nature of case-study. Finally, choosing the reduction rules

can be decided by Meddly based on the given data structure as an input. This can be taken as

granted to make the DD as compact as possible and reduce the burden of having to decide which

rule should be used.
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