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Chapter 1

Introduction

“The convergence of payments and mobile communications is not just logical – it is in-
evitable”. In March 2007, John Philip Coghlan, then CEO of Visa USA, made this
announcement at the CTIA Wireless Conference. Such a convergence is claimed to be
inevitable for essentially three reasons [Alliance 2009]:

- Contactless payment adoption. Payment brands, issuers and consumers adopts con-
tactless payment solutions due to its speed, easy of use and security, while merchants
adopt it because of faster transaction time, increased spending and higher loyalty.
Moreover, the contactless infrastructure is built on top of the existing financial net-
work, therefore merchants are required only to upgrade their point-of-sale (POS) to
contactless-enabled POS with negligible costs.

- Mobile device ubiquity. Mobile phone subscribers do not leave home without their
phones. In addition, near field communication (NFC) technology has become an in-
ternational communication standard to deliver simplified and robust implementation
of contactless payments using mobile devices due to its secure nature [Coskun 2013].
Today, NFC is a standard functionality provided in most mobile phones.

- Expanded mobile functionalities. Mobile devices are powerful tools that can de-
liver a variety of payment and payment-related services such as proximity mobile
payments, remote payments through the mobile Internet or text messaging, and
person-to-person money transfers. Value-added applications can enrich the pur-
chase experience and include account management, banking, offers, and security
applications.

Many attempts of creating a secure and open mobile proximity payment system have
been made. Typical examples are Google Wallet and Apple Pay that are trying to create
an homogeneous system on top of the already existing financial circuits such as Eurocard,
Amex, Mastercard, Maestro and Visa. However, they have been only partially successful
due to the strict security requirements that the system needs to comply with, the hostile
environment in which the system must run and the many business parties involved in
providing it, i.e. device manufacturers, application providers and card issuers. Today,
interesting technologies that could meet the strict requirements are available in the market,
but designing a smooth environment that stakeholders, even competitors, can trust and
participate in is the greatest problem. As a result, mobile proximity payment systems are
today enabled only in specific countries and still have to gain a foothold not withstanding
the huge potential.



4 Chapter 1. Introduction

Technically speaking, the cornerstone of security in a proximity payment system is
the secure element [Alliance 2009]. Essentially, it is a protected area, independent from
the application process/operating system of the device, which is capable of storing and
processing sensitive information of the device holder. Authentication, encryption of pri-
vate data, data integrity and non-repudiation are typical services that a secure element
provides. One of the solutions provided by NXP Semiconductors is the use of a secure
element, which consists essentially of a built-in smartcard chip embedded in the device
running a Java Card virtual machine that communicates with an external terminal by
means of NFC. The main innovating concept that has been brought into the market with
the introduction of Java Card is the multi-application environment. That is, applications
(from now on “applets”) can run on the same smartcard chip and can be uploaded even
after a smartcard issuance. Such a feature might be the key for creating an open, homoge-
neous and trusted environment, but, due to security reasons, it has never been extensively
used. As a consequence, NXP Semiconductors, as a smartcard manufacturer, is currently
strictly controlling the access to its secure elements enforcing a tight collaboration with
card issuers. Usually, applets of different parties never run on the same chip and are
never uploaded after the card issuance, even if it is developed by a trusted application
provider related to the same card issuer. Obviously, this is a huge limitation that is ob-
structing the spread of a proximity payment system and is leading to the development of
workaround solutions that do not need a physical secure element, such as the Host-based
Card Emulation approach [Friedman 2004] that is starting to be used by Google. As a
secure element manufacturer, NXP Semiconductors wants to stop this trend, proving that
a secure and versatile environment using a physical secure element can be truly designed
and implemented enabling in such a way the use of physical secure elements in mobile
devices.

This thesis work investigates the current state of the art of Java Card and propose a
verification system design to allow NXP Semiconductors to tackle the above-introduced
problem enforcing security and trust without losing control on what is uploaded on its
secure elements. The document is structured as follows:

- Chapter 2 provides an exhaustive introduction of the Java Card technology in terms
of benefits, architecture and standards.

- Chapter 3 focuses on Java Card security aspects, ranging from crucial concepts to
threats, from security mechanisms already in place to security challenges.

- Chapter 4 introduces a new framework to classify attack vectors on Java Card by
vulnerabilities.

- Chapter 5 discusses the known techniques used to attack Java Card. The explained
attack vectors are mapped back to the presented threats in Chapter 3 and the
vulnerabilities defined in Chapter 4.

- Chapter 6 introduces the second part of my work introducing our proposal for solving
the problem introduced in this chapter.
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- Chapter 7 provides a requirements analysis introducing the most relevant aspects
that characterize the verifier and impact the software architecture, forcing us to take
specific design decisions.

- Chapter 8 presents a new scenario that mitigates the current inflexible context and
enforces a high level of security. Firstly, it is described through a scenario story and
the properties it needs to guarantee. Secondly, an explanation of how the system
works in the eye of the stakeholders, involved in the process of verification, is provided
by means of use cases. Thirdly, the infrastructure required to meet the scenario is
presented.

- Chapter 9 focuses on the definition of the system architecture in terms of security,
presenting concepts of protocols and mechanisms needed to meet the stakeholders’
business requirements.

- Chapter 10 discusses the planned future work and draws conclusions on the designed
system.

Java Card Bytecode Verification
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Contents

2.1 Advantages and Benefits . . . . . . . . . . . . . . . . . . . . . . . . 10
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2.2.1 Java Card Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Java Card Runtime Environment . . . . . . . . . . . . . . . . . . . . 17
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2.3 Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . 21

In this chapter the main aspects of the Java Card technology are introduced and dis-
cussed in order to provide the reader with a general understanding of the platform. Since
the Java Card technology was conceived from the traditional Java technology, several com-
parisons between these two technologies are made throughout the entire chapter with the
purpose of catching the motivations of Java Card’s particular structure and consequen-
tially clarifying their differences and similarities. Section 2.1 explains the concept of Java
Card technology along with its benefits. Section 2.2 focuses on the whole architecture,
explaining its structure and the role of each component. Its behaviour at runtime is also
described in terms of life-cycles, statement processing, and further tasks performed to en-
sure its proper functioning. Finally, the currently available APIs are introduced package
by package. Finally, Section 2.3 gives a general understanding of the programming models
used when developing Java Card applets.
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2.1 Advantages and Benefits

Java Card is a fast growing technology that enriches the smartcard’s world with a whole
set of new possibilities. Before its invention all manufacturers had its “proprietary op-
erating system” with native applications developed for specific chips. The applet devel-
opment was difficult, error-prone, time-consuming and overall non-portable. Ensuring
compatibility across different platform was really costly. The idea behind the Java Card
technology, conceived from the traditional Java technology, is completely changing this
approach, permitting developed applets to be run on any Java technology-enabled smart-
card independently of the card vendor and underlying hardware. It was introduced in
1997 and essentially defines a platform on which applets can be written using a dialect
of the Java programming language and run in any smartcard regardless of its hardware.
Note that, only a dialect of Java is supported because of the strict hardware constraints
of smartcards. Along with the “write once, run everywhere” paradigm, this technology
has undoubtedly brought many benefits improving the development and deployment of
applets: the Java Card API is completely compatible with international standards for
smartcards such ISO7816-4 and new applications can be installed after a card issue, en-
abling card issuers to respond to their customer’s changing needs dynamically. The Java
Card architecture concept allows also multiple applets, written by different vendors, to
be run on the same card without compromising their functionalities. This prepares the
basis for the ideal environment where a smartcard can be used for different purposes in
accordance with its user’s needs. The most relevant innovations that Java Card brought
into the market can be outlined as follows:

- Interoperability, developed applets can be run on any Java-enabled smartcard.

- Multi-application, multiple applets can reside on the same smartcard.

- Dynamism, applets can be added after smartcard issuance.

- Enhanced security, built-in dedicated security mechanisms are deployed in the ar-
chitecture.

Today the most recent version of the Java Card technology is version 3.0 Classic and
Connected Edition [Microsystems 2008]. However, version 2.2.2 is still the most widely
used one. Therefore, considering the fact that version 3.0 Classic Edition is a simple
extension of version 2.2.2., along this document all references point to features that are
present in version 2.2.2, but still apply to version 3.0 Classic Edition.

2.2 Architecture

The most relevant component of the Java Card technology is the runtime environment that
provides a clear separation between the smartcard system and the applets. The runtime
environment encapsulates the underlying complexity and details of the smartcard system.
Applets simply request system services and resources through a well-defined high-level



2.2. Architecture 11

programming interface. From an architectural point of view, as shown in Figure I, the
Java Card platform is distributed between a smartcard and a desktop environment in both
space and time, making this technology extremely flexible and modular.

Applet Applet Applet

Java Card Framework
APIs

Java Card
Virtual Machine

Native Operating System

Underlying Hardware

On-card

Card
Acceptance

Device
(CAD)

Host
application

Off-card

responses

com
m
ands

Java Card

Runtime

Environment

Backend
Application

Remote server

re
sp

o
n
se

s

co
m

m
an

d
s

Figure I: The Java Card architecture [Ortiz 2003].

Referring to Figure I, from left to right, the Java Card platform is a multi-application
environment. Many applets can reside on-card along with supporting software: the Java
Card Runtime Environment (JCRE) and the native smartcard operating system. The
JCRE consists of the Java Card Framework, the APIs and a Java Card virtual machine
instance. A Java Card is powered up through a card acceptance device (CAD)1 which
provides an interface that sits between the host application and the smartcard. For the
sake of clarity, a CAD might be a card reader attached to a workstation as well as an
integrated piece into an electronic terminal. An host application sets up a full-duplex
communication with a specific applet, that works as a server, through the Application Data
Unit Protocol (APDU) which is a standard in the smartcard environment. The content
of its messages, commands and responses are described in [ISO 2013a]. Sometimes, also a
backend application is required in the architecture in order to provide support to applets.
A typical example is in an electronic payment system where the back-end application
provides access to sensitive payment information before authentication through in-card
credentials. Runtime behaviours are described in Section 2.2.2.

Formally, the Java Card platform consists of three parts, each defined in an official
specification document:

- The Java Card Virtual Machine (JCVM) defines a Java programming lan-
guage subset and the file formats used to install applets and libraries into Java Card
technology-enabled devices [Microsystems 2006d]. Its role can be better understood
in the context of the process for development and deployment of applets. Further

1Power can be supplied to a smartcard in different ways, by contact or by induction. For further
information about smartcards operating principles and their classification, refer to [Rankl 2010, Ch.2].

Java Card Bytecode Verification
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details can be found in Section 2.2.1.

- The Java Card Runtime Environment (JCRE) defines the necessary behavior
of the runtime environment in any implementation of the Java Card technology. The
JCRE includes the implementation of the Java Card Virtual Machine, the Java Card
API classes, and runtime support services such as memory and applet management
[Microsystems 2006c]. Further details can be found in Section 2.2.2.

- The Java Card Application Programming Interface (API) completes the
JCRE APIs implementation providing a description of the Java packages and classes
usable for programming smartcard applets. In other words, it reports all packages
and classes definitions required to support the JCVM and JCRE [Microsystems 2006a].
Further details can be found in Section 2.2.3.

2.2.1 Java Card Virtual Machine

The Java Card Virtual Machine consists of two separate pieces: the converter and the
interpreter. The converter runs on a workstation and is the off-card piece of the virtual
machine. Its purpose is to load all the .class files of a Java package and to output an
executable file suitable for the Java Card platform. This executable file has a .CAP
extension which stands for converted applet. The need of a component which converts
traditional Java executables, .class files, to a Java card executable, .CAP file, is dictated by
the smartcards hardware constraints. Therefore, the goal of the CAP format is to minimize
the size of a Java card executable while semantically preserving the equivalence to the
Java executables it represents [Krishna 2001]. Preserving such a semantic equivalence is a
requirement in order to actually enable applets written in a subset of the Java programming
language to be run properly on Java Card technology-enabled smartcards. The Java Card
executable size reduction was enabled by splitting the traditional .class Java executables
into two parts. The first part, the CAP file, contains the core, that is the essential
needed for execution on-card, while the second part, which is called export file, contains
information needed for linking purpose that is never loaded into the smartcard. Together
they represent the Java class package taken as input by the converter. The interpreter
runs on the Java card and is the on-card piece of the virtual machine. It takes as input
the .CAP file previously generated by the converter and executes it. Figure II illustrates
the Java Card conversion process above introduced. Since the virtual machine itself does
not provide a unit to load and install a CAP file into a smartcard, a tool called installer,
which resides within the card, has been developed allowing to perform such a task. Each
virtual machine’s component is now explained individually to remark its tasks and to
describe some relevant details. Afterwards, the operational process of an applet life cycle
is illustrated before moving to the definition of Java Card Runtime Environment.
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Class files Converter

Off card

CAP fileExp file

Interpreter

On card
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Figure II: The Java Card Virtual Machine

2.2.1.1 Converter

The main purpose of the converter is to translate source files into a format suitable for
the runtime environment. Initially, all source files of a Java package are converted by
a standard Java compiler into class files which, in turn, are used as input for the actual
converter that produces a CAP file. This procedure uses as conversion unit a Java package,
unlike the traditional Java virtual machine which processes one class file at a time. Along
with the CAP file also an export file is produced with .exp extension in order to manage
any kind of class which requires the import of other packages. In other words, an export
file consists of all public API linking information of classes in a package. Each unicode
name of a class, a method or a field is given a unique identifying token. Even if such a file
is not loaded onto the smartcard and thus not directly used by the interpreter, an export
file is critical to the operation of the on-card virtual machine since it is used for verification
and linking purposes. An export file is generated when a package is converted. If another
package uses a package previously converted, the information of that export file is included
in the CAP file of the package currently processed. Such information is being afterwards
used to link the two packages [Microsystems 2006b]. A description of the export file format
can be found in [Microsystems 2006d, Ch.5]. Along with the conversion, from source files
to a CAP file, the converter preprocesses the classes of the examined package with the goal
of keeping the on-card Java virtual machine part as small as possible. That is, it performs
some of the tasks that a Java virtual machine normally does when it loads a Java class in
a desktop environment. Some of the preprocessing tasks the converter tool performs are
to initialize static variables in the classes and to resolve symbolic references. In addition,
the converter tool checks whether the Java classes in the package are properly formed,
and whether the applets use only the subset of the Java programming language that is
supported by the Java Card platform. Table I shows the main differences between the
Java Card dialect and the traditional Java programming language. This code inspection
is already considered a verification task and is the minimum requirement to thwart the
most straightforwards attack vectors that could compromise the integrity of the JCVM
implementation, and hence the installed applets. This is an important step as a Java card
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does not have to implement an on-board bytecode verification mechanism for performance
reasons. As a consequence, the platform trusts that only verified applets are loaded. At
the end of the checks, the converter tool directs the result of its preprocessing to the
standard output stream.

Functionality Java Card Java

Operators all all

Sequence control functions yes yes

Exception Handling yes yes

Data Types: boolean, byte, short yes yes

Data Type: int optional yes

Data Types: long, float, double, char no yes

Fields one-dimensional multidimensional

Objects Fields one-dimensional multidimensional

Cloning of Classes and Objects no yes

Dynamic Object Creation yes yes

Static and Virtual Methods yes yes

Dynamic Downloading of Classes no yes

Load Unit Package Class

Interfaces yes yes

Dynamic Memory Management (Garbage
Collection)

optional yes

Threads no yes

Table I: Functional comparison between Java Card and traditional Java [Rankl 2010,
Ch.13].

To sum up, the Java Card converter, when transforming .class files of a Java package to
a .CAP executable, performs the following tasks [Microsystems 1998, Chen 2000, Ch.3]

1. Verification – checks that the loaded .class images are well-formed with consistent
symbol tables and no language violations of the Java Card specification.
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2. Preparation – allocates the memory and creates the virtual machine data structure
needed to represent the classes, create static fields and methods, and initializes static
variables to default values.

3. Resolution – replaces symbolic references to methods or variables with direct ref-
erences when possible.

2.2.1.2 Interpreter

The interpreter provides runtime support for the Java language allowing the actual hard-
ware independence. The tasks it performs are [Chen 2000, p.34]:

- Executing bytecode instructions

- Controlling memory allocations and object creation

- Enforcing runtime security (refer to Section 3.3 for further details).

Due to the critical nature of these operations, it directly affects the applet’s execution
time. This aspect is extremely relevant to industry since applets often have strict timing
requirements. For this reason the interpreter is frequently subject to studies for improving
its performance. Ideally, a classic interpreter consists of a huge switch wrapped by a while
loop [Klint 1981]. Even if this approach suffers from low speed performance, it is still the
most feasible solution as its code is simple and compact in term of size. As discussed in
[Microsystems 2006d], Java Card Technology 2.2.2 uses a fetch-code-execute loop which
slightly differs from the traditional Java technology because of the JCVM’s more limited
support for data types. Figure III illustrates an example of such a loop along with its
pseudocode. Essentially, during this loop, the interpreter retrieves a bytecode instruction
from its memory, determines what actions the instruction requires, and eventually carries
it out.

The design and implementation of the interpreter needs to be improved. Currently,
many other approaches that reduce the applets’ execution time have been proposed and
could be deployed in the near future impacting not only the performance, but also the
entire system security which could suffer from exploitable flaws. For the sake of clarity
and completeness the most discussed approaches are quickly introduced. A first alterna-
tive, discussed in [Piumarta 1998], is the direct threaded interpreter (DTI) which is based
on a compiler that produces a machine-depended code without losing applets’ portability.
It improves the performance but the executable size is still too large. Another solution,
which could remarkably decrease the execution time of applets, is the use of the just in time
compilation that is presented and discussed in [Cramer 1997]. In this solution, the byte-
code, instead of being interpreted, is converted in optimized machine code. Although this
mechanism extremely improves the execution time, it is still too much RAM-consuming.
Finally, another interesting approach, discussed in [Zilli 2014], has been recently proposed.
It introduces an hardware-software co-design solution which actually improve the inter-
preter’s performance.

Java Card Bytecode Verification
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FETCH

DECODEEXECUTE

while(1){
JBC = JProgram[++JPC];
JBCFunct=JBCTable[JBC];
JBCFunct();

}

Legend:
JProgram = Java Program

JBC = Java Bytecode
JPC = Java Program Counter

Figure III: Pseudocode and finite state machine of the Java Card interpreter [Zilli 2014].

2.2.1.3 Installer

The purpose of the installer is to load and install a CAP file into a Java card. The
installer resides within the smartcard and cooperates with an off-card installation pro-
gram to perform its tasks. The off-card program transmits a CAP file to the installer,
through the CAD, which, in turn, checks whether the card’s available memory resources
are sufficient and if the optional Java Card specification features, like for example the int
type, are supported and used by the CAP file. In case of positive responses, it writes
the received file into the smartcard memory, performs any needed linking and initializes
any data structures that are used later by the runtime environment. The installer has
not been embedded into the interpreter in order to minimize its size and to provide more
granularity and flexibility for installer implementations [Chen 2000, p.34]. An important
aspect of the installation process to realize is the fact that applets are uploaded instead
of downloaded. In other words, the authority that controls the smartcard providing users
with services decides to move code onto a card or a batch of cards. In the standard Java
environment applications are downloaded by users who have much more control over the
content of his Java implementation.

The Java Card Virtual Machine operational process can now be introduced in term
of applet life cycle, which is divided in development and deployment phases. Figure IV
illustrates the transformations an applet undergoes after its design (details about the
programming paradigms in Section 2.3) and implementation in the development phase.
The Java source code is compiled by a standard Java compiler whose output is taken in
by the converter that verifies whether the generated bytecode complies to the Java Card
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specifications. Figure V illustrates the steps performed during the deployment phase. The
verified bytecode is converted to CAP format and uploaded using the installer.

Applet
Design

Write
code

Source
Code

Compile
Java

Bytecode
Verify

Verified Java
Bytecode

Developer Standard Java Compiler Converter

Figure IV: The Java Card applet development

Verified Java
Bytecode Convert

CAP
file

Upload Executable
load file

Install Applet

Converter Installer

Figure V: The Java Card applet deployment

2.2.2 Java Card Runtime Environment

The Java Card Runtime Environment (JCRE) is comprised of all Java components which
run in the smartcard. Figure VI shows the components the JCRE consists of. Compared
to Figure I, the JCRE is presented at a lower level for the purpose of illustrating pre-
cisely every part, however, this representation can be easily mapped back. On top of the
architecture there is an implementation of the Java APIs and all extensions which a man-
ufacturer has decided to add. Through them, applets can request resources and interact
with the underlying components. Along with these two parts the installer, described in
Section 2.2.1, is deployed. Below that, the implementation of a set of policies and routines
which allow, at running time, to manage applets and all transactions as well as any kind of
input/output communication. At the bottom, the interpreter (the on-card piece of the vir-
tual machine, refer to Section 2.2.1) that enables the actual instruction execution together
with all native methods, which allow it to access and manage the smartcard hardware.

Such a component division is extremely advantageous thanks to its granularity and flex-
ibility as it separates applets from proprietary smartcard technology and provides Java
APIs for applets development. The JCRE can be considered, roughly speaking, as the
smartcard’s operating system; it is responsible for resource management, I/O communi-
cation, applet life cycle management and Java security model enforcement [Fort 2006].

The JCRE is initialized at card initialization time, therefore only once during the card
lifetime. During this process the virtual machine is initialized and all objects needed for
providing the JCRE services and managing applets are created. As a consequence, for a
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APIs Extensions Installer

Applets and Transactions
Management

IO Network
Communication

Interpreter and native methods

Java Card

Runtime

Environment

Applets

Smart Card Hardware and Native Software

Figure VI: The Java Card Runtime Environment architecture

proper Java card operation, these objects live for all the JCRE’s life cycle. As applets are
installed, the JCRE takes care of creating applets instances and, in turn, applets create
objects for providing services for final consumers.

From the time the card is inserted into a CAD until the time the card is removed,
the JCRE operates like any smartcard supporting APDU I/O communication with a host
application: the smartcard enters a loop and waits for APDU commands to arrive from the
host. When the JCRE receives a command, it selects an applet based on the unique applet
identifier (AID) included in the APDU packet and forward it to the applet’s select method.
This method tells the JCRE if the applet is ready to process the request, returning True
or False. In accordance to the applet’s response the JCRE notifies the host application. In
case of a positive reply, the selected applet takes control and passes the received command
to its process method that interprets the command. Once finished it sends a response back
to the host application and gives back control to the JCRE. This process is repeated for
each command received. Only when the JCRE is asked by the host application to access
another applet the JCRE calls the deselect method of the applet currently selected which
performs actions on the applet, according to the applet’s programmer decisions.

Some data needs to be preserved over JCRE life cycles, therefore persistent memory
technology are used to achieve such preservation. In such a way, the life time of the
JCRE corresponds to the life time of the smartcard: when the card does not receive
power anymore, the virtual machine is only suspended and all objects previously created
in persistent memory are preserved. At the next smartcard usage, the virtual machine is
reset and executes from the beginning of its life cycle but it loads all applets and objects
previously created, therefore differing from the initialization phase [Chen 2000, p.38].
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Along with the support of the Java Card language at runtime, the JCRE performs addi-
tional tasks and provides further services which can be grouped mainly in three categories
[Chen 2000, p.39]:

- Persistent and transient objects. As previously described in this section, Java Card
objects are by default persistent since they are stored in persistent memory, i.e.
EEPROM . But, for security and performance reasons, applets can create objects
into the volatile memory, i.e. RAM. Such objects take the name of transient object as
they are obviously not persistent across sessions. Note that the number of physical
writes are limited and writes to EEPROM cells are typically more than 30 times
slower then writes to RAM, in fact a write operation on persistent memory usually
takes 3/4ms.

- Atomic operation and transactions. The JCRE ensures that any kind of write opera-
tion is atomic. Therefore, either the new data is completely and correctly written or
the old value is restored. This property is extended to the concept of transactions.
In other word, many statements can be part of a single transaction which need to be
atomic. During a transaction up to three write operations are typically performed,
therefore writing to a variable can consume about 12ms [Rankl 2010, ch.13]. This
performance deficit has always to be kept in mind.

- Applet firewall and sharing mechanism. The JCRE enforces security at running time.
Each applet is isolated from the outside by means of sandboxes and can interact with
other applets only respecting defined policies. Security mechanisms are analyzed in
detail in section 3.3.

2.2.3 Java Card APIs

The Java Card APIs define only a small set of the traditional Java API for programming
smartcard applets and is completely compatible with the ISO7816 model. As already
mentioned at the beginning of the chapter, only a dialect of Java is supported due to
smartcards’ hardware constraints. As a consequence, many common Java classes like
String, Integer, Boolean, Thread, System are not supported. Along with the APIs subset
of the Java language, the Java Card environment defines its own set of core classes, specif-
ically developed to support applets development. Hereafter, the collection of all packages
defined in the Java Card platform [Fort 2006].

2.2.3.1 Java API subset packages

- java.lang provides the fundamental Java language support. It defines Object and
Throwable classes but lacks many features compared to its traditional Java package
counterpart. The Object class defines a root for the Java Card class hierarchy specify-
ing only a default constructor and the equals method while the Throwable class pro-
vides a common ancestor for all exceptions. The set of defined exceptions consists of
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the common Exception class, some runtime exceptions and the environment-related
CardException.

- java.rmi defines the Remote interface, which identifies interfaces whose methods can
be invoked from the card acceptance device (CAD) client applications. Moreover,
it defines the RemoteException class that can be thrown to indicate an exception
occurred during the execution of a remote method call.

- java.io defines only one exception class, IOException, with the goal of maintaining a
hierarchy of exceptions identical to the standard Java programming language. IOEx-
ception is the superclass of the exception RemoteException defined in the java.rmi
package. None of the other traditional java.io classes are offered.

2.2.3.2 Javacard-specific packages

- javacard.framework provides a set of essential classes and interfaces which define
the core functionality of a Java card applet. It defines and implements some relevant
concepts such as the Java Card applet, the application protocol data unit (APDU),
the personal identification number (PIN), the Java Card system and some more util-
ities. The Applet and PIN classes are self-explanatory, the former specifies the base
methods and properties of applets (each applet must extend this base class), while
the latter defines the most common form of passwords used for user authentication.
The JCSystem class implements a collection of methods to control and manage ap-
plets, resources and transactions. In addition, this class includes methods to handle
the persistence and transience of objects.

- javacard.security defines interfaces and classes for the Java Card security frame-
work. This API includes many cryptographic algorithms, both symmetric like DES,
AES and asymmetric such as DSA, RSA. Moreover, other base classes are defined
in order to generate random data, compute message digest and signature: Random-
Data, Signature, MessageDigest.

- javacardx.crypto is an extension of the javacard.security package. It introduces
two new classes, KeyEncryption and Cipher. The former defines the methods used to
enable encrypted key data access to a key implementation, the latter is the abstract
base class for cipher algorithms.

- javacardx.rmi is an extension of the javacard.rmi package. It introduces CardRemo-
teObject to enable and disable remote access to an object from the outside and
RMIService which allow to process RMI requests.
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2.3 Programming Models

From a programming point of view there are two models that can be chosen when devel-
oping a Java card applet [Ortiz 2003]: the message-passing model and the remote method
invocation.

The message-passing model is designed around the APDU protocol which is based on
the exchange of a logical data package between CAD and Java Card framework. The Java
Card framework receives and forwards to the appropriate applet every APDU sent from
the CAD. The applet produces a response, according to the APDU previously received,
which is sent back to the CAD. Therefore, developing an applet using such a model is
basically a two-step process: defining the command and response APDUs and writing the
applet itself.

The Java Card remote method invocation (JCRMI) is conceptually based on the tra-
ditional Java RMI distributed model, where a server application makes objects accessible
and clients can invokes methods on them remotely. In such an approach the Java Card
applet is the server and the host application is the client. JCRMI is provided by the class
RMIService which belong to the package javacardx.rmi previously described. It provides
a distributed object model mechanism which runs on top of the APDU-based messaging
model, and, through it, the server and clients communicate. Namely, each JCRMI packet
is encapsulated within an APDU object and passed to the RMIService methods.
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This chapter presents the security-related aspects of the Java Card technology. Sec-
tion 3.1 focuses on the security aspects that play a vital role in the platform. Section 3.2
introduces the types of threats that endanger the Java Card platform. Section 3.3 dis-
cusses all mechanisms designed to enforce and enhance security of smartcards. Finally,
Section 3.4 presents the current security challenges emphasizing particularly the ones of
interest for the report.
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3.1 Security Concepts

In the Java Card technology four aspects play a vital role in the platform security:

• CAP verification

• Applet loading

• Applet isolation

• Operation atomicity

3.1.1 CAP Verification

The CAP file, as described in Section 2.2.1, is a compressed representation of the original
Java code that contains the essential core needed for an applet execution. This small
representation has lost some security features of the underlying Java language security
leading to possible attacks. An attacker could easily forge an executable, or tamper an
existing one, such that it violates the Java language constraints specified in the JCVM
and threatens the security of the entire platform, attempting to compromise the integrity
of the JCVM implementation and its applets. That is feasible because a JCVM implemen-
tation is not required by the Java Card technology specification to withstand attacks from
ill-formed applets, therefore, as a consequence, different JCVM implementations might
behave differently under the same attack vector. Note that an applet that has passed the
verification step is called an Verified Applet, while an applet that has failed the verifica-
tion process is an Ill-formed Applet. Accordingly, a JCVM implementation expects only
verified applets. For such a reason, it is crucial to perform CAP verification.

3.1.2 Applet Loading

The security of the applets’ loading process is paramount. In case an attacker can bypass
the loading mechanism [s]he would be able to upload onto the card any kind of malicious
applet, breaking the security of the platform and of the installed applets. An applet
installer is already provided by the development kit, but without cryptographic support,
therefore it is suitable only for testing or pre-issuance purpose. As it will be mentioned in
Section 3.3.2, a manufacturer should implement a proprietary mechanism to handle any
kind of post-issuance applet upload.

3.1.3 Applet Isolation

Java Card is a multi application environment, thus it is possible that applets of compet-
ing providers co-exist on the same card. Applet providers might have different security
requirements depending on the type of applet they want to deploy: a financial/loyalty
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applet could be developed under specific and strict security conditions whereas an enter-
tainment applet functions well in a completely unprotected environment. Therefore, it is
fundamental to enforce isolation and to allow only controlled interactions.

3.1.4 Operation Atomicity

Java Cards are handy and often operate in an dangerous environment that is outside
the control of the card issuer. Unwanted conditions in terms of temperatures, voltage,
humidity and vibrations might arise. Also, unexpected card tears could happen. These
situations might compromise the consistency and integrity of data in case they arise when
data is being manipulated. As a consequence, there would be no evidence that the inter-
rupted operations were completed leading to an inconsistent state. This behaviour cannot
be tolerated for a proper functioning of the platform.

3.2 Security Threats

Java Cards are becoming a popular target for attackers, for various reasons [Witteman 2002]:

- Successful attacks enable profitable frauds and attackers could start a business case.

- Java Cards are cheap and easy to obtain. Thus, attackers can test techniques.

- Java Cards are portable. Attackers can easily control conditions in an hostile envi-
ronment.

A Java Card can be threatened in a variety of ways. Attackers could try to exploit
not only logical (software), but also physical (hardware) features due to the nature of
smartcards. In addition, also physical phenomenons related to the smartcard’s hardware
behaviour at runtime might be exploited. Note that in this report physical attacks, i.e.
directs attacks on the hardware, are mentioned but they are not addressed, as they are
out of scope for our work. An exhaustive attack nomenclature can be found in Chapter 4,
while the specification of the attacks that are taken into account in the report is provided
in Chapter 5.

At runtime, Java Card applets could manifest unwanted behaviours, which can be listed
as follows in increasing order of severity [Witteman 2003]:

1. Perform harmless but annoying behaviour

2. Crash temporary or permanently the Java platform

3. Manipulate unauthorized resources external to their domain

4. Leak sensitive user data

5. Attack the platform or other installed applets
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As a consequence of these undesirable behaviours four basic threats types can be iden-
tified:

1. A verified applet leaks sensitive data. Applets, because of developer oversights,
could leak sensitive data and/or expose themselves to data tampering. As a conse-
quence, data confidentiality of the other installed applets might be also endangered.

2. A verified applet abuses features. Applets abuse regular Java Card features
to perform undesirable or harmful behaviours towards the platform and/or other
installed applets.

3. A verified applet exploits bugs or design oversights. Applets identify and
exploit bugs or design oversights in the platform to provoke damages to the platform
and/or to the other installed applets.

4. An ill-formed applet compromises the entire platform. Ill-formed applets
could succeed in being loaded into the card and compromise the integrity of the
platform and of the other installed applets.

Three exhaustive use cases for threat 2, 3 and 4 are presented in [Witteman 2003].

3.3 Security Mechanisms

The Java Card technology provides a number of security features which are essentially
derived from [Microsystems 2003]:

- The Java programming language along with specific packages

- The JCVM architecture

- The JCRE security mechanisms

It is important to realize, referring to the above list of unwanted behaviours, that only
item 5, i.e. “Attack the platform or other installed applets“ and item 4, i.e. ”Leak sensitive
user data“, are partially mitigated by these built-in security mechanisms. The above list
of security features is now introduced and explained.

3.3.1 The Java Programming Language

The Java programming language integrates many features that protect the integrity of the
platform. These mechanisms can be outlined as follow:

- Encapsulation

- Type checking

- No pointer manipulation

- Array bounds check



3.3. Security Mechanisms 27

- Variables initialization

- Security by APIs

Due to its programming paradigm, Java provides programmers with the means to encap-
sulate data, restricting access to objects’ components. This restriction can be described as
a barrier that does not allow code and data being accessed by other code and is achieved
using the well-known keywords public, no modifier, protected and private. Table II shows
the provided access levels.

Modifier\Scope Class Package Subclass World

Public yes yes yes yes

Protected yes yes yes no

No modifier yes yes no no

Private yes no no no

Table II: The access level permitted by each identifier in Java [Rose 2001].

The Java language is a strongly typed language, therefore it generates an error refusing to
compile source code if the argument passed to a function does not match the expected type.
As a consequence, also the bytecode is type correct. Further security risks are prevented
by avoiding pointer manipulation, variables usage before initialization and enforcing array
boundaries. Moreover, the Java API, as described in Section 2.2.3, introduces specific
security and crypto packages which allow to provide a secure mechanism for authenticating
and downloading applets and removes potentially risky features such as threading and
dynamic class loading.

3.3.2 The JCVM Architecture

The Virtual Machine architecture, as described in Section 2.2, is divided into two parts.
Such a separation between the on-card part and off-card part provides more security as the
off-card part asserts that a CAP file, before being loaded onto the smartcard, conforms
to the Java Card specification. That provides a further assurance that the executable
code will not compromise the integrity of the virtual machine. However, it might happen
that the executable code is modified prior to installation on the card, as the code check
is performed by the off-card part of the virtual machine whereas the actual installation
is done by the installer that resides on-card (refer to Section 2.2). To avoid that, card
manufacturers can easily implement a code loading mechanism that enforces the integrity
and authenticity of the applet through Public Key or Symmetric Key cryptography. Keys
for loading code are then used by the card manufacturer that sometimes plays also the role
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of card issuer or directly by the card issuer; this depends on the use case. This feature can
be nested without difficulty thanks to the granularity provided by the separation between
installer and interpreter: a card manufacturer only needs to add a feature to the installer.

3.3.3 The JCRE Security Mechanisms

The JCRE enforces security through essentially two features which are already introduced
in Section 2.2.2: transaction atomicity and the applet firewall. Furthermore, the JCRE
might optionally perform runtime checks that are redundant with the static checks per-
formed by the converter in order to ensure that the code does not violate the fundamental
language description, for example trying to access a private variable from outside a class.

3.3.3.1 Transaction Atomicity

A transaction is a logical set of persistent data updates performed atomically. The pur-
pose of this mechanism is to protect the integrity of data against sudden events such as
power loss (overall due to card tears) and program errors which could cause data cor-
ruption. As illustrated in Listing 3.1, an applet states the beginning of an atomic set
of updates with a call to JCSystem.beginTransaction and only when the method JCSys-
tem.commitTransaction is reached all conditional updates are committed to the persistent
memory. In case the method JCSystem.abortTransaction is called instead, the transaction
is aborted and all updates within the initiated transaction are rolled back.

1 ...
2 private short balance;
3 ...
4 JCSystem.beginTransaction();
5 balance = (short)(balance + creditAmount1);
6 balance = (short)(balance - creditAmount2);
7 JCSystem.commitTransaction();
8 ...

Listing 3.1: Java Card transaction example

However, a power loss might occur before commitTransaction or abortTransaction are
reached by the interpreter. As soon as the card receives power again, the updates per-
formed before the power loss are rolled back automatically by the JCRE. To enforce such
a behaviour, the system has to keep track of the data state before the transaction, log-
ging it at the granularity of a single persistent memory access, i.e. logging the content
of each persistent memory slot. Typically, large transaction systems manipulate data in
RAM during the transaction and log the updates accordingly to the persistent memory.
However, the necessary RAM resources for providing this transaction design are not avail-
able on current smartcard hardware. The recovery process is performed comparing the
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data state before the transaction and after the unexpected event. Note also that the sys-
tem throws an exception in case of any irregularity, such as buffer overflow, during the
transaction. In case the thrown type of the exception is not handled by the applet, the
transaction is aborted.

3.3.3.2 Applet Firewall

The Java Card platform is a multi-application environment, therefore, applets need to
protect sensitive data against malicious access. In traditional Java, this goal is achieved
by means of class loaders and security managers, for further details refer to [Oaks 2001].
Whereas, in Java Card, this is done via the applet firewall which allows to create private
namespaces for applets. The firewall not only provides a first level of security against mal-
ware, but also against developer mistakes and design oversights. This security mechanism
is based on essentially two concepts: package and context notions. Private namespaces
for applets take the name of contexts and are enforced by the common concept of a pack-
age. Two applets are said to belong to the same context if they are defined within the
same package, this information is contained in the unique applet identifier (AID) which is
assigned to an applet when created. That is, all applet instances belonging to the same
package share the same context and can freely access objects of other applet instances
which reside in the same package. Applets belonging to different contexts generally can-
not access each other’s objects. In addition to applets’ contexts a further “system” context
is defined: the JCRE context. Its peculiarity is that objects belonging to this context can
access any object from any other context on the card. Figure VII illustrates this context-
based mechanism. According to [Éluard 2001], the set of Contexts can be defined as
follow:

Contexts = {JCRE} ∪ {pckg | pckg is a legal package name on card}

Every object, once created, has an owner and a context. The owner is the applet that
created the object, while the context is the context to which the applet that created the
object belongs to.

At any point in time, only one context is active within the VM, such a context is called
the currently active context [Microsystems 2006c]. This can be either the JCRE context
or an applet context. When bytecodes try to access an object’s method of another applet
a runtime check against the currently active context is performed in order to determine
if that access can be granted or not. In case of failure, a java.lang.SecurityException
is thrown. Otherwise, the VM has to determine if a context-switch is required. If
the currently active context is equal to the context of the object owner no context
switch is required, in case it is not, under specific conditions, defined in Section 6.2.8 of
[Microsystems 2006c], a context switch happens. The previous context and object owner
information is pushed in the VM stack and the result of this switch is a new currently
active context. Upon exit from the current method the previous information stored in the
stack is restored popping it out from the stack. Therefore the currently active context
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becomes again the context of the applet, which caused the context switch executing a
method of another applet’s object. Note that, if a context switch occurs during a trans-
action it does not interfere with the execution of the transaction anyhow, i.e. updates
to persistent data continue to be conditional in the new context until the transaction is
committed or aborted. Hereafter an example is presented to clarify the main points.

Applet Space – Context C1

Applet D

Object oD

Method mD

Applet E

Object oE

Method mE

Applet Space – Context C2

Applet F

Object oF

Method mF

Applet G

Object oG

Method mG

JCRE Context

System Space

FIREWALL

Figure VII: Example of contexts within the Java Card platform.

Example 3.1: Referring to Figure VII, applets D and E are in the same package, thus
share the same context, whereas applet F is defined in an other package and therefore
belongs to another context. In case context C1 is the currently active context and method
mD on object oD is executed by applet D no context switch occurs. In case method mD
invokes, in turn, method mE on object oE owned by applet E no context switch occurs
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as the two applet instances are defined in the same context. However, if mD calls method
mF on object oF which is owned by applet F a firewall restriction applies and the VM
has to determine if the access can be granted. In case it does, the VM has to decide if a
context switch is required, based on specific conditions mentioned before. If the context
switch is required, the currently active context becomes the context C2. Upon return to
method mD from method mF the context C1 is restored and becomes again the currently
active context.

To sum up, we have the following rules that define the context concept and object
ownership [Microsystems 2006c]:

- Every applet is assigned an AID and belongs to a context. Applets instances which
are defined within the same package belong to the same context.

- Every object is owned by an applet instance and therefore it is assigned to its context.
When executing a method of an object in an applet’s instance, the object’s owner
context is the currently active context. Note that, in case of a static method call,
the execution is in the caller context as only class instances, i.e. objects, have a
context.

The firewall isolates each applet to its designated context for security reason, however,
applets often need to communicate with other contexts in order to work properly. The
following mechanisms enable an object to interact with an object belonging to a different
context [Microsystems 2006c]:

- JCRE Entry Points Objects

- Sharable Objects

Java Entry Points Objects are system objects, owned by the JCRE, which allow non-
privileged applet instances to request system services. These objects have been designed to
be accessed by any object from any context. When a method of those objects is invoked by
an applet instance a context switch occurs to the JCRE context. The service is performed
after verifying that all parameters are within bounds and all object passed in as parameters
can be accessed by the applet caller’s context. The JCRE defines two types of entry points
objects: temporary and permanent. The need of specifying two types of entry points come
from the requirement that some references of those objects cannot be allowed to be stored
in class variables or array components. That is the fundamental difference: temporary
entry point object references cannot be stored whereas permanent entry point references
can. An typical example of temporary entry point is the APDU object that contains the
buffer in which commands sent to the card are stored. This object has to be considered
as temporary in order to prevent unauthorized reuse. An example of a persistent entry
point object is the table containing the AIDs of all installed applets on the card.

The Sharable Objects mechanism allows applets in different context to share information.
An applet can share object’s methods, but not fields, through an interface which extends
javacard.framework.Sharable. In this interface the methods’ signatures that the applet
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wants to share has to be specified. The class of the object to be shared has to implement
this defined interface. Moreover, the applet has to include the method getSharableInter-
faceObject which is called every time the applet is asked to provide a shared object. This
method takes as input parameter the AID of the applet requesting to access the shared
object allowing, in this way, different objects to be shared with different applets. More
precisely, this mechanism works in essentially three main steps [Microsystems 2006c]:

1. Building a sharable interface object

- An appletD defines a shareable interface SI extending javacard.framework.Sharable
and specifying the signature of the methods to share.

- D defines a class C that implement the defined SI. C might also define methods
that are not defined in SI, in that case this methods will not be sharable because
they are protected by the firewall.

- D instantiates an object O of class C. O belongs to the applet D and is part
of its context. All objects inside that context can access any field or method of
O in according to the class specification, for example, a private field cannot be
accessed.

2. Obtaining the sharable interface object

- An applet E, which belongs to another context, wants to access the shared
methods of D therefore an object reference SIO of type SI is created.

- E calls the method JCSystem.getAppletSharableInterfaceObject to request a
shared interface object reference from D.

- D receives the request along with the AID of E and through the method Ap-
plet.getShareableInterfaceObject determines if granting the access to the shared
object O.

- In case the access to object O is granted to E by D, a reference to object O is
returned to E. Such a reference is of type Shareable, therefore none of the fields
and methods of O are visible. In case the access to O is denied a null reference
is returned.

- E casts the received reference of object O from Shareable to SI and stores it in
the variable SIO previously created. After the cast, only the shared methods
of O are visible to E. The firewall prevents any access to fields or methods of
O that are not shared.

3. Requesting services through the sharable interface object

- E requests a service from applet D through the sharable interface object refer-
ence SIO. When a shared method invocation occurs a context switch happens.
The currently active context, i.e. the context of E, is saved onto the stack and
the context of the owner of O, i.e. D, becomes the currently active context.
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- D determines the AID of the method’s caller through the method JCSys-
tem.getPreviousContextAID, if it does not corresponds to the expected AID
the method is not performed, otherwise it is.

- As a context switch occurred, the firewall allows the called method to access
all fields or methods of object O and any other object defined in the context
of D. At the same time, the firewall denies access to not-shared objects in the
context of E.

- The method, using the parameters passed in, executes and returns a result to
E.

- A context switch occurs restoring the previous active context stored in the
stack, therefore, the context of E becomes again the currently active context.

In accordance to [Bernardeschi 2004] and [Éluard 2001], the above-presented JCRE se-
curity mechanisms protect applet’s data from unauthorized access only partially. A mech-
anism for knowing the context of a method caller is implemented, but there is no way to
obtain the identity of all callers involved. In other words, an applet can only know the last
context switch from its point of view in the stack, by calling the method getPreviousCon-
textAID. As a consequence, an applet D which provides a service to an applet E does not
know whether the method call was really done by E or was a result of E being called from
some other applets. Neither can D know what the caller will do with the method result.
Therefore, an applet can only signify an object as shared, without having the opportunity
to truly decide with whom to share an object. Hereafter two examples are presented show-
ing the most relevant implications of this issue: direct and passive data/object leakage.

Example 3.2: There are three applets in three different contexts: D, E, F. A shareable
interface SI is prepared and is implemented by D1. D defines the getShareableInterfaceOb-
ject to determine upon a sharing request if granting it or not, depending on the caller. As
illustrated in Listing 3.2 (Object grant), the object is shared only if the caller is E. D is now
ready to share an object SIO. Using the method JCSystem.getAppletShareableInterfaceObject,
E requests the object SIO from D. However, as shown in Listing 3.2 (Data exposure),
E inadvertently leaks the reference of SIO once received by storing the reference into a
public static field2. At this point, as illustrated in Listing 3.2 (exploitation), F can simply
use all shared methods of SIO although they were meant to be shared only with E. This
leads to direct data leakage. However, this leakage can still be avoided verifying each
time, at applet side, the method caller as shown in Listing 3.2 (Mitigation). Thus, given
the currently deployed security mechanisms, this problem can be solved only through an
applet implementation that takes into account such a platform flaw.

1The shareable interface is directly implemented by the applet main class for keeping the example more
compact.

2This is just one of the possible ways which could lead to data exposure.
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Example 3.3: There are three applets in three different contexts: D, E, F. D offers a
subscription service by means of of a shareable interface object. E subscribed to this
service offered by D whereas F did not. Assume that every time E uses the service,
on its turn, invokes a shared method of F. This method invocation can be employed by
F to infer that a subscription service is currently active and when it is actually used.
Thus, sensitive information is leaked. The firewall is not able to detect this unexpected
information flow as the services are shared properly. A typical example of this issue is
presented in [Bieber 2000]. This lead to an indirect data leakage and cannot be avoided
with the security mechanism currently deployed.

1 // Object grant
2 public class D extends Applet implements SI {
3 ...
4 public Shareable getShareableInterfaceObject (AID client, byte param){
5 if (client.equals (E_AID, (short)0, (byte)E_AID.length) == false)
6 return null;
7 return (this);
8 }
9 ...

10 }
11 // Data exposure
12 public class E extends Applet {
13 ...
14 public static SI D_Object;
15 D_Object = (SI)JCSystem. getAppletShareableInterfaceObject(D_AID,(byte)0);
16 ...
17 }
18 // Exploitation
19 public class F extends Applet {
20 ...
21 private static SI D_Object;
22 D_Object = E.D_Object;
23 D_Object.foo(); // This method exists in SI
24 ...
25 }
26 // Mitigation
27 public class D extends Applet implements SI {
28 ...
29 public void foo() {
30 AID client = JCSystem.getPreviousContextAID (); // Is the caller E?
31 if (client.equals (E_AID, (short)0, (byte)E_AID.length) == false)
32 ISOException.ThrowIt (SW UNAUTHORIZED CLIENT);
33 ... // Fine, the caller is E
34 }
35 ...
36 }

Listing 3.2: Direct data leakage
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3.4 Security Challenges

Java Card technology represents a significant step forward in the world of the smartcards,
but it is still young and presents weaknesses that need to be tackled. The security chal-
lenges are now investigated in order to outline the main areas where to focus on with the
purpose of counteracting the four security threat types presented in Section 3.2. They can
be outlined as follow:

- Reviewing applet sources code and bytecode

- Verification and signing of the CAP file

- Securing the applet loading mechanism

- Reinforcement of the Java Card platform

- Enforcing stakeholder awareness and cooperation

Hereafter, each security challenge is introduced.

3.4.1 Reviewing Applet Source Code and Bytecode

Ideally, verified applets should not be harmful neither for the platform nor for the other
installed applets, but this is not the case. In reality, applets, even if verified, could
[Witteman 2003]:

- crash the platform or deny services to other installed applets

- act legally but exhibit an undesirable behaviour

- try to exploit bugs in the platform

- be badly designed, leaking data and, as a consequence, damage its related business

In order to avoid these behaviours, reviews of the source code and/or bytecode should
always be performed. Only in situations where security is not an issue for all installed
applets and the application provider takes full liability over any kind of consequence, it
could be acceptable to not perform a review.

3.4.2 Verification and Signing of the CAP File

As already mentioned in Section 3.1, CAP verification is essential to avoid that ill-formed
applets compromise the integrity of the platform. Card issuers should support verification
with strict administrative policies and expert professionals should be able to interpret any
output of the verification algorithm and take consequentially effective choices. Applying
cryptographic signatures to the CAP files along with its all related files, i.e. export files,
is also fundamental to enforce the integrity of any code files when internally/externally
exchanged between involved parties prior to installation on the card.
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3.4.3 Securing the Applet Loading Mechanism

The loading mechanism is of primary importance and has to be continuously updated to
counteract new attack vectors. As explained in Section 3.1, in case it was bypassed the
entire platform along with the installed applets would be compromised by the attacker.
Note that, a Java card should also protect itself against unauthorized downloads.

3.4.4 Reinforcement of the Java Card Platform

The Java Card platform is still quite young and presents weaknesses. It has to be tested
and patched regularly in order to satisfy all security requirements that are needed for an
effective platform operability. A lack of trust in the platform by the stakeholders would
mean the collapse of the entire Java Card technology.

3.4.5 Stakeholder Awareness and Cooperation

In the Java Card environment three stakeholders play a major role:

- Applet developers

- Java Card manufacturers

- Card issuer

Security can be effectively enforced only if the involved stakeholders are conscious of the
importance of security in this field and are willing to cooperate.
Applet developers need to focus on the security requirements their applets need in order
to make their products not only functional but also secure. They need to realise that the
security of the platform also depends on the security of their products.
Java Card manufactures need to understand that the security of the platform directly
depends on the hardware used and the software deployed.
Card issuers need to become aware of the weaknesses the platform still presents and should
apply any possible security countermeasure in accordance with the risk levels.

Referring to the list of threats presented in Section 3.2, the first, second, third items can
be addressed, even if not completely, by means of source code and/or bytecode review.
Moreover, awareness and cooperation of stakeholders can far improve the situation as
much more effort would be put in testing applets for susceptibility to exploits. The fourth
item can be mitigated by securing the applet loading mechanism and enforcing the CAP
executable and related files verification and signing.

The report aims at contributing to the solutions of two of the above-described security
challenges, namely:

- Reviewing applet source code and bytecode
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- Verification and signing of the CAP file

The end-result is a software tool to analyze applets’ code for the presence of potentially
exploitable and malicious code. Our motivations along with our proposal are introduced
and described in Chapter 6.
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This chapter presents an exhaustive attack nomenclature that covers all feasible classes
of attacks on Java Cards, namely logical attacks in Section 4.1, physical attacks in Sec-
tion 4.2 and side channel attacks in Section 4.3. This nomenclature has been defined taking
as starting point [Witteman 2002]. Each class introduces, at a high level, feasible attack
types grouped by vulnerabilities along with the common countermeasures which should
be taken to counteract those attacks. Figure VIII shows graphically this division. The
purpose of this chapter is providing a big picture about the variety of vulnerabilities an
attacker might exploit to reach his/her goal. A technical specification of the most relevant
attacks techniques is provided in Chapter 5. Note that, physical attacks, as previously
mentioned, are only introduced at high-level for the sake of completeness.
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Figure VIII: The Java Card attack nomenclature
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4.1 Logical Attacks

Logical attacks exploit bugs or oversights in the software implementation and abuse these
flaws to gain access to confidential data, perform undesired data modification or deny
services.

Logical attacks can be grouped by vulnerability as follow:

- Hidden commands

- Unchecked parameters

- Firewall implementation bugs

- Transaction system implementation bugs

- Vulnerable communication protocols

- Unsafe crypto protocols

- Lack of type safety checks

Consequences that those attacks could lead to are unpredictable because that is strongly
dependent on the attack vector. For these reasons, those classes of attacks can be mapped
to all the presented threats in Chapter 3.2. In other words, each attack, independently
from the class it belongs to, could leak data, abuse regular platform features and/or exploit
platform or applets bugs. Each category of attack is now explained.

4.1.1 Vulnerabilities

4.1.1.1 Hidden commands

The JCRE has a big set of APDU commands that allow to perform a variety of actions. A
complete list can be found in [ISO 2013a]. Moreover, also applets define their own set of
commands, leading to a huge collection of directives. In practical usage, only a small set of
commands are required and it happens that commands that were supposed to be disabled
are still active from an initialization phase or previous application. Attack vectors might
abuse them to perform malicious activities.

4.1.1.2 Unchecked parameters

Commands often require one or more parameters to perform their functions. The use
of disallowed or unexpected parameter values or types could be misinterpreted if not
sanitized, leading to surprising results that could negatively impact not only applets, but
also the entire Java Card platform. Therefore, attack vectors could inject prohibited
parameters causing relevant damages.
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4.1.1.3 Firewall implementation bugs

The applet firewall is quite complicated as specified in [Microsystems 2006c], this means
that there is real chance of implementation bugs or firewall oversights. The applet firewall
has been tested thoroughly in [Mostowski 2007] using verified code, i.e. code that complies
to the Java Card specifications, and some security problems have been discovered when
using sharable interfaces. A few of these issues have been already introduced in Section 3.3.
In particular, an attack vector might use a shared object of the target applet to gain direct
or indirect access to sensitive data.

4.1.1.4 Transaction system implementation bug

The transaction mechanism, defined in [Microsystems 2006c], is the most studied aspect
of the platform due to its tricky nature. Several papers carried out investigations such
as [Beckert 2003] and [Marché 2006]. As described in Section 3.3, the transaction system
allows multiple statements to be atomic and, in case of failure, offers a rollback mechanism.
Attacks vectors could exploit directly a bad implementation of the transaction mechanisms
to gain access to or tamper with sensitive data.

4.1.1.5 Vulnerable communication protocols

The APDU protocol, defined in [ISO 2013a], handles the data flow and the error recovery
between a Java card and a terminal. Sending messages outside the scope of the current
protocol state could lead to unexpected events such as data leakage. Therefore, an attack
vector could directly exploit the communication protocol to disclose sensitive data.

4.1.1.6 Unsafe crypto-protocols

Crypto-protocols manage transactions where cryptographic operations are required. This
kind of protocols are not strongly related to the Java Card platform but to the environment
applet-terminal, that means their implementation and sometimes their design depend on
the card issuers. In case of design or implementation oversights, sensitive applet data could
be leaked or backdoors might be inadvertently opened leading to a possible exploitation
of the other installed security sensitive applets. An attack vector, such as replay-attacks,
might take advantages from this negligence.

4.1.1.7 Lack of type safety checks

Java, as described in Section 3.3, is a well-typed programming language. That means,
type safety is the cornerstone of its security, for further details on type safety and Java
security, we refer to [McGraw 1999]. As a consequence of the hardware constraints, safety
type checks are only performed at compile time, as opposed to the traditional Java platform
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where they are also performed at running time. This implies that attacks vectors could
exploit this lack of checks at running time to produce type confusion leading to breach
the whole Java Card platform. Further explanation about type confusion can be found
in [Saraswat 1997].

4.1.2 Countermeasures

The susceptibility to logical attacks is truly dependent on the complexity of the software.
By definition of software engineering, the probability of bugs, oversights and flaws grows
with the size of the software. Common approaches to cope with these complications
are [Witteman 2002]:

- Develop a structured software design in such a way that functional blocks can be
much more easily reviewed, tested and reused.

- Perform experimental tests with the purpose to validate the code’s behaviour. Static
or dynamic analysis might be carried out.

- Standardize interfaces and applications in order to encourage the reuse of proven
software, decreasing consequentially the chances of vulnerabilities.

- Test the application externally in order to achieve a formal certificate that claims
the effectiveness of the requirements.
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4.2 Physical Attacks

Physical attacks exploit the raw hardware of Java cards, performing reverse engineering.
This class of attacks requires an high-end laboratory equipment, but does provide signifi-
cant opportunities to succeed in the exploitation. However, physical attacks are invasive
and often destructive as an attacker can often not reuse the card.

Physical attacks can be grouped by vulnerability as follow:

- Chip layers and components sizes

- Clear bus structure

- Detectable circuit logic

4.2.1 Vulnerabilities

4.2.1.1 Chip Layers and components size

Modern chips contain multiple layers that can be delayered by means of etching materials
and chemicals. This reveals the various building blocks in a chip making it accessible for
optical and electrical analysis. The use of advanced microscopes enables optical analysis
and reverse engineering permitting to reconstruct the circuit logic or the operating system
logic.

4.2.1.2 Clear bus Structure

Once the chip is delayered, a probe needle can be inserted on arbitrary wires modifying
the existing logic structure and even creating new channels to the outside. However, the
bus structure of the chip has to be visible and clear to allow probe needles to tap all data
exchanges between the CPU and the memory.

4.2.1.3 Detectable Circuit Logic

The use of scanning electron microscopes enables electrical analysis making it possible to
surface wires hidden from other layers. This type of microscopes shoots ions instead of
electrons not only making small details visible, but also allowing to modify an easy-to-
detect chip circuitry logic.

Attack vectors can exploit the physical vulnerabilities above-described to access all data
stored in the card.
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4.2.2 Countermeasures

The effectiveness of attacks that exploit physical features strongly depends on the quality,
in term of physical security, of the chip. Below some approaches that permit to decrease the
level of success in physically exploiting a smartcard [Witteman 2002]. These techniques
might be compared in spirit to software obfuscation.

- Reduce the components size to thwart the use of optical microscopes and probe
needles. Note that, electron microscopes can handle sizes in the order of a few
nanometer.

- Use a protecting layer to prevent the analysis of live data processing. That is possible
as a protecting layer contains an active grid carrying a protecting signal.

- Use sensors to detect intolerant conditions in term of light, temperature, power
supply. As a result of a detection the chip should be disabled.

- Scramble communication buses so that an attacker has to do a full reverse engineering
of the logic.

- Make use of “glue” logic, i.e. mixing logic blocks together, so that an attacker is not
able to identify easily the functional building blocks by analysing the chip structure.
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4.3 Side Channel Attacks

Side Channel attacks exploit physical phenomenons related to the smartcard hardware,
such as time, temperature, power and radiation to gather sensitive information or even
manipulate the hardware behaviour of the card. Typical targets are crypto-protocols. This
class of attacks can be, in turn, subdivided into Side Channel analysis attack and Side
Channel manipulation attack. The former only examines the collected data to gather useful
information, while the latter exploits physical phenomenon to change the card behaviour.

4.3.1 Side Channel Analysis Vulnerabilities

Side Channel analysis attacks can be grouped by vulnerability as follow:

- Power consumption leakage

- Electromagnetic radiation emission

- Deterministic computational time

4.3.1.1 Power consumption leakage

Smartcard semiconductors consume power according to the ongoing processes. Attack
vectors can measure the power consumption revealing details about the information being
processed. The most known and used attack vector in this category is Differential Power
Attack (DPA). An exhaustive overview of the attack can be found in [Kocher 1999].

4.3.1.2 Electromagnetic radiation emission

Every time a smartcard transistor switches, it produces electromagnetic radiation. Attack
vectors intercepting the phenomena effects can determine a complete picture of the ongoing
process, leading to the leakage of sensitive information.

4.3.1.3 Deterministic computational time

Smartcard microprocessors take time to execute logical operations. Due to the determinis-
tic nature of the smartcard microprocessors today used, precise measurements of the time
for each operation can leak sensitive information such as the seed used for computing a
key in a crypto system.
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4.3.2 Side Channel Analysis Countermeasures

Side Channels analysis attacks try to exploit environment conditions related to the smart-
card hardware to gather data. A variety of countermeasures can be applied. They can be
categorized into two types depending on the logical place where the security mechanism
is deployed:

- Hardware countermeasures

- Software countermeasures

The first category can only decrease the susceptibility to Side Channel analysis attacks,
but not eliminate it completely. However, it is independent of the software implementation
so that, even if the software is updated or completely changed, the security mechanisms
are still in place. The second category can either reduce the sensitivity to this type of
attacks deploying countermeasures at platform level, or implement at application-level
tailored mechanisms that can eliminate the emission of useful information. Especially the
application-level countermeasures can be expensive and hard to maintain due to the strict
connection with the applet design.

The most typical Hardware countermeasures are:

- Decoupling from power source, e.g. by putting a capacitor in the IC

- Reduce the power signal and the electromagnetic emissions by means of metal
shields.

- Increase the amplitude noise level deploying concurrent random processes.

- Increase the timing noise level with variable clock speeds and interrupts.

The most common Software countermeasures are:

- Reduce relevant signal by random process ordering.

- Add timing noises by means of random delays or alternating path.

Due to the nature of this type of attacks, in order to gain useful information from physical
phenomenons an attacker needs to collect many phenomenons-related samples and know
the input and/or output of the algorithm [s]he wants to exploit. Therefore, two further
software countermeasures can be deployed to completely eliminate the emission of useful
and enough information for the attacker:

- Make use of retry-counters that limit the number of samples an attacker can take.

- Limit the visibility of the input or output of cryptographic algorithms.

- Change or update the secret keys regularly
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4.3.3 Side Channel Manipulation Vulnerabilities

Side Channel manipulation attacks can be grouped by vulnerability as follow:

- Fixed voltage and temperature range

- Sensitivity to light, X-rays and other electromagnetic radiation

- Frequency dependency

4.3.3.1 Fixed voltage and temperature range

Smartcard electronic circuits are designed to operate at a defined and constant voltage
supply and at a fixed temperature range. Sudden changes in temperature or voltage out-
side the boundaries might change the behaviour of the chip and trigger alternative actions.
The most known and used attack vector in the Side Channel manipulation class exploits
the card voltage and is called Fault Injection. Futher details can be found in [Hsueh 1997].

4.3.3.2 Sensitivity to light and electromagnetic radiation

The circuitry of the smartcard is sensitive to light and strong electromagnetic pulses. An
attack vector can make use of a direct beam of (laser) light or an other intense electro-
magnetic signal to damage the chip, modify data or instruction(s) in memory/on the bus
or change its logical behaviour.

4.3.3.3 Frequency dependency

Similarly to voltage and temperature, semiconductors are also designed to operate at a
well-defined clock frequency range. In case the frequency is forced to exceed the defined
top boundary, the Java Card behaviour might be affected triggering errors in the execution
of complex instructions that need more time. An attack vector could force the increase of
the frequency in order to trigger errors in crucial applets’ checks leading to for example
an erroneously successful security check.

4.3.4 Side Channel Manipulation Countermeasures

Side Channels manipulation attacks try to exploit environment conditions related to the
smartcard hardware to change the smartcard behaviour triggering software errors. A vari-
ety of countermeasures can be applied. They can be categorized into two types depending
on the logical place where the security mechanism is deployed:

- Hardware countermeasures

- Software countermeasures
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The only possible Hardware countermeasure that can be deployed in order to avoid
Side Channel Manipulation attacks is a strict use of sensors for voltage, temperature
and frequency. However, electronic circuits will be never completely immune to signal
injections [Witteman 2002]. Furthermore, note that a too strict use of sensors affects the
reliability of the card, causing possible malfunctioning in unexpected climate conditions.
For this reason, this vulnerability should be mitigated at software level as an adequate
complement.

With respect to Software countermeasures, it is important to carry out fault detection
enforcing values validation of crucial program flow decision and cryptographic data. This
enforcement can be achieved in several ways, the most common techniques are:

- Introduce value redundancy over the program flow and check fault injection com-
paring the redundant values.

- Reverse the input from the output and check if the obtained and reversed values are
the same.

We refer to [Bouffard 2014, Gadellaa 2005] for a complete list of possible hardware and
software countermeasures against fault injections.
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The previous chapter presented a complete set of vulnerabilities that could be exploited
for attacking a Java card. As a further step, this chapter investigates how these vulnera-
bilities are exploited today and what kind of techniques attackers use. With the purpose
of presenting an exhaustive state of the art on Java Card security, each presented attack
vector is related with its respective vulnerabilities and threats presented in Chapter 3
and Chapter 4. Risks levels are not defined because these are strictly dependent on card
issuers’ requirements and applet type.

Java Cards have a common point with native smartcards: they perform sensitive op-
eration on critical user data, which should be kept secret between the involved parties.
Therefore, these cards have to be secured both from a physical and a software point of
view. The attacker’s goal is to disclose already stored code and confidential data. Even
if Java cards provide a secure data container, by means of its security mechanisms intro-
duced in Section 3.3, attackers have still some chances of success. Recalling the fact that a
JCVM implementation is not required to withstand attacks from ill-formed applets (refer
to Section 3.1), an attacker can threaten a Java card using generally three techniques:

1. Perform differential power analysis or fault injection.

2. Exploit directly bugs or oversights in the installed applets.

3. Trigger type confusion by means of ill-formed applets.

These techniques are presented respectively in Section 5.1, Section 5.2, Section 5.3.
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5.1 Power Analysis and Manipulation

This technique focuses on exploiting two physical phenomenons related to electrical power:
voltage and power consumption. Thus, they are part of the Side Channel Attack class.
Each attack, namely differential power analysis (DPA) and fault injection, is explained
in Section 5.1.1 and Section 5.1.2. Hereafter, Table III illustrates a complete overview in
term of attacks, vulnerabilities, threats and countermeasures.

Attack Vulnerability Threat Countermeasures

DPA
“Power consumption
leakage”

A verified applet leaks sensitive data
Refer to
Section 4.3.2

Fault
Injection

“Fixed voltage”
A verified applet leaks sensitive data
A verified applet abuses features
A verified applet exploits bug/oversights

Refer to
Section 4.3.4

Table III: Power Manipulation and Analysis, security overview.

5.1.1 Differential Power Analysis

Differential Power Analysis is a statistical method for analyzing sets of power measure-
ments (power traces) to identify input/output data-dependent correlations, with the pur-
pose of discovering critical secrets such as encryption keys. It is a topic widely stud-
ied [Joye 2005, Clavier 2000, Bevan 2003, Petrvalsky 2014] that was introduced for the
first time by [Kocher 1999]. His goal was to disclose RSA keys in a weak algorithm imple-
mentation during the “Square and Multiply” step of modular exponentiation [Gopal 2009].
This technique, as introduced by Kocher, can be also used to reverse the code of an appli-
cation or algorithm by means of power traces collections coming from different executions.
Also electromagnetic emission can be exploited using conceptually the same technique to
reach the goal [Dyrkolbotn 2011].

5.1.2 Fault Injection

Fault Injection refers to the technique of physically stressing a chip with the purpose of
triggering erratic behaviours to elude in-act countermeasures. By means of fault injection,
perturbations in the execution environment are injected so that values in memory cells
change, different signals are sent over communication bus lines and structural elements get
damaged [Bar-El 2006]. As a result different behaviours can be generated: entire instruc-
tions changed, instructions skipped, wrong or invalid branches triggered etc. Mainly, it
can permit an attacker to access sensitive data or execute operation beyond his/her rights
abusing platform features or exploiting bugs or oversight at operating system or applet
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level. For example, an interesting attack is presented by Barbu et al. [Barbu 2012a]. Note
that it is a combined attack1, therefore this requires an attacker to have the privilege to
upload onto the card its own applet. They targeted the APDU buffer itself, making it
accessible to a malicious applet at any time, thus threatening the security of the platform,
the hosted applications as well as the privacy of the cardholder. At first glance, this at-
tack could be interpreted simply as a man-in-the-middle attack between the terminal and
the card. However, one could observe the APDU buffer contains received, emitted data
and temporary files used as buffer from applets. Using a single fault injection Barbu et al.
proved that is possible for an attacker to gain permanent access to the buffer. The JCRE is
responsible, as described in [Microsystems 2006d, Sec.6.2.8.3], to prevent an applet from
storing in its memory area references to global arrays, and in particular to the APDU
buffer array. The APDU buffer, due to its global status, is also cleared to zeroes whenever
an applet is selected [Microsystems 2006d, Sec.6.2.2]. That said, the JCRE must perform
some runtime checks in order to enforce these two mentioned behaviours. A possible check
is the one illustrated in Listing 5.1.

1 // ref points to the object to store
2 if (is GlobalArray (ref)) {
3 // Handle storage attempt
4 throw Security Exception
5 }else{ ... }

Listing 5.1: Detection in the APDU buffer storage

Barbu et al. showed that an attacker, using fault injection, can force to jump in the else
branch. Using his/her own applet, which tries to store the reference of the APDU buffer
into a global array, the attacker is able to store the reference of the APDU buffer in a non-
volatile field, thus accessing it anytime. Depending on the applet that has been uploaded,
an attacker is potentially able to copy every byte written in the APDU buffer in a local
applet buffer. Moreover, the attacker can also modify the content of the APDU buffer
using the reference to write it back instead of simply copying. An example is illustrated
in Listing 5.2.

1 // field Buf is the stored APDU buffer reference.
2 // BUF LEN is the assumed APDU buffer length.
3 // tmpBuf is a byte array initialized with a size of BUF LEN.
4 // os is an OutputStream used by the attacker.
5 public void run (){
6 while (true){
7 // APDU buffer is different, copy its content.
8 if (arrayCompare (field Buf,0,tmpBuf,0,BUF LEN) != 0){
9 System.arraycopy(fieldBuf,0,tmpBuf,0,BUF LEN);
10 os.write(tmpBuf);
11 }
12 }

1Combined attack refers to the technique of combining side-channel attacks with software attacks. The
side-channel attack changes the environmental conditions so that the logical attacks can be performed.
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13 }

Listing 5.2: Eavesdropping the APDU buffer

In the smartcard field, beside voltage manipulation, which is the most used and known
technique to trigger faults, other three strategies have been widely studied and are still
today used: electromagnetic spikes [Kömmerling 1999], clocks glitches [Anderson 1998]
and optical attacks [Skorobogatov 2003].

5.2 Applet Exploitation

This technique is strictly dependent on a use case, i.e. an installed applet and its envi-
ronment. For such a reason little literature can be found. However, an interesting tool to
automatize attacks aimed at exploiting communication and crypto protocols is described
in [De Koning Gans 2012].

Attacks vectors of this technique belong to the Logical Attacks class and exploit some
of the vulnerabilities presented in Chapter 4, namely:

- Hidden Commands

- Unchecked Parameters

- Unsafe Crypto Protocols

Attacks vectors related to this technique can only lead to applet data leakage or tampering.
However, note well that, in case the exploited applet communicates via the Object Sharing
Mechanism with other applets, also useful information of these other applets might be
leaked, due to the applet firewall limitation presented in Section 3.3. That said, all attack
vectors related to this technique can be related to threat “A verified applet leaks sensitive
data” presented in Section 3.2. High level countermeasures can be found in 4.1.2.

5.3 Type Confusion

This technique is the most direct, disruptive and straightforward approach that an at-
tacker can use for exploiting Java cards, as with relatively simple code it is possible to
break entirely the integrity of the platform. The attacker’s goal is uploading onto the
card ill-formed code so that the cornerstone of Java[Card] security, safety type checks, is
endangered. The main advantage of this technique is the fact that it is not related to
any installed applet, therefore, theoretically it is feasible in any use case. However, due to
the deployed security mechanisms in place loading ill-formed code onto the card is not a
straightforward task.

This technique can be conceptually divided in three steps as follows:

- Obtain the right to load and install application on card, refer to Section 5.3.1.
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- Inject ill-typed code on card, refer to Section 5.3.2.

- Run the developed attack vector, refer to Section 5.3.3.

5.3.1 Obtaining rights to load code

The right to load an applet onto a card is not as obvious as it often looked in previous
works [Iguchi-Cartigny 2009, Mostowski 2008, Witteman 2003] attempting to attacks Java
Card devices.

An attacker needs to be somehow granted with the right of uploading code onto the
card. There are three ways in which this can be done [Barbu 2010]:

1. The attacker obtained from the card manufacturer the card manager key set, which
means he plays the role of issuer. The attacker can upload any package or install
any applet without limitations. This can happen in three cases:

- The issuer is doing malicious activity.

- The attacker stole the card manager key set from the issuer.

- The attacker is using a bought white card for performing an attack. However,
in this case, few assets are at stake, making the reach of any attack limited.

2. The attacker can load a package or install an applet by Delegated Management,
described in [Platform 2003]. That means the issuer, which has been given by the
card manufacturer the master keys, has created a kind of loading environment, called
Security Domain, which provide loading, installation and communication features
with specific privileges. Any use of this mechanism requires ownership of some
secret keys for authentication and secure communication purpose. Note well that
installing an applet by Delegated Management requires the install APDU command
to be signed by the card’s issuer.

3. The attacker can load a package or install an applet by Authorized Management,
described in [Platform 2006]. To do so, an issuer has to be deployed beforehand a
Security Domain and provided the respective secret keys.

In conclusion, having the right to upload and install applets in the current situation,
described in Chapter 1, is not obvious as either card manufacturers and card issuers
collaborate strictly or card manufacturers play also the role of card issuers. Moreover,
note that post-issuance code loading is often forbidden and therefore disabled.

5.3.2 Injection of ill-formed code

In order to inject ill-formed applets onto the card we need to assume that the attacker
gained somehow, as described above, the right needed to load code onto the card.

Java Card Bytecode Verification
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At that moment, in order to trigger type confusion, four approaches can be used to
inject ill-formed code onto a smartcard [Mostowski 2008]:

- CAP file manipulation

- Abusing the Sharable Interface Object

- Abusing the Transaction Mechanism

- Fault Injection

Each of them is below specified providing examples. Table IV outlines type, vulner-
abilities, threats and countermeasures of each attack vector. The threat column is not
reported in the table as all the listed attacks refer to An ill-formed applet compromises
the entire platform.

Attack Type Vulnerability Countermeasures

CAP
Manipulation

Logical “Lack of Type Checks”
Static on-card bytecode verifier
Secure signing system
Runtime safety type check1

Abusing
Sharable
Interface
Object

Logical “Lack of Type Checks” Typed verification on export files
Runtime safety type check1

Abusing
Transactions

Logical
“Transaction System Bugs”
“Lack of Type Checks”

Deallocate objects
Reset references
Runtime safety type check1

Disabling the
Checkcast

Side-channel
Logical “Power consumption leakage” Refer to Section 4.3.4

Confusing the
Operand
Stack

Side-channel
Logical “Power consumption leakage” Refer to Section 4.3.4

Corrupting
Java Card
Exceptions

Side-channel
Logical “Power consumption leakage” Refer to Section 4.3.4

Agnostic
Modification

Side-channel
Logical “Power consumption leakage” Refer to Section 4.3.4

1 Particularly impactful on performance. Hardware constraints still do not usually allow it. How-
ever, it would be possible to turn this feature on only in particular sensitive situations as described
in [Bouffard 2014, Ch.5].

Table IV: Type Confusion, security overview.

Some of the listed countermeasures are tailored for a specific attack, for this reason
they have not been mentioned in the common high level countermeasures in Chapter 4.
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When it comes to ill-formed code the more runtime checks a VM implementation deploys
the more resilient it becomes. Hereafter a list of further proposed dynamic countermea-
sures [Mostowski 2008]:

- Object Bounds Checking, any JCVM implementation is required to perform array
bound checks when accessing array elements. This check could be extended to object
bounds when accessing instance fields and invoking methods on object that are not
arrays. Obviously, this mechanism requires an object to record its size variable,
which corresponds to its number of fields, in the same way it records the size of an
array object. When converting .class files to .CAP files, field’s names of the instances
are replaced by sequential numbers. Therefore this checks is easy to implement.

- Physical Bounds Checks, array bounds checks are performed using logical sizes, this
could be extend with a further check on the physical size in term of memory offsets.

- Integrity Checks in Memory, when performing dynamic checks for array bounds,
downcasting and firewall’s context switching the VM has to store some metadata in
the memory representation of objects. Further meta information about references
might be stored and checked in a object’s memory representation in order to prevent
switching or spoofing of references.

5.3.2.1 CAP File Manipulation

CAP file manipulation is the simplest way to get ill-formed code onto the card. It consists
in editing a CAP file with the purpose of introducing a type flaw in the bytecode and
install it. Obviously, this attack works only on cards that are not equipped with either
an on-card bytecode verifier or a secure signing system for CAP executables and related
files, as already mentioned in Section 2.2.1. In this case, secure means robust in term
of cryptography and coherent in term of policies, i.e. it has to be executed immediately
after the applet’s CAP file verification procedure. A typical example that proves how
straightforward it is to perform this attack can be the following one.

Example 5.1: The opcode baload, which is used to load a byte or Boolean value from an
array, can be changed to saload opcode, which is used to load a short type from an array.
This misinterpreted array type might potentially lead to accessing the memory area of
another installed applet. Further details in Section 5.3.3.

5.3.2.2 Abusing the Sharable Interface Object

The Sharable Interface Object, introduced in Section 3.3, allows applets belonging to
different contexts to communicate legally across the firewall. This mechanism can be
exploited to trigger type confusion. Mostowski et. al succeed in this attack developing
two applets, a client and a server, with the following two interfaces:
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1 // Client Interface
2 public interface MyInterface extends Shareable {
3 public byte[] giveArray ();
4 public void accessArray (byte[] myArray); // Client assume byte[]
5 }
6

7 // Server Interface
8 public interface MyInterface extends Shareable {
9 public byte[] giveArray ();

10 public void accessArray (short[] myArray); // Server assume short[]
11 }

Listing 5.3: Abusing the Sharable Interface Object Mechanism

The key point of this approach is compiling and loading the two applets separately
because an off-card verifier does not usually perform types checking over the export files.
Since the two applet resides in different contexts the server cannot access an array of the
client, therefore, to make the attack works the client must first request the array of the
server and then give it back. In this way, the server interprets the received array as a short
type instead of byte and can read a doubled memory size.

5.3.2.3 Abusing the Transaction Mechanism

The Transaction Mechanism, as described in Section 3.3, permits to perform a set of
bytecode instructions atomically offering a rollback mechanism in case the operation is
aborted. The rollback mechanism should deallocate any objects allocated during the
aborted transaction, and reset references to such objects to null [Microsystems 2006c,
Ch.7]. However, in the reality, this deallocation process is often performed incorrectly
leading to unauthorized access to some resources [Hogenboom 2009]. An example of an
aborted transaction that could lead to type confusion, and in turn, to unauthorized data
is illustrated in Listing 5.4.

1 short[] arrayA; // instance field, persistent
2 byte[] arrayB; // instance field, persistent
3 ...
4 short[] localArray = null; // local variable, transient
5

6 JCSystem.beginTransaction();
7 arrayA = new short[1]; // allocation to be rolled back
8 localArray = arrayA; // save the reference in local variable
9 JCSystem.abortTransaction(); // arrayA is reset to null,

10 // but not localArray
11 arrayB = new byte[5]; // arrayB gets the same reference as arrayA
12

13 // this can be tested as follow:
14 if((Object)arrayB == (Object)localArray) // condition is true

Listing 5.4: Abusing the Transaction Mechanism
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This is made possible because only the persistent objects involved in the transaction are
freed and reset to null. Updates to transient objects and global arrays are never undone,
regardless of whether or not they were involved during a transaction. Surprisingly, this
behaviour is specified in the JCRE specification of both version 2.2.2 [Microsystems 2006c,
Ch.7-7] and 3.0 Classic Edition [Oracle 2011, Ch.7-7]. Card manufactures should be aware
of this attack vector and deploy further security mechanism (refer to Table IV).

5.3.2.4 Fault Injection

Fault injection can be used to also introduce type flaws. Usually, fault injection is difficult
to control as it does not provide high precision. However, it is possible to increase the
opportunities of success by means of interesting expedients embedded in the code. For
further details we refer to [Govindavajhala 2003]. That said, it has been proven that
it is possible to combine fault and logical attacks to induce type confusion attacking
different system’s components. In this case, the applet’s specifications are correct but the
environmental hypothesis are false. Below, the techniques known today are introduced.

Disabling the Checkcast Barbu et al. [Barbu 2010] described for the first time this
new type of combined attack. He used a laser beam to modify a correct applet’s execution
flow at running time. The applet was verified by an on-card static bytecode verifier and
installed. The goal was forging a reference to an object by means of type confusion. In
doing this three classes A,B,C were defined, as illustrated in Listing 5.5.

1 public class A { public class B { public class C {
2 byte b00,...,bFF; short addr; A a;
3 } } }

Listing 5.5: Used classes to create type confusion

When a type cast needs to be performed, the JCRE dynamically verifies if the involved
types are compatible through the checkcast instruction. The cast mechanism is explained
in [Microsystems 2006c, Sec.6.2.8]. Barbu et al. developed an applet with an illegal cast
(line 12), using the above-presented classes. The code is shown in Listing 5.6.

1 public class AttackExtApp extends Applet {
2 B b;
3 C c;
4 boolean classFound;
5

6 // Constructor, install method
7 public void process (APDU apdu) {
8 byte[] buffer = apdu.getBuffer() ;
9 switch (buffer[ISO7816.OFFSET_INS]) {
10 case INS_ILLEGAL_CAST :
11 try {
12 c = (C) ((Object)b);
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13 A.a = c.a;
14 b.addr = ADDRESS_TO_READ; // The reference of c.a equals b.addr
15 read_area_memory [0x00] = a.b00; ... read_area_memory [0xFF] = a.bFF;
16 return ; // Success, return the sw 0x9000
17 } catch (ClassCastException e) {
18 // Failure, return the sw 0x6F00
19 }
20 }
21 }
22 } // more later defined instructions

Listing 5.6: Casting to create type confusion

Looking at the above code, a ClassCastException is thrown by line 12. With specific
instruments (oscilloscope etc.) the thrown exception is visible in the power traces. Barbu
et al. were able to prevent the checkcast routine from throwing the exception with an
highly time-precise fault injection, using a laser beam. Once the cast is done, it is possible
to access an actual B instance either as a B or a C object. Therefore, forging a’s reference
to any value, through b.addr variable, allows to read and write as many bytes as declared
byte fields of class A. Figure IX shows graphically this malicious connection between the
three objects

Object b
addr=0x1234

Object c
a=0x1234

cast

0x00

0xFF

Object a

Read
and

Write

A.a=c.a

Figure IX: Attacking the checkcast check

This attack can also enable the EMAN1, introduced in [Iguchi-Cartigny 2010], enabling
an attacker, exploiting static instructions, to read and write anywhere in the Java Card
memory.

Confusing the Java Card Operand Stack The JCVM, and more generally, Java
Virtual Machines are known as stack-based machines, in opposition to register-based
machines2. Several type of stacks are described in the JVM specification, we refer to
[Lindholm 1999] for further details. However, the below-explained attack focuses on a
particular type of stack, the operand stack. A Java frame is created on each Java method
invoke to store temporary specific data needed for the execution. The operand stack is

2A register-based machine is a generic class of abstract machines used in a manner similar to a Turing
machine. It takes its name from the use of registers in managing instruction’s execution
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part of this frame and is in charge of holding the operands and results of the VM instruc-
tion. For example, the instruction sadd computes the addition of the two short value from
the top of stack. So, it pops two short values from the stack and pushes the computed
value typed as a short.

Barbu et at. [Barbu 2011] focused on manipulation and corruption of data being pushed
in the operand stack using fault injection. Recalling the fact that a Java card complies
with the ISO-7816 specification, it receives command through APDUs. The Java Card
API, described in Section 2.2.3, provides a class to represent an APDU object and access
it as an array of bytes. This array defines the behaviour of the applet. Usually the lines
of code, illustrated in Listing 5.7, are executed by an applet.

1 byte ins = apduBuf[ISO7816.OFFSET_INS];
2

3 // push ins on the stack and execute the appropriate switch instruction
4 switch (ins) {
5 case INS_A: processInstructionA(apdu); break;
6 case INS_B: processInstructionB(apdu); break;
7 ...
8 default: ISOException.throwIt(ISO7816.SW_INS_UNKNOWN);
9 }

Listing 5.7: Example of applet’s APDUs access

The value of ins is pushed onto the stack before the switch instruction. A manipulation
of this pushed value using fault injection prior to its execution could lead to a totally
changed applet’s behaviour. Obviously, the outcome depends on the applet that is being
attacked, a payment applet could be definitely an interesting target.

Barbu et al. proposed three types of attack on the operand stack. In the first one a
Boolean value, involved in a conditional branch, is manipulated prior to its use in order to
jump to another statement. The second one is an high probability attack to trigger type
confusion, circumnavigate the firewall and gain privileges in another applet. Mainly, to
succeed, an attacker should combine fault injection and a malicious applet that generate
a huge amount of references from a specified class to increase the chance that a reference
will be referred by type confusion. Finally, the last technique is conceptually similar to the
previous one and shows how to produce instance confusion. Seemingly to type confusion,
instance confusion refers to the fact of using an instance i1 as if it were an instance i2 .

Corrupting Java Card Exceptions Barbu et al. [Barbu 2012b] presented another
combined attack exploiting the exception mechanism. Three variations of this attack have
been introduced. In the first one, the author was able to trick the exception mechanism
when searching the correct statement of the try-catch block, and execute an expected
statement. The second one is based on the athrow instruction, defined in the JCRE spec-
ification [Microsystems 2006d], that throws an exception or an error based on an object
reference pushed onto the stack. Based on the attack previously described [Barbu 2011],
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they were able to manipulate the reference value loaded onto the stack and throw an-
other object, even a not-throwable one. In the last one, Barbu et al. focused on the
class constructor. The first statement to be executed is the super function that calls the
constructor of the parent class. In case the super function throws an exception the corre-
sponding try-catch block is executed. Note that in the catch code block the super method
is not required to be run. Based on that, the author used fault injection to induce the VM
to throw an exception from the super function creating an instance that was not correctly
initialized.

Agnostic Modification Lancia [Lancia 2013] exploited the Java Card instance allo-
cator using an high-precision fault injection. His attack development is based on the
work [Govindavajhala 2003].

In order to understand the attack some main differences between Java and Java Card
have to be pointed out. Firstly, as opposed to the traditional Java Runtime Environment,
each instance’s header created by the JCRE is allocated in the persistent memory. More
precisely, the JCRE specification provides functions to create transient objects whose data
are stored in the RAM memory, but their headers are always in the persistent memory.
Secondly, traditional Java and Java Card platform use a different memory management.
Figure X illustrates these mechanisms. In standard Java VM, references are represented
using a direct memory addressing, which means that physical memory addresses of the
referenced instances are stored in the physical memory as traditional pointers. Whereas,
in JCVM references are represented using an indirect memory addressing: references are
indexes that are interpreted using a global instance pool managed by the JCVM.

h header
A a1

A a2

a1 header
short s1
short s2

JVM
Direct Addressing

h header
A a1

A a2

a1 header
short s1
short s2

JCVM
Indirect Addressing

Index Address

Instance pool

Figure X: The Java and Java Card memory addressing

Because of this difference, the attack on traditional Java VM introduced by Govindava-
jhala is not applicable to JCVM. For example, a type confusion between a short field
and a instance field in case of direct memory addressing, is simply performed using the
value of the short variable as an address to scan the memory. In case of indirect memory
addressing, the same type confusion gives access to an index in the global index pool,
which means that further steps are needed. Lancia developed an attack starting from this
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point. He attacked the global instance pool mechanism (persistent memory) using a laser
beam. As a result, the index referred to the bytecode was shifted. Therefore, during the
applet execution, the JCRE resolves an index with the associated address using the global
instance pool and have access to another instance of the expected object. This persistent
modification may offer information of the card as a part of the smart card memory.

5.3.3 Running a developed attack vector

Section 5.3.2 described the known expedients to get ill-formed code onto the card providing
some examples from the literature. The goal of this section is generalizing on what an
attacker can try to do once ill-formed code is uploaded, recalling the fact that the purpose
of the attacker is to disclose and/or manipulate data already on the card.

Mostowski et al. [Mostowski 2008] pointed out that the most used attacks are:

- Treating a Byte Array as a Short Array

- Treating an Object as an Array

- Treating an Array as an Object

The first two attacks are explained below . The third one is not further examined as it
is conceptually quite close to the second one.

5.3.3.1 Treating a Byte Array as a Short Array

This is the most common attack that allows to read unauthorized memory areas. A typical
example is treating a byte array as short array so that you can read a double memory
offset. Different type of arrays could be taken as target obtaining the same outcome:
global arrays, persistent context-owned arrays, transient context-owned array.

5.3.3.2 Treating an Object as an Array

An attacker might try to confuse an arbitrary object with an array. This opens the
following attack opportunities.

Fabricating Arrays Witteman [Witteman 2003] proved that an attacker could confuse
the VM and be able to fabricate an array of an arbitrary size. Listing 5.8 shows the class
used.

1 public class fake{
2 short len = (short)0x7FFF;
3 }

Listing 5.8: Fake class to fabbricate an array
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The attack relies on a specific representation of arrays and objects in memory. An
attacker, to succeed, has to store the length field of an array at the same offset in physical
memory as the size field of a Fake object. If one is able to confuse the VM, then the array
size is set to the one predefined, i.e. 0x7FFF, giving access to 32kb of memory. Updating
the size field means updating also the size of the array to an arbitrary size.

Direct Object Data Access As a consequence of the previous attack, an attacker
could try to treat object fields as array elements. Thus, references fields could be read
and written as numerical values leading to pointer arithmetic. Listing 5.9 illustrates an
example assuming that object Example is treated as an array a.

1 public class Example{
2 Object o1 = new object();
3 short s1 = 1;
4 }
5

6 // Treating an instance of Example as an array a gives the following values
7 a.length: 0x0E90 // Number of fields
8 a[0]: 0x010A // Reference of o1
9 a[1]: 0x020C // Reference of s1

Listing 5.9: Example of direct data access

By reading and writing the a[0] element it is possible to directly read and write refer-
ences.

Switching References Once an attacker has direct access to the references of object’s
fields, he could try to replace them with others, also of incompatibles types. Mostowski
et al. proved that this is perfectly acceptable if the new values, assigned through direct
access, are valid references. At this point, an attacker is able to produce even more type
confusion, but he cannot simply make a field of his object to point to another applet’s
object. In that case the firewall would prevent the access.

AID Exploitation An attacker, by means of reference manipulation (switching ref-
erences), could try to tamper system-owned AID objects. An AID object is defined
in [ISO 2013b] to be a sequence of bytes between 5 and 16 bytes in length. The JCRE
creates instances of AID class to identify and manage every applet onto the card. These
kind of objects are permanent Java Card runtime environment Entry Point Objects and
can be accessed from any applet context. References to these permanent objects can be
stored and re-used. An AID object has a field which points to a byte array that stores
the actual AID bytes. An attacker could change this value, without being detected by the
firewall, through the above described direct data access. At this point, an attacker could
try to impersonate another applet. An interesting attack that makes use of this concept
is described in [Montgomery 1999].
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Chapter 6

A Solution to the Physical Secure
Element Issue

Referring to Chapter 1, the current initialization and management of physical secure el-
ements is the main issue that is leading to the use of workaround solutions such as the
well-know “host-based card emulation”. As a secure element manufacturer, NXP Semi-
conductors is interested in inverting this trend. This chapter introduces the second part
of my work introducing our proposal to tackle the problem.

Current situation A secure element should be capable of storing and processing sen-
sitive information of a user securely. Authentication, encryption of data, data integrity
and non-repudiation are services that a secure element provides. Currently, NXP Semi-
conductors typically establishes a strong relationship with a service provider (Card Issuer)
and installs, on its behalf, all the software needed into secure elements to make the re-
quested service(s) work. Typically, after the secure element is issued no software can be
installed afterwards and JCOP, the proprietary Java Card Technology implementation of
NXP Semiconductors, is in charge of enforcing the above-mentioned security services.

Ideal situation Ideally, a mobile device’s secure element should be largely customizable
based on the needs of an end user, who should be able to install or remove different kind of
applets as needed. Proximity payment applets are the most interesting use case, but also
other kinds of applets, which require an high level of security, might be installed such as
loyalty applets. A secure element should be simply considered as an extension of a mobile
device operating system that enforces higher security but with a comparable flexibility.
Unfortunately, this ideal scenario is still too unrealistic because of the lack of a system
with the capabilities of enforcing security while presenting also a high level of flexibility.
Technically, designing a highly flexible system would mean allowing a card issuer to manage
its own content inside a secure element and an end user to install applets as needed. In
other words, post-issuance installation and multi-party applets on a secure element must
be allowed. Two of the main benefits of Java Card technology are multi-application,
which permits multiple applets to reside on the same card, and dynamism, which allows
post issuance applets uploads. Thus, technically, a Java Card secure element allows to
provide these features. On the one hand the use of these features would greatly improve
flexibility, but, on the other hand security would be put in danger and, consequentially,
trust in NXP Semiconductors would lower considerably. The probability for an attacker to
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gain the right to install malicious code onto a secure element increases significantly, and,
as a consequence, attacks that before were considered unfeasible because it was assumed
that an attacker did not have any right to upload malicious code onto the card, become
now possible making any kind of attack described in Chapter 5 an opportunity to break
into the system and damage the entire set of applets data onto the secure element. To
avoid that, our proposal is to design an augmented bytecode verifier that not
only checks that CAP files comply with the Java Card specifications, but also provides a
further level of security implementing specific features to tackle the current set of known
attacks and adapting quickly when new ones are discovered. Applying these extra checks
enables flexible installation of libraries by card issuers and applets by end users.

Technical challenges Figure XI illustrates graphically the software’s working princi-
ples. The system takes as input an executable CAP applet, along with its export file and
the export files of the already installed applets. Firstly, the consistency of the CAP file is
checked, as performed by any common verifier. Secondly, all modules needed to check for
unwanted behaviours and to enforce security, with post issuance uploads and multi-party
application features enabled, are run. Thirdly, the CAP file and its export file are signed
to enforce integrity and source authentication. After verification, the applet is ready to
be uploaded.

Language
Consistency

Check

CAP +
Export files

Additional Checks

Typed verification over export files
Transaction module

Fault Injection module
. . .

Signing
System

Device’s
Secure Element

Figure XI: The Off-card verifier working principle

This solution allows to counteract any kind of attack at compile time and also at runtime
using emulation technologies. The use of independent modules for each check makes the
system strongly adaptable over time in case of newly discovered attack vectors. Table V
shows currently known threats that can be mitigated at compile time. CAP Manipulation
is avoided enforcing consistency checks and CAP file signing. Abusing SIO is avoided by

Attack Type Vulnerability Countermeasures

CAP Manipulation Logical “Lack of Type Checks” Secure signing system

Abusing Sharable
Interface Object

Logical “Lack of Type Checks”
Typed verification on export
files

Table V: Attacks considered
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means of a module to enforce typed verification over export files.

Further improvements Other useful checks that might be performed deal with side-
channel attacks. Typically, security mechanisms against side-channel attacks and overall
fault-injection should be deployed directly at JCRE or applet level in order to be effec-
tive [Barbu 2011, Bouffard 2014], therefore no verifier can prevent them. However, a mod-
ule that tests how vulnerable an applet is before its upload onto a secure element might be
extremely of interest and might be embedded in our verifier concept. An interesting source
that might provide a starting point for the design of such a module is [Diaconescu 2013].

Research direction The verification process itself will not be analyzed any longer in
this report. Any piece of software to increase security that an applet has to comply with
in order to be uploaded onto a secure element can be easily added to our system as a
module. However, the most relevant question at this point is: how can we design a
process such that an augmented bytecode verifier can be used to provide a
flexible and highly-secure system for applet installation? Next chapters introduce
all required aspects to answer this question. More precisely:

- Chapter 7 focuses on the business requirements of our stakeholders analysing their
impact on the software design. Related research questions:

- What are the business requirements of our stakeholders?

- What is the impact of their requirements on the software design?

- Why do protection techniques need to be integrated? And what security mecha-
nisms should be deployed?

- Chapter 8 presents a new scenario that mitigates the inflexible context presented in
Chapter 1 while enforcing a high level of security. Related research questions:

- How do stakeholders interact to meet their own business requirements and create
a trusted environment that is flexible and scalable?

- What are the properties the scenario should guarantee?

- How can the applet verification process be indirectly monitored by NXP Semi-
conductors without impacting the flexibility of the process?

- Chapter 9 focuses on the technical details presenting the working principle of the
augmented bytecode verifier in terms of protocols and security mechanisms. Related
research questions:

- How can the system be designed to withstand to White-box attacks by design?

- How NXP Semiconductors can be self-confident that the applet verification pro-
cess ended successfully?

Java Card Bytecode Verification
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- Chapter 10 explains our future plans and draws conclusions. Related research ques-
tion:

- What makes the system trusted by each involved stakeholder?

- Why can we consider our system design successful?
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This chapter provides a requirements analysis on the main relevant aspects that char-
acterize the augmented bytecode verifier and impact the software architecture. The main
goal is to introduce the software from different angles to catch the requirement’s complex-
ity behind a verification system that at first glance someone could miss. More in detail,
with this chapter, we want to answer the following questions:

- What are the business requirements of our stakeholders?

- What is the impact of their requirements on the software design?

- Why do protection techniques need to be integrated? And what security mechanisms
should be deployed?

Section 7.1 introduces in detail the parties involved in the verification process to grasp
their needs, with the purpose of designing a system that meets their business requirements
along with the ones of NXP Semiconductors. Section 7.2 describes in terms of software the
impact of the business requirements presented in Section 7.1 and focuses on further features
the system should provide by design to tackle the edge cases1. Section 7.3 emphasizes the
power of a malicious agent and describes protection techniques that should be deployed on
the system to counteract potential attacks. Finally, Section 7.4 briefly summarizes each
answer of the above-presented research questions to explicitly highlight the key points of
the chapter.

1An edge case is a problem or situation that occurs only at an extreme (maximum or minimum)
operating parameter.
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7.1 Business Model

In an ideal mobile device’s secure element environment three stakeholders, which act in
the process of applet verification, can be identified. Namely, card manufacturer, card
issuer and application developer. For the sake of clarity, hereafter, a quick description of
each of them is given with the purpose of describing their role under the ideal situation
introduced in Chapter 6.

A Card Manufacturer is an authority that fabricates the raw hardware and software.
It delivers secure elements ready to be used to Card Issuers. Note that the same secure
element might be accessed securely by several Card Issuers upon agreement. NXP Semi-
conductors is part of this category.
A Card Issuer is an authority that controls the secure element content. It has the right

to add further software features to the secure element (proprietary libraries), along with
applets that provide services to end users. Moreover, it can grant also other institutions
to administrate their own applets. Examples of famous companies that might be part of
this category are Google, Apple, Samsung, Visa, Mastercard.
An Application Developer is an authority that implements applets. It can be anybody

who has been granted by a Card Issuer to implement on its behalf an applet and to make
it ready to be distributed using predefined channels.

According to NXP ’s experts, these stakeholders have several needs and requirements,
which need to be met to ensure the effectiveness of the new product. Hereafter, a list of
all relevant stakeholder’s business requirements2 in order of priority, as also illustrated in
Table VI:

1. The system runs in a potentially hostile environment, the Application Developer ’s
location.

2. NXP Semiconductors needs to be confident that the process of verification is suc-
cessfully performed prior to any upload onto its secure element.

3. Card Issuers want to establish relationships with Application Providers freely with-
out any control by NXP Semiconductors. In other words, they want to manage
their own Application Providers and be an active part in any applet upload process
performed by one of their Application Providers.

4. Card Issuers do not want to share their applet source code or bytecode. Application
Providers do not want to share their applet source code or bytecode with someone
else who is not the Card Issuer they are working with (Sort of Intellectual Property
protection). However, a Card Issuer might also be uninterested in controlling the
source code or bytecode of an Application Provider. On the other hand, NXP Semi-
conductors does not want to personally look at the verified code in order to decline
any kind of responsibility in case of legal issues.

2The system is designed for NXP Semiconductors, therefore the card manufacturer examined from
which several business requirements come out is NXP.
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5. Card Issuers want transparency in term of checks performed to applets’ files. In
other words, they want to be able to measure on their own the effectiveness of the
implemented checks as needed. This would enforce trust in the system by Card
Issuers.

6. NXP Semiconductors would like to be able to indirectly control any uploads onto
its secure elements.

Priority

Stakeholder Major Moderate Minor

R
eq
u
ir
em

en
t

1. Hostile environment AD 3

2. Verification enforcement NXP 3

3. Flexible relationships CI - AD 3

4. Code confidentiality CI - AD 3

5. Transparency CI 3

6. Uploads monitoring NXP 3

NXP: NXP Semiconductors, CI: Card Issuers, AD: Application Developers

Table VI: Stakeholders’ business needs priority

All the mentioned business needs are taken into consideration while designing the aug-
mented bytecode verifier architecture. I refer to my entrepreneurial thesis, which can be
found at the end of this document, for further business-related information. The report
focuses on the design of a framework to discover effectively the widest range of needs of
these stakeholders.

7.2 Architectural Features

The functional objective of the augmented bytecode verifier is fairly clear: testing the
correctness3 of an applet and enforcing a security threshold level that has to be met
prior to its upload onto a secure element. At first glance, this might look like a simple
modular software, running locally in a specific location, where each module corresponds to
a particular check performed on applets files. However, due to the stakeholders’ business
requirements discussed in Section 7.1, the software architecture become more complicated
and its design is influenced tremendously.

3Correctness in terms of security, i.e. to guarantee that an applet is not malware that might endanger
the JCRE or the installed applets.
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Requirement 1 is strongly demanding and influences significantly the mechanisms re-
quired to successfully enforce requirements 2 and 6. It requires the software to be resilient
to attacks where each part of the system can be inspected and exploited by a malicious
agent. This type of context is called white-box [Brecht 2012], as an attacker has com-
plete control of the software core and its hardware. Simple deployments of traditional
cryptography mechanisms to enforce our requirements are not enough anymore since clas-
sic cryptography techniques, both symmetric and asymmetric, are designed assuming an
attacker in a black-box scenario, which means that encryption and decryption of data is
supposed to be done in a secure environment, giving an attacker access only to input
and output data. Figure XII shows this concept. Our scenario requires that even the
developed software and its underlying hardware is not trusted. In other words, protection
techniques, which will be introduced in Section 7.3, need to be deployed with the purpose
of protecting the software binary, its execution and its embedded secrets such as licenses
and cryptographic keys.

Trusted Endpoint
Encryption

Trusted Endpoint
Decryption

Untrusted Channel

Figure XII: The traditional cryptography conception

Requirements 3 and 4 refer to the architecture of the system that needs to be somehow
distributed over the involved parties. However, the interaction amongst the system’s parts
need to be carefully designed as Card Issuers want to have an active role in the whole
process and have a certain level of freedom, whereas NXP Semiconductors wants to be
able to control indirectly any applet upload.

Requirement 5 might be easily achieved in two ways. Firstly, one has to make the
system strictly modular and allow Card Issuers to inspect the code. With this structure,
Card Issuers might even propose further checks and NXP Seminconductors could perform
updates much more easily. Secondly, Card Issuers should be able to test a verifier if
requested. However, under a white-box scenario allowing transparency, this means also
to weaken the system itself and to make it vulnerable. A trade-off between security and
transparency has to be found.

In conclusion, in this hostile context it is extremely difficult to predict how harmful
a flaw in the design will be to the integrity of the verifier (functionalities, secrets etc.),
therefore the system has to be designed to withstand attacks, adapt to attacks and avoid
catastrophic failures in case of exploitation. Following this claim, three fundamental fea-
tures have to be designed:
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- Renewability

- Revocation

- Binary Diversity

Renewability is a channel to updates secrets used along the verification process. Such
secrets might be for cryptographic purpose like keys or control purpose like licenses. This
feature allows to renew and restore security in case of breach. However, under specific
conditions, performing a secret renewal might not be feasible and to minimize the cost
of failure Revocation could be applied. In this case, NXP Semiconductors might directly
revoke from an Application Provider or Card Issuer the right to use its system. Moreover,
to further defend the integrity of the whole architecture (described in Chapter 8) Binary
Diversity might be employed. It consists of changing slightly the binary of each distributed
verifier so that, in case of failure, the damages will be limited as an attack is not scalable.

7.3 Protection Techniques

When designing any security system it is critical to identify the points of failure and protect
them whenever possible. With regards to the context above-described, a malicious agent
could perform attacks to break the integrity of the system in any software state illustrated
in Figure XIII.

On disk In memory Executing

Verifier
Code

Variables
Constants

Keys

Figure XIII: States of the software

Each of these states has unique conditions that favor different protection techniques.
Some of them are more robust than others, but all come with a trade-off. However, their
final goal is common, defending the integrity of the system along with its secrets, both on
disk and in memory. In other words, due to the sensitive process the verifier is supposed
to perform, it is a primary requirement not to allow an attacker to:

1. discover secrets on disk and in memory through static or dynamic forensics analysis.

2. change the software execution flow performing static or dynamic reverse engineering.
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An attacker must not be able to sign any applet’s file unless the verifica-
tion process is successfully completed. The next paragraphs describe the protection
techniques that are deployed in the system to counteract the widest range of attacks that
could be performed on any software states.

7.3.1 Data Encryption

Data encryption is one of the strongest protection measures against unauthorized access
to data, if used correctly. This protection technique is strongly relevant in our context
since an attacker has full access to the disk and the central memory. Firstly, disk en-
cryption needs to be enforced, otherwise an attacker would be able to perform static
reverse engineering or static forensics analysis, endangering the software integrity. These
attack techniques are the most straightforward and feasible approaches to trick the veri-
fier, thus they should be avoided at any cost. Secondly, the software should not be totally
decrypted when the application runs, otherwise a malicious agent could try to perform
reverse engineering or forensics analysis dynamically with unnegligible opportunities of
success. Technically, it would not be straightforward, due to security mechanisms de-
ployed at operating system level such as “address space layout randomization” (ASLR),
however, assuming that the hardware and software core are under the control of an at-
tacker we cannot rely on them. Therefore, a secure loader to perform partial decryption
at runtime should be designed and implemented.

7.3.2 Runtime Integrity Checks

A Runtime Integrity Check is a runtime verification check, based on extracted information
from the running system, that allows to detect and possibly react to observed behaviours
satisfying or violating defined properties. The use of this protection technique allows
to counteract possible modifications an attacker could try to perform to the execution
flow. However, due to the totally hostile context, it is not a protection that can be
easily deployed. A “remote attestation”, which is a totally remote integrity check where a
trusted party participates actively, is not acceptable for essentially two reasons: firstly it
is not considered an effective techniques unless the hardware where the system is running
is well-known; secondly in term of business, it means higher responsibility and costs for
NXP Semiconductors. Perhaps, making use of another trusted entity, such as a smartcard,
could be a good trade-off solution. A smartcard is tamper-resistant, it might be easily
authenticated by the system and could perform any type of sensitive check.

7.3.3 Code Obfuscation and Code Flattening

Obfuscation is a protection technique that refers to the process of taking as input the
source or machine code of a software and making it extremely difficult to understand for
a human. Typically, input and output remains the same, but the complexity of the code
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increases greatly for an attacker, who, ideally is not able anymore to perform static or
dynamic reverse engineering. Practically, obfuscation is considered a technique to increase
the time needed for an attacker to understand the code, making reverse engineering un-
practical and not worthy. Common practices are to scramble variable names, split data
that was originally in one variable over many, duplicate methods keeping the same name
but different signatures etc. Obfuscation is also often coupled with code flattening, which
refers to the technique of adding useless extra paths to the decision graph flow of the
software. Its purpose is equal to obfuscation, i.e. making the code much more difficult to
understand. Used together, the level of security slightly increases.

Obfuscation affects heavily transparency and, as a consequence, modularity. Therefore,
in order to respect Requirement 5, this technique has to be carefully deployed finding an
acceptable trade-off between security and transparency. Moreover, in our case, the system
is extremely sensitive and an attacker would be motivated even if code obfuscation and
code flattening are in place. Therefore, this technique cannot be considered an option to
protect any secret used by the code.

7.3.4 White-box Cryptography

White-box cryptography refers to those set of techniques that are designed to securely
deploy cryptography concepts into a white-box scenario. In other words, its primary
purpose is protecting sensitive data such as keys or licenses. In our case, this set of
techniques is extremely important to create a sort of “trusted island” inside the verifier
completing what obfuscation and code flattening missed. Typically, look up tables are used
for this goal. Lookup tables should contain sensitive data, which is made incomprehensible
for an attacker by means of transformations. For further details refer to [Brecht 2012].
In this context, it is critical how this “trusted island” using lookup tables is created,
transformations have to be securely applied so that an attacker is not able to understand
how they work. Therefore, this set of techniques is extremely important as well as difficult
and challenging to deploy. Perhaps, also in this case, the use of a trusted token, such as
a smart card, might be an option to avoid the use of white-box cryptography, or at least
to have an assistant for performing transformations on input/output data.
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7.4 Key Points

At the beginning of the chapter, three research questions were presented. The goal of
this section is to provide clear and explicit answers with the purpose of outlining and
emphasizing the chapter’s key points.

What are the business requirements of our stakeholders?
The stakeholders’ business requirements are presented and discussed in List 1 and Ta-
ble VI. Our main purpose is to design a system from which all stakeholders can benefit.

What is the impact of their requirements on the software design?
The impact of each stakeholder’s business requirement on the software architecture is
described in Section 7.2. The augmented bytecode verifier architecture is tremendously
influenced by these requirements, in particular from Requirement 1 that requires our soft-
ware to be run in a white-box context.

Why do protection techniques need to be integrated? And what security mechanisms should
be deployed?
An augmented bytecode verifier instance performs checks on applets’ code. In case of
success, these applets are signed by the verifier instance and afterwards are distributed
and installed on secure elements. The sensitivity of the operations a verifier has to perform
is unquestionable. In case the software run on a trusted host, protection techniques would
not be required. Unfortunately, Requirement 1 explicitly asks to allow a verifier instance
to be run on a totally untrusted machine, i.e. in a white-box context. Thus, the use of
protection techniques is crucial to preserve the correctness of the verifier operations and
minimize the likelihood of an attacker being able to break the system. As explained in
Section 7.3, a malicious agent in a white-box context could perform attacks in any software
state: on disk, in memory or during execution. Therefore, effective protection techniques
to secure each state have to be deployed. Namely, data encryption, runtime integrity
checks, code obfuscation and code flattening and white-box cryptography.
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Prior to introducing the technical specifications of the verifier, a scenario needs to be
detailed in order to concretely define how the involved parties might act in the process
of applet verification, respecting the business requirements described in Section 7.1. The
goal of this chapter is to present a new scenario where all involved parties are considered
and benefit by the usage of this new product. More in detail, with this chapter we want
to answer the following questions:

- How stakeholders do interact to meet their own business requirements and create a
trusted environment that is flexible and scalable?

- What are the properties the scenario should guarantee?

- How the applet verification process can be indirectly monitored by NXP Semiconduc-
tors without impacting the flexibility of the process?

Section 8.1 introduces the general aspects of the scenario pointing out its goal and
phases, while Section 8.2 and 8.3 explains how the scenario changes in the eyes of stake-
holders. Finally, Section 8.4 briefly summarizes each answer of the above-presented re-
search questions to explicitly highlight the key points of the chapter.
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8.1 Scenario Definition

Ideally, as described in Chapter 6, a secure element should be simply considered an ex-
tension of the mobile device’s operating system, which provides a higher level of security
to applications that need to store and use sensitive user data. The main goal the scenario
needs to meet is to provide high flexibility in term of initialization and management of se-
cure elements enforcing a high level of security and trust. The augmented bytecode verifier
proposed aims at turning this ideal situation into reality. Chapter 7 introduced the three
stakeholders that are part of the system along with their business requirements that, as
explained, influence tremendously the design of the system. The verifier must run in a
white-box scenario, which is the most extreme case to enforce high security. Failures in a
process where secure elements can be accessed post issuance might lead to huge damages
in term of money and reputation to both Card Issuers and NXP Semiconductors, thus
they must be prevented or, at least, limited and managed. This context opens the doors
for the definition of a new scenario where stakeholders interact and cooperate in order to:

1. Meet their own business requirements.

2. Create a trusted environment, i.e. a successful trade-off between transparency and
security.

3. Make the distributed software architecture flexible and scalable.

The next sections define several aspects of the scenario, introducing in Section 8.1.1 a
short scenario story on how the system works, in Section 8.1.2 the properties the scenario
must guarantee and in Section 8.1.3 the scenario phases that must be defined.

8.1.1 A Scenario Story

A Card Issuer C wants to take advantage of the service, offered by NXP Semicon-
ductors, that allows to manage in a flexible manner secure elements both during the
initialization and post issuance phase. NXP Semiconductors equips C with a verifier
to able it to manage its own content on mobile devices’ secure elements where it has its
own security domains. C develops, verifies and uploads onto its security domains some
libraries needed for the release of a proximity payment service intended to be provided in
the future. C decides to outsource the actual implementation of the proximity payment
applet to an Application Developer D. C asks NXP Semiconductors to provide D with
an augmented bytecode verifier to enforce the correctness of the implemented applet prior
to its distribution to end users. D implements the requested applet and verifies it. Through
an agreed channel between C and D the verified applet is sent from D to C. The applet
is made available for download from C. An end user, who owns a mobile device equipped
with one of those secure elements, wants to make use of the payment system offered by C.
He accesses the applet store and downloads the needed applet, which is then ready to be
used.
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The above story presents the ideal case where maximal flexibility is offered. It simply
requires NXP Semiconductors to initialize a set of secure elements with several security
domains upon agreement with a group of Card Issuers. Secure elements are then embedded
into mobile devices that will be bought by final users. Card Issuer, equipped with a
verifier, can manage with maximal flexibility their own security domains even outsourcing
the implementation of applets to third parties, the Application Developers, on which they
have complete control.

8.1.2 Scenario Properties

Flexibility and Security are the main properties that the scenario needs to offer. Focusing
on both the business requirements presented in Section 7.1 and the two properties the
system must provide we decided to centralize security into NXP Semiconductors hands,
whereas distribution is in the hands of the Card Issuers. This design choice was taken
in the definition of the scenario because NXP Semiconductors is strongly interested in
inverting the current trend presented in Chapter 6 without exposing itself to failures that
might impact its reputation and financial aspects. Whereas, Card Issuers are strongly
interested in managing their own content in a flexible and secure manner without caring
how these properties might be achieved. However, the system needs to instill trust proving
its own security and transparency. In the definition of the software infrastructure, this
design choice implies that NXP Semiconductors is considered the only trusted entity in
the system, i.e. there is no need to put trust into Card Issuer or Application Developers
during the process of verification. The verifier and NXP Semiconductors backend are the
cornerstone of security.

More in detail the scenario must guarantee that:

- the verification process is successfully completed

- CAP and export files preserve their integrity after verification

- stakeholders are always authenticated prior to any action to avoid unwanted be-
haviours

- revocation can be always applied to avoid relevant failures

- the augmented bytecode verifier is strongly resilient to white-box scenario attacks

8.1.3 Stakeholder’s Phases

Stakeholders have different requirements, different roles, different resources and are nu-
merically distant. Therefore, they must be treated separately to be much more effec-
tive in designing the system architecture. Referring to the scenario story presented in
Section 8.1.1, three main phases can be deduced from a secure element issuance to the
distribution of a new brand verified applet, namely:
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- Activation, which refers to the moment where a new stakeholder registers into the
service.

- Usage, which refers to the phase where content, intended to be uploaded onto one
or more secure elements, is verified.

- Distribution, which refers to the step of uploading a verified content onto one or
more secure elements as needed.

These three phases differ depending on which stakeholder, Card Issuer or Application
Developer, is involved. The first two phases are interconnected and strongly relate to
security. They must be designed together to develop a consistent and robust system. The
third phase is related to the distribution of already verified content, thus it becomes more
a business problem instead of technical. For this reason, it is only mentioned along the
report for the sake of clarity.

The following sections define an actor-based scenario to illustrate how the scenario differs
in the eye of the two stakeholders and to introduce some more technical details.

8.2 Card Issuers

The role of Card Issuer, described in Section 7.1, deals with the management of secure
elements content and with the administration of Application Developers that can, under
well-defined rights, develop further content on its behalf. Upon agreement, a secure el-
ement can be released by NXP Semiconductors with several Security Domains (refer to
Section 5.3.1 for further details), one for each Card Issuer in the agreement. Technically,
this means allowing Card Issuers to manage securely their own content. However, in case
one of these Card Issuers uploaded malicious content, the integrity of the entire Java
Card secure element, as extensively described in Chapter 5, would be endangered. This
behaviour is considered to be highly likely because, in the worst case, contents of competi-
tors, even sensitive, might be uploaded. To counteract these possible malicious behaviours
and enforce trust, also Card Issuers must verify any content intended to be uploaded. The
next sections describes the three above-mentioned phases for Card Issuers, one at a time.
In conclusion, a complete message sequence diagram is presented to provide a more visual
and intuitive explanation of all relevant steps performed along the three phases.

8.2.1 Activation

Use Case 8.1: Card Issuers want to be part of the architecture and make their request
to NXP Semiconductors. Upon agreement, NXP Semiconductors initializes a set of Java
Card secure elements with several security domains, one for each Card Issuer and generate
public keys pairs for authentication purpose. The related public keys are used for the
release of Card Issuers’ certificates, whose issuance body is NXP Semiconductors, while
private keys are stored into smartcard tokens (Java Card token). NXP Semiconductors
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delivers to each Card Issuer an initialized augmented bytecode verifier, a Java Card token
with its private key and its certificate embedded. Each pair verifier license - certificate is
stored in a NXP Semiconductors’ database for signatures verification and control purposes
such as revocation.

During this phase the system is initialized and prepared to provide successful verification
of contents and to manage properly NXP Semiconductors’ secure elements. This phase is
crucial. In case data was leaked during this phase, the entire process would be endangered.
In the worst case – the attacker gains a Card Issuer ’s private key – a malicious agent would
be able to sign applets on behalf of a Card Issuer without verifying its code and upload
them onto secure elements. The entire system would be broken and performing revocation
might be not possible unless NXP Semiconductors equips secure elements with a system
to perform remotely security domain management. Note that an attacker could make the
attack faster and more dangerous by making other developers implement applets and then
sign them; in this way the attack might have more impact and be more difficult to prevent
even with the required security mechanisms in place. Thus, the security domain set up
along with the key generation must be performed under strict confidentiality. Furthermore,
channels for delivering verifiers and secure tokens must be carefully chosen, depending also
on the already existing business channels of NXP Semiconductors.

8.2.2 Usage

Use Case 8.2: Card Issuers verify libraries or applets that are intended to be uploaded
onto secure elements. More information on the verification process can be found in Chap-
ter 6. Figure XIV illustrates the process along with the system infrastructure required;
numbers in the text refer to that figure. A CAP file along with its export file is passed to
the verifier (1). Firstly, the validity of the verifier’s license is checked online by NXP Semi-
conductors’s servers and all signed export files of the already installed applets and libraries
are retrieved from a centralized database (2). Secondly, the specialized modules aimed
at code verification are run (3). Thirdly, in case of successful verification, a report on
the final process outcome is automatically generated, signed using the token given during
the activation phase (further details in Chapter 9) and sent to the NXP Semiconductors
servers (4). It is then processed to check for unwanted behaviours. Fourthly, both the
export files and the CAP file are signed by the system using the token. The former is
sent to NXP Seminconductors and stored in a centralized database (5), while the latter is
returned as output (6) and stored in a Card Issuer database (7).

During this phase Card Issuers are considered untrusted entities because of the very
dangerous behaviours they could adopt, as previously explained. In this phase, the cor-
nerstone of security is the augmented bytecode verifier that must enforce specific protection
techniques, as already discussed in Chapter 7, and the Java Card token that must preserve
the confidentiality of the private key of the Card Issuer. In other words, the Card Issuer
is given the token for signing, but it does not know the key itself. As will be explained
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in Chapter 9, the process of signing is performed on a Java Card token after a successful
verification. This means that the action of signing is bound to the process of verification:
a Card Issuer cannot sign an applet without the use of a verifier. A Card Issuer ’s private
key never leaves the token and cannot be accessed digitally because no API is provided.
Thus, the confidentiality of the Card Issuer ’s private key relies on the security properties
of Java cards, both logical and physical. More information about the security mechanisms
provided by Java Card technology are discussed in Chapter 3.

Card
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Verifier
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Verified
CAP Database

Location 1..N

NXP
backend

Verifier Licenses
Certificates

Signed
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7. Signed CAP upload

2. License verification & oncard exp file applet retrieval

4. Report final process outcome

5. Upload of the signed applet export files

3. Verification modules

Figure XIV: Card Issuer Verifier Usage

Note that, in order to counteract Side Channel attacks, which could be performed
against the token for extracting a Card Issuer ’s key, tailored countermeasures should
be deployed, preferably at application level (further information in Section 4.3). On one
hand, signed CAP files are stored at the Card Issuer location with the purpose of enforcing
requirement 4. In this way, once a CAP file is verified and signed, the Card Issuer has
also complete power on its applets or libraries and can decide as needed when to upload
them, make them available for download etc. On the other hand, export files are uploaded
on a centralized server because they are needed for the process of verification and must
always be available. However, a Card Issuer might have the need to keep an export
file confidential because it is used only for testing or internal purposes and will not be
distributed later. Thus, the verifier should allow to check an applet without signing it
and forcing to upload the related export file on a centralize NXP Semiconductors server.
Through Communication 4 in Figure XIV, NXP Semiconductors can detect unwanted
behaviours during the entire process and apply revocation, blocking Card Issuers, even
if they are still in possession of the signing token thanks to the forced bind between the



8.2. Card Issuers 85

verifier and the signing token. This gives complete control in terms of security to NXP
Semiconductors without affecting flexibility and scalability.

8.2.3 Distribution

Use Case 8.3: A Card Issuer wants to install libraries or applets onto the final customer
secure elements. A signed CAP file is sent from a Card Issuer, along with its certificate, to
a set of secure elements’ loading systems through the Internet. A loading system takes care
of Card Issuer authentication and CAP file integrity verification. In case of a successful
check, the loading system allows the applet installation in the related Card Issuer security
domain.

The loading service is a Java Card applet developed by NXP Semiconductors to manage
remotely a Java Card secure element content. It requires a certificate to authenticate a
Card Issuer and a signed CAP file to check the integrity of an applet file prior to its
installation. The service provided by this applet can be considered a further security layer
over the Security Domain mechanism of a traditional Java Card that complies to the
Global Platform Standards. Typically, access to a security domain is performed using a
symmetric crypto scheme, thus, there is no real authentication but only the assumption
that a file, encrypted with the right key, has been enciphered by the real owner of the
key. Using this additional service, the security level highly increases and remote man-
agement of secure element contents is allowed. Note that, the loading service takes care
of the communication with a Card Issuer security domain after a successful authentication.

Figure XVI shows a message sequence diagram to present at once the three phases
above-described, making them more visual. Colors in the figure are relevant, green means
trusted whereas red means untrusted. Thus, in the diagram, NXP is considered trusted
all along with all its computation performed, whereas the Card Issuer is untrusted for the
reasons already explained in Section 8.2. The verifier is white to emphasize the fact it is in
a white-box scenario and its security cannot be totally guaranteed. The end-user (mobile
device) is gray since he is not considered a stakeholder and does not influence the process
of verification. Figure XV shows a complete legend for the sequence diagram.

Legend:

Req, PKI gen() → Request, Public Key Pairs Generation

Pub,Priv,Cert → Public Key, Private Key, Certificate

Ver, Lic, Token → Verifier, Verifier License, Java Card Token

Lic Lookup(), Run Modules() → Search of the license into the database, Run verification
modules

Analyse Report() → Analysis of the generated report for unwanted behaviour management

CAP,exp → CAP executable and related exp file

Figure XV: Legend sequence message diagram Card Issuer
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8.3 Application Developers

The role of an Application Developer is to implement applets on behalf of Card Issuers.
A Card Issuer has complete control over its developers, in other words, it can define its
own policy about their eligibility. Application Developers might be simply considered an
extension of Card Issuers, whose purpose is to outsource the implementation of applets
for final customers and make the environment much more open, comparable to the current
mobile environments, for example Google Play, but far more secure. Similarly to Card
Issuers, Application Developers might be inclined to upload malicious applets for many
reasons, due to the high value of the asset they are attacking. Therefore, any applet
implemented by an Application Developer must be verified prior to its distribution. The
next sections describes the three system phases in the eye of Application Developers, one
at a time. In conclusion, a complete message sequence diagram is presented to provide
a more visual and intuitive explanation of all relevant steps performed along the three
phases.

8.3.1 Activation

Use Case 8.4: A Card Issuer chooses one or more Application Developers and forwards
a request to NXP Semiconductors for initializing the needed number of augmented byte-
code verifiers and tokens. NXP Semiconductors generates public key pairs, one for each
Application Developer, for authentication purposes. The related public keys are used for
the release of certificates, while private keys are stored in Java Card tokens. The set of
certificates is distributed to the Card Issuer along with the requested tokens and verifiers,
which, in turn, are given to the chosen Application Developers. NXP Semiconductors
stores in its database the pair verifier license - certificate for control purpose such as revo-
cation, while the Card Issuer stores in its database the set of its Application Developers’s
certificates for authentication and management.

During this phase any kind of data to perform applet verification successfully must be
initialized. The sensitivity of this data is low compared to the Card Issuer activation phase
because it is more under control, but still dangerous. In the worst case – an attacker gains
an Application Developers private key – a malicious agent could sign applets on behalf
of an Application Developer, but in this scenario a Card Issuer, as explained in the next
phase, might deny the request of upload for distribution. This might preserve the integrity
of the system, but for NXP Semiconductors would not be enough anyway, because the
control on the security of the process would be lost and left in the hand of a Card Issuer,
since the process of verification would be skipped. As explained in Section 8.1.3 the
security of the system is controlled by NXP Semiconductors that does not want to put
trust in other stakeholders. Thus, also in this activation phase, the key generation must be
performed under strict confidentiality. Furthermore, channels for delivering verifiers and
secure tokens must be carefully chosen depending also on the already existing business
channel of NXP Semiconductors.
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8.3.2 Usage

Use Case 8.5: Application Developers verify any applets intended to be distributed to
a final customer. More information on the verification process can be found in Chapter 6.
Figure XVII illustrates the process along with the system infrastructure required; numbers
in the text refers to that figure. An Application Developer inputs a CAP file with its export
file into the verifier (1). Firstly, the validity of the verifier’s license is checked online by
NXP Semiconductors’ servers and all signed export files of the already installed applets and
libraries are retrieved from a centralized database (2). Secondly, the specialized modules
aimed at verifying applet code are run (3). Thirdly, in case of successful verification,
the respective Card Issuer receives a cryptographically signed request of confirmation,
verifiable through certificates (4). In case the Card Issuer grants the verification process
to proceed, a report on the final process outcome is automatically generated, signed using
the token given during the activation phase (further details in Chapter 9) and sent to the
NXP Semiconductors servers (5). It is then processed to check for unwanted behaviours.
Fourthly, both the CAP file and the export file are signed by the system using the token.
The signed export file is then sent to NXP Semiconductors (6). The signed CAP file is
returned as output (7) and successively given to the Card Issuer using a channel agreed on
beforehand between a Card Issuer and its Application Developers (8). In conclusion, the
Card Issuer signs the already signed CAP file of the Application Developer and uploads
it onto its signed CAP file database to make it available for distribution (9).
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Figure XVII: Application Developer Verifier Usage
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During this phase both stakeholders, Application Developers and Card Issuers, are in-
volved. The former is considered an untrusted entity because of the malicious behaviours
it might assume, while the latter is trustworthy1 because its failure would not impact the
system security. This is a major advantage for NXP Semiconductors since it allows to
fully respect Requirement 3, permitting Card Issuers to control any verification process of
its Application Developers without affecting the security of the system, which in this way
is fully under control. In terms of security features this phase is equal to the Card Issuer
Usage phase. A verifier must be resilient in a white-box scenario and a token must preserve
the confidentiality of an Application Developer ’s private key. The Application Developer
is given the token for signing without knowing the key value. In this way, the process of
signing is bound with the process of verification: only after a successful verification phase
the token can be used for signing. The signed CAP file is then returned to the Applica-
tion Developer that, in turn, forwards it to its Card Issuer using a channel agreed upon
between the two entities. If successfully, the applet must be signed in-house by the Card
Issuer prior to be uploaded onto its database for distribution. Regarding export files, they
are uploaded on a centralized database at NXP Semiconductors location because they are
needed for enforcing the process of verification. In case of detected unwanted behaviours
during the whole process, revocation might be applied to Application Developers even if
they are still in possession of the signing token. This gives complete control in terms
of security to NXP Semiconductors making itself the only trusted entity in the system
without affecting flexibility and scalability. Communication 5 in Figure XVII is crucial to
guarantee this system feature.

8.3.3 Distribution

Use Case 8.6: An end user wants to install an applet onto his/her mobile device’s secure
element to take advantage of an offered service. The applet market is accessed and the
chosen signed CAP file along with its related Card Issuer ’s certificate is downloaded. The
secure element loading service takes care of the communication with the mobile device
operating system and of the Card Issuer ’s authentication and applet integrity check. The
signed CAP file is then installed onto the corresponding Card Issuer security domain and
made available for usage.

Referring to Section 8.1.1, an end user is a customer who makes use of a verified applet.
He is not considered a stakeholder in the system because he does not act in the process
of applet verification. In terms of distribution, the ideal situation, as mentioned multiple
times, should allow a user to download applets as needed. An approach might be the use
of a mobile application that allows to access an applet market, which consists of all Card
Issuers databases where signed CAP files are stored.

1A “trustworthy” system or component is one whose failure will not break security
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Figure XIX and XX illustrate a message sequence diagram to present at once the three
phases above-described, making them more visual. The former shows the Distribution
phase, whereas the latter the Activation and Usage phase. Colors in the figure are relevant,
green means trusted, blue trustworthy, whereas red untrusted. Thus, in the diagram, NXP
is considered trusted along with all its computation performed, whereas the Card Issuer
trustworthy and the Application Developer untrusted for the already explained reasons in
Section 8.3. The verifier is white to emphasize the fact it is in a white-box scenario and its
security cannot be totally guaranteed. The end-user (mobile device) is gray since he is not
considered a stakeholder and does not influence the process of verification. Figure XVIII
shows a complete legend for the two sequence diagrams.

Legend:

CI → Card Issuer

AD → Application Developer

Req → Request

PKI gen() → Public Key Pairs Generation

Pub,Priv,Cert → Public Key, Private Key, Certificate

Lic → Verifier License

Ver → Verifier

Token → Java Card Token

Lic lookup() → Search of the license into the database

Analyse Report() → Analysis of the generated report for unwanted behaviour management

CAP,exp → CAP executable and related exp file

Run modules() → Run verification modules

Signed report CI → Cryptographic request of confirmation with process-related data

Applet lookup() → Search of the needed applet into the database applet storage possibly through a market

Applet download → Request of download of the chosen applet onto the mobile device

Install() → Installation of the applet onto the secure element

Figure XVIII: Legend Message Sequence Diagrams of Application Developers
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Figure XIX: Message Sequence Application Developer Distribution
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8.4 Key Points

At the beginning of the chapter, three research questions were presented. The goal of
this section is to provide clear and explicit answers with the purpose of outlining and
emphasizing the chapter’s key points.

How do stakeholders interact to meet their own business requirements and create a trusted
environment that is flexible and scalable?
Each stakeholder plays an active role in the verification process, but with different pur-
poses. Focusing on the business requirements presented in Chapter 7 we identified each
stakeholder’s main goal and designed the system assuring those goals were met. NXP
Semiconductors wants to enforce security onto its secure elements, Card Issuers want to
freely control the content of secure elements where they have a security domain and to
manage without limitation its Application Developers. Application Developers, which are
an extension of a Card Issuer, ask for intellectual property protection. These requirements
implicitly require flexibility and scalability. Section 8.2 and 8.3 present thoroughly stake-
holders’ interactions.

What are the properties the scenario should guarantee?
The scenario’s properties are presented in Section 8.1.2. In a nutshell, the scenario should
guarantee that:

- the verification process is successfully completed

- CAP and export files preserve their integrity after verification

- stakeholders are always authenticated prior to any action to avoid unwanted be-
haviours

- revocation can be always applied to avoid relevant failures

- the augmented bytecode verifier is strongly resilient to white-box scenario attacks

How can the applet verification process be indirectly monitored by NXP Semiconductors
without impacting the flexibility of the process?
The designed system enables NXP Semiconductors to control indirectly each verification
process through communication 4 in Figure XIV and communication 5 in Figure XVII. An
augmented verifier has enough trusted data, more information in Chapter 9, to generate
and transmit a signed report that NXP Semiconductors can analyze and interpret to
detect unwanted behaviour or simply monitor the outcome of a verification process. In
addition, NXP Semiconductors plays an active role along the entire process of verification
by means of its back-end (see Section 9.2.1). The flexibility of the system is indirectly
preserved through the distributed architecture that allows all stakeholders to still meet
their own business requirements.
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This chapter focuses on the technical design of the augmented bytecode verifier in terms
of security. More in detail, with this chapter, we want to answer to the following questions:

- How can the system be designed to withstand to white-box attacks by design?

- How NXP Semiconductors can be self-confident that the applet verification process
ended successfully?

Section 9.1 presents some design choices taken to maximize the system’s security and
flexibility. Section 9.2 introduces the working principle of the augmented bytecode verifier
describing the protection techniques deployed. Section 9.3 describes three crucial features
that the verifier should provide by design to deal with edge cases. Section 9.4 discusses a
possible implementation direction. Finally, Section 9.5 briefly summarizes each answer of
the above-presented research questions to explicitly highlight the key points of the chapter.
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9.1 Design Choices

In designing the verification system some relevant, but needed, design choices were taken
to maximize the system flexibility and security. Hereafter, an explanation of each of them.

Figure XVII in Chapter 8 illustrates the usage scenario for an Application Developer.
In particular, there are two moments, step 4 and 5, that require a Card Issuer and NXP
Semiconductors to analyse data sent over the internet from the augmented bytecode veri-
fier to grant the process to proceed. The first design choice relates to these two moments,
which might be structured in three different ways:

- The interactions are automatic, therefore a back-end, both at Card Issuer and NXP
Semiconductors location, is in charge to analyse the received data and decide to
whether to grant the process to proceed.

- The interactions require a manual review and only after that, an answer is sent to
the verifier.

- The interactions are partially manual and automatic.

From a business requirement point of view, Card Issuers are interested in managing
autonomously and with a good extent of flexibility their own Application Providers and
also want to control the process of verification (Business requirement 3). If the interaction
at Card Issuer side was performed automatically it would mean that NXP Semiconductors
should provide each Card Issuer with a system extension that is able to correctly parse the
data produced by the verifier and take a decision based on their own policies. Ideally, this
would be the best case, but not strictly relevant in this product phase. At the beginning
it is fundamental to instill trust in Card Issuers and emphasize flexibility, therefore we
decided to leave the interaction manual, so that Card Issuers can take their own decisions
without putting trust in other parts of the system. Technically, leaving the interaction
manual means that the process of reviewing the data received takes much more time,
therefore an augmented bytecode verifier, running at an Application Developer ’s location,
must preserve and secure its own state to avoid that an attacker is able to skip steps
required by the verification process. At NXP Semiconductors’ side, we decided that the
process of reviewing should be done automatically as, the format of the received data is
known and the details to be checked can be easily extended and modified overtime.

In Chapter 8, the use of a Java Card token is mentioned multiple time, but no expla-
nation about its application is provided. The motivation behind its adoption is simple:
enforcing high security in a white-box scenario, which is the context where the verifier is
running, is considered not feasible and the use of a token gives us a trusted area to make
computations that need to be done in a safe environment. The computation of the signa-
ture on applets to be verified, as already mentioned in the previous chapter, is performed
onto the token, as it is the most sensitive operation of the entire process. However, the use
of a token alone cannot permit the system to meet the level of security required, as there
is always a moment in which the verifier itself has to compute data that the token must
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trust for taking the final decision of signing the submitted applet. Thus, we decided to
involve actively, during the process of verification, NXP Semiconductors’ back-end, with
the purpose of creating a secure tunnel between the two trusted components. This ap-
proach permits to monitor effectively the untrusted verifier instance while performing the
checks defined (refer to Chapter 6 for further details about tests performed on executable
applets), without the need of putting trust in unverifiable data. In fact, the use of a
secure tunnel between NXP Semiconductors and the token enforces data source and data
integrity.

Another solution, which would simplify the software complexity, is to substitute the use
of a token with a tamper resistance hardware on which the verifier runs. This approach
would permit to move from a White-box scenario to a Gray-box context, but the cost for
NXP Semiconductors would be much higher an amount that it is not willing to spend.
Otherwise, the whole system could be offered as a service in the cloud making verification
happen in an almost safe environment. However, using this approach some stakeholder’s
business requirements would not be respected and flexibility not completely maximized.

Based on the introduced design choices, it is crucial:

1. to create a secure tunnel between NXP Semiconductors’ back-end and the Java Card
token with the purpose of monitoring the augmented bytecode verifier running on
an hostile machine.

2. to make the augmented bytecode verifier enforce, preserve and secure its states along
a session to avoid an attacker to skip key stages fundamental for the success of the
process.

To facilitate and make the system design more effective, we decided to implement the
verifier and the token as deterministic automata. Figure XXI and XXII illustrate the
states of both the token and the augmented bytecode verifier.

Not Licensed
Uninitialized

Licensed
Uninitialized

Licensed
Initialized

Running Confirmed Success

Figure XXI: The token states

Both automata are extremely straightforward, but enough for our purposes since what
we need is simply a method to enforce a sequential and predefined order of operations. This
might be achieved also without the use of states, but with this approach it is much easier
to keep the parties of the system synchronized and aware of each other’s internal state.
Thus, errors and misbehaviours can be detected more effectively and strong cooperation
between system’s entities can be achieved by design. States change only in according
with specific communications between NXP Semiconductors back-end, the verifier and
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Uninitialized Initialized Running

Figure XXII: The verifier states

its related token. Further details are presented in Section 9.2, which describes the entire
protocol concept.

Many researches such as [Howard 2005] and [Manadhata 2011] pointed out that security
cannot be guaranteed, but can be measured in terms of attack surface. The larger the
surface, the more insecure the system. Therefore, in designing the verifier architecture,
we reasoned also in terms of attack surface. Any kind of computation performed by the
verifier cannot be trusted and any data given to the verifier has to be assumed leaked, as
given to an attacker. Thus, to improve the global security of the process, we decided to
reduce the attack window of a malicious agent giving to an augmented bytecode verifier
only:

- partial information

- information strongly bound to a session

- a time limit within which the computations must be performed

In this way we increase security by design, increasing the software complexity and reducing
the number of attackers with enough skills to break into the system.

The next sections complete the picture. More precisely, Section 9.2 describes the working
principle of the augmented bytecode verifier. Section 9.3 explains how the software by
design can handle edge cases. In conclusion, Section 9.4 suggests programming languages
and technologies that might be used for its implementation.

9.2 The System Architecture

In our new scenario, introduced in Chapter 8, three phases are required by the applet
verification process, namely Activation, Usage, Distribution. Together they cover the
whole verification process, from the moment a stakeholder subscribes to the service to
the stage of applets’ distribution. The Activation phase is straightforward and does not
require further technical explanation. The Distribution phase, as previously explained, is
only mentioned for the sake of completeness and is considered out-of-scope. The phase of
interest, from a security point of view, is undoubtedly the Usage phase, which is so far
only described at a high-level. Thus, the goal of this section is to explain technically how
the process of verification works from a verifier perspective. In presenting the technical
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details we refer to the Usage phase of Application Developers, illustrated at a high level
in Figure XVII Chapter 8, as that phase is the most complex and covers also the Usage
phase of Card Issuers in term of functionalities.

Figure XXIII presents the process of verification from an augmented bytecode verifier
perspective. As illustrated, the verifier, running onto an hostile machine, consists of two
main parts: the set of modules and the main execution. The former refers to the collection
of implemented checks that have to be run on an applet before being signed. Each module
has to be considered as an independent piece of software, which is run as needed. The main
execution process coordinates the entire process of verification. We decided to separate the
set of modules from the main execution to find a balance between security, transparency
and software flexibility/scalability. In fact, as discussed in Chapter 7, Requirement 5 asks
for transparency whereas Requirement 1 for high security. The decided division permits
to meet a feasible trade-off and increases also the software flexibility and scalability as, in
this way, it is far easier to add new modules and to release new software versions.

MAIN EXECUTION

1. CAP file

1. Exp file

10. Signed CAP file

10. Signed Exp file
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Figure XXIII: The Usage phase from a verifier perspective

The verifier, as already explained in the previous section, collaborates with a Java
Card token and NXP Semiconductors back-end to enforce high security. Below, a list of
assumptions under which, in the next section, we describe the operating principle of the
system.

- The Activation phase of the Application Developer was successful, allowing certified
communications between all entities involved in the process. In particular:
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- NXP Semiconductors has a tuple Verifier licence - Certificate for each stake-
holder stored into its database.

- The Card Issuer has the certificate of the Application Developer.

- The Application Developer was given the augmented bytecode verifier along
with its related Java Card token, which contains in terms of data the Application
Developer private key and the related certificate.

- The Application Developer has successfully installed the verifier and a card reader
is available on the machine.

- The Application Developer and Card Issuer agreed on a channel for the delivery of
verified applets.

- The Card Issuer has initialized a database where all verified applets will be kept and
a simple back-end where request of confirmations, to grant the process to proceed,
are delivered.

- The NXP Semiconductors back-end is available and reachable from the Application
Developer host where the verifier application is running.

9.2.1 The Protocol Concept

The process of verification starts at the moment an Application Developer wants to upload
an applet for distribution. Firstly, a CAP file to be signed along with its export file is
taken as input by the verifier’s main execution that computes a hash on both. The hash,
which we call Ah is then forwarded to the token, which takes control.

The token prepares a request of licence verification1 to be sent to NXP back-end (1).
More in detail, a nonce N1 and a request of license verification are generated and signed
along with Ah using the Application Developer private key. The signed data together with
the Application Developer certificate is sent to NXP back-end.

T 7→ NXP (N1 ‖ Request ‖ Ah)Privkappdev ‖ Certappdev (1)

Note that, the instantiation of the network connection between the verifier and NXP
back-end is carried out by the main execution and not by the token. This detail is very
important, as it allows NXP Semiconductors to use cheaper tokens for the purpose with-
out lowering the level of security (further detail in the next steps). Nonces are used to
counteract replay attacks.

Once the NXP back-end receives the request, it is verified. In case of success, a license
lookup is performed using the tuple Verifier License - Certificate stored during the Acti-
vation phase. If the license turns out to be invalid NXP back-end answers with a failure
message, otherwise the process proceeds.

1The request of license verification can be considered a simple predefined string.
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The NXP back-end responds with its own nonce N2, the token’s nonce N1, and a session
key Sk1 encrypted with the Application Developer public key. The message is signed using
the NXP private key and sent to the main execution, which in turn, forwards it to the
token (2). The NXP back-end starts also a timer within which an answer by the token is
expected. In case it is not, the session expires.

NXP 7→ T (N2 ‖ N1 ‖ (Sk1)Pubappdev)PrivkNXP
(2)

The main idea behind this message is to set up a new session secret between NXP Semi-
conductors and the token, which will be used to create a secure tunnel, allowing to monitor
the main execution and exchange trusted messages. For this reason the instantiation of
the network connection can be carried out by the main execution without impacting the
overall security. The use of a timer permits to reduce the surface of attack, in fact it
decreases the time a malicious agent has at its disposal to try to leak Sk1. Even if it is
only a session secret, sensitive information about the process are enciphered using this key.
In case an attacker would be able to have it before or during the applet checks the success
of the process might be endangered. The duration of the timer can be easily decided as
the computational power of the token is known and an estimation on the network delay
can be computed.

Once the token receives the response, it verifies it and changes state fromUnlicensed/Unini-
tialized to Licensed/Uninitialized. A simple response, which consists of nonceN2 encrypted
with Sk1 is prepared and sent to notify the NXP back-end about the success of the pre-
vious step (3).

T 7→ NXP ((N2)Sk1)Privkappdev ‖ Certappdev (3)

If the NXP back-end receives this message within the expected timer and Sk1 is suc-
cessfully verified, the process proceeds. At this point, NXP Semiconductors knows that
the state of the token changed and the initialization of the session is ready to be finalized.
To complete the session initialization the NXP back-end prepares a new message to send
to the token with a new session key, Sk2, a set of lookup tables slt and a list of hashes,
lh (4).

NXP 7→ T ((Sk2 ‖ slt ‖ lh)Sk1 ‖ N1)PrivkNXP
(4)

The former, Sk2 is a symmetric key generated at NXP back-end whose purpose is to
secure the communication between the main execution and the token. In other words,
this key must be considered as a further security mechanism to avoid man-in-the-middle
attacks between the two entities. We want to force a malicious agent to take the most
difficult path for trying to compromise the system: a malicious agent must attack the
main execution and should not be able to place himself in front of the token to intercept
communications, as they are all encrypted. Since Sk2 is a symmetric key whose goal is
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to enforce message confidentiality between the main execution and the token, it should
be securely stored at both sides. Contrary to the token, the main execution is untrusted
including its storage, thus Sk2 cannot be simply sent and kept in clear. Our proposal
is to make use of “white-box cryptography”, changing the data structure of Sk2. In a
nutshell, an encryption algorithm implementation, designed as a set of lookup tables,
should be embedded in the verifier binary. Some of those tables should be left empty
and initialized at run time, so that the key concealed is changeable over sessions (further
details in Section 9.2.4).

Referring to communication 4, the NXP back-end sends the session key Sk2 and a set
of lookup tables slt to the token. The communication from the NXP back-end to the
token is encrypted and signed, thus the distribution of the key is assumed secure. The set
of lookup tables slt are forwarded by the token to the main execution, which initializes
the whole algorithm implementation making the channel between the token and the main
execution ready to be used.

The latter, lh, refers to a set of hashes computed at NXP back-end whose purpose
is to provide the token with enough trusted information to ensure modules integrity. A
complete explanation can be found in Section 9.2.2. For now it is enough to know that each
module binary is broken into two parts. The first part is delivered with the augmented
bytecode verifier to the Application Developer while the second part is kept at the NXP
back-end and given to the verifier only at run time as needed.

Once the main execution completes the encryption algorithm initialization for the ses-
sion, it changes its state from Uninitialized to Initialized and notifies the token, which
in turn controls that the lookup tables initialization was successful. In case of success,
the token changes its state from Licensed/Uninitialized to Licensed/Initialized. The token
notifies NXP back-end that the initialization of the session is completed encrypting NXP ’s
nonce N2 with both session keys and signing it (5).

T 7→ NXP (((N2)Sk2)Sk1)Privkappdev ‖ Certappdev (5)

NXP back-end verifies the message and checks the correctness of keys Sk1 and Sk2
decrypting N2. In case of success, NXP back-end notifies the token that it is ready to
release the chunk of the first module through a signed message that consists of a predefined
string, which we call RM1, and a nonce N3 bound to it (6). RM1 has the purpose to inform
the token about the next module that will be run on the applet being processed, so that
NXP Semiconductors can control and force the order of modules that are run on an applet
and the token can locally monitor the outcome of each module. We generate a new nonce
N3 for each module release to strictly bind each module request with a session secret and
encrypt with Sk1 both M1 and N3 to increase the protocol complexity from an attacker
perspective.

NXP 7→ T ((RM1 ‖ N3)Sk1 ‖ N1)PrivkNXP
(6)
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The token verifies the message and decrypts N3 and RM1. At this point the token
knows which module will be run and acknowledge the reception of the message encrypting
N3 with session key Sk1 and signing the whole response (7).

T 7→ NXP ((N3)Sk1)Privkappdev ‖ Certappdev (7)

NXP releases the chunk of the first module CM1 that has to be run (8). A timer is also
initialized to increase the difficulty for an attacker to tamper with the module at runtime
to interfere with the process of verification. If an attacker copies on its own storage CM1

and rebuilds the module M1 when the verification process is already concluded he cannot
make a meaningful use of it as the module is strictly bound to the session.

NXP 7→ T ((CM1)Sk1)PrivkNXP
(8)

The token verifies the integrity of the sent module chunk and forwards it to the main
execution encrypted using Sk2 (9). The token changes its state from Licensed/Initialized
to Running.

T 7→MExc ((M1)Sk2) (9)

The main execution decrypts the module chunk, build the complete binary and runs it
on the CAP and exp file. The module returns as output a magic number, which is used
along with the module binary M1 and the hash Ah by the main execution to generate a
verification hash, h1. The hash is then sent to the token encrypted with Sk2 (10). At this
point, the main execution state is changes from Initialized to Running.

MExc 7→ T ((h1)Sk2) (10)

The token knows the module that was supposed to be run, thus it is able to verify the
hash using the list, lh, previously sent by NXP Semiconductors. The token informs then
NXP back-end about the outcome of the first module run sending an encrypted and signed
message that consists of a predefined string, which we call OM1 and N3 (11).

T 7→ NXP ((OM1 ‖ N3)Sk1)Privkappdev ‖ Certappdev (11)

NXP back-end expects this message, as said at step 8, before the expiration of the
started timer otherwise the process expires. Assuming that the message is correct and
received within the defined time frame, NXP releases the second module chunk and the
process from step 6 restarts. This happens for all modules that need to be run.

Once all modules checks are completed, the token gathered enough trusted information
about the ongoing verification process to generate a complete report. Information con-
tained in the report has to be decided by NXP Semiconductors, however the token owns
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enough trusted data to document and prove the outcome of the checks performed during
the session. The report, which we call R1, along with a nonce N4 is sent to the Card Issuer
related to the Application Developer who started the process. The message is encrypted
using the Card Issuer public key.

T 7→ CI ((R1 ‖ N4)PubCI
)Privkappdev ‖ Certappdev (12)

The Card Issuer verifies the message and manually checks the report. In this case it
also makes sense to define a deadline (timer) within which the Card Issuer has to answer
to decrease the attack surface and make the process smoother. In case the Card Issuer
agrees on signing the applet, a positive answer, which is a predefined string that we call
PA1, along with nonce N4 is sent to the token encrypted using the Application Developer
public key (13). Since only two messages are exchanged between a token and a Card
Issuer, we decided not to generate session keys and use public key encryption.

CI 7→ T ((PA1 ‖ N4)Pubappdev)Privkci ‖ CertCI (13)

The token verifies and decrypts the answer of the Card Issuer. If successful, it changes
the state from Running to Confirmed and a report, which we call R2, is generated and
sent to NXP Semiconductors (14). An answer is expected within a defined time span.

T 7→ NXP ((R2)Sk1 ‖ N2)Privkappdev ‖ Certappdev (14)

NXP back-end verifies, decrypts and checks automatically R2. If it complies with NXP
Semiconductors policies a positive answer, which is a predefined string that we call PA2,
is encrypted using Sk1 and sent signed along with nonce N2 (15).

NXP 7→ T ((PA2)Sk1 ‖ N2)PrivkNXP
(15)

The token verifies and decrypts PA2 and, based on that, signs the CAP file along with
its exp file or invalidates the session. In conclusion, the applet exp file is uploaded at
NXP back-end and the token changes state from Confirmed to Successful and performs
all needed operations to bring itself and the main execution to the initial state.

Figure XXIV and XXV illustrate the protocol concept in a whole through a sequence
diagram assuming that only one module is enabled. In the figure, numbers refer to the
above-numbered messages and colors are relevant. Green means trusted, blue trustworthy,
whereas red untrusted. Thus, in the diagram, NXP and the token are considered trusted
all along with their computation performed, whereas the Card Issuer trustworthy and
the verifier’s main execution untrusted for the already explained reasons. The main point
to note is the secure tunnel that NXP and a token can build over an untrusted main
execution instance. Figure XXVI shows a complete legend for the sequence diagram.
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Figure XXIV: The protocol concept I
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Figure XXV: The protocol concept II

Legend:

licLookup() → Search of the license and check validity

startTimer() → Start a timer

checkTimer(t) → Check if timer t was respected

changeState() → Change the instance state

initLookupTable() → Initialize main execution lookup tables

buildModule(CM1) → Build module M1 from the CM1 and the already owned part

runModule(M1) → Run check module M1

genHash(M1,Ah,magic) → Generate hash h1

verifyHash(h1) → Verify hash h1

genReport() → Generate Report for monitoring

verifyReport(R1) → Verify correctness of report R1

Figure XXVI: The protocol concept legend
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The operating principle of the protocol is explained as a flow in this section to make
it easily understandable. However, some details are still missing. Therefore, the next
subsections introduce more technicalities in terms of security mechanisms and explain
how the system deals with edge cases. More precisely, Section 9.2.2 describes the approach
used to enforce modules integrity. Section 9.2.3 explains the role of obfuscation and code
flattening in the augmented bytecode verifier. Section 9.2.4 presents more in detail the
white-box crypto technique proposed. Section 9.2.5 explains the role of disk encryption in
the system.

9.2.2 Runtime Integrity Checks

One of the main threats is related to module tampering. In case an attacker was able to
modify a check with another self-implemented module the entire process would be broken.
Thus, enforcing the integrity of modules is fundamental.

Our proposal for minimizing the likelihood of this attack vector is splitting each module
binary in two parts. The first part is delivered with the augmented bytecode verifier to
the Application Developer, while the second part stays onto NXP back-end. As explained
in Section 9.2.1, a module at a time is downloaded from NXP back-end and it has to
be built and run by the verifier within a predefined time frame. Referring to step 5 the
token informs NXP back-end that the session has been successfully initialized and NXP
Semiconductors releases the part of the first module to be run. Once received, the module
is built and run by the augmented bytecode verifier and as output a magic number is
produced. The main execution can then compute an hash h1 with three data:

- The complete binary of the module

- The applet hash Ah

- The computed magic number

Since h1 is not trusted because computed in a White-box scenario, it is sent to the token,
which can proceed with its verification using the list of hashes lh sent from NXP Semi-
conductors during step 4. The token informs NXP back-end about the outcome and in
case of success the part of the second module is released. Otherwise, the session expires
and all the process has to be performed again.

The most interesting details of this security mechanism are essentially two. Firstly,
how the magic number is computed. Secondly, why those three data types are used to
compute h1. The primary purpose of the magic number, as already mentioned, is to
avoid an attacker to tamper with a module. Our idea to achieve the goal is to compute a
module’s magic number using a slave-master approach. We can consider the first module
part, delivered with the augmented verifier, the slave, whereas the other part, which stays
at NXP back-end, the master. The slave is delivered with a bunch of NOP assembly
instructions embedded that have to be initialized for the computation of the magic number.
The master, before being released from NXP back-end, needs also to be initialized with
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random data/computations that has/have to be unpredictable and brute-force resistant
from an attacker perspective. These are the most important requirements. Once the
main execution receives the initialized second part of the module, it can build the whole
module and change the assembly NOP instructions of the first module part with some of
the data/computations initialized in the second module part by NXP back-end. At this
point, the main execution can run the module and, as a result, not only the applet check
is performed, but also the magic number is computed and given as output. Finally, the
main execution computes the hash h1 and sends it to the token, which can verifies the
correctness of the computed hash using the list of modules’ hashes lh received previously
from NXP back-end. The correctness of h1 is considered as a proof that the module
check ended successfully. NXP back-end can compute lh because has all the needed data
beforehand. Note that the second part of a module is initialized differently for each session
making extremely difficult for an attacker being able to retrieve the all needed data to
compute h1 and bypass the token check. Besides the difficulty an attacker could have at
retrieving the needed data, NXP back-end initializes also a timer within which it expects
an answer from the token about the outcome of the module. This increases further the
complexity from an attacker perspective. For the computation of the hash h1 we are using
three data, i.e. the magic number, the hash of the whole module and the hash of the
applet. In this way, we strongly bound the hash value to a session and the applet itself.

Listing 9.1 and 9.2 illustrate a dummy example to change a set of embedded NOP
instructions with something more meaningful, which could be a number or a computation.
The C code should be thought as the first part of a module while the python code as the
set of operation performed by the main execution. Of course, the hexadecimal number
0x8345fc01 is not fixed, but should be taken from the second part of the module, which
in turn, has been previously initialized for that session using a random and unpredictable
source by NXP back-end.

1 #include <stdio.h>
2

3 /* insert assembly NOP instructions without affecting the code functionality */
4 int func(int a) {
5 __asm__(
6 "nop\n"
7 "nop\n"
8 "nop\n"
9 "nop\n"

10 "nop\n"
11 );
12 return a;
13 }
14

15 int main() {
16 printf("Result: %d\n", func(5));
17 printf("MY JOB IS DONE HERE\n");
18 }

Listing 9.1: First part of a module
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1 # Open and read the first part of the module binary
2 with open("uninitialized") as f:
3 content = f.read()
4

5 # Find the offset of the NOP instructions
6 code_offset = content.index("\x90" * 5)
7

8 # Retrieve the data to replace with
9 new_code = "8345fc01".decode(’hex’)
10

11 # Replace NOP instructions with the retrieved data
12 patched_content = (
13 content[:code_offset] + new_code + content[code_offset+len(new_code):]
14 )
15

16 # Save the binary
17 with open("initialized", "w") as f:
18 f.write(patched_content)

Listing 9.2: Main Execution

This approach presents many advantages:

- The module part released from NXP Semiconductors is strongly bound to a session.
Therefore, even if an attacker is somehow able to compute a magic number within
the given time frame it is strictly related to only one module and in the next session
for the same module that magic number will be useless.

- NXP back-end is an active part and, thanks to a strict collaboration with the token,
a secure tunnel to exchange sensitive information about the state of the process can
be initialized and data sent along it can be considered trusted.

- The process can be easily improved, changing computations of the magic number in
the module parts stored at NXP back-end as needed.

9.2.3 Code Obfuscation and Code Flattening

Code obfuscation and code flattening have to be applied on the main execution to highly
increase its complexity from an attacker perspective. Our purpose is to make our protocol
reverse engineering unpractical and not worthy. We want to apply these techniques only on
the main execution to maintain a balance between transparency and security as explained
in Section 9.2. Proposing methods and approaches for applying effectively these techniques
is out of scope because they strictly dependent on the implementation. However, some
considerations can be found in Section 9.4 where possible implementation directions are
discussed.
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9.2.4 White-box Crypto

White-box cryptography is used in our protocol concept to secure local communication
between the verifier and the token.

Contrary to the token, the verifier is in a White-box scenario, thus an attacker can
access implementation of algorithms and observe their dynamic execution (with instan-
tiated dynamic keys). Thus, cryptographic algorithm implementations onto the token
and the verifier must be managed differently. As mentioned in Section 9.2.1, the to-
ken and NXP back-end can establish a secure tunnel where integrity, confidentiality and
authentication are assumed to be achieved. Through this tunnel a session key Sk2 is
transmitted to the token that can use that key to perform encryption and decryption
through its own cryptographic algorithm implementation, which is typically hardware-
based. In the verifier, any key input by a cryptographic implementation is totally exposed
to privileged attacks, therefore the sole remaining line of defense is the choice of imple-
mentation [Boneh 2001, Daemen 1999]. Our purpose is to apply White-box cryptography
to our case using a fixed key approach [Chow 2003a]. In a nutshell, the idea is to embed
the key in the implementation by partial evaluation with respect to the key, so that the
key input is unnecessary. Since this key-customized implementation can be transmitted
wherever bits can, embedded keys can be frequently changed making the approach feasible
for our context. Chow et. al. presents in [Chow 2003b] a generator of an AES implemen-
tation that is resistant to White-box scenario making use of the fixed-key approach. The
concept of this solution is particularly of interest and could be improved and adopted at
NXP back-end to generate lookup tables that embed Sk2 by partial evaluation. The aug-
mented bytecode verifier AES implementation could be completely initialized only after
a fixed amount of verifier life cycles, while the other times only some lookup tables could
be changed. In this way, the process is less bulky, but still provides the needed level of
security.

9.2.5 Binary Encryption

The verifier components have to be secured when not running to avoid an attacker to
perform reverse engineering on both the main execution and modules. Since encryption
and decryption are performed on an untrusted machine there is always a moment in
which the attacker has the opportunity to defeat this security mechanism. Therefore, our
purpose in using this mechanism is simply to increase the complexity of the process so
that the attacker’s motivation decreases. To achieve the goal we propose to make the
token generate a key every time a process of verification is completed successfully or not.
The token has to sign the key and forward it to a loader, which can be considered as an
independent module in the verifier architecture. The loader receives the signed key, verifies
it and encrypts the verifier binary, which includes the main execution and the modules.
The key must not to be stored onto the untrusted machine, the token is in charge of
storing it in its secure memory.
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9.3 Enforcing Edge Case Features

As discussed in Section 7.2, it is not feasible to forecast the effects of a breach in a White-
box scenario, thus security mechanisms should be designed to deal also with edge cases.
Below, some considerations about the three crucial features that the augmented bytecode
verifier should provide by design: key renewability, license revocation and verifier binary
diversity.

9.3.1 Key Renewability

The verifier protocol concept is designed to provide flexibility and security. One of the
most important aspects of our proposal is the ability to strictly bind each untrusted
communication or operation to a session, to decrease the attack surface in terms of time.
This design choice allows us to avoid the use of fixed keys that have to be renewed if
leaked.

9.3.2 License Revocation

Performing license verification at NXP back-end, as described in Section 9.2.1 at step 1
and 2, permits to determine the identity of each user (Card Issuers, Application Devel-
opers) from the early start and securely controls the process of verification. In case of
unwanted behaviours, detected along the process or through other ways, NXP Semicon-
ductors can revoke a license even if a user is still in possession of the key for signing
applets. The tuple Verifier license - Certificate of the related user, which is stored at
NXP back-end, has to be invalidated. Revocation can so easily be applied because, as
explained in Chapter 8, a user has the token for signing but does not know the key, which
is strictly bound to an augmented bytecode verifier and can be used only during a process
of verification, in which NXP Semiconductors actively participate from the beginning to
the end.

9.3.3 Verifier Binary Diversity

Each verifier binary should be slightly different from others so that, in case of failure, an
attack is not scalable. Our protocol concept splits modules’ binaries in two parts and
reassembles them for each session with different operations embedded (see Section 9.2.2).
This approach allows already to provide indirectly an effective binary diversity. However,
to further increase dissimilarity between binaries, different obfuscation and code flattening
techniques might be applied to main executions. In this way, even if the functionality
remains unchanged, the verifier binaries present more variations.

Java Card Bytecode Verification
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9.4 Implementation Directions

The system architecture, along with a description of its protocol concept, is introduced
from an augmented bytecode verifier perspective in Section 9.2. In terms of implementa-
tion, several languages might be used, but we suggest the use of a combination of Java
and C/C++ for both business and technical reasons.

The use of Java is favourable for the implementation of the set of modules, whose
purpose is to make sure that the code of an applet is well typed and does not attempt to
bypass JCRE security mechanisms by performing ill-typed operations at run-time, such as
forging object references from integers, illegal casting of an object reference from one class
to another, calling directly private methods of the API (further details in Chapter 5). We
claim that Java might be a feasible choice for essentially three reasons:

- Java is a high-level language that simplifies the development of modules

- Java is portable making it easier to manage and distribute the modules

- NXP has the source of an Oracle Java Card bytecode verifier that might be used as
a start

The programming language C or C++ is advantageous for the implementation of the
main execution, whose purpose is to orchestrate the whole process of verification. We
propose its use instead of Java because security mechanisms such as obfuscation and code
flattening are not strongly effective on bytecode, due to its human-friendly nature. For
example, obfuscated bytecode is equal in every platform and is typed, which means that a
variable type cannot be changed to another one. As explained throughout the chapter, the
main execution must be protected effectively from reverse engineering, due to the sensitive
operations performed, thus we propose the use of C/C++ to increase the complexity from
an attacker perspective.

The main execution and modules might communicate through the Java Native Interface
(JNI). Even if modules can be considered as conceptually independent pieces of software
from the main execution, they are strongly interconnected and controlled by means of our
runtime integrity check mechanism proposed and the two involved trusted party, NXP and
token, which can monitor the correctness of the operations throughout the entire process
of verification.
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9.5 Key Points

At the beginning of the chapter, two research questions were presented. The goal of this
section is to provide clear and explicit answers with the purpose of outlining and empha-
sizing the chapter’s key points.

How can the system be designed to withstand to white-box attacks by design?
Requirement 1 increased tremendously the design complexity, demanding the system to be
run in a white-box scenario. To deliver the required level of security, with the primary pur-
pose of withstanding white-box attacks, we designed several security mechanisms whose
description can be found from Section 9.2.2 to Section 9.2.5. However, their use alone it
is not enough as we are only increasing the complexity of the software from an attacker’s
perspective. What we need is a place where computation can be performed securely and
considered trusted. Therefore, we made two design choices in this direction. Firstly, we
decided to make use of a Java Card token to give us a trusted area, at the Application
Developer ’s location, to make computations that need to be done in a safe environment
but, as explained in Section 9.1, its use alone is still not enough. Thus, our second choice
was to involve actively, during the process of verification, NXP Semiconductors’ back-end,
with the purpose of creating a secure tunnel between the two trusted components. This
approach allows to withstand white-box attacks by design because it permits to monitor
an untrusted verifier instance without putting trust in unverifiable data. In fact, the use of
a secure tunnel between a Java Card token and NXP Semiconductors’ back-end enforces
data source and data integrity.

How NXP Semiconductors can be self-confident that the applet verification process ended
successfully?
This research question is strongly related to the previous one. NXP Semiconductors can
be self-confident that a process of verification ended successfully because it is actively
involved in the process and the final choice of whether granting an applet signature is
under its control. Moreover, NXP Semiconductors, thanks to the defined architecture and
protocol, has a high level of confidence that data received from an augmented verifier
instance has not been corrupted and can be totally trusted. However, in case of detected
unwanted behaviours license revocation can be easily applied as described in Section 9.3.2.

Java Card Bytecode Verification





Chapter 10

Conclusions and Future Work

10.1 Improved Secure Element Management

The current limitations in the initialization and management of physical secure elements
are evident. As a consequence, Card Issuers are looking for new virtual solutions and end-
users have no control on the content of their mobile device’s secure element. This thesis
project presents a novel system concept to provide a flexible and highly-secure mechanism
for applet installation and management, proposing a solution to the physical secure ele-
ment issue. We worked on the whole stack, introducing new stakeholders, defining their
interactions and proposing an innovative distributed system architecture based on the
studied Java Card attack vectors.

The recurring theme of this thesis work is strongly related to security, trust, flexibility
and transparency. Any system design choice has been taken with these interconnected
properties in mind. Security can be considered an antonym of flexibility, due to their
opposite nature. Transparency in term of functionalities can limit the effectiveness of
the deployed security mechanisms because of the white-box context where the augmented
verifier runs. Trust can be considered a consequence of the system security and business
choices. Due to the complex interconnections among the required characteristics, the sys-
tem comes with trade-off. NXP Semiconductors requested us to maximize flexibility while
enforcing an high-level of security and respecting the stakeholder’s business requirements.
In other words, NXP Semiconductors asked us to analyze the most extreme scenario,
which allows to verify applets in a hostile environment. With this in mind, our purpose
was to design a new system concept, which provides the above-mentioned properties by
design.

The adoption of our designed system would greatly maximize the potential of physical
Java Card secure elements with relevant benefits for both stakeholders and users.
NXP Semiconductors might focus on providing physical secure elements ready to be used,
enforcing security along the whole applet life cycle chain.
Card Issuers could concentrate on providing new services to End-users developing con-
tents for secure elements. They could also easily outsource the implementation of applets
granting Application Developers to act on its behalf.
End-users could manage the content of their mobile devices freely, installing as needed
applets.

The system has many intrinsic advantages, which can be outlined as follow:
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- Well-defined roles based on business activities: NXP Semiconductors takes care of
security and physical secure elements, while Card Issuer can focus only on contents.

- Flexibility in the entire applet life cycle is maximized still providing the required
level of security and transparency.

- Misbehaviours can be monitored and detected.

- Card Issuers have total control on Application Developers and can monitor their
activity.

- Applets source/binary are never inspected directly by NXP Semiconductors, pre-
serving Card Issuer intellectual property privacy and avoiding legal issues in the
worst case.

- The augmented verifier is able to enforce the required level of security without the
need of hiding functionalities of the verification modules. They could also be made
available for download for Card Issuers to improve transparency.

- Applet distribution can be achieved in a variety of ways, without impacting the
security behind the verification process.

- End-users can manage their own mobile device secure element content freely.

For these reasons we strongly believe that trust in the system by stakeholders could be
achieved. Therefore, as all requirements presented in Chapter 7 are fulfilled, the system
designed should be considered successful at this stage.

10.2 Related Work

Our thesis work tackled a problem that apparently nobody tried to solve so far. We focused
on how to maximize the flexibility of a verification process without losing its security in
the scenario of mobile devices. All related projects aim attention at the raw verification of
bytecode with the purpose of proposing new solutions or improving the performance/effec-
tiveness of already existing bytecode verifiers, both off-card [Posegga 1998, Barthe 2007]
and on-card [Klein 2001, Casset 2002, Wang 2009, Berlach 2014]. Currently, very few Java
Card secure elements are equipped with a on-card bytecode verifier because of the strict
hardware-constraints. Ideally, an on-card bytecode verifier is more effective for essentially
two reasons, firstly the applet code is checked immediately before installation and secondly
the verifier can also include some runtime checks. As soon as the hardware-constrains of
secure elements will be overcome someone might think that an off-card verifier would not
be needed anymore. We strongly believe that in our scenario an off-card verifier is needed
in any case as the checks that can be run on an applet are much more advanced and the
architecture itself allows to strictly keep under control any applet verification process. An
on-card verifier would only improve the security of the process.
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10.3 Future Work

The work in this thesis could be continued and extended in a variety of directions.

The designed system concept presents enough detail to start with its implementation
with the purpose of developing a prototype and testing the effectiveness of the proposed
security mechanisms. The implementation is crucial for a proper functioning of the pro-
posed functionalities, thus it has to be carefully carried out. The complexity of the task
is very high, not only for the sensitivity of the functionalities to be developed, but also for
the strongly heterogeneous nature of the system architecture, in fact components (back-
end, token, augmented verifier) come under different assumptions and environments. In
addition, further technical details should be analyzed and studied in more depth. For ex-
ample, structure and format of reports sent from an augmented verifier instance to both
NXP Semiconductors and Card Issuers (step 12 and 13 in Chapter 9) should be defined
to enforce and ensure misbehaviours detections.

The verification modules to be run within an augmented verifier instance have not
been studied in this report, only suggestions on possible modules were given. Therefore,
proposed modules should be implemented and new ones designed based on the current
attack vectors proposed in Chapter 5.
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The I&E Thesis focuses on addressing an Innovation and Entrepreneurship topic, mo-
tivated from key challenges documented for the thematic focus area of the Master Thesis
project. Referring to the guidelines, I chose to analyze a step along a relevant business
development frame-process, making this work tightly coupled to my final thesis project.

The following chapter provides some details about the company I am working with
in Section 1.1 and introduces the project’s context along with its scope and purpose,
respectively in Section 1.2 and Section 1.3.



2 Chapter 1. Introduction

1.1 The company

NXP Semiconductors is a Dutch semiconductor manufacturer. It is one of the world-
wide top 20 semiconductor sales leaders and was founded in 1953, when the Philips Board
started a semiconductor operation in Nijmegen, Netherlands [Penning de Vries 2010]. For-
merly known as Philips Semiconductors, the company was sold by Philips to a consortium
of private equity investors in 2006. The new name, NXP, stands for the consumer’s “next
experience”. According to NXP’s official website, Figure I outlines quickly the main as-
pects of the company.

Figure I: Facts & Figures

NXP covers a wide variety of IT solutions in several areas, but always with a strong
focus on security. More precisely, NXP creates solutions for Connected Cars, Cyber Se-
curity, Portable & Wearable and the Internet of Things. Currently, I am employed at
the “Innovation Center of Crypto and Security” and am part of the “Security Concept”
team, which consists of fifteen professionals. My thesis project focuses on secure mobile
transactions in the cyber security field.
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1.2 Contextualization

“The convergence of payments and mobile communications is not just logical – it is in-
evitable”. In March 2007, John Philip Coghlan, then CEO of Visa USA, made this
announcement at the CTIA Wireless Conference. Such a convergence is claimed to be
inevitable for essentially three reasons [Alliance 2009]:

- Contactless payment adoption. Payment brands, issuers and consumers adopts con-
tactless payment solutions due to its speed, easy of use and security, while merchants
adopt it because of faster transaction time, increased spending and higher loyalty.
Moreover, the contactless infrastructure is built on top of the existing financial net-
work, therefore merchants are required only to upgrade their point-of-sale (POS) to
contactless-enabled POS with negligible costs.

- Mobile device ubiquity. Mobile phone subscribers do not leave home without their
phones. In addition, near field communication (NFC) technology has become an in-
ternational communication standard to deliver simplified and robust implementation
of contactless payments using mobile devices due to its secure nature [Coskun 2013].
Today, NFC is a standard functionality provided in most mobile phones.

- Expanded mobile functionalities. Mobile devices are powerful tools that can de-
liver a variety of payment and payment-related services such as proximity mobile
payments, remote payments through the mobile Internet or text messaging, and
person-to-person money transfers. Value-added applications can enrich the pur-
chase experience and include account management, banking, offers, and security
applications.

Many attempts of creating a secure and open mobile proximity payment system have
been made. Typical examples are Google Wallet and Apple Pay that are trying to create
an homogeneous system on top of the already existing financial circuits such as Eurocard,
Amex, Mastercard, Maestro and Visa. However, they have been only partially successful
due to the strict security requirements that the system needs to comply with, the hostile
environment in which the system must run and the many business parties involved in
providing it, i.e. device manufacturers, application providers and card issuers. Today,
interesting technologies that could meet the strict requirements are available in the market,
but designing a smooth environment that stakeholders, even competitors, can trust and
participate in is the greatest problem. As a result, mobile proximity payment systems are
today enabled only in specific countries and still have to gain a foothold not withstanding
the huge potential.

Technically speaking, the cornerstone of security in a proximity payment system is
the secure element [Alliance 2009]. Essentially, it is a protected area, independent from
the application process/operating system of the device, which is capable of storing and
processing sensitive information of the device holder. Authentication, encryption of pri-
vate data, data integrity and non-repudiation are typical services that a secure element
provides. One of the solutions provided by NXP Semiconductors is the use of a secure
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element, which consists essentially of a built-in smartcard chip embedded in the device
running a Java Card virtual machine that communicates with an external terminal by
means of NFC. The main innovating concept that has been brought into the market with
the introduction of Java Card is the multi-application environment. That is, applications
(from now on “applets”) can run on the same smartcard chip and can be uploaded even
after a smartcard issuance. Such a feature might be the key for creating an open, homoge-
neous and trusted environment, but, due to security reasons, it has never been extensively
used. As a consequence, NXP Semiconductors, as a smartcard manufacturer, is currently
strictly controlling the access to its secure elements enforcing a tight collaboration with
card issuers. Usually, applets of different parties never run on the same chip and are
never uploaded after the card issuance, even if it is developed by a trusted application
provider related to the same card issuer. Obviously, this is a huge limitation that is ob-
structing the spread of a proximity payment system and is leading to the development of
workaround solutions that do not need a physical secure element, such as the Host-based
Card Emulation approach [Friedman 2004] that is starting to be used by Google. As a
secure element manufacturer, NXP Semiconductors wants to stop this trend, proving that
a secure and versatile environment using a physical secure element can be truly designed
and implemented enabling in such a way the use of physical secure elements in mobile
devices.

1.3 Research Direction

My final research thesis project investigates the current state of the art of Java Card
with the final purpose of pointing out how NXP Semiconductors might tackle the above-
introduced problem enforcing security and trust without losing control on what is uploaded
on its secure elements. That said, this paper focuses on the needs discovery of the direct
and indirect NXP’s consumers1 involved in the environment I am working on. Namely,
card issuers and application providers. The goal is to provide NXP Semiconductors with
a framework to extensively find out the real problems these stakeholders encounter along
the process, so that the final solution of the thesis project can be suitable not only in term
of security and privacy, but also in term of consumers requirements. Thus, referring to
the “Framework of an Innovation Development process” (guidelines Annex 2), this work
refers to The voice of the costumer in the Conceptualization phase. The present document
is structured as follow:

- Chapter 2 investigates the current state of the art about costumer’s needs discovery.

- Chapter 3 proposes an effective framework, based on the presented concepts, which
allows NXP Semiconductors to deeply investigate the real needs of its customers
and translate them meaningfully into functional product requirements.

- Chapter 4 draws my final personal conclusions.

1Direct customer is someone dealing directly with the supplier, indirect customer is someone who deals
with the supplier through an intermediary (agent, etc.)



Chapter 2

Literature

Contents

2.1 The VOC Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Costumers Needs and Wants . . . . . . . . . . . . . . . . . . . . . 7
2.3 Identifying Costumers Needs . . . . . . . . . . . . . . . . . . . . . 9

With respect to product development and innovation, the language used when speaking
about costumers’ needs differs depending from what angle this aspect is being analyzed.
Marketing, Engineering and Industrial Design literatures use different terminologies and
often key terms are used interchangeably [Bayus 2008]. This trend creates confusion, in-
creases the level of uncertainty and lessens opportunities of success in any market research.
The purpose of this chapter is clearly present the current state of the art about the dis-
covery of costumers’ needs and wants, using a coherent terminology and emphasizing its
interdisciplinary. More in details, Section 2.1 introduces the concept of Voice of the Cos-
tumer explaining its scope and purpose. Section 2.2 defines formally the meaning of need
and want and provides a quick description of several aspects that are crucial for being
effective in a customer needs discovery phase, regardless of the customer segment. In
conclusion Section 2.3 focuses on identifying and classifying customers needs to maximize
the satisfaction of final customers and consequentially making a product successful.
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2.1 The VOC Concept

Satisfying customers’ unmet needs is considered the key to company growth as it allows to
create more value. For such a reason, when developing a new product, understanding the
real needs of future costumers is crucial. Conceptually, understanding costumers’ needs
leads to products that are desirable, feasible and salable to the target market, creating
consequentially successful innovations. Figure II shows how these attributes creates the
so called innovation space.

Desirable Feasible

Salable

Successful
Innovation

Figure II: The Innovation Space

Costumers’ need discovery is an active part in the new product development process1.
Figure III shows the major steps involved in the “fuzzy front-end” – it refers to the set
of the activities employed prior to entering the formal product development process. As
illustrated, understanding the costumers’ needs has become known as the Voice of the
Costumer (VOC).

Formally, VOC is defined as follow:

“The Voice of the Costumer” (VOC) is a term used in business to described the process
of identifying customers’ requirements [Yang 2007].

Besides identifying customer requirements, VOC includes also producing a detailed list
of needs, which has to be firstly organized into a hierarchical structure and then priori-
tized with respect to its costumer importance [Griffin 1993]. There are several approaches
that can be used for prioritization, from subjective scoring by the development team to
customers rating methodologies [Pullman 2002]. Note that, prioritizing customer needs
is valuable, because it allows the development team to make necessary tradeoff decisions
when balancing the costs of meeting a customer need with the desirability of that need rel-
ative to the entire set of customer needs. Then, to provide the big picture, the information
gathered during the VOC phase is translated into requirements and product specifications,

1In business and engineering, new product development (NPD) is the complete process of bringing a
new product to market. It is basically divided in four phases: Fuzzy front-end, Product design, Product
Implementation, Fuzzy back-end.
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Identifying
Costumer Needs

Developed Prioritized
Needs Hierarchy

Establish Target
Requirements & Specs

Concept
Generation,Screening
Testing & Selection

The Voice

of the

Costumer

Figure III: The Voice of the Costumer in the “fuzzy front-end”

which in turn are translated into specific product attributes for prototypes [Dahan 2002].

This discovery process brings relevant benefits to a company providing:

1. an extensive understanding of costumers’ requirements

2. a common language for the developers team

3. key pieces of information to design appropriately the product

4. a strong starting point to innovate the product

Typically, VOC studies are qualitative and quantitative market-research steps. They are
performed during the initial design phase of a product to better understand the wants and
needs of a costumer or during a product improvement phase using the resulting information
as a key input for a new definition.

2.2 Costumers Needs and Wants

“A customer need is a description, in the customer’s own words, of the benefit to be
fulfilled by the product or service” [Gaskin 2010]. It is long-term in nature and cannot
always be identified and described verbally by a costumer [Burchill 1997, Mello 2003]. On
the other hand, “a customer want is a thing that a customer believes will fulfill a known
need” [Bayus 2008]. It is short-term and temporary in nature, however, can be easily
influenced by means of advertising, laws, norms, personal recommendations.

When designing a product, needs and wants are about “what” is wished by costumers,
whereas specifications concern with “how” a need is fulfilled. More precisely, from the
engineering and design literature, a requirement is a technical solution to meet a costumer’s
need whereas a specification is a metrics associated to a requirement [Ulrich 2004]. In
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addition, in the economics literature, a characteristic is a property of a product that is
relevant for the costumer final choice [Geistfeld 1977]. While, a product attribute relates
to a product characteristic and describes the perceptual dimension that a customer uses
to make purchase choices. Figure IV illustrates the relationship between these concepts
in the new product development phase.

Costumer
Needs and Wants

Costumer
Requirements

Specifications

Product
Characteristics

Attributes

Figure IV: The language of new product development [Bayus 2008]

It has been proven that understanding how costumers take final decisions with respect to
a product is one of the keys to success. Brunswick [Brunswik 1952] suggests the costumers
see the world through the lens of their perception and introduces the so called “lens
model”. Figure V shows such a model clearly illustrating the several factors that influence
a costumer final choice. Within the context of the “lens model”, VOC identifies the values
customers take care about (needs) and how costumers create preferences with respect to
those needs (prioritization). VOC might also be useful to identify how to influence a
costumer final choice, i.e. affecting his/her perceptions through advertising for example.

Product Features Perception Preferences

Advertising etc. Availability, price, etc. Choice

Figure V: The “lens model”

Customers communicate explicitly or implicitly using different channels and behaviours
that often are not correctly interpreted by companies. Figure VI illustrates the main
sources of VOC, which need to be analyzed to understand and unveil the real needs of
customers or to validate the current quality of a product/service. As a result of the
complexity of this information flow, costumer needs have to be interpreted from the raw
data gathered during the first step of a VOC study. Section 2.3 presents how to identify
and classify meaningfully needs and wants in order to increase the costumer satisfaction.
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Customers
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Informal/Formal
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Research market
Intelligence

Figure VI: Source of Costumer Voices

2.3 Identifying Costumers Needs

One of the most known approach for identifying the types of consumer needs is the “Kano
Model of Customer Satisfaction” [Kano 1984]. Kano et. al. developed this methodology
adapting the ideas of Fredrik Herzberg [Herzberg 2011] on the asymmetry of the factors
related to job satisfaction and dissatisfaction. In a nutshell, Herzberg claimed that job
satisfaction is related to ”motivators“ such as achievement and recognition, whereas job
dissatisfaction to ”hygiene“ factors such as company policies and working conditions.

The key concepts of Kano theory can be outlined using, as illustrated in Figure VII, a
Cartesian plane. The horizontal axis indicates the degree to which a particular consumer
need is addressed in a new or existing product, ranging from totally unmet to completely
fulfilled. The vertical axis refers to the satisfaction for a specific implementation of a
customer need ranging from disgusted to delighted. Using this two-dimensional plane
Kano et. al. defines three types of customer needs, namely basics needs, performance needs
and exciting needs. “Basics needs” represents needs that are taken for granted, i.e. already
assumed by a customer to be met. An example might be the brakes in a car. Meeting these
needs do not increases the customer satisfaction, but the absence or poor performance of
these attributes in a product results in extreme customer dissatisfaction. “Performance
needs” refer to those needs for which the customer satisfaction is roughly proportional to
the level of performance shown by the product attribute. An example might be a car that
provides a better fuel economy. This type of need is usually directly requested by customers
when doing reviews. “Exciting needs” represents needs that customers do not expect to
be satisfied. In case this need is completely addressed the customer is delighted, if not
the customer does not really care. This kind of need is obviously the “order winner” for
costumers. Other categories of needs have been proposed in literature such as “observable
needs”, “explicit needs”, “tacit needs” and “latent needs”. However, Kano model is still
considered a cornerstone when it comes to understanding customer needs as it allows to
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identify all those needs that factor into consumer decisions.

Indifference

Need
not ful-
filled

Need
well ful-
filled

Dissatisfied

Satisfied

Performance

Excitement

Basic

Figure VII: The Kano Model

The underlaying message that Kano wanted to convey through his model is straightfor-
ward but essential. Customers are dynamic, a need that today belongs to one category
might be part of another category in the future. An example might be the air-conditioning
in cars that was considered a delighter in the 1950, but a basic need today. This means
that customer expectations increase over time and company to stay competitive in the
market need to be flexible and strive to better understand ever-changing customer needs.

As explained in Section 2.1, during the VOC phase a company gathers raw information
about customers’ needs that must be interpreted, firstly defining a hierarchy and secondly
creating a prioritized list. Kano model can be used for defining a hierarchy of interpreted
needs. However, in order to gain a rich understanding of customer needs a company must
be aware, as show in Figure VIII, that interpreted needs consists of articulated needs and
unarticulated needs, which require different kind of techniques to be discovered.

The former refers to those needs that can be verbalized, if asked appropriately, whereas
the latter to those that consumers cannot easily verbalize. It is important to keep in
mind that there are many motivations that might stop customers from communicating
his/her idea – they do not understand, they don’t know how to tell, they do not remem-
ber etc. Generally speaking, “articulated needs”, in order to be discovered, require to
focus on “what customers say”. There are several traditional market research approach
that might be used such as questionnaires, surveys, interviews, focus groups [Urban 1993].
Other less traditional, but well-known, techniques include conjoint analysis, preference
modeling, simulated test market [Green 2001, Kaul 1995] and category problem analy-
sis [Swaddling 1996]. Typically, “unarticulated needs” refers to information dealing with
“what customer make and do” [Sanders 1992]. In order to obtain a good understanding of
this category of needs current and ideal experiences of customers should be correctly inter-
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Interpreted Needs
→ Basic Needs
→ Performance Needs
→ Exciting Needs

Articulated Needs

Unarticulated Needs

What
customers say?

What
customers make?

What
customers do?

→ Market Research

→ Participant Observation
→ Applied Ethnography
→ Human Factor Research

→ Collaborative Design

Figure VIII: Understanding Customers Needs

preted by the company. Participant observation, emphatic2 approaches [Leonard 1995],
applied ethnography [Masten 2003] and contextual inquiries [Holtzblatt 1993] are the
main methods. However, the primary method is participatory and collaborative de-
sign between the development team and customer, which is used for discovering what
customers know, feel, and dream through what they make. Techniques includes lead
user analysis [Von Hippel 1999], customer toolkits [Franke 2004] and metaphor elicita-
tion [Christensen 2002]. Moreover, some researches suggest to incorporate abstract at-
tributes, such as aesthetics, emotions and experiential aspects into the identification pro-
cess of these “unarticulated needs” [Schmitt 1999, Desmet 2001].

This discussion presents a variety of methods and approaches that can be used to reach
a deep understanding of user needs. As suggested by Sanders [Sanders 1992], multiple
methods amongst the above-mentioned should be used together to uncover the complete
range of customers’ needs. However, it is important to note that the degree to which needs
must be interpreted from the raw information, gathered through these methods, increases
from learning “what customer say” to “what customer make and do”. Several approaches
are presented in literature to make this translation from raw information to Interpreted
needs, however, they are beyond the scope of this report. For a good coverage of this step
we refer to [Otto 1998, Shillito 2000].

2Empathic approaches pays attention to the user’s feelings toward a product.
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The purpose of this chapter is to define and present a framework to effectively discover,
identify, understand and translate into functional product requirements customers needs,
limiting any kind of waste in term of time, money and human resources. Section 3.1
points out several challenges that still are open, while Section 3.2 introduces step by
step the framework, which, if applied correctly, might give significant advantages to NXP
Semiconductors.
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3.1 Persistent Challenges

Based on Chapter 2, several techniques, both qualitative and quantitative, have been
proposed improving significantly the procedures for gathering and analyzing with great
insights valid and reliable customers data. However, despite these advances, many chal-
lenges related to customers’ thoughts, feelings and behaviours are still open. In particular,
market researches need to be enhanced in a way that [Coulter 1995]:

- Provide a better understanding about customers as a basis for advertising and
marketing-mix decisions.

- Improve latent and emerging needs elicitation.

- Give better guidance for capturing and engaging customers thought process.

- Enhance organization of unverbalized data.

3.2 Building an Effective Voice of the Customer Programme

Due to the huge amount of influential variables, creating an effective framework to identify
and understand the complete range of customer needs is extremely challenging.

Referring to the context presented in Chapter 1, NXP Semiconductors is carrying out
a deep research for coming up with new solutions to tackle the described problem. An
interesting approach has been now identified, but it is crucial to avoid any financial, time
and human resource waste. To be successful, NXP’s customers, i.e. card issuer and
application providers, must be given a product that satisfy their own needs.

Hereafter, a proposed framework1 to achieve this goal with the purpose to also deal with
the described persistent challenges. It consists of the following steps:

1. Define and prioritize business and organizational goals 3.2.1.

2. Define and prioritize customers segments, refer to Section 3.2.2.

3. Gather raw data, refer to Section 3.2.3.

4. Translate raw data into interpreted needs, refer to Section 3.2.4.

5. Analyze and prioritize interpreted needs, refer to Section 3.2.5.

6. Translate customer needs into function requirements, refer to Section 3.2.6.

1The framework proposed is based on [Mazur 2003]
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3.2.1 Define and Prioritize Business and Organization Goals

Understanding customers needs requires a team with cross-disciplinary knowledge. In a
large company as NXP Semiconductors this means that members of different departments
start to work together on different aspects of the problem. Obviously, the operate of each
team member is evaluated by different organizational bosses. Thus, team and business
goals could differ from individual performance evaluation factors. Clarifying both team
and departmental goals is crucial to avoid internal arguments, which could badly affect
the project. The main goal of this step is to define and prioritize three layer of goals,
namely:

- business goal : market share, revenue, profit, brand

- product goal : performance, functionality, reliability

- project goal : on time, on budget etc.

Their definition should be done early in development process in order to assure alignment
of cross-functional activities with what matters most to the business.

3.2.2 Define and Prioritize Customers Segments

Identifying customers is an extremely important market research. However, when it comes
to designing the product in order to meet the needs and wants of these customers, it is
crucial to focus on characteristics. Thus, during this step customers should be defined
based on characteristics of use. Usability, functionalities and appearance issues must be
understood. The “Customer Segment Table” is strongly useful for this kind of task. Table I
shows a template. During this phase, it is relevant to classify customers segments basing on
their impact in making the product successful. In our case, card issuers are undoubtedly
much more influencing than application developers, who are, for NXP Semiconductors,
only indirect customers. Based on that, in case of limited resources for visiting customers
a plan to best allocate them has to be done.

Who is
the cus-
tomer?

What are
they doing?

When are
they doing
it?

Where are
they doing
it?

Why are
they doing
it?

How are
they doing
it?

What is the
current
situation?

Card
Issuers

App.
Developers

Table I: The Customer Segment Table
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3.2.3 Gather Raw Data

The goal of this phase is collecting as much data as possible with the regards to customers
needs. As introduced in Section 2.3, there are different types of customers needs, namely
articulated and unarticulated. In order to identify and maximize the discovery of these
needs, different techniques proposed in literature2 might be concurrently applied.

NXP Semiconductors already had many experiences with card issuers, as described in
Section 1.2. Therefore, firstly it is relevant to document the customers needs the company
already thinks to know. Secondly, methods to discover articulated and unarticulated needs
have to be applied. Deciding the most effective ones in term of outcome/cost ratio is at
discretion of the company, based on the already deployed marketing channels. However,
our customers are in turn supplier, providing service to final users. This means they are
entities with a high technical knowledge of the scenario’s issues. For NXP Semiconductors
this aspect is undoubtedly relevant as it allows to decide accurately the methodology to
use to maximize the coverage of the needs space: card issuers are fully or partially fully
knowledgeable about all their requirements and are able to verbalize them. As a conse-
quence, NXP Semiconductors should focus on techniques to uncover articulated needs,
and as described in Section 2.3 it is a great advantage. Thirdly, the needs claimed initially
by the company must be validated. In this way NXP Semiconductors would be able to
identify customers needs and maximize the range.

3.2.4 Translate Raw Data into Interpreted Needs

The previous phase gathered a huge set of data with regards to costumers needs through
market research methods. However, this data are still raw and need to be translated to
be useful performing the following steps:

1. Document each collected data along with its context

2. With the help of customers, each documented data must be translated into a need
statement. Note that it is not uncommon to derive as many as five to ten needs
from one documented data. Further unarticulated needs will emerge.

When performing this translation, it is essential to define a set of criteria which make a
documented data a true customer need with the purpose to be coherent along the whole
process. The following might be feasible criteria, the documented data:

1. Defines the benefit customers receive from: their problems solved, their opportunities
enabled, their image enhanced

2. Is positively stated

3. Focuses on a single issue

4. Is independent of specific products or services, features, and technologies
2Refer to Section 2.3 for an interesting list of the most important.
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3.2.5 Analyze and Prioritize Interpreted Needs

The customer needs must be prioritized by customers in order to understand how im-
portant they are and to whom. An effective procedure is the Analytical Hierarchy Pro-
cess [Saaty 1990] which provides ratio-based priorities based on natural language com-
parisons. This method breaks down decision making into sets of pair-wise comparisons
allowing to determinate the relative importance of evaluation criteria3. Table II shows a
template example.

Defining valuable and meaningful evaluation criteria is a crucial task that NXP Semi-
conductors needs to carry out carefully.
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Table II: The analytical hierarchy process framework

This methodology provides several benefits as it:

- Converts subjective assessments of relative importance into a set of overall scores or
weights

- Offers a team activity where members must decide on the relative importance of one
factor against another

- Easily removes emotions and helps in making better decisions

3.2.6 Translate Customers Needs into Functional Requirements

Many methodologies for translating the interpreted needs into functional requirements
have been proposed as already mentioned in Chapter 2. This step is somehow out of
scope, but for the sake of completeness I want to suggest the use of an interesting tech-
nique for managing effectively this translation. The technique makes use of the so called

3A quick but effective explanation can be found at http://asq.org/service/body-of-knowledge/
tools-analytic-hierarchy-process
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Maximum Value Table (MVT), which allows to connect a particular customer need to
several dimensions (customers, solution, design, project). Figure IX shows an example.
The most advantage that this approach provides is to give to the reader a clear big picture,
allowing in this way to create tasks that will be assigned to the development team. The
MVT does not of itself kick-off the whole project, but illustrates where effort should be
made to guarantee the design and delivery of a successful product.
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Chapter 4

Conclusion

Understanding customers needs is essential to design and implement successful products.
However, at the same time, this phase is extremely challenging, as there will always the
need to define tradeoff between the expediency and cost efficiency of practical methods
for understanding customer needs versus methods of obtaining a deeper understanding of
needs that involve more effort and resources.

Firstly, this report focused on presenting the current state of the art related to cus-
tomer needs emphasizing, in Chapter 2, the interdisciplinary that their discovery requires.
Secondly, a complete framework aimed at customer needs discovery, which is based on
the presented literature, has been proposed in Chapter 3 with the purpose to solve the
technical problem presented Chapter 1.
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