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Abstract

Model checking has grown to be a practical addition to the field of formal
verification. One model checker that has proven itself very useful in practice is
Spin, which is built to validate models that are written in promela. It can
be used to search for deadlocks, assertions, liveness properties and even LTL
properties.

This thesis describes the design and implementation of SpinJ, a
reimplementation of Spin in Java. SpinJ is designed to be behave similarly
to Spin, but to be more extendible and reusable. To achieve this the conceptual
framework of Kattenbelt is used as the basis for the design of the SpinJ library,
using the three layers that he describes.

Firstly, the generic layer is the lowest layer which uses a basic model with
states and transitions. On this layer all storage methods, search algorithms
and simulation techniques are implemented. The abstract layer describes a
concurrent model with processes that is an extension of the model in the
generic layer. This knowledge of processes within the model makes it possible to
implement partial order reduction here. Finally the tool layer is implemented
for the promela language support.

SpinJ also contains a promela compiler that generates Java code to
represent the given promela model. This Java code can be compiled and
then verified using the SpinJ library. Since this library contains all the actual
algorithms, the generated code can be relatively small, only describing the
model itself. Also all algorithms that are available can be used with any model
and can be selected at runtime.

Despite the fact that SpinJ is designed to be extendible and reusable, it is
not slow; using the BEEM benchmark, this thesis has shows that SpinJ is on
average only 3.5 times slower than Spin and it uses less memory in most of the
cases.
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Chapter 1

Introduction

In any software lifecycle process testing plays an important role [4], taking up
many resources. It helps to see if the system meets its requirements, by finding
faults in the implementation. A limitation of most testing techniques is that it
only covers a few predefined runs, therefore not finding all possible errors. This
is especially true for concurrent systems, where different threads can interfere
with each other.

To complement standard testing techniques, it is possible to use model
checking [29] [7]. This is a formal method that rather than executing a couple
of selected runs, tries to verify every possible run in the system. Typically a
model checker does not run on the implemented system itself, but on a model
of the system, with specified properties that represent the requirements. Such a
formal verification can then be used to verify that the intended model is correct.

Three computer scientists - Edmund M. Clarke, E. Allen Emerson, and
Joseph Sifakis - pioneered model checking in the 1980s, for which they received
the ACM Turing Award [3] of 2007. From [3]: “[They have received the
award] for their original and continuing research in a quality assurance process
known as Model Checking. Their innovations transformed this approach from
a theoretical technique to a highly effective verification technology that enables
computer hardware and software engineers to find errors efficiently in complex
system designs. This transformation has resulted in increased assurance that
the systems perform as intended by the designers.”

One of these model checkers that has proved to be very useful in practice
is Spin [1]. The creator of Spin, Gerard Holzmann, even received the
ACM Software System Award, because (from [2]) “(ACM) has recognized Dr.
Gerard Holzmann for his contribution to a widely used software package called
SPIN that quickly detects defects in networked computers, making them more
reliable”.

The models that can be checked by Spin are written in the promela

language, which is specially designed to allow for dynamic creation of concurrent
processes. This allows a user to model a distributed system or a protocol. In
promela models, communication between different processes can be defined
through channels, which can be synchronous (i.e. rendez-vous) or asynchronous
(i.e. buffered).
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Spin can validate models written in promela for deadlocks, assertion
violations, lifeness properties and even properties expressed in LTL (linear
temporal logic, see [17]). It is designed to scale well and to handle even very
large problem sizes. To achieve this, it is implemented is plain C, using a
monolithic design that is fully optimised for promela models. Unfortunately,
this design makes it more difficult to implement new algorithms or reuse parts
of the implementation.

1.1 Problem statement

Is it possible to re-implement the core of Spin in Java whilst being competitive
in terms of memory consumption and runtime behaviour?

This question comes from two underlying questions. First to see if it is
possible to create a program like Spin that is created using modern, object-
oriented programming techniques. This would make it easier to reuse parts of
the program and to extend it. Secondly to see if Java has the capability to
execute such a program in acceptable time and memory usage.

The program that has been created during this thesis is called SpinJ. The
goal is to implement it such that the following conditions hold:� The design and implementation of SpinJ should be object-oriented,

reusable and well documented.� The design and implementation of SpinJ should be extendable, such that
other algorithms are easily added. It should be possible to extend the
modelling language.� The performance of SpinJ should be comparable to Spin (both in time
and space), where one order of magnitude of difference is acceptable.� SpinJ’s simulator and verifier should use the same Java code.� SpinJ should support several of Spin’s optimisation algorithms, e.g.
partial order reduction, bitstate hashing and hash compaction.� The output and parameters of SpinJ should resemble the ones of Spin as
much as possible.

1.2 Overview

The rest of this document describes the development of SpinJ, a new model
checker that can verify models written in promela. We will start with some
background information in Chapter 2, where we will discuss some other model
checkers like Spin.

After that, Chapter 3 will give an overview of the architecture of SpinJ,
where the conceptual framework of Mark Kattenbelt will be used as reference.
In his thesis [32] he describes how a model checker should be designed such that
it is reusable and extendable.

2



In the chapters 4, 5 and 6 the implementation of the 3 different layers is
explained. Each of these layers describes more details of the model, where the
lowest layer only knows about states and transitions, the highest layer knows
all specific promela features.

To see how SpinJ performs, a benchmark is used to test it against Spin in
Chapter 7. Finally the conclusion in Chapter 8 discusses whether all the goals
are reached and proposes some future work.
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Chapter 2

Related work

This chapter discusses model checking in general and different existing explicit
model checkers. Then it describes the design and implementations of Spin

and the conceptual framework of Kattenbelt. This will be kept brief, a more
extensive overview is written in [32].

2.1 Model checking

Model checking [35] is the formal verification of a model against a specification.
To do this it uses a verification algorithm to check whether model (M) models
the specification (p), which can be written as M |= p. When an error is found,
a model checker shows an error trace on which p does not hold.

2.1.1 Model Specification

The model is a formal description of a system. This model can be derived from
a system, automatically or manually, but can also be created before the system
is built. Validating a model before the implementation is used to validate
the design or protocol. Models usually abstract from irrelevant aspects of the
system, to make the validation easier. Using the system itself as a model is also
possible.

A model can be represented in many different forms. Most models are
specified in a language and are first transformed to a mathematical model.
This mathematical model can then be used by the verification algorithm to
prove that all properties of the specification hold.

There are some differences between mathematical models, although they are
mostly based on a Labelled Transition System. For example, some types add
the notion of clocks (e.g. Timed Automata [5] or Continuous-Time Markov
Chains [6]).

A Labelled Transition System (LTS) is one of the most elemental ways to
describe a model. It can be defined as a 4-tuple M = (S, s0,Σ, T ), where S is
the set of states, s0 ∈ S the initial state, Σ is the set of labels (the alphabet)
and T ⊆ S × Σ × S is the set of transitions.

There are other variants based on an LTS system. For example, a finite
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state machine adds a set of final (or ending) states F ⊆ S to the LTS. Such a
state machine accepts a (regular) language with words of finite length.

Another variation is a labelled Büchi automaton, which adds a set of
accepting states (A ∈ S). A Büchi automaton accepts a language with infinite
words. For a Büchi automaton to accept such a word, it must pass an infinite
number of accepting states. In model checking Büchi automata are used to
define “bad” behaviour, as we can define a language that specifies that “bad”
behaviour.

2.1.2 Property Specification

There are different ways to define properties that should be checked over
an LTS. Three of those are invariants, Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL). All these properties are based on the use of
atomic propositions.

Atomic propositions These are the most basic elements of any proposition.
They simply describe a condition about one part of the model, in a certain state.
For example, “x > 0” or “process A is blocked” are such atomic propositions.

Invariants The atomic propositions can be combined with logic operators to
form formulae. For example, if p and q are valid propositions, ¬p, p∨q and p∧q
are also propositions. The invariants describe safety properties of a single state
in the model. This could be defined as assertions on one of the labels (checking
the last state) or as global invariants that should hold for every state. These
safety properties can be verified by an exhaustive search over all the possible
states. When a violation was found, it can then return a finite trace to the
error.

Linear Temporal Logic Invariants can be used to specify a property of
one state, but it can not be used to define properties over paths in the model.
LTL [27] expressions are designed to specify properties over a path in the model
(e.g. lifeness properties). For example, it can be used to define that a certain
atomic property holds until some other property becomes true.

Computational Temporal Logic As LTL properties are defined over paths,
it can not distinguish between paths. CTL [27] can be used in cases where we
want to make such a distinction. For example, it is possible with CTL to define
that from a certain state there is at least one path where some property p always
holds.

2.2 Model checkers

We can split model checkers into two different groups:� Explicit state model checkers generate each possible state of the system
and use those states to validate different properties. It usually consists

5



of an exhaustive search over all the states and an on-the-fly validation.
Examples of explicit model checkers are Spin [1], nips [39] and jpf [9].� Symbolic model checkers do not represent individual states, but they store
sets of states. These sets can be represented symbolically (e.g. in a binary
decision diagram). This approach is more effective for checking CTL
propositions. One example of a symbolic model checker is SMV [34].

There are other variations (e.g. bounded model checkers like NuSMV [10]),
but in this thesis we are going to focus on explicit model checking. The rest of
this section is going to discuss a couple of model checkers, showing the design
of each and how they are implemented.

2.2.1 Spin

Spin [1] is arguably the most used model checker, which has proven itself
on industrial size problems [24]. Gerard Holzmann, the creator of Spin,
even received an ACM Software System award [2]. Spin is still further
improved. Recently version 5 has been released, which adds support for
multicore systems [23].

The model specification language for Spin is called promela. promela

can be used to model several processes that can be started dynamically. More
details about this language will be discussed in Chapter 6.

Architecture

X S p i n
P r o m e l a

m o d e l

p
L T L

t r a n s l a t o r

S i m u l a t o r

Ve r i f i e r
g e n e r a t o r

s p i n . e x e

C  p r o g r a m

C o u n t e r
e x a m p l e

Ver i f i e r

 d e a d l o c k s
 s a f e t y  p r o p e r t i e s
 l i v e n e s s  p r o p e r t i e s

 p a n . *

 p a n . e x e

S p i n

 r a n d o m
 g u i d e d
 i n te rac t i ve

Figure 2.1: An overview of the architecture of Spin.
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In [20] the basic structure of Spin is discussed, which is also shown in
Figure 2.1. Spin itself is the promela parser that can read models that are
written in promela and do two things with it:

When the -a option is not set when calling Spin, a simulation is started.
This simulation can either be guided by the user (interactive), by a generated
trace-file (guided) or at random.

When the -a option is set, Spin will use the verifier generator to produce
the verifier. This verifier is highly optimised and written in ANSI C. It can be
compiled using any C compiler. When the verifier is run and it finds an error,
it can produce a counter-example in the form of a trace-file. This file can be
used to guide the simulation.

Implementation

Spin is completely written in ANSI C, with speed as its main goal. This has
a disadvantage in terms of reusability and extensibility. Spin is written as a
“black box”, meaning that the whole application is tightly coupled and it is
difficult to identify the different parts.

Also, to keep Spin as fast as possible, all of the options regarding to the
search algorithm, storage techniques etc. are implemented using pre-processor
instructions in the generated C-code. For example, if we want a model to
use hash compaction [40], we need to compile the generated C-code with the
preprocessor option -DHC.

2.2.2 Kattenbelt’s conceptual framework

In his thesis [32], Mark Kattenbelt describes a conceptual framework that unifies
the model checking domain. Kattenbelt also created an implementation based
on that design that can handle models that are written in Prom+, a simpler
variation based on promela that adds the notion of dynamic storage and
pointers.

Architecture

The conceptual framework contains three layers, also shown in Figure 2.2.
From [32]:� “The generic layer provides algorithms for certain types of models. [. . . ]

It is not feasible to define just one generic layer for all models, this is due
to the diversity of models in the model checking domain. For instance,
the fields of explicit-state, symbolic, bounded and probabilistic model
checking are too different to be encapsulated within the same generic
layer, and should probably be defined in separate generic layers.”

“The most important requirement of such a generic layer is that the
algorithms in this layer are oblivious to the abstract layer. Also, the
generic layer should provide a means in which a model can be defined
such that they can use the generic functionality. In Figure 2.2 this is the
abstract base class StateSpace.”
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S t a t e S p a c e

S i m u l a t i o n
A l g o r i t h m s

T e s t i n g
A l g o r i t h m s

Ver i f i ca t i on
A l g o r i t h m s

S o f t w a r e  M o d e l G T S

S P I N P r o m + B o g o r G R O O V E T o o l  L a y e r

A b s t r a c t
L a y e r

G e n e r i c
L a y e r

Figure 2.2: An overview of three layers in the framework that is designed by
Mark Kattenbelt.� “The abstract layer is the layer on top of the generic layer. In particular

it gives an internal structure to the generic layer. [. . . ] The idea is that
it is possible to have multiple abstract layers on the same generic layer
such that the algorithms of generic layers are reused.”� “The tool layer is not provided by the framework, it is included in the
figure to show how tools could use the framework. [. . . ] The nature of the
tool layer is that it is not reusable, however, the idea is that a well-defined
abstract layer could be used by multiple tools.”

Implementation

Mark Kattenbelt has implemented his framework in C++, and added in the
tool layer the support for the Prom+ language. It does not use the complete
potential of its design, because of the simplicity of the Prom+ language. Also
his benchmarks show that it is much slower than Spin (by a factor 1000) while
using a comparable amount of memory.
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Chapter 3

Design of SpinJ

P r o m e l a  m o d e l
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3

S p i n J  P r o m e l a
i m p l e m e n t a t i o n
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Figure 3.1: The architecture of SpinJ

For the design of SpinJ, the main ob-
jectives of this thesis must be taken
into account. First of all, SpinJ

should be extensible and reusable.
This means for example that adding
a new search algorithm should be
easy and such a algorithm should
be readily available for all implemen-
tations based on SpinJ. Secondly,
SpinJ should remain as fast as possi-
ble. A magnitude slower than Spin is
acceptable, but it must still be prac-
tical for model checking.

The first section of this chapter
will explain the overall architecture
that was chosen for SpinJ. The
following sections will then explain
the design of the two basic parts of
SpinJ: the library (Section 3.2), with
the promela implementation on top
of it, and the promela compiler
(Section 3.3).

3.1 Architecture

To verify a model that is written in
the promela language, SpinJ follows
Spins compilation architecture. Spin

first compiles the model to C-code
(e.g. pan.c, pan.m, etc.), which is
then compiled to a pan executable.
This executable file is the verification program.

An alternative solution to verify a promela model would be using an
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interpreter, although pure interpretation would be slower [38]. Though there
are midways between an interpreter and a compiler, in most cases the fastest
solution would be the compiler approach.

There is a downside to the architecture of Spin: all code is generated by the
compiler and no code of the verifier can be reused. This is great for optimising
the code, but makes changes more complicated and the algorithms that are
provided can not be used directly in other projects.

SpinJ tries to take advantage of using generated code like Spin, while still
making use of a shared library. How this works is shown in Figure 3.1. First the
compiler generates a Java representation of the promela specification (step 1).

Then the Java compiler is used to compile the code (step 2) using the SpinJ

promela implementation, which in turn uses the general SpinJ library. The
SpinJ library contains much of the shared code, for example search algorithms
and storage methods. This is the main advantage of SpinJ, because this library
is designed in such a way that it can be reused. This makes it easier to support
other languages: only a basic implementation and a compiler have to be added.

After compilation the verifier can be run on any Java Virtual Machine (step
3), to produce the result. On the command line, the following commands would
have to be executed to check the model Foo:

1 java −jar SpinJ .jar Foo .prom
2 javac −cp SpinJ .jar spinj/generated/FooModel.java
3 java −cp SpinJ.jar spinj .generated.FooModel

SpinJ.jar contains both the layered library as well as the promela

compiler. On the first line that promela compiler from SpinJ.jar is called,
which does not use the library at all. The second and third line don’t use the
compiler anymore, but do use the library.

3.2 The layered model

For the design and implementation of SpinJ we have adopted the conceptual
framework developed by Mark Kattenbelt et al. [32]. Mark Kattenbelt showed
in his Master Thesis [31] that his framework is more flexible than the “black
box” approach of many other model checkers. In Figure 3.2 our implementation
follows this layered model.

The idea behind these three layers is that each layer extends the layer below
it and adds more functionality. This is achieved through inheritance (indicated
by the open arrow in Figure 3.2). For example, the concurrent model on the
Abstract layer extends the model from the Generic layer. This means that all
algorithms that can use a model, can also use any concurrent model. On the
abstract layer, however, there are algorithms implemented that can use the fact
that a concurrent model contains one or more processes.

This way the different parts of the model checker are loosely coupled. This
increases the maintainability and reusability of the whole system.
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Figure 3.2: The design of the SpinJ library, with on top the promela

implementation

3.2.1 Generic layer

The generic layer is the lowest layer, which has a very basic concept of the
model. Here we only know that a model consists of states and transitions, not
how the model works internally. Despite the fact that we do not know much
about the model, we have enough information to implement several important
algorithms in this layer. E.g. search algorithms, storage methods and hashing
methods.

For each of the different type of algorithm there is an abstract base class that
must be implemented (e.g. the StateStore and SearchAlgorithm classes). So
when a new search algorithm will be implemented, it should be done in this
layer. In the current version there are enough algorithms already implemented
to build a basic state space explorer. Also there are a couple of simulation
techniques implemented that can be used. The implementation of this layer is
described in more depth in Chapter 4.
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3.2.2 Abstract layer

The abstract layer provides us with an extension of the model that was described
on the generic layer. It adds the notion of concurrency to the model, where
it contains several processes (indicated with the arrow and star in Figure 3.2).
These processes can be viewed as models by themselves and the concurrent
model generates a Cartesian product of these.

On this level there is also method implemented to optimize the model:
Partial Order Reduction. This optimizers can reduce the state space that is
generated by the model, by using the fact that the processes are not always
depending on each other. For more information see Section 5.2.

The implementation of the abstract layer is described in Chapter 5.

3.2.3 The promela Tool layer

Within the tool layer an abstract model is defined that makes it easier to
generate Java code from the promela compiler. The abstract promela model
is again an extension of the concurrent model from the abstract layer. Also
some extra helper objects are implemented here (e.g. the Channel object, for
easy simulation of channels).

On top of this layer the generated promela models are placed, as an
extension of the abstract promela model. These generated models are
the product of the promela compiler as described in Section 6.3. The
implementation of the tool layer is described in Section 6.2.

It is possible to adapt SpinJ to support different languages by creating a
new implementation of this layer and of the compiler.

3.3 The promela Compiler

The SpinJ promela compiler is responsible for translating the promela

specification to the generated promela Java model from Figure 3.2, which
can be used with the SpinJ library to verify the model. In Figure 3.3 we can
see this process in three steps.

The first step is translating the original promela model to an intermediate
representation. This is done using a promela parser. This parser is generated
using the JavaCC (Java Compiler Compiler) tool. This tool reads a grammar
file and converts it to the Java code that makes up the parser.

When this first step is done, we have an intermediate representation where
the Specification object holds all the information. This object contains
one or more Proctype objects (the promela processes), which in turn holds
one Automaton. An Automaton object holds all information concerning the
behaviour of the process, e.g. the possible states and transitions.

The second step optimises the Automaton objects to generate a more efficient
automaton, which usually contains less states. This is done using one or more
Automaton optimizers.

Finally the Java code is generated that makes up the final generated
promela model. This code can be compiled and together with the SpinJ
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Figure 3.3: The design of the SpinJ promela compiler

library run as a complete model checker.
See Chapter 6 for more details on the promela Compiler.
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Chapter 4

Generic layer

This chapter will explain how the Generic layer of the SpinJ library is designed
and implemented. Recall that the Generic Layer has a very basic concept of
the model (see Figure 3.2). The different parts that will be discussed here are
displayed in the UML class diagram of Figure 4.1. As can be seen, this layer
contains several methods and algorithms. We can split these into the following
categories, with corresponding package names:� The model description (spinj.model). This provides some abstract

classes that have to be implemented by any model, to be verifiable by
SpinJ. A Model object represents here a means to generate a state space
on-the-fly. On this layer not much more is known than that it consists of
states and transitions. This is further explained in Section 4.1.� The simulation methods and search algorithms (spinj.search).
There are several methods available to simulate a given model, which
are described in Section 4.2.1. Also a couple of search algorithms are
implemented to search trough the state space that can be generated by
the model. These are described in Section 4.2.� The storage methods (spinj.store). These are used to store the states
that have been found during the execution of one of the search algorithms.
This is needed, because it is more efficient when encountering duplicate
states. Now when a state is reached that was stored before, the search
algorithm can skip it. The different storage methods are described in
Section 4.3.� The hashing algorithms (spinj.store.hash). Many of the storage
methods use a hashing algorithm to efficiently store and find states. The
implementation of one of these methods is described in Section 4.4.

4.1 Model description

As described before, a Model object is responsible of generating all the possible
states at runtime. This means that it is not known which states may be reached,
or even how many there exist.
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spinj.model
Transition

+take()
+undo()
+getId(): int
+addMetaInfo(data: MetaInfo)
+hasMetaInfo(data: MetaInfo): boolean

Model<T: Transition>
+conditionHolds(condition: int): boolean
+getName(): String
+nextTransition(last: T): T

0..*

MetaInfo
+toString(): String

Storable
<<interface>>

+encode(writer: DataWriter)
+decode(reader: DataReader): boolean
+getSize(): int

ObservableModel
+addPrintListener(pl: PrintListener)
+addTransitionListener(tl: TransitionListener)

spinj.search
Algorithm
+execute()Simulation<M: Model<T>, T: Transition>

+nextTransition(model: M): T

SearchAlgorithm<M: Model<T>, T: Transition>
#addState(state: byte[]): boolean
#checkModelState(result: boolean)
+getDepth(): int
#isDeadlocked(): boolean
#nextTransition(): Transition
#outputTrace(name: String)
#report(message: Message)
#report(message: Message, text: String)
#restoreState(): boolean
#stateDone()
#storeModel(): byte[]
#takeTransition(next: Transition)
#undoTransition()

TrailSimulation

RandomSimulation

UserSimulation

1

DepthFirstSearch

NestedDepthFirstSearch
+conditionHolds(): boolean
+getDescription(): String

AcceptanceCycleSearch

Stack
+push(state: byte[]): boolean
+pop(): byte[]

1

SearchableStack
+containsState(state: byte[])
+getTop(): byte[]

NextTransitionAlgorithm<M: Model<T>, T: Transition>
+next(model: M, last: T, stack: SearchableStack): T
+duplicateState(model: M, last: T, state: byte[])

1

BreadthFirstSearch Queue
+add(state: State)
+remove(): State

State
+state: byte[]
+transId: int1 1..*

next

1

spinj.store
StateStore

+addState(state: byte[]): boolean
+getCollisions(): long
+getStored(): long
+getBytes(): long

1

HashCompactStore

LinkedHashTable

ProbingHashTable

BitstateHashStore

HashTable

spinj.store.hash
HashAlgorithm

+getDefaultAlgorithm(result: HashAlgorithm)
+hash(state: byte[], value: int): int
+hash(state: byte[], value: long): long
+hash(state: byte[]): HashGenerator

HashGenerator
+current(): int
+next(): int

JenskinsHash

HsiehHash

spinj.util

DataReader
<<interface>>

+readByte(): int
+readShort(): int
+readInt(): int

DataWriter
<<interface>>

+writeByte(value: int)
+writeShort(value: int)
+writeInt(value: int)

ByteArrayStorage
+init(length: int)
+getBytes(): byte[]
+setBytes(bytes: byte[])

Figure 4.1: An UML diagram that describes the Generic layer of SpinJ
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To create the states at runtime, a starting state should be known and it
should be known how to take a transition from one state to the next. When
that transition is taken, the current state of the model is changed. To achieve
this functionality, the following function should be implemented by each Model

object:� The nextTransition method: Given the current (implicit) state of the
model and a previous taken transition from that state, it can generate the
next transition. This method can be used to compute all the transitions
that are enabled in the current state. More details on transitions will be
explained in Section 4.1.2.� The encode method: Encodes the current state of the model in an efficient
way. More details will be explained in Section 4.1.1.� The decode method: Decodes the encoded data to restore a state that
was stored using the encode method.� The conditionHolds method: Checks whether a given condition holds.
The conditions that are provided by default are:

– Whether the current state should be stored, because there are cases
when a state should not be stored (e.g. in a atomic sequence in
Promela, see Section 6.2.5).

– Whether the current state is an end state. This is used when checking
for a deadlock. When encountering a state where there are no more
transitions that can be taken, we are either in an end state (all
activity has ended normally) or in a deadlock situation.

– Whether the current state is in an acceptance state. This is used
when searching for acceptance cycles [18]. See Section 4.2.4.� The getName method: This method is used to produce a meaningful name

for this model.� The methods from the ObservableModel can be used to add listeners to
the model. These listeners can listen for two types of events: print events
or taking/undoing a transition. This is further explained in Section 4.1.3.

4.1.1 Encoding states

To store the states that have been visited already, there are two options: storing
the state vector in a specialized object or encoding all data to an array of
primitive data (e.g. a byte array). The advantage of the first is that it is
relatively simple to implement and it makes returning to a previous state easy.

The advantage of encoding the data to a primitive array is that it uses less
memory, because of the overhead that objects have in Java. For example, when
we have a Model object with 5 processes in it, at least 68 extra bytes are used
for each state (4 bytes per reference to a Process object, plus 8 bytes extra for
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each Java object). Since the state vector of most models is less than 100 bytes,
this is a significant overhead.

Furthermore implementing a hash function on a simple array of numbers is
easier, than to create an approximate hash function for each generated Model.

The Storable interface To encode the states, the Model implements the
Storable interface (see Figure 4.1). This interface makes it possible to encode
the current state of the model into a more primitive format (e.g. a byte array).
The simplest solution to this would be to have a store function that returns
a new byte array that represents the current state, but this solution is not
perfect. The problem lies in the performance, because many optimizations are
not possible.

Having a encode function that can encode the state using the DataWriter,
is more flexible. To make this work a getSize method is also available, to
indicate how many bytes need to be available to store it.

To see what exactly the advantage of this method is, let us evaluate the
next example:

1 public int getSize() {
2 // The model needs to store the number of processes
3 int size = 1;
4 for(Process proc : processes) {
5 // Add the size of each process
6 size += proc .getSize() ;
7 }
8 return size ;
9 }

10

11 public void encode(DataWriter writer) {
12 // First encode the number of processes
13 writer.writeByte(nrProcs) ;
14 for(Process proc : processes) {
15 // Encode each process in the buffer
16 proc .encode(writer) ;
17 }
18 }

This example shows the (simplified) implementation of the encode function
of a model with a few processes in it as defined in SpinJ. To encode all the
processes, the Process class also implements the Storable interface. Now we
can simply call the encode function for each process in the model (and the same
for the getSize method).

If we had used a store function that simply returns a byte array, each call
to the store function of each process would have returned a temporary object.
This puts more pressure on the garbage collector. The current design handles
this more efficiently.

Furthermore, the Storable object itself does not have to know exactly how
the data is stored. The DataWriter object could write it to a byte array, an
integer array or even a file.
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4.1.2 Transitions

The set of transitions that can be executed from a certain state is called the
enabled set. To retrieve the enabled set from the model, the nextTransition

function is defined in the model.

This function does not return the enabled set directly, as one might expect,
because of efficiency reasons. To store such a set, a temporary storage object
is needed. Furthermore, not all enabled transitions are needed directly when
using Depth First Search (which is the default search algorithm in Spin and in
SpinJ).

Instead, only one transition is returned each time the nextTransition

function is called. To retrieve any further transitions that may be executed,
the previous transition is provided as a parameter, until the function returns
null, indicating that there are no more transitions. This resembles the iterator
and enumeration functionality found in the Java class library.

The Transition class All transitions that are returned from the model,
implement the Transition class. This class describes the following
functionality:� The take function executes the transition, changing the state of the model

to the next state.� The undo function undoes all changes that are made by the take function.
This function is called when we want to return to a previous state.� The getId function returns a unique identifier that can be used to create
a trail file, which stores the path to a certain state (see Section 4.2.6).

As can be seen, each transition has a mandatory undo action. Because many
transitions change only a very small part of the state vector, it is often more
efficient to undo the transition than to decode the complete state vector.

4.1.3 Observable Model

There are two aspects of the model for which the observer pattern [15] is
used: changing the state of the model and performing a print action. For
both actions a separate interface is defined: the TransitionListener and the
PrintListener.

To ease the usage of this pattern, each Model extends the ObservableModel
class. This class contains all the functionality to add listeners, notify them and
disable or enable them (also described in Figure 4.2).

Now each time a transition is taken in a model, the sendTransactionTakeEvent
is called to send a TransitionEvent to all the TransitionListeners. The
same goes for all the PrintListeners when the sendPrintEvent function is
called, which is only used to send text from the model to the console.
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spinj.model
ObservableModel

+addPrintListener(pl: PrintListener)
+addTransitionListener(tl: TransitionListener)

spinj.model.listeners

PrintEvent

+getMsg(): String
TransitionEvent

+getTransition(): Transition

PrintListener

+print(event: PrintEvent)
TransitionListener

+transitionTaken(event: TransitionEvent)
+transitionUndo(event: TransitionEvent)

* *

Figure 4.2: An UML diagram that describes the ObservableModel

4.2 Exploration algorithms

A crucial part of a model checker are the exploration algorithm(s) that are
supported. In SpinJ the goal is to make this part extendable, such that other
exploration algorithms can be added in the future. In the current version there
are several different implementations, which can be split in two categories:
search algorithms, which explore the complete state space, and simulation
algorithms, which executes a single path through the state space.

4.2.1 Simulation

To see if a given model behaves as expected, the author of that model will
usually perform a couple of test runs. This is done in the simulation mode. In
simulation mode there is a single path through the state space chosen to be
executed.

The Simulation class uses generics to keep track of the type of Model (M)
and Transition (T) it is executing. This type safety is needed for calculating
the next transition, otherwise a (unsafe) cast must be used. Simulation of a
model is a simple procedure, as can be seen in the following code example from
the Simulation.execute method:

1 public void execute() {
2 while (true) {
3 try {
4 // Choose the next transition that we are going to execute
5 final T t = nextTransition(model) ;
6 i f (t == null) { // No next transition , quit
7 break ;
8 }
9 out .println(”Taking transition : ” + t .toString() ) ;

10 t .take() ; // Discard the backup object , we don’ t need i t
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11 states++; // Increase the number of states that were visited
12 } catch ( final ValidationException ex) {
13 out .println(ex .getMessage() ) ;
14 break ;
15 }
16 }
17 }

When a simulation is executed, it chooses one transition to execute for each
step. The choice is done in the nextTransition method. Then it takes that
transition.

This loop is executed until either the nextTransition function returns null
(indicating to end the run), or a ValidationException is thrown while taking
the next transition (indicating an error in the model).

The current version provides three different implementations of Simulation:� UserSimulation, which asks the user for choosing the transition to be
taken.� RandomSimulation, which randomly chooses the transition from the
enabled set, until the enabled set is empty.� TrailSimulation, which reads a trail file (see Section 4.2.6) and
chooses the transition with the same identifier (returned by the
Transition.getId method).

4.2.2 Abstract Search algorithm

The implementation of all the search algorithms currently in SpinJ are based
on an abstract search algorithm, which contains some basic code that is the
same for every search algorithm.

The difference between different search algorithms is the order in which
the states are explored (e.g. a stack or queue of waiting states) and if some
states may or may not be explored further (e.g. with dynamic partial order
reduction [14] we can optimize the state space). The common denominator
between all the possible search algorithms can be described in the following
three basic steps:� Retrieving a not yet fully expanded state to expand the search area.� Checking the retrieved state for errors (e.g. deadlocks).� Executing one transition from the current state that has not been executed

yet, resulting in a new state. When this new state was already visited
before, it is discarded. Otherwise it is stored and put in the collection of
states that need to be expanded further.

In the implementation of the steps in the abstract search algorithm, checking
for errors and executing a transition will be done at the same time. This is
done because many checks will be executed automatically by the transition
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itself (e.g. assertion checks). A simplified version of the execute method in the
SearchAlgorithm class is given below.

1 public void execute() {
2 byte [ ] state = storeModel() ;
3 addState(state) ; // Adds the in i t ia l state to the search algorithm
4 i f (model.conditionHolds(SHOULD_STORE_STATE) ) {
5 store .addState(state) ;
6 }
7

8 while(nrErrors < maxErrors && restoreState() ) {
9 // Make sure that the state matches the internal state of the model

10 assert checkModelState(model)
11

12 // Retrieve the next transition
13 final Transition next = nextTransition() ;
14

15 i f (next == null) {
16 i f (checkForDeadlocks && !model.conditionHolds(Condition.END_STATE)
17 && getLastTransition() == null) {
18 report(DEADLOCK) ;
19 } else {
20 report(NO_MORE_TRANSITIONS) ;
21 }
22 stateDone() ; // Marks this state as fu l ly explored
23 continue ;
24 }
25

26 try { // Take the next transition and check for errors
27 takeTransition(next) ;
28 } catch( final SpinJException ex) {
29 report(TRANS_ERROR, ex .getMessage() ) ;
30 continue ;
31 }
32

33 state = storeModel() ; // Private method that creates a new byte [ ]
34 // from the current state of the model .
35

36 // If the state should be stored , try to store i t
37 i f (model .conditionHolds(SHOULD_STORE_STATE) ) {
38 i f ( !store .addState(state) ) {
39 report(DUPLICATE_STATE) ;
40 undoTransition() ;
41 continue ;
42 }
43 }
44

45 // Add the state to the stack/queue/. . .
46 i f ( !addState(state) ) {
47 report(EXCEED_DEPTH_ERROR) ;
48 undoTransition() ;
49 continue ;
50 }
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51 }
52 }

As can be seen in the previous code example, each iteration first restores a
state (using the restoreState function on line 8). This makes sure that the
current internal state of the Model object is one that needs to be expanded
further. Then it tries to execute a transition, to generate a new state. In the
meantime some conditions are checked to see if anything is going wrong with
the model.

Many of the function calls that are made in the example code, are to abstract
functions of the SearchAlgorithm class (e.g. see table 4.1, 4.2 and Figure 4.1).
These functions must be implemented by the search algorithm to define the
behaviour.

4.2.3 Depth First Search

Depth First Search (DFS) is the first search algorithm that is implemented in
SpinJ, which is also the default search algorithm that is used in Spin. This
algorithm is implemented using a stack to store all states that still need to be
expanded further.

The Stack class that is implemented for the DFS stores the following
information for each state that is pushed onto the stack:� The encoded state. This is needed to check if a state is already on the

stack (e.g. while performing Partial Order Reduction or Nested Depth
First search).� The last transition that has been executed from the state with which it
is stored. This information is needed to retrieve the next transition that
may be executable from this state and to undo this transition.

Table 4.1 shows how the abstract functions of the SearchAlgorithm are
implemented for DFS.

4.2.4 Nested Depth First Search

For the cycle detection algorithm that is implemented in SpinJ (acceptance
cycle detection), a nested depth first search is implemented. This algorithm
is implemented as an extension of DepthFirstSearch. It is based on the
algorithm as described on page 180 of [22].

There are two extra variables that need to be tracked during a nested depth
first search:� toggle; to indicate that we are in the first or second search.� seed; that holds the state that initiated the nested search.

To make the nested search work, three parts have changed. First the toggle
is encoded (and decoded) with the state. This is done in the storeModel and
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addState Adds the given state on top of the stack.

checkModelState Checks if the internal state of the model is the same
as the encoded state that is on top of the stack.

nextTransition Calculates the next transition that is to be executed
using the NextTransition object and the last
executed transition (that is on top of the stack).

restoreState Since restoring of a state is implicit in Depth First
Search, it does not restore any state. It does return
true when there are states left to be searched (e.g. the
stack is not empty).

stateDone Removes the top of the stack (the current state) and
undoes the transition that was stored one below the
top of the stack. This method returns the model to a
previous state.

takeTransition Executes the given transition and stores the transition
on top of the stack, next to the encoded state.

undoTransition Undoes the transition that was stored on top of the
stack, returning the model into the previous state.

Table 4.1: The implementation description of the Depth First Search

restoreModel methods. This is not the most efficient method and a better
implementation is described on page 189 of [22]. There it is explained how each
state needs only 1 extra bit to indicate if the nested search has encountered this
state. This method is very hard to implement in the current design, because this
would require some extra functionality of a StateStore to store extra metadata
with each state.

Secondly the nextTransition can return an extra transition when
conditionHolds returns true. When the model is in such a state where a nested
DFS needs to be started, this method will first return all normal transitions,
and then the transition that starts the nested search. This special transition
sets the toggle to true and encodes the current state of the model into the
seed.

The third change is to the takeTransition function, which is responsible
for executing the transition. If we are in the nested search (toggle is set to
true), then some extra conditions are checked to see if a cycle has been detected.
This occurs when we are in a state that is equal to the seed or if the state was
already on the stack before the seed.

Acceptance cycle detection

Acceptance states are used to look for acceptance cycles in a state space. This
is useful when checking for lifeness properties, which deals with infinite runs.

“An acceptance cycle in the reachability graph of automaton A exists if and
only if two conditions are met. First, at least one accepting state is reachable
from the initial state of the automaton A.s0. Second, at least one of those
accepting states is reachable from itself.” (page 178 of [22])
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The acceptance cycle detection is implemented by the AcceptanceCycleSearch,
which extends the NestedDepthFirstSearch. It implements the conditionHolds
method by checking if the current state of the model is an acceptance state.

4.2.5 Breadth First Search

Breadth First Search (BFS) is an alternative search algorithm that is
implemented, which expands each state fully and per level of depth. This
method is implemented using a Queue (see Figure 4.1) to store the states that
have to be expanded further. The Queue is implemented using a linked list of
State objects. Each of these State objects remembers the following values:� The next state, which is needed for the single-linked list, which is how

these States are stored in the Queue.� The previous state, which references to the previous state in the executing
path (not a reference for the linked list).� The encoded state, to be able to implement the SearchableStack interface
(implementing the containsState method).� The Transition identifier, to be able to write a trail-file when necessary.

The abstract functions of the SearchAlgorithm that are implemented for
BFS are shown in table 4.2. The Breadth First Search keeps track of the current
state that is to be expanded, named fromState.

addState Adds the given state at the end of the queue.

checkModelState Checks if the internal state of the model is the same
as the encoded state that is currently executing.

nextTransition Calculates the next transition that is to be executed
using the NextTransition object and the last
executed transition.

restoreState When the current fromState is null, it retrieves a new
state from the head of the queue. When that queue is
already empty, it returns false. When there still was a
fromState it undoes the last transition, to return to
that state.

stateDone Sets the fromState to null, indicating that the
current state is done and that a new one should be
retrieved from the queue.

takeTransition Executes the given transition and stores the transition
as the last executed one.

undoTransition Does nothing. If there is a transition to be undone,
the restoreState will undo it.

Table 4.2: The implementation description of the Breadth First Search
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4.2.6 The trail file

The trail file is created when the search algorithm finds an error. The file
contains a list of identifier numbers to indicate which transition has been
executed in which order. With these number the TrailSimulation can easily
execute that run again, to see in detail what went wrong.

Unfortunately, this trail file is not compatible with the trail files that are
generated by Spin because the numbering of the transitions is done differently.

4.3 Storage methods

To avoid expanding states that were already found during the search, states are
stored using a StateStore. The StateStore’s only responsibility : Has this
state been visited before? To answer this question, any implementation of the
StateStore implements the following methods:� addState tries to add the state to the store, but can return false when

the state has already been added.� getStored returns the number of states that have been stored successfully.� getBytes returns the number of bytes that is estimated to be used by
this storage facility.

The different storage methods can be split up in two categories: the
exhaustive storage and approximate storage. Exhaustive storage will always
provide the correct answer to the question stated above, but approximate can
sometimes give a wrong answer. The can either be a false positive or a false
negative.

A false negative occurs when a state was said to be visited before, while
it has not been. When a storage method returns false negatives, some parts
of the state space may never be reached. And while the state space was not
completely checked, it can never be guaranteed that there is no error in the
model.

A false positive occurs when a state was not visited before, while it has been.
When a storage method returns false positive it possibly visits more states than
necessary, thus slowing down the search algorithm.

The following sections will describe the different storage methods that are
implemented in SpinJ.

4.3.1 Hashtable

A hash table [19] is an exhaustive storage method that uses a set of “buckets”,
which each can hold one or more states. A hash function is used - given a state
as a key - to determine the identifier of the bucket where the state will be stored
in.

Hashtables have the advantage of being very fast in finding and adding
states (average complexity is O(1)), but the difficulty and overhead comes when
dealing with collisions. Three different methods are implemented in SpinJ.
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Linked lists are used in the LinkedHashTable. Here every bucket is
essentially a linked list (similar to the LinkedList provided by the Java API),
which is used to resolve any collisions. When two states both fall into the same
bucket, they are stored in that linked list.

A disadvantage is that each item in the linked list requires an extra object,
which costs 16 bytes of memory each. Also some CPU time is wasted, for
creating the extra objects and traversing a linked list.

Arrays are used in the HashTable class. In this implementation each bucket
is an array of states (similar to the ArrayList provided by the Java API).
Here we still have the advantage that handling collisions is simply adding a
new state to that list, plus that the memory overhead is a lot smaller (only one
extra object for each bucket).

When the array becomes too small we need to create a new array and copy
all the items from the old array. This is still faster while we are adding states
to the end of the list (as shown in [30]) than using a linked list.

Probing is an alternative solution to dealing with collisions. This method is
implemented in the ProbingHashTable. Every bucket in this hashtable contains
simply one state and collisions are solved by finding a new bucket for that state.
This removes almost all memory overhead of using lists (no extra objects used
to store the bucket).

To find a next bucket, a new hash value must be calculated. This is done
by rehashing, which is explained in more detail in Section 4.4.

The problem with a probing hash table is when the table becomes full,
because then there will be a lot of collisions. In the current implementation
this is solved having an overflow table, which gets used when an empty bucket
could not be found.

4.3.2 Bitstate hashing

Bitstate storage is one of the first approximations for state storage that was
added to Spin [21]. It works by storing only a variable number (k) of bits per
state instead of storing the complete state. To determine which bits need to be
set, k (preferably independent) hash functions are used to calculate k values.
Each of these values then corresponds to an address in a table of bits.

To check if a state was already stored, all the values are calculated and those
bits in the table are checked. Only when all bits are set, the model checker can
conclude that the given state was visited before. This method can return a false
negative when all the bits were already set by one or more other visited states
that returned these hash values.

The implementation in SpinJ provides a BitstateHashStore class, which
implements this algorithm using an array of long values (64-bits each). This way
we can create a maximum array of 16 Gigabytes (64 bits * 231 entries). Also,
instead of using independent hash functions, rehashing is used (see Section 4.4).
As shown in [12] this method seems to be almost as good and can be calculated
much faster.
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4.3.3 Hash compaction

Hash compaction [40] is a storage method that is also an approximation. It
is based on the idea that bitstate storage needs a very large table to work
effectively (see [33]), so it simulates a very large table by storing the addresses
of the bits that would be set in a bitstate table. These addresses can be stored
in a normal hash table for efficient handling.

The implementation of the improved hash compaction algorithm (from [33])
in SpinJ is very straightforward. It uses a probing hash table to store the hash
values instead of the states. First the value that needs to be stored is calculated
by the first hash function. Then a second hash function is used to calculate the
index of the bucket where the value will be stored.

The limitation of the current implementation of hash compaction is that it
only supports table sizes that are a power of 2. Some optimisations from [12]
are yet to be implemented, to make it possible to use tables of any size.

4.4 Hashing methods

A good hash function is important for all the storage methods that are described
above. As Bob Jenkins describes on his website [28]: “A good hash function
distributes hash values uniformly.”

A second requirement is that a good hash function must be as fast
as possible. For example, MD4 is an excellent hash function with good
distribution, but is much slower than some other functions.

Any class that implements the HashAlgorithm interface can be used as a
hash function. The HashAlgorithm interface declares a couple of functions to
achieve this:� The hash(byte[], int) method takes a state (a byte[]) and an initial

value (an int) as parameters and calculates a 32-bits hash value for it.� The hash(byte[], long) method takes a state (a byte[]) and an initial
value (an long) as parameters and calculates a 64-bits hash value for it.� The hash(byte[]) method takes a state (a byte[]) and returns a
HashGenerator object. This object makes it possible to generate a series
of 32-bits hash values (for example needed with a probing hash table).

The current version of SpinJ provides two implementations of the
HashAlgorithm.

4.4.1 Jenkins hash

On his website [28], Bob Jenkins describes a very fast and good hash function,
which is also used in Spin. The JenkinsHash class implements this algorithm.
Also the rehashing optimisations from [12] are implemented here, but SpinJ

still has the limitation of only handling tables with a power-of-two granularity.
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4.4.2 Hsieh hash

On his website [26], Paul Hsieh describes a method that is even faster than the
one of Bob Jenkins describes and distributes the hash values almost as well.
The problem with this method is that it is optimised for C code, where it can
be compiled to only 13 assembly instructions per cycle. For this reason this
new hash function is the default in Spin since version 5.

The HsiehHash class implements this algorithm. Some small tests with a
real model have shown that this optimizations is not faster when implemented
in Java than the Jenkins hash. What the reason for this is, is left for future
research.
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Chapter 5

Abstract layer

As discussed in Section 3.2.2 the abstract layer provides an extension of the
generic layer with the notion of concurrency. The concurrency within the model
is based on the definition of one or more processes (also see Section 3.2.2). Each
of these processes can be seen as models by themselves, and the concurrent
model as created by the Cartesian product of these.

In Figure 5.1 we can see the UML diagram that describes the relation
between the different parts of this Abstract layer and how these are related
to the Generic layer. The relation is mainly established through inheritance.
Since the ConcurrentModel is an extension of the Model class, all algorithms
that were defined in the Generic layer can just as easily be applied to any
ConcurrentModel.

5.1 Concurrent model

The ConcurrentModel has all the functionality of the Model class. To
accommodate the processes within a concurrent model, it defines two extra
functions:� getNrProcesses() returns the number of processes that are currently

running inside the ConcurrentModel.� getProcess(index) returns the process that is located on the given index
(comparable with a list).

5.1.1 Processes

The processes that are running inside a ConcurrentModel are implementations
of the Process class. Since every Process is an extension of the Model class,
every process also can, e.g., determine the next transition (of that specific
process) or check if a condition holds etc.

Next to this basic functionality, there are also two extra functions:� getId() returns the unique identifier of the process within the model.
This identifier is also the index that can be used in the getProcess()

method of the ConcurrentModel.
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Generic Layer

Abstract Layer

spinj.concurrent.model

spinj.concurrent.search

ConcurrentModel<T: ConcurrentTransition>
+getNrProcesses(): int
+getProcess(index: int): Process

ConcurrentTransition
+getProcess(): Process
+isLocal(): boolean

Process<T: ConcurrentTransition>
+getId(): int
+onlyLocalTransitions(): boolean

spinj.model
Model<T: Transition>

+conditionHolds(condition: int): boolean
+getName(): String
+nextTransition(last: T): T

Transition
+take()
+undo()
+getId(): int
+addMetaInfo(data: MetaInfo)
+hasMetaInfo(data: MetaInfo): boolean

0..*

PartialOrderReduction<M: ConcurrentModel, T: ConcurrentTransition>

spinj.search

NextTransitionAlgorithm<M: Model<T>, T: Transition>
+next(model: M, last: T, stack: SearchableStack): T
+duplicateState(model: M, last: T, state: byte[])

SearchAlgorithm<M: Model<T>, T: Transition>
1

Figure 5.1: An UML diagram that describes the Abstract layer of SpinJ on top
of (part of) the Generic layer
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� onlyLocalTransitions() returns true when all the current transitions
that may be executed from the current state of this process, only have
local effects. This method can be used to limit the state space that has
to be searched (see also Section 5.2).

5.1.2 Concurrent Transitions

The transitions that can be returned by Process.nextTransition() (and
therefore also by the ConcurrentModel.nextTransition()) are always
implementations of the ConcurrentTransition. This extension of the
Transition class defines two extra functions:� getProcess() returns the Process to which this transition belongs.� isLocal() returns true when this transition only has local effects (e.g.

not affecting other processes in the concurrent model).

These concurrent transitions can be used by optimisations techniques that
require the knowledge of processes and their transitions (e.g. Partial Order
Reduction, see Section 5.2).

5.2 Partial Order Reduction

Partial order reduction [16] [13] is aimed at reducing the size of the total
state space that needs to be generated. This algorithm changes the way the
search algorithm can select the transitions that can be executed from a certain
state. Instead of selecting all transitions that are enabled from the current
state, we can choose a subset of that. So from a certain state s, we calculate
ample(s) ⊆ enabled(s), which will result in a reduced state space.

To determine the ample(s), the similar heuristic is implemented as the one
in [16]. First it returns only transitions from processes, for which all possible
transitions only have a local effect. The conditions for when a transition only
has a local effect is listed in [16], chapter 5. If at least one transition was found
and no state was generated that was already on the stack, the algorithm ends
(not returning any more transitions from other processes).

Partial order reduction is implemented in SpinJ as an extention of the
NextTransition class, which is shown in the following listing.

1 public class PartialOrderReduction<M extends ConcurrentModel<T>, T

extends ConcurrentTransition<T>>
2 extends TransitionCalculator<M , T> {
3

4 public T next( final M model , T last) {
5 int i = model.getNrProcesses() − 1;
6 i f (last != null) {
7 Process<T> lastProc = last .getProcess() ;
8 i f (lastProc == null) {
9 return null ;

10 }
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11

12 T next = lastProc.nextTransition(last) ;
13 i f (next != null) {
14 next .copyMetaInfo(last) ;
15 return next ;
16 } else i f (last .hasMetaInfo(MetaInfo.PartialOrderReduction)
17 && !last .hasMetaInfo(MetaInfo.StateOnStack) ) {
18 return null ;
19 }
20

21 i = last .getProcess() .getId() − 1;
22 }
23

24 i f (last == null | | last .getProcess() .onlyLocalTransitions() ) {
25 while (i >= 0) {
26 final Process<T> proc = model.getProcess(i−−);
27 i f (proc .onlyLocalTransitions() ) {
28 T next = proc .nextTransition(null) ;
29 i f (next != null) {
30 next .setMetaInfo(MetaInfo.PartialOrderReduction) ;
31 return next ;
32 }
33 }
34 }
35 i = model .getNrProcesses() − 1;
36 }
37

38 while (i >= 0) {
39 final Process<T> proc = model .getProcess(i−−);
40 i f ( !proc .onlyLocalTransitions() ) {
41 T next = proc .nextTransition(null) ;
42 i f (next != null) {
43 return next ;
44 }
45 }
46 }
47

48 return null ;
49 }
50

51 public void duplicateState( final M model, final T last , final byte [ ]
state,

52 final SearchableStack stack) {
53 i f (last .hasMetaInfo(MetaInfo.PartialOrderReduction) ) {
54 i f (stack .containsState(state) ) {
55 last .setMetaInfo(MetaInfo.StateOnStack) ;
56 }
57 }
58 }
59 }

As we can see, the next function tries to first to return transitions from
processes with only local transitions. These transitions are marked with the
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PartialOrderReduction meta info. When a state gets found that was visited
before, then the duplicateState function is called. This function checks if the
last transition was a local one (by seeing if it has the PartialOrderReduction

meta info) and if the state was also on the stack. If this is the case, then the
last transition also gets marked with the StateOnStack meta info.

The implementation of the next function to find the local processes consist
of three parts. The first part on lines 6 to 22 determines if there was a previous
transition, in which case we can try to find more transitions from that process.
When there are no more transitions, then it checks if POR was used and there
was no duplicate state on the stack. In that case it can return prematurely.

The second part (on lines 24 to 36) is when a next process must be found
that is local. To see if a process is local, its onlyLocalTransitions function is
called. The processes are scanned from the last on to the first, to mirror exactly
how Spin executes its transitions.

The third part (on lines 38 to 47) is the same as the second, only it is looking
for non-local processes.
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Chapter 6

Implementation of the

promela language

As shown earlier in figures 3.2 and 3.3, the implementation of the promela

language consists of two parts: the promela compiler and the abstract
promela model. The promela compiler is responsible for generating the
promela models that are implementations of the abstract promela model.

This chapter is going to explain these different parts. First it discussed the
promela language itself and how the compiler parses this language into an
intermediate representation.

Then the second part will explain the tool layer, which contains abstract
classes for a promela model, processes and transitions. Also there it will be
explained what Java code is generated for the intermediate representation and
how this relates to the tool layer.

The final section of the chapter will discuss some problems that were
encountered while implementing the promela language in Java. These
problems are mostly caused by the differences between the C programming
language and Java.

6.1 promela

This section explains the promela language and how the compiler parses that
language into the intermediate representation.

6.1.1 The language

From [1]: ”promela is a verification modelling language. It provides a vehicle
for making abstractions of protocols (or distributed systems in general) that
suppress details that are unrelated to process interaction. The intended use of
Spin is to verify fractions of process behaviour, that for one reason or another
are considered suspect. The relevant behaviour is modelled in promela and
verified. A complete verification is therefore typically performed in a series of
steps, with the construction of increasingly detailed promela models. Each
model can be verified with Spin under different types of assumptions about
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Listing 6.1: An example specification in the promela language.

1 chan com = [0 ] of {byte} ;
2

3 int total ;
4

5 active proctype counter() {
6 byte curr ;
7

8 do

9 : : com ? curr −>
10 total = total + curr ;
11 od;
12 }
13

14 active proctype generator() {
15 byte cnt = 0;
16

17 do

18 : : cnt < 127 −>
19 cnt++;
20 i f

21 : : com ! cnt ;
22 : : com ! (cnt *2) ;
23 f i ;
24 : : else −> break ;
25 od;
26 }
27

28 active proctype monitor() {
29 do

30 : : assert(total < 16256);
31 od;
32 }

the environment (e.g., message loss, message duplications etc). Once the
correctness of a model has been established with Spin, that fact can be used in
the construction and verification of all subsequent models.

promela programs consist of processes, message channels, and variables.
Processes are global objects. Message channels and variables can be declared
either globally or locally within a process. Processes specify behaviour, channels
and global variables define the environment in which the processes run.”

For a list of features that is supported by SpinJ, see appendix C.
To illustrate the promela language, we will first explain the example model

of Listing 6.1. At the top of this example, there are two global variables
declared: a channel com and an integer total. Then there are three processes
defined:

1. The counter process, which reads numbers from the com channel and
adds those numbers to the total counter.
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2. The generator process, which generates numbers that are put into the
com channel non-deterministically.

3. The monitor process, which monitors if the total variable never exceeds
16256. When it does, the assertion fails and the model checker reports an
error.

All three processes are declared active, meaning that one instance of the
process is started when the model is initalized.

1

2

3e l s e

c o m ! c n t

c n t  <  1 2 7

4

c n t + +

e n d  p r o c e s s

e n d

c o m  ?  c u r r

1

2

t o t a l  =  
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c o u n t e r

c o m ! ( c n t  *  2 )

g e n e r a t o r

1

a s s e r t (

t o t a l  <  1 6 2 5 6 )

m o n i t o r

Figure 6.1: A graphical representation of the state in the three processes of the
example from Listing 6.1.

The semantics of a Promela process is defined as a finite state automaton
(see 2.1.1). In Figure 6.1 the automata for the three processes are shown.

Let us look at the generator process. State 1 of this process is the starting
state (as with all processes), and there are two transitions possible from this
state. This choice is a deterministic one, either the cnt variable is less than 127
and we go to state 2, or it is not and we go to state 3.

From state 2 there is only one transition executable, increasing cnt variable
by 1. After state 4 there is again a choice, but this time a non-deterministic
one. We can either send the value of cnt over the channel, or we can send
twice that value over the channel. Also both end up back in the starting state,
because of the do-loop.

The last transition that is shown, is the end process transition. This one
deletes the running process from the model and therefore does not end in any
state. The other two processes are self-explanatory and will not be discussed
further.

For more details on the promela language, see [22] and [1]. The rest of
this section will explain how the compiler transforms a promela model (like
the one given in the Listing 6.1) to automata (like the one in Figure 6.1).
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spinj.promela.compiler

Specification
+addMType(name: String)
+generateModel(): String
+getMType(name: String): int
+getName(): String
+newChannelType(bufferSize: int): ChannelType
+usesAtomic(): boolean
+usesRendezvousChannel(): boolean

Proctype
+getName(): String
+getActive(): int

-specification-never
0..1

-specification-processes
*

spinj.promela.compiler.variable
VariableStore

+getBufferSize(): int
+printDefinitions(w: StringWriter)
+printEncode(w: StringWriter)
+printDecode(w: StringWriter)
+printToString(w: StringWriter)

-store

1 spinj.promela.compiler.automaton

Automaton
+getStateTable(): String
+hasAtomic(): boolean

-proctype

-automaton

1

1

-store

VariableContainer
<<interface>>

+addVariable(var: Variable)
+getVariable(name: String): Variable
+hasVariable(name: String): boolean

Variable
+getArraySize(): int
+getName(): String
+printInitExpr(w: StringWriter)

-variables 0..*1

VariableType
+BIT: VariableType = ("bit", "int", 1)
+BOOL: VariableType = ("bit", "int", 1)
+BYTE: VariableType = ("byte", "int", 8)
+INT: VariableType = ("int", "int", 32)
+MTYPE: VariableType = ("mtype", "int", 8)
+PID: VariableType = ("pid", "int", 8)
+SHORT: VariableType = ("short", "int", 16)
+canConvert(type: VariableType): boolean
+getBits(): int
+getJavaName(): String
+getMask(): String
+getName(): String

-type1

ChannelType
+UNASSIGNED_CHANNEL: ChannelType
+getId(): int

-channelTypes

0..*

ChannelVariable

State
+input: Iterable<Transition>
+output: Iterable<Transition>
+addLabel(label: String)
+delete()
+getId(): int
+inAtomic(): boolean
+isLocal(): boolean
+merge(other: State)

-automaton

-startState

1
1

Transition

+addAction(action: Action)
+changeFrom(from: State)
+changeTo(to: State)
+delete()
+getBackupSize()
+getTransId(): int
+printTransition(w: StringWriter)
+takesAtomicToken(): boolean

-out

-from

0..*

1

-in

-to

0..*

1

ActionTransition

EndTransition

GotoTransition

spinj.promela.compiler.actions

Action

+getChangedVariables(result: Collection<Identifier>)
+printEnabledFunction(w: StringWriter)
+printTakeFunction(w: StringWriter)
+printUndoFunction(w: StringWriter)

ActionContainer

+addAction(action: Action)
Sequence

-sequence 1

The abstract Action class is implemented by more classes:
AssertAction, AssignAction, BreakAction, ChannelReadAction,
ChannelWriteAction, ElseAction, ExprAction, OptionAction 
and PrintAction

Figure 6.2: An UML diagram that describes the intermediate representation of
the promela compiler of SpinJ.
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6.1.2 The compiler

The design of the promela compiler was described earlier in Section 3.3. The
parser for this compiler was written in JavaCC and transforms the promela

code into the intermediate representation as described in the following section.

The intermediate representation is a collection of Java objects describing the
finite state automaton of the processes of the promela model. These automata
are optimised using the automaton optimizers, which will be described further
on.

6.1.3 Intermediate representation

The intermediate representation of the promela code is a collection of
Java objects describing the finite state automata of the processes of the
promela model. These different types of objects are shown in Figure 6.2.
The main object that represents the complete promela specification is the
Specification object. This object holds the global variables as well as the
processes that are described here.

The processes are represented by Proctype objects. These objects are
responsible for storing the local variables that are declared within the process,
as well as the automaton that describes the states and transitions (i.e. the
statements).

All the global variables from the Specification as well as the local variables
from the Proctype are stored in the VariableStore object. This store keeps
track of all the variables and their declaration (type and initialising expression).

Automata

The automata are described by the Automaton object, which holds all the states
and the transitions in the object. It has a reference to the starting state, from
which the complete graph can be reached by following the transition to next
states.

States The State objects that are stored in the Automaton each represent a
single state, as the ones in Figure 6.1. Each state has a list of input transitiona
and output transitions.

Transition Each Transition object represents a single transition in the
automaton, always going from one state to the next. Therefore the Transition
object has two references: the to state and the from state. There are different
types of Transition objects defined in SpinJ.� The GotoTransition object is a Transition that can not store any

actions, but represents a goto-statement or a break-statement. These
transitions can often be optimised, and therefore are not seen in
Figure 6.1.
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Listing 6.2: Example promela code to show why we need an empty transition
for each option

1 do

2 : : do

3 : : x < 50 −> x++;
4 od

5 : : x < 100 −> x = x + 2;
6 od

7 } � The EndTransition object is a special Transition that is used to
terminate the process. E.g. this type of transition can be seen in the
generator process in Figure 6.1, pointing to the end block.� The ActionTransition object is the most common Transition, which
stores one or more Action objects within it. These actions represent
promela statements that have to be executed by that transition.

Actions An Action object represents a single promela statement from a
process, e.g. curr < 127 or com!curr. Therefore there are a number of
different implementations of the Action object. This internal representation
is straightforward and will not be described fully in this thesis.

Automaton Optimizers

The automatons that are generated by the parser may not be minimal
automatons and can be optimised. For example, each option in a do-loop starts
with an empty transition to make it to possible to compile the example from
Listing 6.2.

When performing a do-loop directly inside an other do-loop, we need the
extra state just before the inner do-loop. Otherwise we do not have the right
place to return after the x++ statement. Therefore there is always an extra
transition and state created for each option in the do-loop.

Many of these empty transitions can be optimised though. The approach
to optimise such an automaton is based on the implementation of Spin. An
example of this is shown in Figure 6.3, showing what the original states were as
generated by the parser, and how the following 4 steps optimises the automaton.
The code that we use is the generate process from Listing 6.1.

1. The initial representation that is generated by the parser. Here we can
see that there a couple of empty transitions, due to the options in the
do-loop and if-statement. Also an explicit break statement is shown.

2. Statement merging, which merges sequences of safe or atomic steps.
Figure 6.4 shows the two situation where this can be applied. In both cases
there are three states, which are connected through 2 single transitions.
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Figure 6.3: The four steps of optimising the intermediate representation of the
states of the generate process
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Figure 6.4: Two possible situations in an automaton where statement merging
can reduce the number of states.

State 2 can be merged with state 3 when the following conditions hold for
that state:� The state has only 1 input transition.� The state has only 1 output transition.� The single output transition of the state is always executable (for

example, a simple assignment).� The single output transition of the state contains only local actions
(changing only local variables).

or� The state is inside an atomic sequence.

After merging state 2 and 3, the actions of t2 will be appended to t1 and
t1 will go to state 3.

1

2

 t 1 :  a 1

3
t 2 :  a 2   

4

5

t 3 :  a 3   

  t 4 :

1

2

 t 1 :  a 1
3

t 2 :  a 2

4

5

t 3 :  a 3   

  t 5 :  a 1

 t 6 :  a 2

Figure 6.5: Removing an empty transition from the state space by duplicating
the actions.

3. Removing empty transitions. Figure 6.5 shows the removal of such an
empty transition, in this case t4. This is done by duplicating all incoming
transitions to the from state (in this case state 3). Then the new transition
can point directly to the to state (state 5).

In this example no state is removed, because there was another transition
from state 3. But in most cases if one transition from a state is empty,
then the rest also will be empty. And when all transition from a state are
empty, the state can be removed.

4. Removing goto-transitions. Goto-transitions have no direct effect on
the model, but they can only be removed safely if there or no sibling
transitions (i.e. transitions going out from the same state) that have an
effect.
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Figure 6.6: Removing a state that has only a single goto-transition going out
from it.

Figure 6.6 shows an example where an goto-transition (t3) can be
removed, because from state 3 it is the only outgoing transition. This state
can be removed by simply deleting t3 and pointing the input transitions
(t1 and t2) to state 4. Then state 3 has no more incoming transitions and
can be deleted

5. Renumbering all the states, needed for efficiency in the generated code.
It simply finds all the states and renumbers them. Naturally this will
not change the number of states and transitions in the intermediate
representation.

6.2 The promela Tool layer

The tool layer for the promela language is built on top of the abstract layer
for concurrent processes, which was described in Chapter 5. How these layers
are related can be seen in Figure 6.7. As between the abstract layer and the
generic layer, the tool layer relates to the abstract layer through inheritance.
We have a PromelaModel that extends the ConcurrentModel, as with the
PromelaProcess and PromelaTransition.

Also shown in Figure 6.7 is an example of the generated code. This code was
generated from the promela example from Listing 6.1. Here we can see that
this implementation is again based on inheritance. Furthermore, the generated
processes are all inner classes of the generated model. And the generated
PromelaTransitionHolder objects are inner classes of the generated processes.

The rest of this section is going to explain the different parts of the tool
layer.

6.2.1 The PromelaModel

A PromelaModel is an abstract object that is usually implemented by the code
that will be generated by the compiler (see also appendix A). It holds a number
of member variables and functions:� The addProcess() function can be used to start a new process inside

the current state of the model. This can be used when executing a run

statement from promela. There is a maximum of 255 processes that can
be running simultaneously. This is because the reference number that is
returned must be storable in a single byte.
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Figure 6.7: UML diagram describing the Tool layer that implements the
promela language, on top of the abstract layer that was described before.
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� The addChannel() function adds a new channel to the current state of
the model, which can be used through the reference that is returned (also
a single byte). Channels are further explained in Section 6.2.4.� The endProcess() function kills the last process. This function must be
called when the ending transition is executed.� The getNever() function can be overridden to return a new instance
of the never-claim. By default it returns null to indicate that there is
no never-claim available. For more information about never-claims, see
Section 6.2.6.� The nextTransition() function is already implemented by using the
processes that are stored here. This is explained further in Section 6.2.5.

The only parts of a PromelaModel that have to be defined are the encode

and decode functions and an explicit constructor.

6.2.2 The PromelaProcess

The PromelaProcess is a basic implementation of the Process from the
abstract layer. It contains the following information:� The model that it belongs to.� The state table, which is an array of State objects. The State object

from this package contains a list of PromelaTransitionFactory objects,
and some meta information (e.g. whether this particular state is an ending
state). The factory objects can be used to generate new instances of the
PromelaTransitions.� The state identifier, which is the identifier of the current state. This can
be used to look in the table for the transitions that can be executed from
this state.� The process identifier, which is the unique identifier of that process.

Furthermore there are a few functions already implemented:� The constructor accepts the model that it belongs to, the state table and
the starting state.� The getId() returns the unique process identifier.� The conditionHolds() uses the meta information from the current state
to determine if the condition holds (e.g. whether this particular state is
an ending state).� The nextTransition() is implemented by reading the state table for
next transitions. This is explained in further detail in Section 6.2.5.
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� The onlyLocalTransitions() checks from the current state if all
transitions from that state are local.

The rest of the functions (e.g. encode and decode) have to be implemented
by the generated code.

6.2.3 The PromelaTransitions

The state table of each of the processes contains a list of states, each holding a
list of PromelaTransitionFactory objects. The PromelaTransitionFactory

is responsible for creating the PromelaTransion objects when the next
transition is being calculated (see Section 6.2.5).

Returning a new PromelaTransition each time is needed, because this
object needs to remember what was changed when the take method is executed.
This way, when calling the undo method, the PromelaTransition has the
information it needs to undo the changes. Unfortunately this means that it
is not possible to reuse the object, because otherwise the backup information
will be overwritten.

6.2.4 Channels

In promela channels can be used to communicate between processes. There are
two types of channels: synchronous or asynchronous. Synchronous channels are
also called rendez-vous channels, because they cause the read and send action to
be executed simultaneously. This way a variable can be send from one process
to an other without any other transition executed in between.

Asynchronous channel have a buffer, which gets filled by the send actions
and are emptied by read actions. Buffered channels can cause the state space to
expand, because the state after one send or read action will be stored (including
the state of the buffer).

The implementation in the tool layer of channels is done by the Channel

object. This object has an array of integer arrays that functions as a buffer. In
this implementation, even with a rendez-vous channel there is a buffer of size
1. Since more than one variable can be send at a time, each item in the buffer
is an integer array.

As can be seen in Figure 6.7, the Channel object has several functions that
correspond to different promela language constructs. For example, we can
check if a channel is full or empty or we can send and read variables.

When defining a channel in promela the size of the buffer and the types
of the elements of the buffer have to specified. These are variables that will be
stored when a new Channel is created.

6.2.5 Calculating the next transition

The nextTransition method that is defined by the Model object is
implemented on two places in the tool layer: in the PromelaModel for
calculating the transitions of the complete (concurrent) model, and in the
PromelaProcess for calculating the next transition of that specified process. In
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the promela language there are two constructs that can effect which transition
can be executed: atomic sequences and rendez-vous channels.

The atomic token

An atomic sequence in promela is used to execute several statements in one
indivisible step. This means that once the first statement of the atomic sequence
is executed, the atomic token is taken. While the atomic token is in possession
by one of the processes, that process is the only one that may execute statements
until it releases the atomic token. This happens at the end of an atomic sequence
or when the process is blocked on a statement within the atomic sequence.

When calculating which transition can be executed next, the atomic token
must be taken into account. While the atomic token is not possessed by any
process, the algorithm can be executed normally. But when the atomic token
is in possesion by one of the processes, only that process may provide the next
transition.

Rendez-vous channels

As explained in Section 6.2.4, there are channels that have no buffer: rendez-
vous channels. These type of channels also need a special type of handling,
because the send and read action must be performed simultaneously. When a
match between a send and a read action has been found, the nextTransition

function returns a special RendezvousTransition object that holds both
transitions. Then these can be executed after one another.

The algorithm

In the PromelaModel, the nextTransition mostly makes use of the
nextTransition function of the PromelaProcess. As can be seen on line 257
of Listing 6.3, this algorithm already takes the atomic token into account. If
there is an exclusive process that has the atomic token, it only checks that
specific process for transitions. When there were no transitions enabled in that
process (line 269), it returns a new EndAtomic transition. This transition is a
special type that removes the token, such that the next time other transitions
can be executed.

When the atomic token is not held by any process, the algorithm starts
looking from the last process that it encountered (line 258). Then it finds any
next transition that can be executed until either one is found, or there are no
more processes meaning that there are no further transitions to take.

The nextTransition function in the PromelaProcess class can be seen
in Listing 6.4. It first checks if this process may even return a transition, by
checking the atomic token. This check is performed to make this method valid,
even when calling it directly.

After this check, the lines 79 - 90 try to find the first factory that can be
used to generate the next transition. On lines 96 - 106 of this method the first
match between a send action and a receive action can be found, returning a
RendezvousTransition. On line 82 the last transition is checked whether it is
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such a RendezvousTransition, because then it needs to check if there are other
receive actions that can be coupled with the current send action. When calling
the nextRendezvousTransition() function of the RendezvousTransition, it
tries to find such a match.

After the first factory was selected, we can see the while-loop that checks
each factory from the last transition if it can be used to generate a next
transition. The first option (line 93) is when the transition in the factory is
enabled, in which case the next transition is simply returned.

The second option (line 95) is when the factory returns rendez-vous data.
In that case, a matching receive action is sought. A read action matches when
the canReadRendezvous function of the PromelaTransitionFactory returns
true when given the rendez-vous data. When such a match is found, a new
RendezvousTransition is returned with those send and read actions. As said
before, to find more matching receive actions for the current send action, the
nextRendezvousTransition method is called on line 82.

The third option (line 107) is checking for an else-statement. An else-
statement is only executable when there was no last transition and there is
no other transition that is executable. This else statement will be returned on
line 114 if that is the case.

6.2.6 Never claim

“A never claim can be used to define system behaviour that, for whatever
reason, is of special interest. It is most commonly used to specify behaviour
that should never happen. The claim is defined as a series of propositions, or
boolean expressions, on the system state that must become true in the sequence
specified for the behaviour of interest to be matched.

A never claim can be used to match either finite or infinite behaviours.
Finite behaviour is matched if the claim can reach its final state (that is, its
closing curly brace). Infinite behaviour is matched if the claim permits an ω-
acceptance cycle. Never claims, therefore, can be used to verify both safety
and liveness properties of a system.” (from [22], page 441)

In SpinJ the never claim is retrieved from a PromelaModel using the
getNever() method. This returns a PromelaProcess, because a never-claim
can be parsed like a normal process (with some limitations). The only
difference is that it is not possible to run the never-claim directly. Instead a
NeverClaimModel can be created, with the PromelaModel and its never claim.

The NeverClaimModel is a special type of the ConcurrentModel that
executes the given never process and the rest of the PromelaModel alternating.
It does this by keeping track of a variable turn. When the turn is true, the
never process may execute one step and when it is false the PromelaModel

may execute one.
By implementing the TransitionListener it can flip the turn variable each

time a transition is taken or undone. This variable is also encoded and decoded
in the relative functions.
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Listing 6.3: The nextTransition method of PromelaModel.

254 public PromelaTransition nextTransition(PromelaTransition last) {
255 PromelaTransition next = null ;
256 i f (_nrProcs > 0) {
257 i f (_exclusive == _NO_PROCESS) {
258 PromelaProcess proc = last==null ? _procs[ 0 ] : last .getProcess() ;
259 next = proc .nextTransition(last) ;
260 while (next == null) {
261 proc = proc .nextProcess() ;
262 i f (proc == null) {
263 break ;
264 }
265 next = proc .nextTransition(null) ;
266 }
267 } else {
268 next = _procs[_exclusive ] .nextTransition(last) ;
269 i f (last == null && next == null) {
270 next = newEndAtomic() ;
271 }
272 }
273 }
274

275 return next ;
276 }
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Listing 6.4: The nextTransition method of PromelaProcess.

71 public PromelaTransition nextTransition(PromelaTransition last) {
72 i f (_model._exclusive != PromelaModel._NO_PROCESS && _model.

_exclusive != _pid) {
73 return null ;
74 }
75 int [ ] msg = null ;
76 PromelaTransitionFactory elseFactory = null ;
77 PromelaTransitionFactory factory = null ;
78

79 i f (last == null) {
80 factory = getCurrentState() .getFirst() ;
81 } else i f (last instanceof RendezvousTransition) {
82 RendezvousTransition next =
83 ((RendezvousTransition) last) .nextRendezvousTransition() ;
84 i f (next != null) {
85 return next ;
86 }
87 factory = last .getFactory() .getNext() ;
88 } else {
89 factory = last .getFactory() == null ? null : last .getFactory() .

getNext() ;
90 }
91

92 while (factory != null) {
93 i f (factory.isEnabled() ) {
94 return factory.newTransition() ;
95 } else i f ((msg = factory.getRendezvous() ) != null) {
96 for (int i = 0; i < _model._nrProcs; i++) {
97 PromelaProcess proc = _model._procs[i ] ;
98 i f (proc != this) {
99 for (PromelaTransitionFactory read = proc .getCurrentState() .

getFirst() ; read != null ; read = read .getNext() ) {
100 i f (read .canReadRendezvous(msg) ) {
101 return new RendezvousTransition(_model, factory.

newTransition() ,
102 read .newTransition() ) ;
103 }
104 }
105 }
106 }
107 } else i f (last == null && factory.isElse() ) {
108 elseFactory = factory;
109 }
110 factory = factory.getNext() ;
111 }
112

113 i f (elseFactory != null) {
114 return elseFactory.newTransition() ;
115 }
116 return null ;
117 }
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6.3 The generated TestModel

When compiling the promela example from Listing 6.1, the result is the
TestModel object. This section will explain the different parts of the generated
code from TestModel.java. The complete file is shown in appendix A.

6.3.1 The static header

1 package spinj.generated;
2

3 import spinj .util .DataReader;
4 import spinj .util .DataWriter;
5 import spinj .promela.Run ;
6 import spinj .promela.model .* ;
7 import spinj .exceptions.* ;
8

9 public class TestModel extends PromelaModel {

This piece of code shows the default header of the generated model. As we
can see, it is stored in the spinj.generated package and imports the basic
packages that are used. The name of the class that is generated comes directly
from the filename that was compiled.

11 public static void main(String [ ] args) {
12 Run run = new Run() ;
13 run .parseArguments(args) ;
14 run .search(TestModel. class) ;
15 }

After the header, the main function is defined to make it easy to start model
checking this model. It uses a Run class from the spinj.promela package, which
parses all the command line options and then starts the search algorithm.

6.3.2 The generated Channel

In the generated Java code of the example from Listing 6.1, there is a class
defined that describes the global channel defined by the com variable.

17 public static class Channel0 extends Channel {
18 public Channel0() {
19 super(new int [ ] {0xff} , 0) ;
20 }
21

22 public void encode(DataWriter _writer) {
23 _writer.writeByte(0) ;
24 }
25

26 public int getSize() {
27 return 1;
28 }
29

30 public boolean decode(DataReader _reader) {
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31 i f (_reader.readByte() != 0) return false ;
32 return true ;
33 }
34 }

This channel stores one variable at the time and has a buffer size of zero,
meaning this channel is a rendez-vous channel. Since the Channel object
implements the Storable interface (see Section 4.1.1), it also must implement
the encode(), getSize() and decode() functions. These three make sure that
the unique identifier (0 in this case) can be encoded and decoded, to identify
the type of the channel. Since there is no buffer, this does not have to be stored.

This is in contast to Spin where the buffer is always stored in the state
vector. By dynamically encoding the buffer of a channel, SpinJ automatically
compacts the state vector.

6.3.3 Global variable definition

36 int com ;
37 int total;

The two global variables from the example have been made available here.
All promela types are stored in Java as integers, to make sure that the smaller
types (short, byte, etc.) can be stored as if they were unsigned. The com
variable is a reference to the channel, which is always a number between 0 and
255. Also see Section 6.4 for more explanation.

6.3.4 The Constructor

39 public TestModel() throws SpinJException {
40 super(”Test” , 7) ;
41

42 // In i t ia l i ze the default values
43 com = addChannel(new Channel0() ) ;
44

45 // In i t ia l i ze the starting processes
46 addProcess(new counter() ) ;
47 addProcess(new generator() ) ;
48 addProcess(new monitor() ) ;

The first line in the constructor calls the constructor of the PromelaModel

with the name of this model and the initial buffer size. The initial buffer size
of 7 refers to the number of bytes that is needed to store the global vector. In
this case, it should store the number of processes that are running (1 byte), the
number of channels that are initialised (1 byte) and the two global variables (5
= 4 bytes for total + 1 byte for com). This can easily be seen in the next part.

On line 43 there is room for initialisation of global variables. In this case
we initialise the com variable with a new channel. After that, it initialises the
three processes that are activated, by calling the addProcess function.
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6.3.5 The implementation of the Storable interface

52 public void encode(DataWriter _writer) {
53 _writer.writeByte(_nrProcs) ;
54 _writer.writeByte(_nrChannels) ;
55 _writer.writeByte(com) ;
56 _writer.writeInt(total) ;
57 for(int _i = 0; _i < _nrChannels; _i++) {
58 _channels[_i ] .encode(_writer) ;
59 }
60 for(int _i = 0; _i < _nrProcs; _i++) {
61 _procs[_i ] .encode(_writer) ;
62 }
63 }

This implementation of the encode function first stores the two variables
that have been explained before: the number of processes and the number
of channels. Then it writes the global variables that were defined before.
Remember that storing these 5 values cost exactly 7 bytes, which was defined
in the constructor.

After writing the global vector, the channels are written to the DataWriter

and then the processes. Both the channels and the processes implement the
Storable interface, which makes it possible to encode them by simply calling
the encode function.

65 public boolean decode(DataReader _reader) {
66 _nrProcs = _reader.readByte() ;
67 _nrChannels = _reader.readByte() ;
68 com = _reader.readByte() ;
69 total = _reader.readInt() ;

Decoding the state from the DataReader starts by simply reading the global
vector, similar to what was done with encoding.

71 for(int _i = 0; _i < _nrChannels; _i++) {
72 _reader.storeMark() ;
73 i f (_channels[_i ] == null | | !_channels[_i ] .decode(_reader) ) {
74 _reader.resetMark() ;
75 switch(_reader.peekByte() ) {
76 case 0: _channels[_i ] = new Channel0() ; break ;
77 default : return false ;
78 }
79 i f ( !_channels[_i ] .decode(_reader) ) return false ;
80 }
81 }

Decoding the channels is a bit more difficult. When the channels in
the current state are the same as the state we are decoding, then the
Channel.decode() function on line 73 will succeed and it can continue. It
is possible that decoding a channel fails, because there was a different type of
channel on that index. This can also be seen in Section 6.3.2, on line 31. In
that case the correct type must be instantiated and decoded again.
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This starts by restoring the mark in the DataReader back to the original
place. Then the first byte determines the type of channel that we need to store
here. In this example there is only one type of channel defined, called Channel0.
When this succeeds, the channel state is decoded again.

83 int _start = _reader.getMark() ;
84 for(int _i = 0; _i < _nrProcs; _i++) {
85 _reader.storeMark() ;
86 i f (_procs[_i ] == null | | !_procs[_i ] .decode(_reader) ) {
87 _reader.resetMark() ;
88 switch(_reader.peekByte() ) {
89 case 0: _procs[_i ] = new counter(true) ; break ;
90 case 1: _procs[_i ] = new generator(true) ; break ;
91 case 2: _procs[_i ] = new monitor(true) ; break ;
92 default : return false ;
93 }
94 i f ( !_procs[_i ] .decode(_reader) ) return false ;
95 }
96 }
97 _process_size = _reader.getMark() − _start;
98 return true ;
99 }

Decoding the processes is very similar to the channels. In this case, there
are three types of processes, the counter with identifier 0, the generator with
identifier 1 and the monitor with identifier 2.

In the PromelaModel there is also an extra variable that caches the number
of bytes that is needed to store all the processes: process size. This variable
is recalculated on line 96 to match the loaded processes again.

The rest of the TestModel contains the definitions of the processes and
channels, which will be explained later on in this chapter.

6.3.6 The generated PromelaProcesses

In the example from appendix A, there are three implementations of the
PromelaProcess generated. This part is going to explain how the code of
the counter process relates to this PromelaProcess.

115 public class counter extends PromelaProcess {
116 protected int curr ;

The first part of the counter defines the local variables. In promela curr

was defined as byte, but it is stored again as an integer (see Section 6.4).

118 public counter(boolean decoding) {
119 super(TestModel. this , new State [ 2 ] , 0) ;
120

121 /* . . . state table definition . . .*/
178 }
179

180 public counter() throws ValidationException {
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181 this( false) ;
182

183 }

Each implementation of the PromelaProcess has two constructors. The
first is to initialise the state table, which is also used in the decode function
that was shown earlier. The second constructor calls the first, but also initialises
the local variables using any possible parameters of the process.

The encode and decode functions are implemented to write or read the
local variables. This is similar to what was done with the global variables. Also
the other two processes look very similar to this one.

6.3.7 The generated state table

In the constructor of each of the processes of the example, there is a part that
constructs the state table. Always the same type of statements are used:

factory = /* Create new factory , with i t s own Transition type */ ;
factory.append(/* another factory describing the second transition

possible from the current state*/) ;
_stateTable[x ] = new State(process, factory, false , false , false) ;

This example creates two instances of the PromelaTransitionFactory,
links them through the next reference and adds them to a new State. This
state is then stored in the state table for further use. When creating a new
State object, the constructor takes three booleans as a value; if this state is an
ending state, a progress state or an accept state.

In appendix A there are several examples of this. The following code shows
one of these:

218 PromelaTransitionFactory factory;
219 factory =
220 new PromelaTransitionFactory(true , 19, 0 , 1 , ”(cnt < 127) ; cnt++”

) {
221 public final boolean isEnabled() {
222 return (cnt < 127) ;
223 }
224

225 public final PromelaTransition newTransition() {
226 return new NonAtomicTransition() {
227 private int _backup_cnt;
228

229 public final void takeImpl() throws ValidationException {
230 _backup_cnt = cnt ;
231 cnt = (cnt + 1) & 0xff ;
232 }
233

234 public final void undoImpl() {
235 cnt = _backup_cnt;
236 }
237 } ;
238 }
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239 } ;
240 factory.append(
241 new ElseTransitionFactory(20 , 0 , 2 , false) ) ;
242 _stateTable[ 0 ] = new State(generator. this , factory, false , false ,

false) ;

This code defines the two transitions that are possible from the state 1 of
the generator process. These can also be seen after step 5 of the graphical
representation of this process in Figure 6.3. The first factory creates a
PromelaTransition that executes two actions: cnt < 127 and cnt + +. The
first action determines the isEnabled() method.

The second action changes a variable and therefore a new anonymous
PromelaTransition must be defined to back up the current value. Then the
take function can increase the number by 1 and the undo function restores the
backup.

The second factory that is appended to the linked list is an ElseTransitionFactory.
This type is specially made for the else statement. It reads the other factories
that it is linked to, to determine its behaviour. Also while calculating the next
transition it has a special function (see Section 6.2.5).

Line 242 finally defines that these two factories create the transitions from
the first state. It creates a new State, which is not an ending state, progress
state or an accept state, and stores it as the first state.

6.4 Problems with Java

Using Java to implement promela processes did have its problems. A few of
those are described in this section.

6.4.1 Storing variables

Local and global variables in promela can be of many types. Most of these
types are unsigned (e.g. byte, short, etc.). Since Java does not support
unsigned bytes or shorts, a different solution had to be found.

The solution chosen for SpinJ is to store all variables as integer. Since the
int type in promela is the only signed type, all types can be represented that
way. But when assigning a value to a integer, it must take the number of bits
into account. For example, when increasing a byte value by 1, the following
Java code needs to be executed:

x = (x + 1) & 0xff ;

This is done to make sure that only the lower 8 bits are written.

6.4.2 No goto-statements

In promela there are goto-statements. These can be simulated by creating a
transition from one state to another. But when dealing with d step sequences,
goto-statements must be written directly in the Java language. Since this is
not possible in Java, the choice has been made not to support goto-statements
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within d step sequences. The break statement, despite the fact of being a type
of goto-statement, is supported by SpinJ.
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Chapter 7

Benchmarks

In this chapter, SpinJ is compared to the original Spin. First the benchmark
suite is explained, which is used for the comparison. The second section will
discuss the results from that benchmark.

7.1 BEEM: Benchmarks for explicit model checkers

In [37] Pelánek describes a benchmark suite that can be used for explicit model
checkers, called BEEM. This benchmark was originally created for the Divine
language, but Pelánek provides a translation to promela. Unfortunately this
means that not all features of the language are used. For example, it does
use rendez-vous channels, propositions and processes, but no dynamic process
instantiation, never claims or buffered channels.

On the website [36] there are 57 different models available, each with one or
more parameters, giving a total of 300 model instances. Unfortunately not all
models have a (generated) promela version, which leaves only 43 models. Not
all of these models are run while testing SpinJ. Of each different type of model
only one instance is chosen that has a reasonably size. This is done to limit the
amount of very small models (which do not produce a consistent time) or very
large models (which will not run completely within the available memory).

The result is a set of 43 instances of these models that are used to compare
SpinJ to Spin. The machine that has performed the benchmark is a Windows
XP machine with 2Gb of RAM and an AMD Athlon X2 4200+ processor. For
Spin the latest version at the time writing was chosen: 5.1.6.

7.1.1 Running Spin and SpinJ

To run the different models a couple of options for both Spin and SpinJ have
been fixed. The following script is therefore used to run it:

spin −a −o2 <modelname>
cl /DSAFETY /DWIN32 /DMEMLIM=1400 <option> /Ox pan .c
pan −m<depth>−w<size>−c0 −n

java −jar SpinJ .jar −nTest <modelname>
javac −cp . ;SpinJ.jar spinj/generated/TestModel.java
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java −server −Xms1250M −Xmx1250M −cp . ;SpinJ .jar spinj.generated.
TestModel <option>−m<depth>−w<size>−c0

On the first line, Spin version 5.1.6 is used to compile the model to
pan.c. For this we use the -a option, which tells Spin to compile the model
instead of simulating it. The -o2 option disables a data-flow optimizer in the
compiler, which is not yet implemented in SpinJ and is disabled to make a fair
comparison.

On the second line, the C++-compiler of Visual Studio 20081 is used to
compile pan.c. Here we use the /DSAFETY option to speed up the verifier by
disabling code that is needed for lifeness properties, which are not used in the
BEEM benchmark. The /DWIN32 makes sure that pan.c uses the Windows
libraries. Furthermore a limit on the memory has been set to 1400 Megabyte
by the /DMEMLIM option. The /Ox option enables all optimisations that are
known to this compiler.

The <option> is a dynamically changing option that determines the type
of run that we are going to perform. For Spin this option is a compiler switch,
but for SpinJ this option can be given at runtime. There are 4 different runs
of the BEEM benchmark:

1. Without Partial Order Reduction. This uses the /DNOREDUCE option
to disable the reduction algorithm. This benchmark shows the simple raw
speed of Spin and SpinJ. This benchmark is somewhat limited, because
some of the models run out of memory.

2. With Partial Order Reduction. This uses no specified option and
therefore enables the reduction algorithm. This benchmark shows the
reduction that is reached and how much overhead the Partial Order
Reduction algorithm has.

3. With bitstate hashing. This uses the /DBITSTATE option to enable
bitstate hashing [21] instead of the normal hash table. This benchmark
shows how well the hash algorithms are implemented in SpinJ compared
to Spin.

4. With hash compaction. This uses the /DHC4 option to enable hash
compaction [40] instead of the normal hash table. This benchmark also
shows how well the hash algorithms and the hash compaction tables are
implemented in SpinJ compared to Spin.

When finally running pan on the third line, a couple of runtime options are
given. First, the maximum search depth (-mdepth) is a dynamic value that is
determined based on the model that will be run. Secondly the -wsize switch
sets the size of the storing table to 2size entries. This number depends on the
type of benchmark that is run. For the normal (with or without Partial Order
Reduction) benchmarks, 24 is chosen, giving 16.7 million entries. For bitstate
hashing 31 and for hash compaction 26 is chosen.

1The gcc compiler was tried first, but on this Windows machine it could not allocate more

than 825Mb. The C++-compiler of Visual Studio did work perfectly up to 1700Mb.
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By default the verifier quits when the first error is found. The -c0 switch
for pan enables it to run no matter how many errors are found. Lastly the -n

suppresses the default listing of all unreachable states.

For SpinJ three very similar lines are executed. First the SpinJ compiler is
called to compile the given model, with the -nTest switch to rename the model
to TestModel. This makes running the rest of the script a lot easier. On line 6
the java compiler is called to compile the generated TestModel.

The last line is running the compiled TestModel with options that are very
similar to the ones of Spin. The main difference here is that the compiler
options are given at runtime, making it no longer necessary to recompile the
model when choosing a different storage technique.

7.2 Results

This section is going to summarize the results of the 4 different runs that have
been performed on the BEEM benchmark. The complete tables with all the
benchmark results can be found in appendix B. This section shows a couple of
highlights and average differences.

7.2.1 Without Partial Order Reduction

Table B.1 shows the results of the benchmark with Partial Order Reduction
disabled. Here we can see that the results that are produced by SpinJ are
very similar to Spin. The number of errors is the same for all models. Also
the number of states and transitions is the same for all models except for four.
This difference will be explained in Section 7.3.

Minimum Average Maximum

Speed 1.29× 3.53× 5.73×
Memory 0.37× 0.71× 0.97×

Table 7.1: The difference between Spin and SpinJ in speed and memory for
the benchmark without Partial Order Reduction.

In table 7.1 we can see the results of this benchmark, which has used 37 of
the 43 available models which did not run out of memory. The other 6 ran out
of memory. The average results are good, where the SpinJ is only 3.53 times
slower than Spin but uses 29% less memory. Also the minimum and maximum
values are well within range.

That SpinJ uses less memory than Spin is mainly due to the compact
representation that is used in SpinJ. Spin uses a different approach to encoding
the states, which always reserves bytes to store all information (e.g. for the
buffer of all the channels). In SpinJ this information is compacted by first
storing the number of entries of such a buffer and then only writing the part of
the buffer that has been filled.

This can be seen clearly in the firewire link.7 model, where SpinJ is
almost 3 times more efficient with memory than Spin. This model has 44
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global channels and only a few other variables to store. The maximum size of
the state vector in Spin is 540 bytes, while SpinJ only has a maximum of 179
bytes.

Also when looking at the elevator.3 model, we can see that SpinJ can
find much more states. It even checks the complete model with only 1100 Mb
of memory usage, while Spin runs out of memory after seeing only 63% of the
states.

7.2.2 With Partial Order Reduction

Table B.2 shows the result of the benchmark with the Partial Order Reduction
enabled. A summary of the differences can be seen in table 7.2.

Minimum Average Maximum

Speed 1.52× 3.77× 6.11×
Memory 0.36× 0.68× 0.94×

Table 7.2: The difference between Spin and SpinJ in speed and memory for
the benchmark with Partial Order Reduction.

The difference in speed between SpinJ and Spin is only slightly worse when
Partial Order Reduction is enabled. This can be explained by the way Spin

stores if a state was still on the stack. SpinJ has to search the stack if the
state is on it, but Spin has optimised this by storing one extra bit in the state
store. In a previous version of SpinJ searching the stack was a linear search
that sometimes slowed it down by more than two order of magnitudes when
searching a very large stack. The current version has implemented a hash table
for the stack, which speeds things up considerably.

The memory requirements seems hardly to have changed with Partial Order
Reduction, as we would expect.

7.2.3 With Bitstate hashing

When bitstate hashing is enabled, it is interesting to see how many states
are missed. Therefore only larger models (with at least 2000000 states) were
searched completely in the second benchmark. Table B.3 shows the result of
this benchmark with the selected 15 models.

Minimum Average Maximum

Speed 1.87× 2.79× 4.64×
Memory 0.25× 0.47× 0.50×

Table 7.3: The difference between Spin and SpinJ in speed and memory for
the benchmark with Bitstate hashing.

In table 7.3 we can see that the speed of SpinJ in relation to Spin is slightly
better. But the memory usage of SpinJ is much better than that of Spin. In
most cases SpinJ simply uses 256 Megabytes (231/8 = 268435456 bytes) for
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the hash table, plus a variable amount for the stack. Spin uses an extra 256
Megabytes for a “bit stack”, which presumably is used to store meta-data for
partial order reduction. SpinJ solves this by having a hash table with the stack,
to speed up searching the stack. This does explain why SpinJ uses less than
half the memory of Spin for this benchmark.

When looking at the number of states that are missed, we can hardly spot
any differences. They never perform exactly the same, but because of the
unpredictable behaviour of hash algorithms this is to be expected.

7.2.4 With Hash compaction

When using hash compaction as an approximate storage method, we would
expect similar results to bitstate hashing. In the test results from table B.4
however, we see completely different results.

Minimum Average Maximum

Speed 2.41× 3.24× 5.00×
Memory 0.89× 1.31× 1.70×

Table 7.4: The difference between Spin and SpinJ in speed and memory for
the benchmark with Hash compaction.

The speed is a bit slower than using bitstate hashing, as can be seen in
table 7.4. But the memory usage is very different here; SpinJ actually uses
more memory than Spin. This can be explained by the way the hash compact
table was implemented. SpinJ uses a probing table that uses a array of long
values to store the 64 bits hash values. This uses a fixed amount of memory:
226 ∗ 8bytes = 512Mb.

Spin on the other hand uses a linked list for each entry in the hash table.
This reduces the size of the table, because only a pointer to the first entry is
stored, using 4 bytes. This reduces the size of the table to only 256Mb, but
for each hash value that is stored in the table, an extra 20 bytes of memory is
used. This means that models that have more than 256∗1024∗1024

20
= 13421773

states will use more memory than the implementation of SpinJ

7.3 Difference in the results

In the results using the different setting there are some differences. This section
is going to explain a couple of these.

7.3.1 Optimising goto-transitions

For some models that have less states in SpinJ than they do in Spin, there
are unnecessary goto-statements in the code that Spin does not optimise. One
example is shown in Listing 7.1 from the krebs.4 model.

When starting with the optimisation there are two goto-transitions
generated, between the two d step statements. In between these goto-
transitions there is initially also an empty transition for the option in the second
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Listing 7.1: An outtake of the krebs.4 model, showing an unnecessary goto-
statement

1 oxalacetrat: i f

2 : : d step {acetyl_co_a>=1 && H20>=1;acetyl_co_a = acetyl_co_a−1;H20 =
H20−1;} goto citrat;

3 f i ;
4 citrat: i f

5 : : goto isocitrat;
6 f i ;
7 isocitrat: i f

8 : : d step {NADp>=1;NADp = NADp−1;NADH = NADH+1;Hp = Hp+1;CO2 = CO2+1;}
goto oxoglutarat2;

9 f i ;

if-statement. Spin seems to lack the ability to remove the goto-statement that
follows such an empty statement.

When removing the (useless) if-block around that goto-statement, Spin

does produce exactly the same result for krebs.2. The number of states is then
reduced, because there are less states in the processes (the state just before that
goto-statement is removed). Also the number of transitions is reduced, because
the goto-transition does not need to be executed anymore.

7.3.2 Taking transitions twice

The implementation of Partial Order Reduction in Spin is the cause of taking
the same transition from the state twice. This is the cause for Spin finding
more transitions than SpinJ for some models, while the number of states is the
same.

This effect can be seen when producing the verbose output, by compiling
pan.c with the /DVERBOSE option. A part of this is shown in Listing 7.2, from
the lamport nonatomic.3 model.

This listing shows that on the first line the fifth process is preselected by the
Partial Order Reduction algorithm. This process then executes transition 16
(on line 4), which results in a state that was already on the stack (line 6). Then
the algorithm reverses that transition and unselects process 5.

Now it can execute transitions from the same state, but for all processes.
Spin now chooses to execute transition 16 from process 5 again on line 13,
resulting in the same state that was found earlier on the stack. This unnecessary
transition is counted, which explains the difference between Spin and SpinJ in
the number of transitions for 11 out of the 63 models.

7.3.3 Differences in the depth

Many models have a different depth in SpinJ when compared to Spin. This is
due to the difference in taking transitions. The verifier in SpinJ does not know
anything of the inner workings of the model, so some transitions are wrapped

62



Listing 7.2: A part of the verbose output of pan, generated from the
lamport nonatomic.3 model

1 49847: proc 5 PreSelected (tau=32)
2 Pr : 5 Tr : 15
3 Pr : 5 Tr : 16
4 49847: proc 5 exec 16, 57 to 3 , ((v==0)) non−accepting [tau=32]
5 49848: Down − program non−accepting [pids 5−0]
6 Stack state 22391
7 49848: Up − program

8 49848: proc 5 reverses 16, 57 to 3
9 ((v==0)) [abit=0,adepth=0,tau=0,48]

10 49847: proc 5 UnSelected (_n=3, tau=48)
11 Pr : 5 Tr : 15
12 Pr : 5 Tr : 16
13 49847: proc 5 exec 16, 57 to 3 , ((v==0)) non−accepting [tau=0]
14 49848: Down − program non−accepting [pids 5−0]
15 Stack state 22391
16 49848: Up − program

17 49848: proc 5 reverses 16, 57 to 3
18 ((v==0)) [abit=0,adepth=0,tau=0,16]

in a special Transition object that mimics the specified behaviour. This can
be seen in two cases:

1. When executing a rendez-vous action, first one process writes to the
rendez-vous channel and then an other process reads it. In SpinJ

this behaviour is simulated in a special RendezvousTransition, which
executes these two steps as if they were one. In Spin these two transitions
are executed separately, which causes the stack to increase faster. This is
the cause for a small depth reached for SpinJ.

2. When an atomic token was taken and the selected process can not execute
any transition, the atomic token is lost. In Spin this is done explicitly
by the verifier, but SpinJ can not do this. This is solved by a special
EndAtomicTransition that removes the atomic token. This causes the
depth to be increased faster in SpinJ than it is in Spin.

Taking into account these two differences, the depth can be less or more in
SpinJ when compared to Spin. This all depends on the number of rendez-vous
transitions and the number of atomic tokens that are lost.
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Chapter 8

Conclusion

This chapter concludes this thesis. It starts by giving a summary and it then
evaluates the result. Finally some possible future work is discussed.

8.1 Summary

Overall architecture In Chapter 3 the overall architecture of SpinJ is
discussed. It uses a similar approach as in Spin, where it first compiles the
promela code into a Java source file that can be compiled and subsequently
verified. To verify such a generated model, a library is used that is inspired
by the conceptual framework of Mark Kattenbelt [32]. Here we use three
layers (the generic layer, the abstract layer and the tool layer), where each
layer describes more details of the model. Also the design of the compiler is
discussed, which uses an intermediate representation of the automaton of each
process. This intermediate representation can then be optimised (e.g. state
merging) to produce a smaller automaton.

The generic layer In Chapter 4 the lowest layer is described. This generic
layer has a very basic description of the model, which simply consists of states
and transitions. Although not much is known about the inner workings of the
model, most of the algorithms are implemented on this level. This includes
simulation techniques (e.g. user simulation, random simulation), searching
algorithms (e.g. Depth First Search, Breadth First Search), storage techniques
(e.g. Hash tables, Bitstate hashing, Hash compaction) and hash functions. For
each different type of algorithm there is an abstract base class that must be
implemented (e.g. the StateStore or SearchAlgorithm class). This makes it
easy to implement a new type of algorithm and test it directly with real models.

The abstract layer In Chapter 5 the abstract layer is described, which is an
extension of the generic layer. This layer adds the notion of concurrency to the
model, where it consists of one or more processes. Since these processes can
be seen as models by themselves, the concurrent model is really a Cartesian
product of these smaller models. This knowledge about the model makes it
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possible to implement Partial Order Reduction (POR) on this layer, which can
greatly reduce the number of states for the concurrent model.

The tool layer In Chapter 6 the tool layer is explained, in which the
promela models can be expressed. These promela models have knowledge
about specific promela constructs (e.g. channels, the atomic token, timeouts).
Also on this layer the never-claim is implemented, to make it possible to check
LTL properties. All these classes can be used to make it easier to generate the
model. The generated model is an extension of the promela model. It only
has to implement a limited set of methods.

The benchmarks In Chapter 7 it is explained how SpinJ is put to the
test against Spin itself. The BEEM benchmark set was used to perform four
different tests: without POR, with POR, with bitstate hashing and with hash
compaction. These results show that SpinJ is on average about 3.5 times slower
than Spin, but uses less memory. These results are further discussed in the next
section.

8.2 Evaluation

In the introduction we have set ourselves six goals that SpinJ should reach. In
this section we are going to evaluate each of these goals.� The design and implementation of SpinJ should be object-oriented,

reusable and well documented.

The design of SpinJ is completely object-oriented, using inheritance to
create the link between the different layers in the SpinJ library. This
layered design makes it much easier to reuse parts of the system. For
example, we can now create a new tool layer that implements a completely
new language that can reuse the abstract and generic layer from the
current version of SpinJ.

Chapter 3 to 6 give a good overview of how this library was designed and
implemented, making the documentation also complete.� The design and implementation of SpinJ should be extendable, such that
other algorithms are easily added. It should be possible to extend the
modelling language.

As said before, extending the modelling language is easy be replacing
(parts of) the tool layer. But also adding other storage/search/hashing
algorithms is easy. All of these algorithms have an abstract base class
defined (e.g. StateStore, SearchAlgorithm, HashAlgorithm). When
creating a new implementation of one of these algorithms, only this
abstract class needs to be extended.� The performance of SpinJ should be comparable to Spin (both in time and
space), where one order of magnitude is acceptable.
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As shown in Chapter 7 SpinJ is only about 3.5 times slower than Spin

which is less than one order of magnitude. Furthermore the memory
requirements for SpinJ is even less than that of Spin. This makes SpinJ

usable for models with millions of states.� SpinJ’s simulator and verifier should use the same Java code.

This is true for SpinJ, since the generated model can also be executed by
one of the simulation algorithms. This reduces the risk that the simulator
handles certain parts of the code differently than the verifier, which was
a problem in previous versions of Spin.� SpinJ should support several of Spin’s optimisation algorithms, e.g.
partial order reduction, bitstate hashing and hash compaction.

All three examples of optimisations algorithms are implemented. The
POR algorithm is implemented on the abstract layer, because it needed
to know about processes. Bitstate hashing and hash compaction are
both implemented as classes that extend the StateStore. Furthermore,
statement merging is implemented in SpinJ’s compiler to reduce the
generated state space.� The output and parameters of SpinJ should resemble the ones of Spin as
much as possible.

The parameters of Spin are partly ported to SpinJ. But a lot of options
of Spin are compiler switches, which in SpinJ must be given at runtime.
The syntax of these parameters is the same though.

The output of SpinJ is very similar with regards to basic output.
Unfortunately the trace files that are created when an error was found
are not compatible, because the numbering of transitions is not the same.

Overall we can conclude that all the goals have been reached, making SpinJ a
fast and extendible model checker.

8.3 Future work

There are still parts of SpinJ that could be improved. One of these parts
is the promela compiler. Currently it is implemented specifically for the
promela language, but it is possible to make this more reusable. Currently
it is not possible to reuse the optimisation techniques that were implemented
here, because the internal representation is specifically created for the promela

language. When using a more abstract description that could be useable for
other languages, parts of the compiler would become more reusable.

Other future work on SpinJ would mostly consist of extending its
functionality. A few possibilities are:� To implement Minimize Automata [25] as a storage technique.
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� To implement collapse compression [20]. This would be a wrapper around
the concurrent model that reimplements the encode function, which stores
the encoded representation of the processes in an internal hash table.� Extending the promela compiler to support the more language features.
One example could be to support inline Java code (like the c code block
that is supported by Spin).� To implement a new search algorithm that supports threading, making
use of multiple processors.� To implement a matching thread-safe hash table. It is possible to
implement a lock-free high-performance hash table, as described in [11].� To add support for another modelling language (e.g. Divine [8]).
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Appendix A

The generated code for a

promela example

This appendix shows an example of a promela model, which has been compiled
using the SpinJ compiler. The first section shows the example, while the second
one shows the generated Java code.

A.1 The promela code

1 chan com = [0 ] of {byte} ;
2

3 int total ;
4

5 active proctype counter() {
6 byte curr ;
7

8 do

9 : : com ? curr −>
10 total = total + curr ;
11 od;
12 }
13

14 active proctype generator() {
15 byte cnt = 0;
16

17 do

18 : : cnt < 127 −>
19 cnt++;
20 i f

21 : : com ! cnt ;
22 : : com ! (cnt *2) ;
23 f i ;
24 : : else −> break ;
25 od;
26 }
27

28 active proctype monitor() {
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29 do

30 : : assert(total < 16256);
31 od;
32 }

A.2 The generated Java code

1 package spinj.generated;
2

3 import spinj .util .DataReader;
4 import spinj .util .DataWriter;
5 import spinj .promela.Run ;
6 import spinj .promela.model .* ;
7 import spinj .exceptions.* ;
8

9 public class TestModel extends PromelaModel {
10

11 public static void main(String [ ] args) {
12 Run run = new Run() ;
13 run .parseArguments(args) ;
14 run .search(TestModel. class) ;
15 }
16

17 public static class Channel0 extends Channel {
18 public Channel0() {
19 super(new int [ ] {0xff} , 0) ;
20 }
21

22 public void encode(DataWriter _writer) {
23 _writer.writeByte(0) ;
24 }
25

26 public int getSize() {
27 return 1;
28 }
29

30 public boolean decode(DataReader _reader) {
31 i f (_reader.readByte() != 0) return false ;
32 return true ;
33 }
34 }
35

36 int com ;
37 int total;
38

39 public TestModel() throws SpinJException {
40 super(”Test” , 7) ;
41

42 // In i t ia l i ze the default values
43 com = addChannel(new Channel0() ) ;
44
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45 // In i t ia l i ze the starting processes
46 addProcess(new counter() ) ;
47 addProcess(new generator() ) ;
48 addProcess(new monitor() ) ;
49

50 }
51

52 public void encode(DataWriter _writer) {
53 _writer.writeByte(_nrProcs) ;
54 _writer.writeByte(_nrChannels) ;
55 _writer.writeByte(com) ;
56 _writer.writeInt(total) ;
57 for(int _i = 0; _i < _nrChannels; _i++) {
58 _channels[_i ] .encode(_writer) ;
59 }
60 for(int _i = 0; _i < _nrProcs; _i++) {
61 _procs[_i ] .encode(_writer) ;
62 }
63 }
64

65 public boolean decode(DataReader _reader) {
66 _nrProcs = _reader.readByte() ;
67 _nrChannels = _reader.readByte() ;
68 com = _reader.readByte() ;
69 total = _reader.readInt() ;
70

71 for(int _i = 0; _i < _nrChannels; _i++) {
72 _reader.storeMark() ;
73 i f (_channels[_i ] == null | | !_channels[_i ] .decode(_reader) ) {
74 _reader.resetMark() ;
75 switch(_reader.peekByte() ) {
76 case 0: _channels[_i ] = new Channel0() ; break ;
77 default : return false ;
78 }
79 i f ( !_channels[_i ] .decode(_reader) ) return false ;
80 }
81 }
82

83 int _start = _reader.getMark() ;
84 for(int _i = 0; _i < _nrProcs; _i++) {
85 _reader.storeMark() ;
86 i f (_procs[_i ] == null | | !_procs[_i ] .decode(_reader) ) {
87 _reader.resetMark() ;
88 switch(_reader.peekByte() ) {
89 case 0: _procs[_i ] = new counter(true) ; break ;
90 case 1: _procs[_i ] = new generator(true) ; break ;
91 case 2: _procs[_i ] = new monitor(true) ; break ;
92 default : return false ;
93 }
94 i f ( !_procs[_i ] .decode(_reader) ) return false ;
95 }
96 }
97 _process_size = _reader.getMark() − _start;
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98 return true ;
99 }

100

101 public String toString() {
102 StringBuilder sb = new StringBuilder() ;
103 sb .append(”TestModel: ”) ;
104 sb .append(”com = ”) .append(com) .append( ’\t ’ ) ;
105 sb .append(”total = ”) .append(total) .append( ’\t ’ ) ;
106 for(int i = 0; i < _nrProcs; i++) {
107 sb .append( ’\n ’ ) .append(_procs[i ] ) ;
108 }
109 for(int i = 0; i < _nrChannels; i++) {
110 sb .append( ’\n ’ ) .append(_channels[i ] ) ;
111 }
112 return sb .toString() ;
113 }
114

115 public class counter extends PromelaProcess {
116 protected int curr ;
117

118 public counter(boolean decoding) {
119 super(TestModel. this , new State[ 2 ] , 0) ;
120

121 PromelaTransitionFactory factory;
122 factory =
123 new PromelaTransitionFactory( false , 18, 0 , 1 , ”com?curr”) {
124 public boolean isEnabled() {
125 i f (com ==−1 | | _channels[com ] .isRendezVous() | | !_channels[

com ] .canRead() ) {
126 return false ;
127 } else {
128 int [ ] _tmp = _channels[com ] .peek() ;
129 i f (_tmp .length != 1) throw new UnexpectedStateException(”

Channel returned the wrong number of variables”) ;
130 return true ;
131 }
132 }
133

134 public boolean canReadRendezvous(int [ ] _values) {
135 return _channels[com ] .isRendezVous()
136 && _values.length == 2
137 && _values[ 0 ] == com ;
138 }
139

140 public final PromelaTransition newTransition() {
141 return new NonAtomicTransition() {
142 private int _backup_curr;
143

144 public final void takeImpl() throws ValidationException {
145 _backup_curr = curr ;
146 int [ ] _tmp = _channels[com ] .read() ;
147 curr = _tmp [ 0 ] & 0xff ;
148 }
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149

150 public final void undoImpl() {
151 _channels[com ] .sendFirst(curr) ;
152 curr = _backup_curr;
153 }
154 } ;
155 }
156 } ;
157 _stateTable[ 0 ] = new State(counter. this , factory, false , false ,

false) ;
158

159 factory =
160 new PromelaTransitionFactory( false , 2 , 1 , 0 , ”total=(total + curr

)”) {
161 public final PromelaTransition newTransition() {
162 return new NonAtomicTransition() {
163 private int _backup_total;
164

165 public final void takeImpl() throws ValidationException {
166 _backup_total = total;
167 total = (total + curr) ;
168 }
169

170 public final void undoImpl() {
171 total = _backup_total;
172 }
173 } ;
174 }
175 } ;
176 _stateTable[ 1 ] = new State(counter. this , factory, false , false ,

false) ;
177

178 }
179

180 public counter() throws ValidationException {
181 this( false) ;
182

183 }
184

185 public int getSize() {
186 return 3;
187 }
188

189 public void encode(DataWriter _writer) {
190 _writer.writeByte(0x0) ;
191 _writer.writeByte(_sid) ;
192 _writer.writeByte(curr) ;
193 }
194

195 public boolean decode(DataReader _reader) {
196 i f (_reader.readByte() != 0x0) return false ;
197 _sid = _reader.readByte() ;
198 curr = _reader.readByte() ;
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199 return true ;
200 }
201

202 public String toString() {
203 StringBuilder sb = new StringBuilder() ;
204 i f (_exclusive == _pid) sb .append(”<atomic>”) ;
205 sb .append(”counter (” + _pid + ” ,” + _sid + ”) : ”) ;
206 sb .append(”curr = ”) .append(curr) .append( ’\t ’ ) ;
207 return sb .toString() ;
208 }
209

210 }
211

212 public class generator extends PromelaProcess {
213 protected int cnt ;
214

215 public generator(boolean decoding) {
216 super(TestModel. this , new State[ 3 ] , 0) ;
217

218 PromelaTransitionFactory factory;
219 factory =
220 new PromelaTransitionFactory(true , 19, 0 , 1 , ”(cnt < 127) ; cnt++”

) {
221 public final boolean isEnabled() {
222 return (cnt < 127) ;
223 }
224

225 public final PromelaTransition newTransition() {
226 return new NonAtomicTransition() {
227 private int _backup_cnt;
228

229 public final void takeImpl() throws ValidationException {
230 _backup_cnt = cnt ;
231 cnt = (cnt + 1) & 0xff ;
232 }
233

234 public final void undoImpl() {
235 cnt = _backup_cnt;
236 }
237 } ;
238 }
239 } ;
240 factory.append(
241 new ElseTransitionFactory(20 , 0 , 2 , false) ) ;
242 _stateTable[ 0 ] = new State(generator. this , factory, false , false ,

false) ;
243

244 factory =
245 new PromelaTransitionFactory( false , 21, 1 , 0 , ”com! cnt”) {
246 public final boolean isEnabled() {
247 return com != −1 && !_channels[com ] .isRendezVous() &&

_channels[com ] .canSend() ;
248 }
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249

250 public int [ ] getRendezvous() {
251 i f ( !_channels[com ] .isRendezVous() ) return null ;
252 return new int [ ]{com , cnt} ;
253 }
254

255 public final PromelaTransition newTransition() {
256 return new NonAtomicTransition() {
257 public final void takeImpl() throws ValidationException {
258 _channels[com ] .send(cnt) ;
259 }
260

261 public final void undoImpl() {
262 _channels[com ] .readLast() ;
263 }
264 } ;
265 }
266 } ;
267 factory.append(
268 new PromelaTransitionFactory( false , 22, 1 , 0 , ”com!( cnt * 2)”) {
269 public final boolean isEnabled() {
270 return com != −1 && !_channels[com ] .isRendezVous() &&

_channels[com ] .canSend() ;
271 }
272

273 public int [ ] getRendezvous() {
274 i f ( !_channels[com ] .isRendezVous() ) return null ;
275 return new int [ ]{com , (cnt * 2)} ;
276 }
277

278 public final PromelaTransition newTransition() {
279 return new NonAtomicTransition() {
280 public final void takeImpl() throws ValidationException {
281 _channels[com ] .send((cnt * 2)) ;
282 }
283

284 public final void undoImpl() {
285 _channels[com ] .readLast() ;
286 }
287 } ;
288 }
289 }) ;
290 _stateTable[ 1 ] = new State(generator. this , factory, false , false ,

false) ;
291

292 factory =
293 new EndTransitionFactory(14) ;
294 _stateTable[ 2 ] = new State(generator. this , factory, true , false ,

false) ;
295

296 }
297

298 public generator() throws ValidationException {
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299 this( false) ;
300

301 cnt = 0;
302 }
303

304 public int getSize() {
305 return 3;
306 }
307

308 public void encode(DataWriter _writer) {
309 _writer.writeByte(0x1) ;
310 _writer.writeByte(_sid) ;
311 _writer.writeByte(cnt) ;
312 }
313

314 public boolean decode(DataReader _reader) {
315 i f (_reader.readByte() != 0x1) return false ;
316 _sid = _reader.readByte() ;
317 cnt = _reader.readByte() ;
318 return true ;
319 }
320

321 public String toString() {
322 StringBuilder sb = new StringBuilder() ;
323 i f (_exclusive == _pid) sb .append(”<atomic>”) ;
324 sb .append(”generator (” + _pid + ” ,” + _sid + ”) : ”) ;
325 sb .append(”cnt = ”) .append(cnt) .append( ’\t ’ ) ;
326 return sb .toString() ;
327 }
328

329 }
330

331 public class monitor extends PromelaProcess {
332

333 public monitor(boolean decoding) {
334 super(TestModel. this , new State[ 1 ] , 0) ;
335

336 PromelaTransitionFactory factory;
337 factory =
338 new PromelaTransitionFactory( false , 23, 0 , 0 , ”assert ( total <

16256)”) {
339 public final PromelaTransition newTransition() {
340 return new NonAtomicTransition() {
341 public final void takeImpl() throws ValidationException {
342 i f ( ! (total < 16256)) throw new AssertionException(”( total

< 16256)”) ;
343 }
344 } ;
345 }
346 } ;
347 _stateTable[ 0 ] = new State(monitor. this , factory, false , false ,

false) ;
348
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349 }
350

351 public monitor() throws ValidationException {
352 this( false) ;
353

354 }
355

356 public int getSize() {
357 return 2;
358 }
359

360 public void encode(DataWriter _writer) {
361 _writer.writeByte(0x2) ;
362 _writer.writeByte(_sid) ;
363 }
364

365 public boolean decode(DataReader _reader) {
366 i f (_reader.readByte() != 0x2) return false ;
367 _sid = _reader.readByte() ;
368 return true ;
369 }
370

371 public String toString() {
372 StringBuilder sb = new StringBuilder() ;
373 i f (_exclusive == _pid) sb .append(”<atomic>”) ;
374 sb .append(”monitor (” + _pid + ” ,” + _sid + ”) : ”) ;
375 return sb .toString() ;
376 }
377

378 }
379 }
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Appendix B

Benchmark results

Table B.1: Results of all the model that were run using Spin and SpinJ. This
benchmark was using run without Partial Order Reduction.

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

adding.6 Spin 7.61 11.75 1088640 99 4.38 325.43

SpinJ 7.61 11.75 1088640 99 14.45 296.43

Difference 0.00 0.00 0 0 3.30× 0.91×

at.4 Spin 6.60 25.47 0 851760 10.70 493.09

SpinJ 6.60 25.47 0 851760 36.88 346.74

Difference 0.00 0.00 0 0 3.45× 0.70×

bakery.6 Spin 11.85 40.40 2469 1724631 17.00 816.14

SpinJ 11.85 40.40 2469 1724631 58.36 546.93

Difference 0.00 0.00 0 0 3.43× 0.67×

blocks.3 Spin 0.70 2.09 1 487724 0.95 166.43

SpinJ 0.70 2.09 1 487724 3.78 121.60

Difference 0.00 0.00 0 0 3.97× 0.73×

bopdp.3 Spin 1.06 2.80 2 221 1.92 181.38

SpinJ 1.05 2.77 2 205 6.14 128.03

Difference -0.01 -0.03 0 -16 3.20× 0.71×

bridge.2 Spin 14.37 39.78 152317 125 37.90 996.72

SpinJ 14.37 39.78 152317 108 102.22 612.43

Difference 0.00 0.00 0 -17 2.70× 0.61×

brp.3 Spin 2.27 5.18 6798 55183 4.52 400.75

SpinJ 2.27 5.18 6798 41747 16.92 206.72

Difference 0.00 0.00 0 -13436 3.74× 0.52×

(continued on the next page. . . )

77



Table B.1 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

cambridge.4 Spin 2.24 5.71 144667 126174 6.13 517.36

SpinJ 2.24 5.71 144667 120454 27.25 256.33

Difference 0.00 0.00 0 -5720 4.45× 0.50×

driving phils.4 Spin 9.34 20.10 0 1880897 11.60 1399.99

SpinJ 10.24 22.15 0 2016315 126.27 1125.31

Difference 0.90 2.05 0 135418 10.89× 0.80×

Out of memory: Spin & Spinj

elevator.3 Spin 8.61 33.40 0 249999 35.30 1399.97

SpinJ 13.62 44.83 0 249999 203.52 1107.09

Difference 5.01 11.43 0 0 5.77× 0.79×

Out of memory: Spin

elevator.4 Spin 7.17 31.51 0 249999 37.10 1399.97

SpinJ 13.50 49.80 0 249999 355.24 1219.76

Difference 6.33 18.29 0 0 9.58× 0.87×

Out of memory: Spin & Spinj

elevator2.3 Spin 7.67 55.38 0 883189 19.80 528.83

SpinJ 7.67 55.38 0 883189 67.67 446.07

Difference 0.00 0.00 0 0 3.42× 0.84×

elevator planning.2 Spin 11.43 93.28 7 7923957 39.40 1155.75

SpinJ 11.43 93.28 7 7923957 138.05 798.10

Difference 0.00 0.00 0 0 3.50× 0.69×

extinction.2 Spin 0.81 3.58 211 166 2.36 184.41

SpinJ 0.81 3.58 211 165 11.97 138.19

Difference 0.00 0.00 0 -1 5.07× 0.75×

firewire link.7 Spin 2.47 8.23 22032 358 13.40 1361.07

SpinJ 2.47 8.23 22032 306 63.03 516.47

Difference 0.00 0.00 0 -52 4.70× 0.38×

fischer.6 Spin 8.32 33.45 0 105361 16.00 584.25

SpinJ 8.32 33.45 0 105361 59.30 448.98

Difference 0.00 0.00 0 0 3.71× 0.77×

frogs.3 Spin 0.76 0.77 188022 260 0.61 110.58

SpinJ 0.76 0.77 188022 260 2.11 104.83

Difference 0.00 0.00 0 0 3.46× 0.95×

(continued on the next page. . . )
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Table B.1 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

gear.2 Spin 0.32 0.69 3564 29995 0.53 132.20

SpinJ 0.32 0.69 3564 26217 3.05 92.84

Difference 0.00 0.00 0 -3778 5.73× 0.70×

hanoi.2 Spin 0.53 1.59 0 531447 0.97 206.76

SpinJ 0.53 1.59 0 531447 3.38 131.56

Difference 0.00 0.00 0 0 3.49× 0.64×

iprotocol.4 Spin 8.29 29.63 0 1409 27.60 1399.97

SpinJ 3.07 8.94 0 952 28.08 302.46

Difference -5.22 -20.69 0 -457 1.02× 0.22×

Out of memory: Spin

krebs.4 Spin 18.40 106.78 606 163 46.70 1322.04

SpinJ 10.71 61.09 606 159 95.41 618.62

Difference -7.69 -45.68 0 -4 2.04× 0.47×

lamport.6 Spin 8.72 31.50 576 141173 11.00 504.37

SpinJ 8.72 31.50 576 141173 38.31 334.09

Difference 0.00 0.00 0 0 3.48× 0.66×

lamport nonatomic.3 Spin 0.34 1.35 0 124787 1.19 119.31

SpinJ 0.34 1.35 0 99864 4.88 89.09

Difference 0.00 0.00 0 -24923 4.10× 0.75×

lann.3 Spin 7.73 37.08 431 1568361 35.40 1399.99

SpinJ 13.63 71.48 432 1575709 228.89 1019.66

Difference 5.90 34.40 1 7348 6.47× 0.73×

Out of memory: Spin

leader filters.5 Spin 1.57 4.68 6090 65 1.77 172.20

SpinJ 1.40 4.15 6090 64 5.91 128.30

Difference -0.17 -0.54 0 -1 3.34× 0.75×

loyd.2 Spin 0.36 0.97 0 199348 0.41 93.82

SpinJ 0.36 0.97 0 199348 1.69 79.12

Difference 0.00 0.00 0 0 4.15× 0.84×

mcs.3 Spin 0.57 2.08 0 141147 0.72 105.34

SpinJ 0.57 2.08 0 141147 3.06 89.84

Difference 0.00 0.00 0 0 4.26× 0.85×

msmie.4 Spin 7.13 11.06 640 52287 11.70 807.79

SpinJ 7.13 11.06 640 52287 35.50 502.95

Difference 0.00 0.00 0 0 3.03× 0.62×

(continued on the next page. . . )
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Table B.1 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

needham.4 Spin 8.30 27.37 203680 54 33.90 1203.75

SpinJ 8.30 27.37 203680 40 85.97 887.13

Difference 0.00 0.00 0 -14 2.54× 0.74×

peg solitaire.4 Spin 0.87 5.47 3290 24 5.22 110.81

SpinJ 0.87 5.47 3290 24 10.91 108.02

Difference 0.00 0.00 0 0 2.09× 0.97×

peterson.4 Spin 1.12 3.86 0 76394 1.56 134.64

SpinJ 1.12 3.86 0 76394 4.75 110.75

Difference 0.00 0.00 0 0 3.04× 0.82×

phils.5 Spin 0.53 4.25 1 434031 1.81 173.46

SpinJ 0.53 4.25 1 434031 6.78 123.46

Difference 0.00 0.00 0 0 3.75× 0.71×

pouring.2 Spin 0.05 1.23 0 93403 9.78 99.68

SpinJ 0.05 1.23 0 46701 22.86 75.57

Difference 0.00 0.00 0 -46702 2.34× 0.76×

protocols.5 Spin 9.36 37.09 336 1258045 25.00 1144.85

SpinJ 6.24 23.82 336 815093 49.81 428.38

Difference -3.12 -13.27 0 -442952 1.99× 0.37×

public subscribe.2 Spin 7.78 27.71 4605 650828 26.90 1399.93

SpinJ 2.78 7.41 7200 98633 28.30 285.68

Difference -5.00 -20.30 2595 -552195 1.05× 0.20×

Out of memory: Spin

reader writer.3 Spin 0.75 4.27 227894 81942 25.60 191.38

SpinJ 0.75 4.27 227894 65545 33.13 131.15

Difference 0.00 0.00 0 -16397 1.29× 0.69×

rether.3 Spin 1.01 1.40 8578 221308 1.59 282.30

SpinJ 1.01 1.40 8578 174807 7.23 152.89

Difference 0.00 0.00 0 -46501 4.55× 0.54×

rushhour.4 Spin 0.33 3.39 0 295929 2.34 222.19

SpinJ 0.33 3.39 0 295929 13.17 127.57

Difference 0.00 0.00 0 0 5.63× 0.57×

schedule world.2 Spin 1.57 14.31 26000 20886 5.55 149.88

SpinJ 1.57 14.31 26000 20886 18.67 139.93

Difference 0.00 0.00 0 0 3.36× 0.93×

(continued on the next page. . . )
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Table B.1 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

sokoban.2 Spin 0.76 2.01 20 690 1.05 128.16

SpinJ 0.76 2.01 20 690 4.14 122.31

Difference 0.00 0.00 0 0 3.94× 0.95×

sorter.3 Spin 1.29 2.74 0 893 2.23 162.54

SpinJ 1.29 2.74 0 893 5.64 123.18

Difference 0.00 0.00 0 0 2.53× 0.76×

szymanski.4 Spin 2.31 8.55 0 74079 3.16 206.61

SpinJ 2.31 8.55 0 74079 11.41 156.32

Difference 0.00 0.00 0 0 3.61× 0.76×

telephony.3 Spin 0.77 3.16 0 47009 1.09 113.45

SpinJ 0.77 3.16 0 47009 4.77 97.24

Difference 0.00 0.00 0 0 4.38× 0.86×

Table B.2: Results of all the model that were run using Spin and SpinJ. This
benchmark was using run with Partial Order Reduction.

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

adding.6 Spin 7.61 11.75 1088640 99 4.69 354.43

SpinJ 7.61 11.75 1088640 99 15.19 296.43

Difference 0.00 0.00 0 0 3.24× 0.84×

at.4 Spin 6.60 25.47 0 851760 11.60 525.91

SpinJ 6.60 25.47 0 851760 42.20 346.74

Difference 0.00 0.00 0 0 3.64× 0.66×

bakery.6 Spin 11.85 40.40 2469 1724631 18.40 868.98

SpinJ 11.85 40.40 2469 1724631 63.84 546.93

Difference 0.00 0.00 0 0 3.47× 0.63×

blocks.3 Spin 0.70 2.09 1 487724 1.02 176.70

SpinJ 0.70 2.09 1 487724 3.94 121.60

Difference 0.00 0.00 0 0 3.86× 0.69×

bopdp.3 Spin 1.06 2.78 2 221 1.99 185.39

SpinJ 1.05 2.77 2 205 6.91 128.03

Difference -0.01 -0.01 0 -16 3.47× 0.69×

(continued on the next page. . . )
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Table B.2 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

bridge.2 Spin 14.37 39.78 152317 125 40.30 1051.11

SpinJ 14.37 39.78 152317 108 121.50 612.43

Difference 0.00 0.00 0 -17 3.01× 0.58×

brp.3 Spin 1.33 2.43 6798 19382 2.27 269.68

SpinJ 1.33 2.40 6798 14547 9.36 149.14

Difference 0.00 -0.03 0 -4835 4.12× 0.55×

cambridge.4 Spin 2.14 5.35 144667 114745 5.98 506.00

SpinJ 2.14 5.34 144667 108423 27.09 247.77

Difference 0.00 -0.01 0 -6322 4.53× 0.49×

driving phils.4 Spin 8.78 18.82 0 1799930 11.30 1399.94

SpinJ 10.24 22.15 0 2016096 132.03 1125.24

Difference 1.46 3.33 0 216166 11.68× 0.80×

Out of memory: Spin & Spinj

elevator.3 Spin 8.39 32.62 0 249999 34.40 1399.95

SpinJ 13.62 44.83 0 249999 212.95 1107.09

Difference 5.23 12.22 0 0 6.19× 0.79×

Out of memory: Spin

elevator.4 Spin 7.01 30.76 0 249999 38.50 1399.95

SpinJ 13.50 49.80 0 249999 375.14 1219.76

Difference 6.48 19.03 0 0 9.74× 0.87×

Out of memory: Spin & Spinj

elevator2.3 Spin 7.67 55.38 0 883189 20.60 565.76

SpinJ 7.67 55.38 0 883189 70.63 446.07

Difference 0.00 0.00 0 0 3.43× 0.79×

elevator planning.2 Spin 11.43 93.28 7 7923957 40.80 1229.92

SpinJ 11.43 93.28 7 7923957 139.56 798.10

Difference 0.00 0.00 0 0 3.42× 0.65×

extinction.2 Spin 0.44 1.36 211 166 0.95 131.58

SpinJ 0.44 1.36 211 160 5.83 104.67

Difference 0.00 0.00 0 -6 6.11× 0.80×

firewire link.7 Spin 0.45 0.94 22032 285 1.84 302.09

SpinJ 0.45 0.94 22032 240 10.16 146.71

Difference 0.00 0.00 0 -45 5.52× 0.49×

(continued on the next page. . . )
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Table B.2 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

fischer.6 Spin 8.32 33.45 0 105361 17.20 617.14

SpinJ 8.32 33.45 0 105361 64.91 448.98

Difference 0.00 0.00 0 0 3.77× 0.73×

frogs.3 Spin 0.76 0.77 188022 260 0.66 113.51

SpinJ 0.76 0.77 188022 260 2.31 104.83

Difference 0.00 0.00 0 0 3.52× 0.92×

gear.2 Spin 0.32 0.69 3564 29995 0.56 134.42

SpinJ 0.32 0.69 3564 26217 3.31 92.84

Difference 0.00 0.00 0 -3778 5.88× 0.69×

hanoi.2 Spin 0.53 1.59 0 531447 1.03 216.44

SpinJ 0.53 1.59 0 531447 3.64 131.56

Difference 0.00 0.00 0 0 3.53× 0.61×

iprotocol.4 Spin 4.69 10.54 0 1218 10.70 841.45

SpinJ 3.07 8.91 0 952 32.52 301.96

Difference -1.62 -1.63 0 -266 3.04× 0.36×

krebs.4 Spin 17.07 67.45 606 163 32.50 1300.17

SpinJ 10.71 61.09 606 159 105.00 618.62

Difference -6.35 -6.35 0 -4 3.23× 0.48×

lamport.6 Spin 8.72 31.50 576 141173 11.80 538.62

SpinJ 8.72 31.50 576 141173 42.53 334.09

Difference 0.00 0.00 0 0 3.60× 0.62×

lamport nonatomic.3 Spin 0.28 0.88 0 99064 0.83 112.25

SpinJ 0.28 0.86 0 79341 3.70 85.13

Difference 0.00 -0.02 0 -19723 4.47× 0.76×

lann.3 Spin 7.33 35.04 431 1486017 33.80 1399.94

SpinJ 13.63 71.48 432 1575709 241.58 1019.66

Difference 6.30 36.45 1 89692 7.15× 0.73×

Out of memory: Spin

leader filters.5 Spin 1.52 4.26 6090 65 1.72 173.96

SpinJ 1.40 4.15 6090 64 6.70 128.30

Difference -0.11 -0.11 0 -1 3.90× 0.74×

loyd.2 Spin 0.36 0.97 0 199348 0.49 96.14

SpinJ 0.36 0.97 0 199348 1.84 79.12

Difference 0.00 0.00 0 0 3.79× 0.82×

(continued on the next page. . . )
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Table B.2 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

mcs.3 Spin 0.51 1.67 0 134904 0.63 104.83

SpinJ 0.51 1.65 0 134904 2.97 87.64

Difference 0.00 -0.02 0 0 4.75× 0.84×

msmie.4 Spin 7.13 11.06 640 52287 13.10 836.08

SpinJ 7.13 11.06 640 52287 44.72 502.95

Difference 0.00 0.00 0 0 3.41× 0.60×

needham.4 Spin 2.36 3.80 203680 54 4.99 398.18

SpinJ 2.36 3.80 203680 40 14.91 298.61

Difference 0.00 0.00 0 -14 2.99× 0.75×

peg solitaire.4 Spin 0.87 5.47 3290 24 4.24 115.09

SpinJ 0.87 5.47 3290 24 11.16 108.02

Difference 0.00 0.00 0 0 2.63× 0.94×

peterson.4 Spin 0.75 2.49 0 68989 1.00 118.41

SpinJ 0.75 2.47 0 68989 3.56 96.75

Difference 0.00 -0.02 0 0 3.56× 0.82×

phils.5 Spin 0.53 4.25 1 434031 1.88 183.14

SpinJ 0.53 4.25 1 434031 7.48 123.46

Difference 0.00 0.00 0 0 3.98× 0.67×

pouring.2 Spin 0.05 1.23 0 93403 9.06 100.83

SpinJ 0.05 1.23 0 46701 23.13 75.57

Difference 0.00 0.00 0 -46702 2.55× 0.75×

protocols.5 Spin 3.14 8.15 336 730301 6.53 488.71

SpinJ 2.96 7.71 336 571812 20.58 252.96

Difference -0.18 -0.44 0 -158489 3.15× 0.52×

public subscribe.2 Spin 2.71 5.46 7200 274039 5.58 584.22

SpinJ 1.72 3.56 7200 86341 15.72 213.48

Difference -0.99 -1.90 0 -187698 2.82× 0.37×

reader writer.3 Spin 0.75 4.27 227894 81942 24.90 195.17

SpinJ 0.75 4.27 227894 65545 37.94 131.15

Difference 0.00 0.00 0 -16397 1.52× 0.67×

rether.3 Spin 0.99 1.34 8578 221308 1.64 282.76

SpinJ 0.99 1.34 8578 174807 7.75 151.14

Difference 0.00 -0.00 0 -46501 4.73× 0.53×

(continued on the next page. . . )
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Table B.2 – Continued

Model sta
tes

(·1
0
6 )

tra
nsit

ion
s (·1

0
6 )

err
ors

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

rushhour.4 Spin 0.33 3.39 0 295929 2.47 230.99

SpinJ 0.33 3.39 0 295929 13.84 127.57

Difference 0.00 0.00 0 0 5.60× 0.55×

schedule world.2 Spin 1.57 14.31 26000 20886 5.70 156.88

SpinJ 1.57 14.31 26000 20886 19.11 139.93

Difference 0.00 0.00 0 0 3.35× 0.89×

sokoban.2 Spin 0.76 2.01 20 690 1.03 130.99

SpinJ 0.76 2.01 20 690 4.27 122.31

Difference 0.00 0.00 0 0 4.15× 0.93×

sorter.3 Spin 1.29 2.74 0 893 2.33 167.42

SpinJ 1.29 2.74 0 893 6.58 123.18

Difference 0.00 0.00 0 0 2.82× 0.74×

szymanski.4 Spin 2.27 7.12 0 68686 2.86 213.62

SpinJ 2.27 7.10 0 68686 10.91 154.72

Difference 0.00 -0.03 0 0 3.81× 0.72×

telephony.3 Spin 0.77 3.16 0 47009 1.17 117.33

SpinJ 0.77 3.16 0 47009 5.28 97.24

Difference 0.00 0.00 0 0 4.51× 0.83×

Table B.3: Results of all the model that were run using Spin and SpinJ. This
benchmark was using run with Bitstate Hashing.

Model sta
tes

miss
ed

tra
nsit

ion
s miss

ed

err
ors

miss
ed

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

adding.6 Spin 3 6 0 99 6.70 512.20

SpinJ 9 11 3 99 12.55 256.20

Difference 0 1.87× 0.50×

at.4 Spin 1 4 0 851760 14.90 629.10

SpinJ 1 3 0 851760 40.66 287.07

Difference 0 2.73× 0.46×

bakery.6 Spin 18 64 0 1724631 22.50 646.58

SpinJ 13 43 0 1724631 59.34 287.07

Difference 0 2.64× 0.44×

(continued on the next page. . . )
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Table B.3 – Continued

Model sta
tes

miss
ed

tra
nsit

ion
s miss

ed

err
ors

miss
ed

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

bridge.2 Spin 38 104 0 125 44.40 512.20

SpinJ 66 212 0 108 108.83 256.20

Difference -17 2.45× 0.50×

cambridge.4 Spin 0 0 0 114745 6.08 521.76

SpinJ 0 0 0 108423 28.22 260.05

Difference -6322 4.64× 0.50×

elevator2.3 Spin 2 11 0 883189 26.80 611.82

SpinJ 4 30 0 883189 73.61 287.07

Difference 0 2.75× 0.47×

fischer.6 Spin 2 12 0 105361 20.40 526.15

SpinJ 17 68 0 105361 64.47 260.04

Difference 0 3.16× 0.49×

iprotocol.4 Spin 0 0 0 1218 11.30 520.78

SpinJ 0 0 0 952 31.27 260.05

Difference -266 2.77× 0.50×

krebs.4 Spin 10 39 0 163 43.30 1024.20

SpinJ 9 49 0 159 102.31 256.20

Difference -4 2.36× 0.25×

lamport.6 Spin 3 12 0 141173 16.10 521.85

SpinJ 7 22 0 141173 40.05 260.05

Difference 0 2.49× 0.50×

msmie.4 Spin 0 0 0 52287 14.50 523.71

SpinJ 0 0 0 52287 43.69 260.05

Difference 0 3.01× 0.50×

needham.4 Spin 0 0 0 54 5.51 512.20

SpinJ 0 0 0 40 15.17 256.21

Difference -14 2.75× 0.50×

protocols.5 Spin 0 0 0 730301 7.61 596.58

SpinJ 0 0 0 571812 20.25 287.07

Difference -158489 2.66× 0.48×

public subscribe.2 Spin 0 0 0 274039 6.06 583.59

SpinJ 0 0 0 86341 16.70 287.08

Difference -187698 2.76× 0.49×

(continued on the next page. . . )
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Table B.3 – Continued

Model sta
tes

miss
ed

tra
nsit

ion
s miss

ed

err
ors

miss
ed

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

szymanski.4 Spin 0 0 0 68686 4.03 523.90

SpinJ 0 0 0 68686 11.05 260.05

Difference 0 2.74× 0.50×

Table B.4: Results of all the model that were run using Spin and SpinJ. This
benchmark was using run with Hash Compaction.

Model sta
tes

miss
ed

tra
nsit

ion
s miss

ed

err
ors

miss
ed

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

adding.6 Spin 0 0 0 99 3.98 401.31

SpinJ 0 0 0 99 9.58 512.20

Difference 0 2.41× 1.28×

at.4 Spin 0 0 0 851760 10.40 491.35

SpinJ 0 0 0 851760 33.47 543.07

Difference 0 3.22× 1.11×

bakery.6 Spin 0 0 0 1724631 15.90 608.93

SpinJ 0 0 0 1724631 46.72 543.07

Difference 0 2.94× 0.89×

bridge.2 Spin 0 0 0 125 36.80 530.22

SpinJ 0 0 0 108 101.23 512.20

Difference -17 2.75× 0.97×

cambridge.4 Spin 0 0 0 114745 5.03 305.72

SpinJ 0 0 0 108423 25.13 516.05

Difference -6322 5.00× 1.69×

elevator2.3 Spin 0 0 0 883189 17.80 494.38

SpinJ 0 0 0 883189 57.24 543.07

Difference 0 3.22× 1.10×

fischer.6 Spin 0 0 0 105361 15.00 427.99

SpinJ 0 0 0 105361 53.74 516.04

Difference 0 3.58× 1.21×

iprotocol.4 Spin 0 0 0 1218 9.27 353.28

SpinJ 0 0 0 952 27.33 516.05

Difference -266 2.95× 1.46×

(continued on the next page. . . )
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Table B.4 – Continued

Model sta
tes

miss
ed

tra
nsit

ion
s miss

ed

err
ors

miss
ed

dep
th

tim
e (se

con
ds)

mem
ory

(M
b)

krebs.4 Spin 0 0 0 163 28.20 837.68

SpinJ 0 0 0 159 83.02 1024.19

Difference -4 2.94× 1.22×

lamport.6 Spin 0 0 0 141173 10.30 431.21

SpinJ 0 0 0 141173 43.30 516.05

Difference 0 4.20× 1.20×

msmie.4 Spin 0 0 0 52287 11.90 402.69

SpinJ 0 0 0 52287 36.06 516.05

Difference 0 3.03× 1.28×

needham.4 Spin 0 0 0 54 4.52 301.22

SpinJ 0 0 0 40 12.13 512.21

Difference -14 2.68× 1.70×

protocols.5 Spin 0 0 0 730301 5.67 392.82

SpinJ 0 0 0 571812 18.06 543.07

Difference -158489 3.19× 1.38×

public subscribe.2 Spin 0 0 0 274039 4.73 371.72

SpinJ 0 0 0 86341 14.64 543.08

Difference -187698 3.10× 1.46×

szymanski.4 Spin 0 0 0 68686 2.58 310.21

SpinJ 0 0 0 68686 8.75 516.05

Difference 0 3.39× 1.66×
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Appendix C

Supported features by SpinJ

C.1 promela language

The promela language is supported by SpinJ, but not all its features. The
following parts are supported and tested:� Definition of proctype with parameters.� Definition of the init process.� The never claim.� mtype definition.� Global and local variables:

– bit, bool, byte, pid, short, int, mtype types.

– Channels, both rendez-vous and buffered.� The following statements:

– XR and XS statements.

– if-selections.

– do-loops.

– Labels.

– goto-statements, except inside d step-sequences.

– Channel send and receive statements.

– else-statement.

– Assignments.

– Basic expressions.

– printf-statements.

– assert-statements.

– break-statements.
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– atomic sequences.

– d step sequences.

The following promela language features are explicitly not supported:� Inline C code (using c code etc.). It is almost impossible to support this,
but a Java variation should be possible.� unless statements.� Custom type definitions.

C.2 Algorithms

SpinJ supports several different type of algorithms:� Search algorithms:

– Depth First Search

– Breadth First Search

– Nested Depth First Search� Storage algorithms:

– Probing hash table

– Linked-list hash table

– Array-list hash table

– Bitstate hashing

– Hash compaction� Hash functions:

– Jenkins Hash

– Hsieh Hash� Optimisation algorithms:

– Partial Order Reduction

– Statement merging

C.3 Command line options

The SpinJ promela compiler has the following command line options:� -j In stead of Java code, it compiles it directly and packes it into a jar-file.� -nname Sets the name of the model. By default the original filename is
used to generate a name.
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� -o3 Disables statement merging during compilation.� -sdir Sets the output directory for the source code. Default:
spin/generated.

On runtime the following command line options can be given when running
a model:� -A Disables assertion checking.� -DARRAY Uses a hash table with array lists.� -DBITSTATE Uses bitstate hashing.� -DBFS Uses breadth first search.� -DGRANDOM Uses the random simulation.� -DGTRAIL Uses the guided simulation.� -DGUSER Uses the interactive simulation.� -DHC Uses hash compaction.� -DNOREDUCE Disables partial order checking.� -E Ignores invalid end states.� -N Disables the never-claim.� -a Enables nested depth first search, to search for acceptance cycles.� -b Exceeding the depth limit is considered and error in stead of a warning.� -cN Stops the verification after N errors. When N is 0, it never stops.� -kN Sets N bits per state when using bitstate hashing or hash

compaction. For hash compaction this number must be a multiple of
8.� -mN Sets the maximum search depth.� -v Prints the version and exists.� -wN Sets the number of hash entries in the state storage to 2N .
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