
Formal Methods and Tools (FMT) research group

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

Master thesis

Analysis of Attack Trees
with Timed Automata

transforming formalisms through metamodeling

Author:
Wolters N.H.

Committee:
dr. M.I.A. Stoelinga

dr. S.Schivo

R.Kumar, Msc

March 24, 2016

Acknowledgements

First of all I would like to express my gratitude towards my committee.
Marielle Stoelinga for her guidance and patience during the graduation process. For
always showing interest when presented with updates and for asking the right questions
that led to new insights. Rajesh Kumar for his always upbeat attitude and willingness
to share his extensive knowledge within the Attack Trees domain. Stefano Schivo for
his quick rounds of feedback and his humor within these notes, that made the whole
feedback process enjoyable.

Secondly I would like to thank Daniel, Marcus and Tara for proofreading this document,
both during my graduation process and in the final weeks leading up to the defence.

Thanks to David, whose fruitful collaboration on the whole meta-modelling and Epsilon
transformation part resulted in very good results.

Thanks to Tara, for her always positive attitude and her decisiveness to push for
the importance of, and her experience in, creating a design.

Finally, last but definitely not least, for their unquestionable support during last
years hard times, I would like to take this opportunity to thank Jos, Femia, Tara,
Noortje, Thom, residents and former residents of Huize Badeendt, family, colleagues
and whoever I might have forgotten here.

Abstract

This thesis considers Attack Trees, one of the most prominent security formalisms
for analysing threats, and provides methods to transform this formalism into Timed
Automata. Which can be analysed with Uppaal, resulting in di�erent types of analysis
and thus in additional possibilities for results. This thesis provides a meta-modelling
approach to the transformation of input ATs from ADTool into an instance of Uppaal.
For this to work, we also introduce the Attack Tree Meta Model (ATMM) which can be
used to store a wide variety of Attack Tree related formalisms. Furthermore the Epsilon
Framework is used to provide transformations from and towards the ATMM. The
Epsilon Transformation Language (ETL) is used for model-to-model transformations
and the Epsilon Generation Language (EGL) for the model-to-text part. This thesis
contains the following transformations: ADTool2ATMM and ATMM2ADTool as ETL
model-to-model transformations and ATMM2Uppaal as an model-to-text transforma-
tions. As a final deliverable all the transformations and internal ATMM are included
in a standalone java tool, which can transform ADTool input into a Uppaal model
which can be used for Attack Tree analysis.

Contents

Abstract iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 3
1.2 Deliverables . 6
1.3 Document Structure . 7

2 Attack Trees 9
2.1 How we are using Attack Trees . 9
2.2 State of Art in the field of Attack Trees 10

2.2.1 Attacker Profiles . 20
2.3 Attack Tree Domains . 22

2.3.1 Attack Trees . 22
2.3.2 Attribute Domain . 23
2.3.3 Domains in ADTool . 23

2.4 Examples . 26

3 Attack Trees as Timed Automata 31
3.1 Timed Automata . 31
3.2 Uppaal . 32
3.3 Uppaal Templates . 33

4 Attack Tree Meta Model 43
4.1 Meta-Modelling in general . 43
4.2 Attack Tree Meta-Model . 48

vi Contents

4.2.1 Basis / Core . 49
4.2.2 Connectors . 50
4.2.3 Attributes . 51
4.2.4 Roles and Edges . 52

4.3 Design Choices & Limitations . 53

5 Transformations 57
5.1 Problem Statement . 57
5.2 Epsilon Language Family . 58
5.3 Transformation choices . 62

5.3.1 Java program Adt2Upp.jar . 68
5.3.2 ADTool2ATMM . 69
5.3.3 ATMM2ADTool . 69
5.3.4 ATMM2Uppaal . 69
5.3.5 Compiled Jar . 69

6 Transformation Demonstration 71

7 Results 81
7.1 Discussion . 83

7.1.1 Evaluation of the possible tools 84
7.1.2 Evaluation of the model transformation frameworks 85

7.2 Recommendation for Future Work . 87

8 Conclusion 91

Bibliography 93

9 Appendices 97
9.1 Appendix A: ADTool2ATMM (ETL) 97
9.2 Appendix B: ATMM2ADTool (ETL) 102
9.3 Appendix C: ATMM2Uppaal (EGL) 105
9.4 Appendix D: ATMM2Uppaal import 119
9.5 Appendix E: Templates for the Uppaal model 120
9.6 Appendix F: Attack Tree Meta Model (ATMM) 125
9.7 Appendix G: Java Standalone . 126

List of Figures

1.1 Transforming ATs into a Uppaal model, via a meta-model 5

2.1 Example 1: EnterRoom (time based) 13
2.2 Example of an OWA-gate . 13
2.3 Example of an Enhanced Attack Tree 14
2.4 Example of a Defense Tree . 15
2.5 Example of an Attack Countermeasure Tree 15
2.6 Meta-model used for Countermeasure Graphs 16
2.7 Example of a simple Insecurity Flow 17

3.1 Basic Element (Trigger: Exp(1/e)) . 34
3.2 Basic Element (Trigger: Erlang(n, 1/rate)) 35
3.3 Basic Element (Trigger: Time(min,max)) 36
3.4 Dormant Basic Element (Trigger: Exp(1/c)) 37
3.5 Dormant Basic Element (Trigger: Time(min,max)) 38
3.6 AND-gate, with 2 children . 39
3.7 OR-gate, with 2 children . 40
3.8 Dormant AND-gate, with 2 children . 41
3.9 Dormant OR-gate, with 2 children . 42

4.1 Meta-modelling example . 44
4.2 M1,M2,M3 metamoddeling example . 45
4.3 The proposed meta-model v1.0 . 48
4.4 Core of the meta-model . 49
4.5 Connectors used for the meta-model . 50
4.6 Attributes in the meta-model . 51
4.7 Roles and Edges in the meta-model . 52
4.8 Example instance of a small Attack Tree 54

viii List of Figures

5.1 Resulting instance . 60
5.2 Input instance . 61
5.3 Basic chain within the java program . 65
5.4 Class diagram of Adt2Upp.jar . 68

6.1 EnterRoom Example . 72
6.2 Example 1 as an instance of ATMM . 75

7.1 A screenshot of the ADTool GUI . 86

9.1 Basic Element (Trigger: Exp(1/e)) . 120
9.2 Basic Element (Trigger: Erlang(c, 1/d)) 120
9.3 Basic Element (Trigger: Time(c,d)) . 121
9.4 Dormant Basic Element (Trigger: Exp(1/e)) 121
9.5 Dormant Basic Element (Trigger: Erlang(c, 1/d)) 122
9.6 Dormant Basic Element (Trigger: Time(c,d)) 122
9.7 AND-gate, with 2 children . 123
9.8 OR-gate, with 2 children . 123
9.9 Dormant AND-gate, with 2 children . 124
9.10 Dormant OR-gate, with 2 childre . 124
9.11 Attack Tree Meta Model v1.0 . 125

List of Tables

2.1 Overview of the Attack Tree Formalisms 18

4.1 Formalisms from Kordy et al. [32] and how they fit in the ATMM . . . 55

7.1 Tool Comparison . 85
7.2 Transformation Languages Comparison 87

We live in a time where we are being, arguably already have been, surpassed by techno-
logy. Systems become larger, more complex and at the same time more safety-critical
every day. Our society depends on these systems to function correctly as expected
and have an 24/7 uptime, but often lack the proper knowledge and skill to ensure
this. To verify that these systems cannot ’fail’, great progress has been made by
research to make the best fault tolerant digital systems, make it stable, use the best
resources, and test it thoroughly. Commonly neglected is the possibility of a possible ma-
licious user; a user who will use and abuse every weakness he or she can find in a system.

For example, we can ensure that a 12 letter camel-case password with a few numbers
and symbols is potentially uncrackable, but when this password cannot be remembered
by a person and he or she chooses to write it down, this becomes a new security risk. A
malicious user would in this case be much more likely to find the paper than attempt
to crack the password.

Another instance surrounds online bank transactions. A system might use a password
and an email message to identify the user. However this system could neglect the
possibility of a so called man in the middle attack [14], in which case the malicious user
can intercept both the outgoing password and the returning email to abuse them at will.

2 Introduction

This kind of behavior should be considered when developing new or maintaining
existing software systems. For this the European project TREsPASS [4] is going to
provide an "attack navigator", which will be used to identify weak points and provide
possible attack routes and their attached counter-measures to prevent these attacks.
This navigator uses multiple steps to get to its final result, one of these steps is the
analysis on one of the intermediate models, named Attack Trees.

Attack Trees (ATs) are a graphical representation of a combination of low level hostile
activities, which when combined make up an attack. Depending on how these low
level activities (basic elements) are linked to the root of the tree, an attack is either
successful or not. The root contains the actual goal for the attacker and is often related
the most valuable things in an organization.

The field of attack trees will be the main concern of this work. Attack trees are
a formalism which can contain all information that is relevant for large security ques-
tions, but extracting useful data out of this has proven to be time-consuming for larger
trees. Tools like ATCalc [2] and ADTool [31][1] are already capable of attack tree
analysis, but all have their own limitations or restrictions. ADTool for instance can
only handle singular attributes at a time, while it might be desired to draw conclusions
about multiple.

This thesis provides an Uppaal model for multi-parameter attack trees, a complete
meta-model for general attack trees, transformations from and to the meta-model
and finally a separate transformation from an Uppaal meta-model into actual Uppaal
code. These model transformations from di�erent sources are included, not only for
completeness, but also as a proof of concept for future implementations. As outgoing
transformations two implementations are provided, firstly one from the meta-model
to ADTool [31][1] and secondly one from the meta-model to Uppaal [5][11], the latter
being the major contribution of this thesis, both the resulting Uppaal model and its
transformation.

1.1 Background 3

1.1 Background

TREsPASS

TREsPASS [4] is a European project structured around combining expertise from
technical sciences, social sciences and state of the art processes and tools to tackle the
grand problem of information security threats. The project consortium has partners
from di�erent fields who combine their knowledge in a large chain of processes which
will be available through the TREsPASS attack navigator. This navigator allows for
the user to specify an environment, e.g. the layout of a company, together with its
employees and their access levels. By analyzing this socio-technical model the navigator
creates attack scenarios, which are in turn stored in Attack Trees.

Attack Trees

Attack Trees allow for both a good visualization and multiple analysis methods. In
essence an attack tree has a reversed tree structure which represents a possible attack
on a system. The top node is called root and is the goal of the attack, e.g. stealing
data or preventing access for regular users. Every refinement divides the attack in
smaller attack steps, finally ending up with basic attack steps (i.e. cracking a password,
breaking a lock, etc). There are di�erent kinds of refinements, two of the most basic are
AND and OR refinements. The AND needs all its children to fire before it continues
and the OR only needs one. There are more possible refinements, but these will be
discussed further along this thesis. In Section 2.4 we will provide some examples of
Attack Trees.

Attack Tree Analysis

Attack Trees are also very useful for security analysis. Because they provide a formal,
methodical way of describing scenarios which can be used for both qualitative and
quantitative analysis [43]. Examples of results gathered from these analysis can be used
for Real-Time Monitoring or Anomaly Detection [43]. The analysis can be performed
given certain parameters in the leaves. Leaves can contain values like e.g. cost, rewards,
risk or success probability. Based on how they are linked through intermediate nodes
the values of the parameters propagate upwards. For example, if two leaves have a
50% probability of success and they are connected with an AND-gate, the probability
of this sub-tree succeeding is 25%. Ways to analyze are numerous, simple trees can

4 Introduction

easily be checked by hand, while for more advanced trees the use of analytical tools is
desired. One of these tools, primarily focusing on real-time systems, is Uppaal.

Uppaal

Uppaal is a tool developed by the Uppsala University and the Aalborg University. This
tool is primarily used for the modeling of real-time systems and therefor finds its basis
in the form of timed automata. Uppaal is a tool that uses the parallelization of these
automata, is primarily used in the scientific community and is at the base of a number
of di�erent variants, which all allow for di�erent types of analysis. Newer versions of
Uppaal allow for Statistical Model Checking (SMC)[17] or for Cost Optimal Reachability
Analysis (CORA)[6]. For this research the focus will be primarily on the functionality
of standard Uppaal, combined with some of the statistical extensions. Since the Attack
Trees cannot be directly modeled into an Uppaal model, this thesis has a big focus
on the transformation process. For this process, Attack Trees are first transformed
into an intermediate model (meta-model), before the second step will complete the
transformation to Uppaal.

Meta-modelling

A meta-model or surrogate model is a model of a model. It is to be considered one
abstraction higher than general models. It contains multiple entities, rules, constraints
and frames which all apply to the instance of this meta-model. In this thesis a
meta-model for Attack Trees is presented, which is complete enough to represent the
majority of the threat formalisms defined by Kordy et al. [32]. The actual attack tree
meta-model can be found in Appendix F. Using this as an intermediate model should
allow future extensions to easily adapt and use the already existing transformation
into the Uppaal-model. An example of the overall transformation process can be found
in Figure 1.1.

A model transformation is the process of converting one model into a di�erent one.
This can be done by multiple methods, one of which uses Epsilon [28]. Epsilon is
a modeling framework which was primarily created for code-generation and model-
to-model transformations, but also supports options for validation, comparison and
refactoring.

1.1 Background 5

Figure 1.1: Transforming ATs into a Uppaal model, via a meta-model

One of the languages supported by the Epsilon framework is the Epsilon Transfor-
mation Language (ETL), this rule based model-to-model transformation language is a
very complete language. It supports multiple input models, output models, rule-types
and can be used to access external libraries. A second language relevant to this thesis
is the Epsilon Generation Language (EGL), this is a model-to-text language and is
used for creating the Uppaal model. A sub-goal of this thesis is not only to provide
transformations from and to our meta-model, but also make it easy for follow-up
research to create their own transformations. Included with this thesis are a couple of
ETL-transformations and one EGL-transformations, which can be found in appendices
A-D.

Currently the amount of information that can be extracted from Attack Trees is
limited and there are no real applications that combine ATs with timed automata.
As extracting this information is a vital step in the TREsPASS attack navigator
chain, this issue needs to be fully explored and resolved. Since the current tools can
easily calculate static attack trees without combining di�erent parameters, the primary
problem that remains is the combination of multiple attributes within a tree and the
realistic representation of time in the analysis of Attack Trees.

6 Introduction

1.2 Deliverables
This thesis achieved the following results.

1. A multi-parameter Attack Tree model in Uppaal. Based upon the state of the
art, this thesis delivers an Uppaal model which can handle Attack Trees with
multiple domains of parameters.

2. An Attack Tree Meta-Model (ATMM). Abstracting the multiple tools into a more
generic intermediate model should allow future extensions to easily adapt and
use the already existing transformations.

3. Multiple transformations are included.

(a) ADTool2ATMM. A transformation in ETL from the ADTool xml output
into an instance of the meta-model.

(b) ATMM2ADTool. Inverse of the previous transformation, also using ETL.

(c) ATMM2Uppaal. This uses EGL to transform an instance of the meta-model
into a working Uppaal-model.

(d) UppaalEcore2Uppaal. Separate from our meta-model and the other transla-
tions, the need for an additional transformation arose. This transformation
requires an Uppaal meta-model instance as its input and converts it to an
Uppaal model.

4. A Tool incorporating the transformations, one generic tool which can be loaded
with the di�erent transformations.

(a) Version 1. Uses ADTool2ATMM and ATMM2Uppaal, this delivers a chain
of transformations which takes ADTool as an input and an Uppaal-model
as its output.

(b) Version 2. Only has the UppaalEcore2Uppaal. Takes an instance of the
meta-model as input and produces the Uppaal model.

1.3 Document Structure 7

1.3 Document Structure
This document is structured according to the multiple phases in the design process.
After the introduction its primary focus lies on Attack Trees, what are they, how can
they be useful. This will be the content of Chapter 2. Chapter 3 shows how these
ATs can be correctly represented in an Uppaal model and will contain the Uppaal
templates used for various elements of Attack Trees.

Chapter 4 describes the design and implementation of the Attack Tree Meta-Model,
why there is a need for a meta-model in the first place and what design choices have
been made in the process to creating this meta-model.

In order to make the work more complete, this thesis also presents multiple transfor-
mations to and from the meta-model. Chapter 5 first introduces the transformation
options and explains the choices made, followed by the actual transformations and
their design choices / limitations. At the end of this chapter both the meta-model and
the transformations will be combined in a stand-alone application which can be used
without the development environment.

Finally Chapter 6 will be used to illustrate a transformation demonstration. Starting
at an Attack Tree, modeling that in ADTool. Secondly using this instance to transform
it into the meta-model and finally transform it into the Uppaal model.

This concludes the design process and allows us to present the final results, discussion
and future work in Chapter 7. Finally Chapter 8 will contain the Conclusion.

2.1 How we are using Attack Trees

In order to perform Uppaals analysis of Attack Trees (ATs), our final goal is to create
a tool which can transform an AT into a Uppaal model, hence a stable goal should be
specified. This Uppaal model can be used by security analysts to extract the required
information. Currently several di�erent versions of the AT-formalism are used in the
field, therefore an analysis of the most relevant approaches will provide better insight
into what is needed and what the transformation should work towards.

Since our starting point uses the formalized Attack Trees used within the tool ADTool,
the formalism used in this tool, ADTrees, will be the basis of our implementation. The
formalism itself has a great structure, is clear and is capable of the most important
features of an AT, however a couple of limitations also emerge. ADTrees, only allows
for the analysis of single attributes. For every type of attribute (e.g. cost) every leaf
should have a value of this type. All these similar attributes are combined in one
Domain. A Domain does not only contain the attributes and its types, but most
importantly contains the methods on how to calculate these attributes when they
encounter AT-gates (e.g. when two Cost attributes they are added, while risk attributes
might be multiplied). And even though the basis of these attributes can be di�erent,

10 Attack Trees

there are currently only four types (satisfiability, time, cost, and risk) available in
ADTool. These types can be interpreted by the user as they please, but still lacks a
certain flexibility. Regarding the time domain, ADTool is limited over time abstract
analysis, whereas using probability distributions would be far more useful and allow
for more analysis.

The final resulting Uppaal model will be able to analyse the same features of ATs
as the attackers part of ADTool, but combining all the domains into one analysis.
This allows for analysing multi-parameters Attack Trees, e.g. combining costs with
damage in questions like What is the damage an attacker can do for a limited budget
of x?. Besides the use of multiple attributes our focus should also be on adding the
possibilities of time based analytic options. This would allow for representing more
realistic attack scenarios, e.g. what is the possibility of cracking a password within one
week?. This time based approach will also bring with itself a need for sequential attack
steps, e.g. Getting through a firewall before searching for the secure files. For this,
literature provides the Sequential AND (SAND) and the Sequential OR gate (SOR).
Therefore the SAND gate was included in our final solution. With the combination
of these features it is our firm understanding that the resulting Uppaal model has
analytic possibilities that greatly exceed the possibilities of ADTool.

Therefore the central research question in this chapter will be as follows:

Provide a AT model which can handle multiple attributes, combined with the timed
domain

• Which features are required in the AT model?

• How can multiple domains of attributes be implemented?

• What is the best option for implementing the element of time?

2.2 State of Art in the field of Attack Trees
There are many ways to represent attack / defence scenarios. For a representation to
be both useful and usable a balance between readability and formal representation
is very important. Lean too much to either side of this scale and the representation
either becomes very easy to read, but impossible to use in a mathematical context or
very formal and impossible to read without extensive prior knowledge. In this work

2.2 State of Art in the field of Attack Trees 11

we focus on avoiding the second scenario because of the naturally high involvement
of business lines in every security related design decision. Due to the possible lacking
technical knowledge on the subject a readable scenario will more likely be accepted
and implemented.

The basis of this chapter is a paper by Kordy et al. [32] which provides a state
of the art on attack and defence modelling approaches. In this paper the origin of
graphical attack modelling is defined as threat logic trees introduced by Weiss [45].
From this original concept more than 30 di�erent methods of modelling attack scenarios
have grown. Most of them can be seen as an extension of the original model in one or
more dimensions, which includes defensive components, timed actions, ordered actions,
dynamic aspects and di�erent types of quantifications. The most important of these
extensions are discussed in this section. Kordy et al. [32] generally focusses on directed
acyclic graphs (DAGs) and divides all the methods into two large subcategories, those
based on threat trees and those based on Bayesian networks.

Bayesian networks are a graphical modelling formalism which focusses on random
variables and the conditional dependencies between nodes. Since the main subject
of this work does not involve this method, we will only quickly introduce these networks.

A great advantage of using a tree based representation over Bayesian networks is
that most of the analysis algorithms are linear with respect to the number of nodes.
It has to be noted that, even though with Bayesian networks a lot of algorithms are
infeasible in worst case, in normal cases this e�ect will be limited due to the underlying
cycle-free structure [32].

First we will introduce Simple Attack Trees and secondly the ADTree formalism
and finally give an overview of the most relevant extensions provided in the review
paper [32]

Simple Attack Trees

Attack Trees first were introduced by Schneier in a paper in 1999 [9]. The proposed
concept is a tree structure with the attackers goal as its root and the basic attacks in
the leaves. All the intermediate nodes are refinements, either an AND or an OR gate,
which are respectively triggering if all or any of the children are triggered.

12 Attack Trees

Attack-Defense Trees

ADTrees are introduced by Kordy et al. [29] and focuses on the gap left in the formalism
presented by Schneier [9]. Simple Attack Trees only focus on the attackers perspective
and leave gaps in the analysis of which defensive moves will be most e�ective, ADTrees
provides the defensive side with countermeasure options, e.g. applying extra security
layers or increasing patrols. The model does this by introducing defensive nodes as
an inverse of the already existing nodes, this means the defensive nodes can also be
disjunctive, conjunctive or basic actions. To maintain simplicity the terminology of
ADTree is limited by only having a single node of the opposite type as its child. Thus,
a node can have multiple children of the same type (refinements) and zero or one child
of the opposite type (countermeasure). Note that this also allows for the possibility
in which a node can have a countermeasure followed by another attack followed by
another countermeasure.

Generally the analysis of the ADTree can be seen as a game between two players, one
(attacker) attempting to get into the root node as easily as possible and one (defender)
trying to stop this from happening. What is left can be seen as a turn-based game,
i.e. in a situation were a communication channel exists between Alice and Bob and
an unwanted listener (Eve) this game can have the following ’moves’. Eve installs a
keylogger, which results in Bob introducing a second authentication factor. As a result
Eve installs malware and so on.

As an example let us introduce Entering a Room (Figure 2.1) which models a possible
attack on a server room, with the end goal of entering the server room. There are
three disjunctive ways of achieving this goal, through the Window, Door or Wall.
Before one can use the window to enter the room, the attacker must Climb up to
the window and Break the Glass, in a non-sequential conjunctive approach since both
the actions must be done in a non-specific order. If the Attacker decides to use the
door, first he/she has to use the Key followed by opening the door, this is a sequential
conjunctive choice. Finally the attacker could resort to the more destructive option
of entering the room. To go through the wall the attacker can either use a form of
explosives or a hammer. Either one of these will work, hence this is a disjunctive choice.

Furthermore, the leaves have certain attributes. For understandability we have greatly
limited the amount, but in a normal situation there will be many more attributes. In
this example, we have time (i.e. the event occurs between x and y minutes) and boolean

2.2 State of Art in the field of Attack Trees 13

variables, which indicate if a certain tool is required to be available. Assuming that an
potential attacker has explosives and a maximum available time of 5 minutes, they can
potentially use the Explosive to get through the Wall and Enter the Room that way.

EnterRoom

Window Door Wall

BreakGlass Climb UseKey OpenDoor Explosive Hammer

t = [2..3] t = [9..15] t = [1..2] t = [1..1] t = [3..8] t = [25..50]
stone = true;

key = true; explosive = true; hammer = true;

Figure 2.1: Example 1: EnterRoom (time based)

ADTree comes with its own formal representation [29], which is named ADTerms and
allows to express the AT in a simple yet formal way. Replacing the sequential AND
with a normal AND in Figure 2.1 would result in the following ADTerms representation:

‚p(·p[BreakGlass,Climb],·p[UseKey,OpenDoor],‚p[Explosive,Hammer])

The following section will address the most relevant extensions.

OWA Trees

W

a1 a2 a3

Figure 2.2: Example of an OWA-gate

A simple extension of attack trees was proposed by Yager [47], and replaces the AND
and OR nodes with ordered weighted averaging (OWA) nodes. Where AND and OR
nodes are very restrictive (either all or at least one) the OWA operators allow quantifiers
such as most, half, some, etc. These trees are most useful when the model entails
probability. Figure 2.2 shows an example of such an owa-gate. In this figure the
weight factor (W) is the threshold, e.g. 80% and the attributes (a1 .. a3) store values
which contribute to the threshold. Once enough children have been triggered the whole
sub-tree will be triggered onwards.

14 Attack Trees

Enhanced Attack Trees

A

B E

C d F f g

a b c e
OR
AND
O-AND

Figure 2.3: Example of an Enhanced Attack Tree

Enhanced ATs have been introduced by Camtepe and Yener [16] to support an intrusion
detection engine with timed events. Such an engine attempts to detect intrusions on a
system or environment. Detecting intrusions in retrospect of ones that are currently
happening, which allows possible counteractions to be undertaken, before any further
damage has been done. One of the most relevant features is the possibility of modelling
sequential behaviour, which enforces certain basic elements to be executed in order. In
Figure 2.2 you can find an Enhanced Attack Tree, it contains OR gates, AND gates
and the new O-AND. This Ordered AND enforces the sequential behaviours described
earlier. In other work similar approaches are Sequential AND and Priority AND. In
essence these gates are similar, however all have slightly di�erent definitions regarding
ordered start times, ordered finish times etc.

Improved Attack Trees

Improved Attack Trees aim at dealing with security risks in a space-based information
system. Proposed by Wen-ping and Wei-min [35] the trees model attacks on e.g.
information links. Improved Attack Trees supports the OR / AND / SAND functionality.
The Sequential AND ensures the order of its children and closely resembled the
sequential behaviour we want to model in our implementation and will therefore be
imported in our Uppaal model.

2.2 State of Art in the field of Attack Trees 15

Defense Trees

Figure 2.4: Example of a Defense Tree

In 2006 Bistarelli [13] presented defense trees as an extension to provide a possibility
to model countermeasures within the leaf nodes of the tree. An example can be found
in Figure 2.4, the attack Break down door has a countermeasure Install a security door
and the ’attack’ Have the keys has Install a safety lock as its counter. The analysis
methods proposed have a formal basis and are successfully applied into the fields of
economics and game theory. Two extensions of these trees are Attack Countermeasure
Trees and Attack-Defence Trees

Attack Countermeasure Trees

Attack succes

AND

A

D1 D2

Figure 2.5: Example of an Attack Countermeasure Tree

Proposed by Roy et al. [39][40] these Attack Countermeasure Trees are closely related
to defense trees, but with the added benefit of allowing countermeasures to be attached
to intermediate nodes, allowing for more modelling possibilities. The di�erence being
that a countermeasure is attached directly onto a sub-tree, allowing it to change the
outcome of a whole sub-tree. This tree also allows for quantitative analysis as it
extended by adding probability and detection nodes to further specify steps in an
attack. An example of an Attack Countermeasure Tree can be found in Figure 2.5

16 Attack Trees

and originates from Roy [40]. In this example A is a regular attack step (Installing
a keylogger, whereas D1 and D2 are detection events, in this specific case that could
be a keystroke or a mouse movement. The attack will be a success is the keylogger
is installed and one of the key events is triggered. Finally this formalism introduces
and uses the k-out-of-n gate, which triggers if a certain amount of children have been
triggered. This gate is very interesting for further extensions on the Uppaal model
created in this chapter as it behaves rather similarly to our AND gates, but with a
lower threshold.

Protection Trees

Protection trees is a formalism that is specified around the idea that every company or
organisation has a limited amount of resources, which should be used most e�ciently.
Protection Trees allows the users to allocate resources towards certain defensive
possibilities and uses this to provide the optimal way to spend these resources. This
methodology introduced by Edge et al. [19][20] and is very similar to ATs, but most
nodes represent defensive moves. Such a tree is generated out of the relevant AT and
inverted by finding defensive measures for every leaf. Furthermore it is enriched with
three metrics, i.e. probability of success, financial costs and performance costs. These
metrics allow for a way to calculate the optimal spending of these limited budgets.
A noteworthy fact is that this formalism has been used to distribute budgets for US
Department of Homeland Security in 2006 [19].

Countermeasure graphs

Figure 2.6: Meta-model used for Countermeasure Graphs

Countermeasure Graphs flow from a concept introduced by Baca and Peterson [10] in
2010 and prioritises a countermeasure based on the internal links it has with possible
attacks, countermeasures and goals. Using the meta-model in Figure 2.6, one Goal
has 1-to-many Actors, which in turn have multiple possible Attacks. And finally these
attacks have multiple Countermeasures. This generation process blows up when there
are many goals/actors or attacks and creates a vast information web. Analysis methods

2.2 State of Art in the field of Attack Trees 17

will deduce the most useful countermeasure for a certain situation. Baca and Peterson
[10] do this by

• prioritizing Goals by their destructive result (either cost or stability)

• prioritizing Agents by their threat to the attached goals.

• prioritizing Attack by their chance of success.

• prioritizing Countermeasures by their e�ciency in preventing the connected
attacks.

This prioritisation process is done by assigning values to every item and simply
counting the result, this system not very complicated and greatly reduces the amount
of information to be further processed.

Extended Fault Trees

Extended Fault Trees, presented by Igor Nai Fovino[21] combine the failures of a system,
as already represented by fault trees, with the deliberate abuse of these failures by
malicious users. In essence these trees are similar to normal fault trees, only the basic
elements have been altered to cover both random failures as deliberate attacks. This
formalism has been included because it provides an easy extension into expanding
the Basic Elements. Adding random failures to work in collaboration with deliberate
attacks can realistically model a more opportunistic attacker. For example if an attacker
sees a broken alarm he or she might be persuaded to commit to the crime.

Insecurity Flows

a

b

c

d

e

f

g

Figure 2.7: Example of a simple Insecurity Flow

Insecurity Flows is a model from Moskowitz and Kang [36] to describe risk assessments.
It combines graph theory and discrete probability to analyse possible ways how invaders
can penetrate through security weaknesses. This model is very similar to reliability
block diagrams used in reliability engineering [44]. An example in Figure 2.7 uses

18 Attack Trees

a source (attacker, node a) and one or multiple sinks (security breaches, node g) to
provide a graphical representation of a security assessment. Based on the complete
system, the probability that the insecurity flow can pass through the modelled security
can be calculated. A major di�erence between this method and ATs is that in case
of multiple attackers goals, it can calculate the result of multiple attack routes in
one go. Regarding the analysis part, since flow networks are a well explored field in
mathematics a variety of methods for optimization and analysis are already present.

Formalism Extra gates Tool Support Formal
OWA trees OWA No Yes
Enhanced Attack Trees O-AND No Yes
Improved Attack Trees SAND No No
Defense Trees defensive No Yes
Attack-Defense Trees SAND, defensive Yes Yes
Attack Countermeasure Trees defensive, k-out-of-n no no
Protection Trees inverse No No
Countermeasure Graphs - No
Extended Fault Trees No Yes
Insecurity Flows No Yes

Table 2.1: Overview of the Attack Tree Formalisms

Selection of Attack Tree features

Based on our requirements and the available research presented in the previous section
we made the following design choices for our chosen Attack Tree.

The basis will be formed by the trees used in ADTool from Kordy et al. [31]
without the defensive part. This formal basis already has the AND and OR gates and
to extend the analysis to sequential behaviour we have also included the Sequential
AND gate. Even though the version of ADTree that is used in ADTool does not have
the SAND gate. However ADTools underlying structure, ADTree, already has an
sequential extension in another paper from Kordy [25] and formalisms like Enhanced
Attack Trees [16], Improved Attack Trees [35] have already fully adapted this sequential
behaviour.

Since the basis is formed by the Attack Trees used in ADTool the choice for ADTool

2.2 State of Art in the field of Attack Trees 19

as the input tool of choice is an obvious one.

Bigger ATs often have identical sub-trees, often parts which are used in a multi-
tude of attacks. During analysis, once a sub-tree has been calculated every other
encounter will result in duplicate work. To avoid these duplicates our implementation
allows for the sharing of sub-trees.

20 Attack Trees

Besides the attack tree itself another factor has to be considered when realistically
representing threat scenarios, i.e. the attacker itself. Depending on how certain factors
the whole focus might change. If an attacker is for example skilled with a computer he
or she will most likely prefer a di�erent attack than an attacker who prefers a more
physical attack. This is what is called an Attacker Profile and which factors are most
import will be explored in the next section.

2.2.1 Attacker Profiles

For our Attack Trees to have more analytical value it is important to have proper
parameters in the leaves. To fully determine relevant parameters and how these relate
to the real world, we will look into Criminology and Crime Science. Criminology
is a sub-field of sociology, which draws on other disciplines to predict and prevent
criminal behaviour focused on what drives / motivates the criminal. Crime Science
also prevents crimes, but focusses on the crime itself. In this discipline every person is
viewed as a potential criminal if the circumstances allow it. Where as in Criminology
the criminal is someone with a tendency to commit criminal activities, either due to
his upbringing or current living situation.

Money or profit is generally accepted to be the primary motivator for the gross
of cyber crimes, with a few exceptions. These exceptions are often motivated by
presumed moral superiority of the attackers. A few examples for the o�enders in
this category are Anonymous, Lulzsec or similar groups classified as Hacktivists (a
portmanteau from Hackers and Activists). Attacks from these groups are certainly
happening and should not be neglected, however the main focus of organized cyber
crimes remains making a profit. According to Kshetri in 2006 [33] the simple economics
of cyber crimes boils down to the following formula: M

b

+P
b

> O
p

+O
cm

P
a

P
c

where
the parameters are defined as follows:

• M
b

: Monetary Benefits. How much money is the cyber crime yielding to the
criminal.

• P
b

: Psychological Benefits. More than with regular criminal activities early
cyber crime activities were often not motivated by financial gain, but instead by
fun or challenge. Today this is still a partial motivator.

• O
p

: Psychological Costs. Or named negative psychological e�ects. Do hackers
feel guilt or remorse for their crimes? Most experts agree that the barrier of

2.2 State of Art in the field of Attack Trees 21

the internet greatly reduces overall guilt, however there is some sort of ethics in
thievery.

• O
cm

:Monetary Opportunity Costs. An estimate on how expensive the
penalty will be, this might be a simple fine of $150, but can also be a nu-
meric value for a year in prison, Kshetri [33] uses a normal year salary of $ 20.000,
thus a three year sentence would cost the attacker $ 60.000.

• P
a

: Probability of an arrest, chances of arrest are really low for cyber crimes,
Kshetri [33] even suggests that smart cyber criminals which are operating over
country borders are nearly untouchable.

• P
c

: Probability of a conviction. Even if the criminals are arrested, interna-
tional laws are not identical and arguing new crimes in court is not easy. e.g.
cyber theft is di�erent from regular theft, as is it often considered to be closer to
copying than to stealing.

Insider crimes are also a fairly well investigated area, primarily because in these cases
both the criminal and the victim can be investigated. Also considering the damage
that these types of crimes inflict, i.e. simple identity theft might empty out a single
account whereas a bank employee can do this for a multitude of accounts. Dhillon
investigated two cases in 2001 [18], the Kidder Peabody case and the Daiwa Bank
Scandal. Here the damages were $ 339 million and $ 1.1 billion respectively. These two
cases were both possible due to the absence of basic safeguards (monitoring, monthly
asset reviews etc). These safeguards give an organisation a better position in these
type of events. In both cases, the insider criminals got too much unsupervised access
and this resulted in the opportunity to commit (small) illegal acts. Once the smaller
things went unnoticed, those smaller things slowly escalated into the bigger numbers
until it eventually became too big to go unnoticed.

Futher studies performed by an research group from the university of California
and Google [15], suggest a great level of professionalism within the network of cyber
criminals. Within their data they found that during non-automated attacks the attack-
ers took their time to profile the account they had gained access to. Based it on roughly
3 minutes of analysis, the attacker followed up by one of the predefined base strategies,
e.g. empty the bank account, using the clean account status for sending spam or leave
the account as is, but installing monitoring filters. The researchers noticed the wave of
attacks starting everyday around the same day and even detected a synchronized pause

22 Attack Trees

halfway, suggesting something like o�ce hours with a lunch-break. An noteworthy
paper by Cormac Herley [23] tries to explain why the so called "Nigerian scammers"
still send really obvious emails telling them about the famed African Riches which can
be yours for only $1000. His conclusion comes down to victim selection, attackers have
a limited amount of time to maximize their profit and sending out really obvious emails
will only attract the most gullible of victims, which will increase their success-rate and
thus profit.

2.3 Attack Tree Domains
In providing a formal definition for the Attack Trees used within this thesis, we will
closely follow the formal definition provided by Schneier in [9] and the formalization
provided by Jhawar et al. [25]. Below an Attack Tree grammar is provided together
with its translation into Series-Parallel Graphs is provided.

2.3.1 Attack Trees
Let B denote a set of all possible basic attack steps an attacker can take. Simple attack
trees are formalized in [25] based on the trees introduced by Schneier in [9]. These
attack trees are closed terms over the signature B t {OR, AND}, generated by the
following grammar, where b œ B is a terminal symbol.

t ::= b | OR(t,, t) | AND(t,, t).

Jhawar et al. [25] also added the Sequential Conjuction, which they named a SAND
gate. The signature changed to B t {OR, AND, SAND} and this also extended the
grammar into the following.

t ::= b | OR(t,, t) | AND(t,, t) | SAND(t,, t).

The universe of SAND attack trees is denoted by TSAND. All attack trees in the rest
of this thesis will originate from this universe.

When considering attributes in attack trees they should be calculated in interme-
diate nodes, for example consider an AND gate with two children with a cost attribute,
the intermediate node should know how to be calculated based on the children. How-
ever when considering multiple di�erent attributes there is need for some separation,
i.e. time should not be added to damage. These two attributes should be considered
separate, in their own Attribute Domain.

2.3 Attack Tree Domains 23

2.3.2 Attribute Domain

Again following [25], we define an attribute domain for every attribute (A
–

) as a
tuple D

–

= (V
–

, O
–

, —
–

, ⌃
–

) , where V
–

is a set of values and O
–

, —
–

, ⌃
–

are
families of k-ary functions (one family for each type of refinement node) of the form
V

–

◊ · · ·◊V
–

æ V
–

associated to respectively OR, AND and SAND refinements. This
provides a formula for every domain / refinement combination, which can be used to
calculate attributes bottom up, eventually ending up in the root node. As an example
a cost attribute needs to be added in an AND refinement, this gives us the formula
—

–

(x1, · · · ,x
k

) =
kq

i=1
x

i

for this domain.

Every attribute for these attack trees is a pair A
–

= (D
–

, —
–

) formed by an attribute
domain D

–

and a function —
–

: B æ V
–

. This is called a basic assignment for A
–

. This
creates a link between an attribute and a domain. At a single refinement multiple
(di�erent) formulas can be used when the attack has multiple attribute domains.

2.3.3 Domains in ADTool

ADTool provides a basic set of attribute domains: time, cost, satisfiability and reacha-
bility, all of which have a minimal and a maximal interpretation. The following will
list the domains and how they respectively handle the OR, AND and Sequential AND
refinement (SAND)

Di�culty

Di�culty takes a minimum of the di�culty when it is a disjunctive refinement and
will take the maximum when it encounters a (sequential) conjunctive refinement.

O
–

(x1, · · · ,x
k

) = min(x1, · · · ,x
k

)
—

–

(x1, · · · ,x
k

) = max(x1, · · · ,x
k

)
⌃

–

(x1, · · · ,x
k

) = max(x1, · · · ,x
k

)

Time

Time is calculated by its minimum in disjunctive refinement, maximum in its conjunctive
refinement and for the sequential AND it will add the times of its children.

O
–

(x1, · · · ,x
k

) = min(x1, · · · ,x
k

)
—

–

(x1, · · · ,x
k

) = max(x1, · · · ,x
k

)

24 Attack Trees

⌃
–

(x1, · · · ,x
k

) =
kq

i=1
x

i

Cost

Cost takes a minimum di�culty of its children when it is a disjunctive refinement and
will take the maximum when it encounters a (sequential) conjunctive refinement

O
–

(x1, · · · ,x
k

) = min(x1, · · · ,x
k

)

—
–

(x1, · · · ,x
k

) =
kq

i=1
x

i

⌃
–

(x1, · · · ,x
k

) =
kq

i=1
x

i

Maximal consumption

Maximum consumption is calculated by maximizing over an disjunctive refinement
and adding all the consumption in the case of a (sequential) conjunctive gate.

O
–

(x1, · · · ,x
k

) = max(x1, · · · ,x
k

)

—
–

(x1, · · · ,x
k

) =
kq

i=1
x

i

⌃
–

(x1, · · · ,x
k

) =
kq

i=1
x

i

Reachability (parallel)

Reachability in parallel minimizes over OR gates, and maximizes over (Sequential)
AND gates.

O
–

(x1, · · · ,x
k

) = min(x1, · · · ,x
k

)
—

–

(x1, · · · ,x
k

) = max(x1, · · · ,x
k

)
⌃

–

(x1, · · · ,x
k

) = max(x1, · · · ,x
k

)

Reachability (sequential)

Reachability in series still minimizes over the OR gates, but takes the summation of
its children on (Sequential) AND gates.

O
–

(x1, · · · ,x
k

) = min(x1, · · · ,x
k

)

—
–

(x1, · · · ,x
k

) =
kq

i=1
x

i

⌃
–

(x1, · · · ,x
k

) =
kq

i=1
x

i

2.3 Attack Tree Domains 25

Satisfiability

Satisfiability is the passing along of booleans, therefor will use the ‚ when it encounters
an OR and will · all its children on a (sequential) conjunctive refinement.

O
–

(x1, · · · ,x
k

) = x1 ‚ · · ·‚x
k

—
–

(x1, · · · ,x
k

) = x1 · · · ··x
k

⌃
–

(x1, · · · ,x
k

) = x1 · · · ··x
k

How to handle domains
Even though the next Chapter will focus on how the whole AT transforms into a
Uppaal model, this part will quickly address how domains are handled. For example
take the Cost domain. If a Cost domain is present the Uppaal model will have an
handleCost(int id) in its declarations together with an int result_Cost variable that
will store the global Cost value for the current trace. For every leaf that gets activated
this function is called with its respective id. For cost the functionality is simple, it will
add the cost of this specific leaf to the global value. The code snippet responsible for
the process described here can be seen below.

int result_Cost = 0;

int Cost[3] = {10, 36, 22};

void handleCost(int id) {

result_Cost = result_Cost + Cost[id];

}

26 Attack Trees

2.4 Examples

Our system should be able to handle models like the following examples:

Note: the examples already use the sequential AND in addition to the normal gates.

Example 1: EnterRoom (time based)

EnterRoom

Window Door Wall

BreakGlass Climb UseKey OpenDoor Explosive Hammer

t = [2..3] t = [9..15] t = [1..2] t = [1..1] t = [3..8] t = [25..50]
stone = true;

key = true; explosive = true;hammer = true;

This example models a possible attack on a room, with the end goal of entering the
room. There are three disjunctive ways of achieving this goal, through the Window,
Door or Wall. Before one can use the window to enter the room, the attacker must
Climb upto the window and Break the Glass, this non-sequential conjunctive approach
since both the actions must be done in a non-specific order. If the Attacker decides to
use the door, first he/she has to use the Key followed by opening the door, this is a
sequential conjunctive choice. Finally the attacker could resort to the more destructive
option of entering the room. To go through the wall the attack can either use a form
of explosives or a hammer. Either one of these will work, hence it is a disjunctive choice.

Furthermore, the leaves have certain attributes. For understandability we have greatly
limited the amount, but in a normal situation there will be many more attributes.
In this example, we have time (i.e. the event occurs between x and y minutes) and
boolean variables, which indicate if a certain tool is required to be available.

2.4 Examples 27

Example 2: StealGold

StealGold

BreakIn OpenSafe Escape

Open CutOpen

Key Combo

t = [20..30]

t = [20..25]

t = [2..3] t = [1..2]

t = [30..40]
damage = £500;

risk = 0.2;

reward = £1800

damage = £5000
risk = 0.4

key = true;
reward = £2000

risk = 0.2

This example originates from Arnold et al. [8] and models a situation in which the
attacker attempts to steal gold and escape. The general goal can be achieved by
Breaking in, Opening the safe and Escaping, these actions must occur in order, which
makes this a sequential conjunctive gate. The BreakIn and Escape are basic events
and are not defined further. However opening the safe can be done in two ways, it can
either be opened by force (CutOpen) or opened by having the key and knowing the
combination (Open), this is a disjunctive choice. If the attacker wants to open the safe
without using force, both the Key and the Combination have to be obtained, this is a
conjunctive option.

Again every leaf has certain attributes. Note that not all attributes are present
on every leaf, if an attribute is not present we, assume it is 0 (e.g. the damage of the
escape leaf is 0)

28 Attack Trees

Example 3: DDOS on FileZilla

Prevent FillZilla Login

Overflow
login

2000 times
login to
server

Close last
connection

Crash
server

Login to
server

Request
data

without CR

t=[2..3]
risk=0.1

t=[2..3]
risk=0.1

t=[2..3]
risk=0.1 t=[2..3]

risk=0.1

The third example models possible weaknesses in Mozilla’s ftp-client (Filezilla) and
is based on an analysis done in a paper by Sanford, Woodraska and Xu [41]. One of
the general weaknesses they address is the possibility of preventing legitimate users to
log-in. This can be disjunctively done either by overflowing the login or by crashing
the server. In the first case the paper shows that the attacker should first attempt a
minimum of 2000 logins followed by closing the last connection. In the second case
(Crashing the Server), a legitimate login is required, if this is available this user can sim-
ply keep sending data without a CR, this will then overflow the server and make it crash.

Provided as attributes are; the time and the risk of the attack being discovered
(and thus the damage can be mitigated).

2.4 Examples 29

Example 4: Access Critical Data (shared sub-tree)

Access Critical Data

Physical
Access

Get inside Find
Unwatched
Computer

Login

Acquire
User

Password

Digital
Access

Acquire
Admin
Login

Guess
Password

Blackmail
Admin

Get
Through
Firewallt=[20..40]

risk=0.3

t=[5..10]
risk=0.2

t=[20..30]
risk=0.1

t=[2..3]
risk=0.05
skill

req

>3

t=[250..300]
risk=0.1

t=[2..3]
risk=0.5

The last example explores shared leaves and does this by using the "Acquire Admin
Login" sub-tree in both parts of the at the root separated sub-tree. In real life the
admin login credentials can often be used internally as well as externally. Apart from
this, the attack tree is rather similar to previous examples. The critical data can be
accessed from two possible ways, through Physical or Digital access. If the attacker
chooses the physical path, the following events must occur in order: Get Inside, Find
Unwatched Computer and Login. For Digital Access the attacker needs the admin
login and the skill to get through the firewall. Acquire Admin Login can be done
almost risk-free by guessing the credentials, but the chance of success is very limited.
Or it can be done very quickly by blackmailing the admin, but this comes at a high risk.

Attributes provided are: the time and the risk of the attack being discovered (and thus
the damage can be mitigated).

30 Attack Trees

Graphical Representation

The first two examples are given in the style of the ADTool [1]. To increase the
usability of our transformation we decided to use the formalism of ADTool as the
basis for generating the required Upaal model. This choice also decided the choice of
visualisation.

In this research the focus will be on a model that excels in timing issues and its
readability, because this is where the essence should be, it should be readable and easy
to use before anything else. Furthermore even though these choices will not make our
analytical capability easier, the primary results seem promising that further analytical
progress can be made by using the basis of the model. Relying on real-time automata
combined with the extra features of Uppaal SMC [17], which allows for more statistical
model checking.

This Chapter defines the way Attack Trees (ATs) can be represented in Timed Au-
tomata. The results of Chapter 2 are used as the foundation for this Chapter. The
basic elements in the leaves, the gates in the intermediate nodes, the timed domains
and the other types of attribute domains.

This Chapter will focus on the following research questions.

How can Attack Trees be modelled in Timed Automata?

• Which Timed Automata can be used for the Basic Elements and Gates?

• How could the implementation of multiple domains attributes be realised?

• How is the element of time transferred from ATs into the Uppaal model?

3.1 Timed Automata
A timed automaton is a finite state machine which has been extended with the basic
concept of time. Finite state machines use nodes to represent states that a machine
can be in and use edges between these states as transitions from one state into another.

32 Attack Trees as Timed Automata

Time is included by using clocks and functions as a feature which allows for a di�er-
ent type of analysis. For regular Timed Automata, all the clocks progress synchronously.

To actually use Timed Automata for State Space exploration research provides several
options. Some optional scientific tools are HyTech [22], Kronos [7] and Uppaal [11].
However since for the TREsPASS project the need arose to express ATs in a Uppaal
model, this Chapter will focus on the Timed Automata used in Uppaal.

3.2 Uppaal
Uppaal is a tool for verification of real-time systems jointly developed by Uppsala
University and Aalborg University [12]. The tool can verify systems that can be
modelled as networks of timed automata extended with additional data-types, among
which channel synchronisation is the most important. The tutorial from Behrmann et
al. [12] introduces the tool with examples and covers all the basics that are required to
start working with the tool.

Uppaal uses the following formal Definition 3.2.1 for Timed Automata according
to Behrmann [12] and since this is the definition used for the Uppaal models, it will
also the definition used in this Chapter.

Definition 3.2.1. (Timed Automaton (TA)) A timed automaton is a
tuple (L,l0,C,A,E,I), where L is a set of locations, l0 œ L is the initial
location, C is the set of clocks, A is a set of actions, co-actions and the
internal · -action, E ™ L ◊ A ◊ B(C) ◊ 2C ◊ L is a set of edges between
locations with an action, a guard and a set of clocks to be reset, and
I : L æ B(C) assigns invariants to locations.

The basic method used to define Attack Trees as Timed Automata can be described as
follows. Every node will be represented as a instance of a Uppaal Template (a process)
and all these separate Timed Automata will be put in parallel to explore the state
space and answer the questions fired upon the model. Question are primarily of the
following nature: can we reach state x?, What is the fastest way to reach Y?, Can we
reach x, without cost exceeding z? etc.

3.3 Uppaal Templates 33

For example take StealGold AT from Example 2 (Chapter 2.4), this AT has five
leaves, one OR-gate, one AND-gate and one SAND-gate. Transforming this into a
Timed Automata with the required functionality has resulted in nine parallel processes,
based on six di�erent templates (Timed Basic Element, Dormant Timed Basic Element,
AND2, AND3, OR2 and an overview process System).

These processes communicate over broadcast channels, the sending process can use an
emission on a specific channel to trigger the process on the receiving end. For there to
be su�cient communication every node needs an outgoing channel to communicate
upwards, for the StealGold example this resulted in eight broadcast channels. Every
instance of a node will be listening on the channels of its children to receive their
signal, i.e. Open (AND2) will be waiting for Key (TimedCBE) and Combo (TimedCBE).

Additionally all the dormant (Cold) Basic Elements wait on another signal, the left
sibling of their first ancestral Sequential AND gates. i.e. Key, Combo and CutOpen all
await activation from the communication channel of BreakIn.

As elements of ATs are defined as instances of Uppaal templates, the next part
will display and explain the di�erent templates that are included into our Uppaal
model.

3.3 Uppaal Templates
The following set of templates made the final cut and are implemented for the Uppaal
model. Every template will be accompanied with a brief description, design choices and
if applicable a textual description of an alternative. If an template was not included in
the final transformation process there will be a quick explanation.

34 Attack Trees as Timed Automata

Exponential Basic Element

Name: ExpBE Parameters: broadcast chan &a, int id, double rate

rate

failed

end
system_done

not system_done
handleLMHE(id),
handle...(id)

a!

failed

Figure 3.1: Basic Element (Trigger: Exp(1/e))

General functionality of the Exponential Basic Element

This Basic Element represents a leaf on an Attack Tree, the trigger for this type of Basic
Element is an Exponential Distribution, hence the name Exponential Basic Element.
Once the trigger has fired the transaction towards end will occur if the system is still
active, this is checked based on the global boolean system_done. If the system is no
longer active it will be directed to the failed state. During the transaction towards
end it will both broadcast on the channel a (provided in the arguments) and execute
the specified handeX() functions. The number of handle functions is dependant on
the number of domains of the whole attack tree and are determined at the moment of
creation. The argument that the handle function take is provided by the parameter
int id, which is the identifier of this specific leaf.

3.3 Uppaal Templates 35

Erlang Basic Element

Name: ErlangBE Parameters: broadcast chan &a, int id, n, double rate

e = e + 1

e < n
rate

endn <= e && not system_done
handleLMHE(id),
handle...(id)

a!

failed
system_done

Figure 3.2: Basic Element (Trigger: Erlang(n, 1/rate))

Note that this ErlangBE is not included in the transformation. If there is a time domain
available, the transformation will use TimedBE and otherwise fall back on the ExpBE.
This template is included in this Chapter because of it uses in possible future work.

General functionality of the Erlang Basic Element

This Basic Element represents a leaf on an Attack Tree, these leaves can have di�erent
triggers, the trigger for this type of Basic Element is an Erlang Distribution. Once the
trigger has fired this transaction will occur if the system is not yet done, this is checked
based on the global boolean system_done. During the transaction this process will
both broadcast on the channel a provided in the arguments and execute the specified
handeX() functions. The number of handle functions is dependant on the number of
domains of the whole attack tree and are determined at the moment of creation. The
argument that the handle function take is provided by the parameter int id, which
is the identifier of this specific leaf. An Erlang distribution originates from multiples
Exponential Distributions and that is what this Timed Automata does, it keeps looping
until it did its required number of exponential triggers.

36 Attack Trees as Timed Automata

Timed Basic Element

Name: TimedBE Parameters: broadcast chan &a, int d, min, max

clock < max

endclock > min && not system_done

handleLMHE(id),
handle...(id)

a!

failed
clock > min && system_done

Figure 3.3: Basic Element (Trigger: Time(min,max))

General functionality of the Timed Basic Element

This Basic Element represents a leaf on an Attack Tree, the trigger for this type of Basic
Element is time, it will fire between two values (c and d). Once the trigger has fired
this transaction will occur if the system is not yet done. During the transaction this
process will both broadcast on the channel a provided in the arguments and execute
the specified handeX() functions. The number of handle functions is dependant on
the number of domains of the whole attack tree and are determined at the moment of
creation. The argument that the handle function take is provided by the parameter
int b, which is the identifier of this specific leaf. The distribution this Automata uses
is a linear one between timeslot c and d.

3.3 Uppaal Templates 37

Dormant Exponential Basic Element

Name: ExpCBE Parameters: broadcast chan &a, &z, int id, double c

c

failed

end
system_done

not system_done
handleLMHE(id),
handle...(id)

a!

failed

z?

;

Figure 3.4: Dormant Basic Element (Trigger: Exp(1/c))

General functionality of the Exponential Basic Element

This Basic Element represents a leaf on an Attack Tree. After activation (channel z)
the trigger for this type of Basic Element is an Exponential Distribution, hence the
name Dormant Exponential Basic Element. Once the trigger has fired this transaction
will occur if the system is still active, this is checked based on the global boolean
system_done. During the transaction this process will both broadcast on the channel a
provided in the arguments and execute the specified handeX() functions. The number
of handle functions is dependant on the number of domains of the whole attack tree
and are determined at the moment of creation. The argument that the handle function
take is provided by the parameter int b, which is the identifier of this specific leaf.
If a system is no longer active, but this element is activated it will end in the failed state.

The only di�erence this has to the non dormant variant is that this one first needs to
be activated.

38 Attack Trees as Timed Automata

Dormant Timed Basic Element

Name: TimedCBE Parameters: br. chan &a, &z, int id, min, max

z?

clock < max

endclock > min && not system_done

handleLMHE(id),
handle...(id)

a!

failed
clock > min && system_done

Figure 3.5: Dormant Basic Element (Trigger: Time(min,max))

General functionality of the Timed Basic Element

This Basic Element represents a leaf on an Attack Tree, the trigger for this type of
Basic Element is time. This will fire between two time values (min and max). Once
the trigger has fired this transaction will occur if the system is still active. During the
transaction this process will both broadcast on the channel a and execute the specified
handeX() functions. The number of handle functions is dependent on the number of
domains of the whole attack tree and are determined at the moment of creation. The
argument that the handle function take is provided by the parameter int id, which is
the identifier of this specific leaf. The distribution this Automata uses is a linear one
between time slot min and max.

The only di�erence this has to the non dormant variant is that this one first needs to
be activated.

3.3 Uppaal Templates 39

AND-gate, with 2 children

Name: AND2 Parameters: broadcast chan &a, &b, &c

C
c!

count >= 2count < 2

b? count++

a? count++

Figure 3.6: AND-gate, with 2 children

General functionality AND gate

This gate listens to two broadcast signals (a and b), which have been assigned to the
broadcast signals of the children of the represented intermediate node. If both children
have fired and that puts the count to 2 this template will broadcast over channel c,
which has been passed along in the parameters.

Note: this template is for two children, very similar templates can be generated
for more children, which will be done in the transformation if the need for this arises.

40 Attack Trees as Timed Automata

OR-gate, with 2 children

Name: OR2 Parameters: broadcast chan &a, &b, &c

a?

b?

c!t

Figure 3.7: OR-gate, with 2 children

General functionality OR gate

This gate listens to two broadcast signals (a and b), which have been assigned to the
broadcast signals of the children of the represented intermediate node. If one of the
children has fired this template will broadcast over channel c, which has been passed
along in the parameters.

Note: this template is for two children, very similar templates can be generated
for more children, which will be done in the transformation if the need for this arises.

3.3 Uppaal Templates 41

Dormant AND-gate, with 2 children

Name: CAND2 Parameters: broadcast chan &a, &b, &c, &y, &z

c!

count >= 2

count++

count++

a?

b?

y?

z!

Figure 3.8: Dormant AND-gate, with 2 children

General functionality Dormant AND gate

Since this is the dormant variant it will only be used when it has a SAND gate as one
of its ancestors. This gate listens to two broadcast signals (a and b), which have been
assigned to the broadcast signals of the children of the represented intermediate node.
If both children have fired and that puts the count to 2 this template will broadcast
over channel c, which has been passed along in the parameters.

The only di�erence between this and its non-dormant variant is that this template is
waiting for activation

Note: this template is for two children, very similar templates can be generated
for more children, which will be done in the transformation if the need for this arises.

42 Attack Trees as Timed Automata

Dormant OR-gate, with 2 children

Name: COR2 Parameters: broadcast chan &a, &b, &c, &y, &z

a?

b?

y?

z!

c!tt c!

Figure 3.9: Dormant OR-gate, with 2 children

General functionality Dormant OR gate

Since this is the dormant variant it will only be used when it has a SAND gate as one
of its ancestors. This gate listens to two broadcast signals (a and b), which have been
assigned to the broadcast signals of the children of the represented intermediate node.
If one of the children has fired this template will broadcast over channel c, which has
been passed along in the parameters.

The only di�erence between this and its non-dormant variant is that this template is
waiting for activation

Note: this template is for two children, very similar templates can be generated
for more children, which will be done in the transformation if the need for this arises.

4.1 Meta-Modelling in general

Model Driven Engineering (MDE) is based upon the use of abstractions to structure
and clarify the intentions of the programmer rather than the specific code needed
to execute this functionality on a computer. Abstractions have always been at the
core of software development. Not very long ago the first abstractions made sure
that the programmer could combat the increasingly complex requirements [42]. These
approaches were the basis of model-driven development and helped to move the focus
from programming languages onto Model Driven Engineering.

MDE also influenced the way of developing in another way: the abstraction made use
of UML to abstract the design of computer programs into a model [42]. It has become
common practice for most software developers to use UML models to represent their
(initial) design intentions.

One step further is to represent a model as an instance of a more abstract ver-
sion, this is a meta-model. Such a meta-model can be used to identify and define the
construction, rules, constraints, models and theories surrounding every instance of it.
An example of a framework that is used for meta-modelling is the Eclipse Modelling
Framework (EMF), which is currently the industry standard.

44 Attack Tree Meta Model

As an example the meta-modeling will be illustrated in Figure 4.1 by showing a
meta-model for a book and an instantiation of this model. Note that we made this
meta-model fairly generic so that the majority of books will conform.

A Book is an entity with certain values, which are its title, genre and its price. Besides
its values it also has one reference to its Author. This is a di�erent entity which has
values of its own, firstname and lastname. Note that the Book - Author reference is
bidirectional, the Book has atleast one Author, but an Author can have multiple Books.

Book

title : EString
genre : EString
price : EDouble

Author

firstname : EString
lastname : EString

1..* 1
has

Author

firstname : John
lastname : Tolkien

Book

title : The Fellowship of the Ring
genre : High Fantasy
price : 22.99

Book

title : The Silmarillion
genre : Mythopoeia
price : 10.49

<< instanceOf >>

Figure 4.1: Meta-modelling example

An example of instances can be found in the bottom half of Figure 4.1 which
displays two instances of this meta-model, with a shared Author. The book The
Fellowship of the Ring has John Tolkien as its writer, is categorized with the high
fantasy-genre and is sold for a price of e22,99. Since the bidirectional reference exists,
the second book can also be linked to the same Author, however the The Silmarillion
does have di�erent values for its genre and price, respectively mythopoeia and e10,49.

4.1 Meta-Modelling in general 45

The concept of meta-modelling can be viewed as a multilayer process, every layer below
being a instance of the current model. These layers are numbered and flow from the
M0 layer which is the real world example, M1 is the primary model and so on.

UML EMF ATMM

CORE ECORE ECOREM
3

UML metamodel ATMMM
2

modelM
1

«instanceOf» «instanceOf» «instanceOf»

«instanceOf» «instanceOf» «instanceOf»

Figure 4.2: M1,M2,M3 metamoddeling example

An example of the layered concept meta-modeling works can be found in Figure
4.2. The left column displays how a class diagram (M1) modelling actual code is an
instance of UML, which in turn is modelled in the model for UML. This second tier
model (M2) is considered the meta-model of the original code.

For our AT scenario (right column in Figure 4.2) we use a similar scenario, we first
model a real-life situation into an AT (M1), and make sure that this AT conforms to
our M2 model (meta-model). And we have made sure that the meta-model is compliant
with Ecore (M3).

Major advantages of using this concept were identified and are quickly discussed
below.

46 Attack Tree Meta Model

Transference

The ability to transfer a model from one system into another is a major requirement
when working in big projects and multiple teams. Clear constraints must be enforces
to ensure that models are transferable and using a meta-model does exactly that. It
enforced the user to conform to an agreed upon standard.

Correctness

When sharing models one of the most important parts is that the model is correct. One
way to ensure this is to put restrictions on the model and make sure developers define
the instantiations correctly. The whole meta-modeling concept (if used correctly) will
make identification of mistakes which are not conforming to the meta-model easy.

Clarification

When discussing models with people from di�erent departments using an agreed upon
standard will help avoid misunderstandings. The meta-model will make it possible
to synchronize similar items from di�erent domains based on predefined rules, e.g.
a customer in the sales department might be combined with clients from the legal
department.

Compactness

Using the concept of a meta-model as an intermediate model will greatly limit the
amount of transformations needed if the amount of input / output languages increases.
As can be seen in the table, given a number of input languages (n

in

) and a number
of output languages (n

out

) the amount of languages follows a linear scale (n
in

+n
out

)
instead of exponential (n

in

ún
out

).

Amount of transformations needed
n

in

n
out

#
without MM

#
with MM

1 1 1 2
2 2 4 4
3 3 9 6
20 20 400 40

4.1 Meta-Modelling in general 47

Restrictions

One limitation that is frequently mentioned by users is that a meta-model enforces limits
the design options a developer has. It is of vital importance that during the creation
of the meta-model a balance is found between its completeness and its restrictiveness.

Importance of the design choices

Making the correct design choices is by far the most important step in creating a
meta-model, hence this step often takes up more than 60% of the required time. A lot
of meetings with domain experts is needed before a consensus has been achieved and
even then, the best meta-models will have their limitations.

The design process for our Attack Tree Meta Model (ATMM) has undergone a number
of iterations every time refining the model and adding or removing special features,
ending up with a meta-model, whose 1.00 version will be discussed in the next section.

48 Attack Tree Meta Model

4.2 Attack Tree Meta-Model

Figure 4.3: The proposed meta-model v1.0

This section will address the proposed meta-model, the final result can be found in
Figure ?? and in Appendix F. This meta-model has been created in collaboration
with D. Huistra, all the features used for the Uppaal transformation originate from
this collaboration. Huistra included further refinements to include for this work less
relevant features of ATs . The upcoming subsections will address the major parts of

4.2 Attack Tree Meta-Model 49

the meta-model individually. At first, it will address the basis / core of the meta-model
and how it can represent the basics of every attack tree. Secondly, a subsection will be
dedicated to the choices made regarding the di�erent types of connectors. Attributes
will be addressed in the third subsection and finally a subsection will quickly discuss
roles and edges.

4.2.1 Basis / Core

Figure 4.4: Core of the meta-model

As can be seen in Figure 4.4 the main parts of the meta-model consist of the tree
representation. One Attack Tree has one root, which is an instance of a Node. In
turn, each Node has zero or more children, these children have an inverse link to
their parent(s). A Node can be one of two possible nodes, either it has no children,
which makes it a leaf and allows it to have attributes, or it does have one or more
children which makes it an intermediate node and requires a connector to be specified 1.
More about the di�erent kind of connectors in the upcoming section, but for the
representations of basic Attack Trees only the AND and OR are required.

1note that these restrictions are not enforced by the meta-model itself, but can be enforced by the
EVL validation set [26][27]

50 Attack Tree Meta Model

4.2.2 Connectors

Figure 4.5: Connectors used for the meta-model

The meta-model provides a set of predefined Connectors, besides the basic AND and
OR the following extra Connectors are defined.

• XOR. Exclusive OR, only one of its children can be triggered (where an ordinary
OR accepts multiple children to be triggered).

• PAND. Enforces order in the execution of its children: a child cannot finish
before its previous sibling has been completed. Also called SEQ or Ordered-AND
this connector enforces order in the the execution of its children. 2

• TAND. A normal AND, but enforced a timed delay between the children.

• K-out-of-N. This feature can be found in multiple extensions of Attack Trees,
it represents a gate which activates if K out of the total N children have been
triggered. Note that this Connector has an variable to store its Threshold

• Weighted. OWA trees [47] use this to distinguish between the importance of
di�erent children.

2the main di�erence between this and PAND is that SAND can only start if its previous sibling
has been completed, while the PAND only enforces order in the finishing.

4.2 Attack Tree Meta-Model 51

4.2.3 Attributes

Figure 4.6: Attributes in the meta-model

Node Attributes are an important feature in the analysis of Attack Trees and proved
di�cult to define very broadly. For every limitation the meta-model enforced it was
easy to find alternatives that could not be modelled. Therefore the ATMM ended up
with an easily adaptable solution. Every Attribute has one domain, representing the
way this variable should be treated in analysis methods. How these domains are defined
is left to the users of the meta-model, e.g. a variable for the calculation of the total cost
could belong to the addition-domain, enforcing an addition of the costs if the nodes
are triggered. While a probability variable might belong to a multiplicative-domain,
enforcing multiplication in outgoing transformations.

Furthermore every Attribute has its value, which is where it stores the actual number
(or similar object) that is used for the calculation. To keep the meta-model generic
this is defined as a EJavaObject, allowing for the value to be an instance of almost
every type, e.g. the previously mentioned cost variable would be of type Integer and
the probability would be of type Double.

52 Attack Tree Meta Model

4.2.4 Roles and Edges

Figure 4.7: Roles and Edges in the meta-model

Roles

The meta-model defines two types of Roles, these define the high-level behaviour of
nodes and can either be contributing or counteracting. This is where the definitions in
the literature become a bit confusing depending on which implementations of Attack
Trees is used. For this meta-model, the roles are defined as follows:

Definition 4.2.1. (Contributing) . A Node is considered contributing if it contributes
to achieving the attackers goal. This can also be named attacking-node.

Definition 4.2.2. (Counteracting) . A Node is considered counteracting if it counter-
acts reaching the attackers goal. This can also be named a defensive-node.

There are quite a number of more specialized roles, i.e. [37] looks at this a bit
di�erent and includes failures. The meta-model allows for an additional description, to
further separate di�erent roles. As a design choice these were not defined as additional
RoleTypes as the use of these extra roles is fairly limited.

Edges

For some functionality additional edges are needed on top of the normal edges between
Nodes. This is required for the definition of Trigger and Dependency Edges.

Trigger Edge, a directional edge between two nodes, A and B. If A triggers, the
trigger edge will also trigger B. Often these nodes are in di�erent parts of the trees or

4.3 Design Choices & Limitations 53

can be used to trigger whole sub-trees at once.

Dependency Edge, a dependency edge between two nodes requires the incoming
node to be dependent on the outgoing node. If nodes A and B are connected by a
dependency edge, B can only be triggered if A has been triggered.

Example of an instance

In Figure 4.8 one can find an example for a simple attack tree and its ATMM instance.
As can be seen, even small trees will become rather large instances. For future users
however this is irrelevant as this model is an intermediate model and will not be visible
in the whole transformation process

4.3 Design Choices & Limitations

Limitations
As the overview paper written by Kordy et. al in 2014 [32] has been used as a
basis for the meta-model, all formalism that are represented in that paper have been
considered when creating the ATMM. For all the missing or newer formalisms we have
not evaluated their fit into our model. An overview of the formalisms that cannot be
fully represented can be found in Table 4.1

Easy to implement extensions
Additional gates and connectors are fairly easy to be included in future versions, as
soon as the need for such arises. For the simple gates the extension would only entail
adding one additional instance below the Connector-class.

Extra roles and domains are also fairly straightforward to be included in extensions, as
they only require adding an extra RoleType or Domain.

Hard to implement extensions
Every change that involves changing the basic structure of ATMM should be avoided
wherever possible, e.g. allowing an additional root will destroy the basis concept of the
attack tree, as the attack now has multiple goals which can be completed separately.

54 Attack Tree Meta Model

Figure 4.8: Example instance of a small Attack Tree

4.3 Design Choices & Limitations 55

Formalism Can be represented? Comments
Fully Represented

Attack Trees Full
Augmented attack trees Full
OWA trees Full
Vulnerability cause graphs Full
Parallel model for multi-parameter attack trees Full
Serial model for multi-paramter attack trees Full
Extened fault trees Full
Improved attack trees Full
Time-depdendent attack trees Full
Attack-defense trees Full
Attack-response trees Full
Defense trees Full
Unified parameterizable attack trees Full
Augmented vulnerability trees Full
Attack countermeasure trees Full
Protection trees Full
Partially Represented

Fault trees for security Partially Cannot represent multiple connectors
Dynamic fault trees for security Partially Cannot represent multiple connectors
Security goal models Partially Not all edges are available
Insecurity flows Similar Di�erent structure
Intrusion DAGs Similar Multiple roots cannot be represented
Security goal indicator trees Partially Not all edges are available

Table 4.1: Formalisms from Kordy et al. [32] and how they fit in the ATMM

5.1 Problem Statement

In previous chapters the basis has been constructed, Chapter 3 provided the end goal
and Chapter 4 its intermediate meta-model. This Chapter will focus on the translations
from one instance into another. Which direction to take with these translations depends
on our intentions. The following selection criteria provided the basis for this choice:

Completeness . This can be assessed along multiple dimensions: it should be
complete with respect to the needs of the user, complete in its analytical context
and the transformation itself should be complete, e.g. the whole model is
transformed, and the transformation is consistent.

Simplicity/Usability . For reasons of readability and extensibility having a simple
and easy to understand transformation is important. A simple to use modeling
method should be easy to install, easy to comprehend, e�cient, easy to use and
should guide the users when errors occur. Since the goal of this work focuses
on laying the foundations for future re-usability and extensive improvement, we
consider simplicity as one of the top priorities.

58 Transformations

M2T Support . Since our final model has its instances in a xml-format it is very
important that the transformation has the option for model-to-text (M2T)
transformations

Scalability . The ability to handle systems of arbitrary size without slowing down
too much is one of the most important criteria if we look to the future work of
this thesis: after its initial deploy it is planned to be used on large systems. A
feature often mentioned in this context is a separation of concerns, the ability to
work on isolated parts of a solutions instead of having to redesign it as a whole.

Documentation . The availability of proper documentation and examples will obvi-
ously be considered an desirable and advantageous feature.

Available knowledge . Lastly the amount of available knowledge is taken into
account, either by di�erent sources within the FMT-chair or from courses given
on the University.

The goals of this chapter are as follows:

ù Define a transformation from ADTool-xml into the meta-model.

ù Define a transformation from the ATMM into the ADTool-xml.

ù Define a transformation from the ATMM into the Uppaal-model defined in
chapter one.

5.2 Epsilon Language Family
Epsilon is a Model Management Platform developed by the University of York. This
platform provides multiple task specific languages, among which are the Epsilon Trans-
formation Language (ETL), Object Constraint Language(OCL), Epsilon Validation
Language (EVL), Epsilon Generation Language (EGL) and Epsilon Merging Lan-
guage(EML). All these di�erent languages are implemented in components on top
of the Epsilon Object Language (EOL), which forms the basis for the whole Epsilon
Package integrated in Eclipse [28].

For our application the first three components mentioned are the most relevant i.e.
ETL, EVL and EGL.

5.2 Epsilon Language Family 59

ETL is used for model to model transformations, it is a hybrid model transformation
language and is integrated in Epsilon, which provides seamless communication with
other task specific options. [38]

The transformation can either originate from xml or ecore models and also gener-
ate an xml or ecore model. In our approach it is used in three separate transformations.

• From ADTool into UATMM

• From UATMM into ADTool

• From ADTool into the Uppaal.ecore model

EVL is used for validation purposes and can ensure that models remain valid and
consistent after multiple transformation, e.g. it can be used to test if an Attack Tree
always has a root. Within our implementation this is used for the outoging transfro-
mations of the ATMM.

Finally EGL is a template based model-to-text transformation language that can
be used to generate text from models. Placeholders can be placed in between large
predefined pieces of text, this makes swapping templates (either EGL-templates or
Uppaal-templates) in and out fairly easy.

60 Transformations

ETL example

<adtree >
...
<domain id=" MinCost1 ">

<class >lu.uni. adtool
. domains . predefined . MinCost

</class >
<tool >ADTool </tool >

</domain >
<domain id=" ProbSucc2 ">

<class >lu.uni. adtool
. domains . predefined . ProbSucc

</class >
<tool >ADTool </tool >

</domain >
</adtree >

// Transform all domains
@primary
rule ADToolDomain2UATDomain

transform ad :
ADTool ! t_domain

to gad :
UATMM! Domain {

gad.ID = ad.a_id;
gad. Computation =

true;
}

Domain

ID: MinCost1
Computation: true

Domain

ID: ProbSucc2
Computation: true

Figure 5.1: Resulting instance

The above example transforms the xml domains in the ADTool format (left) into
the instance of ATMM (bottom right) using a snippet of the actual transformation
(top right). As this is for demonstration purposes only we used the easiest part of
the transformation. The ADToolDomain2UATDomain rule has the following general
behavior, for every tag "domain" in the input model ADTool (ADTool!t_domain) it
will create Domain instances in the ATMM output model (UATMM!Domain). And
for every newly created Domain it will set the values as ID and Computation. Since
Computation is not relevant for the ADTool transformation, but is present in the
meta-model for di�erent formalisms, it will be always set to true. The ID however
is relevant and will be set to MinCost1 and ProbSucc2 accordingly. This already
concludes this transformation. For the rest of the information, the <class> and <tool>
tags does not require storage in the meta-model can be generated when a reverse
transformation is executed. The class element is simply a package with the domain
and the tool is always adtool as there is a unique transformation.

5.2 Epsilon Language Family 61

EGL example

Domain

ID: MinCost1
Computation: true

Domain

ID: ProbSucc2
Computation: true

Figure 5.2: Input instance

<html>
<head>

<t i t l e>2 domains</ t i t l e>
</head>
<body>

<h1>2 domains</h1>
<table>

<tr><td>MinCost1</td>
<td>true</td></ tr>
<tr><td>ProbSucc2</td>
<td>true</td></ tr>

</ table>
</body>
</html>

[%
// EGL transformation
%]
<html >
<head >

<title >[%= Domain . allInstances ().size ()
%]

domains </ title >
</head >
<body >
<h1 >[%= Domain . allInstances ().size ()

%]
domains </h1 >
<table >
[% for (domain in

Domain . allInstances ()){%]
<tr ><td >[%= domain .ID

%]</td >
<td >[%= domain . Computation

%] </td ></tr >
[% } %]
</table >
</body >
</html >

This EGL example starts from the instance we created with the ETL example. It
has two Domains which both have an ID and a Computation value. Our goal is to
transform this into something text based. Since the domains do not directly transform
to something textual in our Uppaal model, we created this documentation generator
purely for demonstration purposes. Based on the number of available Domains, this
translation will generate a web-page. The input model can be found in the top left,
the transformation on the right and the result in the bottom left of the example. The
final result creates a HTML page, gives it a title depending on the number of Domains
(Domain.allInstances().size()), it also sets this same value as an H1 header on the
page. Furthermore the page contains a table element, this table is generated based on

62 Transformations

the information within the domains. For each instance in Domain.allIstances() a row
is created with the ID and the value of its Computation variable respectively. This
approach is similarly used within the Uppaal transformation as it will generate XML
code, which can be loaded into Uppaal.

5.3 Transformation choices

The first transformation that will be presented is the transformation from an example
ADTool attack tree stored in its xml format (Figure 6.3). This transformation will
eventually lead to the ATMM instance in a <name>.model file, the result of our
transformed example can be found in Appendix REF.

As the transformation is based on ETL, it contains pre and post sections, which
are two special sections which are executed respectively before and after the actual
transformation rules.

pre {

var javaDateBegin = new Native ("java.util.Date");
javaDateBegin . toString (). println ("> Starting

ADTool2UATMM transformation : ");

// Start a recursive XML Teardown to determine
parent / children relations .

// (Operation instead of rules , as rules did not seem
suitable)

// ADTool .root. e_node . recursiveXMLTeardown (true , null);
}

post {
var javaDateEnd = new Native ("java.util.Date");
javaDateEnd . toString (). println ("> Completed

ADTool2UATMM transformation : ");
var elapsed = javaDateEnd . getTime () -

javaDateBegin . getTime ();
var minutes = elapsed / 60000;
var rest = elapsed .mod (60000) ;
var seconds = rest / 1000;

5.3 Transformation choices 63

var mili = rest.mod (1000) ;
System .out.print("> Time elapsed : ");
if (minutes <> 0) System .out.print(minutes + " min ,

");
if (seconds <> 0) System .out.print(seconds + " sec :

");
System .out. println (mili+ " ms");

}

pre / post

The pre-section only stores the current time stamps and prints it to the console.
This gives a good indication regarding the total run time of the program and is used
for measurements. The post-section does something similar, but also calculates the
di�erence and prints this in user friendly output format.

Other than transformation rules ETL allows for defining our own functions, called
operations, which can greatly benefit the transformation process.

Operations

@cached
operation Any getAttackTree () : UATMM! AttackTree {

return UATMM ! AttackTree . allInstances .last ();
}

operation Integer mod(i : Integer) {
return self - (self/i * i);

}

The above operations illustrate what operations within ETL are primarily used for.
First they are used for removing duplicate and redundant code from the main trans-
formation, as can be seen in getAttackTree(), which retrieves the overall instance of
AttackTree (of which there is only one) . A disadvantage of the way this operation is
implemented is that it uses the very expensive .allInstances functionality. Especially
in larger model instances, this function will severely slow down the application. To
avoid this slow down, this operation is only executed once, enforced by the @cached
annotation, and afterwards directly return its cached result. This simple operation

64 Transformations

provides a speed-up in the application, already observable in smaller models.

The second operation is an operation that extends the options o�ered by ETL, in this
case there was no mod functionality available, so we created our own mod functionality.

Primary rules

// Transform all domains and set several attributes by
obtaining

// info from attributes and child nodes
@primary
rule ADToolDomain2UATDomain

transform ad : ADTool ! t_domain
to gad : UATMM! Domain {

gad.ID = ad.a_id;
gad. Computation = true;

}

Since ETL is a rule based language, the majority of its transformations will be done by
rules. Two of these type of rules are the primary rules and lazy rules. All primary rules
will be executed before any of the other rules, whereas the lazy rules are only being
executed if they are needed. To activate lazy rules Epsilon provides the equivalent()
function.

In this transformation primary rules are used because of the importance of the domains.
All the domains need to be created before the logic of the recursiveXMLTeardown() can
correctly link them. The function recursiveXMLTeardown() itself is called upon the
root node of the XML document and recursively called upon its children, to handle the
nodes in a correct order to create the correct parent / child links. This recursive part
is used to maintain the tree structure within in the ATMM. Even though the whole
concept of Epsilon is very interesting and most of the transformations can (arguably
even better) be run in the developers environment of Eclipse, for completeness the
transformation and its standalone version have been included in a Java program that
can run outside of eclipse. This was not as straight-forward as initially expected, even
though there was standalone support on the Epsilon website [26], the Java code didn’t
seem to work inside a Java Archive (jar-file). The reference to the meta-data (i.e.

5.3 Transformation choices 65

ETL-files) ran into the "URI is not hierarchical" exception, this seemed to be an error
which originated from within some epsilon source files which we could not change.

However an update changed the way these files are read and now the jar, after
some URI / URL conversions is fully functional and ready for use.

Figure 5.3: Basic chain within the java program

This led us to the following simplified extension of the EpsilonStandaloneExample,
a general program run performs the following tasks:

• the program takes the URL of the file as an argument.

• retrieves the URI from the URL.

• Phase 1

– loads the ETL model.

– loads the input file.

– performs transformation.

– stores in intermediate model.

• Phase 2

– loads the EGL models.

– loads the intermediate model.

– performs transformation.

66 Transformations

– outputs the final result into the output file.

The following code is an example of a standalone java application. Note that this code
is not my final code, but simply an example of how a java application can load and
execute the templates.

package egl;
import *;

public class EglStandalone extends EpsilonStandaloneExample {

private String output_url = "*/ output / uppaal .xml";
private boolean etl = false ;
private String input_url ;

public static void main(String [] args) throws Exception {
if(args. length > 0) {

new EglStandalone (args [0]);
} else {

System .out. println (" Usage UATMM2Uppaal <input_file >");
}

}

public EglStandalone (String input) {
input_url = input ;
try {

System .out. println ("");
setSource (" transformation / ADTool2UATMM .etl");
this. execute ();
etl = false ;
System .out. println (" Intermediate Model stored in:

model / Instance . model ");
setSource (" predefined / template .egl");
this. execute ();

} catch (Exception e) {
System .out. println ("Some error occurred during the reading

of the files ");
e. printStackTrace ();

}
}

@Override
public IEolExecutableModule createModule () {

if (etl) {
return new EtlModule ();

} else {
return new EglTemplateFactoryModuleAdapter (new

EglTemplateFactory ());
}

}

@Override
public List <IModel > getModels () throws Exception {

5.3 Transformation choices 67

List <IModel > models = new ArrayList <IModel >();
if (etl) {

models .add(createXmlModel (" ADTool ", input_url));
models .add(createEmfModel (" UATMM ", " model / Instance . model ",

" model / UATMM . ecore ", false , true));
} else {

models .add(createEmfModel ("AT",
" model / Complete_Tree_MM_Instance . model ",
" model / UATMM . ecore ", true , false)); // DK

}
return models ;

}

@Override
public String getSource () {

return resource ;
}

@Override
public void setSource (String s) {

resource = s;
}

@Override
public void postProcess () {

if (! etl) {
PrintWriter writer ;
try {

writer = new PrintWriter (output_url , "UTF -8");
writer . println (result);
writer . close ();

} catch (FileNotFoundException |
UnsupportedEncodingException e) {

System .out. println ("The file required cannot be
found or has an incorrect encoding ");

e. printStackTrace ();
}

}
}

}

68 Transformations

5.3.1 Java program Adt2Upp.jar

Figure 5.4: Class diagram of Adt2Upp.jar

The final code can be found on the github of the FMT-faculity1.

In Figure 5.4 we have the class diagram of the java program delivered with this
thesis, the central hub in this class diagram is the java class Adt2Upp, this class
contains the main function and has the links to three Business Objects (BO), this term
is a part of the software patern (Core J2EE Pattern). These BOs are responsible for
providing the logic of the transformation. The classes Adt2atmmBO, ATMM2UppaalBO
and UppaalEcore2UppaalBO are all abstractions from EpsilonStandalone and only di�er
in there settings. Every class has couple of functions overwritten from its abstraction, it
depends slightly which functions, but for example every class needs to have getSource()
and getModels() overwritten.

Furthermore in the class diagram its is clear which transformation templates are
load as a default, for Adt2attmBO this is ADTool.etl, for Atmm2UppaalBO this is
ATMM2Uppaal.egl and finally for UppaalEcore2UppaalBO this is Ecore2Uppaal.egl.

1https://github.com/utwente-fmt/Adt2Upp

5.3 Transformation choices 69

Both the EGL transformations have many imported EGL files, for ATMM2Uppaal.egl
they are included in the predined package. For readability the imports for Ecore2Uppaal.egl
have been omitted as there are many. For an example EGL template we refer the
reader to Appendix D, which will contain the code SystemTemplate.egl, as this is a
completely static template, this is a great illustration how close the EGL code refers
to the Uppaal input XML.

5.3.2 ADTool2ATMM
A ETL transformation that requires the XML export from ADTool to be converted into
an instance of the meta-model presented in chapter 3. As a stand-alone transformation
this etl-file can be run from inside the development environment using the following
settings.

The code from adtool2atmm.etl can be found in Appendix A

5.3.3 ATMM2ADTool
A ETL transformation that can be used to reverse transform the instance of ATMM
into a XML file in the correct structure to be imported back into ADTool.

The code from atmm2adtool.etl can be found in Appendix B

5.3.4 ATMM2Uppaal
Finally the third transformation is the EGL transformation that transforms an instance
of ATMM into a working Uppaal model on which the required analysis can be executed.

The EGL code can be found in Appendix C

5.3.5 Compiled Jar
Compiling the whole java program and exporting it as a jar package will give the user a
standalone tool (Adt2Upp.jar) which can be used as a command line tool to transform
ADTool XML into Uppaal output.
Usage :> java -jar Adt2Upp .jar [options] <input_file > <output_file >
input_file :

*. xml : as ADTool input
*. model : as ATMM input

Options :
-skipEVL : Skipping the Epsilon Validation Step

-noEGL : Skipping the Epsilon Generation Step , producing model instance

This Chapter will demonstrate the use of the Attack Trees from Chapter 2 and run
through the process of one transformation run. During the run they will be transformed
into an instance of the Attack Tree Meta-Model from Chapter 4. Both from and towards
the ATMM the transformations provided in Chapter 5 will be used. Finally the result
be the Uppaal model desired by the process, it will contain some of the templates
provided in Chapter 3, thereby linking all the chapters as one big chain and perfectly
demonstrating how the transformation tool works.

On the next two pages the Attack Tree will be introduced and its XML code will be
shown on the right page. Similarly the two pages after that will present the Attack
Tree as an instance of the meta-model on the right page and use the left page to
properly discuss how the transformation used the XML code from ADTool to provide
this instance. Finally four pages will dedicated to show the five templates used and
show how they are linked together through the declaration part of the Uppaal model
and the System part.

72 Transformation Demonstration

EnterRoom

Window Door Wall

BreakGlass Climb UseKey OpenDoor Explosive Hammer

t = [2..3] t = [9..15] t = [1..2] t = [1..1] t = [3..8] t = [25..50]
stone = true;

key = true; explosive = true; hammer = true;

Figure 6.1: EnterRoom Example

Modeling Example 1 in ADTool
Figure 6.1 displays the example that was introduced and explained in Chapter 2. In
this section this AT has to be modeled in ADTool.

Firstly we create the structure, a disjunctive root with two conjunctive and one
disjunctive children, each having two children. The last six nodes do not further
refinements, making them leaves.

Secondly the attributes can be quickly separated into two categories, time and booleans.
For the time there are two separate domains, the minimum times (2, 9, 1, 1, 3, 25)
and the maximum times (3, 15, 2, 1, 8, 50). For this we used a domain provided by
ADTool MinTimeSeq (Minimum Sequential Time).For the booleans we actually need 4
separate domains, because if an node for example does not have a key, the value is
false (these are excluded from the image). ADTool also provides a domain for this, the
SatScenario (Satisfiability Scenarios). All the 6 domains can be found on the bottom
of XML code on the right page. Furthermore the XML maintains the tree structure
and has 6 parameters for every leaf.

Things omitted for readability, every parameter for a SatScenario which has false
as its value and the content of the domain nodes.

73

<?xml version ="1.0" encoding ="UTF -8"? > < adtree >
<node refinement =" disjunctive ">

<label > EnterRoom </ label >
<node refinement =" conjunctive ">

<label >Window </ label >
<node refinement =" disjunctive ">

<label > BreakGlass </ label >
<parameter domainId =" SatScenario1 ">true </ parameter >
<parameter domainId =" MinTimeSeq5 " >2.0 </ parameter >
<parameter domainId =" MinTimeSeq6 " >3.0 </ parameter >

</node >
<node refinement =" disjunctive ">

<label >Climb </ label >
<parameter domainId =" MinTimeSeq5 " >9.0 </ parameter >
<parameter domainId =" MinTimeSeq6 " >15.0 </ parameter >

</node >
</node >
<node refinement =" conjunctive ">

<label >Door </ label >
<node refinement =" disjunctive ">

<label >UseKey </ label >
<parameter domainId =" SatScenario2 ">true </ parameter >
<parameter domainId =" MinTimeSeq5 " >1.0 </ parameter >
<parameter domainId =" MinTimeSeq6 " >2.0 </ parameter >

</node >
<node refinement =" disjunctive ">

<label >OpenDoor </ label >
<parameter domainId =" MinTimeSeq5 " >1.0 </ parameter >
<parameter domainId =" MinTimeSeq6 " >2.0 </ parameter >

</node >
</node >
<node refinement =" disjunctive ">

<label >Wall </ label >
<node refinement =" disjunctive ">

<label > Explosive </ label >
<parameter domainId =" SatScenario4 ">true </ parameter >
<parameter domainId =" MinTimeSeq5 " >3.0 </ parameter >
<parameter domainId =" MinTimeSeq6 " >8.0 </ parameter >

</node >
<node refinement =" disjunctive ">

<label >Hammer </ label >
<parameter domainId =" SatScenario3 ">true </ parameter >
<parameter domainId =" MinTimeSeq5 " >25.0 </ parameter >
<parameter domainId =" MinTimeSeq6 " >50.0 </ parameter >

</node >
</node >

</node >
<domain id =" SatScenario1 "> ...
<domain id =" SatScenario2 "> ...
<domain id =" SatScenario3 "> ...
<domain id =" SatScenario4 "> ...
<domain id =" MinTimeSeq5 "> ...
<domain id =" MinTimeSeq6 "> ...

</adtree >

74 Transformation Demonstration

ADTool-to-ATMM
Transforming the AT from Figure 6.1 into the ATMM will be done by the AD-
Tool2ATMM transformation. This conversion is the first step in the complete chain
and will result in an instance of the meta-model, Picture 6.2 contains the resulting
instance.

The 6 Domains found in the XML representation (previous page) of the AT can
be found at the bottom and are used to link to the Attributes. The labels of the AT
directly corespondent to the Nodes in the Instance. To provide structure the nodes
have been rearranged and the attributes have been grouped.

For simplicity and readability some features have been omitted. For example ev-
ery Node has a link to the AttackTree, but all these edges have been removed, the only
link that remains the root-link. Also every node has an ID but this is omitted, since
only the Label is used in this process. Similarly the derived boolean in the Attribute is
excluded in the Figure. Finally, every Attribute is an element of a Domain, but all these
edges have been replaced with numbers, which in turn refer to the Domain. i.e. The
attributes of the Node BreakGlass belong respectively to MinTimeSeq5, MinTimeSeq6
and SatScenario1.

After the rearrangement of the nodes in the ATMM instance the tree structure
of the AT in Figure 6.1 is still strongly recognizable. This is important because the
eventual UPPAAL model should maintain the same structure and having this structure
simplifies and guides the model-to-text transformation.

75

Domain

ID: SatScenario)
Computation: true

Domain

ID: SatScenario2
Computation: true

Domain

ID: MinTimeSeq6
Computation: true

Domain

ID: MinTimeSeq5
Computation: true

Domain

ID: SatScenario4
Computation: true

Domain

ID: SatScenario3
Computation: true

Node

EnterRoom

Node

Door

Node

Window

Node

Wall

Node

Explosive

Node

Hammer

Node

UseKey

Node

OpenDoor

Node

Climb

Node

BreakGlass
Attribute

Value: 2

Attribute

Value: 3

Attribute

Value: true

Attribute

Value: 9

Attribute

Value:)5

Attribute

Value:)

Attribute

Value: 2

Attribute

Value: true

Attribute

Value:)

Attribute

Value: 2

Attribute

Value: 3

Attribute

Value: 8

Attribute

Value: true

Attribute

Value: 25

Attribute

Value: 5(

Attribute

Value: true

AttackTreeOR

AND

PAND

OR

b)B b3B b5B

b2B b4B b6B

b5B

b5B

b5B

b5B

b5B

b5B

b6B

b6B

b6B

b6B

b6B

b6B

b3B

b4B

b)B

b2B

Figure 6.2: Example 1 as an instance of ATMM

76 Transformation Demonstration

The result of the ATMM2Uppaal transformation is displayed on the following three
pages. The result needs five templates represent the AT presented in Figure 6.1.
Respectively TimedBE, TimedCBE, AND2, OR2 and OR3. The first two are the
templates that are being used for the leaves, five leaves will have a normal Timed Basic
Event linked to them and one (OpenDoor) will have a Dormant / Cold Timed Basic
Event representing him. These templates can be found on the right hand page.

The other 3 templates are the templates for the intermediate leaves. Since we are
representing SAND gates with a normal AND gates and are only linking the underlying
leaves di�erently there is no need for a separate SAND gate. This leaves an AND2 tem-
plate that is used twice, and an OR2 template and an OR3 template that are used once.

The generated code blocks can be found in Code 6.1 and Code 6.2, which respec-
tively represents the code generated for the declaration part and the code that is
generated for the system part.

The declaration part takes care of initialising all the required broadcast channels.
Initialising the global variables that are needed, booleans t, f, system_done and re-
sult_SatScenario3. The last boolean is generated based on the available domains. Note
that the timed domains do not need a global variable here because the timed templates
take care of time. Further more the SatScenario3 domains has an array list which
stores all the values of the leaves, in this specific case the array has a length of size
and contains {true, false, true, false, true, true, }. Last the generation defined the
handleSatScenario() function, a function that is called from the activated leaves and
contains the leaf-id to update the global result_SatScenario3 based on the value at
index id of the SatScenario3 array.

The system part is used to create all the processes based on the templates defined
earlier. As an example we pick the leaf OpenDoor, as mention above this leaf uses the
Dormant Timed Basic Element template and is initialised with the following settings:
OpenDoor_success, UseKey_success, 1, 2, 3. Respectively the channel it broadcasts
on, the channel it waits for, the minimum time it waits, the maximum time it waits
and the id for this specific leaf. Finally the system call parallels all the processes and
this lets Uppaal know that all these processes need to be used.

77

Templates for the Leafs

Name: TimedBE Parameters: broadcast chan &a, int d, min, max

clock < max

endclock > min && not system_done

handleLMHE(id),
handle...(id)

a!

failed
clock > min && system_done

Name: TimedCBE Parameters: br. chan &a, &z, int id, min, max

z?

clock < max

endclock > min && not system_done

handleLMHE(id),
handle...(id)

a!

failed
clock > min && system_done

78 Transformation Demonstration

Generated code within the declaration tag

Code 6.1: Code generated for the declarations
// This model is generated by UATMM2Uppaal M2T Generation
// Date: Tue Mar 01 17:37:03 CET 2016

// Broadcast channels .
broadcast chan EnterRoom_success , Window_success , BreakGlass_success , Climb_success ,

Door_success , UseKey_success , OpenDoor_success , Wall_success , Explosive_success ,
Hammer_success ;

// Global Booleans
bool f = false ;
bool t = true;
bool system_done = false ;

bool result_SatScenario3 = true;

bool SatScenario3 [6] = {true , false , true , false , true , true}

void handleSatScenario3 (int value) {
result_SatScenario3 = result_SatScenario3 and SatScenario3 [value];

}

Generated code within the system part

Code 6.2: Code generated for the system part
// This model is generated by UATMM2Uppaal M2T Generation
// Date: Tue Mar 01 17:37:03 CET 2016

// Basic Elements
d_BreakGlass = TimedBE (BreakGlass_success , 2, 3, 0);
d_Climb = TimedBE (Climb_success , 9, 15, 1);
d_UseKey = TimedBE (UseKey_success , 1, 2, 2;
d_OpenDoor = TimedCBE (OpenDoor_success , UseKey_success , 1, 2, 3);
d_Explosive = TimedBE (Explosive_success , 3, 8, 4);
d_Hammer = TimedBE (Hammer_success , 25, 50, 5);

// AND gates
d_Window = AND2(Window_success , BreakGlass_success , Climb_success);
d_Door = AND2(Door_success , UseKey_success , OpenDoor_success);

// OR gates
d_EnterRoom = OR3(EnterRoom_success , Window_success , Door_success , Wall_success);
d_Wall = OR2(Wall_success , Explosive_success , Hammer_success);

Sys = System (EnterRoom_success);

// System
system Sys , d_BreakGlass , d_Climb , d_UseKey , d_OpenDoor , d_Explosive ,

d_Hammer , d_Window , d_Door , d_EnterRoom , d_Wall ;

79

Templates for the Gates

Name: OR2 Parameters: broadcast chan &a, &b, &c

a?

b?

c!t

Name: OR3 Parameters: broadcast chan &a, &b, &c, &d

b?

c?
d?

a!t

Name: AND2 Parameters: broadcast chan &a, &b, &c

C
c!

count >= 2count < 2

b? count++

a? count++

This thesis achieved the following results.

1. Multi-parameter Attack Tree model in Uppaal. Based upon the state of the art,
this thesis has delivered a set of Uppaal-template and the correct logic to combine
them in a fully functional Uppaal model, which represents the behavior of an
Attack Tree (AT). Major advantages above existing tools are the ability to analyze
across multiple domains, the use of sequential behavior and the possiblity to prop-
erly use shared subtrees. All these advantages come with using Timed Automata
and the versatility of Uppaal. The versatility of Uppaal mainly expresses itself
in the multiple extensions, which have di�erent focuses during its analysis, but
with the exception of a few small details have a combined underlying structure.
The predictions are that more of these features will be integrated in the general
tool, as has been done for the Statistical Model Checker (Uppaal SMC), which
has been fully integrated in Uppaal since version 4.14.

The set of templates that we created to represent a solid Uppaal Model and used
during the transformation process can be found in Appendix E.

2. Attack Tree MetaModel (ATMM), abstracting the multiple tools into a more
generic intermediate model allows future extensions to easily adapt and use the

82 Results

already existing transformations.For this we also present a meta-model, named
Attack Tree Meta Model (ATMM) can in be found in Appendix F. For a more
in detail explanation of this model, we refer the reader to Chapter 3. Since we
took the current state of the art into consideration, the meta-model can be used
for most of the Attack Tree formalisms that currently exist, as long as these
formalisms conform to the basic tree structures. All non-tree like constructions
are not included.

3. Transformations. Multiple transformations are included. For more details on the
individual transformations we refer the reader to Chapter 4.

(a) ADTool2ATMM.etl. A transformation in ETL from the ADTool xml output
into an instance of the ATMM, its source code can be found in Appendix A.

(b) ATMM2ADTool.etl. Inverse of the previous transformation, also using ETL.
The actual transformation can be found in Appendix B.

(c) ATMM2Uppaal.egl. Using EGL to transform an instance of the meta-model
into a working Uppaal-model. The initial ATMM2Uppaal.egl can be found
in Appendix C and for an example of the imported EGL files that are used
within this template, we refer the reader to Appendix D.

(d) UppaalEcore2Uppaal.egl. Separate from the ATMM transformations, the
need for additional transformation arose. This transformation uses an
Uppaal Meta-Model developed by XX University and transforms it into an
actual XML model.

4. Tool incorporating the transformations, one generic tool which can be loaded
with the di�erent transformations. A maven build which streamlines the two
transformations and provides a jar file which can be used as a command line
tool to transform ADTool xml into a Uppaal model. The code can be found in
Appendix G.

(a) Version 1, uses ADTool2ATMM and ATMM2Uppaal, this delivers a chain
of transformations which takes ADTool as an input and an Uppaal-model
as its output.

(b) Version 2, only has the UppaalEcore2Uppaal. Takes an instance of the
meta-model as input and produces the Uppaal-model.

7.1 Discussion 83

7.1 Discussion
When the original plans for this thesis were drafted, the goal was to generate Uppaal
models from Attack Trees prefereably in an organized, logical and automated way.
Initial designs and idea focussed around creating a tool that could transform inputs
from AT tools into an Uppaal model in a rather ad-hoc method. However after these
proposals we soon came to realise that this did not fulfill the addititional requirement
of automating this from existing tools, and the focuss shifted to a possible extenstion
within an existing tool to make the Uppaal model generation more streamlined. After
careful consideration we chose to use ADTool as the input tool. Primary motivations
for this were:

• Usability. This tool provides an easy to use Graphical User Interface (GUI)
which allows for the quick generations of Attack Trees.

• Existing Export-to-XML features. This export feature gives a XML format
representing this AT, this structure could then be easily used as input for the
ATMM.

• Availability of the code. A major advantage was the source code, which was
publicly available, very clearly structered and could easily be extended by the
Export-to-Uppaal Module.

• Usage within the chair. The fact that it is also used in the FMT chair cannot
be ignored as a major factor in this design process, both from a usability point of
view (i.e. the focus of this thesis should be on something that is actually going
to be used) and from a expertise point of view (i.e. Having experts available for
questions surrouding how it is actually used is very useful).

This process was the result of my research topics (a pre-thesis requirement) and with this
goal in mind (Extending ADTool with an Export-to-Uppaal module) I started this thesis-
project. However when it finally came down to proposing and demoing this solution to
other people on sta� some things changed. Some meetings and brainstorm sessions
changed the initial requirements to an intermediate tool which could transform output
of ADTool into input for Uppaal, almost as we initially approached this problem, but
more structured and more ad-hoc. Arend Rensink introduced model transformations
into this process and this is were the first ideas for the final result come from. The
possibilities of model transformations languages were explored and eventually we chose
for the Epsilon framework and primarly for the Epsilon Transformation Language

84 Results

(ETL). This language allowed for clean, rule-based transformations and gave us the
possibility to implement transformations from di�erent tools into an intermediate
model (meta-model).

7.1.1 Evaluation of the possible tools

Looking at the import possibilities there arose a need for a Graphical User Interface for
the creation of ATs. Since creating one from scratch was beyond the scope of this thesis,
the choice was made to pick on of the tools currently available. The primary selection
was made by looking at the available tools and selecting the ones that complied to our
most important selection criteria, i.e. scientific foundations, currently being maintained
and available research done with the tool. This resulted in SecurITree, AttackTree+
and ADTool.

SecurITree

Developed by Amenaza, SecurITree is a tool to model risks in an organization. It uses
ATs to understand how parts of an organization are vulnerable for attacks and can be
attacked by an attacker, what harm that attack can do, and what could be used as a
countermeasure for these specific attacks [24][46].

AttackTree+

Another commercial software for attack tree modeling, allows the user to model
probabilities that an attack will succeed. The application introduces attributes in the
form of indicators, which can be used for representing costs for an attack or di�culty
[3]. The questions that can be answered with this solution are of the following nature.
What is the fastest possible attack within a cost of x?.

ADTool

ADTool is open source software used for the graphical modeling and quantitative
analysis of attack–defense trees (ADTrees) [30]. The tool is developed by the University
of Luxembourg and according to Kordy et al.. [30] the following are the beneficial
features:

• The tool is a free and open source application.

• It supports quantitative and qualitative analysis of Attack Trees.

7.1 Discussion 85

• The ATs are based on well-founded formal framework.

• ADTool guides the user in constructing syntactically correct models.

• Automates the computation of security related parameters.

Comparison

Tool SecurITree AttackTree+ ADTool
GUI yes yes yes
Cost $1,250 / month free trail free
Code available no no yes

Table 7.1: Tool Comparison

Based on this information, the choice for ADTool has been made. It was the cheapest
available academic tool that met our criteria and the tool was already in use within our
faculty. Its Graphical User Interface is very open and allows for the quick generation
of Attack Trees, an example of the interface can be found in Figure 7.1. It had an
open-source code base, which allowed for easy integration of the tool for the changes
we initially attempted. Even though in the final design the choice of input tool was not
of the most important, the XML output of ADTool allowed for an easy transformation
into our ATMM.

7.1.2 Evaluation of the model transformation frameworks

For our choice in model transformation languages we looked at research on three
prominent representatives, namely ATL, ETL and TGGs.

ATL (ATLAS Transformation Language) is a transformation language originally
created by the ATLAS group and can be used to transform sets of input models into
sets of output models.

ETL (Epsilon Transformation Language) is part of the Epsilon transformation lan-
guage and is currently developed by the University of York, has an active forum
and nice tutorials.TGGs (Triple Graph Grammars), which use the QVT approach of
model transformations, is widely used, but lacks large scale implementations because it
disregards means for structuring specifications. This makes larger scale transformations
unmaintainable.

86 Results

Figure 7.1: A screenshot of the ADTool GUI

Straight o� the bat, ATL and ETL have a huge advantage over TGGs, because
they strongly implement Ecore models into there transformations. And since the
intermediate meta-model we use is an Ecore model, this eliminated the TGGs options.
The di�erences between ETL and ATL are less clear, syntactical they look very similar
and the rule based approach used for MDE is using the same concepts. ATL is a m2m
component and more mature, this will have benefits regarding remaining bugs in the
tooling and useful examples for features. Both have forums, but the ETL one is slightly
more active and more rich in examples. ETL is more imperative, allowing for more

7.2 Recommendation for Future Work 87

statements / queries within parent statements. And finally ETL allows for the smooth
integration with existing java libraries.

Comparison

TGGs ETL ATL
Ecore supports no yes yes
Rule-based structure can be yes yes
Mature yes no yes
Active forum depends yes yes
Imperative edge yes
Java integration no yes no

Table 7.2: Transformation Languages Comparison

This resulted in the choice for ETL, which is part of the Epsilon Modelling Family and
also gave us access to the closely related EGL (Epsilon Generation Language), which turned
out the be

7.2 Recommendation for Future Work

Even though the basis for the framework works as expected, it can be further extended in
multiple ways:

Improving current Uppaal model

Di�erent approaches use di�erent templates to represent gates in Uppaal. For examples
representing AND gates could be done by counting the number of incoming broadcasting
channels or create a template-state for every a actual state. Similarly representing SAND
gates can be done by triggering the next inactive Basic Element or create a chain of triggers
which will eventually trigger the same Basic Element. All these di�erent approaches have
their own advantages and disadvantages, depending on how the model will be used. e.g.
Counting AND gates greatly decrease the amount of possible states with respect to the above
mentioned alternative and that would be preferable for larger state spaces. More of these
optimizations exist and could be implemented as improvements in future work.

88 Results

Extending current Uppaal model
Instead of implementing new templates for existing gates another area for future work is
implementing new gates. As an example the SOR gates, which is the SAND equivalent of
the OR gates.

• This is would require to recreate this as an Uppaal template.

• Add the template to the EGL transformation.

• Add an instance of the template into the system declaration.

Implementing this and other gates into the transformation is something that would really
increase the benefits of this work.

Adding additional domains
On top of the existing domains additional attributes can be used in Attack Trees. One
example would be to enrich the attributes by making them dependant on each other. This is
done by Kumar et al. [34], there they express attributes as components like cost, time and
skill and make these components dependent, e.g. time can depend on skill level. This and
more extensions are very valuable extensions and should definitely be investigated in future
work.

Extending the Attack Tree Meta-Model (ATMM)
This is a process that has already started, the initial design is being extended for its use in
the TREsPASS project. Since multiple partners will be using this model, there will be some
changes in upcoming versions to improve the meta-model and adaptations of other users.

Increase input for ATMM
This work only has ADTool as an input model for the meta-model, separate work on our
university has been done to allow for more information from di�erent sources, primarily from
ATCalc and from the Attack Tree standard in TREsPASS. If the meta-model would become
a standard to represent ATs, a lot of import methods should be available. This is another
direction for future work.

Handling Uppaal output
The next step that needs to be taken in the automated process is porting the results from
Uppaal back into a second meta-model. This is one of major next challenges and starts with

7.2 Recommendation for Future Work 89

asking the right questions in Uppaal and extracting the correct answer out of the resulting
traces.

Our goal was to provide an easy way to transform Attack Trees into Uppaal models. In the first
part of this thesis we identified the key features that need to be represented in ATs and thus
be present in the Uppaal model. These features included the following intermediate nodes: a
conjunctive gate (AND), a disjunctive gate (OR) and a sequential conjunctive gate (SAND).
Furthermore the concept of time needs to be included, leaves have a certain trigger to get
them activated and using Uppaal allowed for including the concept of time. Within a timed
AT, leaves will have a minimum (x) and a maximum (y) attribute which will make Uppaal
activate the represented leaf between x and y time units. Last, looking at the bigger examples
of ATs the need arose to allow the sharing of sub-trees to greatly decrease the trees complexity.

Once both the input ATs and the outgoing Uppaal models were defined, the focus of
this thesis shifted to supplying an automated process to streamline this transformation. After
some careful consideration and the input of domain experts, we decided on a transformation
through meta-modelling. This resulted in the second contribution from this thesis, the Attack
Tree Meta Model (ATMM). This meta-model is used as an intermediate standard to represent
a majority of all the Attack Tree formalisms currently used in the scientific community.

Finally, for completion we implement the actual transformations. Firstly from our in-
put model (ADTool) into our meta-model (ATMM) and vice versa. And secondly from our
meta-model (ATMM) into our output model (Uppaal).

92 Conclusion

Overall this thesis proved that the goals set within the preliminarily research have been
completed into a clear, fast and reliable command line tool. Which transforms the XML
export from ADTool into an input file for Uppaal. It furthermore showed how quickly this
transformation process could be changed to implement a di�erent type of Uppaal output
which makes it much more valuable for future research.

The results show the possibilities of model transformations in the context of tree based
formalisms. These primary results are so promising that currently a lot of work within the
faculty is taking a similar redirection into the field of model-transformations.

As a recommendation for future research, we strongly recommend two separate directions.
Firstly in implementing the results of this thesis in a larger tool chain surrounding Attack
Tree analysis. The start for this has already been initialized. Future research will include
the results of questions on the generated Uppaal model and porting these results back into
the AT formalism. Secondly we recommend to keep improving the provided transformations,
primarily the resulting Uppaal model. This is subject to change once the chain is completed
and there is a need to ask additional questions on the Uppaal model.

All in all, this was a great learning experience and the final result proved that using model
transformations for tree-based formalisms proved beneficial and o�ered new insights for future
research.

Bibliography

[1] ADTool Universite du Luxembourg. http://satoss.uni.lu/members/piotr/adtool/.
Accessed: 2014-08-15.

[2] LIST Web Sandbox – ATCalc. http://fmt.ewi.utwente.nl/puptol/atcalc/. Accessed:
2015-12-15.

[3] Isograph: AttackTree+. http://www.isograph.com/software/attacktree/. Accessed:
2014-12-23.

[4] The TREsPASS Project (Technology-supported Risk Estimation by Predictive As-
sessment of Socio-technical Security). http://www.trespass-project.eu/. Accessed:
2015-09-30.

[5] UPPAAL. http://www.uppaal.org. Accessed: 2014-06-15.

[6] UPPAAL for Planning and Scheduling. http://people.cs.aau.dk/~adavid/cora/. Ac-
cessed: 2015-09-30.

[7] Kronos: A model-checking tool for real-time systems. volume 1427 of Lecture Notes in
Computer Science, pages 546–550. Springer Berlin / Heidelberg, 1998.

[8] F. Arnold, H. Hermanns, R. Pulungan, and M. I. A. Stoelinga. Time-dependent analysis
of attacks. In Third International Conference on Principles and Security of Trust,
Grenoble, France, volume 8414, pages 285–305, Berlin, April 2014.

[9] Schneier B. Attack Trees - Modeling security threats. Dr. Dobb’s Journal, December
1999.

[10] D. Baca and K. Petersen. Prioritizing countermeasures through the countermeasure
method for software security (cm-sec). In Product-Focused Software Process Improvement,
volume 6156 of Lecture Notes in Computer Science, pages 176–190. 2010.

[11] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hen-
driks. Uppaal 4.0. In Quantitative Evaluation of Systems, 2006. QEST 2006. Third
International Conference on, pages 125–126. IEEE, 2006.

[12] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal. pages 200–236.
Springer, 2004.

[13] S. Bistarelli, F. Fioravanti, and P. Peretti. Defense trees for economic evaluation of
security investments. In Availability, Reliability and Security, 2006. ARES 2006., April
2006.

http://satoss.uni.lu/members/piotr/adtool/
http://fmt.ewi.utwente.nl/puptol/atcalc/
http://www.isograph.com/software/attacktree/
http://www.trespass-project.eu/
http://www.uppaal.org
http://people.cs.aau.dk/~adavid/cora/

94 Bibliography

[14] Johannes A. Buchmann. Introduction to Cryptography. Springer, 2 edition, 2004. p. 190.

[15] E. Bursztein, B. Benko, D. Margolis, T. Pietraszek, A. Archer, A. Aquino, A. Pitsillidis,
and S. Savage. Handcrafted fraud and extortion: Manual account hijacking in the wild.
In Proceedings of the 2014 Conference on Internet Measurement Conference, IMC ’14,
pages 347–358, New York, NY, USA, 2014. ACM.

[16] S.A. Camtepe and B. Yener. Modeling and detection of complex attacks. In Security
and Privacy in Communications Networks and the Workshops, 2007. SecureComm 2007.
Third International Conference on, pages 234–243, Sept 2007.

[17] A. David, K.G. Larsen, A. Legay, M. Miku�ionis, D.B. Poulsen, J. Van Vliet, and Z. Wang.
Statistical model checking for networks of priced timed automata. In Proceedings of
the 9th International Conference on Formal Modeling and Analysis of Timed Systems,
FORMATS’11, pages 80–96, Berlin, Heidelberg, 2011. Springer-Verlag.

[18] Gurpreet Dhillon and Steve Moore. Computer crimes: theorizing about the enemy
within. Computers & Security, 20(8):715–723, 2001.

[19] K.S. Edge, G.C. Dalton, R.A. Raines, and R.F. Mills. Using attack and protection
trees to analyze threats and defenses to homeland security. In Military Communications
Conference, 2006. MILCOM 2006. IEEE, pages 1–7, Oct 2006.

[20] K.S. Edge, R.A. Raines, M.R. Grimaila, R.O. Baldwin, R.W. Bennington, and C.E.
Reuter. The use of attack and protection trees to analyze security for an online banking
system. In HICSS, page 144. IEEE Computer Society, 2007.

[21] I.N. Fovino, M. Masera, and A. De Cian. Integrating cyber attacks within fault trees.
Reliability Engineering & System Safety, pages 1394 – 1402, 2009. the 18th European
Safety and Reliability Conference.

[22] T.A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems.
In Computer aided verification, pages 460–463. Springer, 1997.

[23] C. Herley. Why do nigerian scammers say they are from nigeria? WEIS, 2012.

[24] T.R. Ingoldsby. Attack tree-based threat risk analysis. Amenaza Technologies Ltd.
Copyright, 2010, 2009.

[25] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Rolando Trujillo-
Rasua. Attack trees with sequential conjunction.

[26] D. Kolovos, L. Rose, R. Paige, and A. Garcıa-Domınguez. The epsilon book. Structure,
178:1–10, 2010.

[27] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Eclipse development tools for epsilon. In
Eclipse Summit Europe, Eclipse Modeling Symposium, volume 20062, page 200, 2006.

[28] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. The epsilon transformation language.
In Proceedings of the 1st International Conference on Theory and Practice of Model
Transformations, ICMT ’08, pages 46–60, Berlin, Heidelberg, 2008. Springer-Verlag.

[29] B. Kordy, S Mauw, S. RadomiroviÊ, and P. Schweitzer. Foundations of attack-defense
trees. In Proceedings of the 7th International Conference on Formal Aspects of Security
and Trust, pages 80–95, 2011.

Bibliography 95

[30] B. Kordy, P. Kordy, S. Mauw, and P. Schweitzer. Adtool: Security analysis with attack-
defense trees (extended version). CoRR, abs/1305.6829, 2013.

[31] B. Kordy, P. Kordy, S. Mauw, and P. Schweitzer. Adtool: Security analysis with
attack-defense trees. In 10th International Conference on Quantitative Evaluation of
Systems (QEST), Buenos Aires, Argentina, volume 8054 of Lecture Notes in Computer
Science, pages 173–176. Springer, August 2013.

[32] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer. Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review, 2014.

[33] N. Kshetri. The simple economics of cybercrimes. IEEE Security and Privacy, Vol. 4,
No. 1, January/February 2006.

[34] R. Kumar, E. J. J. Ruijters, and M. I. A. Stoelinga. Quantitative attack tree analysis via
priced timed automata. In S. Sankaranarayanan and E. Vicario, editors, Proceedings of
the 13th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2015), Madrid, Spain, volume 9268 of Lecture Notes in Computer Science,
pages 156–171, September 2015.

[35] W. Lv and W. Li. Space based information system security risk evaluation based on
improved attack trees. In Third International Conference on Multimedia Information
Networking and Security, MINES ’11, pages 480–483, 2011.

[36] I. S. Moskowitz and M. H. Kang. An insecurity flow model. In Proc. Workshop on New
Security Paradigms, Langdale, Cumbria, United Kingdom, 1997.

[37] S.C. Patel, J.H. Graham, and P.A.S. Ralston. Quantitatively assessing the vulnerability
of critical information systems: A new method for evaluating security enhancements.
International Journal of Information Management, 28(6):483 – 491, 2008.

[38] L.M. Rose, R.F. Paige, D.S. Kolovos, and F. Polack. The epsilon generation language.
In Ina Schieferdecker and Alan Hartman, editors, ECMDA-FA, volume 5095 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2008.

[39] A. Roy, D.S. Kim, and K.S. Trivedi. Act: Attack countermeasure trees for information
assurance analysis. In IEEE Conference on Computer Communications Workshops ,
2010, March 2010.

[40] A. Roy, D.S. Kim, and K.S. Trivedi. Cyber security analysis using attack countermeasure
trees. In Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, CSIIRW ’10, pages 28:1–28:4, New York, NY, USA, 2010. ACM.

[41] M. Sanford, D. Woodraska, and D. Xu. Security analysis of filezilla server using threat
models. SEKE 2011 - Proceedings of the 23rd International Conference on Software
Engineering and Knowledge Engineering, pages 678–682, 2011.

[42] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-
driven software development. IEEE Software, 20(5):42–45, 2003.

[43] C.-W. Ten, G. Manimaran, and C.-C. Liu. Cybersecurity for critical infrastructures:
Attack and defense modeling. IEEE Transactions on Systems, Man, and Cybernetics
Part A:Systems and Humans, 40(4):853–865, 2010.

96 Bibliography

[44] K. S. Trivedi, D. S. Kim, A. Roy, and D. Medhi. Dependability and security models.
In Design of Reliable Communication Networks, 2009. DRCN 2009. 7th International
Workshop on, pages 11–20, Oct 2009.

[45] J. D. Weiss. A system security engineering process. 14th National Computer Security
Conference, pages 572–581, 1991.

[46] S.M. Welberg. Vulnerability management tools for cots software - a comparison, February
2008.

[47] R. Yager. OWA trees and their role in security modeling using attack trees. Information
Sciences, pages 2933 – 2959, 2006.

9.1 Appendix A: ADTool2ATMM (ETL)

pre {
var javaDate = new Native ("java.util.Date");
javaDate . toString (). println (" Starting ADTool2M

transformation : ");

// Start a recursive XML Teardown to determine
parent / children relations .

// (Operation instead of rules , as rules did not seem
suitable)

// ADTool .root. e_node . recursiveXMLTeardown (true , null);
}

post {
var javaDate = new Native ("java.util.Date");
javaDate . toString (). println (" Completed ADTool2M

transformation : ");
}

98 Appendices

// Transform all domains and set several attributes by
obtaining

// info from attributes and child nodes
@primary
rule ADToolDomain2UATDomain

transform ad : ADTool ! t_domain
to gad : UATMM! Domain {

gad.ID = ad.a_id;
gad. Computation = true;

}

rule ADToolTree2UATTree
transform ad : ADTool ! t_adtree
to uat : UATMM! AttackTree {

var role1 = new UATMM!Role ();
role1 . RoleType = UATMM! RoleType # Contributing ;
role1 . RoleDescription = " Attack ";

var role2 = new UATMM!Role ();
role2 . RoleType = UATMM! RoleType # Counteracting ;
role2 . RoleDescription = " Defense ";

uat.Roles.add(role1);
uat.Roles.add(role2);

for(domain in UATMM! Domain . allInstances){
uat. Domains .add(domain);

}

ad. e_node . recursiveXMLTeardown (true , null);

}

// Recursive XML Teardown operation . Called on XML node and
will call method on all child nodes

9.1 Appendix A: ADTool2ATMM (ETL) 99

// Creates an ATNode , sets its parameters and sets
parent /child relation to child ATNodes .

operation ADTool ! t_node recursiveXMLTeardown (role : Boolean ,
parent : UATMM!Node) : UATMM!Node{

var children = self. c_node ;
var parameters = self. c_parameter ;
var result = new UATMM!Node ();

result .Label = self. e_label .text;

// Reverse roles if node contains switchRole attribute
if (("yes"). equals (self. a_switchRole)){

role = not role;
}

result .Role = self. findRole (role);
result . Connector = self. findConnector ();

getAttackTree ().Nodes.add(result);

// If there is a parent , add it.
if(parent <>null){

result . Parents .add(parent);
} else {

getAttackTree ().Root = result ;
}

// If node has any childeren , call method recursively
and add references to results .

if(children .size () >0){
for(c in children){

result . Children .add(c. recursiveXMLTeardown (role ,
result));

}

// If there are not any childeren , there can be
paramters . Add

} else {
for(p in parameters){

100 Appendices

var param = new UATMM! Attribute ();

param.Value = p.text;
param. Domain = p. findDomain ();
result . Attributes .add(param);

}
}
return result ;

}

operation ADTool ! t_parameter findDomain (){
return UATMM ! Domain . allInstances

. select (d|d.ID== self. a_domainId).first ();
}

operation ADTool ! t_node findConnector (){
if(self. a_refinement . equals (" disjunctive ")){

return new UATMM!OR();
} else {

return new UATMM!AND ();
}

}

operation ADTool ! t_node findRole (role: Boolean){
if(role){

return UATMM!Role. allInstances
. select (n|n. RoleType =
UATMM! RoleType # Contributing).first ();

} else {
return UATMM!Role. allInstances

. select (n|n. RoleType =
UATMM! RoleType # Counteracting).first ();

}

}

@cached
operation Any getAttackTree () : UATMM! AttackTree {

9.1 Appendix A: ADTool2ATMM (ETL) 101

return UATMM ! AttackTree . allInstances .last ();
}

102 Appendices

9.2 Appendix B: ATMM2ADTool (ETL)

pre {
var javaDate = new Native ("java.util.Date");
javaDate . toString (). println (" Starting ADTool2M

transformation : ");
}

post {
var javaDate = new Native ("java.util.Date");
javaDate . toString (). println (" Completed ADTool2M

transformation : ");
}

@primary
rule UATMM2ADTool

transform at : UATMM! AttackTree
to adt : ADTool ! t_adtree {
ADTool .root = adt;

}

rule GAT2ADTool
transform r : UATMM!Node
to f : ADTool ! t_node {

// Set refinement attribute of node
f. a_refinement = r. findRefinement ();

// Create and add label to the current node.
var label = new ADTool ! t_label ;
label .text = r. Label;
f. appendChild (label);

// Append all attribute nodes to the current node
// Invoke the lazy rule for all attributes (by using

equivalent ())
// then append all children XML nodes to the current

node.

9.2 Appendix B: ATMM2ADTool (ETL) 103

for (child in r. Attributes . equivalent ()) {
f. appendChild (child);
}

// If the parent ATNode has a different role , add
’switchRole ’ attribute to the XML node.

if(r. Parents .size () > 0 and
r. Parents .first ().Role. RoleType <> r.Role. RoleType
){

f. a_switchRole = "yes";
}

// Append all child ATNodes to the current node in the
XML

for (child in r. Children . equivalent ()) {
f. appendChild (child);

}

// Append the current node to the root (Not sure why
this works , as it is called for all nodes)

ADTool .root. appendChild (f);
}

// Simply transform each domain into an XML domain and attach
it to the root

rule Domain2ADToolDomain
transform at : UATMM! Domain
to ad : ADTool ! t_domain {

var class = new ADTool ! t_class ;
class.text = at. determineClass ();
var tool = new ADTool ! t_tool ;
tool.text = " ADTool ";
ad.a_id = at.ID;

ad. appendChild (class);
ad. appendChild (tool);
ADTool .root. appendChild (ad);

}

104 Appendices

@lazy
rule Attribute2Param

transform a : UATMM! Attribute
to p : ADTool ! t_parameter {

p. a_domainId = a. Domain .ID;
p.text = a.Value;

}

// Find the string version of the refinement of ATNode
operation UATMM!Node findRefinement () : String {

if(self. Connector . isTypeOf (UATMM!OR)){
return " disjunctive ";

} else if(self. Connector . isTypeOf (UATMM!AND)){
return " conjunctive ";

}
return " disjunctive ";

}

// Find the string version of the refinement of ATNode
operation UATMM! Domain determineClass () : String {

// Removing trailing digits to determine class
return "lu.uni. adtool . domains . predefined ."+

(self.ID. replaceAll ("\\d*$", ""));
}

9.3 Appendix C: ATMM2Uppaal (EGL) 105

9.3 Appendix C: ATMM2Uppaal (EGL)

[%
var location = new

Native ("com. utwente . standalone . Locator ");
TemplateFactory . setTemplateRoot (location . getURI ()+" predefined /");

var andTemplate : Template :=
TemplateFactory .load(’ ANDTemplate .egl ’);

var orTemplate : Template :=
TemplateFactory .load(’ ORTemplate .egl ’);

var systemTemplate : Template :=
TemplateFactory .load(’ SystemTemplate .egl ’);

var generated : Template :=
TemplateFactory .load(’ generated .egl ’);

var timedBETemplate : Template :=
TemplateFactory .load(’ TimedBETemplate .egl ’);

var expBETemplate : Template :=
TemplateFactory .load(’ ExpBETemplate .egl ’);

var timedCBETemplate : Template :=
TemplateFactory .load(’ TimedCBETemplate .egl ’);

var expCBETemplate : Template :=
TemplateFactory .load(’ ExpCBETemplate .egl ’);

var ElementId2LeafId : Map;
var LeafId2ElementId : Map;
var id = 0;
for(n in AT!Node. allInstances (). select (n|

n. Children .size () == 0)) {
ElementId2LeafId .put(n.Label , id);
LeafId2ElementId .put(id , n.Label);
id = id + 1;

}
var domain2type = initDomainType ();
var domain2initValue = initDomainInitValue ();
var domain2metaDomain : Map;
var channelsUsed : Sequence ;
var namesUsed : Sequence ;
var andTemplatesIncluded : Sequence ;

106 Appendices

var orTemplatesIncluded : Sequence ;
%]<? xml version ="1.0" encoding ="utf -8"?>
<! DOCTYPE nta PUBLIC ’-// Uppaal Team // DTD Flat System 1.1// EN ’

’http :// www.it.uu.se/ research / group/ darts / uppaal /flat -1 _2.dtd ’>
<nta >

<declaration >
[%= generated . process ()%]
// Broadcast channels .
broadcast chan [% var b : Boolean = false;
for(n in AT!Node. allInstances . select (n |

(n.Role. RoleDescription == " Attack " or n. Children .size () ==
0))) {

if (channelsUsed . indexOf (n. getConvertedLabel ()) == -1) {
channelsUsed .add(n. getConvertedLabel ());
if(b){%], [% } else {b = true; }
%][%= n. getConvertedLabel () %] _success [% }} %];

// Global Booleans
bool f = false ;
bool t = true;
bool system_done = false;
bool system_busy = false;
[%

var domains : Sequence ;
var domains_stripped : Sequence ;
for(d in AT! Domain . allInstances ()) {

domains .add(d.ID);

var id_stripped = d.ID. replaceAll ("\\d","");
domain2metaDomain .put(id , id_stripped);
if(domains_stripped . indexOf (id_stripped) ==

-1) {
domains_stripped .add(id_stripped);

}
}
// Timed or Distribution based
var timed = ((domains_stripped . indexOf (" MinTimeSeq ")

<> -1) or (domains_stripped . indexOf (" MinTimePar ")
<> -1));

var timed_domains : Sequence ;

9.3 Appendix C: ATMM2Uppaal (EGL) 107

for (d in domains) {
if(d. startsWith (" MinTimePar ") or

d. startsWith (" MinTimeSeq ")) {
timed_domains .add(d);

}
}
(">> # of timed domains :

"+ timed_domains .size ()). println ();
var min_domain ;
var max_domain ;
if (timed_domains .size () == 2) {

var first_value ;
var second_value ;
// get the all the attributes of the first

leaf , based on this decide which domain is
min / max

for (att in
getATNode (LeafId2ElementId .get(LeafId2ElementId

. keySet (). first ())). Attributes){
if

(timed_domains . indexOf (att. Domain .ID)
== 0) {

first_value =
att. Value. asReal ().floor ();

}
if

(timed_domains . indexOf (att. Domain .ID)
== 1) {

second_value =
att. Value. asReal ().floor ();

}
}
if (first_value < second_value) {

min_domain = timed_domains .at (0);
max_domain = timed_domains .at (1);

} else {
min_domain = timed_domains .at (1);
max_domain = timed_domains .at (0);

}

108 Appendices

} else if (timed_domains .size () == 1) {
min_domain = timed_domains .at (0);
max_domain = timed_domains .at (0);

}
if ((domains_stripped . indexOf (" DiffLMH ") <> -1) or

(domains_stripped . indexOf (" DiffLMHE ") <> -1)){
%] // Values for LMHE domain :"

const int L = 1; // Low"
const int M = 2; // Medium
const int H = 3; // High
const int E = 4; // Extreme

[%
}
for (d in domains) {

var str_d = d. replaceAll ("\\d","");

if (not domain2type . containsKey (str_d))
("Couldn ’t match domain ["+d+"]"). println ;

else {
%][%= domain2type .get(str_d) %]

result_ [%=d %] =
[%= domain2initValue .get(str_d) %];

[%
}

}
for (d in domains) {

var str_d = d. replaceAll ("\\d","");
if (not domain2type . containsKey (str_d))

("Couldn ’t match domain
["+str_d+"]"). println ;

else if (d. startsWith (" MinTime ")) {
} else {

%][%= domain2type .get(str_d) %] [%=d
%][[%= LeafId2ElementId .size () %]] =
{[%

var first = true;

9.3 Appendix C: ATMM2Uppaal (EGL) 109

for(key in LeafId2ElementId . keySet ()) {
for (att in

getATNode (LeafId2ElementId .get(key)). Attributes){
if (first) {
if (att. Domain .ID. equals (d)) {

first = false;
if (str_d. equals (" ProbSucc ")) {

%][%=(1000* att.Value).floor ()
%][%

} else {
%][%=(att.Value) %][%

}
}
} else {
if (att. Domain .ID. equals (d)) {

if (str_d. equals (" ProbSucc ")) {
var newVar =

((1000* att. Value). floor ());
%], [%= newVar %][%

} else {
%], [%=(att.Value) %][%

}
}
}

}
}

%]};

[%
}

}
var str_d : String ;
for (d in domains) {

if (d. startsWith (" DiffLMH ")) {
%]

void handle [%=d %](int value) {
if ([%=d %][value] > result_ [%=d %]) {

result_ [%=d %] = [%=d %][value];
}

110 Appendices

}
[%
} else if (d. startsWith (" MinCost ") or

d. startsWith (" MinSkill ")){
%]

void handle [%=d %](int value) {
result_ [%=d %] = result_ [%=d %] + [%=d %][value];

}
[%
} else if (d. startsWith (" SatScenario ") or

d. startsWith (" SatProp ")){
%]

void handle [%=d %](int value) {
result_ [%=d %] = result_ [%=d %] and [%=d %][value];

}
[%

} else if (d. startsWith (" ProbSucc ")){
%]

void handle [%=d %](int value) {
result_ [%=d %] = (result_ [%=d %] * [%=d

%][value]) /1000;
}

[%
}
}

%]
</ declaration >

[%
var nodes : Sequence ;
nodes = AT!Node. allInstances (). select (n| n. Children .size () <>

0 and (n. Connector . isTypeOf (AT!AND) or
n. Connector . isTypeOf (AT!PAND)));

for(n in nodes) {
if (andTemplatesIncluded . indexOf (n. Children .size ()) == -1) {

andTemplate . populate (’n’, n. Children .size ());%]
[%= andTemplate . process ()%]
[% andTemplatesIncluded .add(n. Children .size ());
} } %]
[%

9.3 Appendix C: ATMM2Uppaal (EGL) 111

var nodes : Sequence ;
nodes = AT!Node. allInstances (). select (n| n. Children .size () <>

0 and n. Connector . isTypeOf (AT!OR));
for(n in nodes) {
if (orTemplatesIncluded . indexOf (n. Children .size ()) == -1) {

orTemplate . populate (’n’, n. Children .size ());%]
[%= orTemplate . process ()%]
[% orTemplatesIncluded .add(n. Children .size ());
} }
if(timed) {

timedBETemplate . populate (’domains ’, domains);
%][%= timedBETemplate . process () %][%
if (AT!Node. allInstances (). select (n|

n. Connector . isTypeOf (AT!PAND)).size () <> 0) {
timedCBETemplate . populate (’domains ’, domains);
%][%= timedCBETemplate . process () %][%

}
} else {

expBETemplate . populate (’domains ’, domains);
%][%= expBETemplate . process () %][%
if (AT!Node. allInstances (). select (n|

n. Connector . isTypeOf (AT!PAND)).size () <> 0) {
expCBETemplate . populate (’domains ’, domains);
%][%= expCBETemplate . process () %][%

}
}
%][%= systemTemplate . process () %]

<system >
[%= generated . process ()%]
// Basic Elements
[% for(n in AT!Node. allInstances (). select (n| n. Children .size ()

== 0)) {
if (namesUsed . indexOf (n. getConvertedLabel ()) == -1) {

namesUsed .add(n. getConvertedLabel ());
if(timed) {

var min = 0;
var max = 0;
if (timed_domains .size () == 2) {

// Model is timed retreiving domain id

112 Appendices

for (att in
getATNode (n.Label). Attributes){

if
(att. Domain .ID. equals (min_domain))
{

min =
att. Value. asReal ().floor ();

} else if
(att. Domain .ID. equals (max_domain))
{

max =
att. Value. asReal ().floor ();

}
}

} else if (timed_domains .size () == 1) {
for (att in

getATNode (n.Label). Attributes){
if

(att. Domain .ID. equals (min_domain))
{

min =
att. Value. asReal ().floor ();

max =
att. Value. asReal ().floor ()
+ 1;

}
}

}
var leftSibling = n. getLeftSiblingsActivator ();
if (leftSibling . equals ("")) {

%] d_ [%=n. getConvertedLabel () %] =
TimedBE ([%=n. getConvertedLabel ()
%] _success , [%= min %], [%= max %],
[%= ElementId2LeafId .get(n. Label)
%]) ;[%

} else {
%] d_ [%=n. getConvertedLabel () %] =

TimedCBE ([%=n. getConvertedLabel ()
%] _success , [%= leftSibling

9.3 Appendix C: ATMM2Uppaal (EGL) 113

%] _success , [%= min %], [%= max %],
[%= ElementId2LeafId .get(n. Label)
%]) ;[%

}
} else {

var leftSibling = n. getLeftSiblingsActivator ();
if (leftSibling . equals ("")) {

%]d_ [%=n. getConvertedLabel () %] =
ExpBE ([%=n. getConvertedLabel ()
%] _success , 0.5,
[%= ElementId2LeafId .get(n. Label)
%]) ;[%

} else {
%]d_ [%=n. getConvertedLabel () %] =

ExpCBE ([%=n. getConvertedLabel ()
%] _success , [%= leftSibling
%] _success , [%= min %], [%= max %],
[%= ElementId2LeafId .get(n. Label)
%]) ;[%

}
}

} %]
[% } %]
// AND gates
[% for(n in AT!Node. allInstances (). select (n| n. Children .size ()

<> 0 and (n. Connector . isTypeOf (AT!AND) or
n. Connector . isTypeOf (AT!PAND)))) {

if (namesUsed . indexOf (n. getConvertedLabel ()) == -1) {
namesUsed .add(n. getConvertedLabel ()); %]

d_ [%=n. getConvertedLabel () %] = AND [%=n. Children . select (c |
c.Role. RoleDescription == " Attack ").size ()
%]([%= n. getConvertedLabel () %] _success [% for(c in
n. Children . select (c | c.Role. RoleDescription == " Attack "))
{ %], [%=c. getConvertedLabel () %] _success [% } %]);

[% }
} %]
// OR gates
[% for(n in AT!Node. allInstances (). select (n| n. Children .size ()

<> 0 and n. Connector . isTypeOf (AT!OR))) {

114 Appendices

if (namesUsed . indexOf (n. getConvertedLabel ()) == -1) {
namesUsed .add(n. getConvertedLabel ()); %]

d_ [%=n. getConvertedLabel () %] = OR [%=n. Children . select (c |
c.Role. RoleDescription == " Attack ").size ()
%]([%= n. getConvertedLabel () %] _success [% for(c in
n. Children . select (c | c.Role. RoleDescription == " Attack "))
{ %], [%=c. getConvertedLabel () %] _success [% } %]);

[% }
} %]
Sys =

System ([%= AT! AttackTree . allInstances ().first ().Root. getConvertedLabel ()
%] _success);

// System
system Sys [%
for(n in namesUsed) {
%], d_ [%=n %][%
}
%]; </ system >
</nta >
[%

var javaDateEnd = new Native ("java.util.Date");
System .out. println ("> UATMM Model2Text finished on: "+

javaDateEnd);
var elapsed = javaDateEnd . getTime () -

javaDateBegin . getTime ();
var minutes = elapsed / 60000;
var rest = elapsed .mod (60000) ;
var seconds = rest / 1000;
var mili = rest.mod (1000) ;
System .out.print("> Time elapsed : ");
if (minutes <> 0) System .out.print(minutes + " min ,

");
if (seconds <> 0) System .out.print(seconds + " sec :

");
System .out. println (mili+ " ms");

operation Any getConvertedLabel () : String {
return self.Label. replace (" ", "_");

}

9.3 Appendix C: ATMM2Uppaal (EGL) 115

operation Integer mod(i : Integer) {
return self - (self/i * i);

}
// Domain Information
operation Any initDomainType () : Map {

var domain2type : Map;
domain2type .put(" DiffLMH ","int");
domain2type .put(" DiffLMHE ","int");
domain2type .put(" MinCost ","int");
domain2type .put(" MinSkill ","int");
domain2type .put(" MinTimePar "," double ");
domain2type .put(" MinTimeSeq "," double ");
domain2type .put(" PowerCons "," double ");
domain2type .put(" ProbSucc ","int");
domain2type .put(" ReachPar ","int");
domain2type .put(" ReachSeq ","int");
domain2type .put(" SatOpp ","bool");
domain2type .put(" SatProp ","bool");
domain2type .put(" SatScenario ","bool");
return domain2type ;

}
operation Any initDomainInitValue () : Map {

var domain2initValue : Map;
domain2initValue .put(" DiffLMH ","L");
domain2initValue .put(" DiffLMHE ","L");
domain2initValue .put(" MinCost " ,0);
domain2initValue .put(" MinSkill " ,0);
domain2initValue .put(" MinTimePar " ,0.0);
domain2initValue .put(" MinTimeSeq " ,0.0);
domain2initValue .put(" PowerCons " ,0.0);
domain2initValue .put(" ProbSucc " ,1000);
domain2initValue .put(" ReachPar " ,0);
domain2initValue .put(" ReachSeq " ,0);
domain2initValue .put(" SatOpp ","true");
domain2initValue .put(" SatProp ","true");
domain2initValue .put(" SatScenario ","true");
return domain2initValue ;

}
// Returns an ATNode , based on its label

116 Appendices

operation Any getATNode (target : String) : AT!Node {
var nodes = AT!Node. allInstances . select (n|

n. Children .size () == 0);
for(node in nodes) {

if(target . equals (node.Label)) return
node;

}
return null;

}
operation AT!Node getLeftSiblingsActivator () : String {

// If there is no PAND gate
if (AT!Node. allInstances (). select (n |

n. Connector . isTypeOf (AT!PAND)).size () ==
0) {

return "";
} else if (not self. hasPandAncestor ()) {

return "";
} else {

var result =
self. getLeftSiblingsActivatorHelper ();

if (result . equals ("LEFT")) { return
""; }

return result ;
}

}
// Possible infite loop , if a node has itself as a

parent or ancestor .
// The EVL constraints should prevent this.
operation AT!Node hasPandAncestor () : Boolean {

if (self. Parents .size () == 0) {
return false ;

} else if (self. Parents . select (n |
n. Connector . isTypeOf (AT!PAND)).size () > 0
) {

return true;
} else {

var result = false ;
for (n in self. Parents) {

if (n. hasPandAncestor ()) {

9.3 Appendix C: ATMM2Uppaal (EGL) 117

result = true;
}

}
return result ;

}
}
// @return a sequence of all the first encountered

PANDs
operation AT!Node getFirstPandAncestor () : Sequence {

var result : Sequence ;
if (self. Parents .size () == 0) {

return result ;
} else if (self. Parents . select (n |

n. Connector . isTypeOf (AT!PAND)).size () > 0
) {

for (parent in self. Parents) {
if (parent . Connector . isTypeOf (

AT!PAND)) {
result .add(parent);

}
}
return result ;

} else {
var result = false ;
for (n in self. Parents) {

if (n. hasPandAncestor ()) {
result = true;

}
}
return result ;

}
}
operation AT!Node getLeftSiblingsActivatorHelper () :

String {
if (self. Parents .size () == 0) {

return "";
} else {

for (parent in self. Parents) {

118 Appendices

if (
parent . Connector . isTypeOf (
AT!PAND)) {

var children =
parent . Children ;

var index =
children . indexOf (self)

. asInteger ();
if (index == 0) {

return "LEFT";
} else {

return
children .at(index
-
1). getConvertedLabel ();

}
}

}
for (parent in self. Parents) {

var result =
parent . getLeftSiblingsActivatorHelper ();

if (not result . equals ("")) {
return result ; }

}
// Finally since nothing was found
return "";

}
}
%]

9.4 Appendix D: ATMM2Uppaal import 119

9.4 Appendix D: ATMM2Uppaal import
SystemTempalte.egl

<template >
<name >System </name >
<parameter > broadcast chan &a</ parameter >
<declaration > clock global_clk ;</ declaration >
<location id="id0" x=" -200" y="0">
</location >
<location id="id1" x="0" y="0">

<name x=" -10" y="25">busy </name >
</location >
<location id="id2" x="200" y="0">

<name x="190" y="25">done </name >
<committed />

</location >
<init ref="id0"/>
<transition >

<source ref="id1"/>
<target ref="id2"/>
<label kind=" synchronisation " x="17"

y="8">a?</label >
<label kind=" assignment " x="17"

y=" -42">system_done := true ,
system_busy := false </ label >

</ transition >
<transition >

<source ref="id0"/>
<target ref="id1"/>
<label kind=" assignment " x=" -180"

y=" -42">global_clk := 0,
system_busy := true </ label >

</ transition >
</template >

120 Appendices

9.5 Appendix E: Templates for the Uppaal model

Exponential Basic Element

Name: ExpBE Parameters: broadcast chan &a, int id, double rate

rate

failed

end
system_done

not system_done
handleLMHE(id),
handle...(id)

a!

failed

Figure 9.1: Basic Element (Trigger: Exp(1/e))

Erlang Basic Element

Name: ErlangBE Parameters: broadcast chan &a, int id, n, double rate

e = e + 1

e < n
rate

endn <= e && not system_done
handleLMHE(id),
handle...(id)

a!

failed
system_done

Figure 9.2: Basic Element (Trigger: Erlang(c, 1/d))

9.5 Appendix E: Templates for the Uppaal model 121

Timed Basic Element

Name: TimedBE Parameters: broadcast chan &a, int d, min, max

clock < max

endclock > min && not system_done

handleLMHE(id),
handle...(id)

a!

failed
clock > min && system_done

Figure 9.3: Basic Element (Trigger: Time(c,d))

Dormant Exponential Basic Element

Name: ExpCBE Parameters: broadcast chan &a, &z, int id, double c

c

failed

end
system_done

not system_done
handleLMHE(id),
handle...(id)

a!

failed

z?

;

Figure 9.4: Dormant Basic Element (Trigger: Exp(1/e))

122 Appendices

Dormant Erlang Basic Element

Name: ErlangCBE Parameters: broadcast chan &a, &z int b, double c

z?e = e + 1

e < c
d

endc <= e && not system_done
handleLMHE(b),
handle...(b)

a!

Figure 9.5: Dormant Basic Element (Trigger: Erlang(c, 1/d))

Dormant Timed Basic Element

Name: TimedCBE Parameters: br. chan &a, &z, int id, min, max

z?

clock < max

endclock > min && not system_done

handleLMHE(id),
handle...(id)

a!

failed
clock > min && system_done

Figure 9.6: Dormant Basic Element (Trigger: Time(c,d))

9.5 Appendix E: Templates for the Uppaal model 123

AND-gate, with 2 children

Name: AND2 Parameters: broadcast chan &a, &b, &c

C
c!

count >= 2count < 2

b? count++

a? count++

Figure 9.7: AND-gate, with 2 children

OR-gate, with 2 children

Name: OR2 Parameters: broadcast chan &a, &b, &c

a?

b?

c!t

Figure 9.8: OR-gate, with 2 children

124 Appendices

Dormant AND-gate, with 2 children

Name: CAND2 Parameters: broadcast chan &a, &b, &c, &y, &z

c!

count >= 2

count++

count++

a?

b?

y?

z!

Figure 9.9: Dormant AND-gate, with 2 children

Dormant OR-gate, with 2 children

Name: COR2 Parameters: broadcast chan &a, &b, &c, &y, &z

a?

b?

y?

z!

c!tt c!

Figure 9.10: Dormant OR-gate, with 2 childre

9.6 Appendix F: Attack Tree Meta Model (ATMM) 125

9.6 Appendix F: Attack Tree Meta Model (ATMM)

Figure 9.11: Attack Tree Meta Model v1.0

126 Appendices

9.7 Appendix G: Java Standalone

package egl;
import *;

public class EglStandalone extends EpsilonStandaloneExample {

private String output_url = "*/ output / uppaal .xml";
private boolean etl = false ;
private String input_url ;

public static void main(String [] args) throws Exception {
if(args. length > 0) {

new EglStandalone (args [0]);
} else {

System .out. println (" Usage UATMM2Uppaal <input_file >");
}

}

public EglStandalone (String input) {
input_url = input ;
try {

System .out. println ("");
setSource (" transformation / ADTool2UATMM .etl");
this. execute ();
etl = false ;
System .out. println (" Intermediate Model stored in:

model / Instance . model ");
setSource (" predefined / template .egl");
this. execute ();

} catch (Exception e) {
System .out. println ("Some error occurred during the reading

of the files ");
e. printStackTrace ();

}
}

@Override
public IEolExecutableModule createModule () {

if (etl) {
return new EtlModule ();

} else {
return new EglTemplateFactoryModuleAdapter (new

EglTemplateFactory ());
}

}

@Override
public List <IModel > getModels () throws Exception {

List <IModel > models = new ArrayList <IModel >();
if (etl) {

models .add(createXmlModel (" ADTool ", input_url));
models .add(createEmfModel (" UATMM ", " model / Instance . model ",

" model / UATMM . ecore ", false , true));

9.7 Appendix G: Java Standalone 127

} else {
models .add(createEmfModel ("AT",

" model / Complete_Tree_MM_Instance . model ",
" model / UATMM . ecore ", true , false)); // DK

}
return models ;

}

@Override
public String getSource () {

return resource ;
}

@Override
public void setSource (String s) {

resource = s;
}

@Override
public void postProcess () {

if (! etl) {
PrintWriter writer ;
try {

writer = new PrintWriter (output_url , "UTF -8");
writer . println (result);
writer . close ();

} catch (FileNotFoundException |
UnsupportedEncodingException e) {

System .out. println ("The file required cannot be
found or has an incorrect encoding ");

e. printStackTrace ();
}

}
}

}

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Deliverables
	1.3 Document Structure

	2 Attack Trees
	2.1 How we are using Attack Trees
	2.2 State of Art in the field of Attack Trees
	2.2.1 Attacker Profiles

	2.3 Attack Tree Domains
	2.3.1 Attack Trees
	2.3.2 Attribute Domain
	2.3.3 Domains in ADTool

	2.4 Examples

	3 Attack Trees as Timed Automata
	3.1 Timed Automata
	3.2 Uppaal
	3.3 Uppaal Templates

	4 Attack Tree Meta Model
	4.1 Meta-Modelling in general
	4.2 Attack Tree Meta-Model
	4.2.1 Basis / Core
	4.2.2 Connectors
	4.2.3 Attributes
	4.2.4 Roles and Edges

	4.3 Design Choices & Limitations

	5 Transformations
	5.1 Problem Statement
	5.2 Epsilon Language Family
	5.3 Transformation choices
	5.3.1 Java program Adt2Upp.jar
	5.3.2 ADTool2ATMM
	5.3.3 ATMM2ADTool
	5.3.4 ATMM2Uppaal
	5.3.5 Compiled Jar

	6 Transformation Demonstration
	7 Results
	7.1 Discussion
	7.1.1 Evaluation of the possible tools
	7.1.2 Evaluation of the model transformation frameworks

	7.2 Recommendation for Future Work

	8 Conclusion
	Bibliography
	9 Appendices
	9.1 Appendix A: ADTool2ATMM (ETL)
	9.2 Appendix B: ATMM2ADTool (ETL)
	9.3 Appendix C: ATMM2Uppaal (EGL)
	9.4 Appendix D: ATMM2Uppaal import
	9.5 Appendix E: Templates for the Uppaal model
	9.6 Appendix F: Attack Tree Meta Model (ATMM)
	9.7 Appendix G: Java Standalone

