
University of Twente
Faculty of EEMCS

Formal Methods and Tools
P.O. Box 217, 7500 AE Enschede

The Netherlands

SeCo
A Tool for Semantic Test Coverage

by

Jeroen Mengerink
j.mengerink@gmail.com

August 15, 2008

Committee

dr. M.I.A. Stoelinga ir. A.F.E. Belinfante dr.rer.nat. M. Weber

Abstract

This thesis aims at implementing a tool to calculate semantic coverage and select
test suites. With this tool called SeCo, a set of tests can be selected based on
the specification of a system according to the theory in Laura Brandán Briones’
PhD thesis. Coverage measures are important, because they measure the quality
of a test suite. We use semantic coverage measures, because these measures
assign the same coverage to behaviorally equivalent systems. The specifications
and tests that can be processed by SeCo are labeled transition systems in the
Aldebaran format. SeCo is implemented in Java and able to process algorithms
like:

• merging tests into a test suite

• calculating coverage for supplied test suites and specifications

• selecting tests according to coverage measures

A small part of the tool is implemented in Maple. This part uses matrix calcu-
lations, which are hard to implement in Java.

3

Table of Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Related Work . 11

1.2.1 Background . 11
1.2.2 Tools . 12

1.3 Organization of the Thesis . 13

2 Background on Semantic Coverage 15
2.1 Introduction . 15
2.2 Weighted Fault Models . 16
2.3 Test Cases in LTS . 16

2.3.1 Labeled Input-Output Transition Systems 16
2.3.2 Test Cases . 17

2.4 Coverage Measures . 17
2.5 Fault Automata . 18

2.5.1 Finite Depth Weighted Fault Models 18
2.5.2 Discounted Weighted Fault Models 18

3 Introduction to SeCo 21
3.1 Introduction . 21
3.2 File Formats and Data Structures 24

3.2.1 Aldebaran File Format . 24
3.2.2 Discount File Format . 25
3.2.3 Error File Format . 25
3.2.4 Fault Automata . 27

3.3 Merge . 28
3.3.1 Merge Algorithm . 29
3.3.2 Merge with SeCo . 32
3.3.3 Example . 32
3.3.4 Implementation Issues . 34

4 Coverage with SeCo 35
4.1 Introduction . 35
4.2 Absolute Coverage . 36

4.2.1 Absolute Coverage Algorithm 37
4.2.2 Absolute Coverage with SeCo 38
4.2.3 Example . 39

4.3 Total Coverage . 39
4.3.1 Maple . 39
4.3.2 Total Coverage in Discounted FA Algorithm 40

5

Table of Contents

4.3.3 Total Coverage in Finite Depth FA Algorithm 40
4.3.4 Example . 41

4.4 Relative Coverage . 42
4.4.1 Relative Coverage Algorithm 42
4.4.2 Relative Coverage with SeCo 43
4.4.3 Example . 43
4.4.4 Implementation Issues . 43

5 Test Selection with SeCo 45
5.1 Introduction . 45
5.2 Optimal Coverage in a Test Case 46

5.2.1 Optimal Coverage in a Test Case Algorithms 46
5.2.2 Optimal Coverage in a Test Case with SeCo 47
5.2.3 Example . 47
5.2.4 Implementation Issues . 48

5.3 Optimal Coverage in n Test Cases 49
5.3.1 Optimal Coverage in n Test Cases with SeCo 49

5.4 Optimal Coverage in a Test Suite 51
5.4.1 Optimal Coverage in a Test Suite Algorithm 51
5.4.2 Optimal Coverage in a Test Suite with SeCo 51

6 Extra Features 53
6.1 Introduction . 53
6.2 Explode . 54
6.3 Generate Discount Values . 54

6.3.1 Discount Value Calculation Algorithm 54
6.3.2 Example . 54

6.4 Generate Maple Input . 55
6.4.1 Example . 55

7 Semantic Versus Mutant Coverage: a Comparison 57
7.1 Introduction . 57
7.2 TorX . 58
7.3 Background on Mutant Coverage 58
7.4 Mutant Coverage for the Coffee Example 59
7.5 Test Setup . 63
7.6 Analysis . 67

8 Conclusion and Recommendations 69

References 71

Appendices 73

A Example Files 75
A.1 Testfiles . 75
A.2 Specification . 75
A.3 Errorfile . 76
A.4 Discountfile . 76

6

Table of Contents

B Generated Files 77
B.1 Supertest . 77

C Files for the Comparison 79
C.1 Discount files . 79
C.2 Mutants . 80

D Scripts 83

7

1
Introduction

1.1 Motivation

Testing is mostly incomplete, so it is important to be able to do test selection.
This thesis describes the design of a tool, SeCo, used for test coverage and test
selecting. Since coverage measures evaluate the quality of a test suite, the cover-
age values can aid in selecting the best tests or test suites. The reason for using
semantic coverage is that this type of coverage assigns the same coverage value to
behaviorally equivalent systems. The algorithms that are used for both the test
coverage and the test selection have been developed by Laura Brandán Briones
(Brandán Briones, Brinksma, & Stoelinga, 2006; Brandán Briones, 2007).

SeCo is a tool, written in Java and Maple, that allows the user to execute
the algorithms for semantic coverage and test selection as developed by Laura
Brandán Briones. SeCo is capable of:

• Merging tests

• Semantic coverage

• Test selection

SeCo consists of seven main algorithms.
Merge combines tests into a special form of test suite. This suite allows

inputs and outputs from the same state, and multiple inputs from the same
state.

Then we have three algorithms for coverage.

• Absolute coverage

• Total coverage

• Relative coverage

9

Chapter 1. Introduction

Absolute coverage is the value we can calculate that indicates the coverage
of a given test suite. The total coverage is the maximum coverage that can be
achieved for a given specification and relative coverage is the absolute coverage
of a test suite as a percentage of the total coverage.

The optimization part also contains three algorithms:

• Optimal coverage in a test case

• Optimal coverage in n test cases

• Optimal coverage in a test suite (with n test cases)

When given a specification, the first optimization algorithm returns the single
test case for this specification that gives the highest coverage. The second
algorithm returns the best n test cases for the specification. The last algorithm
returns the test suite of n cases that gives the highest coverage value.

76540123s0

76540123s1

button

�� 76540123s2

button

33

espresso, coffee

KK

espresso, coffee, cappuccino

dd

button
ww

Figure 1.1: Specification of the coffee example

To evaluate the usefulness of the algorithms concerning semantic cover-
age, we compare this coverage to mutant coverage. Mutant coverage is also a
type of semantic coverage and therefore a nice coverage measure to compare
to. Mutant coverage is defined as the percentage of discovered IOCO incorrect
mutants, where mutants are variations on the specification.

We used the simple specification of a coffee machine (Figure 1.1) to compare
these two types of coverage. Six mutants of this specification already existed.
We created four more to have more variance in the mutant coverage value.
Sixteen test suites were generated for testing the mutants. To calculate the
semantic coverage for these test suites, we used four sets of discount values.
Discount values decrease the severity of an error according to the depth it is
on. When an error happens very soon it is marked more seriously. The error
weights that we used for the errors are all equal, this to give all mutants the
same basic severity. When starting the tests it was not know which errors (if
any) were present in the mutants.

None of the test suites marked correct implementations as incorrect. Three of
the IOCO incorrect mutants were found by all of the suites. Indicating that the
error in these mutants was quite easy to find. The rest of the mutants were found
by a couple of the suites. The results of the tests showed that for discount values
near to 1

outdegree(s) the semantic coverage was very low. When we took smaller
discount values (indicating a larger discount) the semantic coverage value was

10

1.2. Related Work

closer to the mutant coverage value. It also became clear that whenever the
semantic coverage value increases, the mutant coverage value also increases.
Indicating that adding tests or using better tests, might cover more of the
specification, but does not always find more errors.

Semantic coverage proves to be a correct way to indicate the usefulness of a
test suite, but I advise to look more into loops within the specification. Since
loops tend to blow up the number of test cases that can be generated, where no
new behavior of the system is tested.

1.2 Related Work

1.2.1 Background

A lot previous work on coverage has been done. Definitions on coverage have
changed during the development of coverage measures. In (Williams & Sunter,
2000), coverage is defined as the number of faults detected divided by the number
of potential faults. Now we define that even if no faults are detected there is
coverage. Since with every time we successfully pass through a system, we are
more assured that it is correct.

We see two main streams in coverage, code coverage and specification cover-
age. Code coverage is the type of coverage that is described in the majority of
the papers about coverage. It defines coverage based on the implementation of
a system. We can check which percentage of the code has been executed. The
main coverage criteria for code coverage are:

• Function coverage - Has each function in the program been executed?

• Statement coverage - Has each line of the source code been executed?

• Condition coverage (also known as Branch coverage) - Has each eval-
uation point (such as a true/false decision) been executed?

• Path coverage - Has every possible route through a given part of the
code been executed?

• Entry/exit coverage - Has every possible call and return of the function
been executed?

The specification coverage can be split into state coverage and transition
coverage. Where state coverage checks the number of states visited relative to
the total number of states, transition coverage the number of transitions that
have been used relative to the total number of transitions.

Next to these two main streams, we find a couple of other theories. The
theory that is the basic for SeCo is about semantic coverage and is described in
(Brandán Briones et al., 2006). This is a coverage measure that gives the same
value for IOCO implementations of a system. Recently Mark Timmer developed
a new theory about actual coverage (Timmer, 2008). It deals not only with test
cases or test suites, but also with the number of executions planned and the
probabilistic behavior of the system.

11

Chapter 1. Introduction

1.2.2 Tools

Many tool for coverage are available. To see which other tools we have, we used
Google. For code coverage tools, we get more then 500.000 hits. We will discuss
three programs with multiple hits.

• Tcov (Sun Microsystems, 2008) is an important tool that is used for code
coverage. It produces a test coverage analysis of a compiled program.
Tcov takes source files as arguments and produces an annotated source
listing. Each basic block of code is prefixed with the number of times it
has been executed. A basic block is a contiguous section of code that has
no branches: each statement in a basic block is executed the same number
of times.

• EMMA (Roubtsov, 2006) is a toolkit for measuring and reporting Java
code coverage. EMMA supplies rich coverage analysis data without intro-
ducing significant overhead during either build or execution time. It also
supports quick development and testing of small stand alone Java appli-
cations as well as massive enterprize software suites containing thousands
of Java classes.

• Clover (Dawson, 2008) is also a Jave code coverage tool, providing de-
tailed reports of method, statement and branch coverage. The nice fea-
tures in Clover are per-test coverage, showing which test hit which state-
ments, and identification of ’dead’ code.

For specification coverage tools we have less hits, a little above 2.000. This
number is very deceptive, since there are lots of links to the same programs. We
will give an description of the two main tools for specification coverage.

• Microsoft’s Spec Explorer (Campbell et al., 2005) is a leading tool in
model-based testing. The core ideas behind Spec Explorer are to encode
the system’s intended behavior in a model program. This program only
specifies what the system must and must not do. Then Spec Explorer
can explore the possible runs of the model program and systematically
generate test suites. In addition to testing, Spec Explorer also has abili-
ties for calculating optimal strategies for testing nondeterministic systems
(Nachmanson, Veanes, Schulte, Tillmann, & Grieskamp, 2004).

• ADLscope (Chang & Richardson, 1998) is an automated specification-
based unit testing tool. It guides the testing activity based on an ADL
specification of the units to be tested. ADL is a formal specification lan-
guage developed at Sun Microsystems Laboratories to describe behavior of
functions in the C programming language. ADLscope measures coverage
of program units with respect to their ADL specifications. Any uncov-
ered coverage condition reported to the tester usually means that certain
aspects of the specification have not been tested adequately. This forces
the tester to select additional test data to cover those aspects. ADLscope
is most useful for conformance testing of an API. Many code-based cov-
erage techniques require the source code of the implementation, which is
often not available for conformance testing because of proprietary issues,
whereas ADLscope only requires the object code or compiled libraries.

12

1.3. Organization of the Thesis

1.3 Organization of the Thesis

This thesis is organized into eight main chapters including this one. Chapter
2 explains some theoretic background needed to understand the contents pre-
sented in this thesis. In Chapter 3 we present an introduction SeCo. This
chapter contains which file formats and data structures we used and the first
algorithm with its implementation, Merge. Chapter 4 discusses the algorithms
concerned with semantic coverage and their implementations.

• Absolute coverage

• Total coverage

• Relative coverage

The algorithms and implementations concerning test selection are presented
in Chapter 5.

• Optimal coverage in a test case

• Optimal coverage in n test cases

• Optimal coverage in a test suite (with n test cases)

We present three extra features that have been implemented in Chapter 6.

• Explode - to make a test from a trace

• GenerateDiscounts - to generate a file representing a discount function

• GenerateMatrix - to generate Maple code for the total coverage algorithms

Chapter 7 deals with the comparison between semantic coverage as we use it
and mutant coverage. Finishing with Chapter 8, where we present conclusions
about semantic coverage together with some concluding remarks.

13

2
Background on Semantic Coverage

2.1 Introduction

The main focus of this thesis is implementing the algorithms about semantic
test coverage and test selection as described in (Brandán Briones et al., 2006).
To understand the algorithms that are used, it is needed to know the basic
notations that will be used. The algorithms that are implemented deal with
weighted fault models, test cases and coverage measures.

Weighted fault models are specifications which describe the severity of erro-
neous traces next to the normal behavior of the system.

The coverage measures we use abstract from the exact shape of test cases
and test suites. The original tests for labeled input-output transition system
state that at every moment you either get an input or all outputs. The change
we made is that you can also get multiple inputs or inputs and outputs. Actually
meaning the we use traces in stead of tests and trace sets in stead of test suites.

Since we need to calculate on the weighted fault models, it is needed to make
them finite. To do this we provide two options: finite depth and discounted.

Finite depth achieves a finite weighted fault model by considering finitely
many traces. It cuts of the infinite tree of traces at a given depth.

Discounted weighted fault models take in account the error weights of all
traces, but discount the weight of a trace proportional to its length. Discount
values need to be between zero and one to make sure the keep lowering the error
weight. In this way a finite set of traces has a value greater than zero.

Organization of the Chapter
We start in Section 2.2 with the description and definition of weighted fault
models. The next section deals with test cases in labeled input-output transition
systems. We first define what labeled input-output transition systems are and
after that we define what test cases for labeled input-output transition systems
are. Section 2.4 defines coverage measures we mean to implement in SeCo.

15

Chapter 2. Background on Semantic Coverage

The last section of this chapter defines fault automata and two ways to derive
a weighted fault model from a fault automaton.

2.2 Weighted Fault Models

A weighted fault model specifies the desired behavior of a system. This model
does not only describe the correct system traces, but it also describes the
severity of erroneous traces.

Definition 1. A weighted fault model (WFM) over L is a function f : L→ R≥0

such that

0 <
∑

σ∈L∗ f(σ) <∞

Thus, a WFM f assigns a non-negative error weight to each trace in σ ∈ L∗. For
correct traces f(σ) = 0, if f(σ) > 0 the trace σ represents incorrect behavior and
f(σ) denotes the severity of the error. The higher the value of f(σ), the worse
the error. The total error weight,

∑
σ∈L∗ f(σ), must be finite and non-zero in

order to define coverage measures relative to the total error weight.

2.3 Test Cases in Labeled Input-Output Transi-
tion Systems

This section deals with some basic theory about test derivation for labeled input-
output transition systems (LTS) following the IOCO testing theory (Tretmans,
1996).

2.3.1 Labeled Input-Output Transition Systems

A labeled input-output transition system (LTS) is a system that interacts with
its environment through inputs and outputs. Input actions are driven by the
environment, where output action are actions to the environment. Internal
actions are not observable by the environment. We use L to denote the action
set.

Definition 2. A labeled input-output transition system (LTS) A is a tuple
〈S, s0, L,∆〉, where

• S is a finite set of states

• s0 ∈ S is the initial state

• L is a finite action alphabet. We assume that L = LI
⋃

LO is partitioned
(i.e. LI

⋂
LO = ∅ into a set LI of input labels (also called input actions

or inputs) and a set LO of output labels (also called output actions or
outputs). We denote elements of LI by a? and elements of LO by a!

• ∆ ⊆ S × L × S is the transition relation. We require ∆ to be deter-
ministic, i.e. if (s, a, s′), (s, a, s′′) ∈ ∆, then s′ = s′′. The input tran-
sition relation ∆I is the restriction of ∆ to S × LI × S and the output

16

2.4. Coverage Measures

transition relation ∆O is the restriction of ∆ to S × LO × S. We write
∆(s) = (a, s′)|(s, a, s′) ∈ ∆ and similarly for ∆I(s) and ∆O(s). We de-
note by outdeg(s) = |∆(s)| the out-degree of state s, i.e. the number of
transitions leaving s

We denote the components of A by SA, s0
A, LA and ∆A. We omit the subscript

A if it is clear from the context.

2.3.2 Test Cases

A test case is a trace through the system, ending in pass or fail. From each
state in the trace, we can either get an input or the set of all outputs defined
for the system.

Definition 3.

• A test case (or test) t for a LTS A is a finite, prefix-closed subset of L∗
A

such that

– if σa? ∈ t, then σb /∈ t for any b ∈ L with a? 6= b

– if σa! ∈ t, then σb! ∈ t for all b! ∈ LO

– if σ /∈ tracesA, then no proper suffix of σ is contained in t

We denote the set of all tests for A by T (A).

• The length |t| of test t is the length of the longest trace in t, i.e. |t| =
maxσ∈t|σ|. We denote by T k(A) the set of all tests for A with length k.

2.4 Coverage Measures

Coverage measures in this thesis abstract from the exact shape of test cases
and test suites. Given a WFM f over action alphabet L, we only use
that a test is a trace set, t ⊆ L∗; and a test suite is a collection of trace
sets, T ⊆ P(L∗). In this way we define the absolute and relative coverage
with respect to f of a test and for a test suite. Moreover, our coverage
measures apply in all settings where test cases can be characterized as trace
sets (in which case test suites can be characterized as collections of trace
sets). This is true for tests in TTCN (Grabowski et al., 2003), IOCO test
theory (Tretmans, 1996) and FSM testing (Ural, 1992; Lee & Yannakakis, 1996).

Definition 4. Let f : L∗ → R≥0 be a WFM over L, let t ⊆ L∗ be a trace set
and let T ⊆ P(L∗) be a collection of trace sets. We define:

• abscov(t, f) =
∑

σ∈t f(σ) and abscov(T, f) = abscov(
⋃

t∈T t, f)

• totcov(f) = abscov(L∗, f)

• relcov(t, f) = abscov(t,f)
totcov(f) and relcov(T, f) = abscov(T,f)

totcov(f)

17

Chapter 2. Background on Semantic Coverage

2.5 Fault Automata

Weighted fault models (WFMs) are infinite, semantic objects. Here we introduce
fault automata, which provide a syntactic format for specifying WFMs. A fault
automaton is a LTS A augmented with a state weight function r. The LTS A
is the behavioral specification of the system, i.e. its traces represent the correct
behavior of the system. Hence, these traces will be assigned the error wight 0;
traces not in A are erroneous and get an error weight through r according to
Definition 5.

Definition 5. A fault automaton (FA) F is a pair 〈A, r〉, where A =
〈S, s0, L,∆〉 is a LTS and r : S × LO → R≥0. We require that, if r(s, a!) > 0,
there is no A!-successor of s in F , i.e. there is no s′ ∈ S such that (s, a!, s′) ∈ ∆.
We extend r to a function r : S × L → R≥0 by putting by putting r(s, a?) = 0
for a? ∈ LI and define r : S → R≥0 as r(s) =

∑
a∈LO(s) r(s, a). Thus, r

accumulates the weight of al the erroneous outputs in a state. We denote the
components of F by AF and rF and leave out the subscripts F if it is clear from
the context. All the concepts that have been defined for LTSs will be used for
FAs too.

2.5.1 Finite Depth Weighted Fault Models

The finite depth model derives a WFM from an FA F , for a given k ∈ N, by
ignoring all traces of length longer than k, i.e. by putting their error weight to
0. For all other traces, the weight is obtained by the function r. If σ is a trace
of F ending in s, but σa! is not a trace in F , then σa! gets weight r(s, a!).

Definition 6. Given a FA F and a number k ∈ N, we define the function
fk

F : L∗ → R≥0 by

fk
F (ε) = 0 fk

F (σa) =
{

r(s, a), if s ∈ reachl
F (σ) ∧ a ∈ LO ∧ l ≤ k

0, otherwise

2.5.2 Discounted Weighted Fault Models

Where finite depth WFMs achieve finite total coverage by considering finitely
many traces, discounted WFMs take into account the error weights of all traces.
To achieve this, only finitely many traces may have an error weight greater than
ε, for any ε > 0. This can be done by discounting; lowering the weight of a
trace proportional to its length.
To apply the discounting, we use a discount function α : S × L × S → R≥0

that assigns a positive weight to each transition of F . Then we
discount the trace a1 . . . ak obtained from the path s0a1s1 . . . sk by
α(s0, a1, s1)α(s1, a2, s2) . . . α(sk−1, ak, sk).

Definition 7. Let F be a FA, s ∈ S and α a discount function for F . We
define the function fα

F : L∗ → R≥0 by:

18

2.5. Fault Automata

fα
F (ε) = 0

fα
F (σa) =

{
α(π) · r(s, a) if s ∈ reachF (σ) ∧ a ∈ LO ∧ trace(π) = σ

0 otherwise

19

3
Introduction to SeCo

3.1 Introduction

SeCo is a tool used to calculate semantic coverage and perform test selection.
Several algorithms for doing this are presented in the dissertation of Laura
Brandán Briones (Brandán Briones, 2007). To use these algorithms in practice,
we developed SeCo. For the coverage part of the tool, we have three modules:

• AbsCov - for calculating the absolute coverage of a test suite

• Total coverage = for calculating the total coverage of a specification

• RelCov - for calculating the relative coverage of a test suite with respect
to the total coverage of the specification

The test selection part of the tool consists of the following three modules:

• Optimize - for getting the best test of a certain depth for a specification

• OptNTests - for getting the best n tests of a certain depth for a specifi-
cation

• OptSuite - for getting the best test suite of a certain depth for a specifi-
cation

These modules will be explained into more detail in respectively Chapter 4 and
Chapter 5. In the chapter after that, we will present modules that helped us to
quickly get input files or other inputs.

• Explode - to make a test from a trace

• GenerateDiscounts - to generate a file representing a discount function

• GenerateMatrix - to generate Maple code for the total coverage algo-
rithm

21

Chapter 3. Introduction to SeCo

Before we can start explaining all the above mentioned modules, we first need
to know how we present the input to the modules and which data structures
we use. Therefore we present the file types that are used as inputs for SeCo in
this chapter, along with data structures we use to interpret the files.

The first algorithm and it’s implementation (Merge) will be presented in this
chapter too. Merge is used to combine several tests into test suite. Here we will
encounter the example that we will use throughout the thesis. We will be using
the simple specification of a coffee machine as shown in Figure 3.1

An overview of all these modules is presented in Figure 3.2. Notice that
total coverage has not been implemented in Java like the rest of the tool, but in
Maple. We explain more about Maple in the section that covers total coverage
(Section 4.3).

76540123s0

76540123s1

button

�� 76540123s2

button

33

espresso, coffee

KK

espresso, coffee, cappuccino

dd

button
ww

Figure 3.1: Specification of the coffee example

Organization of the Chapter
We start this chapter with explaining the file formats and data structures we
use to represent them in Section 3.2. Then we will explain the module Merge
in Section 3.3. This section is divided into four parts.

• Merge algorithm - presents the merge algorithm

• Merge with SeCo - shows how we programmed the module

• Example - clarifies the module with the use of an example

• Implementation issues - informs about some implementation choices

22

3.1. Introduction

Auxiliary Merge

Coverage AbsCov RelCov

Total coverage

Testselection Optimize OptNTests

OptSuite

Extrafeatures Explode GenerateDiscounts

GenerateMatrix

Programmed in Java
Programmed in Maple

Figure 3.2: Overview of the modules in SeCo

23

Chapter 3. Introduction to SeCo

3.2 File Formats and Data Structures

We need to use specifications, tests and test suites as inputs and outputs for
SeCo. The format for these files is the Aldebaran format for LTS (.aut), as also
used in the tool TorX (Belinfante et al., 1999). To be able to use fault automata
(Section 2.5) we introduce two new file formats, the discount file format (.disc)
and the error file format (.err). For the ease of use, we based these new file
formats on the Aldebaran file format.

Input File type Data structure
Specification, test, Aldebaran format (.aut) Hashtable(state,
Supertest [state, action, state])
Discount function Discount file format (.disc) Hashtable(state,

[state, action, state, discount value])
Error weights Error file format (.err) Hashtable(state,

[state, action, error weight])

Table 3.1: Data structures in SeCo

3.2.1 Aldebaran File Format

CADP (”Construction and Analysis of Distributed Processes”, formerly known
as ”CAESAR/ALDEBARAN Development Package”) (Garavel et al., 1997) is
a popular toolbox for the design of communication protocols and distributed
systems. From this package I have taken the Aldebaran format for LTS. A .aut
file describes a LTS in the Aldebaran format. Each state is represented by a
natural number. A .aut file exists of a descriptor line, followed by lines that
describe transitions. The structure of a .aut file is described by the following
grammar:

AUTFILE : DESCRIPTOR TRANSITIONS;

DESCRIPTOR : DES LPAREN FIRST-STATE COMMA NUMBER-OF-TRANSITIONS
COMMA NUMBER-OF-STATES RPAREN;

NUMBER-OF-TRANSITIONS : NUMBER; NUMBER-OF-STATES : NUMBER;

TRANSITIONS : (TRANSITION)+; TRANSITION : LPAREN STATE COMMA
ACTION COMMA STATE RPAREN;

DES : ’des’;
COMMA : ’,’;
DQUOTE : ’"’;
LPAREN : ’(’;
RPAREN :’)’;
FIRST-STATE : ’0’;
NUMBER : (DIGIT)+;
DIGIT : (’0’..’9’);
STATE : NUMBER;
ACTION : DQUOTE String DQUOTE;

Figure 3.3a depicts a small example file which describes the automaton shown
in Figure 3.1.

24

3.2. File Formats and Data Structures

des (0, 8, 3)
(0, "button", 1)
(1, "button", 2)
(1, "espresso", 0)
(1, "coffee", 0)
(2, "button", 2)
(2, "espresso", 0)
(2, "coffee", 0)
(2, "cappuccino", 0)

(a) .aut file

Key Value
0 [”0”, ”button”, ”1”]

[”0”, ”delta”, ”0”]
1 [”1”, ”button”, ”2”]

[”1”, ”espresso”, ”0”]
[”1”, ”coffee”, ”0”]

2 [”2”, ”button”, ”2”]
[”2”, ”espresso”, ”0”]
[”2”, ”coffee”, ”0”]
[”2”, ”cappuccino”, ”0”]

(b) Hashtable

Figure 3.3: Specification file and its data structure

As can be seen in Table 3.1, this file will be read into a vector of string arrays.
The result will be a vector of transitions, where the transitions are string arrays
containing start state, action and end state. The next step is creating a hash
table, where we store the start states as keys and the transitions from the states
as values. The hash table can be seen in Figure 3.3b.

Notice that we have one transition more in the hash table than we have in
the file. This is because we automatically add delta transitions to specifications.

3.2.2 Discount File Format

This format looks a lot like the Aldebaran file format, but the transitions contain
discount values. We use the extension .disc for files in this format. Every line
describes an edge and the discount value belonging to that edge. This file format
does not contain the descriptor line and the transitions now follow this grammar:

TRANSITION : LPAREN STATE COMMA ACTION COMMA STATE COMMA DISCOUNT
RPAREN;

DISCOUNT : DOUBLE;
DOUBLE : NUMBER PERIOD NUMBER;
PERIOD :’.’;

Figure 3.4 shows the file that describes the automaton from Figure 3.5.
In Table 3.1 we state that this file will be represented as a hashtable with

states as keys and transitions as values. The representation will look like the
hashtable we present in Figure 3.3b, only with the discount value also present
in the transition.

3.2.3 Error File Format

This file format describes the error transitions with their corresponding error
weights, we use the extension .err for files with this format. The first line
describes the outputs that are present in the specification, including ”delta”.
Each other line of the file represents an error transition. The first line will look
like:

25

Chapter 3. Introduction to SeCo

(0, "button", 1, 0.499)
(1, "button", 2, 0.3323333333333333)
(1, "espresso", 0, 0.3323333333333333)
(1, "coffee", 0, 0.3323333333333333)
(2, "button", 2, 0.249)
(2, "espresso", 0, 0.249)
(2, "coffee", 0, 0.249)
(2, "cappuccino", 0, 0.249)
(0, "delta", 0, 0.499)

Figure 3.4: Discount file

76540123s0

76540123s1

button (0.499)

��

δ (0.499)
ww

76540123s2

button (0.3323333333333333)

22

espresso, coffee (0.3323333333333333)

LL

espresso, coffee, cappuccino (0.249)

cc

button (0.249)
ww

Figure 3.5: Coffee example extended with quiescence and discounts

OUTPUTS : LBRACK ACTION (COMMA ACTION)* RBRACK;

LBRACK : ’[’;
RBRACK : ’]’;

The grammar for an error transition is:

TRANSITION : LPAREN STATE COMMA ACTION COMMA ERROR RPAREN;

ERROR : NUMBER;

STATE is a number or the character ’*’, if STATE is ’*’, it means that the
transition counts for all states that do not have the action ACTION. In Figure
3.6 we can see the file that in combination with the specification describes the
fault automaton which can be seen in Figure 3.7.

We described that the transitions in the error file can contain ’*’ in stead of
a state. So internally the example file in Figure 3.6 will be expanded to the file
in Figure 3.8. After this, we once again represent the file as a hashtable like in
Figure 3.3b.

26

3.2. File Formats and Data Structures

["delta", "espresso", "coffee", "cappuccino"]
(*, "delta", 1)
(0, "espresso", 1)
(0, "coffee", 1)
(*, "cappuccino", 1)

Figure 3.6: Error file

76540123s0

76540123s1

button

��

δ
''

76540123s2

button

22

espresso, coffee

LL

espresso, coffee, cappuccino

cc

button
ww

1
espresso, coffee, cappuccino

//

1

δ, cappuccino

��
1

δ

��

Figure 3.7: Fault automaton of the coffee example

["delta", "espresso", "coffee", "cappuccino"]
(0, "espresso", 1)
(0, "coffee", 1)
(0, "cappuccino", 1)
(1, "cappuccino", 1)
(1, "delta", 1)
(2, "delta", 1)

Figure 3.8: Expanded error file

3.2.4 Fault Automata

We will be working with fault automata which are a combination of a spec-
ification (extended with quiescence) and error transitions. Both are supplied
to SeCo as input files. The vectors that contain the data form these files are
internally used as a fault automaton.

Combining the specification and the error transitions internally is done for
ease of use. Most of the time you will already have a specification and no error
transitions. In this way you only need to create a list of error transitions to add
for the fault automaton and you can keep your original specification.

27

Chapter 3. Introduction to SeCo

3.3 Merge

The module Merge deals with combining several tests into a Supertest. The
combined test suite has the possibility of having multiple inputs or inputs and
outputs leaving a state. Since tests normally do not allow multiple inputs or
inputs and outputs leaving the same state, this suite is called a Supertest.

The test that is an input for the algorithm is represented as a .aut file for
the module. Since the module is implemented to merge several tests, it executes
the algorithm for each test to be merged. It concatenates the equal parts
of the tests and leaves the rest unchanged and then writes the Supertest to a file.

Test1: .aut file

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

Test2: .aut file

&&NNNNNNNNNNN

Merge // Supertest: .aut file

...

77nnnnnnnnnnnn

Testn: .aut file

>>}}}}}}}}}}}}}}}}}

Figure 3.9: Architecture of the Merge module

Test

%%KKKKKKKKKK

Merge // Supertest

Supertest

99sssssssss

Figure 3.10: Architecture of the Merge algorithm

28

3.3. Merge

3.3.1 Merge Algorithm

Let t′ = a1t
′
1 + . . . + akt′k + b1t

′
1 + . . . + bnt′′n be a Supertest and t be a test.

Then t = ε or t = at1 or t = b1t
′
1 + . . . + bnt′n. Then we define:

t′] t =
a1t

′
1 + . . . + aj(t′j] t1) + . . . + akt′k + b1t

′′
1 + . . . + bnt′′n if t = at1 ∧ a = aj ;

a1t
′
1 + . . . + akt′k + b1(t′′1] t1) + . . . + bn(t′′n] tn) if t = b1t

′
1 + . . . + bnt′n;

t′ + t otherwise.

Now we execute the algorithm on the tests t2 and t3 of Figure 3.11, seeing t2
as the current Supertest. The first step in merging the Supertest (t2) with test
t3 is checking the transitions from state s0. These are of the type considered
in the second line of the algorithm (outputs). So the algorithms first step will
make a Supertest as can be seen in Figure 3.12.

s1 now has a dotted line, meaning that this state is the start state for the
next step. The next step is once again the second line of the algorithm, this
time the outputs are not yet in the Supertest. The result of step 2 can be seen
in Figure 3.13.

The final step is made by using the third line of the algorithm. Since the
transition to be added is an input, it should apply to the first rule, but the
current state of the Supertest does not have any transitions. Therefore the rest
of the test is now added. The result of this final step can be seen in Figure 3.14.

29

Chapter 3. Introduction to SeCo

76540123s0

76540123s1

button

��

76540123s2

coffee

��/
//

//
/

fail

δ, cappuccino

����
��
��

76540123s3

button

��

pass

coffee

��/
//

//
/

fail

δ, cappucino

����
��
��

(a) Test t1

76540123s0

76540123s1

δ

��/
//

//
/

fail

coffee, espresso, cappuccino

����
��
��

76540123s2

button

��

76540123s3

coffee

��/
//

//
/

fail

δ, cappuccino

����
��
��

pass

button
��

(b) Test t2

76540123s0

76540123s1

δ

��/
//

//
/

fail

coffee, espresso, cappuccino

����
��
��

76540123s2

δ

��/
//

//
/

fail

coffee, espresso, cappuccino

����
��
��

76540123s3

button

��

fail

δ, cappuccino

����
��
��

pass

coffee

��/
//

//
/

(c) Test t3

Figure 3.11: Example tests

30

3.3. Merge

76540123s0

s1

δ

��/
//

//
/

fail

coffee, espresso, cappuccino

����
��
��

76540123s2

button

��

76540123s3

coffee

��/
//

//
/

fail

δ, cappuccino

����
��
��

pass

button
��

76540123s1

76540123s2

δ

��/
//

//
/

fail

coffee, espresso, cappuccino

����
��
��

76540123s3

button

��

fail

δ, cappuccino

����
��
��

pass

coffee

��/
//

//
/

Figure 3.12: Merged with algorithm: step 1

76540123s0

76540123s1

δ

��/
//

//
/

fail

coffee, espresso, cappuccino

����
��
��

76540123s2

button

����
��
��

76540123s3

coffee

��/
//

//
/

fail

δ, cappuccino

����
��
��

pass

button
��

s4

delta

��/
//

//
/ fail
coffee, espresso,

cappuccino
//

76540123s2

76540123s3

button

��

fail

δ, cappuccino

����
��
��

pass

coffee

��/
//

//
/

Figure 3.13: Merged with algorithm: step 2

31

Chapter 3. Introduction to SeCo

76540123s0

76540123s1

δ

��?
??

??
??

fail

coffee, espresso, cappuccino

����
��

��
�

76540123s2

button

����
��

��
�

76540123s3

coffee

��?
??

??
??

fail

δ, cappuccino

����
��

��
�

pass

button

����
��

��
�

s4

delta

��?
??

??
??

fail
coffee, espresso,

cappuccino
//

76540123s5

button

��?
??

??
??

fail

δ, cappuccino

����
��

��
�

pass

coffee

��?
??

??
??

Figure 3.14: Merged with algorithm: step 3

3.3.2 Merge with SeCo

Merge should get at least three command line arguments, two tests and a file-
name for the resulting Supertest, when using the class.

Two methods perform the merge algorithm: doMerge and addSubtree.
doMerge gets a test t and a Supertest S. The initial Supertest is provided by
the constructor, which used the first test that was given as an input as the
initial Supertest. Now doMerge acts in the following manner:

For test t and Supertest S, both starting at state 0:

1. Get all transitions from current state of t.

2. For each transition check if it is an transition from the
current state of S.

3. If it is, goto 1 with the next state of t and S.

4. If it is not, call addSubtree.

When addSubtree is called, it adds the current transition and all the tran-
sitions following it to the Supertest.

3.3.3 Example

Using the coffee specification from Figure 3.1, we derived the tests shown in
Figure 3.11. When Merge is used to combine these three tests, it results in the
Supertest in Figure 3.17. This result can be obtained by the following command,
where the files Test1.aut, Test2.aut and Test3.aut are the test files (Appendix
A):

java main.auxiliary.Merge Test1.aut Test2.aut Test3.aut
Test123.aut

32

3.3. Merge

Merge will use t1 as the initial Supertest. After that it will start to add t2 to
this Supertest. Starting in state ”0”, it checks all transitions from this state of
t2. Coffee, espresso and cappuccino are not in the Supertest yet, so they will be
added along with their subtree (which in this case is empty). This step is shown
in Figure 3.15. The other transition from this state, δ, is also not present in the
current Supertest, but this transition does lead to a subtree. The addition of
this transition and its subtree can be seen in Figure 3.16. Now no transitions
are left in the current test, so it is time to add t3 to the Supertest.

76540123s0

76540123s1

button

����
��

��
�

76540123s2

coffee

��
fail

δ, cappuccino

��?
??

??
??

76540123s3

button

��

pass

coffee

��
fail

δ, cappuccino

��?
??

??
??

fail

coffee, espresso, cappuccino

��?
??

??
??

Figure 3.15: Merging of tests with SeCo: step 1

76540123s0

76540123s1

button

wwooooooooooooo

76540123s2

coffee

��
fail

δ, cappuccino

��?
??

??
??

76540123s3

button

��

pass

coffee

��
fail

δ, cappuccino

��?
??

??
??

76540123s4

δ

''OOOOOOOOOOOOO fail
coffee, espresso,

cappuccino
//

76540123s5

button

��

76540123s6

coffee

��
fail

δ, cappuccino

��?
??

??
??

pass

button

��

Figure 3.16: Merging of tests with SeCo: step 2

Once again start at state ”0” and check all transitions. This time coffee,
espresso and cappuccino are already in the Supertest. So we recurse to the
next state and start the algorithm. The next state has no outgoing transitions,
therefore this part of the transitions is ready. The other transition from state
”0” is now evaluated. This also exists in the Supertest, so recurse. We are

33

Chapter 3. Introduction to SeCo

now in state s4 of the current Supertest and in state s1 of t3. Here we check
all transitions again. The transitions coffee, espresso and cappuccino from this
state are not in the Supertest yet, so they will be added along with their subtree
(which in this case is empty). The other transition from this state, δ, is also not
present in the current Supertest, this transition does lead to a subtree which
needs to be added. This results in the Supertest in Figure 3.17. All transitions
of the tests that needed to be merged are now in the Supertest. So the module
writes this Supertest to the file Test123.aut.

76540123s0

76540123s1

button

wwooooooooooooo

76540123s2

coffee

��
fail

δ, cappuccino

��?
??

??
??

76540123s3

button

��

pass

coffee

��
fail

δ, cappuccino

��?
??

??
??

76540123s4

δ

''OOOOOOOOOOOOO fail
coffee, espresso,

cappuccino
//

76540123s5

button

��

76540123s6

coffee

��
fail

δ, cappuccino

��?
??

??
??

pass

button

��

76540123s7

δ

''OOOOOOOOOOOOO fail
coffee, espresso,

cappuccino
//

76540123s8

button

��

fail

δ, cappuccino

��?
??

??
??

pass

coffee

��

Figure 3.17: Supertest

3.3.4 Implementation Issues

All the transitions in the specification and tests are implemented as arrays of
Strings. There might be better ways of implementing the transitions, but the
String arrays are easy to handle.

SeCo does not use the descriptor line of the .aut files, in stead it calculates
the number of transitions and states itself. The reason not to use this line is
that a couple of files that we used had errors in that line. Wrong numbers of
states and transitions were given in the descriptor, which messed up for-loops
that were used in SeCo.

34

4
Coverage with SeCo

4.1 Introduction

Semantic coverage has the main focus for this thesis. This chapter will deal
with the algorithms for semantic coverage and the implementation of these
algorithms. We will present three types of coverage:

• Absolute coverage

• Total coverage

• Relative coverage

Absolute coverage can be calculated for Supertests (Section 3.3, giving a
numeral indication of how much of the specification is covered by the test suite.

Total coverage gives the maximal coverage value for a specification. This part
of SeCo has been implemented in Maple, a mathematics software package. We
can calculate total coverage with two different algorithms:

• Total coverage in discounted FA

• Total coverage in finite depth FA

The difference in the algorithms is the way to make the FA (seem) finite.
The last coverage algorithm is relative coverage. This will return the absolute

coverage of test suite relative to the total coverage of the specification.

Organization of the Chapter
In Section 4.2 we will describe the module AbsCov which is responsible for
calculating the absolute coverage of a Supertest. In this section we start with a
small introduction about absolute coverage, followed by the absolute coverage
algorithm. After that, we will explain how we modeled the algorithm in SeCo
and present an example of how the tool works.

35

Chapter 4. Coverage with SeCo

The next section will provide information about total coverage. We start
with a small introduction to total coverage and explain the two types of total
coverage:

• Total coverage in discounted FA

• Total coverage in finite depth FA

Since this part of the tool is programmed in Maple, we will explain what Maple
is an which parts of Maple we use. Next we will provide the algorithms for the
two types of total coverage and we finish the section with an example where we
will show how we programmed the algorithms in Maple.

We finish this chapter with a section about relative coverage. In this section
we start with a small introduction about relative coverage, followed by the
relative coverage algorithm. After that, we will explain how we modeled the
algorithm in SeCo and present an example of how the tool works. We finish
this section with an error we encountered during programming and how we
resolved it.

4.2 Absolute Coverage of a Supertest

Absolute coverage of a Supertest is an indication of how much of the specification
has been covered by the Supertest. This taking into account the severity of the
errors that can be found and optionally the depth on which the errors are found.
The inputs for the algorithm that calculates this value (Section 4.2.1) are a
Supertest, a fault automaton (Section 2.5), a state on the fault automaton and
optionally a discount function (Section2.5.2). The algorithm returns a value in
<.

The inputs for the module, called AbsCov are a .aut file containing the
Supertest, a .aut file containing the specification, a file containing the errors in
the error file format and optionally a file containing discounts in the discount
file format. The result is presented as a double.

This differs from the inputs of the algorithm. The algorithm takes a fault
automaton, where the module takes a specification and a set of error transitions.
These two inputs are internally combined into a fault automaton. The set of
discount transitions correspond to the discount function. The module always
starts with state ”0” as the initial state that is needed for the algorithm.

Supertest: .aut file

**UUUUUUUUUUUUUUUUUU

Specification: .aut file // AbsCov // double

Errors: error file

44iiiiiiiiiiiiiiiiii
Discounts: discount file

OO�
�
�

Figure 4.1: Architecture of the AbsCov module

36

4.2. Absolute Coverage

Supertest

))SSSSSSSSSSSSSS

Fault automaton F // AbsCov // <

State on F

55kkkkkkkkkkkkkkk
Discountfunction

OO�
�
�

Figure 4.2: Architecture of the absolute coverage algorithm

4.2.1 Absolute Coverage Algorithm

Given a Supertest t, a fault automaton F , a state s on F and a discount function
α for F , then

ac(ε, s) = 0

ac(t, s) =
n∑

i=1

aux (aiti, s)

where aux (ai · ti, s) =

{
α(s, ai, δ(s, ai)) · ac(ti, δ(s, ai)) if ai ∈ δ(s)
r(ai, s) otherwise

When executing the algorithm for the Supertest we created with Merge
(Figure 3.17), the fault automaton from Figure 3.7, the state s0 and discount
function α (Figure 4.3), the following will happen.

s0 × button× s1 → 0.499
s0 × δ × s0 → 0.499
s1 × button× s2 → 0.3323333333333333
s1 × coffee× s0 → 0.3323333333333333
s1 × espresso× s0 → 0.3323333333333333
s2 × coffee× s0 → 0.249
s2 × espresso× s0 → 0.249
s2 × cappuccino× s0 → 0.249
s2 × button× s2 → 0.249

Figure 4.3: Discount function α for the coffee example

We start at node s0 of the Supertest:
ac(t, s0) =

∑5
i=1 aux (aiti, s0)

Where every ai represents an action from state s0. When we write out this sum,
we get:
ac(t, s0) = 0.499 · ac(t1, s1) + 1 + 1 + 1 + 0.499 · ac(t5, s4)
The three transitions leading to the fail state deliver their error weight, where
the two other transitions multiply the subtree beneath them with their discount

37

Chapter 4. Coverage with SeCo

value. We will only show the left path of the tree and leave the rest to the
reader. The left path recurses as follows:
ac(t1, s1) = 0.3323333333333333 · ac(t11, s2) + 1 + 1
ac(t11, s2) = 0.499 · (t1.11, s3)
ac(t1.11, s3) = 0.3323333333333333 · 0 + 1 + 1
Resulting in 0.499 · (0.3323333333333333 · (0.499 · 2) + 2) ≈ 1.164
The absolute coverage for the total Supertest is approximately 6.407.

4.2.2 Absolute Coverage with SeCo

The module AbsCov should get three or four command line arguments, a Su-
pertest, the specification, a file containing error transitions and optionally a file
containing discount transitions. If no discounting is specified for a transition in
the specification, SeCo will assume discount value 1 for that transition.

With SeCo we edited the algorithm a little bit by not using the error tran-
sitions separately, but by taking the accumulated error weight for a state. The
error transitions therefore need not be in the Supertest, which results in the
more readable Supertest in Figure 4.4.

76540123s0

76540123s1

button

����
��

��
�

76540123s2

coffee

��

76540123s3

button

��

pass

coffee

��

76540123s4

δ

��?
??

??
??

76540123s5

button

����
��

��
�

76540123s6

coffee

��

pass

button

��

76540123s7

δ

��?
??

??
??

76540123s8

button

��

pass

coffee

��

Figure 4.4: Supertest without error transitions

There are two functions called when using AbsCov, namely alpha and
doCalculate. The function alpha returns the discount value given a state
and an action, where doCalculate performs the algorithm according to the fol-
lowing steps:
For Supertest t and state s0:

1. Get the accumulated error weight for the current state.

2. Get all transitions from current state of t.

3. For each transition add its discount value multiplied by the
absolute coverage of the next state.

4. If there are no transitions from this state, return.

38

4.3. Total Coverage

4.2.3 Example

To demonstrate how SeCo handles the calculation of the absolute coverage, we
will use the Supertest from Figure 4.4, the specification from Figure 3.1, the
error file from Figure 3.6 and the discount file from Figure 3.4. To execute this,
we use the command:

java main.coverage.AbsCov test123.aut coffee.aut coffee.err
coffee.disc

AbsCov will start the calculation with calling the method doCalculate for state
s0. It will start examining the transitions from the current state of the Supertest.
First we find the transition with action button, since this is an input, we will do
alpha(s0, button) * doCalculate(s1). So the next step is to get the value
for doCalculate(s1). We find the output coffee, so we mark that we found an
output and do: alpha(s1, coffee) * doCalculate(s2). From s2 we get the
input button and we will do alpha(s2, button) * doCalculate(s3). When
in s3 we once again find the output coffee we store that we found an output
on this level and try to calculate the coverage of the next step. Since this is a
pass state, it will return the value zero. Back up one level to see if we find more
transitions. There are no more transitions from s3, but we have marked that
we found an output here. Since there was an output, we add the r for the state
of the specification that belongs to this state of the Supertest, which is 2. Up
one level, where we will find no more transitions and no marked output. So up
another level, where we also find no more transition, but we do have an output.
So once again we add 2 to our result. Another level up and we are back in s0,
here we do find another transition, the output δ. So we mark that we found
an output and we will do alpha(s0, δ) * doCalculate(s4). From here on we
leave the rest of the example to the reader. The result that the module AbsCov
is approximate 6.407. This is the same value as we got with the algorithm.

4.3 Total Coverage

As mentioned earlier, not all of SeCo is programmed in Java. The total coverage
part has been programmed in Maple. Since specifications most of the times
contain loops the number of tests you can derive are infinite, but we still want
to know what the maximal coverage is we can achieve for that specification. To
do this we use two way to make the state space finite: discounting and finite
depth.

4.3.1 Maple

Maple is a general purpose commercial mathematics software package. Users
can enter mathematics in traditional mathematical notation. Some examples
are:

3*2^4;
5!;
A:=Matrix([[1, 1, 0], [2, 0, 1], [3, 0, 1]]);

39

Chapter 4. Coverage with SeCo

These inputs generate the expected outputs: 48, 120 and the three-by-three
matrix A, containing the rows (1,1,0), (2,0,1) and (3,0,1). In a same manner
vectors can be created too.

Maple is a very big tool and only a little part of it is used for the calculation
of total coverage. We use the basics of Maple, extended with the package linalg.
This package has functionality for using linear algebra. Since we need to do
matrix calculations, this package comes in very handy.

4.3.2 Total Coverage in Discounted FA Algorithm

Given F = 〈A, r〉 a FA with A = 〈S, s0, L, T 〉, r : S × O → R≥0, a state s ∈ S
and a discounting function α for F , we desire to calculate:

totcov(fα
s) =

∑
σ∈L∗ fα

s (σ)

We assume that from each state in F we can reach at least one error state, then
we get:

∀s ∈ S : ∃s′ ∈ reachF |s| : r(s′) > 0

With some rewriting we can come to a matrix-vector notation which is as follows:

tc = r + Aα · tc = (I −Aα)−1 · r

When we use the fault automaton from Figure 3.7 and the discount function α
from Figure 4.3, the algorithm can be executed.

Aα =

 0.499 0.499 0
0.6646666666666666 0 0.3323333333333333

0.747 0 0.249

r = [3, 2, 1]
Results in tc(s0) ≈ 963.141

4.3.3 Total Coverage in Finite Depth FA Algorithm

Given F = 〈A, r〉 a FA with A = 〈S, s0, L, T 〉, r : S × O → R≥0, a state s ∈ S
and a depth k ∈ ℵ, we desire to calculate:

totcov(fk
s) =

∑
σ∈L∗ fk

s (σ)

We assume that from each state in F we can reach at least one error state in k
steps, then we get:

∀s ∈ S : ∃s′ ∈ reachk
F |s| : r(s′) > 0

With some rewriting we can come to a matrix-vector notation which is as follows:

tck =
∑k−1

i=0 Ai · r

We once again use the FA from Figure 3.7 and we use depth k = 5.

A =

 1 1 0
2 0 1
3 0 1

r = [3, 2, 1]
Results in tc5(s0) = 133

40

4.3. Total Coverage

4.3.4 Example

Since I used the matrix notation to calculate the total coverage, the algorithm
could be used exactly like it was in Maple. Only some intermediate steps are
present for the matrix multiplications. Hence we use the example direct in stead
of first explaining how we programmed the algorithm in SeCo. To be able to
use the matrix calculation, we use the package linalg. To do this, the first line
of the Maple sheet needs to be:

with(linalg):

After this, we can specify the matrix A and the vector with total error weights
per state (r). For the example we use the fault automaton from Figure 3.7. In
Maple this will be:

A:=Matrix([[1, 1, 0], [2, 0, 1], [3, 0, 1]]);
R_:=vector(3,[3,2,1]);

When we want to use discounting, we need a discount vector too:

discount:=vector(3,[0.499,0.3323333333333333,0.249]);

So now we have all the inputs that we need and we can start on the algorithm.
Since it is a 3×3 matrix, we need I3:

id3:=Matrix(3, 3, shape=identity);

Now lets create Aα;

for i from 1 by 1 to 3 do A:=mulrow(A,i,discount[i]) end do:

And finish with the calculation of the total coverage in discounted FA:

totcov:=evalf(multiply(matadd(-1*A, id3)\^{}(-1),R_{}));

So now our complete program for calculating total coverage in discounted FA
looks like:

with(linalg):
A:=Matrix([[1, 1, 0], [2, 0, 1], [3, 0, 1]]);
R_:=vector(3,[3,2,1]);
discount:=vector(3,[0.499,0.3323333333333333,0.249]);
id3:=Matrix(3, 3, shape=identity); for i from 1 by 1 to 3 do

A:=mulrow(A,i,discount[i]) end do:
totcov:=evalf(multiply(matadd(-1*A, id3)\^{}(-1),R_{}));

The result given by Maple after execution of this program is:

totcov := vector([963.1406123, 960.9888714, 959.3422602])

We see that this returns 963.141, like the algorithm did. The other two values
that we can see are the total coverage values when starting in state s1 and in
state s2.

The matrix A and the vector r are the same for total coverage in finite depth
FA. Of course we do not need the discount vector here, so we can start with the
algorithm directly and the complete program for total coverage in finite depth
FA will be:

41

Chapter 4. Coverage with SeCo

with(linalg):
A:=Matrix([[1, 1, 0], [2, 0, 1], [3, 0, 1]]);
R_:=vector(3,[3,2,1]);
tc:=k->multiply(sum(’A^i’, ’i’ = 0..(k-1)),R_);

When we execute the program for k = 5 with the command tc(5);, Maple

returns:

 133
203
254

And again we see the same result as with the algorithm, namely 133. The other
two values are the total coverage values when starting in state s1 and in state
s2, like we saw with the discounted algorithm.

4.4 Relative Coverage

Relative coverage is the coverage of a Supertest with respect to the total cover-
age. So we need both the absolute coverage (Section 4.2) and the total coverage
(Section 4.3) value to calculate this.

Supertest

((RRRRRRRRRRRRRR Discounts (optional)

��
Specification // RelCov // <

Errors

66llllllllllllll
Total coverage

OO

Figure 4.5: Architecture of the RelCov module

4.4.1 Relative Coverage Algorithm

Combining the algorithms for computing total coverage and absolute coverage
, it is easy to determine the relative coverage for a test suite T and f = fk

s or
f = fα

s :

relcov(T, f) = abscov(T,f)
totcov(f)

We might multiply with 100% to get a percentage, but this value is also clear.
When we use the algorithm with the values for absolute coverage and total
coverage we got in the earlier Sections, it results in:
T is the Supertest from Figure 3.17, the fault automaton f from Figure 3.7 and
discount function α (Figure 4.3)
relcov(T, f) = 6.407

963.141 ≈ 6.652 · 10−3

42

4.4. Relative Coverage

4.4.2 Relative Coverage with SeCo

The module that executes the relative coverage algorithm is called RelCov. Next
to the inputs that AbsCov has, it also takes a double value to represent the
total coverage as an input. When we execute the RelCov module, it creates
an instance of the Abscov module to calculate the absolute coverage. After the
absolute coverage value is obtained, this value is divided by the provided total
coverage value.

4.4.3 Example

Total coverage of the coffee specification (Figure 3.1) is approximately 963.141,
which we showed in Section 4.3, the absolute coverage of the example used in
Section 4.2 is approximately 6.407, so the relative coverage of this example is
6.407

963.141 ≈ 0.006652. To get this result, use the command:

java main.coverage.RelCov Test123.aut coffee.aut coffee.err
coffee.disc 963.141

4.4.4 Implementation Issues

The absolute coverage that was calculated by RelCov was different from the
value that AbsCov returned if we ran it separately. The problem was that we
supplied all the arguments of RelCov, including the total coverage, to AbsCov.
The extra input caused errors in the AbsCov module. When we strip the last
argument before we instantiate AbsCov, the correct value is returned.

43

5
Test Selection with SeCo

5.1 Introduction

In the previous chapter we described the algorithms for semantic coverage and
the implementation of these algorithms in SeCo. The coverage values per test
can help us select the best tests for a specification.

Test selection will be the scope for this chapter. We will present algorithms
for test selection and their implementations. The test selection consists of three
algorithms:

• Optimal coverage in a test case

• Optimal coverage in n test cases

• Optimal coverage in a test suite (with n test cases)

Optimal coverage in a test case produces a test of given length with highest
absolute coverage for a specification. We will be able to use this for both the
discounted and the finite depth model by creating a discount function for the
finite depth model. This function uses the discount value 1 for each transition.

Optimal coverage in n test cases is actually applying the previous algorithm,
repeating the algorithm but excluding the tests we already selected. If we
execute the algorithm n times, we will have the best n tests.

Optimal coverage in a test suite (with n test cases) differs from the previous
algorithm, since we want to produce a test suite with high coverage here. To
get high coverage in a suite, we need to have little (or no) overlap between the
test cases we use for the suite.

Organization of the Chapter
In Section 5.2 we start with description of optimal coverage in a test case.
Next we present the algorithm and after that we show how we implemented

45

Chapter 5. Test Selection with SeCo

the algorithm. We will make clear how the module Optimize works by giving a
example. We finish the section with remarks about the implementation.

The next section will give a short description of optimal coverage in n tests
cases, followed by a short example.

The last section deals with optimal coverage in a test suite (with n test cases).
After a short introduction, we present the algorithm. The implementation is
then presented with a small example.

5.2 Optimal Coverage in a Test Case

Optimal coverage in a test case can be used to select the best test of length k
for a specification or to select the shortest test case with high coverage. The
algorithm for the best test of length k takes a FA, a discount function and a
natural number as inputs. The result of the algorithm is a single test of the
length specified. The algorithm for the shortest test with high coverage uses a
rational number in stead of a natural number.

Since we combined these two algorithms in the module Optimize, the module
also needs to know which of the algorithms is used. This is resolved by using a
command line argument to indicate which algorithm is used.

5.2.1 Optimal Coverage in a Test Case Algorithms

The first algorithm is the best test of length k, after that we will describe
the shortest test case with high coverage algorithm. Since we want to use the
algorithms for both the finite depth and the discounted model, we need to define
a discount function for the finite depth model.

Given a specification A with A = 〈S, s0, L, T 〉, we create the following
discount function α for the finite depth model:

α(s, l, s′) =
{

1 (s, l, s′) ∈ T
0 otherwise.

Now we can define the algorithms using the above specified discount
function when working with finite depth without discounting. The algorithm
for the best test of length k can now be specified.
Let F = 〈A, r〉 be a FA with A = 〈S, s0, L, T 〉 and r : S × O → R≥0, α be
a discount function and k ∈ N be a test length. Then acoptk satisfies the
following equations:
acopt0(s) = 0
acoptk+1(s) = max

(
r(s) +

∑
(b!,s′)∈T O(s) α(s, b!, s′) · acoptk(s′),

max(a?,s′)∈T I(s)α(s, a, s′) · acoptk(q′)
)

The algorithm to get the shortest test case with high coverage is actu-
ally an LP problem.
Let F = 〈A, r〉 be a FA with A = 〈S, s0, L, T 〉 and r : S × O → (R)≥0, and α
be a discount function. Then mw is the optimal solution of the following LP
problem:
minimize

∑
s∈S mw(s) subject to

mw(s) ≥ α(s, a?, s′) · mw(s′) (a?, s′) ∈ T I(s)
mw(s) ≥ r(s) +

∑
(b!,s′)∈T O(s) α(s, b!, s′) · mw(s′) s ∈ S

46

5.2. Optimal Coverage in a Test Case

5.2.2 Optimal Coverage in a Test Case with SeCo

SeCo can return the test case with highest coverage for a specification with the
module Optimize. The command line arguments needed for this module are:
a specification file, an error file, the String ”depth”, a depth for the test and
optionally a discount file. The method doOptimize performs the algorithm, but
with the help of a couple of other methods.

• alpha returns the discount value for a given state and action

• inputs returns all transitions from a given state that use input actions

• outputs returns all transitions from a given state that use output actions

• r returns the sum of all errors for a given state

Now some more detail on how we programmed the method doOptimize. The
method has two parameters, the current state and the current depth. Therefore
we initially call it for state s0 and depth 0 and then works according to the
following steps for state s and depth d:

1. for each output transition (s, b!, s′), multiply α(s, b!) with
doOptimize(s′, d + 1), sum the results and add r(s)

2. for each input transition (s, a?, s′), multiply α(s, a?) with
doOptimize(s′, d + 1)

3. if the requested depth is reached, return 0 for the current state and the
action used to get here

4. else return the trace with maximal coverage

5.2.3 Example

As an example we will get the best test case of length 3 for the specification in
Figure 3.1 and the error values presented in Figure 3.6.

We execute the module with the command:

java main.testselection.Optimize coffee.aut coffee.err depth 3

Optimize will now start at state s0 of the specification in coffee.aut on depth
0 and recovers all the transitions from this state. So we get the input button
and the output delta. For the output part, we need to do r(s0)+α(s0, delta) ·
doOptimize(s0, 1). Where for the input part, we need to do α(s0, button) ·
doOptimize(s1, 1). We keep calling doOptimize until we reach depth 3 and
then the coverage values and the actions performed will be passed up the tree.

In 5.1 we see the Supertest containing all tests of depth 3 (without the
transitions leading to a fail state). Since we use no discounting, all the function
alpha always returns 1. Next a list of the values that doOptimize will return
for each state.

• doOptimize(s2, 2) = max(0, 1+0+0+0) = 1, the path leading to the
optimal trace from here is the one with the outputs coffee, espresso
and cappuccino.

47

Chapter 5. Test Selection with SeCo

76540123s0

76540123s1

button

��

76540123s5

δ

��?
??

??
??

76540123s2

button

wwooooooooooooo

76540123s3

coffee

�� 76540123s4

espresso

''OOOOOOOOOOOOO

pass buttonoo

pass

coffee

wwoooooooooooo

pass

espresso

��
pass

cappuccino

��?
??

??
??

pass
button����

��
��

�

pass

δ

��?
??

??
??

pass
button����

��
��

�

pass

δ

��?
??

??
??

76540123s6

button

����
��

��
�

76540123s7

δ

��?
??

??
??

pass

button

����
��

��
�

pass

coffee

��
pass

espresso

��?
??

??
??

pass
button����

��
��

�

pass

δ

��?
??

??
??

Figure 5.1: Test suite with all tests of length 3 (without error transitions)

• doOptimize(s3, 2) = max(0, 1+0) = 3, the path leading to the optimal
trace from here is the one with the output δ.

• doOptimize(s4, 2) = max(0, 1+0) = 3, the path leading to the optimal
trace from here is the one with the output δ.

• doOptimize(s1, 1) = max(1, 2+3+3) = 8, the paths leading to the optimal
trace from here is coffee, δ combined with espresso, δ.

• doOptimize(s6, 2) = max(0, 2+0+0) = 2, the path leading to the optimal
trace from here is the one with the outputs coffee and espresso.

• doOptimize(s7, 2) = max(0, 1+0) = 3, the path leading to the optimal
trace from here is the one with the output δ.

• doOptimize(s5, 1) = max(2, 3+3) = 6, the path leading to the optimal
trace from here is δ, δ.

• doOptimize(s0, 0) = max(8, 3+6) = 9, the path leading to the optimal
trace from here is δ, δ, δ.

So the best test of length 3 is the one shown in Figure 5.2 with the absolute
coverage value of 9.

5.2.4 Implementation Issues

We now return tests, where we first only returned traces. To achieve this we
use the module Explode (Section 6.2).

48

5.3. Optimal Coverage in n Test Cases

76540123s0

76540123s1

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

76540123s2

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

pass

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

Figure 5.2: Test of length 3 with the highest coverage

5.3 Optimal Coverage in n Test Cases

The algorithm for computing the best test case of length k can be extended to
a method for computing the best n test cases with optimal coverage. To pick
the second best test case, we apply the same procedure as to get the best test,
except that we exclude the first from all possible options. To get the third best
test, exclude the first two, and so on. In this way we can get the first n separate
tests with the best coverage values.

5.3.1 Optimal Coverage in n Test Cases with SeCo

Since this is actually returning the best n traces in stead of only the best trace,
we take the maxn in stead of the max. We then return a set of traces in stead
of a trace. If we execute this for the specification in Figure 3.1, the error values
presented in Figure 3.6, length 3 and n = 3, we get the three test cases in Figure
5.3.

We see here that we have the best test case that we obtained with the
example in Section 5.2 along with the next two best tests. To take the best 3
in the same manner as used in Section 5.2.3 is left as an exercise to the reader.

The command to execute the example with SeCo is:

java main.testselection.OptNTests coffee.aut coffee.err 3 3

49

Chapter 5. Test Selection with SeCo

76540123s0

76540123s1

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

76540123s2

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

pass

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

(a) Test1: Absolute coverage of 9

76540123s0

76540123s1

button

��

fail
coffee, espresso, cappuccino //

76540123s2

coffee

����
��

��
�

76540123s3

espresso

��?
??

??
??

pass

δ

��?
??

??
??

fail

coffee, espresso, cappuccino

����
��

��
�

pass

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

(b) Test2: Absolute coverage of 8

76540123s0

76540123s1

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

76540123s2

δ

����
��

��
�

fail

coffee, espresso, cappuccino

��?
??

??
??

pass

button

��

(c) Test3: Absolute coverage of 6

Figure 5.3: Best 3 tests of length 3

50

5.4. Optimal Coverage in a Test Suite

5.4 Optimal Coverage in a Test Suite

Where we in the previous two sections got single tests from our algorithm, we
now aim to get a test suite. The difference with the optimal coverage in n tests
is that we want as less overlap as possible in the tests we select. In this way the
combined tests make a suite that covers more than the best tests combined.

5.4.1 Optimal Coverage in a Test Suite Algorithm

Let F = 〈A, r〉 be a FA with A = 〈S, s0, L, T 〉, r : S×O → R≥0, α be a discount
function for F , k ∈ N be a test length and n ∈ N be a number. Then tck

satisfies the following equations

v0(s) =[0, 0, .., 0]

vj+1(s) =maxn{
[
α(s, a, s′) · v | (a?, s′) ∈ T I(s), v ← vj(s′) ∧ 0 ≤ j ≤ n

]
+ +

r(s)⊕

 ∑
(b!,s′)∈T O(s)

α(s, b!, s′) · l | l← vj(s′) ∧ 0 ≤ j ≤ n

}
Here, x ⊕ l adds the number x ∈ R/geq0 to each element of the list l (i.e.,

x⊕ [e1, e2, . . . en] = [e1 + x, e2 + x, . . . en + x]). And maxn yields the n maximal
elements in a list. By keeping the lists sorted (largest element first) we can
efficiently implement the algorithm. To do so, it suffices that maxn returns a
sorted list.

5.4.2 Optimal Coverage in a Test Suite with SeCo

When given a specification file, an error file, a test length k, a number of tests n
and optionally a discount file, SeCo starts with generating al the tests of length
k. It stores these test in an ordered set, with the test with highest coverage first.

To get the test suite of n tests with the highest coverage, Merge is used. We
start with getting the test with highest coverage, then merge it with the next
test. Then we calculate the absolute coverage for this suite and store the suite
with its coverage value. We now merge our highest test with the next test and
calculate the coverage for this suite. If the coverage is higher than the stored
value, we update the new highest value and store the current suite. After we
combined the best test with all the other tests, we have the test suite of 2 tests
with highest coverage. We can repeat this process until we merged n tests where
we now see the just created test suite as highest test.

To get the best test suite of 3 tests of length 3, we use the command: The
command to execute the example with SeCo is:

java main.testselection.OptSuite coffee.aut coffee.err 3 3

Within a second, SeCo provided the test shown in Figure 5.4. We can see that
the test with highest coverage for depth 3 is present in this suite. Test3 (Figure
5.3c) is not in this test suite, since it has too much overlap with test1 (Figure
5.3a). The example shows us that the best 3 test do not necessarily merge into
the best test suite of 3 tests.

51

Chapter 5. Test Selection with SeCo

76540123s0

76540123s1

δ

wwooooooooooooo

76540123s4

button

''OOOOOOOOOOOOO

76540123s2

δ

����
��

��
�

76540123s3

button

��?
??

??
??

pass

δ

��
pass

coffee

����
��

��
�

pass

espresso

��?
??

??
??

76540123s5

coffee

����
��

��
�

76540123s6

espresso

��?
??

??
??

pass

δ

��
pass

δ

��

Figure 5.4: Best test suite of 3 tests of length 3 (without error transitions)

52

6
Extra Features

6.1 Introduction

To keep SeCo user friendly, we implemented modules that help us create more
readable output or generate input (files). We will present three modules in this
chapter:

• Explode

• GenerateDiscounts

• GenerateMatrix

Explode is used to create a test from a trace or a test suite from a suite
of traces. In this way we can present the results of algorithms from previous
chapters as a test to the user.

GenerateDiscounts is a module that helps the user by creating a discount
file (.disc) for a given specification by applying a basic algorithm to calculate
discount values.

GenerateMatrix will help us to create parts of the Maple sheet we need to
calculate total coverage (Section 4.3). It generates the adjacency matrix for a
given fault automaton as well as the vector r.

Organization of the Chapter
In Section 6.2 we will introduce the module Explode. The next section describes
the module GenerateDiscounts. It starts with a short description, followed by
the algorithm and an example. The final section covers an introduction to the
module GenerateMatrix and an example of how to use the module.

53

Chapter 6. Extra Features

6.2 Explode

The module Explode is used to create a test from a trace. Where traces are only
paths, tests require to have all outputs possible, whenever an output is possible.
This module is executed from within the Optimize module to make the best
trace that is found into a test. The test in Figure 5.2 was obtained from using
Explode on the trace in Figure 6.1.

The module can also be executed separately, to do this execute the command:

java main.extras.Explode <test|test suite> <specfile>
<outputfile>

76540123s0

76540123s1

δ

��

76540123s2

δ

��

pass

δ

��

Figure 6.1: Trace that needs to be exploded to a test

6.3 Generate Discount Values

The discount function (alpha) needs to be presented to SeCo in a file. An
example of such a file can be found in Appendix A. At first we made these
files by hand, but that was very time consuming. Thus we created the module
GenerateDiscounts. This module takes a specification, an error-file and a value
epsilon and then generates a file with discount transitions and gives code we
can use in Maple to represent the discount values there.

6.3.1 Discount Value Calculation Algorithm

The discount values for the transitions from state s are calculated by the fol-
lowing algorithm: 1

outdegree(s) − ε, where 0 < ε < outdegree(s).

6.3.2 Example

To obtain the file containing the transitions representing the discount function
we see in Figure 4.3, we use the command:

java main.extras.GenerateMatrix coffee.aut coffee.err
coffee example.disc

54

6.4. Generate Maple Input

SeCo first calculates the outdegree for every state. After this has been
done, it calculates the discount value 1

outdegree(s) − 0.001 for all the states and
stores the pairs of state and discount value internally. When SeCo has all the
discount values, it adds the appropriate discount value to all the transitions
from the specification and adds the delta transitions with discount values too.
The result in coffee example.disc looks like:

(0, "button", 1, 0.499)
(1, "button", 2, 0.3323333333333333)
(1,"espresso", 0, 0.3323333333333333)
(1, "coffee", 0,0.3323333333333333)
(2, "button", 2, 0.249)
(2, "espresso", 0,0.249)
(2, "coffee", 0, 0.249)
(2, "cappuccino", 0, 0.249)
(0,"delta", 0, 0.499)

Apart from the file that is written, we also obtain the output:
discount:=vector(3,[0.499,0.3323333333333333,0.249]);

6.4 Generate Maple Input

Since the matrix we need to supply to the total coverage algorithm can be very
large, we provided a program that can generate the matrix A as Maple input
and the vector r, when given a file containing the specification, a file with error
transitions and a target file. The target file will contain the Maple input. This
part of SeCo is called GenerateMatrix.

6.4.1 Example

The input generation for the specification from Figure 3.1 and the error transi-
tions from Figure 3.6 SeCo will work with the following command:

java main.extras.GenerateMatrix coffee.aut coffee.err maple.txt

First we calculate the adjacency matrix we need, by counting for every state
the transitions to every other state. In our example that will be:
from/to s0 s1 s2

s0 1 1 0
s1 2 0 1
s2 3 0 1

When this is finished, we will calculate the vector r which will be: 〈3, 2, 1〉
Now we format the calculated values into the Maple input we need and store
this in the file maple.txt. This file will contain the following text:

A:=Matrix([
[1, 1, 0],
[2, 0, 1],
[3, 0, 1]
]);

R_:=Matrix([[3.0], [2.0], [1.0]]);

55

7
Semantic Versus Mutant Coverage:

a Comparison

7.1 Introduction

To evaluate the usefulness of the algorithms presented in Chapter 4, we com-
pare the algorithms to another form of coverage. This chapter deals with a
comparison between absolute (Section 4.2) and mutant coverage. Mutant cov-
erage is chosen based on it being a semantic type of coverage, like we use with
SeCo. Using several mutated implementations is already used in practice and
has proven itself useful.

Since we used the tool TorX to aid us in trace generation and conformance
testing, a description of this tool is presented in this chapter.

We define mutant coverage as the percentage of IOCO incorrect mutants
that have been discovered. To actually perform the comparison, we created ten
mutants of the coffee specification shown in Figure 7.1. Seven of these mutants
were IOCO incorrect. With the help of TorX and SeCo 16 test suites were
created. We created four sets of discount values for the specification, so for each
test suite we have four absolute and relative coverage values.

None of the test suites has marked a IOCO implementation as incorrect.
The results show that when semantic coverage increases within a certain depth,
the mutant coverage stays equal or increases too. It also became obvious that
some errors cannot be detected with test suites of small depth. Discount values
close to the one divided by the outdegree of a state give low coverage values.

57

Chapter 7. Semantic Versus Mutant Coverage: a Comparison

76540123s0

76540123s1

button

�� 76540123s2

button

33

espresso, coffee

KK

espresso, coffee, cappuccino

dd

button
ww

Figure 7.1: Specification of the coffee example

Organization of the Chapter
This chapter will start with a section that describes the tool TorX, which is
used for creating traces and for performing the tests that will lead to the mutant
coverage value.

Next we explain the background on mutant coverage, where we will provide
a formal definition of mutant coverage. Following this, we will describe which
mutants we have for the coffee example. All the mutants will be presented,
along with where the errors are. After this, we present the test setup for the
coffee example together with the results of the tests. We finish this chapter with
an analysis of the results we achieved with our tests.

7.2 TorX

TorX is a prototype testing tool for conformance testing of reactive software. It
requires an implementation and a (formal) specification of that implementation.
The specification describes the system behavior for the implementation. TorX
can check if the implementation behaves correctly according to the specification.
TorX also allows to generate tests for a given specification.

In the process of testing SeCo we used TorX to generate traces. To do this
the command line option -batch was used. The creation of traces can be done
in the following manner:

torx --batch --depth 10 coffee.if

TorX now creates a trace of depth 10 for the specification described in
coffee.if. Since we needed a lot of tests, we used this command in a for-
loop.

When we want to check if a mutant is IOCO with a test suite we created,
we can use the conformance testing part of TorX. We make the test suite act
as the specification for the mutant and then let TorX run. When an inconsis-
tency is found, TorX will return where the difference between specification and
implementation was.

7.3 Background on Mutant Coverage

Mutant coverage uses faulty variations of the specification that needs to be
tested, called mutants. A suite of test cases based on the specification can

58

7.4. Mutant Coverage for the Coffee Example

be applied to the mutant to see if the test suite can detect that it is a faulty
variation. Mutant coverage is defined by the number of IOCO incorrect mutants
that are detected by a test suite divided by the total number of IOCO incorrect
mutants multiplied by 100%. In this way the mutant coverage will depict the
percentage of detected IOCO incorrect mutants. Next is a formal definition for
mutant coverage.

For a specification s, a test suite T and a set of mutants M:

mutantcov(T, s,M) = {m|m ∈ M ∧ v(m,T)=fail}
#{∀m ∈ M |m 6IOCO s} ∗ 100%

v(m,T) =
{

pass, if ∀σ ∈ m : T
σ=⇒ pass;

fail, otherwise.

7.4 Mutant Coverage for the Coffee Example

The specification of the coffee example has ten mutants. Six of these mutants
already existed as examples within the TorX distribution (Belinfante et al.,
1999). We added four extra to have more variance in the mutant coverage. Table
7.1 shows for every mutant the number of states and the number of transitions
(including delta transitions) and if the mutant is IOCO with the specification.
The mutants are shown in Figures 7.2 until 7.11 and their specifications can be
found in Appendix C. The mutants impl1, impl2 and impl4 are IOCO with
the specification and should not be marked as erroneous implementations.

Mutant States Transitions IOCO
impl1 3 8 X
impl2 2 5 X
impl3 4 12
impl4 2 4 X
impl5 4 9
impl6 4 8
impl8 9 34
impl9 9 33
impl10 17 58
impl11 15 52

Table 7.1: Mutant information

76540123s0 76540123s2

?button
++

!espresso, !coffee

kk ?button
ww

76540123s1

?button

����
��
��
��
��
��
��

?button
ww

!cappuccino

WW//////////////

Figure 7.2: Mutant impl1: ioco

59

Chapter 7. Semantic Versus Mutant Coverage: a Comparison

76540123s0 76540123s1

?button
++

!espresso, !coffee

kk ?button
ww

Figure 7.3: Mutant impl2: ioco

76540123s0

76540123s1

?button

����
��

��
��

��
��

��
��

��

76540123s3

?button

��

76540123s2

?button

��

?button //

?button

��?
??

??
??

??
??

??
??

??
?

!espresso, !coffee

SS

?button
ww

?button

EE

!cappuccino

ii

Figure 7.4: Mutant impl3: after ?button is a δ possible

76540123s0 76540123s1

?button
++

!coffee

kk ?button
ww

Figure 7.5: Mutant impl4: ioco

76540123s0 76540123s1
?button //

76540123s3

?button

��76540123s2

?button

����
��

��
��

��
��

��
��

��

?button
''

?button
oo

!cappuccino

OO

Figure 7.6: Mutant impl5: after ?button is a δ possible

60

7.4. Mutant Coverage for the Coffee Example

76540123s0 76540123s1
?button //

76540123s3

?button

��76540123s2

?button

����
��

��
��

��
��

��
��

��

?button
''

tau
oo_ _ _ _ _ _

!cappuccino

OO

Figure 7.7: Mutant impl6: after ?button is a δ possible

76540123s0 76540123s1

?button
++

!coffee

kk

?button

�� 76540123s3

!coffee
++

?button

kk

76540123s4

!coffee

��

?button

KK

76540123s2

?button

��

!coffee

KK

!coffee
++

?button

kk

76540123s5

!coffee

��

?button

KK?button
'' 76540123s6

?button

��

!coffee

KK

!coffee

kk
?button

++
?button

ww

76540123s8

!coffee

��

?button

KK

76540123s7

?button

��

!coffee

KK

?button

EE

?button
++

!coffee

kk
!coffee

++

?button

kk ?button
ww

Figure 7.8: Mutant impl8: in s8 is a self transition with ?button possible

61

Chapter 7. Semantic Versus Mutant Coverage: a Comparison

76540123s0 76540123s1

?button
++

!coffee

kk

?button

�� 76540123s3

!coffee
++

?button

kk

76540123s4

!coffee

��

?button

KK

76540123s2

?button

��

!coffee

KK

!coffee
++

?button

kk

76540123s5

!coffee

��

?button

KK?button
'' 76540123s6

?button

��

!coffee

KK

!coffee

kk
?button

++
?button

ww

76540123s8

!coffee

��

?button

KK

76540123s7

?button

��

!coffee

KK

?button

EE

?button
++

!coffee

kk
!coffee

++

?button

kk !cappuccino
ww

Figure 7.9: Mutant impl9: in state s8 is !cappuccino possible in stead of δ

Figure 7.10: Mutant impl10

62

7.5. Test Setup

Figure 7.11: Mutant impl11

7.5 Test Setup

We want to compare semantic coverage values with mutant coverage values.
To be able to calculate absolute coverage of test suites later on, we first need
to calculate the total coverage of the specification in Figure 7.1. All the error
values are set to one, and four sets of discount values are used. The discount
values are shown in Table 7.2.

With the given specification, the error weights and the discount values, the
total coverage can be calculated with Maple as we presented in Section 4.3. The
results for the different values of α are shown in Table 7.3.

α State 0 State 1 State 2
1 0.499 0.332 0.249
2 0.490 0.323 0.240
3 0.400 0.233 0.150
4 0.300 0.133 0.050

Table 7.2: Discount values for the coffee example

With TorX we generated 50 tests of depths 2, 5, 10 and 20. These tests have
been merged into test suites with the module Merge (Section 3.3). We created
16 test suites, for all depths a suite with 5, 10, 25 and 50 tests. To calculate

63

Chapter 7. Semantic Versus Mutant Coverage: a Comparison

Type Total coverage
Discounting α1 963.141
Discounting α2 97.319
Discounting α3 10.744
Discounting α4 5.935

Table 7.3: Total coverage values for the coffee example (Figure 3.1)

the absolute and relative coverage, the two corresponding modules of SeCo are
used. The results for absolute and relative coverage are presented in Table 7.4.

For the calculation of the mutant coverage it is needed to use TorX (Section
7.2). TorX is not able to execute test suites, it only checks one trace in the test
suite. To fix this, we checked each test suite against all the mutants with 50
different seeds. This was realized by executing a script for each test suite. The
script that was used for test suite 6 can be found in Appendix D.

The resulting log-files show which mutants are detected. None of the test
suites has marked a IOCO mutant to be incorrect with respect to the specifi-
cation. So the number of detected mutants can be divided by 7 and multiplied
by 100%. The values for mutant coverage are also incorporated in Table 7.4.
Which specific mutants are discovered by the test suites can be seen in Table
7.5.

64

7.5. Test Setup
te

st
su

it
e

d
e
p
th

#
te

st
s

ty
p
e

α
1

(t
c
:

9
6
3
.1

4
1
)

α
2

(t
c
:

9
7
.3

1
9
)

α
3

(t
c
:

1
0
.7

4
4
)

α
4

(t
c
:

5
.9

3
5
)

m
u
ta

n
tc

o
v

1
2

5
a
b
so

lu
te

3
.9

9
8

3
.9

8
0

3
.8

0
0

3
.6

0
0

re
la

ti
v
e

0
.4

%
4
.1

%
3
5
.4

%
6
0
.7

%
4
2
.9

%
2

2
1
0

a
b
so

lu
te

3
.9

9
8

3
.9

8
0

3
.8

0
0

3
.6

0
0

re
la

ti
v
e

0
.4

%
4
.1

%
3
5
.4

%
6
0
.7

%
4
2
.9

%
3

2
2
5

a
b
so

lu
te

3
.9

9
8

3
.9

8
0

3
.8

0
0

3
.6

0
0

re
la

ti
v
e

0
.4

%
4
.1

%
3
5
.4

%
6
0
.7

%
4
2
.9

%
4

2
5
0

a
b
so

lu
te

3
.9

9
8

3
.9

8
0

3
.8

0
0

3
.6

0
0

re
la

ti
v
e

0
.4

%
4
.1

%
3
5
.4

%
6
0
.7

%
4
2
.9

%

5
5

5
a
b
so

lu
te

5
.3

2
1

5
.2

0
8

4
.3

2
5

3
.7

3
9

re
la

ti
v
e

0
.6

%
5
.4

%
4
0
.3

%
6
3
.0

%
7
1
.4

%
6

5
1
0

a
b
so

lu
te

6
.5

7
3

6
.3

9
3

4
.9

6
3

3
.9

9
5

re
la

ti
v
e

0
.7

%
6
.6

%
4
6
.2

%
6
7
.3

%
7
1
.4

%
7

5
2
5

a
b
so

lu
te

7
.7

6
4

7
.5

1
9

5
.5

7
5

4
.2

6
2

re
la

ti
v
e

0
.8

%
7
.7

%
5
1
.9

%
7
1
.8

%
7
1
.4

%
8

5
5
0

a
b
so

lu
te

7
.9

4
9

7
.6

8
7

5
.6

2
5

4
.2

6
7

re
la

ti
v
e

0
.8

%
7
.9

%
5
2
.4

%
7
1
.9

%
7
1
.4

%

9
1
0

5
a
b
so

lu
te

6
.2

8
9

6
.1

3
6

4
.9

4
0

4
.0

8
7

re
la

ti
v
e

0
.7

%
6
.3

%
4
6
.0

%
6
8
.9

%
8
5
.7

%
1
0

1
0

1
0

a
b
so

lu
te

7
.3

8
0

7
.1

3
4

5
.3

2
4

4
.1

8
7

re
la

ti
v
e

0
.8

%
7
.3

%
4
9
.6

%
7
0
.5

%
1
0
0
.0

%
1
1

1
0

2
5

a
b
so

lu
te

8
.4

2
6

8
.0

7
0

5
.5

9
4

4
.2

2
5

re
la

ti
v
e

0
.9

%
8
.3

%
5
2
.1

%
7
1
.2

%
1
0
0
.0

%
1
2

1
0

5
0

a
b
so

lu
te

9
.6

9
0

9
.2

0
5

5
.9

5
4

4
.3

0
0

re
la

ti
v
e

1
.0

%
9
.5

%
5
5
.4

%
7
2
.5

%
1
0
0
.0

%

1
3

2
0

5
a
b
so

lu
te

5
.6

3
1

5
.5

0
5

4
.5

4
6

3
.8

7
8

re
la

ti
v
e

0
.6

%
5
.7

%
4
2
.3

%
6
5
.3

%
1
0
0
.0

%
1
4

2
0

1
0

a
b
so

lu
te

7
.0

2
0

6
.7

8
0

5
.0

4
6

4
.0

0
5

re
la

ti
v
e

0
.7

%
7
.0

%
4
7
.0

%
6
7
.5

%
1
0
0
.0

%
1
5

2
0

2
5

a
b
so

lu
te

9
.2

0
5

8
.7

6
0

5
.8

0
4

4
.2

7
4

re
la

ti
v
e

1
.0

%
9
.0

%
5
4
.0

%
7
2
.0

%
1
0
0
.0

%
1
6

2
0

5
0

a
b
so

lu
te

1
0
.0

5
2

9
.5

0
8

5
.9

9
7

4
.3

0
1

re
la

ti
v
e

1
.0

%
9
.8

%
5
5
.8

%
7
2
.5

%
1
0
0
.0

%

T
ab

le
7.

4:
T
es

t
re

su
lt

s
fo

r
th

e
co

ffe
e

ex
am

pl
e

65

Chapter 7. Semantic Versus Mutant Coverage: a Comparison

te
st

su
it

e
im

p
l1

im
p
l2

im
p
l3

im
p
l4

im
p
l5

im
p
l6

im
p
l8

im
p
l9

im
p
l1

0
im

p
l1

1
M

u
ta

n
t

c
o
v
e
r
a
g
e

1
-

-
X

-
X

X
-

-
-

-
4
2
.9

%
2

-
-

X
-

X
X

-
-

-
-

4
2
.9

%
3

-
-

X
-

X
X

-
-

-
-

4
2
.9

%
4

-
-

X
-

X
X

-
-

-
-

4
2
.9

%
5

-
-

X
-

X
X

-
X

-
X

7
1
.4

%
6

-
-

X
-

X
X

-
X

-
X

7
1
.4

%
7

-
-

X
-

X
X

-
X

-
X

7
1
.4

%
8

-
-

X
-

X
X

-
X

-
X

7
1
.4

%
9

-
-

X
-

X
X

-
X

X
X

8
5
.7

%
1
0

-
-

X
-

X
X

X
X

X
X

1
0
0
.0

%
1
1

-
-

X
-

X
X

X
X

X
X

1
0
0
.0

%
1
2

-
-

X
-

X
X

X
X

X
X

1
0
0
.0

%
1
3

-
-

X
-

X
X

X
X

X
X

1
0
0
.0

%
1
4

-
-

X
-

X
X

X
X

X
X

1
0
0
.0

%
1
5

-
-

X
-

X
X

X
X

X
X

1
0
0
.0

%
1
6

-
-

X
-

X
X

X
X

X
X

1
0
0
.0

%

T
ab

le
7.

5:
D

et
ec

te
d

m
ut

an
ts

pe
r

te
st

su
it

e

66

7.6. Analysis

7.6 Analysis

In Table 7.5 we can see that the IOCO implementations were never marked as
erroneous implementations of the specification.

The mutants 3, 5 and 6 were always detected, even with tests of depth 2.
These three mutants are the smallest implementations, existing of only four
states each and all three have an error after one step. The set of outputs after
one step in the specification is {!coffee, !espresso}, where these three mutants
all have δ in the output set. So the error in these specifications can be detected
within two steps.

Another easy observation is that the mutant coverage in Table 7.4 is almost
equal per depth of the test suite. The mutant coverage value therefore gives
little information on how good a test suite is.

The results also show that if the semantic coverage value increases, the
mutant coverage stays equal or increases too. Indicating that adding tests or
using better tests, might cover more of the specification, but does not always
find more errors. It also becomes clear that the coverage value is extremely
low when we use discount values close to 1

outdeg(s) . α3 was 1
outdeg(s) − 0.1, the

coverage values we got with this α seem the most accurate, giving about 40 to
50% coverage for the test suites of depth 5. Compared to state and transition
coverage this seems low, since we can get maximal state and transition coverage
with this depth. Only then we completely disregard the loops that are present
and assume that after one visit of a state or transition, it is working correct.
So including the fact that we want to know if errors can occur later on, the
50% seems nice. Every other loop through the complete system would ensure
us more of the correctness of the system, or discover an error.

The first two discount functions resulted in very low relative coverage. This
seems odd for the higher depths, since we visit every state a couple of times
then. The function α4 shows, in my opinion, too high coverage for the test
suites with depth 2.

I’d like to compare the results of the test suites to the coverage of the test
suites containing all the tests of the lengths used (Table 7.6).

Depth Number of tests Absolute coverage with
α1 α2 α3 α4

2 5 7.901 7.760 6.453 5.230
5 84 15.191 14.439 8.969 5.852

10 9003 27.209 24.475 10.336 5.932
20 263247781 50.788 41.048 10.722 5.935

Table 7.6: Possible different tests per depth and absolute coverage values

Since there are only five tests of length two, I presumed that the first four
test suites I created would have same coverage as the suite containing the five
tests that are possible. This proved to be wrong. Since the tests I combined
in the test suites were generated randomly, there was no guarantee that all five
tests would be there. The test with the trace δδ is not in the first four suites.
For the mutant coverage this proved to be no problem, since all errors that could
be found within this depth were discovered.

The larger test suites could never be complete, since the test suites containing
all tests of depth five and higher contain more than 50 tests. When we compare

67

Chapter 7. Semantic Versus Mutant Coverage: a Comparison

the best coverage results with α3 to the sets of all tests, we can see that the test
suites score above 55% of the total possible for each depth. Where for depth 5
we have about 60% of al tests possible, but for higher depths a much smaller
percentage of all possible tests. So we see that smaller test suites still have a
high coverage relative all the test of their depth.

68

8
Conclusion and Recommendations

The goals for this project were to build a tool to calculate semantic coverage
and to perform test selection. These goals were met by creating SeCo.

During the project, we thought it useful to compare the coverage measures
used by the tool to another form of coverage. The coverage measure we chose
was mutant coverage, since this is also a form of semantic coverage. Moreover,
six mutants for the specification we used already existed.

The comparison shows us that if the semantic coverage value increases, it
never occurs that the mutant coverage decreases. We also see that the mutant
coverage in our case was highly dependant on the depth of the test suite. The
relative coverage was highly dependant on the discount function.

The test results indicate that even with smaller test suites, a lot of semantic
coverage can be reached. Making the test selection an important part of the
tool. The main advantage we get, is that we can use smaller sets of tests in
a test suite and still keep good coverage values, making testing a lot less time
consuming.

To get higher coverage values, we should try to avoid that multiple delta
transitions still can have high coverage. We achieve this by using per transition
discounting in stead of the per state discounting we are using now. Then we
can give a discount value closer to zero to the transitions with the action delta.

Further Research for the Theory
When doing further research into semantic coverage, I advise to look into the
discounting more. Perhaps it is a good idea to give the transitions that cause a
loop a very low discount value (indicating that all below this transition counts
much less for the coverage). This should make it easier to get nice coverage
values for low depths and in this way testing and test selection will be easier.

To have a smaller amount of possible tests, I advise to not allow multiple
delta transitions in a row. It is not relevant to have several delta transitions
performed in a row, since the delta transition stands for a time-out. Therefore
we should change the way that we add delta transitions to the specification.

69

Chapter 8. Conclusion and Recommendations

Further Research for SeCo
At the moment SeCo is only usable for systems that are defined in the Alde-
baran format. To be able to use the tool for more types of specifications, we
need to alter the read method of the modules and then try to parse the new
format into the data structures that we use.

We still need to test SeCo for larger examples. To make SeCo less time
consuming for larger systems, it might be useful to see if other data structures
will perform better. Think of strings in stead of string arrays.

The test selection still needs to be tested extensively, since I performed only
a couple of minor tests to see if it worked.

A graphical user interface might prove to be useful. At the moment the tool
works from command line, which is not preferred by a lot of users.

70

References

Belinfante, A., Feenstra, J., Vries, R. de, Tretmans, J., Goga, N., Feijs, L., et al.
(1999). Formal test automation: A simple experiment. In Proceedings of
the ifip tc6 12th international workshop on testing communicating systems
(pp. 179–196). Deventer, The Netherlands, The Netherlands: Kluwer,
B.V.

Brandán Briones, L. (2007). Theories for model-based testing: Real-time and
coverage. PhD thesis, University of Twente, The Netherlands.

Brandán Briones, L., Brinksma, E., & Stoelinga, M. (2006). A semantic frame-
work for test coverage. In Proceedings of the fourth international sympo-
sium on automated technology for verification and analysis (atva’06) (Vol.
4218, p. 399-414). Springer-Verlag.

Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., &
Veanes, M. (2005, May). Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer (Tech. Rep.). Microsoft Research, Redmond.

Chang, J., & Richardson, D. (1998). Adlscope: An automated specification-
based unit testing tool. In Ase ’98: Proceedings of the 13th ieee interna-
tional conference on automated software engineering (p. 289). Washington,
DC, USA: IEEE Computer Society.

Dawson, E. (2008). Atlassian clover - code coverage analysis. http://www.
atlassian.com/software/clover/default.jsp.

Garavel, H., Jorgensen, M., Mateescu, R., Pecheur, C., Sighireanu, M., Vivien,
B., et al. (1997). Cadp97status, applications, and perspectives. In in
i. lovrek (ed.), proceedings of the 2nd cost 247 international workshop on
applied formal methods in system design.

Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A., & Willcock,
C. (2003). An introduction to the testing and test control notation (ttcn-
3). Comput. Netw., 42 (3), 375–403.

Lee, D., & Yannakakis, M. (1996). Principles and methods of testing finite state
machines - a survey. In Proceedings of the ieee (pp. 1090–1123).

Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., & Grieskamp, W.
(2004). Optimal strategies for testing nondeterministic systems. In Is-
sta ’04: Proceedings of the 2004 acm sigsoft international symposium on
software testing and analysis (pp. 55–64). New York, NY, USA: ACM.

Roubtsov, V. (2006). Emma: a free java code coverage tool. http://emma.
sourceforge.net/index.html.

Sun Microsystems, . (2008). Man page tcov.1. http://docs.sun.com/source/
820-4180/man1/tcov.1.html.

Timmer, M. (2008). Evaluating and predicting actual test coverage. MSc thesis,
University of Twente, The Netherlands.

Tretmans, J. (1996). Test generation with inputs, outputs, and quiescence. In
Tacas (p. 127-146).

71

http://www.atlassian.com/software/clover/default.jsp
http://www.atlassian.com/software/clover/default.jsp
http://emma.sourceforge.net/index.html
http://emma.sourceforge.net/index.html
http://docs.sun.com/source/820-4180/man1/tcov.1.html
http://docs.sun.com/source/820-4180/man1/tcov.1.html

References

Ural, H. (1992). Formal methods for test sequence generation. Comput. Com-
mun., 15 (5), 311–325.

Williams, T., & Sunter, S. (2000). How should fault coverage be defined? In
Proceedings of the 18th ieee vlsi test symposium (vts’00) (p. 325).

72

Appendices

73

A
Example Files

This appendix shows all the input files that we created for the running example
in Chapters 3 to 6.

A.1 Testfiles

Test1.aut Test2.aut Test3.aut
des (0, 4, 4) des (0, 4, 4) des (0, 4, 4)
(0, ”button”, 1) (0, ”delta”, 1) (0, ”delta”, 1)
(1, ”coffee”, 2) (1, ”button”, 2) (1, ”delta”, 2)
(2, ”button”, 3) (2, ”coffee”, 3) (2, ”button”, 3)
(3, ”coffee”, 4) (3, ”button”, 4) (3, ”coffee”, 4)

A.2 Specification

coffee.aut
des (0, 8, 3)
(0, ”button”, 1)
(1, ”button”, 2)
(1, ”espresso”, 0)
(1, ”coffee”, 0)
(2, ”button”, 2)
(2, ”espresso”, 0)
(2, ”coffee”, 0)
(2, ”cappuccino”, 0)

75

Appendix A. Example Files

A.3 Errorfile

coffee.err
[”delta”, ”espresso”, ”coffee”, ”cappuccino”]
(*, ”delta”, 1)
(*, ”espresso”, 1)
(*, ”coffee”, 1)
(*, ”cappuccino”, 1)

A.4 Discountfile

coffee.disc
(0, ”button”, 1, 0.499)
(1, ”button”, 2, 0.3323333333333333)
(1, ”espresso”, 0, 0.3323333333333333)
(1, ”coffee”, 0, 0.3323333333333333)
(2, ”button”, 2, 0.249)
(2, ”espresso”, 0, 0.249)
(2, ”coffee”, 0, 0.249)
(2, ”cappuccino”, 0, 0.249)
(0, ”delta”, 0, 0.499)

76

B
Generated Files

B.1 Supertest

This is the combination of the files in Appendix A.1 generated by the tool.
The differences with figure 3.17 are: the state numbering, the pass states are
not denoted as pass and the fail states are not present.

Test123.aut
des (0, 11, 12)
(0, ”button”, 1)
(1, ”coffee”, 2)
(2, ”button”, 3)
(3, ”coffee”, 4)
(0, ”delta”, 5)
(5, ”button”, 6)
(6, ”coffee”, 7)
(7, ”button”, 8)
(5, ”delta”, 9)
(9, ”button”, 10)
(10, ”coffee”, 11)

77

C
Files for the Comparison

This Appendix shows the files that we used in addition to the files in Appendix
A to execute the comparison between semantic and mutant coverage (Chapter
7).

C.1 Discount files

coffee.disc2
(0, ”button”, 1, 0.49)
(1, ”button”, 2, 0.3233333333333333)
(1, ”espresso”, 0, 0.3233333333333333)
(1, ”coffee”, 0, 0.3233333333333333)
(2, ”button”, 2, 0.24)
(2, ”espresso”, 0, 0.24)
(2, ”coffee”, 0, 0.24)
(2, ”cappuccino”, 0, 0.24)
(0, ”delta”, 0, 0.49)

coffee.disc3
(0, ”button”, 1, 0.4)
(1, ”button”, 2, 0.2333333333333333)
(1, ”espresso”, 0, 0.2333333333333333)
(1, ”coffee”, 0, 0.2333333333333333)
(2, ”button”, 2, 0.15)
(2, ”espresso”, 0, 0.15)
(2, ”coffee”, 0, 0.15)
(2, ”cappuccino”, 0, 0.15)
(0, ”delta”, 0, 0.4)

79

Appendix C. Files for the Comparison

coffee.disc4
(0, ”button”, 1, 0.3)
(1, ”button”, 2, 0.1333333333333333)
(1, ”espresso”, 0, 0.1333333333333333)
(1, ”coffee”, 0, 0.1333333333333333)
(2, ”button”, 2, 0.04999999999999999)
(2, ”espresso”, 0, 0.04999999999999999)
(2, ”coffee”, 0, 0.04999999999999999)
(2, ”cappuccino”, 0, 0.04999999999999999)
(0, ”delta”, 0, 0.3)

C.2 Mutants

impl1.aut impl2.aut impl3.aut impl4.aut
des (0, 7, 3) des (0, 4, 2) des (0, 10, 4) des (0, 3, 2)
(2, button, 1) (0, button, 1) (0, button, 1) (0, button, 1)
(2, button, 2) (1, button, 1) (0, button, 3) (1, coffee, 0)
(2, espresso, 0) (1, espresso, 0) (1, button, 3) (1, button, 1)
(2, coffee, 0) (1, coffee, 0) (2, cappuccino, 0)
(1, cappuccino, 0) (2, button, 2)
(1, button, 1) (3, button, 2)
(0, button, 2) (3, coffee, 0)

(3, espresso, 0)
(3, button, 3)
(1, button, 2)

80

C.2. Mutants

impl5.aut impl6.aut impl8.aut impl9.aut
des (0, 6, 4) des (0, 6, 4) des (0, 29, 9) des (0, 29, 9)
(0, button, 1) (0, button, 1) (0, button, 1) (0, button, 1)
(1, button, 3) (1, button, 3) (0, button, 2) (0, button, 2)
(1, button, 2) (1, button, 2) (1, button, 1) (1, button, 1)
(2, cappuccino, 0) (2, cappuccino, 0) (1, coffee, 0) (1, coffee, 0)
(3, button, 2) (3, tau, 2) (1, coffee, 3) (1, coffee, 3)
(2, button, 2) (2, button, 2) (1, coffee, 4) (1, coffee, 4)

(2, button, 2) (2, button, 2)
(2, coffee, 0) (2, coffee, 0)
(2, coffee, 4) (2, coffee, 4)
(2, coffee, 5) (2, coffee, 5)
(3, button, 1) (3, button, 1)
(3, button, 6) (3, button, 6)
(4, button, 1) (4, button, 1)
(4, button, 2) (4, button, 2)
(4, button, 6) (4, button, 6)
(4, button, 7) (4, button, 7)
(5, button, 2) (5, button, 2)
(5, button, 7) (5, button, 7)
(6, coffee, 3) (6, coffee, 3)
(6, coffee, 4) (6, coffee, 4)
(6, button, 6) (6, button, 6)
(6, coffee, 8) (6, coffee, 8)
(7, coffee, 4) (7, coffee, 4)
(7, coffee, 5) (7, coffee, 5)
(7, button, 7) (7, button, 7)
(7, coffee, 8) (7, coffee, 8)
(8, button, 6) (8, button, 6)
(8, button, 7) (8, button, 7)
(8, button, 8) (8, cappuccino, 8)

81

Appendix C. Files for the Comparison

impl10.aut impl11.aut
des (0, 50, 17) des (0, 47, 17)
(0, button, 1) (0, button, 1)
(1, coffee, 3) (0, button, 2)
(1, coffee, 4) (1, button, 1)
(2, button, 2) (1, coffee, 0)
(2, coffee, 0) (1, coffee, 3)
(2, coffee, 4) (1, coffee, 4)
(2, coffee, 5) (2, button, 2)
(3, button, 1) (2, coffee, 0)
(3, button, 6) (2, coffee, 4)
(4, button, 1) (2, coffee, 5)
(4, button, 2) (3, button, 1)
(4, button, 6) (3, button, 6)
(4, button, 7) (4, button, 1)
(5, button, 2) (4, button, 2)
(5, button, 7) (4, button, 6)
(6, coffee, 3) (4, button, 7)
(6, coffee, 4) (5, button, 2)
(6, button, 6) (5, button, 7)
(6, coffee, 8) (6, coffee, 3)
(7, coffee, 4) (6, coffee, 4)
(7, coffee, 5) (6, button, 6)
(7, button, 7) (6, coffee, 8)
(7, coffee, 8) (7, coffee, 4)
(8, button, 6) (7, coffee, 5)
(8, button, 7) (7, button, 7)
(8, button, 8) (7, coffee, 8)
(1, coffee, 9) (8, button, 6)
(2, coffee, 9) (8, button, 7)
(9, button, 10) (8, button, 8)
(10, coffee, 0) (1, coffee, 9)
(10, button, 10) (2, coffee, 9)
(3, button, 11) (9, button, 10)
(4, button, 11) (10, coffee, 0)
(11, button, 11) (10, button, 10)
(11, coffee, 12) (3, button, 11)
(12, button, 1) (4, button, 11)
(4, button, 13) (11, button, 11)
(5, button, 13) (11, coffee, 0)
(13, button, 13) (4, button, 13)
(13, coffee, 14) (5, button, 13)
(14, button, 2) (13, button, 13)
(6, coffee, 15) (13, coffee, 0)
(7, coffee, 15) (6, coffee, 15)
(15, button, 16) (7, coffee, 15)
(16, coffee, 4) (15, button, 16)
(16, button, 16) (16, coffee, 0)
(8, cappuccino, 8) (8, cappuccino, 8)
(0, button, 2)
(1, button, 1)
(1, coffee, 0)

82

D
Scripts

The script used to check mutants against a test suite:

#!/bin/sh first=1 beyond=50 depth=5 mutants="impl1 impl2 impl3
impl4 impl5 impl6 impl8 impl9 impl10 impl11"
MUTANTDIR=/torx-examples-3.9.1/coffee/SPEC/AUT export MUTANTDIR
i=$first while test $i -lt $beyond do

for m in $mutants do
MUTANT=$m export
MUTANT torx --depth $depth --seed $i

--log /testloop.$i.$m.log coffee5_10.if >
/testloop.$i.$m.out 2>&1

sleep 5
done
i=‘expr $i + 1‘

done

83

	Introduction
	Motivation
	Related Work
	Background
	Tools

	Organization of the Thesis

	Background on Semantic Coverage
	Introduction
	Weighted Fault Models
	Test Cases in LTS
	Labeled Input-Output Transition Systems
	Test Cases

	Coverage Measures
	Fault Automata
	Finite Depth Weighted Fault Models
	Discounted Weighted Fault Models

	Introduction to SeCo
	Introduction
	File Formats and Data Structures
	Aldebaran File Format
	Discount File Format
	Error File Format
	Fault Automata

	Merge
	Merge Algorithm
	Merge with SeCo
	Example
	Implementation Issues

	Coverage with SeCo
	Introduction
	Absolute Coverage
	Absolute Coverage Algorithm
	Absolute Coverage with SeCo
	Example

	Total Coverage
	Maple
	Total Coverage in Discounted FA Algorithm
	Total Coverage in Finite Depth FA Algorithm
	Example

	Relative Coverage
	Relative Coverage Algorithm
	Relative Coverage with SeCo
	Example
	Implementation Issues

	Test Selection with SeCo
	Introduction
	Optimal Coverage in a Test Case
	Optimal Coverage in a Test Case Algorithms
	Optimal Coverage in a Test Case with SeCo
	Example
	Implementation Issues

	Optimal Coverage in n Test Cases
	Optimal Coverage in n Test Cases with SeCo

	Optimal Coverage in a Test Suite
	Optimal Coverage in a Test Suite Algorithm
	Optimal Coverage in a Test Suite with SeCo

	Extra Features
	Introduction
	Explode
	Generate Discount Values
	Discount Value Calculation Algorithm
	Example

	Generate Maple Input
	Example

	Semantic Versus Mutant Coverage: a Comparison
	Introduction
	TorX
	Background on Mutant Coverage
	Mutant Coverage for the Coffee Example
	Test Setup
	Analysis

	Conclusion and Recommendations
	References
	Appendices
	Example Files
	Testfiles
	Specification
	Errorfile
	Discountfile

	Generated Files
	Supertest

	Files for the Comparison
	Discount files
	Mutants

	Scripts

