Java(Script) Application Performance on Android

Wybren Kortstra
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

w.kortstra@student.utwente.nl

ABSTRACT

JavaScript is becoming increasingly popular as a language
for the implementation of web applications. However,
these applications are expected to perform worse than Java
programs on Android devices. Depending on how powerful
the device is and the tasks the application has to perform
we can perceive the performance difference. The choice
for developers seems to be simple, namely to implement
only Java applications. However, the cost of developing a
JavaScript application is much lower compared to the cost
of developing a Java application. This paper describes a
tool that can measure the performance difference between
Java and JavaScript applications for Android. This paper
shows that JavaScript applications do not perform much
worse than Java applications and that front-end frame-
works for mobile web applications still have opportunities
to improve.

Keywords
Java, JavaScript, Native, Hybrid, Android, Benchmarking

1. INTRODUCTION

JavaScript or hybrid applications are becoming increas-
ingly popular, but JavaScript is an interpreted program-
ming language, so JavaScript applications tend to be slower
when compared to Java applications (native) [11]. Fur-
thermore, web applications run inside a webview on mo-
bile platforms, which is an additional layer between the
application and the hardware, causing additional delays.

Hybrid applications consist of HTML, JavaScript and an

interfacing component to interact with the underlying hard-
ware. A popular interfacing component is Apache Cordova

[4].

Hybrid applications are quicker and cheaper to develop
than native applications [10]. Since it is possible to develop
an application for both iOS and Android at the same time.
Another reason they are cheaper is because there are more
developers for JavaScript than for Java [1].

Therefore when developing an application one needs to de-
cide to apply the native or the hybrid approach. In this
research we created a benchmarking tool to test the per-
formance difference between JavaScript and Java applica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

24”” Twente Student Conference on IT January 22"d, 2016, Enschede,
The Netherlands.

Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

tions on mobile devices. The tool can help developers de-
cide between native and hybrid application development.

Our benchmarking tool tests how quick an application
starts up and can load views, this is the first action taken
by an application, which is the first impression on the
user which is important for the perception of performance.
This tool also measures the delay of the JavaScript inter-
face, which is the delay introduced when calling native
functions from a hybrid application. Hybrid applications
do this often, when using a camera or the filesystem for
instance.

Most applications focus on displaying information to the
user. For instance, banking applications show the balance
or messages from the bank. Facebook, Linked-In and oth-
ers display messages from other users to the user. All these
applications use the Internet to retrieve information. Most
of the time information is displayed in a scrollable list.

Our results show that native applications are faster than
hybrid applications. However, the difference was not that
big and depends on how modern the smartphone is. Hard-
ware seems to be an important factor alongside with the
Android version. Other differences lay in the way the user
interface is operated. Android defined a standard for user
interfaces and this is only partly implemented by hybrid
frameworks.

The paper is further structured as follows: section 2 dis-
cusses the problem and elaborates on the research ques-
tions and then explains how we tackled the problem, sec-
tion 3 discusses how we built the tool and explains the de-
cision for the tests we used, section 4 explains their imple-
mentation, section 5 shows the results, section 6 discusses
related work, section 7 explains the results and conclusions
and in section 8 we discuss future improvements.

2. PROBLEM ANALYSIS

The first Facebook mobile application was a hybrid ap-
plication. In 2012 Facebook moved to a native applica-
tion because the hybrid application did not perform well
enough [22].

There is an ongoing debate between mobile application
developers whether to build hybrid or native applications.
There is no objective answer to the question and the an-
swer depends on the needs of the application and the de-
vice the application runs on. Still then, no benchmark is
available that tells if your device would be able to give the
performance required by an application.

In this paper we created a benchmarking tool to compare
the performance of hybrid application against the perfor-
mance of native applications.



2.1 Background

A web application is a mobile web application that is
designed to execute in the web browser of the mobile de-
vice. It is built using only HTML, CSS and JavaScript
[17].

A native application (native app) is an application pro-
gram that has been developed for use on a particular plat-
form or device. In this research a native application is an
application developed in Java [19].

Hybrid applications apply both web and native method-
ology [17]. It uses the webview of the device while at the
same time it can access native APIs with the use of an
interfacing component like Phonegap [16] or Cordova [4].

All user interface elements in an Android app are built us-
ing View and ViewGroup objects. A View is an object
that draws something on the screen with which the user
can interact [6]. When referring to a view in this paper, we
mean the visible part of the screen with the ViewGroup
and View objects.

The most common navigation structures in mobile appli-
cations are the navigation drawer and the tabbed nav-
igation. The navigation drawer is a button in the upper
left or right corner that can be pressed which will then
show a vertical menu on the left or right side of the screen.
The other navigation structure consists of tabs at the top
or bottom of the screen that are visible at all times.

2.2 Research goal

The main goal of this research is to compare the perfor-
mance of hybrid Android applications with respect to na-
tive Android applications. Our research question has been
formulated as follows: What is the performance difference
between Java and JavaScript applications for Android de-
vices and under what circumstances?

This question is divided into these subquestions. Answer-
ing these subquestions should give an answer to the main
research question.

1. Which parts of an application should be taken into
account when measuring the performance? For in-
stance, we could test the start up time or the network
delays.

2. How to measure the performance of the different
parts in an application?

3. What is the difference in performance of using dif-
ferent devices and Android versions?

To help answer the questions above we built a benchmark-
ing tool. This tool automatically tests the hybrid perfor-
mance with respect to the native performance. The perfor-
mance measured by this benchmarking tool is represented
as a score. The score has been determined by compar-
ing hybrid applications and native applications. Not all
Android devices have the same hardware nor do all An-
droid devices have the same Android version, and both
the Android version and the hardware impact the score.

3. TOOL ARCHITECTURE

We built a benchmarking tool to compare the performance
of JavaScript applications with Java applications. The
tool measures the performance by measuring the time it
takes to complete a task in both the native and the hybrid
interface. The time difference is used as the performance
measurement. This can be justified because this is the
time the end-user notices when using the application.

WEBVIEW

GET SYSTEM TIME
SEND API REQUEST
PRESS BEFORE PAGE SWITCH

Time benchmark

O] e 8

Button Benchmark Random Form

Press to send time

Send API request

Figure 1. Interface of the benchmarking tool

Benchmark

=

[ ListFragment

ViewPager MainActivity

JavaScriptinterface

& s

FormFragment

‘WebViewFragment

<

Figure 2. Interface of the benchmarking tool

3.1 Interface

We used tabs for the navigation. This choice is favoured
over a navigation drawer, because it is considered as bet-
ter practise according to UX-designers for a small number
of menu items [18]. The tool we created has three differ-
ent tabs. On the first tab there are three buttons and a
WebView. The second tab contains a form and the third
tab contains a list. The WebView contains an interface
similar to the interface of the tool. This means it has also
a tabbed interface with three tabs. Figure 1 shows the
tool interface.

3.2 Tool Structure

Figure 2 shows the class diagram of our tool. The Main-
Activity contains a ViewPager, which contains fragments
used to create the tabbed interface. The MainActivity also
contains the Benchmark, which is passed through to all the
Fragments so every Fragment uses the same Benchmark
object. The WebViewFragment creates a JavaScriptInter-
face which is injected in the WebView. The JavaScriptIn-
terface is used to relay function calls from the JavaScript
in the WebView to methods in Java. The JavaScriptin-
terface also contains the Benchmark object.



3.3 Mobile framework

To create the mobile application with web technology a
framework was used. The decision was made to use ion-
icframework [21]. Ionic is a powerful HTML5 SDK that
helps build native-feeling mobile applications using web
technologies like HTML, CSS, and Javascript. Ionicframe-
work is growing rapidly with 50.000 new applications per
month and having 320.000 applications at the end of 2014
[12]. As ionicframework is quite popular we considered
that it is a suitable framework to use in our benchmark.

3.4 Monkeyrunner

Input must be simulated to prevent the user from influ-
encing the benchmark results. Monkeyrunner [9] is a tool
to control the Android device from outside the Android
code. Monkeyrunner allows scripts to be written that run
the benchmarking tool by sending keystrokes to it. Mon-
keyrunner can also install the application and clear the
application cache.

3.5 Benchmark tests

The first subquestion is to determine which application
tasks we need to test with the benchmark. We examined
other Android applications and identified the following ba-
sic actions:

1. Loading first view

2. Moving to another view

3. Loading data from the Internet
4. Scrolling through a list
5

. Calling the native interface

An application can be used once the interface is built and
displayed to the user. The first test we identified is the
time to load the first view.

Applications often offer the following options to their users:
click on a button to do some action, load data from the
Internet, scroll through a list of data or go to a different
view. The second test we identified is to go to a different
view.

The third test will be loading data from the Internet. Of-
ten data is loaded in applications. Examples are social
media application like Facebook and Twitter or news ap-
plications like Google News or BBC news.

The data loaded from the Internet is often displayed to the
user in a list. The fourth test we identified is to measure
the performance of scrolling through a list of items.

Finally we test the delay cause by the JavaScript Interface,
which is used to call native Android functions, for example
to call the camera or bring up the keyboard.

3.6 Benchmarking Score

The score measured by the benchmark is determined by
the performance of the JavaScript application with respect
to the Java application. We also took the absolute perfor-
mance into consideration. For example, if the JavaScript
application should start up in 10 seconds and the Java ap-
plication in 5 seconds then the Java application is 100%
faster. However, this is also true if the JavaScript appli-
cation should start up in 1 seconds and the Java appli-
cation in 0.5 seconds, but 1 second is much better than
10 seconds. So to calculate the benchmark score we used
the relative difference in performance as a percentage and
multiplied this by the absolute difference in performance
in seconds.

Resumed
(visible)

(3 ) onResume) onPause()
| onResume()

Started Paused
(visible) . . (partially visible)

(2 ) onstart(y onStop()
. onStart()

Stopped

Created J -onAestart() (hidden)

1) onCreate() 4 onDestroy()

&

Destroyed

Figure 3. Android life cycle

4. TESTING STRATEGY

The performance of each task is tested by measuring how
long the task takes to complete. To measure this we read
the system time at the beginning of an action and when the
action has finished we read the system time again. The
difference between those two time moments is the time
taken by the action.

4.1 Startup

An Android application does not start with a main method,
but an Activity instance is invoked with a few specific call-
backs. The first callback is the onCreate method, which
is called to do basic application start up logic. Next,
when the application is displayed to the user, the onStart
method is called. Figure 3 shows the full life cycle of an
Android application [7]. To measure the start up time we
read the start time on the onCreate method and read the
end time on the onStart method.

In a Cordova compiled hybrid application the WebView
is the first thing that is loaded and the HTML, CSS and
JavaScript code is loaded instantly. However, our tool first
needs to start before the WebView can load itself, which
happens while the native view is created. The WebView
calls the onPageStarted method when it starts loading the
page and then the start time is read. When the WebView
is ready and the page or view is loaded the onPageFinished
method is called and the end time is read.

4.2 Change View

The time between the start and end of a view change
is measured from the moment the navigation button is
touched until the moment the view is loaded. Since it
is not possible to set an onClickListener on the generated
tab button, we simulate the start by two touches at nearly
the same time, one for touching a button to read the start
time, and another to navigate to another tab. When the
onPageSelected method is called from the viewPager the
end time is read.

The time to change the view in a WebView is measured
in a similar way: when touching the navigation button
the start time is read and when the view is loaded the
ionic View.enter event fires and the end time is read.

4.3 Network

The goal of this test is not to test network speed or latency,
which is independent of the Java and JavaScript applica-
tion. All the network calls are handled by the underlying
Android operating system, so we measure if there is any
additional delay caused by the WebView.

The speed is measured on calls made to an API to retrieve
information. The moment the request is sent the start
time is read, and when the response arrives the end time
is read.



Table 1. Device specifications

| Samsung | Huawei
CPU Quad-core 2.3 GHz | Dual-core 1.2 GHz
Krait 400 Cortex-Ab
Memory | 3 GB RAM 512 MB RAM
Android | 4.4 (KitKat) 4.1.1 (Jelly Bean)

4.4 Scrolling List

To measure how smooth one can scroll through a list of
items we measured the number of frames per second, which
is determined by the amount of display refreshes. More
frames per second means that one can scroll smoother
through a list of items.

4.5 JavaScript Interface

We measure the additional delay needed to relay a call
from the JavaScript to the Java code by pressing a button
in the tool. When this button is pressed the start time
is read, then exactly one second later a button is pressed
in the WebView, which calls a function on the JavaScript
interface, which forwards the call to Java code. At this
point the end time is read. If there were no delay, the
time difference would be exactly one second, if the time
difference is bigger than one second, a delay is experienced.

S. RESULTS

We used the benchmarking tool on two devices: a Samsung
Note 10.1 P605 and a Huewei Acend Mate G510. The
specifications of the devices can be found in Table 1. The
Samsung uses a newer version of Android and has better
hardware compared to the Huawei.

Due to the limited time we had to complete the research,
we have not been able to design a representative test to
measure the performance of lists. We found that there are
applications that are capable of measuring the number of
frames per second [8], however we could not reproduce
this or read the number of frames per second from this
application.

Figure 4 shows the results of the benchmarking tool in
terms of the number of seconds it took to complete an
action. Figure 5 shows the score as it is calculated by the
benchmarking tool. Notice that the score for the network
test is so low that it is not visible in this chart.

The start up of a JavaScript application is the largest per-
formance difference we measured. Compared to the native
start up time, the WebView takes about 4 times as much
time to start. We also see that the performance differ-
ence on older devices is larger than on newer devices. The
time it takes to change a view in JavaScript applications
is almost 0.2 seconds on older devices compared to the 0.1
seconds on newer devices. In Java applications, regardless
of the device, it takes about 0.015 seconds.

6. RELATED WORK

There are benchmarking tools for mobile CPU and GPU
performance such as, AnTuTu [20], but not for testing
or comparing application performance. The study, con-
ducted by Brinkheden [3] is quite similar to ours and focus
on the low level API. Brinkheden concluded that hybrid
applications use about 8.5 times more storage space, use
about 25% more memory and execute code slower in most
cases. This research gave an indication of what can be
expected from our benchmark, namely that hybrid appli-
cations are slower.

1.5} N

Seconds

0.5

0 I O [ e

T T T T
start up view network JS interface

BB Samsung Java 0o Samsung JavaScript
I8 Huewei Java [0 Huewei JavaScript

Figure 4. Benchmark results (lower is better)

800 |- .
600 |- .

it

o

%

—;3 400 =

g

=

[}

g

& 200 |

0

T T T T
start up view network JS interface

I8 Samsung I # Huewei ‘

Figure 5. Benchmark score (lower is better)

A few years ago hybrid applications were worse in per-
formance compared to today [14]. JavaScript has gained
a lot in performance due to software and hardware im-
provements. Furthermore native scroll events were not
supported and had to be imitated by JavaScript [15]. Ac-
cording to Sencha Michael Mullany [14] JavaScript perfor-
mance on Android increased progressively between 2009
and 2013. The Sunspider benchmark shows a 4x per-
formance improvementa and the DOM interactions tested
by the Dromaeo benchmark show a 3.5x performance im-

provement [14]. Sunspider [2] and Dromaeo [13] are JavaScript

benchmarking tools.

7. CONCLUSION

Reflecting on our research questions we conclude that Java
applications have better performance than JavaScript ap-
plications, but this performance difference is not big. We
cannot explain why JavaScript applications perform bet-
ter than Java applications on the network test. To find an



explanation we would have to dig deeper into the applica-
tion structure.

The performance difference on newer devices is smaller
than on older devices, which could be because since An-
droid 4.4 a new WebView was introduced, which brought
a huge performance improvement [5]. Another reason is
most likely the hardware difference between the devices.
The Samsung device we used has more modern hardware
than the Huawei device we used. However, even though
the results do not show large differences in performance
we should keep in mind that we only tested 4 basic opera-
tions. More comprehensive tests could give other results.

We conclude that one can just as well choose to develop
a simple application using JavaScript as with Java. The
difference in performance on newer devices is relatively
small. We expect the performance of the newer devices to
increase, making the performance difference between Java
and JavaScript even smaller.

8. FUTURE WORK

Our benchmarking tool only contains 4 basic tests. The
benchmarking tool could be extended with tests to mea-
sure the performance of list scrolling and user-interface
animations.

For a better comparison of Java and JavaScript applica-
tion we should also take a look at the user-interface frame-
works. We could compare the way the user interacts with
the Java and JavaScript application. The way the user
interacts with an application also affects the user experi-
ence.

9. REFERENCES
[1] 2015 Developer Survey.

http://stackoverflow.com/research/developer-
survey-2015/, 2015. [Online; accessed
07-October-2015].

[2] Apple. SunSpider 1.0.2 JavaScript Benchmark.
https://www.webkit.org/perf/sunspider/
sunspider.html, 2013. [Online; accessed
21-October-2015].

[3] D. Brinkheden and R. Andersson. A performance
study of hybrid mobile applications compared to
native applications, 2015.

[4] A. Cordova. Apache Cordova.
http://cordova.apache.org/, 2015. [Online;
accessed 19-October-2015].

[5] A. Developer. Migrating to WebView in Android
4.4. https://developer.android.com/guide/
webapps/migrating.html. [Online; accessed
09-January-2016].

[6] A. Developer. UI Overview. http://developer.
android.com/guide/topics/ui/overview.html.
[Online; accessed 10-December-2015].

[7] A. Developer. Starting an Activity.
http://developer.android.com/training/basics/
activity-lifecycle/starting.html, 2015. [Online;
accessed 11-December-2015].

[8] EasyAsPieApps. FPS Meter.
http://fpsmeter.github.io/, 2015. [Online;
accessed 09-January-2016].

[9] R. H. KANAGOUDRA and D. H. R. ARADHYA.
Comparative study of bluetooth testing automation
tools on android. 2014.

[10] B. Kohan. Apple iPhone iOS App Development,
Android Apps Cost Estimate / Average Pricing.
http://www.comentum. com/mobile-app-

[13]

[14]

[16]

[17]

18]

development-cost.html, 2015. [Online; accessed
19-October-2015].

B. Kohan. Native vs Hybrid / PhoneGap App
Development Comparison.

http://wuw.comentum. com/phonegap-vs-native-
app-development.html, 2015. [Online; accessed
19-October-2015].

M. Lynch. Ionic: Year One in Review.
http://blog.ionic.io/ionic-one-year-review/,
December 2014. [Online; accessed
13-December-2015].

Mozilla. Dromaeo.
https://wiki.mozilla.org/Dromaeo, August 2010.
[Online; accessed 30-December-2015].

M. Mullany. 5 Myths About Mobile Web
Performance. https://www.sencha.com/blog/5-
myths-about-mobile-web-performance-2/, August
2013. [Online; accessed 30-December-2015].

Perry. Native Scrolling in Ionic: A Tale in Rhyme.
http://blog.ionic.io/native-scrolling-in-
ionic-a-tale-in-rhyme/, May 2015. [Online;
accessed 30-December-2015].

Phonegap. About phonegap.
http://phonegap.com/about/, 2015. [Online;
accessed 07-October-2015].

R. Raj and S. Tolety. A study on approaches to
build cross-platform mobile applications and criteria
to select appropriate approach. In India Conference
(INDICON), 2012 Annual IEEE, pages 625-629,
Dec 2012.

A. Rose. UX designers: Side drawer navigation
could be costing you half your user engagement.
http://thenextweb.com/dd/2014/04/08/ux-
designers-side-drawer-navigation-costing-
half-user-engagement/, April 2014. [Online;
accessed 11-December-2015].

M. Rouse. Native app definition.
http://searchsoftwarequality.techtarget.com/
definition/native-application-native-app,
February 2013. [Online; accessed 07-October-2015].
G. P. Store. AnTuTu benchmark.
https://play.google.com/store/apps/details?
id=com.antutu.ABenchMark, 2015. [Online; accessed
07-October-2015].

I. team. Ionicframework.
http://ionicframework.com, December 2014.
[Online; accessed 26-December-2015].

D. H. Venturebeat. Facebook’s Zuckerberg: "The
biggest mistake we’ve made as a company is betting
on HTMLS5 over native.’.
http://venturebeat.com/2012/09/11/facebooks-
zuckerberg-the-biggest-mistake-weve-made-as-
a-company-is-betting-on-html5-over-native/,
September 2012. [Online; accessed
30-December-2015].


http://stackoverflow.com/research/developer-survey-2015/
http://stackoverflow.com/research/developer-survey-2015/
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://cordova.apache.org/
https://developer.android.com/guide/webapps/migrating.html
https://developer.android.com/guide/webapps/migrating.html
http://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://fpsmeter.github.io/
http://www.comentum.com/mobile-app-development-cost.html
http://www.comentum.com/mobile-app-development-cost.html
http://www.comentum.com/phonegap-vs-native-app-development.html
http://www.comentum.com/phonegap-vs-native-app-development.html
http://blog.ionic.io/ionic-one-year-review/
https://wiki.mozilla.org/Dromaeo
https://www.sencha.com/blog/5-myths-about-mobile-web-performance-2/
https://www.sencha.com/blog/5-myths-about-mobile-web-performance-2/
http://blog.ionic.io/native-scrolling-in-ionic-a-tale-in-rhyme/
http://blog.ionic.io/native-scrolling-in-ionic-a-tale-in-rhyme/
http://phonegap.com/about/
http://thenextweb.com/dd/2014/04/08/ux-designers-side-drawer-navigation-costing-half-user-engagement/
http://thenextweb.com/dd/2014/04/08/ux-designers-side-drawer-navigation-costing-half-user-engagement/
http://thenextweb.com/dd/2014/04/08/ux-designers-side-drawer-navigation-costing-half-user-engagement/
http://searchsoftwarequality.techtarget.com/definition/native-application-native-app
http://searchsoftwarequality.techtarget.com/definition/native-application-native-app
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
http://ionicframework.com
http://venturebeat.com/2012/09/11/facebooks-zuckerberg-the-biggest-mistake-weve-made-as-a-company-is-betting-on-html5-over-native/
http://venturebeat.com/2012/09/11/facebooks-zuckerberg-the-biggest-mistake-weve-made-as-a-company-is-betting-on-html5-over-native/
http://venturebeat.com/2012/09/11/facebooks-zuckerberg-the-biggest-mistake-weve-made-as-a-company-is-betting-on-html5-over-native/

	Introduction
	Problem Analysis
	Background
	Research goal

	Tool Architecture
	Interface
	Tool Structure
	Mobile framework
	Monkeyrunner
	Benchmark tests
	Benchmarking Score

	Testing Strategy
	Start up
	Change View
	Network
	Scrolling List
	JavaScript Interface

	Results
	Related Work
	Conclusion
	Future work
	References

