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Abstract

State space methods are a popular approach to perform formal verification.
However, these methods suffer from the state space explosion problem. In the
past decades many methods did arise to cope with the state spaces of larger
models. As result, a user has many different strategies in which state space
methods can be applied on new models.

Due to the wide variety of strategies and models is may be hard for a user
to select an appropriate strategy. If a bad strategy is selected, the given
model can be unsolvable or the process may waste resources like time and
memory. Moreover, the intervention of the user makes state space methods
less automated. Therefore, it would be convenient if model checking tools itself
determine the strategy for a given model. In this way, model checking tools can
determine the most suitable strategy for a given model such that the available
resources are optimally utilized.

This process requires model checking tools to predict a strategy based on the
information presented in a given model. Our research investigates to what extent
characteristics of a model can be used to predict an appropriate strategy. The
performance of 784 different PNML and DVE models was determined using
LTSmin for 60 selected strategies. This information was used to create several
classifiers using machine learning techniques. The classifiers should predict an
appropriate strategy given eleven selected features of a model.

The performance data of the models show that each strategy has some set
of models it is not appropriate for. None of the strategies was able to solve all
models. Hence, for a given set of models a dynamic selection of the strategy
is recommended. Unfortunately, the classifiers did not outperform all of the
strategies. But each of the examined features did contribute in providing useful
information for predicting an appropriate strategy.
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1 Introduction

This chapter gives an introduction to the research described in this thesis.
Section 1.1 sketches the context in which the research is performed and provides
motivation for this research. Section 1.2 formulated the problems this research
aims to solve and a possible solution. Section 1.2 further describes how the
solution is accomplished by listing the goals of this research. Section 1.3
describes how the research is performed in order to achieve the stated goals.
This chapter concludes with section 1.4 which gives an overview of the structure
of this report.

1.1 Background

During creation of programs and software is almost impossible to create a fault
free product. As result, the product may behave worse than intended due to
the presence of programming errors. An obvious way to increase the quality
of a software product is to discover and fix programming errors. Testing is a
popular method to discover errors. However, testing can be time consuming and
is limited to indicating errors and cannot guarantee the absence of errors. More
advanced techniques are needed when one wants to guarantee the presence or
absence of certain properties. Formal verification offers the methods and tools
to guarantee properties of programs.

Formal verification is the field where one proves or disproves whether a program
satisfies some specified formal behavior. This is a powerful method to indicate
that a program satisfies certain desirable properties and does not have certain
undesirable properties. When a property cannot be proved, this may indicate
that the program is lacking some desirable behavior. That information can be
used to improve the program, leading to higher quality software.

Formal verification is not limited to evaluation of software. It is also a powerful
tool to verify hardware, specifications of protocols or designs. The program,
hardware, protocol or design may be too complex to verify directly. It is common
that a specification is made, capturing the most important behavior of the object
to be verified. The specification of the object where formal verification is applied
to is called the model.

1.1.1 Verification Methods

In general, there are two major methods to perform formal verification: theorem
proving and state space methods [41]. In theorem proving, one formulates a
mathematical theorem about the specification of the object under verification
and attempts to prove that theorem. Theorem proving can be done either
manually or with the help of a theorem prover tool. Although theorem proving
is generic, there are two major drawbacks. Firstly, it is common that a lot of
human intervention is needed. Theorem proving can only be done by specifically
trained personnel and the human intervention makes theorem proving time
consuming. Secondly, theorem proving is not suitable for analyzing the behavior
of a model. If a certain theorem cannot be established, then the cause may be
unclear. This makes theorem proving inappropriate for identifying the nature
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and location of errors and fixing incorrect models.

The second formal verification method offers a solution for the two problems
with theorem proving. State space methods analyze models by constructing
the state space of the behavior of a model. The state space basically informs
which states are possible in a given model. The questions for the object under
verification are answered using the state space. Globally, the state space
methods can be grouped in two categories: explicit methods and symbolic
methods. The methods differ in how the states are stored during the exploration
of a model. Explicit methods allocate a fixed amount of memory per state.
Symbolic methods use binary decision diagrams (BDD’s) or a variant of BDD’s
to store the states.

The construction and analysis of a state space can mostly be done automatically.
Hence, state space methods can be applied by less trained personnel and is less
time consuming than theorem proving. State space tools are better in providing
the location of errors, because they are based on the behavior. There is, however,
a major drawback of the state space methods: the state space explosion problem
[41]. Informally, this means that when the size of a model grows linearly, the
size of its state space grows exponentially. As result, the state space of most
models are too huge to analyze.

1.1.2 State Space Methods In Practice

Despite the state space explosion problem, state space methods are still useful in
practice. Many measures have been developed in order to cope with large state
spaces, including partial order reduction, abstraction and limiting to specific
verification questions [8, 41]. On the other hand, much research is performed
on techniques to traverse the state space efficiently. A wide range of tools exist
which implement one or multiple techniques to perform state space analysis.
As result, a user has many options to apply state space methods on his or
her models. In this thesis we will call such a option a strategy. In the most
abstract form, a strategy describes how a state space method is applied on a
model. Practically, a strategy could be a setting of tool in combination with
the algorithms selected of that tool.

This wide variety of strategies raises two problems. An advantage of state
space methods is that the tools are mostly automated, which can be applied
by less trained personnel. Because of all the options, users has to learn more
about the methods and tools, before they can apply them to their models.
Moreover, the variety of models is huge. This makes it almost impossible to
learn good strategies beforehand. By experience, or by trial and error, one
can learn good strategies. This requires more specifically trained personnel for
formal verification.

The second problem is closely correlated to the first problem. Due to the state
explosion problem, one want to explore the state space as efficient as possible
with the available resources, like time and memory. This allows larger models
to be verified. When a user should select a strategy, it may pick a bad strategy.
This may either lead to a waste of resources or that the model in question cannot
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be verified. This is not a desirable property.

Ideally, the user should not be bothered with the details of the strategy when a
state space method is applied. In the best case, the user only has to select the
model and the verification question to be solved. Any tool implementing state
space methods should determine how to solve the verification question efficiently
by itself, without user intervention. As result, the available resources can be
utilized optimally to verify models, without almost any user intervention.

1.2 Goals

As result of the state space explosion problem, state space methods lacks a
form of simplicity due to the many options to tackle large state spaces. This
makes state space methods less automated and requires more specifically trained
personnel for formal verification. When a bad set of options is selected, state
space methods can waste resources or may be unable to solve certain models,
which could be verified with another strategy.

Instead of providing the user a large scale of options, it would be convenient
to let model checking tools decide which strategy should be applied on the
models to be verified. The tools themself could determine a suitable strategy in
order to optimally verify a model using the available resources. As result, more
and larger models can be verified using less trained personnel. This research
investigates whether is it attainable for a model checking tool to determine a
suitable strategy based on the properties of a model.

It is mainly unknown which strategies works well in practice. Therefore, we
want to investigate how the state space exploration is affected by different
strategies. This research investigates whether a fixed strategy should be enforced
by a model checking tool or whether a model checking tool should dynamically
predict a suitable strategy based on the properties of the given model.

Assuming that there exists no fixed strategy which optimally solves the wide
variety of models, it needs to be established whether the model itself provides
sufficient information to predict a suitable strategy. This research investigates
whether a specified set of properties of a model can predict an appropriate
strategy. Furthermore, it is investigated whether each property provides any
useful information to predict a suitable strategy.

1.3 Approach

To gain insight in the influence of different strategies on the state space
exploration, a large number of tests were executed to measure the performance
of different strategies on a large set of models. The LTSmin toolset [16] was used
to collect data. LTSmin offers multiple state space exploration tools, multiple
options to guide state space exploration and is applicable to multiple different
types of models. This data provides insight how well each strategy performs.
Hence, using this data it can be established whether a fixed strategy or a more
dynamic approach for strategy selection is preferred.
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The test data was also used to extract a list with the best strategy per model.
This list was used to investigate whether properties of a model can predict an
appropriate strategy. If such a prediction is possible, this can be implemented
in existing tools to improve state space exploration.

Since the relation between the properties of a model and the best strategy was
expected to be nontrivial, machine learning techniques were used to capture
the relation between a model and its best strategy. The test data was used to
train multiple classifiers. Any of the created classifiers can be used as prediction
module within an existing tool.

The classifiers were created using all selected properties of a model. In order to
investigate whether each property provides any information, variations of the
classifiers were made with different subset of features. These variations provide
insight in which properties are relevant to consider and which properties can be
ignored for predicting an appropriate strategy.

1.4 Structure Of Thesis

In this chapter, the context of our research is given. Chapter 2 discusses the
model checking tool LTSmin used during our research. Chapter 3 gives an
introduction to machine learning. In chapter 3, the creation and evaluation of
classifiers in general is discussed. Chapter 4 examines existing work related to
our research.

Chapter 5 and 6 discuss the research method. The questions on which this
research is based are discussed in chapter 5. The method itself is covered in
chapter 6 .

Chapters 7, 8 and 9 discuss the results obtained during our research. Chapter
7 discusses the relevant observations obtained during the evaluation of the
selected strategies. Chapter 8 evaluates the created classifiers and discusses the
performance of the classifiers with respect to metrics and to the performance of
the selected strategies. Variations of the classifiers were created by using subsets
of features. The results show the relevance of each feature. These results are
discussed in chapter 9.

The thesis is concluded in chapter 10. Chapter 10 discusses the most important
results obtained during our research and lists possibilities for further research.
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2 Preliminaries - LTSmin

This chapter gives an overview of the LTSmin toolset which is used during
this research. Section 2.1 gives an overview of the tool. Sections 2.2, 2.3 and
2.4 describe the three layers which can be distinguished in the architecture of
LTSmin. Section 2.5 provides a summary of LTSmin.

2.1 Tool Overview

The LTSmin toolset is a high performance model checker [16]. Its modular
nature allows to analyze models specified in various languages by various analysis
algorithms. This is possible because of the presence of a common interface called
PINS. The architecture of LTSmin consists of three layers, where each layer
is connected via the PINS interface, see Figure 1. The PINS interface is an
implicit state space definition of a model and is used to exchange information
between the different modules in LTSmin. It should at least provide the initial
state, the partitioned transition function and a labeling function of a model,
which together describe a transition system, hence describing a state space. On
top of this basic information different extensions are possible [16, 21]. These
extensions can be utilized to exchange information about dependencies in the
model, which can be exploited to improve model checking. Within our research
the dependency matrix of a model, provided by the PINS interface, is used.
The dependency matrix defines which transition groups affect which variables
in a model.

Figure 1: Schematic overview of the architecture of LTSmin.

2.2 Front-end Modules

The front-end modules specify how various languages should be mapped to the
PINS interface. This allows users to use the various analysis algorithms of
LTSmin not supported in their native tools, without changing the specification
language [3]. Currently, LTSmin supports the languages DVE, Promela,
mCRL2, ETF, Pbes, Uppaal and Mapa [3, 16, 42]. Recently, a link between
ProB and LTSmin was created, allowing the languages B-Method, Event-B,
TLA+ and Z notation to be analyzed by LTSmin [2]. LTSmin also supports
PNML models, allowing analysis of Petri Nets [22]. Furthermore, one can verify
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their own custom model specifications in C by implementing the PINS interface
[16].

2.3 Wrapper Modules

The intermediate layer offers various tools to optimize the performance, reduce
the state space or verify certain properties. Because they only rely on the
model definition by the PINS interface, they can be applied on any model.
Currently, it is possible to verify properties specified in LTL and µ-calculus
[16]. LTSmin offers partial order reduction [41] for the explicit back-ends and
variable reordering for the symbolic back-end. These modules can be enabled
to improve state space exploration.

2.4 Back-end Modules

Model checking can be done by storing the states either explicit or symbolically.
LTSmin supports both options. Furthermore, the toolset supports verification
using multiple cores or distributed systems [16, 18]. Each back-end has its
options to specify which algorithm or package it should use and with which
configuration. These options allow the user to select specific algorithms or to
specify how many resources are used by LTSmin.

2.5 Summary

The LTSmin toolset is a high performance model checker which offer various
verification methods for multiple different specification languages. LTSmin
has a high modular nature. The modules are connected to each other via a
common interface called PINS. Three layers can be distinguished in LTSmin.
The front-end layer consists of the language modules which specify how various
specification languages are translated to the PINS interface. The intermediate
layer consists of wrapper modules which offer various tools to optimize the
performance. The back-end layer consists of the various analysis algorithms.
These algorithms allow the model to be solved either explicitly or symbolically.
Furthermore, it is possible to verify models using multiple cores or distributed
systems.
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3 Preliminaries - Machine Learning

This chapter gives an overview of machine learning and introduces the metrics
used for evaluating the created classifiers in our research. Section 3.1 gives a
overview of machine learning and identifies the different subfields within machine
learning.

In our research, machine learning techniques are used to predict a strategy
given a set of features of a model. More specifically, the goal is to predict which
strategy within a finite set of strategies is the most appropriate for a given set
of features. The prediction of a strategy is a classification problem. Section 3.2
focuses on the general approach to tackle a classification problem by creating a
classifier. Section 3.3 demonstrates three techniques which can be used to train
a classifier. Section 3.4, 3.5 and 3.6 discuss metrics to evaluate classifiers.

Section 3.4 defines the basic metrics for classification problem consisting of two
different classes. These basic metrics are used in section 3.5 to define metrics for
classification problems consisting of three or more classes. Section 3.6 discusses
how different types of misclassification can be taken into account by specifying
cost or reward per classification of an instance.

3.1 Overview

Machine learning is a subfield in computer science which is concerned with giving
a computer the ability to learn. Computers are utilized by giving them a set
of instructions to execute in order to perform a task. The set of instructions is
usually given by a script or a program, which explicitly describes the steps the
computer has to execute. Machine learning deals with giving the computer the
ability to learn the steps from data instead of giving the steps explicitly to them.
This approach is often utilized for more complex programming tasks where is it
infeasible to describe and cover the problem by giving the instructions directly,
such as handwriting recognition or image processing. Instead the computer is
given an algorithm to learn the relation between the input data and the tasks
it has to perform. In the case of handwriting recognition, the input data may
be a written text and the task may be to recognize the individual characters of
the text.

Within the field of machine learning three subfields can be globally distinguished:
supervised, unsupervised and reinforcement learning [11, 15, 23]. These subfields
are briefly addressed in sections 3.1.1, 3.1.2 and 3.1.3 respectively.

3.1.1 Supervised Learning

In supervised learning the computer is given a dataset of input and expected
output couples. Based on this dataset the computer has to predict output when
given a new, unseen input. Within supervised learning two types of problems can
be distinguished based on the type of output. If the output is on a continuous
domain it is a regression problem. Otherwise it is a classification problem.
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Within a classification problem a finite number of classes are defined. The
computer is given a dataset of input and class couples. The goal of the computer
is to determine the class of new, unseen input. Any program that is able to
predict a class based on the input is called a classifier. Actually, any program
with the purpose to assign a class to an instance of a classification problem is
considered a classifier. When a classifier has to chose between two classes the
classifier is a binary classifier. Otherwise, the classifier is called a multiclass
classifier.

3.1.2 Unsupervised Learning

Unsupervised learning differs from supervised learning with respect to the provided
data to the computer. Instead of providing both input and expected output
data, in unsupervised learning only the input data is provided. The tasks of the
computer is to discover patterns in the input data [11]. These types of techniques
are useful in data mining, where the focus is on discovering relations, but the
prediction capabilities of the model are less important.

3.1.3 Reinforcement Learning

The third subfield in machine learning is reinforcement learning. In reinforcement
learning the computer has to perform its task in a dynamic environment [15].
The computer has to do actions based on the current state it perceives from
the environment. Each action is rewarded with a reinforcement value. The
reinforcement value is used by the computer to decide whether its action was
good or bad. The goal of the computer is to maximize the reinforcement value
over a long period of time. Via trial and error, the computer learns to operate
in its environment.

3.2 Classifier Creation

There exists a wide variety of classification problems. In general, one wants
to determine the class of a large number of instances. The idea is to create a
classifier which is able to determine the class of these instances. As mentioned in
section 3.1.1, any program which determines a class for an instance is considered
a classifier. Two examples of classifiers are given in section 3.4.3 and 3.5.4.
Within machine learning the classifier is created by offering training data, instead
of explicitly describing when a given instance belongs to a certain class. After
the classifier is trained it is able to predict the classes for new instances.

In general, a classification problem is solved using the following steps [23]:

1. Defining the problem. Firstly, it needs to be established which problem
the classifier to be created has to solve. The main goal is to specify the
instances of the problem and the corresponding classes.

2. Collecting data. In order to supply training data for the classifier, one
has to consider which properties of an instance may be relevant for the
classifier. These properties are called features. Furthermore, it has to be
decided how these features are represented. In this phase the values of the
features of a set of instances are collected together with the class of each
instance.
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3. Training a classifier. After collecting the data, a training method is
selected how the classifier should learn. This method is called the
classification algorithm. The classifier is trained with the collected data.
After training, the model is ready to determine classes for new, unseen
instances.

4. Evaluating the classifier. The classifier may be evaluated in order to
determine its quality. The evaluation can be performed on both seen
and unseen data. In the last case, a fraction of the data collected during
the first step should not be used for training the classifier. During this
phase, one can evaluate whether the amount training data is sufficient for
the classifier to determine classes for other instances. If the performance
of a classifier is poor, a new classifier can be created using other or more
features such that the classifier can operate more accurately.

5. Utilizing the classifier. When a classifier with a desirable quality is created,
the classifier can be used to solve the classification problem it was designed
for.

For a given problem it is common that multiple classifiers are created and
evaluated. A common option is that 70% of the data is used for training,
while the remaining 30% is used for evaluation. This allows the user to select
the most appropriate classification algorithm or to investigate the selection of
features. It is possible that this approach reveals which technique is the most
useful for the problem at hand. Based on the results a new classifier may be
created which uses the entire collected dataset. That classifier will be used to
solve the classification problem.

3.3 Classification Algorithms

Different algorithms exists to train a classifier. This section briefly covers
three training methods. These methods do not completely cover the available
classification algorithms, but give an idea how certain methods train classifiers.

3.3.1 Decision Trees

Decision trees are based on the tree data structure. Each node in a decision tree
is a question which can be either true or false for an instance. Each leaf node
contains one of the possible classes. The tree is built using the training data.
For new instances the tree is traversed to determine the class. Starting with
the root node, the questions of the nodes are answered for the given instance
and the corresponding branch is taken. The questions are answered until a leaf
node is reached. The class of the encountered leaf node is the predicted class
for the given instance.

3.3.2 K-Nearest Neighbors

The k-nearest neighbors method treats each instance as a point in a space. The
space depends on the format of the features. The dimension of the space equals
the number of features selected as input data. A classifier is trained by defining
the class of the points extracted from the training data. When offered a new
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instance, the k-nearest neighbors method finds the k nearest points with respect
to the location of the instance in the defined space. The classes of these nearest
points are used to determined the class of the new instance by majority vote.

3.3.3 Support Vector Machines

Support vector machines like k-nearest neighbor also treat the instances as
points in a space. Support vector machines try to define hyperplanes which
separates the points into their corresponding classes based on the training
data. When given a new point, support vector machines check between which
hyperplanes the point is located. That outcome decides which class is predicted
for the given instance.

3.4 Binary Classifier Evaluation

In machine learning, classifiers are evaluated by examining multiple inputs and
comparing the predicted class with the expected class. In general, one can
say that the quality of the created classifier depends how closely the predicted
classes matches the expected classes. Within machine learning different metrics
did arise to formally capture this notion in order to provide information of the
quality of classifiers. This section covers the evaluation of binary classifiers.

3.4.1 2× 2 Confusion Matrix

The performance of a binary classifier can be recorded using a confusion matrix
[24, 39]. A confusion matrix is a special type of contingency table where the
rows matches the columns. For a binary classifier the confusion matrix is a 2×2
matrix as depicted in Table 1.

Predicted class
Positive Negative

Actual class
Positive True Positives False Negatives
Negative False Positives True Negatives

Table 1: 2× 2 Confusion matrix for a binary classification problem.

The possible classes of any binary classification problem are usually Positive and
Negative. Any definition of two classes can be rewritten into these classes. The
confusion matrix summarizes which classes for the test instances are predicted.
The rows indicate the classes of the instances in the validation data. The
columns indicate the predicted class by the binary classifier. The entries in
the confusion matrix count how many instances from the class specified by the
row are predicted as from the class specified by the column.

3.4.2 Metrics

Within the literature some standard metrics are derived using the values from
a confusion matrix [36]. The following values are defined on a 2 × 2 confusion
matrix:
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TP = True Positives; the number of instances correctly classified as Positive.

FN = False Negatives; the of number of instances erroneously classified as
Negative, but are Positive.

FP = False Positives; the number of instances erroneously classified as
Positive, but are Negative.

TN = True Negatives; the number of instances correctly classified as
Negative.

The metrics for binary classifiers are constructed using these four values. The
following metrics exist:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FN + FP + TN

F -Measure =
(β2 + 1) · TP

(β2 + 1) · TP + β2 · FN + FP

The minimum value for any of these metrics is 0, indicating that all instances are
misclassified. The maximum value is 1, which corresponds to that all instances
are correctly classified. Any classifier that randomly classifies instances will get
0.5 for each metric1.

Recall indicates which fraction of the Positive instances is correctly classified.
This can be interpreted how well the classifier recognizes the Positive instances.
When a classifier classifies all instances to Positive, Recall is maximum. In
order to distinguish this behavior Precision can be used to verify how likely a
classifier will classify an instance to Positive. Specificity resembles the Recall
metric for Negative instances.

Accuracy defines the fraction of instances that is correctly classified. This is
useful for obtaining a general idea of the performance, but it does not state how
well each class is recognized by the classifier.

F -Measure combines Precision and Recall to evaluate the performance of a
binary classifier. Both metrics are weighted allowing the user to prioritize either
metric. The weight for Precision and Recall is 1 and β2 respectively. These
weights are derived from Van Rijsenberg’s effectiveness measure [43].

Besides the five binary metrics discussed above, other metrics exist for binary

1Assuming that the number of Positive and Negative instances in the validation data are
equal.
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classifiers. Examples include AUC [13], Cohen ′s Kappa [9], Matthews
Correlation Coefficient [20] and Youden ′s J Statistic [45]. These metrics
capture the performance of classifying instances of both classes, while the metrics
Recall , Precision and F -Measure focus on the Positive instances and do not
take the True Negatives into account. This is useful when both classes are
of equal importance. However a drawback of AUC , Cohen ′s Kappa, Matthews
Correlation Coefficient and Youden ′s J Statistic is that these metrics are solely
defined for binary classifiers [19].

3.4.3 Example - Spam Filter

In order to demonstrate the metrics given in the previous section, an example
is discussed. The example describes the evaluation of a spam filter. A spam
filter should mark messages as spam or not-spam. The creation of a spam filter
is based on the ability to classify whether a message is spam or not. Whether a
message is spam is a binary classification problem, because there are two classes:
spam messages and non-spam messages.

Suppose we collected a dataset of 300 messages. A spam filter is created by
training a classifier using 200 instances of our data. The remaining 100 instances
are used to evaluate the spam filter. 40 of the 100 messages are assumed to be
spam, while the other 60 messages are considered non-spam. The predicted
classes for these instances by the created classifier are listed in the confusion
matrix given in Table 2. It is assumed that Positive is the class of spam messages
and Negative is the class of non-spam messages.

Predicted class
Positive Negative

Actual class
Positive 36 4
Negative 11 49

Table 2: A 2 × 2 confusion matrix for a spam filter. Positive is interpretted
as being a spam message, while Negative is considered as being a non-spam
message.

Using the confusion matrix the following values are defined:

TP = 36

FN = 4

FP = 11

TN = 49

Then the following values are assigned to the metrics of this classifier:

Recall = 0.900

Precision = 0.766

Specificity = 0.817
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Accuracy = 0.850

F -Measure = 0.828 (for β = 1)

Based on these values, the following conclusions can be derived. Considering
Recall , the classifier is able to recognize 90% of the spam messages. However, of
all messages that were classified as spam, only 77% was actually a spam message
based on the value for Precision. Specificity indicates that 82% of the non-spam
messages are correctly recognized, while the other 18% is erroneously classified
as spam. Lastly, the value for Accuracy shows that 85% of all messages was
correctly classified.

3.5 Multiclass Classifier Evaluation

The evaluation of multiclass classifiers does not differ much from the evaluation
of binary classifiers. However, the evaluation metrics are solely defined using
the metrics for binary classifiers [37]. Therefore, the evaluation of multiclass
classifiers is discussed separately.

3.5.1 n× n Confusion Matrix

The performance of a multiclass classifier can be recorded using a confusion
matrix [24]. Instead of using a 2× 2 confusion matrix, a n×n confusion matrix
is used, where n equals the number of classes of the corresponding classification
problem. The rows list the different classes and the columns list the predicted
classes. Each value in the confusion matrix indicates how many instances of
class x are recognized as class y. These values can be used to check how many
instances are correctly classified and how many instances are confused by the
classifier for being in a different class. The general form of a confusion matrix
is given in Table 3.

Predicted class
Class 1 Class 2 ... Class n

Actual class

Class 1 Correctly
classified 1’s

1’s confused
for 2’s

... 1’s confused
for n’s

Class 2 2’s confused
for 1’s

Correctly
classified 2’s

... 2’s confused
for n’s

... ... ... ...
Class n n’s confused

for 1’s
n’s confused
for 2’s

... Correctly
classified n’s

Table 3: n × n Confusion matrix for a classification problem consisting of n
classes.

3.5.2 Transformation To 2× 2 Confusion Matrix

Any n× n confusion matrix can be transformed to another confusion matrix of
p rows and p columns when the n classes are grouped into p new classes. This
concept is used in the definition of metrics for multiclass classification problems
[24, 37].
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Specifically, one transformation is used, which separates the classes in a one
versus rest manner. This transformation transforms a n × n confusion matrix
to a 2 × 2 confusion matrix. The Positive class consists of one specific class,
while the Negative class consists of the remaining n−1 classes. The values in the
resulting 2×2 confusion matrix are a defined by combining the individual entries
of the given n×n matrix based on the new classes. This transformation is called
Flatteni in this thesis, where i defines the class which becomes the Positive class.

More formally, Flatteni is a function on a n × n matrix A, which returns a
2× 2 confusion matrix B. The entries of B are defined as follows:

TP = Aii

FN =

i−1∑
k=1

Aik +

n∑
k=i+1

Aik

FP =

i−1∑
k=1

Aki +

n∑
k=i+1

Aki

TN =

i−1∑
k=1

(
i−1∑
m=1

Akm +

n∑
m=i+1

Akm

)
+

n∑
k=i+1

(
i−1∑
m=1

Akm +

n∑
m=i+1

Akm

)

An example of this transformation is given in section 3.5.4.

3.5.3 Metrics

The metrics for multiclass classifiers are based on the metrics for binary classifiers
[37]. The metrics are defined using the entries of a n × n confusion matrix. It
is assumed that there are n classes named 1, 2, ..., n. The performance of a
multiclass classifier is given by a n × n confusion matrix A. Firstly, for each
class i the confusion matrix Bi is determined using the Flatteni transformation
as defined in the previous section. The following definitions are used, assuming
Bi = Flatteni (A):

TPi = True Positives of Bi

FNi = False Negatives of Bi

FPi = False Positives of Bi

TNi = True Negatives of Bi

Each metric defined for binary classifiers can be applied on the confusion
matrices Bi in order to determine the performance of the multiclass classifier
per class. The overall performance of the multiclass classifier can be determined
in two ways: macro-averaging or micro-averaging the values for a metric for the
confusion matrices Bi [33, 40, 44]. With macro-averaging each class equally
influences the metrics, while with micro-averaging each instance in the validaton
data equally influences the metrics. So the bigger classes are favored with
micro-averaging.
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The metrics using macro-averaging [37] are defined as:

RecallM =
1

n
·
∑
i

TPi

TPi + FNi

PrecisionM =
1

n
·
∑
i

TPi

TPi + FPi

AccuracyM =
1

n
·
∑
i

TPi + TNi

TPi + FNi + FPi + TNi

F -MeasureM =
(β2 + 1) · PrecisionM · RecallM
β2 · PrecisionM + RecallM

The metrics using micro-averaging [37] are defined as:

Recallµ =

∑
i TPi∑

i(TPi + FNi)

Precisionµ =

∑
i TPi∑

i(TPi + FPi)

F -Measureµ =
(β2 + 1) · Precisionµ · Recallµ
β2 · Precisionµ + Recallµ

Interestingly, Recallµ, Precisionµ and F -Measureµ will give the same value for
any confusion matrix (see Appendix A). This metric resembles the formula
for Accuracy and can be considered as Accuracyµ. Accuracyµ indicates like
Accuracy which fraction of the models is correctly classified. Using Aij to
denote the value in the ith row and jth column in A, Accuracyµ is defined as:

Accuracyµ =

∑
iAii∑

i

∑
j Aij

Like the binary variants, the minimum value for all metrics listed above is 0. A
value of 0 indicates that all instances are misclassified. When all instances are
correctly classified, each metric attains the maximum value of 1.

3.5.4 Example - Simple Handwriting Recognition

This section demonstrates how the metrics are determined for a multiclass
classifier. The evaluation of a simple handwriting recognition system is discussed.
The purpose of such a system is to determine which word or character is written
given by an image. It is assumed that the simple handwriting recognition
system examines individual characters. The goal is to determine whether the
character is a letter, a digit or a punctuation mark. The evaluation of the simple
handwriting recognition system is given using a 3× 3 confusion matrix as given
in Table 4.

For each class, a 2× 2 confusion matrix is determined using the transformation
Flatteni as defined in section 3.5.2. The values of these confusion matrices are
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Predicted class
Letter Digit Punctuation

Actual class
Letter 37 13 2
Digit 21 56 8
Punctuation 5 0 42

Table 4: A 3×3 confusion matrix for a simple handwriting recognition system.

Confusion matrix
FlattenLetter FlattenDigit FlattenPunctuation

Value

TPi 37 56 42
FNi 15 29 5
FPi 26 13 10
TNi 106 86 127

Table 5: 2× 2 confusion matrices derived from Table 4.

listed in Table 5.

The values in the 2 × 2 confusion matrices give the following values for the
metrics for the simple handwriting recognition system:

RecallM = 0.755

PrecisionM = 0.736

AccuracyM = 0.822

F -MeasureM = 0.745 (for β = 1)

Recallµ = 0.734

Precisionµ = 0.734

F -Measureµ = 0.734 (for any real constant β)

Accuracyµ = 0.734

3.6 Metrics For Cost-sensitive Classifiers

For some classification problems the classification of each instance is linked to
a reward or cost [10, 12]. When an instance is correctly classified there is a
reward (or negative cost) and when an instance is incorrectly classified there is
a cost (or negative reward). This cost may depend on which predicted class is
chosen for a certain class. For this type of classifiers the total expected reward
or cost is more important than the number of instances correctly classified.

3.6.1 Metrics

The concept of classifying instances is paired with cost or reward, can be
formally described. Given a confusion matrix A each entry has a weight Wij

which specifies the cost of classifying an instance of class i as class j. The
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metric Cost can be defined as sum of the individual classification costs. Likewise,
Reward can be defined as the inverse of Cost . A cost-sensitive classifier performs
better when the cost is lower or the reward higher. These metrics defined as:

Cost =
∑
i

∑
jWij ·Aij

{
Wij ≤ 0 if i = j
Wij ≥ 0 if i 6= j

Reward =
∑
i

∑
jWij ·Aij

{
Wij ≥ 0 if i = j
Wij ≤ 0 if i 6= j

Unlike the metrics examined so far, the metrics Cost and Reward do not have a
minimum or maximum value. Both the minimum and maximum value depend
on the number of instances per class in the validation data and the weights
Wij . Nevertheless, these metrics can be used to compare the classifier with a
predefined threshold or with another classifier evaluated with the same validation
data.

3.6.2 Example - Comparing Spam Filters

Spam filters can be used to automatically clean inboxes by removing the messages
which are marked as spam. This can be convenient for the user because one does
not have to deal with the messages marked as spam. However, is unfortunate
when non-spam messages are deleted because the spam filter marked these
messages as spam. The user may miss fundamental information contained in
these messages.

Suppose there are two spam filters available, whose performance is given by
confusion matrices depicted in Table 6 and 7 respectively. Further, it is assumed
that misclassifying a non-spam message is five times worse than misclassifying

a spam message. Then the weights2 W are expressed by the matrix

[
0 1
5 0

]
.

Predicted class
Spam Non-spam

Actual class
Spam 48 2
Non-spam 8 42

Table 6: A 2× 2 confusion matrix for spam filter option A.

Predicted class
Spam Non-spam

Actual class
Spam 36 14
Non-spam 1 49

Table 7: A 2× 2 confusion matrix for spam filter option B.

Although classifier option A is more accurate than classifier option B, the cost of
using classifier option A is 42 and the cost of using classifier option B is only 19.

2It is assumed that determining the correct class for a message induces no cost. Therefore,
W0,0 = 0 and W1,1 = 0.
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This suggest classifier option B is better, which corresponds to the reality since
it is less likely that a non-spam message is erroneously is classified as spam.
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4 Related Work

This chapter discusses the work related to our research. Section 4.1 shows
that the use of symbolic state space methods is necessary but has limitations
too. Section 4.2 discusses different proposed methods to improve symbolic state
space methods. To our best knowledge, using the features of a model to predict
a strategy is a fairly new concept to improve state space exploration. Section
4.3 discusses work related to strategy prediction.

4.1 Symbolic State Space Methods

State space methods rely on examining all reachable states for a given model.
The process of discovering the reachable states is called the state space
exploration. During state space exploration the discovered states can be either
stored explicitly or symbolically.

When the states are stored explicitly, each discovered state is stored in memory,
occupying a specific amount of memory. This approach is not suitable for large
state spaces. Lets assume that a given model has over 1020 reachable states and
each state can be stored in 128 bits. Without overhead, this approach will take
over 1.6 zettabyte3 of memory. This amount of memory is simply too large for
any computer and therefore the use of explicit state space methods is limited
to smaller state spaces.

Symbolic state space methods are able to deal with large state spaces [6].
Symbolic state space methods store the discovered states in a Binary Decision
Diagram (BDD) or a variant of BDDs. Unfortunately, symbolic state space
methods are limited by time and memory too [8]. On top of that, there is no
clear relation between the number of states stored and the size of the BDD [32].
During state space exploration the size of the BDD may be much larger than the
final BDD describing the entire state space. The largest size encountered during
exploration is called the peak size of de BDD. The peak size is often reached
midway during the state space exploration. The peak size may be hundreds or
thousands of times larger than final size of the BDD, placing a high demand on
resources [8]. Therefore, it is important that during the exploration of the state
space, the size of the BDD is kept as small as possible in order to utilize the
available resources the most efficient.

4.2 Improvements Of State Space Methods

Due to the state space explosion problem [41] it may be unfeasible to directly
apply either explicit or symbolic methods on given models. Since the
introduction of state space methods, much research is performed to enhance
state space methods, allowing to investigate more models and larger state spaces.
This section gives an overview of improvements which are related to our research,
which aims to improve state space methods.

31.6 zettabyte equals 1.6 · 1012 GB

24



4.2.1 BDD Construction

Symbolic state space methods rely on BDDs. The way the BDD is constructed
affects the performance of a state space method. The peak size of the BDD
determines the amount of resources needed [8]. Since the peak size may be
significantly larger than the final size of the BDD, it is important that the size
of the BDD is kept as small as possible. Maintaining a small BDD allows to
explore larger state spaces.

The size of the BDD depends on how the variables in the BDD are ordered.
The variables can be reordered in order to reduce the size of the BDD, but
determining this order is a NP-complete problem [4]. Therefore it is not feasible
to perform variable reordering according to the best variable order during state
space exploration.

Since it is not feasible to maintain the best variable ordering during exploration,
other methods were proposed to reduce the peak size of a BDD. Some methods
aim to find a good variable ordering beforehand [14, 22, 35] or try to maintain
a good ordering during exploration [31].

4.2.2 Partitioning Of Transitions

Another improvement is to divide the transitions of the model into groups [5].
This method is able to verify models with 1050 and 10120 states and is required
to investigate models with large state spaces. This idea was applied in the
PINS interface of LTSmin [3]. The partition was improved by distinguishing
read and write-dependencies and it was shown that a significant improvement
can be achieved [21].

4.2.3 State Space Traversal Techniques

The construction of BDDs also depends on order of the states discovered during
exploration, so the way the state space is traversed influences the size of the
BDD. As result, different traversal algorithms were proposed.

The classical breadth-first-search (BFS) is a suitable traversal algorithm for
state space exploration. An alternative traversal algorithm called chaining was
proposed by [30]. This traversal technique was applied on Petri Nets and was
found two orders of magnitude faster than regular BFS. However, they admitted
that this statement is not verified on larger models.

Ciardo et al [8] gave a variation of both BFS and chaining where all states were
used instead of only the previous discovered states. Their results showed that
these variations were overall slightly better, but for some models they worsen
the amount of resources needed for the state space exploration. They showed
that chaining is marginally better than BFS. However they only presented these
results for five selected models.

Sóle et al [38] introduced four additional traversal algorithms to reduce the peak
size of the BDD. Their algorithms aim to improve the state space exploration
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of concurrent systems and showed that in most cases an improvement can be
achieved. Still, chaining was found to be a good alternative.

4.2.4 Saturation

Saturation is another method to greatly reduce the peak size of a BDD [7, 8].
The general idea is that only transitions at a certain level in the BDD are fired.
When all transitions are applied, that level is saturated and a higher level is
examined. By saturating levels in the BDD, the size of the BDD is kept small.
It was reported that this method may achieve several orders of magnitude better
performance [7].

4.3 Strategy Prediction

Closely related to our research is the work of Pelánek. Firstly, he defined
properties of state spaces and specifies groups of state spaces [26, 29]. These
characteristics were used to find an appropriate strategy for a model beforehand
[27]. This ultimately lead to the development of EMMA which implements the
prediction of a strategy for a model [28]. However, his work was limited to
explicit state space methods. Furthermore, only the models from the BEEM
database [25] were used. Our research includes a wider array of models and
focuses on symbolic state space methods.

26



5 Research Questions

This chapter discusses the research questions of this project. The research
questions specify which problems the research aims to solve in order to reach the
goal specified in chapter 1, namely letting the model checking tools itself decide
which strategy is suitable for a given model. The research is formulated using
one main question described in section 5.1. The main question is subdivided in
three research questions which are described in section 5.2, 5.3 and 5.4. Section
5.5 summarizes the research questions.

5.1 Main Question

As mentioned in chapter 1, state space methods may consume many resources
due to the state space explosion problem [41]. Currently many different solutions
are proposed to tackle the state space explosion problem. The user is provided
multiple strategies to solve its models. Because of the wide variety of models and
options, it may be hard for the user to select an appropriate strategy. Selecting
an inappropriate strategy may lead to a waste of resources or that the model
checking tool is unable to answer the given verification questions.

Therefore, the model checking tools itself, instead of the users, should decide
which strategy should be applied on a given model. This research investigates
whether it is possible for a model checking tool to select an appropriate strategy
using only the information presented in the given model. The pieces of
information embedded in a model are called the features of a model in this
report. Since most verification questions are based on the state space of a model
[41], the problem of verifying a model is refined to the problem of determining
the state space of a model. This leads to the following main question:

To what extent can the features of a model be used to predict an appropriate
strategy in order to improve state space exploration?

It is not necessary to come up with the absolute best strategy currently available.
It is sufficient to find a strategy which performs almost as good as the best
strategy given a specific model.

This main question is answered using three research questions specified in the
remaining of this chapter.

5.2 Research Question 1

Because of the wide varieties in strategies and models, it is unknown how well the
strategies perform on different models. This leads to the first research question:

How does the strategy influence the state space exploration of a model?

The answer on this question determines whether it is relevant at all to even
examine the features of the model. We investigated how many resources it takes
to explore the state space of model given a strategy. This investigation reveals
the
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differences between multiple strategies for a model. If the differences are
negligible, any strategy can be selected and the features of the model does
not matter.

On the other hand, we examined whether there exists a superior strategy. A
superior strategy is a strategy which performs better than any other strategy
for almost all models. If any superior strategy exists, that superior strategy
should be selected without even considering the features of the models.

5.3 Research Question 2

Assuming the selection of the strategy significantly influences the state space
exploration, a best strategy can be selected per model. We investigated how the
features of the model relates to its best strategy. This investigation is captured
by the second research question:

Which features are relevant to consider when predicting a strategy for a model?

The answer on this question reveals which features are relevant to consider
and which features does not provide any helpful information for selecting an
appropriate strategy. This information should be exploited by the model
checking tools such that during the strategy selection the relevant features are
considered and the redundant features are ignored.

5.4 Research Question 3

Lastly, we investigated whether the features provide sufficient information to
determine an appropriate strategy. The last research question states whether it
is possible to predict an appropiate strategy using the features of a model:

To what extent can we make a prediction of an appropriate strategy given the
features of a model?

We checked whether it is possible to determine an appropriate strategy given
the features of a model. Since the predicted strategy may depend on multiple
features on different domains, it is expected that there does not exists a trivial
relation between the features and the best strategy of a model. Therefore,
supervised machine learning techniques are used to predict an appropriate
strategy given the features of a model.

5.5 Summary

We want to improve state space exploration of models by predicting an
appropriate strategy based on the features of models. This improvement is
realized by investigating whether strategies significantly perform differently for a
fixed model and whether there is no superior strategy. This information reveals
whether examining features is relevant at all or that a specific fixed strategy
should be selected. It is investigated whether features provides any information
for an appropriate strategy and whether features provides sufficient information
for predicting an appropriate strategy.
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6 Methods

This chapters discusses the methods used in our research. Section 6.1 defines
the scope of our research by defining which set of strategies and features are
considered. Section 6.2 defines the techniques and materials used in our research.
Section 6.3 discusses how the research was performed.

6.1 Scope

The main goal of this research is to investigate to what extent features of a
model can be used to predict a strategy. A strategy is defined as any way in
which a state space method is applied to solve verification questions. In chapter
5 it was mentioned that the verification questions are confined to the state space
exploration. A feature is defined as any property of a model. The terms strategy
and feature are too broad to cover in a single research. This sections explains
which strategies and features were selected for our research.

6.1.1 Selected Strategies

The number of strategies had to be limited in order to make testing feasible.
Considering related work, it can be observed that the traversal method and
saturation may significantly influence the state space exploration of a model.
Therefore, these two aspects were set variable in a strategy and other aspects
of a strategy were fixed. Some of the models which were used for testing, have
huge state spaces. The explicit backend of LTSmin was not suitable for these
models. Therefore, the symbolic backend of LTSmin was selected.

Four different traversal algorithms were incorporated in our research: bfs,
bfs-prev, chain and chain-prev. These algorithms are based on the ones
found in [8]. The pseudo code of the algorithms as implemented in LTSmin is
given in [34]. The traversal algorithms introduced by [38] are not available in
LTSmin and were not considered.

LTSmin offers the ability to do saturation, but it differs from the original
method [8, 34]. LTSmin offers multiple options to perform saturation and forces
the user to divide the dependency matrix into saturation levels. These levels are
defined by a parameter called saturation granularity. The saturation granularity
indicates the column width of each level4. The user has to provide a positive
integer for this parameter or otherwise a default value of 10 is used.

Multiple different saturation granularities were considered including the extreme
values. The minimum value for saturation granularity is 1. The maximum value
equals the width of the dependency matrix and any higher value results in the
same performance. Since the width of the dependency matrix depends on the
model, the maximum value cannot be fixed precisely. Instead the maximum
signed integer value (2147483647) was used in order to capture all models.

4In the case the saturation granularity does not divide the width of the dependency matrix,
the last level consists of the remaining columns. For example, if the width of the dependency
matrix is 53 and the saturation granularity is 10, there are 5 levels consisting of 10 columns
and one level consisting of 3 columns.
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The values 1, 5, 10, 20, 40, 80 and 2147483647 were selected for saturation
granularity.

Two saturation methods called sat-like and sat-loop were considered.
Combining the saturation methods with the selected values for saturation
granularity, 14 different saturation strategies were defined. It was also tested
how well the models were explored without using saturation (saturation method
= none). The saturation granularity does not have any meaning when no
satuation is used for exploring the model. Incorporating none as saturation
strategy gave an additional strategy. So in total, 15 different saturation strategies
were considered. The variables and selected values for strategies are listed in
Table 8.

Variable Selected values

Traversal strategy bfs, bfs-prev, chain, chain-prev
Saturation method sat-like, sat-loop, none
Saturation granularity 1, 5, 10, 20, 40, 80, 2147483647

Table 8: Selected variables and values for the strategies. Note: saturation
granularity was only used when sat-like or sat-loop was selected as
saturation method.

The traversal strategy and saturation strategy can be chosen individually for
any model. The saturation method defines how the saturation levels are visited,
while the traversal strategy defines the method to visit states within a saturation
level. So any of the 4 traversal strategies can be combined with any of the 15
saturation strategies, defining 60 different strategies. These 60 strategies are
considered during our research.

Besides the variable aspects of the strategies, some aspects were fixed for all
strategies. These fixed aspects are listed in Table 9. The reordering strategy
was selected from [22] because that reordering strategy had the best overall
performance. save-sat-levels is time optimization flag for both sat-like

and sat-loop. This flag has no effect when none is selected as saturation
method. vset specifies the BDD package used. The other aspects enforces that
a fixed amount of resources can be utilized for solving a model.

Aspect Selected value

Reorder strategy tg,bs,hf

save-sat-levels true

vset lddmc

lace-workers 1
ldd-cachesize 26
ldd-tablesize 26
ldd-maxtablesize 26

Table 9: Selected values of fixed aspects for all strategies.

All other parameters and flags of LTSmin that are not listed in either Table 8 or
9 attain their default values as defined for LTSmin version 2.1 for all strategies.
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6.1.2 Selected Features

Everything based on the information of the model can be considered a feature.
The set of features considered were also limited. Since LTSmin is able to handle
different types of models, model specific features were not considered. Model
specific features are based on the specification language used to describe the
model. The maximum number of arcs leaving any place in a Petri Net or the
number of lines in a DVE model are examples of model specific features.

All features considered in this research were based on features that can be
derived for all models LTSmin is able to analyze. This design choice allows
that the results produced by this research can be applied to a large variety
of specification languages (see section 2.2). Hence, only features which can be
derived from the information available in the PINS interface were considered.

Feature Definition

State Vector Length [16] Width of the dependency matrix.

Groups [16]
The number of transition groups. This
corresponds to the number of rows in the
dependency matrix.

Bandwidth [22]
Maximum bandwidth of all rows in the
dependency matrix after variable reordering.

Profile [22]
Sum of the bandwidth of all rows in the
dependency matrix after variable reordering.

Span [22]
Sum of the span of all rows in the dependency
matrix after variable reordering.

Average Wavefront
Sum of the wavefront of all rows in the
dependency matrix after variable reordering
divided by the number of rows.

RMS Wavefront
Root mean squared over the wavefront of all
rows in the dependency matrix after variable
reordering.

Event Span (ES ) [22]
Sum of the span of all rows in the dependency
matrix before variable reordering.

Normalized Event
Span (NES ) [22]

Normalized version of Event Span which
allows to compare dependency matrices of
different sizes.

Weighted Event
Span (WES ) [22]

Weighted variant of Event Span.

Normalized Weighted
Event Span (NWES ) [22]

Normalized version of Weighted Event Span
which allows to compare dependency matrices
of different sizes.

Table 10: Selected features of the model based on metrics on the dependency
matrix.

The PINS interface provides a dependency matrix of a model. There are 11
metrics defined on the dependency matrix. Each metric somehow reflects a part
of the nature of the dependency matrix and can be used as feature. These 11
metrics were selected as feature and are listed in Table 10. 9 of these metrics
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are based on the following metrics per row [22]:

Bandwidth of a row = Maximum distance of any nonzero entry in a row
to the diagonal of the dependency matrix.

Span of a row = Distance between the leftmost and rightmost nonzero
entry in a row.

Wavefront of a row = The number of adjacent vertices of all vertices
smaller or equal to the vertex corresponding to the row.

6.2 Techniques

This section gives an overview of the models and techniques used during our
research. Firstly, the set of models which was used during our research is
discussed. Secondly, the tools and programs which were used are listed. The last
section gives an overview of the used machines for determining the performance
of the selected strategies.

6.2.1 Model Collection

The selected strategies were tested on a large number of models in order to
acquire sufficient information. The PNML models of the Model Checking
Contest [17] were used. Since LTSmin currently cannot handle colored Petri
Nets, only the unfolded Petri Nets were considered. This collection consists of
491 different models. These models are instances of 66 different parameterized
Petri Nets5. Furthermore, 293 DVE models of the BEEM database6 were used
[25]. These models are instances of 56 parameterized DVE models7. So in total
784 different models were used.

6.2.2 Tools And Programs

This section lists the tools and programs used during our research. See section
6.3 for the role of each program.

Overview of the tools and programs:

• awk version 4.0.1

• bash version 4.3.11(1)

• DiViNe [1] version 2.4

• grep version 2.16

• LTSmin8 A development version was used because there was no stable
release which could handle PNML models correctly. LTSmin was build
from commit fbc4d4999d06134984f076eed2f0b8523cfb5704.

5This is the collection of the �Surprise� and �Known� models for 2016. The model
DotAndBoxes does not offer an unfolded Petri Net variant and is not included in the test
cases.

6Available on http://paradise.fi.muni.cz/beem/, accessed July 2016.
7All seven instances of the model train-gate could not be compiled using DiVinE. These

models are left out of the test cases.
8Available on https://github.com/Meijuh/ltsmin/tree/next, accessed May 2016.
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• memtime9

• Python version 2.7.6

• R10 version 3.3.1

– ggplot2 package version 2.0.0

– plyr package version 1.8.3

– reshape2 package version 1.4.1

• scikit-learn11 version 0.17.1

6.2.3 Machines

The computer cluster of the University of Twente was used to measure the
performance of the selected strategies. Specifically, 44 machines were used. All
machines operate under Ubuntu 14.04 LTS and each machine has 64 GB
RAM. The CPU of 32 machines is 2× AMD Opteron 4386, while the CPU
of the other 12 machines is 1× AMD Opteron 4386. The AMD Opteron
4386 has 8 cores.

6.3 Method

This section explains which actions are performed during our research in order to
answer the research questions stated in chapter 5. Firstly, the performance of the
selected strategies was determined for the selected models. The resulting data
was refined to eliminate errors and remove redundant data. The performance
data was investigated in order to establish whether there exists a superior
strategy and to what extent the differences between multiple strategies matter.
The performance data was used to select the best strategy with respect to time
and peak size per model. This data was used to create multiple classifiers. The
performance of the classifiers was investigated in order to establish to what
extent the features of a model can predict an appropriate strategy.

The technical details of the created scripts and programs are omitted during
the discussion of the research method. Appendix D gives insight in the scripts
and discusses how the scripts can be utilized to reproduce the results given in
this thesis.

6.3.1 Running State Space Exploration Tests

The purpose of our research is to determine to what extent features of a model
can predict an appropriate strategy. In order to measure whether a certain
predicted strategy is appropriate, the performance of multiple strategies need
to be known for a given model. In section 6.1 the strategies and features were
selected. The first step consisted of collecting the performance data of the 60
selected strategies for all 784 selected models.

9Available on http://fmt.cs.utwente.nl/tools/scm/memtime.git/, accessed October
2016.

10Available on https://cran.r-project.org/mirrors.html, accessed October 2016.
11Available on http://scikit-learn.org/stable/, accessed July 2016.
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The PNML models12 were extracted from the website of the MCC. The unfolded
Petri Nets were separated from the colored Petri Nets using grep. LTSmin
cannot handle DVE models directly. DiViNe [1] was used to compile the DVE
models to DVE2C format.

In order to determine the performance of a strategy on a model accurately,
multiple performance runs were performed. The performance of LTSmin is
slightly variable due to the load of the system where the tool is running on.
Therefore, ten performance runs per model and strategy pair were performed.
Besides the performance runs per model and strategy pair, a single statistic run
was performed. The purpose of this run is to measure the peak size. Enabling
the collection of statistics in LTSmin negatively influence the performance. So
the statistics were collected in a separate run. Since LTSmin is deterministic,
one statistics run per model and strategy pair suffices. In total, eleven runs
were performed per model and strategy pair.

For each model, the values for the features ES , NES , WES and NWES were
determined in a separate run. The values for the other seven features could
already be extracted from the other runs. The features of a model are in
independent of the selected strategy. The collection of the values of these four
features required an additional 784 runs.

This approach required 518224 runs13. The computer cluster of the University of
Twente was used to process this large amount of test cases. An existing bash
script was available which was able to generate test cases and automatically
schedule the generated test cases on the cluster. This script was modified in
order to run with the collected models and the configurations of LTSmin. The
bash script generated a small script per run. Each small generated script
performed one run with the LTSmin tool. The bash script also generated a
scheduler script. The generated scheduler script schedules the small generated
scripts on the cluster. This method allowed that batches of test cases could be
scheduled and executed on the cluster.

It is known that some PNML models are too complex to be analyzed [17].
Because of the large number of test cases, it was preferred that many test cases
could run in parallel. Therefore, each test case acquired one CPU core. Each
test case acquired 8 GB of RAM. This amount is sufficient to store the BDD and
the model itself. If the run exceeded the amount of memory or took too long to
solve, the test case was aborted. The time limited was set to 30 minutes. These
constraints were enforced by using memtime. Furthermore, memtime recorded
the elapsed time and memory footprint.

6.3.2 Processing Data

The output of LTSmin is plain-text. After running all test cases on the cluster,
the output of each run was stored in a txt-file. Due to the large amount of files,
it is impossible to analyze those files by hand. 30 files were randomly selected

12Available at http://mcc.lip6.fr/models.php, accessed October 2016.
13The number of runs is equal to (11 · 60 · 784) + 784
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to identify the possible formats LTSmin could produce. This information was
used to create a parser in bash. The programs grep and awk are natural
to use to extract information of text and were used extensively by the parser.
The parser notified the user if it did not recognize the format of the provided
text-file. In this way, new formats were discovered and the parser was updated
for those formats. As result, all txt-files were successfully parsed. The results
were stored in a csv-file.

The programming language R was used for the analysis of the csv-file. R offers
various tools to filter and aggregate data, and it is natural to use for data mining.
The packages plyr and reshape2 were used for data compression. The data
produced by the parser was not suitable to analyze directly. The data had the
following issues:

• Some models are unsolvable for all 60 selected strategies. These models
cannot be used, since it is impossible to measure whether the predicted
strategy is appropriate for these models. Furthermore, because some
models are too large, even the values of some features could not be
determined.

• Some models were not solved correctly. For most models the actual or a
lower bound of the size of the state space is known. There are 59 models
where all selected strategies could not solve the model or produced wrong
results. Since these models were solved incorrectly, the performance of
the strategies may not reflect the actual effort needed to solve the models
correctly. These models were removed from the data.

• The data contains contradicting entries. This was revealed by the size of
the calculated state space for a model. The state space is always fixed for
a given model, so LTSmin produced faulty results for some models. For
some models in combination with a selected saturation granularity of 1,
the state space was reported extremely small14, while it is known that the
state space is significantly larger.

• The saturation granularity was selected before solving a model. The
meaning of saturation granularity depends on the width of the dependency
matrix of the model. If the saturation granularity is larger than the state
vector length, the strategy does not differ from the equivalent strategy
with a saturation granularity of 2147483647. Hence for smaller models,
multiple different strategies may collapse in a single strategy, although
they are marked as different strategies in the data.

• Due to the multiple runs per model and strategy pair, the information of
the performance of a model with respect to a strategy is scattered over
the entire csv-file. The performance of a strategy on a model is defined
by at least eleven lines.

Before the data was analyzed, the issues mentioned above were addressed.
Firstly, all runs of the models which could not be solved correctly by any
strategy, were removed. These 59 models were identified by comparing the

14Less than eight states.
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produced results with the actual or lower bound of the state space known for
the model. From the remaining entries all entries were removed where the state
space was smaller than eight. This limit was chosen, because the smallest state
space of all models consists of eight states. The data was further refined by
removing the entries where none of the remaining strategies could solve the
model.

The conflicting entries were removed using voting. The entries per model were
grouped in non contradicting sets. The largest set was assumed to be true for
each model. All entries contradicting the selected true entries were removed.
The saturation granularity was fixed by comparing it with the discovered State
Vector Length. The remaining entries contain the State Vector Length of any
model that could be solved. If the listed saturation granularity is larger than
the State Vector Length, the saturation granularity was altered to 2147483647.
The remaining entries were summarized such that only one entry in the resulting
csv-file describes the performance of a model and strategy pair.

6.3.3 Analyzing Performance Data

After the processing phase, the data in the csv-file is consistently describing
the performance of all models that could be solved by any of the 60 selected
strategies. This performance data was analyzed in order to answer the first
research question (see section 5.2). The results of this analysis are described in
chapter 7.

The performance data describes the best strategy per model. A strategy is
better than other, when it uses less resources than the other strategy. In our
research, we considered two aspects: elapsed time and peak size. Elapsed time
specifies the amount of time needed to solve a model. Obviously, a strategy
with a low solving time is preferred over any strategy that is slower to solve a
model. Peak size correlates to the minimum amount of memory needed during
the exploration of a model. A lower peak size is preferred when the amount of
available memory is limited.

Whether a strategy with a low elapsed time and a high peak size is preferred
over a strategy with a high elapsed time and a low peak size, depends on which
resource is more valuable for the user. Therefore, both aspects were investigated
separately. For each aspect and model the best strategy was determined.

6.3.4 Creating And Evaluating Classifiers

For each aspect five classifiers were created. The performance data collected
was used to train and verify the classifiers. One classifier was trained with
the PNML models and verified with the DVE models. Another classifier was
trained with the DVE models and verified with the PNML models. The other
three classifiers were trained with a random selection of 70% of both PNML
and DVE models and verified with the remaining 30%. We chose to train three
classifiers with a random set of models in order to prevent the results were
based on a single split. The selection of models is based on the parameterized
models. This prevented that the classifiers are evaluated with a model it is
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trained with. Details of the division of data into training and validation data is
given in section 8.1.

The tool scikit-learn was used to train the classifiers. scikit-learn is an
open source library for Python and provides multiple libraries offering machine
learning techniques. The goal of the classifiers is to predict strategies for new
unseen models.

Prediction of the traversal algorithm and the saturation method are classification
problems, since the predicted values should be in a finite set. The prediction of
the saturation granularity resembles a regression problem since it is defined as
value on a continuous infinite domain. However, the prediction of the saturation
granularity is treated as a classification problem because of two reasons. Firstly,
saturation granularity = 2147483647 differs from the other saturation
granularities since it specifies the entire width of the dependency matrix. The
selected values are not on a continuous domain. This makes the problem hard
for the computer, since it has to learn the gap between the low saturation
granularities 1, 5, 10, 20, 40, 80 and the high value 2147483647. Secondly, there
is no data available when the classifier predicts a saturation granularity other
than the selected values. Hence, predicting the saturation granularity is treated
as a classification problem. The prediction of a strategy can be described as
classification problem, since the classifiers had to select the best strategy from
a finite set of 60 classifiers.

scikit-learn offers multiple classification algorithms. In order to determine
the most suitable algorithm, all available algorithms were evaluated using the
three training datasets consisting of a random selection of 70% of the models.
The algorithm with the highest performance was selected. The selection of the
classification algorithm is discussed in section 8.3.

After determining the classification algorithm, for each aspect the five classifiers
as defined above were created. Each classifier was evaluated in two ways.
Firstly, a classifier was evaluated using the metrics as introduced in section
3.5.3. However, the metrics enforce that only the predictions which select the
best strategy are rewarded. If a classifier predicts the strategy partly correct, it
is marked as misclassification. Hence, the classifiers were also evaluated using
the performance data. For each prediction the difference between the predicted
strategy and the best strategy was determined in order to evaluate whether
the predicted strategy is appropriate. The results of the trained classifiers are
discussed in chapter 8. The results provide an answer to the third research
question (see section 5.4).

6.3.5 Feature Relevance Analysis

The classifiers were trained using all 11 selected features. In order to determine
whether the value of a feature is relevant for predicting an appropriate strategy,
more classifiers were trained using different subsets of the 11 selected features.

For each aspect and subset of features, three classifiers were created. These
classifiers were trained using the same random selections of 70% of the models.

37



The metrics of these classifiers were used to evaluate the performance of the
classifiers. The differences in metrics indicate the effect of missing certain
features. That information was used to investigate the relevance of each feature.
The results of this investigation is discussed in chapter 9. The results provide
an answer to the second research question (see section 5.3).
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7 Strategy Evaluation

This chapter evaluates the performance of the selected strategies based on the
experiments performed in this research. The results are limited to the models
where at least one strategy is able to solve the model. In section 7.1 it is
described how the strategies are named. Section 7.2 explains the refinement
of the collected data and shows which models are considered. Section 7.3
discusses which models the strategies are able to solve. Section 7.4 and 7.5
discusses the performance of the strategies with respect to time and memory
usage respectively. Section 7.6 gives a conclusion based on the information
presented in this chapter. This conclusion provides an answer to the first
research question as stated in section 5.2.

7.1 Naming Convention

In order to discuss the performance of the strategies, each strategy was given
a unique name. The name consists of the saturation strategy followed by the
traversal strategy. The saturation granularity is denoted between brackets. The
traversal strategy is abbreviated a follows:

b = bfs

bp = bfs-prev

c = chain

cp = chain-prev

For example, sat-like(20)-c indicates the strategy using the sat-like method
with a saturation granularity of 20, using chain as traversal strategy. Likewise,
none-bp is the strategy that uses no saturation and uses bfs-prev as traversal
strategy.

7.2 Data Refinement Results

As discussed in section 6.3.2, the data collected from the test runs had some
imperfections. Before the data was analyzed, the data was refined. This section
shortly discusses the results observed during the refinement process.

The performance and statistics runs resulted in a total of 517440 entries in
the data. Firstly, the 59 models which could not be solved correctly were
removed. Since there are 660 entries per model, 478500 entries were remaining
after deleting all results of these 59 models.

Secondly, the entries describing that the size of the discovered state space is
smaller than 8 were removed. 2614 entries fell in that category. The remaining
475886 entries still consisted of 725 different models.

The first two refinement steps removed a large number of the errors produced
by LTSmin. The models that could not be solved by the remaining strategies
in the data were removed. These models provide insufficient information to
evaluate a predicted strategy. This step reduced the entries to 282643. The
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data consisted of 432 different models.

The data provides sufficient information to evaluate the predictions made for
432 different models. There were still conflicting entries in the data due to
wrongly calculated state spaces. These entries were removed using voting.
The contradicting outcomes provided by the smallest number of strategies were
removed. This reduced the entries by 4138. This refinement step did not alter
the total number of models covered by the data. The remaining 278505 entries
still consisted of 432 different models.

The remaining entries were summarized. Firstly, the saturation granularity
was adjusted depending on the discovered State Vector Length. Since there
exists at least one strategy which can solve the model, the data contained the
State Vector Length for all remaining 432 models. After this adjustment, the
data was summarized in one entry per model and strategy pair. The time
performance per pair equals the mean of the elapsed time of the performance
runs. The elapsed time for each run that resulted in a timeout was set to 1800
seconds. This corresponds to the maximum time given for each in experiment.
In this way, the total number of timeouts were incorporated in the time
performance. The data was summarized in 18962 entries, consisting of 221
different PNML models and 211 different DVE models.

7.3 Strategy Capability

This section discusses the capability of the 60 selected strategies. For each
strategy the total number of different models that can be solved was determined.
Since there are 432 different models in the data, the best possible value for a
strategy is 432. The results are depicted in Figure 2 ordered by the capability.
The corresponding values of eight strategies are listed in Table 24. Appendix B
contains a complete overview of the values in Figure 2.

Strategy Number of models Coverage

sat-like(5)-cp 402 93.06%
sat-like(5)-bp 397 91.90%
sat-like(5)-c 393 90.97%
sat-like(2147483647)-b 356 82.41%
sat-like(1)-cp 333 77.08%
sat-like(20)-cp 276 63.89%
sat-like(40)-cp 138 31.94%
sat-like-(80)-c 96 22.22%

Table 11: Capability of some strategies in Figure 2. The capability is measured
by the number of different models the strategy is able to solve. The coverage
shows which fraction that number is of the total set of 432 models.

Using these results, it can be observed that the most capable strategy is
sat-like(5)-cp. This strategy is able to solve 402 different models. However,
there exist 29 models that cannot be solved using this strategy. The other
strategies perform worse in the sense that they can solve less than 400 out of
the 432 different models.
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Figure 2: Capability of the 60 strategies. The strategies are listed on the vertical
axis and the horizontal axis expresses the capability. The capability is measured
by the total number of different models the strategy is able to solve.
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It can be observed that there are four drops in the graph:

1. Strategies with a saturation granularity of 80 perform worse than any
other strategy.

2. Strategies with a saturation granularity of 40 are better than any strategy
with a saturation granularity of 80 but perform worse than any other
strategy.

3. Strategies with a saturation granularity of 20 are better than any strategy
with a saturation granularity of 40 or 80 but perform worse than any other
strategy.

4. Strategies with a saturation granularity of 1 are better than any strategy
with a saturation granularity of 20, 40 or 80 but perform worse than any
other strategy.

The first three drops can be clarified by the state vector length. If the state
vector length is smaller than either 20, 40 or 80, the strategy for a model
was redefined as saturation granularity of 2147483647. The total number of
occurrences of these strategies are decreased, since these strategies are not
relevant to consider for some models.

The last drop can be clarified by the number of errors produced by LTSmin.
If the saturation granularity is set to 1, the size of the state space calculated
by LTSmin may be extremely small. These errors were removed from the data.
Therefore the total number of models solved by any strategy with a saturation
granularity of 1 is lower than strategies with a saturation granularity of 5, 10
or 2147483647.

So, the data shows that there is no superior strategy, since there is no strategy
capable of solving all models. Moreover, for each strategy x there exist another
strategy which is able to solve models which could not be solved by x. This
observation suggest that a dynamic selection of a strategy is preferred over a
fixed strategy for a set of unknown models.

7.4 Strategy Performance - Time

The results discussed in the previous section do not reveal how well each strategy
is able to solve each model. It only shows whether the model can be solved.
This section discussed how fast each strategy solved the models it is able solve.

The performance of a strategy is measured by a normalized version of the
time needed to solve a model. For each model there exist a strategy which
is able to solve the model as fastest. The performance of the other strategies is
compared to the fastest solving time. This reveals how much worse the strategy
is compared to best strategy for a model. The performance is captured by the
metric Mark :

Mark =
Needed resources

min
strategies

Needed resources
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The minimum value for Mark is 1, which indicates the performance of a strategy
equals the best performance known for the given model. A high Mark indicates
a bad performance, since Mark defines the factor of resources needed more than
the best strategy.

The performance of the selected strategies with respect to the solving time
is depicted in Figure 3. Per strategy the performance is given using a box plot.
The black dots indicate the outliers. Table 12 contains some values extracted
from Figure 3 for eight strategies. A complete overview of the results is listed
in Appendix B.

Strategy
Mark

Minimum Mean Maximum

sat-like(10)-cp 1.00 1.72 11.62
sat-like(1)-cp 1.00 1.75 48.89
sat-like(5)-cp 1.00 1.91 123.72
none-cp 1.00 5.97 633.04
sat-like(80)-b 1.17 6.91 83.66
none-b 1.03 15.23 431.43
sat-loop(2147483647)-b 1.02 15.52 415.46
sat-like(2147483647)-b 1.02 15.79 431.92

Table 12: Performance of some strategies with respect to time as given in Figure
3. For each strategy the performance is measured using all Marks obtained for
the models the strategy is able to solve. A Mark reveals the performance with
respect to the best strategy. The minimum, mean and maximum of all Marks
is listed for a strategy.

For our research the discussion is limited to three values: the minimum and
maximum Mark given for any model per strategy and the average Mark given
for all solvable models per strategy.

46 strategies has a minimum Mark of 1. That means for any of these strategies
there exists at least one model which is solved as best by that strategy. The
remaining 14 strategies have a low minimum mark. The highest minimum mark
is 1.17. This means that any strategy is appropriate for a certain set of models.

Likewise, the maximum Mark reveals that all strategies have some models that
could better be solved by another strategy. Each strategy had solved a certain
model while there exists another strategy which is at least 11 times faster than
the chosen strategy.

The mean Mark reveals the overall performance of a strategy. If the strategy is
fixed the mean Mark shows how much more resources is needed than choosing
the best strategy per model. The smallest mean Mark is 1.72 meaning that
fixing a strategy is at least 1.72 times slower than selecting the best strategy
depending on the model.
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Figure 3: Performance of all 60 selected strategies with respect to time. The
vertical axis list the different strategies. The performance is given by a boxplot of
all Marks obtained for the models the strategy is able to solve on the horizontal
axis. A Mark reveals the performance with respect to the best strategy.
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The wide range of Marks show that the performance of all selected strategies
varies. All strategies has some set of models for which the strategy is effective
and another set of models where another strategy is highly recommended. This
suggests that a dynamic approach of selecting a strategy is preferred above a
fixed strategy.

7.5 Strategy Performance - Peak Size

Like the performance with respect to time, the performance of each strategy
with respect to peak size was investigated. The peak size correlates to the
amount of memory needed to solve a model. The performance is measured
using Marks as introduced in the previous section. The results are depicted
in Figure 4. Table 13 contains some values extracted from Figure 4 for eight
strategies. A complete overview of the results is listed in Appendix B.

Strategy
Mark

Minimum Mean Maximum

sat-like(1)-c 1.00 1.15 9.82
sat-like(1)-cp 1.00 1.15 9.82
sat-like(1)-bp 1.00 1.16 9.82
sat-like(5)-c 1.00 1.18 6.72
sat-loop(20)-b 1.00 2.66 188.21
sat-loop(2147483647)-b 1.00 4.09 60.26
none-b 1.00 4.21 60.26
sat-like(2147483647)-b 1.00 4.22 60.26

Table 13: Performance of some strategies with respect to peak size as given
in Figure 4. For each strategy the performance is measured using all Marks
obtained for the models the strategy is able to solve. A Mark reveals the
performance with respect to the best strategy. The minimum, mean and
maximum of all Marks is listed for a strategy.

Overall, it can be observed that there exist a few good strategies with respect
to peak size. Most notable, any strategy using sat-like with a saturation
granularity of 1 performs well. For most models the peak size is small.
Considering the mean Mark , fixing a strategy may still suffer from a higher
memory usage, but on average this can be limited to only 15% more memory.

However, there is still room for improvement. All strategies have some outliers.
That means that for some models the memory usage is significantly more than
needed by some other more efficient strategy. Even for the best strategies, there
exists some models that may use more than 9 times as much memory as the
most memory efficient strategy.

To summarize, a dynamic approach for the selection of strategy with respect to
memory usage is less necessary than with respect to time. Out of the selected
strategies some perform overall well. Still, selecting the best strategy per model,
can improve the performance on a set of models. Each fixed strategy has a set
of models is not effective on. Therefore a dynamic approach can improve the
solution of models with respect to memory usage.

45



Figure 4: Performance of all 60 selected strategies with respect to peak size.
The vertical axis list the different strategies. The performance is given by a
boxplot of all Marks obtained for the models the strategy is able to solve on
the horizontal axis. A Mark reveals the performance with respect to the best
strategy.
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7.6 Conclusion

In this chapter it was discussed how the 60 selected strategies performed on 432
selected models. The data shows that no strategy is capable of solving all of the
432 selected models. For each strategy there exists a set of models which could
not be solved, but are solvable by other strategies.

The performance with respect to time varies for all selected strategies. All
strategies are capable of solving a set of models quickly compared to the other
strategies. However, for all strategies there is also a set of models which is solved
very slowly compared to the other strategies.

The performance with respect to peak size is more stable for the selected
strategies. Some strategies perform overall well. Still, for each strategy there
exist a set of models where the amount of used memory is significantly larger
than necessary. So for each strategy there are some models which can be solved
by another strategy which only uses a fraction of the required memory.

Based on the performance with respect to time and peak and the number of
models solved, it can be concluded that the selection of the strategy matters.
If a bad strategy is selected, the amount of time or memory may significantly
larger than necessary. Furthermore, the model may be unsolvable, even though
it can be solved by another strategy.

47



8 Classifier Evaluation

This chapter discusses the creation and evaluation of ten classifiers created to
predict an appropriate strategy. The classifiers were created using scikit-learn,
which is a library for machine learning for Python. Section 8.1 explains
which data was used to train and evaluate the classifiers. Section 8.2 specifies
which metrics were used to evaluate the results of the classifiers. Section 8.3
discusses the different algorithms available and states which algorithm was the
most suitable to use for the ten classifiers. Section 8.4 and 8.5 discusses the
evaluation of the classifiers using metrics and the performance data respectively.
A conclusion of the results is given in section 8.6.

8.1 Training Data

The performance data collected from running tests on the computer cluster was
used to train and validate classifiers. The refined data consisted of 432 different
PNML and DVE models (see section 7.2). Six models could not be used as
either training or validating data. scikit-learn requires for each data point
that the values of all features are known. The six models that are not used,
missed at least one value for one of the eleven selected features. These models
were removed from the data.

The other 426 models were used for training and validating the classifier. As
mentioned in section 6.3.4 ten classifiers were trained. The classifiers had to
predict the best strategy for a given model with respect to a given aspect.
These aspects are elapsed time and peak size. Five classifiers were trained to
predict the strategy with the lowest solving time for a given model. The other
five classifiers were trained to predict the strategy with the smallest peak size
for a given model.

Each classifier was trained with a fixed set of models and evaluated with the
remaining models. Per aspect, five different sets were created. The training
data of the one set consisted of only the PNML models and were evaluated
using the DVE models. Another set was trained the other way around. The
other three sets were trained with a random selection of 70% of the models.
The remaining 30% of the models were used for evaluation. These three sets
are mostly used during our research. The distribution of the PNML and DVE
models in each set is given in Tables 14 and 15.

Set
Training data Validation data

PNML models DVE models PNML models DVE models

1 158 150 57 61
2 151 151 64 60
3 136 158 79 53
4 215 0 0 211
5 0 211 215 0

Table 14: Distribution of the models used for training and evaluating the five
classifiers trained to predict a strategy with a low solving time.
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Set
Training data Validation data

PNML models DVE models PNML models DVE models

1 171 137 44 74
2 148 145 67 66
3 148 136 67 75
4 215 0 0 211
5 0 211 215 0

Table 15: Distribution of the models used for training and evaluating the five
classifiers trained to predict a strategy with a low peak size.

8.2 Metrics Selection

The classifiers created in our research handle multiclass classification problems.
Therefore the metrics as defined in section 3.5.3 are applicable for the evaluation
of the created classifiers. The metrics PrecisionM and RecallM are used to
evaluate the average performance of classifying instances per class. F -MeasureM
is used to combine PrecisionM and RecallM to provide a single verdict. Unless
specified otherwise, F -MeasureM uses 1 as value for β.

AccuracyM is not used, since its value is usually high for large confusion matrices.
Consider a confusion matrix of n×n with a 1 in each entry. The corresponding

AccuracyM equals
(n2−2n+2)

n2 . For a large n this value is close to 1. That value is
assigned to a classifier which randomly assigns classes. This classifier obviously
has a poor performance, since only 1 out of n of the classifications is correct.
Since 1 is the maximum value for AccuracyM , it is hard to use this metric to
distinguish whether the performance of the created classifier is acceptable.

Furthermore, considering the metrics using micro-averaging, only Accuracyµ
is used to evaluate a classifier. The other three metrics do not provide different
values as explained in Appendix A. Therefore it is sufficient to consider only
Accuracyµ.

8.3 Classification Algorithm Selection

There is a wide variety of algorithms available to create the classifiers.
scikit-learn offers different classification algorithms by providing ten
predefined classifiers:

• BernoulliNB()

• DecisionTreeClassifier()

• GaussianNB()

• KNeighborsClassifier()

• LinearSCV()

• MultinomialNB()

• NuSCV()
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• RadiusNeighborsClassifier()

• SCV()

• SGDClassifier()

The classifiers BernoulliNB(), GaussianNB(), LinearSCV(), MultinomialNB(),
NuSCV() and SGDClassifier() could not be used, because they generated errors
during training. The performance of the other classifiers is listed in Table 16.
The performance equals the average performance on set 1, 2 and 3 listed in
Table 14. For some classifiers multiple variants15 were evaluated to discover the
most suitable algorithm.

Classification Algorithm RecallM PrecisionM F -MeasureM Accuracyµ

DecisionTreeClassifier() 0.050 0.081 0.062 0.138
KNeighborsClassifier(

weights="uniform")
0.066 0.113 0.083 0.142

KNeighborsClassifier(

weights="distance")
0.039 0.065 0.049 0.093

RadiusNeighborsClassifier(

radius=4e7,

weights="uniform")
0.032 0.139 0.052 0.229

RadiusNeighborsClassifier(

radius=4e7,

weights="distance")

0.033 0.114 0.051 0.201

SVC(kernel="rtg",

decision function

shape=None)
0.032 0.229 0.056 0.229

SVC(kernel="rtg",

decision function

shape="ovo")
0.032 0.229 0.056 0.229

SVC(kernel="rtg",

decision function

shape="ovr")
0.032 0.229 0.056 0.229

SVC(kernel="sigmoid",

decision function

shape=None)
0.032 0.229 0.056 0.229

SVC(kernel="sigmoid",

decision function

shape="ovo")
0.032 0.229 0.056 0.229

SVC(kernel="sigmoid",

decision function

shape="ovr")
0.032 0.229 0.056 0.229

Table 16: Average performance of eleven different classification algorithms in
scikit-learn on set 1, 2 and 3 of Table 14. The performance is measured using
the selected metrics for multiclass classifiers.

15Details of the values for the parameters of the classifiers can be found on http://

scikit-learn.org/0.17/modules/classes.html, accessed October 2016. Other kernels than
rtg and sigmoid for SVC() produced a time out.
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Based on these results it can be observed that all variants of SVC() perform
equally well. The KNeighborsClassifier(weights="uniform") is better than
DecisionTreeClassifier() and the algorithm called KNeighborsClassifier(

weights="distance"). SVC() performs better than both variants of
RadiusNeighborsClassifier().

So KNeighborsClassifier(weights="uniform") and SVC() are the most
appropriate. The RecallM of KNeighborsClassifier(weights="uniform")

is twice the RecallM of SVC(), but the PrecisionM is less than half of the
PrecisionM of SVC(). The Accuracyµ of SVC() is significantly better than the
Accuracyµ of KNeighborsClassifier(weights="uniform"). Therefore SVC()

was selected as most suitable classifier for our research. Since all variants of
SVC() perform equally well, the default SVC() (= SVC(kernel="rtg",decision

function shape=None)) was selected.

8.4 Results - Metrics

The ten classifiers were evaluated using the selected metrics as explained in
section 8.2. The classes were defined as the 60 selected strategies. The goal
of each classifier is to predict the most suitable strategy with respect to either
low solving time or a low peak size given the features of model. A classification
is correct if the predicted strategy equals the best strategy for a model. The
results of the classifiers created for the time and peak size aspect are listed in
Table 17 and 18 respectively. The first row of both tables summarizes the results
of set 1, 2 and 3. These values are referred as the average performance of the
created classifiers.

Set RecallM PrecisionM F -MeasureM Accuracyµ

Average of 1, 2 and 3 0.032 0.229 0.056 0.229
1 0.032 0.271 0.058 0.271
2 0.036 0.234 0.062 0.234
3 0.027 0.182 0.047 0.182
4 0.032 0.066 0.043 0.066
5 0.024 0.088 0.038 0.088

Table 17: Performance of the classifiers trained and verified with the sets
listed in Table 14. The performance is measured using the selected metrics for
multiclass classifiers.

In order to put the results in perspective it is reasonable to compare the results
with a random classifier. A random classifier randomly assigns a class without
considering the available data. The performance of a random classifier for the
given multiclass classification problem is a 60 × 60 confusion matrix where all
entries have the value 1. Based on the definition of the metrics as given in
section 3.5.3, the random classifier scores 0.017

(
= 1

60

)
for RecallM , PrecisionM ,

F -MeasureM and Accuracyµ.
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Set RecallM PrecisionM F -MeasureM Accuracyµ

Average of 1, 2 and 3 0.032 0.218 0.056 0.218
1 0.030 0.195 0.052 0.195
2 0.038 0.226 0.066 0.226
3 0.028 0.232 0.050 0.232
4 0.030 0.275 0.055 0.275
5 0.024 0.121 0.041 0.121

Table 18: Performance of the classifiers trained and verified with the sets
listed in Table 15. The performance is measured using the selected metrics for
multiclass classifiers.

Compared to the random classifier, the trained classifiers perform significantly
better. The PrecisionM and the Accuracyµ is on average 13× better than the
random classifier. The RecallM is on average twice as high as the RecallM of
the random classifier.

However, the performance of the classifiers is not good either. An Accuracyµ of
0.229 indicates that 77.1% of the models is misclassified. So, over three out of
every four models is assigned to the wrong class. Likewise, the low values for
RecallM and PrecisionM suggest that the models are poorly recognized by the
created classifiers and are mostly assigned to the wrong class.

The classifiers perform worse if they are trained with only one type of model
(the classifiers trained with set 4 or 5). The RecallM is lower and a significant
drop in both PrecisionM and Accuracyµ can be observed. It should be noted
that the classifier with respect to peak size trained and evaluated with set 4 is
an exception. The output produced by the classifier showed that for each model
sat-like(5)-cp was predicted. As this strategy is the best strategy for a large
number of DVE models, the metrics are better than the other three classifiers
trained with either set 4 or 5.

8.5 Results - Appropriateness

The results presented in the previous section have one major limitation. The
results are restricted to how well the classifiers are able to predict the best
strategy given a model. It is not necessary to come up with the absolute best
strategy of model. It is sufficient when the predicted strategy is almost as
good as the best strategy for a given model. Therefore the classifiers were also
evaluated by comparing the performance of the predicted strategy with the
performance of the best strategy for each model.

For each model the predicted strategy was evaluated using the performance
data. If the data reveals the predicted strategy is not able to solve the model
a failure is recorded. Otherwise, the performance is compared with the best
strategy for that model. The difference is expressed using the metric Mark as
defined in section 7.4. The overall performance of the classifier is defined by the
number of models is able to solve and the average of the Mark ’s for the solvable
models.
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For each strategy the same evaluation was performed by fixing the predicted
strategy. This reveals how a fixed strategy performs on the validation data
of the training sets. These results were compared with the evaluation of the
classifiers.

The evaluation of the classifiers and fixed strategies are listed in Table 19 with
respect to time and Table 20 with respect to peak size. The values are averages
of the evaluation using the validation data of set 1, 2 and 3. Both tables only
show the performance of the classifiers, the three best fixed strategies and three
worst fixed strategies. The complete evaluation is listed in Appendix C. The
strategy dynamic is used to indicate the three classifiers trained with set 1, 2
and 3.

Rank Strategy Solved models Average Mark

1 sat-like(5)-cp 97.33% 1.60
2 sat-like(10)-cp 96.52% 1.62
3 sat-like(20)-cp 96.26% 2.60

53 dynamic 82.89% 1.75
59 sat-loop(1)-cp 76.74% 3.30
60 sat-loop(1)-c 76.47% 3.92
61 sat-loop(1)-b 76.47% 4.96

Table 19: The performance of classifiers compared to the performance of a fixed
strategy with respect to time. The rank is determined by the number of models
in the validation data the strategy is able to solve. The average Mark shows
how well the strategy is capable of solving the models it is able to solve.

Rank Strategy Solved models Average Mark

1 sat-like(5)-cp 93.13% 1.20
2 sat-like(10)-cp 92.37% 1.30
3 sat-like(10)-c 92.11% 1.30

55 dynamic 73.28% 1.18
59 sat-loop(1)-cp 70.74% 3.36
60 sat-loop(1)-b 70.48% 3.48
61 sat-loop(1)-bp 69.47% 3.38

Table 20: The performance of classifiers compared to the performance of a fixed
strategy with respect to peak size. The rank is determined by the number of
models in the validation data the strategy is able to solve. The average Mark
shows how well the strategy is capable of solving the models it is able to solve.

The results show that the classifiers perform worse than most fixed strategies.
With respect to time, 52 different strategies are able to solve more models than
the strategies predicted by the classifiers. The number of models solved is 6%
higher than the worst fixed strategy, but 14% lower than the best strategy. For
the 83% of the models that can be solved, the classifiers predict bad strategies;
the predicted strategies need 75% more time to solve than the best strategies for
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these models. This is worse than the 60% penalty of choosing a fixed strategy,
which is able to solve more models.

With respect to peak size, 54 different strategies are able to solve more models
than the strategies predicted by the classifiers. The number of models solved by
the classifier is almost equal to the worst fixed strategy. The best fixed strategy
can solve 20% more models than the strategies predicted by the classifiers. For
the 73% of the models that can be solved, the classifiers predict an appropriate
strategy; the predicted strategies only need 18% more memory due to the peak
size than the best strategy for these models.

The evaluation of the classifiers trained with set 4 and 5 show similar results.
Since these four classifiers are trained and validated with a distinct selection
of models, the evaluation of these classifiers are not incorporated in the data
presented in Table 19 and 20.

8.6 Conclusion

The data collected from running experiments on the cluster was used to extract
data entries for 426 different models. Ten classifiers were trained using a
selection of these entries with SVC() provided by scikit-learn. Each classifier
was evaluated using the data entries of the models it was not trained with.

The metrics for multiclass classifiers show that the trained classifiers perform
better than a random classifier. However, the results are not good either. The
Accuracyµ of the classifiers is less than 25% indicating that more than three of
out of four models is misclassified. The values of the other metrics are below
25% as well, suggesting that the classifiers are not able to predict the best
strategy for a model accurately. The classifiers trained with only one type of
model perform worse than the classifiers trained with a selection of both PNML
and DVE models.

Since the metrics only indicate how well the classifiers are able to predict the best
strategy, it was also evaluated how appropriate the predicted strategies were.
The predicted strategies of the classifiers were compared with the best strategy
for each model. The overall performance of the classifiers was compared to the
performance of selecting a fixed strategy. Most fixed strategies perform better,
because they can solve significantly more models. The predicted strategies by
the classifier trained with respect to a low solving time were not accurate enough
to beat a fixed strategy. Some fixed strategies exist which solve models faster,
while solving more models. The strategy predicted by the classifier trained with
respect to a low peak size were appropriate. The classifiers needed about 18%
more memory. However, there exist fixed strategies which the same performance
which are able to solve more models.

Overall, the trained classifiers did not outperform the fixed strategies. Currently,
there are some strategies which perform overall better than the trained classifiers.
Although it was shown that each strategy has some models it is not effective
on, on average it is better to fix a strategy for a set of models than using the
trained classifiers.
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9 Feature Relevance

In this chapter the relevance of the eleven selected features is discussed. The
prediction of a strategy by a classifier was based on a total of eleven features
as listed in section 6.1.2. It is not known whether each feature contributes
to the prediction of a strategy. The goal is to establish which set of features
are necessary for the prediction of a strategy and which features are redundant.
Training a classifier with fewer features may improve the quality of the classifier,
since the redundant features can negatively influence the performance of the
classifier.

Section 9.1 explains the approach taken to investigate the relevance of the eleven
selected features. Section 9.2 discusses the results for the classifiers created with
respect to time. Section 9.3 discusses the results for the classifiers created with
respect to peak size. The results are summarized in section 9.4.

9.1 Approach

The ten classifiers created during our research were created using all eleven
selected features as specified in section 6.1.2. In order to determine whether a
feature is relevant, multiple classifiers were trained using different subsets of the
eleven features.

These newly created classifiers were trained using the three sets consisting of a
random selection of 70% of the models. The classifiers trained with respect to
time were trained using set 1, 2 and 3 as listed in Table 14, while the classifiers
trained with respect to peak size were trained using set 1, 2 and 3 as listed
in Table 15. In this way, the performance of the created classifiers could be
compared with the existing classifiers created using all eleven features.

Due to the large number of subsets16 to be investigated, the evaluation of the
classifiers was limited to the evaluation using multiclass metrics. The metrics
RecallM , PrecisionM and Accuracyµ were used to evaluate the performance of
the classifiers, since these metrics were used to evaluate the classifiers created
using all eleven features (see section 8.2).

The performance of three classifiers created using a specific subset of features
is averaged and compared to the average performance of the three classifiers
created using all eleven features. This comparison is categorized using three
groups:

Better = The performance of the classifiers using the subset is better than
the performance of the classifiers using all features. At least one metric for
the classifiers using the subset is higher than the corresponding metric for
the classifiers using all features, while the other metrics are equal.

Equal = The performance of the classifiers using the subset is equal to the
performance of the classifiers using all features. For each metric, the value

16There exist 211−2 = 2046 different proper subsets of any set of eleven elements, excluding
the empty set.
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for the metric for the classifiers using the subset is equal to the value for the
metric for the classifiers using all features.

Worse = The performance of the classifiers using the subset is worse than
the performance of the classifiers using all features. At least one metric
is worse for the classifiers created using the subset than for the classifiers
created using all features. In most cases, all metrics for the classifiers using
the subset are less than or equal to the metrics for the classifiers using all
features.

In the groups Better and Equal , each subset is either minimal or non-minimal.
A subset x is minimal if there does not exist a subset of x with the same
performance as the performance of classifiers created with subset x. A minimal
subset contains a combination of features which are all necessary to predict a
strategy, while a non-minimal subset contains at least one redundant feature.

9.2 Results - Time

For each subset the performance of the three classifiers was determined. The
results are listed in Table 21 grouped by the number of features in each subset.

Number of
features

Better
Equal

Worse
Minimal Non-minimal

1 0 0 0 11
2 0 18 0 37
3 0 6 103 56
4 0 0 272 58
5 0 0 419 43
6 0 0 449 13
7 0 0 322 8
8 0 0 164 1
9 0 0 55 0

10 0 0 11 0

Table 21: Performance of the classifiers trained with subsets compared to the
performance of the classifiers created using all features with respect to time.
The subsets are grouped by the number of features in the set.

The last row in Table 21 indicates that each feature is redundant with respect
to the ten other features. Any classifier created using only ten out of the eleven
selected features performs as well as a classifier created using all eleven features.
Likewise, any classifier created using only nine out of the eleven selected features
performs as well as a classifier created using all eleven features.

There exist only one subset with eight features which is not sufficient; any other
subset of eight features has a better performance. This subset is {State Vector
Length, Groups, Bandwidth, Average Wavefront , RMS Wavefront , NES , WES ,
NWES}. This subset is remarkable, since it suggests that any of the features
Profile, Span or ES is needed to predict a strategy. Furthermore, all eight
subsets of this subset consisting of seven features are in the category Worse
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too. Thirteen out of twenty-two possible subsets of this subset consisting of six
features are insufficient too. The other fifteen subsets are non-minimal subset
in the category Equal . This data confirms that redundant features may worsen
the performance of a classifier.

On the other hand, it can be observed that none of the eleven features by
itself is able to predict the strategy as well as multiple features. All subsets
consisting of one feature perform worse than a classifier trained with all eleven
features.

There exist eighteen subsets consisting of two features which is able to perform
as well as the classifier created with all features. These subsets are minimal by
definition. These subsets consist of the following combinations of features:

• {State Vector Length, Profile}

• {State Vector Length, Span}

• {State Vector Length, ES}

• {Groups, Profile}

• {Groups, Span}

• {Groups, WES}

• {Bandwidth, Profile}

• {Bandwidth, Span}

• {Bandwidth, ES}

• {Bandwidth, WES}

• {Profile, Span}

• {Profile, Average Wavefront}

• {Profile, RMS Wavefront}

• {Profile, ES}

• {Profile, WES}

• {Span, ES}

• {Span, WES}

• {ES , WES}

Interestingly, all but two subsets contain at least one of the features Profile,
Span or ES . But the subsets {Groups, WES} and {Bandwidth, WES} are
good subsets too, since they achieved the same performance as the classifiers
created with all eleven features. The features NES and NWES do not occur in
any minimal subset consisting of two features.
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Considering three or more features, only six new minimal subsets did arise.
All other subsets which perform as well as the classifiers using all features are
non-minimal and contain redundant features. The six minimal subsets with
more than two features are:

• {State Vector Length, Average Wavefront , WES}

• {State Vector Length, RMS Wavefront , WES}

• {Groups, Average Wavefront , ES}

• {Groups, RMS Wavefront , ES}

• {Groups, ES , NES}

• {Groups, ES , NWES}

So, in total 1819 different subsets exist which perform as well as the classifiers
created using all eleven features. No subset exists which achieved a better
performance than the classifiers created using all features. There exist 24
minimal subsets, where all eleven features are present in at least one subset.
This suggest that only a few out of the eleven features are necessary to predict
a strategy, but that any of the features can be used if the other features are
chosen accordingly.

9.3 Results - Peak Size

For each subset the performance of the three classifiers was determined. The
results are listed in Table 22 grouped by the number of features in each subset.

Number of
features

Better Equal
Worse

Minimal Non-minimal Minimal Non-minimal

1 0 0 1 0 10
2 0 0 19 1 35
3 0 0 5 99 61
4 6 0 0 277 47
5 0 4 0 424 34
6 0 1 0 433 28
7 0 0 0 322 8
8 0 0 0 165 0
9 0 0 0 55 0

10 0 0 0 11 0

Table 22: Performance of the classifiers trained with subsets compared to the
performance of the classifiers created using all features with respect to peak size.
The subsets are grouped by the number of features in the set.

The last row in Table 22 shows that any ten of the eleven selected features is
sufficient to predict a strategy, since the performance is equal to the classifiers
created using all eleven features. So any eleventh feature is redundant with
respect to the other ten features. Likewise, any subset consisting of eight or
nine features is sufficient to train a classifier with a performance equal to the
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performance of the classifiers created with all features.

Most classifiers trained with a subset of seven features did perform as well
as the classifiers trained with all features. The eight subsets which worsen the
performance are subsets of the subset {State Vector Length, Groups, Bandwidth,
Average Wavefront , RMS Wavefront , NES , WES , NWES}. These subsets
are the same subsets which worsen the performance of the classifiers trained
with respect to time. Furthermore, 27 out of the 28 subsets consisting of six
features with a performance worse than the classifiers created using all features
are a subset of {State Vector Length, Groups, Bandwidth, Average Wavefront ,
RMS Wavefront , NES , WES , NWES}. So, this suggests that the features
Profile, Span and ES are relevant for predicting a strategy which has a low
peak size during state space exploration.

But the results show that there exists a single feature which is able to predict
a strategy as well as a classifier created with all features. This single feature
is NES . The other classifiers trained with only one of the ten other features
perform worse than the classifiers created with all features.

Considering the subsets consisting of two features, twenty different subsets have
a performance equal to the classifiers created using all eleven selected strategies.
However, only one of these subsets is non-minimal, implying that combining
NES with only one feature can maintain the performance of a classifier created
by only using the feature NES . Creating a classifier with the feature NES and
any one of the other nine features will worsen the performance. The nineteen
minimal subsets consisting of two features are the following combinations of
features:

• {State Vector Length, Profile}

• {State Vector Length, Span}

• {State Vector Length, ES}

• {Groups, Profile}

• {Groups, Span}

• {Groups, WES}

• {Bandwidth, Profile}

• {Bandwidth, Span}

• {Bandwidth, ES}

• {Profile, Span}

• {Profile, Average Wavefront}

• {Profile, RMS Wavefront}

• {Profile, ES}

• {Profile, WES}
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• {Span, Average Wavefront}

• {Span, RMS Wavefront}

• {Span, ES}

• {Span, WES}

• {ES , WES}

Most of these subsets correspond to the minimal subsets consisting of two
features discovered for the aspect time. Only one of these subsets did not
contain the features Profile, Span or ES , namely subset {Groups, WES}. The
feature NWES does not occur in any of these minimal subsets17.

The subsets consisting of three features contain 104 different subsets which
perform equally well as the classifiers created using all features. Only five of
these subsets are minimal. These subsets are the following combinations of
features:

• {Bandwidth, Average Wavefront , WES}

• {Bandwidth, RMS Wavefront , WES}

• {Bandwidth, State Vector Length, WES}

• {Average Wavefront , Groups, ES}

• {RMS Wavefront , Groups, ES}

It can be observed that the feature NWES is not contained in any of these
minimal subsets, while the other ten features do occur in some minimal subset
with three or less features.

Considering the subsets consisting of four or more features, eleven subsets create
classifiers with a better performance than the classifier created by using all
features. Six of these subsets are minimal. These subsets are the following
combinations of features:

• {Groups, Bandwidth, Average Wavefront , RMS Wavefront}

• {Groups, Bandwidth, Average Wavefront , NES}

• {Groups, Bandwidth, Average Wavefront , NWES}

• {Groups, Bandwidth, RMS Wavefront , NES}

• {Groups, Bandwidth, RMS Wavefront , NWES}

• {Groups, Bandwidth, NES , NWES}

• {Groups, Bandwidth, Average Wavefront , RMS Wavefront , NES}

• {Groups, Bandwidth, Average Wavefront , RMS Wavefront , NWES}
17Neither does the feature NES , but the subset {NES} is already a smaller minimal subset

in the category Equal .
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• {Groups, Bandwidth, Average Wavefront , NES , NWES}

• {Groups, Bandwidth, RMS Wavefront , NES , NWES}

• {Groups, Bandwidth, Average Wavefront , RMS Wavefront , NES , NWES}

The performances of the classifiers created by any of these eleven subsets are
equal and are listed in Table 23. Each subset contains the features Groups
and Bandwidth and at least two features of the the set {Average Wavefront ,
RMS Wavefront , NES , NWES}. Compared to the classifiers created by all
features the RecallM and Accuracyµ are slightly higher (increase of 0.5%), but
the PrecisionM is notably 0.19 higher. The increase in PrecisionM corresponds
to an average increase of 19% in Precision per class. Unfortunately, all of
these subsets perform worse than the classifiers created with all features with
respect to time. So, these subsets offer a classifier which is better in predicting
strategies with a low peak size, while simultaneously worsen the time needed
for the strategies to solve a set of models than the classifiers created using all
eleven features.

Feature set RecallM PrecisionM Accuracyµ

{Groups, Bandwidth} and at least two
features of set {Average Wavefront ,
RMS Wavefront , NES , NWES}

0.037 0.408 0.223

All eleven selected features 0.032 0.218 0.218

Table 23: Performance of the classifiers created using some subsets compared
to the performance of the classifiers created using all features with respect to
peak size.

Out of the 2046 different subsets, 1818 different subsets can be used to create a
classifier with a performance equal to the performance of the classifiers created
by using all eleven features. Only 25 of these subsets are minimal while the
other subsets contain at least one redundant feature. These minimal subsets
consist of one up to three different features. There are eleven different subsets
which improve the performance of the classifier with respect to performance
of the classifier created using all features. However, these subsets worsen the
performance of the classifier created using all features with respect to time.
The results show that only a few out of the eleven selected features need to be
selected. Any feature can be used if the other features are selected accordingly.

9.4 Conclusion

For both aspects time and peak size three classifiers were created using a subset
of the eleven selected features. All 2046 different subsets per aspect were
investigated. Over 85% of the different subsets created, the classifiers created
using the subset did not perform differently than the classifiers using all features.
For both aspects time and peak size only 24 and 25 different minimal subsets
exist, respectively. These minimal subsets consist of one up to three features.
The features Profile, Span and ES are the most occurring features, while feature
NWES is completely absent in these minimal subsets.
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The classifiers created using a subset did not improve the classifier with respect
to time. Considering peak size, eleven subsets were discovered which could
improve the prediction. However these subsets did worsen the time need for
the predicted strategies. Each of these subsets contains the features Groups
and Bandwidth and at least two features of the the set {Average Wavefront ,
RMS Wavefront , NES , NWES}. The improvement is most notable reflected
by the increase in PrecisionM , which is almost twice as high.

So, for both aspects only a few features are needed for a classifier to predict a
strategy, while adding more features is in most cases redundant or may worsen
the performance of the classifier. Any of the eleven selected features can be
used if the other features are chosen accordingly. Hence, the subset of the
eleven selected features that is sufficient can be adjusted to the features the
user is willing to calculate.
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10 Conclusion And Future Work

State space methods are a popular method to perform formal verification. Due
to the state space explosion problem, many different state space methods did
arise to make the methods feasible for larger models. However, it is up to the
user to select a strategy, namely the way the state space methods are applied,
for a given model under verification. If an inappropriate strategy is chosen, the
model may either be unsolvable or lead to a waste of resources. The waste of
resources can be noticed by a slow computation time or excessive amount of
memory usage compared to another method to solve a model.

Therefore, we want to improve state space methods by moving the responsibility
of selecting a strategy from the user to the model checking tools itself. A model
checking tool should determine a strategy based on the information embedded
in a given model specified by features. Our research aimed to investigate to
what extent it is possible to derive a suitable strategy for a given model based
on the features of a model.

During the research a large number of runs were performed to collect the
performance of 60 selected strategies on 784 different PNML and DVE models
using LTSmin. For each model it was examined how fast each strategy was able
to solve the model. Furthermore, for each model and strategy the peak size was
recorded. The peak size correlates to the minimum amount of memory needed
to solve a model.

The data shows that for all solvable models, none of the strategies was capable
of solving all models. Furthermore, each strategy was appropriate for some
set of models, while it was unsuitable for another set of models. These results
suggest that the strategy selection for a model should be dynamic and no fixed
strategy suitable for all models can be chosen beforehand. However, since only
a selection of strategies could be examined, the results do not rule out another
strategy to be superior. It is an open issue whether there exists a strategy which
is better than the examined strategies for the selected models.

Based on the collected data, the best strategy per model was determined. Using
machine learning techniques, several classifiers were created based on eleven
different features of a model. The goal of the classifiers was to predict the best
strategy using the features of a given model. The predictions of the classifiers
were compared with the collected data for each model. The results show that
overall the classifiers were not able to predict appropriate strategies. Selecting a
fixed strategy performs overall better in terms of either time or memory needed
to solve the models.

The relevance of each feature was established by creating more classifiers using
a subset of the eleven selected features. The performance of these classifiers was
compared to the classifiers created using all features. Based on the comparisons,
only one up to three specified features are necessary for a classifier to predict a
strategy. Adding more features is redundant since the added features did not
improve the classifier. However none of the features is completely redundant;
any of the eleven selected features can be used in combination with other specific
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features to create a classifier with the performance equal to the classifier created
with all features. No subset was discovered which lead to a classifier with a
better performance with respect to both time and peak size.

Although the performance of the created classifiers is poor, the analysis of the
relevance of each feature shows that each feature contains some information
which could be exploited to derive an appropriate strategy for a model. Our
research gained insight in the performance of the strategies and was a first
attempt to investigate the relation between the models and their best strategies.
During the research many scripts were created which could be reused to further
investigate the performance of strategies and the relation between models and
strategies.

Future work mainly consists of improving the ability to predict an appropriate
strategy using information of the model itself. The classifiers in our research
were trained with little data compared to number of classes. 300 instances in the
training data is not much data for a classifier to distinguish 60 classes. More
models need to be examined, such that more data becomes available for the
classifiers to train with.

Another possibility to improve the classifiers is to revisit the classification algo-
rithm used by the classifiers. A more complex method like neural networks can
be more suitable for the given classification problem, leading to an improvement
of the performance of the classifiers. The classification problem could also
be split over multiple smaller classification problems. The main classification
problem can be solved in multiple steps by these smaller classification problems.
Since the classifiers for the smaller classification problems may achieve better
performance, the main classification problem can be easier to solve.

Considering the features, more different features can be examined. Only two or
three features were necessary for the classifier, while the remaining eight or nine
features are redundant. Other features may give more or different information
usable by the classifier. Furthermore, the eleven selected features were limited
to be generic, such that the results were applicable for a wide array of models.
Model specific features may enhance the performance of the classifiers for a
selected model type.

Another possibility for further work is to examine more or other strategies.
The strategies were constrained in our research, since it was not attainable to
investigate more strategies. Additional strategies can be considered by adding
them to the investigation or replacing poor performing strategies with new
strategies.

The created classifiers are currently not implemented in a model checking tool.
When the performance of a classifier achieves reasonable quality, it still has
to be implemented in existing model checking tools. The main challenge is to
determine the values of features efficiently. If it is computationally expensive to
determine the value for a specific feature, the classifier may actually worsen the
state space exploration. There exist a tradeoff between finding a better strategy
and accepting a non-optimal strategy for any given model.
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A Metrics Using Micro-averaging

This appendix shows that the metrics Recallµ, Precisionµ, F -Measureµ and
Accuracyµ define the same metric for any fixed confusion matrix. Section A.1
defines the functions and symbols used in this appendix. Sections A.2 and
A.3 show that Recallµ, Precisionµ and F -Measureµ define the same metric.
Section A.4 shows Accuracyµ is a proper replacement of Recallµ, Precisionµ or
F -Measureµ. This appendix concludes with section A.5 which discusses some
edge cases about the proofs in sections A.2, A.3 and A.4.

A.1 Definitions

N = The set of natural numbers including 0.

R = The set of real numbers. Greek lower-case characters are used to
indicate members of this set.

A = A confusion matrix. A ∈ Nn×n where n ∈ {s ∈ N | s ≥ 2}.

Aij = The value of the entry in row i and column j in A.

The following functions are defined on A:

TPi (A) = Aii

FPi (A) =

i−1∑
k=1

Aki +

n∑
k=i+1

Aki

FNi (A) =

i−1∑
k=1

Aik +

n∑
k=i+1

Aik

Recallµ (A) =

n∑
i=1

TPi (A)

n∑
i=1

(TPi (A) + FNi (A))

Precisionµ (A) =

n∑
i=1

TPi (A)

n∑
i=1

(TPi (A) + FPi (A))

F -Measureµ (A, β) =

(
β2 + 1

)
· Precisionµ (A) · Recallµ (A)

β2 · Precisionµ (A) + Recallµ (A)

Accuracyµ (A) =

n∑
i=1

Aii

n∑
i=1

n∑
j=1

Aij

The function parameters are omitted if they are known in the given context.
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A.2 Recallµ equals Precisionµ

In order to show that Recallµ equals Precisionµ it is sufficient to show that∑n
i=1 (TPi + FNi) equals

∑n
i=1 (TPi + FPi) for any confusion matrix A.

Proof:

n∑
i=1

(TPi + FNi) =

n∑
i=1

(
Aii +

i−1∑
k=1

Aik +

n∑
k=i+1

Aik

)
=

n∑
i=1

n∑
k=1

Aik =

n∑
k=1

n∑
i=1

Aik =

n∑
k=1

(
Akk +

k−1∑
i=1

Aik +

n∑
i=k+1

Aik

)
=

n∑
k=1

(TPk + FPk ) =

n∑
i=1

(TPi + FPi)

Since
∑n
i=1 (TPi + FNi) equals

∑n
i=1 (TPi + FPi), Recallµ equals Precisionµ

for any confusion matrix A by definition.

A.3 F -Measureµ equals Recallµ

Given that Precisionµ equals Recallµ by the proof of section A.2, F -Measureµ
equals Recallµ for any weight β by definition.

Proof:

F -Measureµ =

(
β2 + 1

)
· Precisionµ · Recallµ

β2 · Precisionµ + Recallµ
=

(
β2 + 1

)
· Recallµ · Recallµ

β2 · Recallµ + Recallµ
=(

β2 + 1
)
· Recallµ · Recallµ

(β2 + 1) · Recallµ
= Recallµ

A.4 Accuracyµ equals Recallµ

The previous two sections show that Recallµ, Precisionµ and F -Measureµ define
the same metric for any confusion matrix A. This section shows that Accuracyµ
equals Recallµ. Therefore, Accuracyµ can be used instead of Recallµ, Precisionµ
or F -Measureµ.

Proof:

1)

n∑
i=1

Aii =

n∑
i=1

TPi

2)

n∑
i=1

n∑
j=1

Aij =

n∑
i=1

Aii +

i−1∑
j=1

Aij +

n∑
j=i+1

Aij

 =

n∑
i=1

(TPi + FNi)

Combining 1 and 2 gives:

Accuracyµ =

n∑
i=1

Aii

n∑
i=1

n∑
j=1

Aij

=

n∑
i=1

TPi

n∑
i=1

(TPi + FNi)
= Recallµ
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A.5 Remarks

Recallµ, Precisionµ, F -Measureµ and Accuracyµ are only well defined when the
denominator is non-zero. Therefore, it is assumed that there exists a row i and
a column j in A such that Aij > 0. This assumption is no restriction in practice,
because the validation of a classifier is performed using a non-empty test set.

F -Measureµ is undefined when Recallµ equals 0. However, it is arguable that
F -Measureµ equals 0 when Recallµ equals 0, according to the following one-sided
limit:

lim
x→0+

α · x2

α · x
= 0 for any constant α ≥ 1.
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B Strategy Evaluation - Data

This Appendix contains a complete overview of the evaluation of the 60 selected
strategies. The data presented in this Appendix lists the data presented in the
Figures of chapter 7. The naming convention of section 7.1 is used to name the
strategies.

B.1 Capability

The data presented in Figure 2 is listed in Table 24. The second column shows
the capability per strategy by listing the number of models the strategy is able
to solve. Since the capability was determined using 432 different models, the
capability can be expressed as percentage. This percentage is listed in the last
column.

Strategy Number of models Coverage

none-b 356 82.41%
none-bp 364 84.26%
none-c 382 88.43%
none-cp 387 89.58%
sat-like(1)-b 317 73.38%
sat-like(1)-bp 326 75.46%
sat-like(1)-c 323 74.77%
sat-like(1)-cp 333 77.08%
sat-like(5)-b 388 89.81%
sat-like(5)-bp 397 91.90%
sat-like(5)-c 393 90.97%
sat-like(5)-cp 402 93.06%
sat-like(10)-b 360 83.33%
sat-like(10)-bp 370 85.65%
sat-like(10)-c 368 85.19%
sat-like(10)-cp 373 86.34%
sat-like(20)-b 259 59.95%
sat-like(20)-bp 270 62.50%
sat-like(20)-c 268 62.04%
sat-like(20)-cp 276 63.89%
sat-like(40)-b 131 30.32%
sat-like(40)-bp 135 31.25%
sat-like(40)-c 135 31.25%
sat-like(40)-cp 138 31.94%
sat-like(80)-b 89 20.60%
sat-like(80)-bp 91 21.06%
sat-like(80)-c 96 22.22%
sat-like(80)-cp 95 21.99%
sat-like(2147483647)-b 356 82.41%
sat-like(2147483647)-bp 366 84.72%
sat-like(2147483647)-c 386 89.35%
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Strategy Number of models Coverage

sat-like(2147483647)-cp 392 90.74%
sat-loop(1)-b 298 68.98%
sat-loop(1)-bp 308 71.30%
sat-loop(1)-c 299 69.21%
sat-loop(1)-cp 304 70.37%
sat-loop(5)-b 378 87.50%
sat-loop(5)-bp 386 89.35%
sat-loop(5)-c 386 89.35%
sat-loop(5)-cp 392 90.74%
sat-loop(10)-b 359 83.10%
sat-loop(10)-bp 365 84.49%
sat-loop(10)-c 365 84.49%
sat-loop(10)-cp 363 84.03%
sat-loop(20)-b 261 60.42%
sat-loop(20)-bp 266 61.57%
sat-loop(20)-c 268 62.04%
sat-loop(20)-cp 273 63.19%
sat-loop(40)-b 127 29.40%
sat-loop(40)-bp 131 30.32%
sat-loop(40)-c 134 31.02%
sat-loop(40)-cp 133 30.79%
sat-loop(80)-b 89 20.60%
sat-loop(80)-bp 90 20.83%
sat-loop(80)-c 94 21.76%
sat-loop(80)-cp 95 21.99%
sat-loop(2147483647)-b 356 82.41%
sat-loop(2147483647)-bp 367 84.95%
sat-loop(2147483647)-c 383 88.66%
sat-loop(2147483647)-cp 390 90.28%

Table 24: Capability of all strategies in Figure . The capability is
measured by the number of different models the strategy is able
to solve. The coverage shows which fraction that number is of the
total set of 432 models.

B.2 Performance - Time

The data presented in Figure 3 is listed in Table 25 and 26. The performance
of a strategy on a given model was measured using the metric Mark as defined
in section 7.4. The overall performance of each strategy is captured by a box
plot of all Mark ’s of the models the strategy is able to solve. The minimum
and maximum Mark ’s are listed in Table 25, while the lower quantile, median
and upper quantile are listed in Table 26. The average Mark per strategy is
included in Table 25 too.
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Strategy
Mark

Minimum Mean Maximum

none-b 1.0286 15.2278 431.4320
none-bp 1.0000 10.3107 353.7416
none-c 1.0000 4.0767 61.3941
none-cp 1.0000 5.9689 633.0379
sat-like(1)-b 1.0000 3.9811 124.1853
sat-like(1)-bp 1.0000 2.9263 122.6956
sat-like(1)-c 1.0000 2.4238 33.8622
sat-like(1)-cp 1.0000 1.7523 48.8889
sat-like(5)-b 1.0000 3.6983 135.0180
sat-like(5)-bp 1.0000 2.3929 107.2963
sat-like(5)-c 1.0000 2.7802 107.0290
sat-like(5)-cp 1.0000 1.9113 123.7178
sat-like(10)-b 1.0262 3.2637 27.9904
sat-like(10)-bp 1.0000 2.5878 116.7907
sat-like(10)-c 1.0000 2.6675 150.4832
sat-like(10)-cp 1.0000 1.7226 11.6161
sat-like(20)-b 1.0150 5.6562 268.5196
sat-like(20)-bp 1.0000 4.2845 177.6538
sat-like(20)-c 1.0000 2.6672 40.9179
sat-like(20)-cp 1.0000 4.4045 434.0941
sat-like(40)-b 1.0301 4.8041 50.3332
sat-like(40)-bp 1.0145 3.7359 54.7583
sat-like(40)-c 1.0000 2.4490 23.9408
sat-like(40)-cp 1.0000 2.0892 33.1948
sat-like(80)-b 1.1727 6.9124 83.6568
sat-like(80)-bp 1.0711 5.8600 84.1744
sat-like(80)-c 1.0000 2.7130 12.3181
sat-like(80)-cp 1.0016 2.6949 20.8032
sat-like(2147483647)-b 1.0224 15.7867 431.9200
sat-like(2147483647)-bp 1.0000 10.9053 419.2246
sat-like(2147483647)-c 1.0000 4.1075 52.3609
sat-like(2147483647)-cp 1.0000 6.5406 468.2955
sat-loop(1)-b 1.0000 4.8161 63.0946
sat-loop(1)-bp 1.0000 4.6865 136.7755
sat-loop(1)-c 1.0000 3.9302 49.4756
sat-loop(1)-cp 1.0000 3.6982 39.8693
sat-loop(5)-b 1.0000 5.3439 410.2941
sat-loop(5)-bp 1.0000 3.6643 122.4231
sat-loop(5)-c 1.0000 4.2718 351.3293
sat-loop(5)-cp 1.0000 4.4569 411.0274
sat-loop(10)-b 1.0251 6.1133 490.1125
sat-loop(10)-bp 1.0000 4.7604 451.7672
sat-loop(10)-c 1.0000 3.2983 68.2742
sat-loop(10)-cp 1.0000 2.5276 61.2289
sat-loop(20)-b 1.0080 7.2600 194.9179
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Strategy
Mark

Minimum Mean Maximum

sat-loop(20)-bp 1.0000 7.1365 587.6108
sat-loop(20)-c 1.0000 3.7107 152.0828
sat-loop(20)-cp 1.0000 4.7316 397.5839
sat-loop(40)-b 1.0193 6.3012 126.7630
sat-loop(40)-bp 1.0000 4.7321 64.6127
sat-loop(40)-c 1.0000 3.6433 74.2890
sat-loop(40)-cp 1.0000 3.0368 38.3892
sat-loop(80)-b 1.0721 10.1815 198.0802
sat-loop(80)-bp 1.0000 7.4435 159.1434
sat-loop(80)-c 1.0000 4.1933 123.8836
sat-loop(80)-cp 1.0000 4.3879 92.3649
sat-loop(2147483647)-b 1.0218 15.5246 415.4632
sat-loop(2147483647)-bp 1.0000 11.4407 418.6881
sat-loop(2147483647)-c 1.0000 3.9582 50.0984
sat-loop(2147483647)-cp 1.0000 6.7536 522.5205

Table 25: Performance of all 60 selected strategies with respect to
time as given in Figure 3. For each strategy the performance is
measured using all Marks obtained for the models the strategy is
able to solve. A Mark reveals the performance with respect to the
best strategy. The minimum, mean and maximum of all Marks is
listed for a strategy.

Strategy
Mark

Lower quantile Median Upper quantile

none-b 2.7140 4.1836 9.7182
none-bp 1.7141 2.8732 6.6788
none-c 1.4295 1.9630 3.5579
none-cp 1.3104 1.9115 3.3948
sat-like(1)-b 1.5697 2.0776 3.0952
sat-like(1)-bp 1.0766 1.3820 2.2392
sat-like(1)-c 1.2087 1.4997 2.2081
sat-like(1)-cp 1.0000 1.0756 1.3687
sat-like(5)-b 1.6312 2.0681 3.0470
sat-like(5)-bp 1.2216 1.4490 1.9200
sat-like(5)-c 1.2222 1.5593 2.2359
sat-like(5)-cp 1.1104 1.2763 1.5863
sat-like(10)-b 1.6758 2.1970 3.3984
sat-like(10)-bp 1.3178 1.6043 2.0850
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Strategy
Mark

Lower quantile Median Upper quantile

sat-like(10)-c 1.2191 1.5761 2.2985
sat-like(10)-cp 1.1667 1.3372 1.7500
sat-like(20)-b 1.7528 2.5000 3.9796
sat-like(20)-bp 1.3400 1.7162 2.5699
sat-like(20)-c 1.2305 1.6151 2.3056
sat-like(20)-cp 1.1733 1.3846 1.8125
sat-like(40)-b 1.7677 2.5405 3.9902
sat-like(40)-bp 1.4191 1.8069 3.2438
sat-like(40)-c 1.2128 1.6068 2.3279
sat-like(40)-cp 1.1508 1.3955 1.9070
sat-like(80)-b 2.6143 4.2178 6.9800
sat-like(80)-bp 1.7407 3.0107 6.6022
sat-like(80)-c 1.3705 1.8726 3.2518
sat-like(80)-cp 1.3417 1.7121 2.3758
sat-like(2147483647)-b 2.6602 4.1263 9.9808
sat-like(2147483647)-bp 1.6686 2.8233 6.3492
sat-like(2147483647)-c 1.4633 1.9379 3.5267
sat-like(2147483647)-cp 1.3244 1.9337 3.3057
sat-loop(1)-b 1.8748 2.5896 3.8770
sat-loop(1)-bp 1.5584 2.0753 3.5559
sat-loop(1)-c 1.4726 2.1278 3.2160
sat-loop(1)-cp 1.3823 1.7729 2.8544
sat-loop(5)-b 1.8284 2.5643 4.2145
sat-loop(5)-bp 1.4646 1.9050 3.0472
sat-loop(5)-c 1.4361 1.9806 3.3473
sat-loop(5)-cp 1.3026 1.7466 2.7697
sat-loop(10)-b 1.8687 2.6667 4.2137
sat-loop(10)-bp 1.4032 1.8418 2.8710
sat-loop(10)-c 1.3810 1.8333 3.0194
sat-loop(10)-cp 1.2573 1.6085 2.3303
sat-loop(20)-b 1.8776 2.8228 4.5519
sat-loop(20)-bp 1.3377 1.8982 3.3472
sat-loop(20)-c 1.3369 1.7164 2.7293
sat-loop(20)-cp 1.1837 1.5427 2.3889
sat-loop(40)-b 1.8904 3.0188 4.8448
sat-loop(40)-bp 1.4471 2.1167 3.5776
sat-loop(40)-c 1.2657 1.8696 3.0492
sat-loop(40)-cp 1.2174 1.6596 2.4310
sat-loop(80)-b 2.4859 4.6372 7.8213
sat-loop(80)-bp 1.6998 3.0085 6.9860
sat-loop(80)-c 1.3797 2.0204 3.3196
sat-loop(80)-cp 1.3792 1.9173 2.7093
sat-loop(2147483647)-b 2.6479 4.1122 9.7981
sat-loop(2147483647)-bp 1.6207 2.7616 6.4427
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Strategy
Mark

Lower quantile Median Upper quantile

sat-loop(2147483647)-c 1.4333 1.9093 3.5329
sat-loop(2147483647)-cp 1.3027 1.8982 3.3391

Table 26: Performance of all 60 selected strategies with respect to
time as given in Figure 3. For each strategy the performance is
measured using all Marks obtained for the models the strategy is
able to solve. A Mark reveals the performance with respect to the
best strategy. The distribution of all Marks for a strategy is given
by the lower quantile, median and upper quantile.

B.3 Performance - Peak Size

The data presented in Figure 4 is listed in Table 27 and 28. The performance
of a strategy on a given model was measured using the metric Mark as defined
in section 7.4. The overall performance of each strategy is captured by a box
plot of all Mark ’s of the models the strategy is able to solve. The minimum
and maximum Mark ’s are listed in Table 27, while the lower quantile, median
and upper quantile are listed in Table 28. The average Mark per strategy is
included in Table 27 too.

Strategy
Mark

Minimum Mean Maximum

none-b 1.0000 4.2103 60.2591
none-bp 1.0000 4.0509 60.2591
none-c 1.0000 2.4624 64.1746
none-cp 1.0000 2.1378 55.6508
sat-like(1)-b 1.0000 1.1690 9.8224
sat-like(1)-bp 1.0000 1.1637 9.8224
sat-like(1)-c 1.0000 1.1469 9.8224
sat-like(1)-cp 1.0000 1.1505 9.8224
sat-like(5)-b 1.0000 1.2540 10.0000
sat-like(5)-bp 1.0000 1.3568 43.2354
sat-like(5)-c 1.0000 1.1826 6.7182
sat-like(5)-cp 1.0000 1.2956 44.4608
sat-like(10)-b 1.0000 1.3667 17.4000
sat-like(10)-bp 1.0000 1.3647 17.4000
sat-like(10)-c 1.0000 1.2514 7.3783
sat-like(10)-cp 1.0000 1.2522 7.3783
sat-like(20)-b 1.0000 1.5684 37.3982
sat-like(20)-bp 1.0000 1.5700 37.3982
sat-like(20)-c 1.0000 1.3655 21.4705
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Strategy
Mark

Minimum Mean Maximum

sat-like(20)-cp 1.0000 1.2843 19.7387
sat-like(40)-b 1.0000 1.9021 38.4403
sat-like(40)-bp 1.0000 1.8753 38.4403
sat-like(40)-c 1.0000 1.4898 17.7217
sat-like(40)-cp 1.0000 1.3701 17.7217
sat-like(80)-b 1.0000 2.0543 18.6393
sat-like(80)-bp 1.0000 2.0445 18.6393
sat-like(80)-c 1.0000 1.5332 17.3200
sat-like(80)-cp 1.0000 1.5022 17.3200
sat-like(2147483647)-b 1.0000 4.2183 60.2591
sat-like(2147483647)-bp 1.0000 3.9963 60.2591
sat-like(2147483647)-c 1.0000 2.4474 64.1746
sat-like(2147483647)-cp 1.0000 2.1574 55.6508
sat-loop(1)-b 1.0000 3.0514 178.6154
sat-loop(1)-bp 1.0000 2.8520 178.6154
sat-loop(1)-c 1.0000 3.0957 172.9239
sat-loop(1)-cp 1.0000 2.8532 172.9239
sat-loop(5)-b 1.0000 2.3568 112.3564
sat-loop(5)-bp 1.0000 2.3021 112.3564
sat-loop(5)-c 1.0000 2.2499 96.3754
sat-loop(5)-cp 1.0000 2.2059 96.3754
sat-loop(10)-b 1.0000 2.1906 72.1202
sat-loop(10)-bp 1.0000 2.1086 72.1202
sat-loop(10)-c 1.0000 2.0367 72.0777
sat-loop(10)-cp 1.0000 1.8830 72.0777
sat-loop(20)-b 1.0000 2.6648 188.2146
sat-loop(20)-bp 1.0000 1.8913 33.0019
sat-loop(20)-c 1.0000 1.9642 63.9347
sat-loop(20)-cp 1.0000 1.7809 63.9347
sat-loop(40)-b 1.0000 2.6322 57.4175
sat-loop(40)-bp 1.0000 2.5789 57.4175
sat-loop(40)-c 1.0000 1.9296 31.6617
sat-loop(40)-cp 1.0000 1.8197 31.6617
sat-loop(80)-b 1.0000 2.1488 18.6272
sat-loop(80)-bp 1.0000 2.1467 18.6272
sat-loop(80)-c 1.0000 1.6105 19.8324
sat-loop(80)-cp 1.0000 1.3656 10.5441
sat-loop(2147483647)-b 1.0000 4.0874 60.2591
sat-loop(2147483647)-bp 1.0000 3.9551 60.2591
sat-loop(2147483647)-c 1.0000 2.4502 64.1746
sat-loop(2147483647)-cp 1.0000 2.2033 55.6508

Table 27: Performance of all 60 selected strategies with respect to
peak size as given in Figure 4. For each strategy the performance
is measured using all Marks obtained for the models the strategy
is able to solve. A Mark reveals the performance with respect to
the best strategy. The minimum, mean and maximum of all Marks
is listed for a strategy. 80



Strategy
Mark

Lower quantile Median Upper quantile

none-b 1.1531 1.8180 3.9258
none-bp 1.1531 1.7783 3.7831
none-c 1.0000 1.0972 1.6407
none-cp 1.0000 1.0804 1.5816
sat-like(1)-b 1.0000 1.0008 1.0585
sat-like(1)-bp 1.0000 1.0008 1.0578
sat-like(1)-c 1.0000 1.0000 1.0578
sat-like(1)-cp 1.0000 1.0000 1.0566
sat-like(5)-b 1.0000 1.0244 1.1636
sat-like(5)-bp 1.0000 1.0242 1.1591
sat-like(5)-c 1.0000 1.0143 1.1363
sat-like(5)-cp 1.0000 1.0160 1.1360
sat-like(10)-b 1.0000 1.0508 1.2656
sat-like(10)-bp 1.0001 1.0532 1.2639
sat-like(10)-c 1.0000 1.0194 1.1766
sat-like(10)-cp 1.0000 1.0195 1.1802
sat-like(20)-b 1.0022 1.0544 1.2452
sat-like(20)-bp 1.0026 1.0586 1.2603
sat-like(20)-c 1.0000 1.0116 1.1650
sat-like(20)-cp 1.0000 1.0120 1.1650
sat-like(40)-b 1.0000 1.0482 1.3181
sat-like(40)-bp 1.0000 1.0440 1.2797
sat-like(40)-c 1.0000 1.0001 1.1190
sat-like(40)-cp 1.0000 1.0000 1.1060
sat-like(80)-b 1.0053 1.0888 2.1181
sat-like(80)-bp 1.0054 1.0929 2.0845
sat-like(80)-c 1.0000 1.0000 1.1035
sat-like(80)-cp 1.0000 1.0000 1.0994
sat-like(2147483647)-b 1.1564 1.8128 3.9471
sat-like(2147483647)-bp 1.1475 1.7426 3.7201
sat-like(2147483647)-c 1.0000 1.0972 1.6504
sat-like(2147483647)-cp 1.0000 1.0788 1.5826
sat-loop(1)-b 1.0244 1.2212 1.9709
sat-loop(1)-bp 1.0194 1.2002 1.8759
sat-loop(1)-c 1.0195 1.2084 1.9771
sat-loop(1)-cp 1.0190 1.2025 1.8549
sat-loop(5)-b 1.0048 1.1486 1.6215
sat-loop(5)-bp 1.0053 1.1521 1.6215
sat-loop(5)-c 1.0022 1.1324 1.5395
sat-loop(5)-cp 1.0009 1.1317 1.5338
sat-loop(10)-b 1.0068 1.1486 1.5873
sat-loop(10)-bp 1.0081 1.1486 1.5680
sat-loop(10)-c 1.0000 1.0896 1.4633
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Strategy
Mark

Lower quantile Median Upper quantile

sat-loop(10)-cp 1.0000 1.0841 1.4545
sat-loop(20)-b 1.0073 1.0978 1.4942
sat-loop(20)-bp 1.0083 1.0952 1.4724
sat-loop(20)-c 1.0000 1.0388 1.3246
sat-loop(20)-cp 1.0000 1.0388 1.3076
sat-loop(40)-b 1.0027 1.1030 1.7313
sat-loop(40)-bp 1.0043 1.1063 1.7180
sat-loop(40)-c 1.0000 1.0143 1.2603
sat-loop(40)-cp 1.0000 1.0123 1.2273
sat-loop(80)-b 1.0051 1.0984 2.1518
sat-loop(80)-bp 1.0054 1.1026 2.1948
sat-loop(80)-c 1.0000 1.0050 1.1221
sat-loop(80)-cp 1.0000 1.0027 1.1049
sat-loop(2147483647)-b 1.1537 1.8001 3.8494
sat-loop(2147483647)-bp 1.1456 1.7463 3.7267
sat-loop(2147483647)-c 1.0000 1.0979 1.6473
sat-loop(2147483647)-cp 1.0000 1.0842 1.5861

Table 28: Performance of all 60 selected strategies with respect to
peak size as given in Figure 4. For each strategy the performance
is measured using all Marks obtained for the models the strategy
is able to solve. A Mark reveals the performance with respect to
the best strategy. The distribution of all Marks for a strategy is
given by the lower quantile, median and upper quantile.
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C Classifier Evaluation - Data

In chapter 8 the appropriateness of the ten created classifiers is discussion.
The performance of the classifiers is compared to fixed strategies, but the
discussion is limited to six fixed strategies per aspect. This appendix contains
the performance of the classifiers compared to all 60 fixed strategies. Section
C.1 contains the evaluation of the classifiers with respect to time. Section C.2
contains the evaluation of the classifier with respect to peak size. The naming
convention of section 7.1 is used to name the strategies and dynamic is used to
denote the classifiers.

The evaluation of each strategy is based on three data sets used to validate
the created classifiers. Each strategy is evaluated by listing how many models
the strategy is able to solve in each data set. The average capability is captured
using by the percentage of models the strategy is able to solve. For each
strategy the average Mark per data set is determined too. A Mark can only be
determined for the models the strategy is able to solve. The average performance
is captured by averaging the three average Mark ’s per set weighted by the
size of each data set. The rank is determined by the average capability and
performance. The average capability has higher priority since the performance
is determined based on the models the strategy is able to solve.

C.1 Appropriateness - Time

The capability and performance of each fixed strategy with respect to the created
classifiers is listed in Table 29 and Table 30 respectively. The sets correspond
to the validation sets listed in Table 14.

Solved models
SetRank Strategy

1 2 3
Coverage

1 sat-like(5)-cp 114 121 129 97.33%
2 sat-like(10)-cp 114 119 128 96.52%
3 sat-like(20)-cp 114 118 128 96.26%
4 sat-like(5)-bp 113 118 128 95.99%
5 sat-like(40)-cp 113 119 125 95.45%
6 sat-loop(20)-cp 114 116 127 95.45%
7 sat-like(80)-cp 111 118 126 94.92%
8 sat-loop(80)-cp 112 116 125 94.39%
9 sat-like(5)-c 111 115 126 94.12%

10 sat-like(20)-c 111 115 126 94.12%
11 sat-like(10)-c 111 115 125 93.85%
12 sat-loop(10)-cp 112 114 125 93.85%
13 sat-loop(40)-cp 111 116 124 93.85%
14 sat-like(20)-bp 109 115 127 93.85%
15 sat-like(10)-bp 109 114 127 93.58%
16 sat-loop(20)-c 112 113 125 93.58%
17 sat-like(40)-c 110 115 125 93.58%
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Solved models
SetRank Strategy

1 2 3
Coverage

18 sat-like(5)-b 110 114 125 93.32%
19 sat-loop(10)-c 111 113 125 93.32%
20 sat-like(80)-c 110 115 124 93.32%
21 sat-loop(40)-c 111 114 124 93.32%
22 sat-loop(5)-bp 109 113 125 92.78%
23 sat-loop(5)-cp 111 111 125 92.78%
24 sat-like(40)-bp 108 114 125 92.78%
25 sat-like(2147483647)-cp 109 114 124 92.78%
26 sat-loop(80)-c 110 113 123 92.51%
27 sat-loop(5)-c 110 112 124 92.51%
28 sat-loop(10)-bp 109 111 126 92.51%
29 sat-loop(2147483647)-cp 109 113 123 92.25%
30 none-cp 108 112 124 91.98%
31 sat-loop(20)-bp 109 112 123 91.98%
32 sat-like(10)-b 107 111 124 91.44%
33 sat-like(2147483647)-c 107 112 123 91.44%
34 sat-loop(40)-bp 107 111 123 91.18%
35 sat-like(80)-bp 107 112 122 91.18%
36 sat-loop(10)-b 109 109 123 91.18%
37 sat-loop(5)-b 109 108 122 90.64%
38 sat-loop(2147483647)-c 107 110 121 90.37%
39 sat-loop(20)-b 107 108 123 90.37%
40 none-c 107 110 120 90.11%
41 sat-like(20)-b 105 110 122 90.11%
42 sat-loop(80)-bp 107 109 121 90.11%
43 sat-like(40)-b 106 109 122 90.11%
44 sat-loop(40)-b 106 108 120 89.30%
45 sat-like(80)-b 104 106 119 87.97%
46 sat-loop(80)-b 105 105 118 87.70%
47 none-bp 101 103 115 85.29%
48 sat-loop(2147483647)-bp 101 103 115 85.29%
49 sat-like(2147483647)-bp 100 103 114 84.76%
50 sat-like(2147483647)-b 101 99 112 83.42%
51 sat-loop(2147483647)-b 101 99 112 83.42%
52 none-b 101 99 112 83.42%
53 dynamic 106 101 103 82.89%
54 sat-like(1)-cp 106 101 103 82.89%
55 sat-like(1)-bp 102 99 104 81.55%
56 sat-like(1)-c 103 96 102 80.48%
57 sat-like(1)-b 101 93 100 78.61%
58 sat-loop(1)-bp 99 95 100 78.61%
59 sat-loop(1)-cp 98 92 97 76.74%
60 sat-loop(1)-c 96 91 99 76.47%
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61 sat-loop(1)-b 98 90 98 76.47%

Table 29: Capability of the classifiers compared to the fixed
strategies with respect to time. The capability was determined
using the validation data of set 1, 2, and 3 listed in Table 14.

Average Mark
SetRank Strategy

1 2 3
Total

1 sat-like(5)-cp 1.7061 1.7507 1.3707 1.6025
2 sat-like(10)-cp 1.6829 1.6557 1.5177 1.6156
3 sat-like(20)-cp 2.6786 2.7967 2.3374 2.5973
4 sat-like(5)-bp 2.1201 2.1328 1.8142 2.0163
5 sat-like(40)-cp 2.9659 3.2577 3.4510 3.2339
6 sat-loop(20)-cp 3.0461 4.4235 3.4931 3.6606
7 sat-like(80)-cp 3.2759 3.7380 3.7720 3.6042
8 sat-loop(80)-cp 3.3259 5.0142 4.5548 4.3194
9 sat-like(5)-c 2.5988 3.0577 2.0236 2.5479

10 sat-like(20)-c 2.9090 3.2553 2.5527 2.8981
11 sat-like(10)-c 2.6336 2.7934 1.8838 2.4220
12 sat-loop(10)-cp 1.9012 3.2945 2.3721 2.5293
13 sat-loop(40)-cp 3.0246 4.2331 3.8032 3.7001
14 sat-like(20)-bp 5.9246 4.4145 2.2977 4.1439
15 sat-like(10)-bp 3.2931 2.4631 1.6906 2.4523
16 sat-loop(20)-c 3.0059 3.7357 3.0348 3.2581
17 sat-like(40)-c 3.3480 3.8079 2.9363 3.3552
18 sat-like(5)-b 3.6068 3.6824 2.5639 3.2638
19 sat-loop(10)-c 3.3448 4.4647 2.5210 3.4253
20 sat-like(80)-c 3.6438 4.2063 3.3348 3.7212
21 sat-loop(40)-c 3.2980 4.7150 3.4941 3.8370
22 sat-loop(5)-bp 2.3118 5.8230 3.3985 3.8595
23 sat-loop(5)-cp 5.6969 5.0419 2.5252 4.3603
24 sat-like(40)-bp 8.1422 5.5454 3.0387 5.4800
25 sat-like(2147483647)-cp 3.2599 9.3524 5.1719 5.9547
26 sat-loop(80)-c 3.4879 5.0649 3.3221 3.9522
27 sat-loop(5)-c 5.7938 4.5020 2.5170 4.2090
28 sat-loop(10)-bp 7.6882 4.9371 3.2362 5.2048
29 sat-loop(2147483647)-cp 3.1597 9.9751 4.9406 6.0479
30 none-cp 3.2421 10.5876 5.2238 6.3769
31 sat-loop(20)-bp 6.3110 5.5969 7.2698 6.4127
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32 sat-like(10)-b 4.4135 4.1938 2.6790 3.7285
33 sat-like(2147483647)-c 3.6711 5.0031 3.7881 4.1540
34 sat-loop(40)-bp 7.7000 6.8195 3.5073 5.9283
35 sat-like(80)-bp 8.1915 7.3144 4.3158 6.5328
36 sat-loop(10)-b 9.9505 6.5871 4.2888 6.8371
37 sat-loop(5)-b 7.6545 6.0775 3.5601 5.6866
38 sat-loop(2147483647)-c 3.5523 4.6927 3.6008 3.9475
39 sat-loop(20)-b 8.1597 8.1333 5.6516 7.2657
40 none-c 3.8140 4.5177 3.2360 3.8433
41 sat-like(20)-b 7.3590 6.7885 3.3743 5.7635
42 sat-loop(80)-bp 7.9615 7.9065 3.9952 6.5434
43 sat-like(40)-b 10.9210 7.8377 4.5561 7.6523
44 sat-loop(40)-b 10.6552 9.8291 4.9521 8.3685
45 sat-like(80)-b 11.6279 10.0571 6.1794 9.1841
46 sat-loop(80)-b 11.6305 10.6207 5.4556 9.1163
47 none-bp 10.7744 10.6147 8.4602 9.9047
48 sat-loop(2147483647)-bp 11.0528 10.6593 8.6837 10.0862
49 sat-like(2147483647)-bp 9.4196 10.8946 7.0546 9.0740
50 sat-like(2147483647)-b 13.4371 13.7486 9.1227 12.0176
51 sat-loop(2147483647)-b 13.6037 13.5014 9.2084 12.0185
52 none-b 13.6732 13.5287 9.3160 12.0874
53 dynamic 2.2218 1.6579 1.4166 1.7507
54 sat-like(1)-cp 2.2218 1.6579 1.4166 1.7507
55 sat-like(1)-bp 3.0254 2.3160 2.5876 2.6357
56 sat-like(1)-c 2.4192 2.5615 2.1286 2.3638
57 sat-like(1)-b 3.7785 3.9940 3.3273 3.6907
58 sat-loop(1)-bp 2.8873 5.3683 4.5767 4.3061
59 sat-loop(1)-cp 2.6529 3.7246 3.4765 3.2989
60 sat-loop(1)-c 3.5110 4.4413 3.7916 3.9185
61 sat-loop(1)-b 4.3762 6.0261 4.4858 4.9619

Table 30: Performance of the classifiers compared to the fixed
strategies with respect to time. The performance was determined
using the validation data of set 1, 2 and 3 listed in Table 14.

C.2 Appropriateness - Peak Size

The capability and performance of each fixed strategy with respect to the created
classifiers is listed in Table 31 and Table 32 respectively. The sets correspond
to the validation sets listed in Table 15.
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1 sat-like(5)-cp 110 121 135 93.13%
2 sat-like(10)-cp 111 117 135 92.37%
3 sat-like(10)-c 111 116 135 92.11%
4 sat-like(10)-bp 110 116 135 91.86%
5 sat-loop(20)-cp 111 115 135 91.86%
6 sat-like(20)-cp 111 114 135 91.60%
7 sat-like(5)-c 108 117 133 91.09%
8 sat-like(5)-bp 108 116 134 91.09%
9 sat-like(20)-c 108 115 135 91.09%

10 sat-like(40)-cp 110 114 134 91.09%
11 sat-loop(40)-c 110 114 134 91.09%
12 sat-like(40)-c 109 115 133 90.84%
13 sat-like(80)-cp 109 114 134 90.84%
14 sat-like(80)-c 109 115 133 90.84%
15 sat-loop(10)-cp 109 115 132 90.59%
16 sat-loop(40)-cp 109 113 134 90.59%
17 sat-loop(80)-cp 108 114 134 90.59%
18 sat-loop(20)-c 108 113 134 90.33%
19 sat-loop(80)-c 108 114 133 90.33%
20 sat-loop(5)-c 109 114 132 90.33%
21 sat-loop(10)-bp 110 111 133 90.08%
22 sat-loop(20)-bp 110 109 135 90.08%
23 sat-loop(2147483647)-cp 108 113 133 90.08%
24 sat-like(2147483647)-c 108 114 132 90.08%
25 sat-loop(5)-cp 109 113 132 90.08%
26 sat-like(10)-b 109 112 132 89.82%
27 sat-loop(10)-c 108 112 133 89.82%
28 sat-like(20)-bp 109 111 133 89.82%
29 sat-like(2147483647)-cp 108 112 133 89.82%
30 sat-loop(40)-bp 111 109 133 89.82%
31 sat-loop(5)-bp 109 112 131 89.57%
32 sat-like(40)-bp 110 110 132 89.57%
33 sat-like(5)-b 106 113 132 89.31%
34 sat-loop(2147483647)-c 108 112 131 89.31%
35 none-cp 107 111 131 88.80%
36 none-c 106 110 131 88.30%
37 sat-loop(5)-b 105 110 131 88.04%
38 sat-like(20)-b 106 108 131 87.79%
39 sat-loop(20)-b 109 105 131 87.79%
40 sat-like(80)-bp 106 107 131 87.53%
41 sat-loop(40)-b 108 106 130 87.53%
42 sat-like(40)-b 107 107 129 87.28%
43 sat-loop(10)-b 106 106 130 87.02%
44 sat-loop(80)-bp 104 105 131 86.51%
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45 sat-like(80)-b 105 105 129 86.26%
46 sat-loop(80)-b 103 105 128 85.50%
47 sat-like(2147483647)-bp 102 104 126 84.48%
48 none-bp 103 103 126 84.48%
49 sat-loop(2147483647)-bp 102 102 126 83.97%
50 sat-like(2147483647)-b 101 102 125 83.46%
51 sat-loop(2147483647)-b 100 101 124 82.70%
52 none-b 97 98 123 80.92%
53 sat-like(1)-c 85 97 107 73.54%
54 sat-like(1)-bp 84 99 105 73.28%
55 dynamic 84 98 106 73.28%
56 sat-like(1)-cp 84 98 106 73.28%
57 sat-like(1)-b 82 96 103 71.50%
58 sat-loop(1)-c 80 95 104 70.99%
59 sat-loop(1)-cp 82 93 103 70.74%
60 sat-loop(1)-b 81 92 104 70.48%
61 sat-loop(1)-bp 81 90 102 69.47%

Table 31: Capability of the classifiers compared to the fixed
strategies with respect to peak size. The capability was determined
using the validation data of set 1, 2, and 3 listed in Table 15.

Average Mark
SetRank Strategy

1 2 3
Total

1 sat-like(5)-cp 1.1140 1.2176 1.2573 1.2008
2 sat-like(10)-cp 1.2223 1.3097 1.3665 1.3040
3 sat-like(10)-c 1.2223 1.3025 1.3665 1.3016
4 sat-like(10)-bp 1.3757 1.4951 1.5038 1.4624
5 sat-loop(20)-cp 2.0014 2.1656 1.8666 2.0082
6 sat-like(20)-cp 1.4416 1.6843 1.7034 1.6183
7 sat-like(5)-c 1.1150 1.2142 1.2602 1.2011
8 sat-like(5)-bp 1.1339 1.3555 1.3675 1.2933
9 sat-like(20)-c 1.4502 1.8808 1.7034 1.6874

10 sat-like(40)-cp 1.5726 1.7383 2.2901 1.8880
11 sat-loop(40)-c 1.7608 1.8835 2.6078 2.1084
12 sat-like(40)-c 1.7140 1.8655 2.5565 2.0697
13 sat-like(80)-cp 1.8908 1.8516 2.4994 2.0974
14 sat-like(80)-c 1.9219 1.9764 2.6823 2.2151
15 sat-loop(10)-cp 1.8044 1.8322 1.5613 1.7260
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16 sat-loop(40)-cp 1.6118 1.7941 2.5053 1.9963
17 sat-loop(80)-cp 1.8834 1.8489 2.6747 2.1576
18 sat-loop(20)-c 2.0289 2.3655 1.8728 2.0864
19 sat-loop(80)-c 1.9314 1.9572 2.7054 2.2198
20 sat-loop(5)-c 2.3952 2.6079 1.9646 2.3116
21 sat-loop(10)-bp 2.2537 2.3084 1.6979 2.0714
22 sat-loop(20)-bp 1.8380 2.2836 2.3452 2.1721
23 sat-loop(2147483647)-cp 1.9659 1.9530 2.6599 2.2123
24 sat-like(2147483647)-c 1.9957 2.0683 2.6725 2.2648
25 sat-loop(5)-cp 2.3952 2.6127 1.9646 2.3132
26 sat-like(10)-b 1.3757 1.4954 1.5140 1.4662
27 sat-loop(10)-c 1.8116 1.8314 1.7549 1.7978
28 sat-like(20)-bp 1.8689 2.4666 2.1155 2.1603
29 sat-like(2147483647)-cp 1.9852 1.9504 2.5063 2.1617
30 sat-loop(40)-bp 2.5357 3.0498 3.3553 3.0058
31 sat-loop(5)-bp 2.5621 2.7770 1.9556 2.4157
32 sat-like(40)-bp 2.4665 3.2953 3.2714 3.0378
33 sat-like(5)-b 1.1336 1.3746 1.3723 1.3014
34 sat-loop(2147483647)-c 1.9957 2.0585 2.6850 2.2660
35 none-cp 1.9639 1.8715 2.4546 2.1099
36 none-c 1.9914 2.0637 2.6850 2.2665
37 sat-loop(5)-b 2.5814 2.7958 1.9560 2.4280
38 sat-like(20)-b 1.8763 2.4841 2.1307 2.1739
39 sat-loop(20)-b 3.5603 4.0824 2.3585 3.3027
40 sat-like(80)-bp 1.9974 3.1230 3.5282 2.9314
41 sat-loop(40)-b 2.5584 3.1324 3.4064 3.0590
42 sat-like(40)-b 2.5046 3.3368 3.3290 3.0841
43 sat-loop(10)-b 2.2796 2.3671 1.7122 2.1042
44 sat-loop(80)-bp 2.0122 2.8416 3.5621 2.8529
45 sat-like(80)-b 2.0022 3.1395 3.5635 2.9512
46 sat-loop(80)-b 1.9922 2.8704 3.6055 2.8723
47 sat-like(2147483647)-bp 2.6101 4.0459 4.2961 3.7052
48 none-bp 2.6210 4.0560 4.2961 3.7119
49 sat-loop(2147483647)-bp 2.6068 3.7738 4.2935 3.6112
50 sat-like(2147483647)-b 2.6211 4.0810 4.6408 3.8449
51 sat-loop(2147483647)-b 2.6065 3.8287 4.6681 3.7651
52 none-b 2.6268 4.1800 4.6949 3.8997
53 sat-like(1)-c 1.0741 1.2275 1.2314 1.1829
54 sat-like(1)-bp 1.0654 1.2236 1.2328 1.1794
55 dynamic 1.0749 1.2252 1.2323 1.1826
56 sat-like(1)-cp 1.0749 1.2252 1.2323 1.1826
57 sat-like(1)-b 1.0722 1.2302 1.2414 1.1868
58 sat-loop(1)-c 4.0304 3.6734 2.7247 3.4378
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59 sat-loop(1)-cp 4.0006 3.5818 2.6249 3.3618
60 sat-loop(1)-b 4.0629 3.8115 2.6942 3.4833
61 sat-loop(1)-bp 4.0629 3.7123 2.4981 3.3788

Table 32: Performance of the classifiers compared to the fixed
strategies with respect to peak size. The performance was
determined using the validation data of set 1, 2 and 3 listed in
Table 15.
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D Reproducibility

This appendix is an addendum of chapter 6. In this appendix it is explained
how the various created scripts can reproduce the results described in this thesis.
Hence, this appendix lists the technical details of the method. The steps are
given in chronological order. The files and scripts are located in https://vcs.

utwente.nl/diffusion/RHMT/. The scripts mentioned in this appendix refer
to the files in that repository.

D.1 Remarks

All absolute paths and user data in the scripts are removed. Therefore, most
scripts will not run without modification of the source code. The definition
of the corresponding variables must be set. These variables are defined in the
beginning of the scripts. Furthermore, all R scripts require a path to the used
libraries.

D.2 Data Collection

D.2.1 Preparing Environment

In order to run a large number of experiments, the individual runs with the
LTSmin toolset should be automatized as much as possible. The file
./Data collecting/gen experiments.sh can be used to generate a batch of
runs. The runs can be executed on a computer cluster. gen experiments.sh

assumes SLURM is used to schedule the individual runs and to maintain the
resources of the cluster.

Furthermore, gen experiments.sh requires the following directory structure18:

• ./bin/ltsminPerf/

• ./bin/ltsminStat/

• ./bin/memtime

• ./experiments/generated/jobs/

• ./experiments/generated/shuffle.txt

• ./experiments/generated/steps/

• ./experiments/gen experiments.sh

• ./experiments/in/

• ./experiments/out/0/

• ./experiments/out/1/

18The repository does not contain this directory structure. Furthermore, shuffle.txt can
be an empty file and is also not included in the repository.
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The ./ is an absolute path which needs to be specified in gen experiments.sh.

LTSmin needs to be installed in both ./bin/ltsminPerf/ and
./bin/ltsminStat/. The LTSmin installation in ./bin/ltsminPerf/ will be
used to obtain the performance of a run, while the LTSmin installation in
./bin/ltsminStat/ will be used to obtain statistics of a run. In order to
function correctly on a cluster, LTSmin should not bind threads on a specific
core. This can be achieved by setting USE HWLOC to 0 in ./sylvan/src/lace.c

before building LTSmin. For the LTSmin installation in ./bin/ltsminStat/

the collecting of statistics should be enabled. The statistics can be enabled by
setting SYLVAN STATS to 1 in ./sylvan/src/sylvan config.h before building
LTSmin. When both LTSmin installations are correctly built, the following
binaries should be available for gen experiments.sh:

• ./bin/ltsminPerf/bin/pnml2lts-sym

• ./bin/ltsminPerf/bin/dve2lts-sym

• ./bin/ltsminStat/bin/pnml2lts-sym

• ./bin/ltsminStat/bin/dve2lts-sym

D.2.2 Defining Experiments

The experiments should be defined in gen experiments.sh. Within this script,
six variables define the settings of the experiments. The parameters
$PARAM SLURM, $PARAM GENERAL, $PARAM BDDPACK and $PARAM TEST define the
settings of all experiments of the batch. The parameter $PARAM SLURM defines
the settings for SLURM considering one job. The parameters $PARAM GENERAL,
$PARAM BDDPACK and $PARAM TEST define settings for LTSmin by specifying
flags and their values. Only $PARAM TEST has to be modified when multiple
batches of experiments should be run.

The setting differences in the runs within one batch should be specified in
$POPTS and $POPTS VERBOSE. The values specified in these two variables are
an addition to the settings specified in $PARAM TEST. The $POPTS specifies
the unique runs which should be performed with the LTSmin installation in
./bin/ltsminPerf/. Likewise, $POPTS VERBOSE specifies the unique runs which
should be performed with the LTSmin installation in ./bin/ltsminStat/. Each
unique run should be listed in these parameters and the runs should be separated
with a \n. In order to collect statistics, each entry in $POPTS VERBOSE should
include the flags --peak-nodes and --graph-metrics.

D.2.3 Running Experiments

After defining the experiments in gen experiments.sh, the script should be run
to generate the jobs for the cluster. gen experiments.sh has to be executed
with the parameters <repeat> <input> <partition> <ltsminbinary> 1

--gen-steps. The four variable parameters are:

<repeat> = number of times each run is performed for each entry in $POPTS.
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<input> = directory with the models used for the batch. The models should
be in a directory located in ./experiments/in/.

<partition> = partition of SLURM used for the experiments.

<ltsminbinary> = name of the LTSmin binary used for the experiments
(e.g. pnml2lts-sym).

gen experiments.sh generates a run for each model in the input directory and
entry in $POPTS VERBOSE. For each model and entry in $POPTS, the number of
runs generated for the LTSmin in ./bin/ltsminPerf/ equals the given value
for <repeat>. For example, if both $POPTS and $POPTS VERBOSE list four
unique runs, the input directory contains 100 models and <repeat> is set to
10, gen experiments.sh generates 4400 experiments.

bash scripts generated for the individual experiments are stored in
./experiments/generated/steps/. The jobs for the cluster are stored in
./experiments/generated/jobs/. The jobs basically specify the task to
execute all experiments in ./experiments/generated/steps/. Furthermore,
the file ./experiments/submit jobs.sh is generated. submit jobs.sh should
be executed to run the batch of experiments. submit jobs.sh schedules all jobs
located in ./experiments/generated/jobs/ on the cluster without overloading
the system. In this way all experiments in ./experiments/generated/steps/

will be run.

The run of each experiment is stored in a txt-file in ./experiments/out/0/.
The filename contains the name of the model and the settings of LTSmin as
specified in either $POPTS or $POPTS VERBOSE depending on the type of run.
Each failed run detected by the cluster is stored in the file
./experiments/out/1/failed.txt.

In order to collect the values for ES , NES , WES or NWES , the option mm

should be added to the reorder flag. Since the values are calculated for a
model, it does not matter whether this experiment is performed using LTSmin
in ./bin/ltsminPerf/ or ./bin/ltsminStat/. However, the calculation of the
value for ES , NES , WES or NWES may take some time.

D.3 Data Analysis

D.3.1 Parsing Data

The data obtained from the batches of experiments is stored using a txt-file
per experiment. The relevant information can be extracted using the created
parser. ./Data refining/ltsmin2csv.sh is the script which is able to parse
the txt-files generated by LTSmin. The parser takes a directory of txt-files and
lists the extracted values in a csv-file. For each experiment one row will be
added to the resulting csv-file.

ltsmin2csv.sh requires the parameters <directory> <ltsminbinary>

<output> [<satgran>]. The interpretation of these parameters is:

<directory> = directory containing the LTSmin output of a batch.
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<ltsminbinary> = name of the LTSmin binary used for the experiments
(e.g. pnml2lts-sym). This name is used to verify whether a file is generated
by running a experiment.

<output> = name of the file where the results are stored. The output is a
csv-file; a csv extension is recommended.

<satgran> = optional parameter. Must be provided if --sat-granularity
is not specified in $POPTS but in $PARAM TEST. Allow the parser to set the
saturation granularity for all experiments to the specified value.

When the experiments are collected in multiple batches, after parsing the txt-files,
the data may be scattered over multiple csv-files. The script
./Data collecting/Runs/merge csvs.sh can be used to combine the csv-files
into a single csv-file.

ltsmin2csv.sh does not extract the values for ES , NES , WES or NWES .
The values for these metrics have to be extracted using
./Data refining/ltsmin2eventstats.sh. This will generate a csv-file with
ES , NES , WES and NWES per experiment.

D.3.2 Refining Data

The runs can be examined using ./R source/Data refining/errorFinder.r.
This script finds conflicting entries in the data in the provided csv-file (e.g.
two runs came up with a different size of the state space for the same model).
errorFinder.r gives a csv-file with these conflicting entries and all entries with
a small state space. The resulting csv-file has to be checked manually to discover
the errors in the data.

The discovered errors in csv-file generated by errorFinder.r can be removed
using ./R source/Data refining/errorRemover.r. Currently, the script fixes
the errors discovered in ./R source/Data refining/errorList1.csv.
errorRemover.r takes the csv-file containing all runs and removes corrupt
entries and produces the result in a new csv-file.

After removing the corrupt entries, the data needs to be summarized. The script
./R source/Data refining/performanceOverview.r generates the
performance overview for the csv-file. The script will fix the saturation
granularity for all runs and summarize the multiple runs for each strategy and
model pair in a single record. performanceOverview.r will also determine the
Mark for time and peak size.

The csv-file with the values for ES , NES , WES and NWES may contain
multiple entries per model depending on the definition of the experiment in
the batch. The script ./R source/Data refining/eventstatsMerger.r can
be used to merge the entries per model. The script will deliver the results in a
csv-file with one record per model.
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D.3.3 Strategy evaluation

The performance overview generated in the previous step can be evaluated.
The directory ./R source/Strategy evaluation/ contains multiple scripts to
analyze the performance of the strategies for the different models. Each script
will create diagrams for the performance overview. The data presented in the
diagrams is given on the standard output.

The script analyzeSolved.r reveals the number of models each strategy is
able to solve. The script analyzePerformance.r will generate an overview of
the Marks per strategy. These two scripts are sufficient to reproduce the results
in chapter 7.

D.4 Classifiers

D.4.1 Training Data Creation

The creation of training data is separated in three steps. Firstly, the best
strategy is determined for each model. The best strategy can be either the
strategy with the lowest solving time or the strategy with the smallest peak
size for a model. Secondly, using the best strategy overview, the features of a
model are linked to the best strategy. The second step creates a list with all
input and output couples for the classifiers. Lastly, the data with the input and
output couples is split into training and validation sets. The training sets can
directly be used to train a classifier. The validation set can be used to evaluate
the performance of the classifiers created with the corresponding training set.

The scripts createTrainingTime.r and createTrainingPeaksize.r in
./R source/Trainingdata creation/ determine the best strategy per model
with respect to time and peak size respectively. The results are stored in a
csv-file which contains the best strategy per model.

The script ./R source/Trainingdata creation/createTrainingComplete.r

uses the csv-file with the best strategies, the csv-file with the performance
overview and the csv-file with the values for ES , NES , WES and NWES to
create the training data. The training data is stored in a csv-file. Each entry in
the training data list the name of the model, the features of the model and the
best strategy for that model.

The actual training and validation sets are created using the script
./R source/Trainingdata creation/splitModelsComplete.r. The script
does not consider the records where one or more features for a model are
unknown. splitModelsComplete.r divides the training data five times as listed
in section 6.3.4 and section 8.1. Each training set and validation set is stored
in a separate csv-file.

D.4.2 Classifier Creation And Evaluation

The classifiers are created and evaluated using the Python script
./Python source/StrategyML flatten.py. Within the file the location of the
training and validation data needs to be given. In this script the classifier of
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scikit-learn is also selected. The file handles the complete pipeline: reads
training data, trains classifier with selected classification algorithm, evaluates
classifier using the validation data and shows the results on the standard output.
The output is given in simple format by four floating point values. The first
value represents RecallM , the second value represents PrecisionM , the third
value represents AccuracyM and the last value represents Accuracyµ.

The predictions of the classifier are stored in a csv-file. In order to determine
the appropriateness the predicted strategies of the created classifier, the script
./R source/Classifier evaluation/resultVerifier.r can be used to
compare the predictions of the classifier with the fixed strategies.

D.4.3 Feature Relevance Analysis

In order to determine the influence of each feature, the Python script
./Python source/StrategyML missing.py can be used. The script is a
modification of StrategyML flatten.py. In this script it is possible to specify
how many features should be removed from the training data. The script will
determine all combinations of removing the specified number of features. For
each combination a classifier will be created. The creation and evaluation of
these classifiers are based on the training and validation sets of the three random
distributions of models. The results are put on the standard output per set.
For each set the combinations are listed including the four metrics (RecallM ,
PrecisionM , AccuracyM and Accuracyµ) for that combination.

Currently, there is no script available to compare the records produced by
StrategyML missing.py. The results can be put into an Excel sheet and
manually be sorted to discover relevant differences.
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