
Symbolic Model Checking of Timed Automata

using LTSmin

Sybe van Hijum

September 30, 2016

1

Acknowledgements

First of all I would like to thank my committee, Jaco van de Pol for his
guidance and steering of the project, Arnd Hartmanns for for all his com-
ments on my writings, Rom Langerak for his last minute entering into the
committee. Also thanks to Jeroen Meijer for his guidance and help during
the entire process.

Thanks to Jip for proofreading my thesis, for sparring with me on some
ideas, and her support during my final project.

Thanks to all my housemates from my former house Calslaan ”Kings
Corner” 7-1. Thanks to D.S.V. De Skeuvel for keeping both my body and
mind in shape, and for all the fun moments besides the trainings. Thanks
to the entire FMT group for letting me be part of the group and giving me
a room to work in.

2

Abstract

Timed automata are a modelling formalism adding the continuous
field of time to discrete automata. We specifically aim at the model
checking methods for these automata. We aimed at a symbolic ap-
proach which uses a diagram that stores both the discrete and con-
tinuous time variables. We used models created by the Uppaal model
checking tool set. The opaal model checker is used to read these models
and making them accessible to LTSmin.

The first solution only changes the language module and uses the
standard symbolic model checking algorithms. This results in a correct
solution for model checking of timed automata. The second method
uses a different symbolic structure to store the state-space, Difference
Decision Diagrams. This structure is defined specifically to store clock
guards. A third solution, that is only mentioned briefly, uses the ex-
plicit state methods, and the adapted language module that was de-
signed for the symbolic approaches.

We present an extensive set of experiments. All results are com-
pared to both the original Uppaal model checker and the original ex-
plicit state method in LTSmin. All experiments are executed using
several different search-orders, reorderings an other options.

An important part of this work is the future work section. We
created a basic model checker, on which extensions and improvements
can be built. To create a model checker that can compete with other
state of the art tools these improvements are needed.

3

Contents

1 Introduction 6

2 Preliminaries 7
2.1 Timed Automata . 7
2.2 Zones . 8
2.3 Zone subsumption . 9
2.4 Binary Decision Diagram . 10

3 Related Work 11
3.1 Methods . 11

3.1.1 Clock Difference Diagram 12
3.1.2 Difference Decision Diagram 12
3.1.3 Clock Restriction Diagram 13
3.1.4 Constraint Matrix Diagram 14
3.1.5 Zone BDD . 15
3.1.6 Digitization . 15
3.1.7 Orderings . 16

3.2 LTSmin . 17
3.2.1 Dependency Matrices 17

3.3 Difference Decision Diagrams 18
3.4 List Decision Diagram . 23

4 Implementation 25
4.1 Language module . 25
4.2 DDD implementation . 28
4.3 BFS . 33
4.4 Successor Generator . 34

4.4.1 Animo Models . 36
4.5 Correctness . 36

5 Experiments 39
5.1 Viking . 39
5.2 Fischer . 39
5.3 CSMA-CD . 39
5.4 Animo . 40
5.5 Lynch-Shavit . 40
5.6 Milner . 40
5.7 Other models . 40
5.8 Benchmark Runs . 40

6 Results 42
6.1 Time . 42
6.2 Memory . 45

4

7 Different Semantics 47
7.1 DBM Translation . 47
7.2 Minus . 49

8 Future Work 51
8.1 Canonization . 51
8.2 Reordering . 51
8.3 Sparser Dependency Matrix 52
8.4 Multi-Core . 53
8.5 Animo Model Compatibility 53
8.6 Subsumption . 53
8.7 Checking Properties . 54
8.8 Skipping Levels . 54

9 Conclusions 55

A Experiment Results 60

5

1 Introduction

Timed automata [2] is a widely used modelling formalism. A recent us-
age of this formalism is the modelling of biological signalling pathways [30].
ANIMO is a tool that generates these timed automata from biological sig-
nalling pathway models. Model checking techniques, like property checking
are used on these timed automata. The technique however leads to large
state spaces, and sometimes to models which are too large to handle by con-
ventional methods. Therefore, better model checking techniques for timed
automata, that can handle larger state spaces are needed. We look into
symbolic algorithms for timed automata.

BDDs (Binary Decision Diagrams) [1,12] and variations like LDDs (List
Decision Diagrams) [10] and MDDs (Multi-valued Decision Diagrams) [31]
have proven their worth in model checking algorithms. Due to advances
in this field, models with much larger state spaces can be explored on the
same machine. This progress has not been translated directly to more ef-
ficient methods for timed automata, due to the real clock values which are
used. Several methods have been proposed, like CDDs (Clock Difference Di-
agrams) [21], CMDs (Constraint Matrix Diagrams) [17], CRDs (Clock Re-
striction Diagrams) [33] and DDDs (Difference Decision Diagrams) [25,28].
All of these methods show some difficulties or limitations over BDDs. Fur-
thermore, they are not well developed.

LTSmin [9, 19] is a language-independent on-the-fly model checker with
several algorithmic back-ends. Its symbolic back-end uses BDDs to both
represent the state space and the transition relations of models. These BDDs
are generated on-the-fly by the search algorithms. LTSmin has a language
module for Uppaal [5] through the Opaal [14] lattice model checker. Through
this module Uppaal models can be loaded into LTSmin. For this language
currently, only the explicit-state multi-core back-end [13] can be used. This
explicit-state approach showed efficient enough to compete with the latest
version of the Uppaal model checker. It showed significant speedups on
multi-core machines, at the cost of some memory increase however. To
tackle the memory increase a combination of the opaal front-end and the
symbolic back-end could be a solution.

The symbolic back-end of LTSmin provides both a memory reduction by
using BDDs and a speedup by using multi-threaded search algorithms and
the multi-threaded BDD package Sylvan [32]. Using this together with the
Uppaal language front-end will hopefully result in a model checker that can
compete both on time and memory consumption with the Uppaal model
checker.

We will propose a symbolic reachability for timed automata that is ca-
pable of handling the models that are generated by the ANIMO tool.

6

2 Preliminaries

We will first define timed automata and zones, a method used to repre-
sent time in timed automata. Also a subsumption check over zones will be
defined.

2.1 Timed Automata

Timed automata is a formalism which extends labelled transition systems
with one or more clocks. Guards over these clocks, denoted as G(C) can be
used for transitions and as invariants.

Definition 1 (Clock Guards). G(C) is the set of conjunctions over simple
conditions of the form x on c or x − y on c, where x, y ∈ C, c ∈ N and
on∈ {<,≤,=,≥, >}.

Timed automata use a notion of downwards closed clock invariants. We
define a downwards closed set and specify this for clock guards.

Definition 2 (Downwards Closed Set). A set A is downwards closed if
∀a ∈ A.x � a =⇒ x ∈ A.

For clock guards we define the operator � to be true for x on c � x on′ c′

if c < c′ or c = c′ and on=< ∧ on′=≤. This leads to a simpler definition of
downwards closed clock guards.

Definition 3 (Downwards Closed Clock Guards). A set G(C) is downwards
closed if all simple conditions are of the form x on c or x − y on c, where
x, y ∈ C, c ∈ N and on∈ {<,≤}.

Also reset actions for clock can be defined for transitions, setting clocks
to 0. All clocks in the system will increase at the same rate. As our work
continues on [13] we use the same definition of timed automata.

Definition 4 (Timed Automata). An extended timed automaton is a 6-tuple
A = 〈L,C,Act, l0,→, Ic〉 where

– L is a finite set of locations, typically denoted by l

– C is a finite set of clocks, typically denoted by c

– Act is a finite set of actions

– l0 ∈ L is the initial location

– →⊆ L × G(C) × Act × 2C × L is the (non-deterministic) transition

relation. We normally write l
g,a,r−→ l’ for a transition., where l is the

source location, g is the guard over the clocks, a is the action, and r is
the set of clocks reset.

7

– IC : L → G(C) is a function mapping locations to downwards closed
clock invariants.

With the definition of a timed automaton we can combine a finite num-
ber of timed automata to a network of timed automata, which is a parallel
composition, to define larger systems. This is a parallel composition which
synchronizes on a set of channels Chan [5]. ch! and ch? respectively repre-
sent the output and input action on the channel ch ∈ Chan.

Definition 5 (Network of timed automata [13]). Let Act = {ch!, ch?|ch ∈
Chan}∪{τ} be a finite set of actions, and let C be a finite set of clocks. Then
the parallel composition of extended timed automata Ai = 〈Li, C,Act, l

i
0,→i

, IiC〉 for all 1 ≤ i ≤ n, where n ∈ N, is a network of timed automata, denoted
A = A1||A2||..||An.

For the rest of this thesis we will not strictly stick to the definition of
locations. We use the terminology ’locations’ and other ’discrete variables’.
Locations are the locations in the Uppaal transition system editor, the other
discrete variables are declared in the C-like syntax that Uppaal uses. These
discrete variables can also be used in guards and updates on transitions.

2.2 Zones

For basic transition systems the state space can grow exponentially for the
number of variables in the system. The state space of timed automata
is by definition infinite, as clocks have real values. If a discrete state is
defined between two points in time, an infinite amount of moments in time
can happen during that state. Even when some granularity is used, which
defines that clocks will only increase with certain step size the automata
can still have infinite state space if a clock is unbounded. To tackle this
problem most model checkers use a notion of zones for the representation of
time. A zone can be seen as a set of clock guards. To represent these zones
several data structures have been developed. One of the most common used
structures are Difference Bound Matrices (DBMs) [6, 15].

Definition 6 (Difference Bound Matrix). A DBM for the clocks C =
{c1, ...cn} is a (n+ 1)2 matrix. Each position has the following attributes.

Attribute Type Description

const(i,j) Z Constant value c
op(v) {<, ≤} Operator < or ≤.

Each position (i, j) defines an upper bound on the value of ci − cj. On
the first row and first column an extra clock O is added as c0 with constant
value 0.

These matrices use both a column and a row for each clock, and on each
position (i, j) an upper bound on the difference between the clocks ci and

8

O c1 c2

O (0,≤) (0,≤) (0,≤)
c1 (5, <) (0,≤) (∞,≤)
c2 (4,≤) (∞,≤) (0,≤)

Figure 1: DBM

cj is given in the form ci − cj � x where �∈ {<,≤} and x ∈ Z. For the
constraints over the single clocks an extra clock O with a constant value 0
is added. This way the upper and lower bound of a clock ci can be given
by ci − O � x and O − ci � y. The addition of this O clock will give
the matrix of a timed automaton always size (|C| + 1)2. This way convex
zones of clock variables can be represented. Each matrix can however only
contain a single convex zone. Concave zones and multiple convex zones need
multiple matrices to be represented. To solve this, often a list of DBMs is
used. In figure 1 we give an example of a DBM with two clocks: c1 and c2,
representing the zone 0 ≤ c1 < 5 ∧ 0 ≤ c2 ≤ 4. The diagonal only contains
(0,≤) values as these elements give the difference between a clock and itself,
which is clearly always 0.

A number of operations on DBMs has been defined. We will introduce
the operations we use. The same notation as [13] is used.

• D ↑ is called the delay operator. This lets time pass unlimitedly from
the zone in D.

• D ∩ D′ adds additional constraints from D′ to D. This is used for
transitions that have clock constraints. These constraints can be rep-
resented as a DBM.

• D[r] with r ⊆ C, resets all clocks in r.

• D/B does a maximal bounds extrapolation. In section 4.4 we will go
into more detail about this extrapolation.

2.3 Zone subsumption

In model checking an important function is to check if a certain state has
been visited already. For normal, discrete, automata this can be done by
comparing the newly found state to all states that have already been visited,
and check if one of those states is equal to that new state. This is often
done by more efficient methods, like hash functions, but the equality check
remains. For states with zones this equality check does not suffice. Two
zones do not need to be equal, but the newly discovered zone can also be
a subset of the earlier discovered zones. In both LTSmin and Uppaal this
is done by a subsumption check [3, 13] that is performed over the DBMs.

9

This check is delegated to the Uppaal DBM library. The DBM subsumption
function checks if a new zone is a subset of the zone represented by a DBM.

2.4 Binary Decision Diagram

We shortly introduce binary decision diagrams(BDDs) [11]. BDDs are the
basis of most symbolic model checking techniques. BDDs are a way to
represent boolean functions. All diagrams that we discuss in the rest of this
thesis are based on BDDs.

a

b

c

10

Figure 2: A BDD representing (a ∧ b) ∨ c, with ordering a < b < c

Definition 7 (Binary Decision Diagram [11]). A BDD is a rooted, directed
graph with vertex set V containing two types of vertices. A nonterminal
vertex v has as attributes an argument index index(v) ∈ {1, ..., n}, and two
children low(v), high(v) ∈ V . A terminal vertex v has as attribute a value
value(v) ∈ {0, 1}

Definition 8 (BDD Semantics [11]). A BDD G having root vertex v denotes
a function fv defined recursively as:

• If v is a terminal vertex:

– If value(v) = 1, then fv = 1

– If value(v) = 0, then fv = 0

• If v is a nonterminal vertex with index(v) = i then fv is the function
fv(x1, ..., xn) = xi · flow(v)(x1, ..., xn) + xi · fhigh(v)(x1, ..., xn).

The high and low edges of a node are graphically shown as a straight
and a dotted line respectively. A BDD can also be reduced and ordered, we
will not go into detail on that here. In Figure 2 we show a BDD representing
the boolean formula (a ∧ b) ∨ c. For larger diagrams, edges that go directly
to the terminal vertex with value 0 are often omitted for better readability.

10

3 Related Work

In this section we will discuss a number of methods used for model checking
timed automata. We will choose a method which we will use for the rest of
this project.

3.1 Methods

Already several model checkers for timed automata exist, such as Uppaal [5],
KRONOS [34], RABBIT [8] and RED [33]. We focus mainly on the Uppaal
tool as we use the same input format. Opaal [14], the language module for
LTSmin, uses the XML format that is created by the Uppaal tools. This
way we can use the Uppaal user interface to create and adapt models. We
also use the Uppaal DBM library to represent zones.

The most established method to represent clock zones are DBMs. We
gave an introduction to this structure in the preliminaries section. Several
diagrams based on BDDs have been developed to represent zones. All of
these are similar to DBMs in the sense that they use clock constraints to
represent the zones. The structure of these diagrams is BDD-like to repre-
sent the zones more efficiently. Below we shortly describe four zone based
methods. For each method we give an example, all examples represent
2 < c1 − c2 < 4 ∨ 7 ≤ c1 − c2 ≤ 8. This is a non-convex zone, and conse-
quently cannot be represented by a single DBM. The representing zone is
drawn in Figure 3

c1

c2

−1 0 1 2 3 4 5 6 7 8 9−1

0

1

2

3

4

5

6

7

8

9

Figure 3: Zone represented by the examples for all symbolic approaches

11

3.1.1 Clock Difference Diagram

CDDs [21] use single nodes for each variable and have multiple edges each
containing a disjoint interval of that variable. This results into a node with
a larger fanout. The upper and lower bound for each pair of clocks are
represented in a single node, as the edges represent intervals. Requiring
the disjointness of intervals can lead to a memory inefficient representation,
as intervals need to be cut into smaller parts. All algorithms on CDDs do
not maintain disjointness, after every step it needs to be re-established. In
Figure 4 we have an example of a CDD.

Definition 9 (Clock Difference Diagram [21]). A clock difference diagram
is defined as a directed, acyclic graph, which has

• a node called the start node from which all nodes of the graph are
reachable

• inner nodes written as ((i, j), (I1, , T1, ..., (Iq, Tq)) where (i, j) is the
pair of clocks of the constraint, the In are intervals of the real num-
bers, and the Tn are CDDs again. We require completeness, i.e.⋃

n∈{1,...,q} In = R

• end-nodes which are either TRUE or FALSE

c1 − c2

T

(2, 4) [7, 8]

Figure 4: CDD representation

3.1.2 Difference Decision Diagram

DDDs [25, 28] use an upper-bound clock constraint for a variable pair on
each node that can either be true or false. Each node, thus has a fixed
fanout of two, a true and a false edge. When a constraint is false, a next
node will have another constraint on the same variable, a true edge will go
down to the next level with constraints over another pair of variables. This
requires a fixed ordering based on the variables, values and operators. The
apply operator that is defined over DDDs has the same complexity as that
over BDDs. In Figure 5 an example of a DDD is shown.

12

Definition 10 (Difference Decision Diagram [28]). A difference decision
diagram (DDD) is a directed acyclic graph (V,E). The vertex set V contains
two terminals 0 and 1 with out-degree zero, and a set of non-terminal
vertices with out-degree two and the following attributes.

Attribute Type Description

pos(v), neg(v) Var Positive variable xi, and negative variable xj.
op(v) {<, ≤} Operator < or ≤.
const(v) D Constant c.
high(v), low(v) V High-branch h, and low-branch l.

The set E contains the edges (v, low(v)) and (v, high(v)), where v ∈ V is a
non-terminal vertex.

c1 − c2 c1 − c2

c2 − c1

< 4

c1 − c2

≤ 8

T

< −2 ≤ −7

Figure 5: DDD representation

3.1.3 Clock Restriction Diagram

CRDs [33] differ mainly from CDDs by not using disjoint intervals but pos-
sibly overlapping upper bounds, for a pair of variables on their edges. This
diagram will have a larger fanout per node, like CDDs. Several normal forms
for this diagram are proposed, with different performance results. The re-
sults of CRDs have been compared to CDDs. Results were sometimes expo-
nentially better, in other cases linear worse than CDDs, this due to the fact
that each variable pair needs a node for both their upper and lower bound,
where CDDs fit this in a single node. It is also shown that CRDs can be
combined with BDDs into a single structure to fully symbolically represent
the state space. In Figure 6 we give an example of a CRD.

Definition 11 (Clock Restriction Diagram [33]). Given a set of variables
V = {x − x′|x, x′ ∈ X ∪ {0}} ∪ {true}, an evaluation index Ω over V ,

13

and a timing constant CA, a CRD over V,Ω, and CA is a tuple D =
(v, (β1, D1), ..., (βn, Dn)) with n ≥ 0 and v ∈ V such that

• v = true iff n = 0

• if v 6= true, then for all 1 ≤ i ≤ n, βi ∈ BCA
and Di is a CRD, say

(vi, (βi,1, Di,1), ..., (βi,m, Di,m)), over V,Ω, and CA with v ≺Ω vi

• if v 6= true, then for all 1 ≤ i < j ≤ n, βi 6= βj

• if v 6= true and n = 1, then β1 6= (<,∞)

c1 − c2

c2 − c1 c2 − c1

< 4 ≤ 8

T

< −2 ≤ −7

Figure 6: CRD representation

3.1.4 Constraint Matrix Diagram

CMDs [17] combine CDDs, CRDs and DBMs into a single structure. This
diagram type differs from the others by having multiple constraints per
edge, resulting in a diagram with fewer nodes. Upper- and lower-bounds of
multiple clock pairs can be on a single edge. The diagram can also be used
with only single constraints per edge, which gives a structure quite similar
to CRDs. CMDs do not have a canonical form so only some reductions
are proposed. An example of a CMD is given in Figure 7. This figure
contains two examples, the first is a diagram of the constraint we use in this
section. To show the difference with other diagrams we also give a diagram
representing the same zone as the DBM in Figure 1.

Definition 12 (Constraint Matrix Diagram [17]). A Constraint Matrix
Diagram (CMD) over the set of constraint matrices M is a tuple M =
(Q, q0, q>,type, E) where

• Q is a finite set of nodes

• q0 ∈ Q is the root node

14

• q> ∈ Q is the sink

• type: Q→ I∪{Imax+1} is a total function that associates a constraint
index to each node

• E ⊆ Q×M×Q is an edge relation

Additionally, we require that (1) (Q,E) is a directed acyclic graph with
precisely one source node q0 and one sink node q>; (2) type(q0) = 0 and
type(q>) = Imax + 1; (3) for each edge (q,m, q′) ∈ E, minIdx(m) ≥ type(q)
and maxIdx(m) ¡ type(q′).

T

2 < c1 − c2 < 4 7 ≤ c1 − c2 ≤ 8

T

0 ≤ c1 ≤ 5
0 ≤ c2 ≤ 4

Figure 7: CMD representation

3.1.5 Zone BDD

In [16, 35] a method is proposed purely based on BDDs by translating
the constraints directly into BDD nodes. We call this method BDD zones.
This results in a unified structure for both the discrete variables and the
clock constraints. The method is only a proof of concept and has not been
implemented in a model checker and no performance results are known.
Subsumption for this method may be difficult. On BDDs only equalities
can be checked, and no inequalities. This way inclusion is not trivial to
check by normal BDD algorithms.

3.1.6 Digitization

Digitization approximates the continuous values of clocks by using discrete
values [7]. The method however, only works for closed timed automata,
meaning that no strict comparisons on clocks can be made in the model
and that clocks only can be compared to integers. This approach is very
sensitive to the granularity of the values used and the upper bound of the
clock values. When fine granularity or large upper bounds are used, the
memory usage will increase too much. An advantage of this approach is
that basic model checking approaches can be used and no extra complexity
due to zone calculations is added. This method results in a transition system
with only discrete variables, so a normal BDD package can be used. In [29]

15

R
eo

rd
er

in
g

S
u

b
su

m
p

ti
o
n

E
x
p

er
im

en
ts

R
es

u
lt

s

A
lg

o
ri

th
m

s

C
an

on
ic

a
l

fo
rm

S
im

il
ar

it
y

C
on

n
ec

t
w

it
h

ot
h

er
d

ia
gr

a
m

DBM - + + + + - ?
DDD + + time only + +/- hard LDD ?
CDD ? + - - +/- hard MDD ?
CRD + ? + + - 3 options MDD BDD
CMD - ? + +/- reduced - ?
BDD discrete + - + +/- + + BDD BDD
BDD zones + - - - + + BDD BDD

Table 1: Comparing Diagrams

a similar approach is proposed by using clock tick actions to represent time
progress and removing clock variables altogether.

3.1.7 Orderings

A known difficulty in BDDs is the variable ordering. A bad ordering can lead
to a BDD of exponential size, where a good ordering can sometimes lead to
a significantly smaller diagram. Of the zone diagrams named above, only
for CRDs experiments with different orderings have been conducted, the
other researches assume a given ordering on the variables and the ordering
of the values is fixed. The CRD case shows that full interleaving and having
related variables close to each other in the ordering is preferable, and gives
the best results, both on speed and memory. This is the same result as
expected with BDDs. This suggests that similar orderings should be used
with these techniques. The techniques using normal BDDs can use standard
BDD reorderings.

In Table 1 we compare the different types of diagrams we discussed above.
We used different criteria. The table shows if reorderings are possible, if a
subsumption check can be done, if experiments are done with the structure
and their results, if canonical forms can be reached and how hard this is, if
it is similar to a diagram for discrete variables, and if it can be connected
to another type of diagram. The table uses + and − to express if a diagram
has a certain property or not, +/− is used for experiments and results if
the experiments were limited or the results differ per test case. A ? is used
when it is not clear if the diagram has a certain property or not.

16

Specification
Languages

pins2pins
Wrappers

Reachability
Tools

mCRL2 Promela DVE Uppaal

front-end

back-end

Transition
Caching

Variable Reordering,
Transition Grouping

Partial Order
Reduction

Distributed Multi-core Symbolic

Figure 8: Modular structure of LTSmin [9]

3.2 LTSmin

LTSmin [9, 19] is a language independent model checker. It is built in a
modular way such that new languages can be added by a PINS (Parti-
tioned Next-State Interface) without too much effort, and new algorithms
can be added easily. LTSmin offers four different algorithmic back-ends
for model analysis: symbolic, multi-core, sequential and distributed. All
of these back-ends support different types of reduction and model check-
ing. Several language modules have already been built for LTSmin such as
mCRL2, Promela, DVE and Uppaal. The modular structure of LTSmin is
shown in Figure 8. The PINS is the core of LTSmin. This interface ab-
stracts as much as possible from the model without losing the structure.
It represents states as fixed length integer arrays. The main function of
the interface is a (partitioned) next-state function which returns the suc-
cessor states. With these functions a state space can be generated on the
fly. With the use of dependency matrices event locality can be determined
statically [23]. With these matrices, more efficient symbolic algorithms can
be used, the number of next-state calls can be reduced, efficient variable
re-orderings can be used, and transition caching can be used. In the cur-
rent Uppaal PINS the next-state function is not partitioned and therefore
no meaningful dependency matrix is created, and none of these algorithms
can be used. Also the DBM variable is only represented by a pointer, which
is not a meaningful value for the transition system, as it is just a pointer,
and does not contain information about the actual zone. LTSmin uses the
pointer to a DBM to do the subsumption check as described in section 2.3.

3.2.1 Dependency Matrices

To make use of most optimizations of symbolic model checking, a notion of
event locality is used. In LTSmin this is done by dependency matricesrwcma-

17

trices. Dependencies can be divided into four types: read(r), must-write(w),
may-write(W) and copy(-). When a variable is both may-write and read, a
read/write dependency(+) is used. Each variable in the state-vector is rep-
resented, for each group, in this matrix. A read dependency is used when
a variable is read in a group. The must-write dependency is used when a
variable is always written, the may-write dependency is used when it may
be written, but in some cases it can also be copied. This can occur, for
example when a position in an array is written, or when the write happens
inside a condition. The copy dependency is used when neither of the other
dependencies applies. The variable will not change in this group. In Figure
9 we show a dependency matrix of the two simple transition groups below.

1: x = 1 ∨ a[2] = 0 → a[2] := 1, x := 0
2: a[1] = 1 → a[x] := 0, x := 1

[x a[0] a[1]

1 + − +
2 w + W

]
Figure 9: Dependency Matrix

3.3 Difference Decision Diagrams

We have discussed several symbolic approaches for representing zones. All
of these approaches have benefits and downsides over each other. We chose
to develop one of these approaches in LTSmin. We wanted a diagram that
can store both discrete states and zones, this can either be done in the
diagram, or in a combination of the diagram and BDD or LDD nodes. Also
a subsumption check on the diagram should be possible. We chose from
the four zone-representing diagrams discussed earlier. The CDD approach
was not chosen due to the memory inefficient disjoint intervals and their
algorithms not maintaining these disjointness. The CMD approach is too
similar to DBMs, on which we already have an approach. The choice between
CRD and DDD was between two quite similar diagrams. We have decided to
continue on the DDD. It is a diagram form that is closely related to LDDs,
for which we already have a library, so we can reuse parts of the LDD library,
and it is also quite compatible with the current PINS structure and its next-
state function, so no big changes are needed for that. A translation from a
path in a DDD structure into a state-vector used by LTSmin can be made
without too much effort.

So DDDs are a diagram type that seems to fit well in the current struc-
ture we have. We already defined a DDD in the previous subsection. We
will now also give the semantics of this structure. The semantics uses the
if-then-else operator, denoted by →.

18

Definition 13 (DDD semantics). The semantics of a vertex is defined re-
cursively by the function V : V → Exp :

• V[[0]]
def
= false,

• V[[1]]
def
= true,

• V[[v]]
def
=

{
(pos(v)− neg(v) < const(v))→ V[[high(v)]],V[[low(v)]]if op(v) =′<′

(pos(v)− neg(v) ≤ const(v))→ V[[high(v)]],V[[low(v)]]if op(v) =′≤′

In the semantics we only take the information on the high edges. The
implicit information on the low edge is not used. A node can only represent
an upper-bound which is either true or false, it cannot implicitly represent
a lower-bound on the same variable pair. This representation also makes it
easier to work with the state-vectors of LTSmin.

In [28] a canonical form for DDDs is discussed, also called a fully reduced
DDD. Only definitions are given here, no algorithms to reach this form. It
is stated that it is difficult to reach this fully reduced form. It is not clear if
they managed to make their apply function in such a way that it maintains
canonicity, as the function for BDDs does. To reach canonicity, local reduc-
tions and ordering are a first step, but it is not enough due to dependencies
among the constraints. For BDDs the local reductions and ordering are suf-
ficient to reach a canonical form. First, we give some notational shorthands
and then we define an ordering and local reductions on DDDs.

var(v) = (pos(v), neg(v))
bound(v) = (const(v), op(v))
cstr(v) = (var(v), bound(v))

To order DDD nodes we use the operator ≺. This orders variables
and variable pairs in a predefined order. It orders bounds by increasing
constants, and the < operator before the ≤ operator. So a node v with
bound(v) = (0, <) comes before bound(u) = (0,≤) which comes before
bound(w) = (1, <).

Definition 14 (Ordered DDD [28]). An ordered DDD (ODDD) is a DDD
where each non-terminal vertex v satisfies:

1. neg(v) ≺ pos(v),

2. var(v) ≺ var(high(v)),

3. var(v) ≺ var(low(v)) or
var(v) = var(low(v)) and bound(v) ≺ bound(low(v)).

After ordering a DDD some local reductions can be defined to reduce
the size of a DDD.

19

Definition 15 (Locally Reduced DDD [28]). A locally reduced DDD (RLDDD)
is an ODDD satisfying, for all non-terminals u and v:

1. D = Z implies ∀v.op(v) =′≤′,

2. (cstr(u), high(u), low(u)) = (cstr(v), high(v), low(v)) implies u = v,

3. low(v) 6= high(v),

4. var(v) = var(low(v)) implies high(v) 6= high(low(v)).

We give an example of the last point in figure 10. Here both diagrams
represent the same zone: 2 < c1 − c2 ≤ 8. The node with < 4 on the high
edge is redundant in this example and can thus be removed. We do not
strictly test for the first rule. Even if we only use integer comparisons, we
will also represent strict comparisons. The values of clocks are real, and not
integer, so there is a difference between both operators.

c1 − c2 c1 − c2

c2 − c1

< 4 ≤ 8

T

< −2

c1 − c2

c2 − c1

≤ 8

T

< −2

Figure 10: Local reduction

For BDDs these reductions would be enough to have a fully canonical
structure. For DDDs this is not the case, due to dependencies between the
bounds. In Figure 11 we give an example for this by giving two different
locally reduced DDDs representing the same zone. The resulting zone of
both these DDDs is drawn in Figure 12, which is the square in which both
clock c1 and c2 are between 0 and 5.

The RLDDD is clearly not canonical. First, we define a path in a DDD
as the bound on all high edges that are traversed in a single walk from the
top node to the true node. A path [p] will only have one bound for each
variable pair.

Definition 16 (Path-reduced DDD [28]). A path-reduced DDD (RPDDD)
is a locally reduced DDD where all paths are feasible.

This definition ensures that all paths in a DDD actually represent a zone,
and that there are no redundant paths in the DDD that just represent an

20

O− c1

O− c2

c1 −O

c1 − c2

c2 −O

c2 − c1

T

< 0

< 0

< 5

<∞

< 5

<∞

O− c1

O− c2

c1 −O

c1 − c2

c2 −O

c2 − c1

T

< 0

< 0

< 5

< 5

< 5

< 5

Figure 11: Two DDDs representing the same zone

empty set. This usage of paths is compatible to the state vectors used in
LTSmin. An RPDDD is still not canonical. We need to define tightness,
saturation and disjunctive vertices. To define tightness we first need to
define dominating constraints.

Definition 17 (Dominating constraint [28]). A constraint xi − xj . c is
dominating in a path [p] if all other constraints xi − xj .′ c′ on the same
pair of variables in p are less restrictive.

Definition 18 (Tightness [28]). A dominating constraint α = xi − xj . c
is tight in a feasible path [p] = [p1] ∧ α ∧ [p2] if for all tighter constraints
(c′,.′) < (c,.), the systems [p1]∧ (xi−xj .′ c′)∧ [p2] and [p] have different
solutions. A path p is tight if it is feasible and all dominating constraints on
it are tight. An RLDDDu is tight if all paths from u are tight.

Definition 19 (Saturation [28]). A tight path p from an RPDDD is sat-
urated if for all constraints α not on p, if α is added to p either (1) α is
not dominating and tight, or (2) the constraint system [p1]∧¬α is infeasible

21

c1

c2

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

Figure 12: Resulting zone of DDDs in figure 11

when [p] is written [p] = [p1]∧ [p2] with all constraints on p1 smaller than α
with respect to ≺ and all constraints on p2 larger than α. An RPDDD u is
saturated if all paths from u are saturated.

Definition 20 (Disjunctive vertex [28]). Let p be a path leading to the vertex
u in a DDD, and assume α = cstr(u), h = high(u), and l = low(u). Then
u is disjunctive in p if [p] ∧ (α→ h, l) and [p] ∧ (h ∨ l) have the same set of
solutions.

All of these definitions together lead to the following definition of a fully
reduced DDD.

Definition 21 (Fully reduced DDD [28]). An RpDDD u is a fully-reduced
DDD (RFDDD) if it is tight, saturated and has no disjunctive vertices.

We assume that this fully-reduced DDD is canonical and work from that.
It is not ensured that this is actually the case, there is no proof for it.

Conjecture 1 (Canonical DDD [28]). If u and v are RFDDDs with the
same set of solutions then u = v.

DDDs can also be used to represent the discrete variables in automata.
This is done by translating the variable into a difference constraint. For
example x1 = 3 will be translated into x1 − 0 ≤ 3 ∧ 0 − x1 ≤ −3, thus
resulting into a DDD with two nodes. We will instead connect the DDD to
an LDD to represent discrete variables to limit the number of nodes.

22

a

b

c

d

T

b

c

b

a

c

d

0

0

0

0

2

3

2

0

3

1

Figure 13: LDD representation

So far we only found the results of two benchmark tests of DDDs, Mil-
ner’s scheduler and Fischer’s protocol [26]. Here the DDD approach has been
compared with KRONOS and Uppaal which were both slower than the DDD
implementation. The results of these benchmarks show no memory usage
or number of nodes needed.

3.4 List Decision Diagram

We will introduce the LDD structure here [32]. An LDD is used to represent
variables with integer values, not only binary values. In contrast to MDDs
[31], which have multiple outgoing edges per node, this is done for one value
per node, resulting in nodes with equal size. We will first define the LDD
structure.

Definition 22 (List Decision Diagram). A List Decision Diagram (LDD)
is a directed acyclic graph (V,E). The vertex set V contains two terminals
0 and 1 with out-degree zero, and a set of non-terminal vertices with
out-degree two and the following attributes.

Attribute Type Description

var(v) Var Variable x
const(v) Z Constant c.
high(v), low(v) V High-branch h, and low-branch l.

The set E contains the edges (v, low(v)) and (v, high(v)), where v ∈ V is a
non-terminal vertex.

The definition is almost equal to DDDs, Definition 10. The difference is

23

the operator that is not in LDDs. LDDs can be seen as a DDD with not a <
or ≤ as operator, but a =. The semantics of this diagram are again similar
to those of DDDs, which can be defined using the if-then-else operator.

Definition 23 (LDD semantics). The semantics of a vertex is defined re-
cursively by the function V : V → Exp :

• V[[0]]
def
= false,

• V[[1]]
def
= true,

• V[[v]]
def
= (var(v) = const(v))→ V[[high(v)]],V[[low(v)]]

We give an example of an LDD in Figure 13 which represents the fol-
lowing values: {0, 0, 0, 0}, {0, 2, 3, 0}, {2, 0, 3, 1}, for the vector {a, b, c, d}.

24

4 Implementation

This section will go more into detail about the implementation we made,
and the design choices that were needed.

4.1 Language module

In the LTSmin implementation that we already have the state vector consists
of all discrete variables and an 64 bit pointer to a C++ object containing
a DBM [13]. For a symbolic solution this pointer has no meaning, thus we
take the actual values from the DBM and put these into the state vector.
This increases the length of a state vector, but does not need to increase
the memory footprint, as the DBM was already stored, and can now be
removed, once all the values are copied.

In the DBM library we use, a DBM is represented by a one-dimensional
array of 32-bit integers. In the integers the complete bound is stored, so
both the operator and the constant value. We flattened the DBMs to work
with a symbolic solution. We only did this on the edges of the successor
function. So this function reads a state with a flattened DBM as input and
returns successor states, again with flattened DBMs, internally the original
DBM representation is still used. This way the code had to be adapted the
least. In this flattening step we removed the diagonal elements of each DBM.
By the way DBMs are constructed, this will always represent the difference
between a clock and itself. This difference is by definition always 0, so it
can be removed, and hard coded be set to (0,≤) internally. This reduces
the number of state variables in the state vector by one for each clock. This
flattening of DBMs results into a language module that can be connected
to all LTSmin algorithmic back-ends for state-space generation, without the
need for adaptations to the structure or the search algorithms.

To get the best possible result of the regrouping algorithms, the depen-
dency matrices had to be made as sparse as possible. This has been done
for both the read matrix and may-write matrix. For even better results, also
the must-write matrix is needed. This needs effort when analysing the code,
this can be done, but is left out for this thesis. To generate the matrices we
parse the Uppaal models. First of all, all C-like code is parsed. Here it is
stored per function which variables are read and written, and which other
functions are called. Next all transitions are parsed, here some variables
are read and written directly. Transitions can also call functions, in such
cases the variables that were found during the parsing of these functions are
added to the read and may-write variables of the transition. In the third
step we need to look at the time extrapolation. This extrapolation is based
on the value of the location variable, so it results in a read dependency. In
some cases, there is no difference between all possible location values for this
extrapolation, so a location does not need to be read. A final step is that a

25

location variable that can be urgent or committed always has to be read. If
this location is in an urgent state, than no other transitions can happen, so
all other transitions have to check that they are not in an urgent state. In
which only another transition can take place.

The correct filling of the matrices is only for the discrete parts of the
states. For the zone part, no optimizations have been created. The matrices
for these parts will always be filled. The problem is that changing only one
clock can have a larger impact on a DBM when a normal form is used. The
flattened DBMs and the sparser dependency matrices together enable the
reordering algorithms in the symbolic back-end of LTSmin to be used.

We work towards a fully reduced DDD solution. This is already started
on the language module side. The next-state function will only return tight
and saturated paths. In DBM terms, this is a minimal constraint system [6].
As the length of a state-vector cannot be changed on the fly, all removed
constraints are set to (∞, <). This means that there is no upper-bound on
the variable pair of that position. In Algorithm 2 which uses Algorithm 1
we show the algorithm that determines all bounds that are not needed an
can be set to (∞, <).

The DBM library cannot use these minimal constraint systems, as all
functions depend on a tightened DBM. In the next-state function the in-
coming DBM is tightened, then all needed operations for the successor gen-
eration are conducted and if a successor is returned, its DBM is again turned
into a minimal constraint system. This will give algorithmic overhead for
each next-state call. The advantage of this procedure is that many bounds
will be redundant and turned into (∞, <). In the symbolic back-end these
bounds which are the same can be shared in a single node. Thus while tak-
ing more time in the successor generator, it can also reduce the number of
nodes in the algorithmic back-end. This reduction is used in the successor
generator for the LDD symbolic back-end, and will also be used in the DDD
solution.

Algorithm 1 Reduce

1: procedure Reduce(dbm, dim)
2: for i ∈ dim do
3: for j ∈ dim do
4: for k ∈ dim do
5: if !(dbm[i, k] ∨ dbm[k, j] ∨ dbm[i, j] on diagonal) then
6: if dbm[i, k] + dbm[k, j] ≤ dbm[i, j] then
7: dbm[i, j] :=∞

26

Algorithm 2 Reduce

1: procedure ReduceZero(dbm, dim)
2: placed[dim] all 0
3: red[dim, dim] all 0
4: eq[dim, dim] all 0
5: cl := 0
6: newDBM [dim, dim] diagonal ∞ rest 0
7: for i ∈ dim do
8: if placed[i] = 0 then
9: for j ∈ dim do

10: if dbm[i, j] + dbm[j, i] = 0 then
11: placed[j] := 1
12: eq[cl, j] := 1

13: cl + +

14: repr[cl]
15: for i ∈ cl do
16: for j ∈ dim do
17: if eq[i, j] = 1 then
18: repr[i] := j
19: break
20: clg[cl, cl]
21: for i ∈ cl do
22: for j ∈ cl do
23: clg[i, j] := dbm[repr[i], repr[j]]

24: Reduce(clg, cl)
25: for i ∈ cl do
26: for j ∈ dim do
27: if eq[i, j] = 1 then
28: for k ∈ dim do
29: if eq[i, k] then
30: newDBM [j, k] = dbm[j, k]

31: for j ∈ cl do
32: newDBM [repr[i], repr[j]] := clg[i, j]

33: return newDBM

27

low edge value high edge

Figure 14: In memory representation of DDD node

4.2 DDD implementation

We used the basis of the LDD package in Sylvan to create our DDD nodes.
The nodes are the same as the LDD nodes, only two previously unused bits
are now used to store the operator and the type of the node. DDD nodes
are stored in 128 bits, represented as a struct of two 64 bit integers. The
hashtable that is already used by Sylvan is specifically for 128 bit entries, so
the DDD nodes can use the same hashtable. A node is in C code represented
as follows:

struct dddnode {
u i n t 6 4 t a , b ;

} ∗ dddnode t ;

In this struct the value (32 bits), the true edge (40 bits), the false edge (40
bits) and a type bit, operator bit and flag bit are stored. These values are
not specifically named in the struct, all values are stored in the two integers
a and b. Figure 14 shows how this is coded in memory. The type, operator
and flag bit are stored in the black areas. We do not show them explicitly
due to the scale. The type bit indicates if a node is a DDD or an LDD node,
if it is set to 0 it should be treated as a normal LDD node. The operator bit
shows if the operator is < or ≤, this can only be used if the type bit is also
set to 1 (DDD). The flag bit is used in some algorithms to indicate that a
certain node has already been visited. All of this is stored compactly in the
two 64 bit integers. The total information is 115 bits, so there are still 17
unused bits, all unused bits are set to 0. The depth of the node is not stored,
this can be calculated by going down through the structure. This implies
that no level can be skipped. Other DDD algorithms and reductions show
that some levels are not needed. We solved this by indication a skipped level
by (∞, <), which is true for every upper bound. For such nodes the false
edge will always directly lead to the false end node.

To create a node a special MK function is used. This function will
ensure that a DDD is always locally reduced. This MK function is shown
in algorithm 3. This function ensures the correct total structure and puts
newly created nodes in the hashtable. The actual creation of a node is done
in the MakeNode function that is called inside the MK function. The code
for the MakeNode function is not shown here as it is only technical coding,
putting all the information in the struct.

One of the core operations on DDDs is the apply operation. This oper-
ation takes two DDDs and a binary operator and combines the two DDDs

28

Algorithm 3 MK

1: procedure MK(value, h, l, type, op)
2: if h = 0 ∧ type = LDD then
3: return l
4: if h = 1 ∧ l = 1 then
5: return 1
6: if h = 0 ∧ l = 0 then
7: return 0
8: if h = 0 ∧ l 6= 0 then
9: return 1

10: if h = high(l) then
11: return l
12: node = makeNode(value, h, l, type, op)
13: if node /∈ table then
14: Put(node)

15: return node

according to the operator. The apply function for DDDs is a generalisation
of the function for BDDs. In [28] a general definition of the algorithm is
given. We turned this more mathematical definition into an algorithm, we
give pseudo-code in Algorithm 4. The algorithm will search down to the
leaf nodes and use the operator on that level. We can optimize this a bit for
cases where we see two equal nodes, or only one leaf node. In Algorithm 5
we give the pseudo-code for the apply function with the or operator, or the
union function, this way we can increase performance by not going down
the entire diagram if we already found a false leaf, or two equal nodes. The
apply operator does not ensure path-reducedness, even when both inputs
are path reduced.

The minus function, used for the reachability, has not been implemented
as a DDD function. This function is different to other functions, as informa-
tion has to be transferred over different levels. For simple cases, an upper
bound in one of the operands of the minus, can become a lowerbound in the
result, and vice-versa. A simple one-dimensional example is [0..8]\[0..4), this
will result in [4..8]. In this case the 4 is the upper-bound of the subtrahend.
It will however become the lower-bound of the difference. As lower- and
upper-bounds are saved on different levels in DDDs this makes the function
different from all other functions, which only look at values on the same
level.

In Figure 15 we have a two-dimensional example of how the minus func-
tion can become more complex for multiple-dimensions. In this case we
make a hole in a larger zone. Both the minuend and the subtrahend are
represented by a DDD with a single path, as shown in figure 16. For sim-

29

Algorithm 4 Apply

1: procedure Apply(v1, v2, op)
2: if v1 ∈ {0, 1} ∧ v2 ∈ {0, 1} then
3: result← (v1 op v2)
4: else if var(v1) ≺ var(v2) then
5: high← Apply(high(v1), v2, op)
6: low ← Apply(low(v1), v2, op)
7: result← Mk(cstr(v1), high, low)
8: else if var(v2) ≺ var(v1) then
9: high← Apply(high(v2), v1, op)

10: low ← Apply(low(v2), v1, op)
11: result← Mk(cstr(v2), high, low)
12: else if v1 ≺ v2 then
13: high← Apply(high(v1), high(v2), op)
14: low ← Apply(low(v1), v2, op)
15: result← Mk(cstr(v1), high, low)
16: else if v2 ≺ v1 then
17: high← Apply(high(v1), high(v2), op)
18: low ← Apply(v1, low(v2), op)
19: result← Mk(cstr(v2), high, low)
20: else if v1 = v2 then
21: high(v1)← Apply(high(v1), high(v2), op)
22: low(v1)← Apply(low(v1), low(v2), op)
23: result← Mk(cstr(v1), high, low)

24: return result

30

Algorithm 5 Union

1: procedure Union(v1, v2)
2: if v1 = v2 then return v1
3: else if v1 = false then return v2
4: else if v2 = false then return v1
5: else if var(v1) ≺ var(v2) then
6: high← Union(high(v1), v2)
7: low ← Union(low(v1), v2)
8: result← Mk(cstr(v1), high, low)
9: else if var(v2) ≺ var(v1) then

10: high← Union(high(v2), v1)
11: low ← Union(low(v2), v1)
12: result← Mk(cstr(v2), high, low)
13: else if v1 ≺ v2 then
14: high← Union(high(v1), high(v2))
15: low ← Union(low(v1), v2)
16: result← Mk(cstr(v1), high, low)
17: else if v2 ≺ v1 then
18: high← Union(high(v1), high(v2))
19: low ← Union(v1, low(v2))
20: result← Mk(cstr(v2), high, low)
21: else if v1 = v2 then
22: high(v1)← Union(high(v1), high(v2))
23: low(v1)← Union(low(v1), low(v2))
24: result← Mk(cstr(v1), high, low)

25: return result

31

plicity we removed the diagonals in this example, as they play no role. The
difference however becomes a DDD with 4 paths and 10 nodes, Figure 17.
Again a lot of upper- and lower-bounds are switched. Already for this ex-
ample we could not find an algorithm that does this in general. For more
dimensions, and DDDs with already multiple paths the problem will only
get harder. That is why we returned to a DBM function for this.

The DBM function we use is defined in the Uppaal DBM library. The
minus function is defined over a federation of DBMs. This federation is
a C++ class containing multiple DBMs. This federation is needed as we
can do a minus over a collection of zones, multiple paths in the DDD, and
the result can contain multiple zones. As already shown in the example of
Figure 15. For this function we first take the normal LDD minus function
over the discrete part. At the first DDD level, representing the zones, the
DBM function is called. From this level all possible paths are searched, and
for each path a DBM is created and tightened. All these DBMs are put in a
federation, on which the library function can be called. The result is again
(a possibly empty) federation. If the federation is empty, simply a DDD-
false node is returned. Otherwise each DBM is turned into a DDD path and
these paths are made into a single structure using the union function.

To represent the discrete variables in states LDD nodes are used. The
structure of these nodes is quite similar to DDD nodes. We decided to not
mix the nodes, but to first have all the LDD nodes and then all DDD nodes
in the tree. In the state vector the first part exists of all discrete variables,
the last part are the DBM variables. The top of the diagram can be seen as
a MTLDD(Multi-Terminal List Decision Diagram) with not values on the
leaf nodes, but pointers to DDD nodes. The DDD part is not influenced by
the LDD part, as a node is only influenced by the nodes below it, it has no
information about the nodes above it in the diagram. This strict separation
between LDD and DDD nodes makes that the reordering algorithms cannot
be used, as this would mix the types of nodes. The lack of reordering makes
it however possible to reconstruct the DBMs on the DDD side. This is used
for the minus function.

The transition relation we use is stored in an LDD structure. Both bound
values and operators are implicitly encoded in a single value, like in the DBM
library. When creating new nodes, the nodes are matched against the state
space. By checking the type of the node of the state-space on the current
level it can be checked if the relation node should be treated as a normal
LDD node with a discrete variable, or as an LDD node which implicitly
stores an upper-bound. The choice to not use the DDD type nodes in the
relation has been made to have better support for possible future reordering
options. If reorderings are used, it would need explicit information for which
relation levels contain zone variables, with matching against the states this
extra information is not needed.

32

One of the basic outputs that LTSmin gives when calculating a state-
space, is the number of states. For timed automata this is trivial, as most
models have an uncountably infinite number of states. This is not an useful
answer, as this would be the same for most models. Other options of count-
ing states are not clear. Digitization approaches will have a finite number
of states. For zone-based approaches we do not have a clear approach, as
the number of zones can differ for each approach. We decided to take as
the state count only the number of discrete states. This number should be
equal for each method for analysing timed automata.

4.3 BFS

The DBM minus function we use is quite expensive. As it is imported from a
library, we do not know the exact complexity. To overcome this problem we
will use two different versions of the search algorithm. Our second version
will not use the minus function. In Algorithm 6 we show the standard BFS
algorithm, this will be the first algorithm we use. Algorithm 7 shows how
we can edit this algorithm. The constraint of the loop is changed from an
empty check of the current set, to a check that the total visited set has
not been changed. This check is basically the same, the first checks if now
new states are found, the second checks that the total state-space has not
been changed. This change now shows that the minus is not necessary any
more, as shown in Algorithm 8. This version uses the same check as the
previous one, but now the minus of the current and the visited set has been
removed. The implication is that the current set will in some cases be larger
than in the previous algorithm. This will have some negative impact on the
next-state calls, which will take more time. Not using the expensive minus
function might compensate for that. Both versions of the algorithm have
been implemented in the bfs-prev algorithm [23]. This is the default search
algorithm that is used in LTSmin. In the results section we will show the
outcome of both BFS algorithms.

Algorithm 6 BFS

1: procedure BFS(initial)
2: vis := cur := initial
3: while cur 6= ∅ do
4: cur := next(cur)
5: vis := vis ∪ cur
6: cur := cur \ vis

33

Algorithm 7 BFS

1: procedure BFS(initial)
2: vis := cur := initial
3: visprev := ∅
4: while vis 6= visprev do
5: visprev := vis
6: cur := next(cur)
7: vis := vis ∪ cur
8: cur := cur \ vis

Algorithm 8 BFS

1: procedure BFS(initial)
2: vis := cur := initial
3: visprev := ∅
4: while vis 6= visprev do
5: visprev := vis
6: cur := next(cur)
7: vis := vis ∪ cur

4.4 Successor Generator

The language module uses the opaal successor generator for Uppaal models.
This generator is written in Python and reads Uppaal XML files. A C++ file
is generated from this. These files are compiled to object files which can be
dynamically linked to LTSmin. The structure of the next-state function is
slightly different from [13]. The new structure can be found in algorithm 9.
At line 6, the function iterates over all outgoing transitions from the current
location. If it is an internal transition the successor will be generated on
lines 9-18. If it is a sending transition, receivers will be searched for on lines
20-32. In the generated C++ code the loops on lines 5 and 21 are unrolled.
The algorithm contains several empty checks, on lines 8, 13, 23 and 27.
After each addition of constraints the DBM can possibly be empty. If the
DBM is at one of these points empty, no point in time exists where the new
state can exist, so further exploration of the transition is not needed. After
the empty checks on lines 13 and 27 the extrapolation and the reduction
are executed. These operations cannot empty the DBM, the extrapolation
can make the zone larger, not smaller. The reduction will not change the
zone at all, only its representation. If the DBM is not empty before these
operations, it can safely be put into the output.

In the successor generator step a time extrapolation is used, lines 14 and
28. This extrapolation step reduces the number of DBMs created and makes
sure that this number is finite. The most coarse abstraction as described
in [4] is used. This extrapolation reduces the number of zones that are

34

Algorithm 9 Next-State

1: procedure Next-State(sin = {l1, ...ln, ln+1, ..., lm})
2: out states := ∅
3: D :=CreateDBM({ln+1, ..., lm})
4: TightenDBM(D)
5: for li ∈ l1, ..., ln do
6: for all li

g,a,r−−−→ l′i do
7: D′ := D ∩ g
8: if D′ 6= ∅ then
9: if a = τ then

10: D′ := D′[r]
11: D′ := D′ ↑
12: D′ := D′ ∩ IiC(l′i) ∩

⋂
k 6=i I

k
C(lk)

13: if D′ 6= ∅ then
14: D′ := D′/B(l1, ..., l

′
i, ..., ln)

15: ReduceZero(D′)
16: {l′n+1, ..., l

′
m} :=FlattenDBM(D′)

17: sout := {l1, ..., l′i, ..., ln, l′n+1, ..., l
′
m}

18: out states := out states ∪ sout
19: else
20: if a = ch! then
21: for lj ∈ l1, ..., ln, j 6= i do

22: for all lj
gj ,ch?,rj−−−−−→ l′j do

23: if D′′” = D′ ∩ gj 6= ∅ then
24: D′′ := D′′[r][rj]
25: D′′ := D′′ ↑
26: D′′ := D′′∩IiC(l′i)∩I

j
C(l′j)∩

⋂
k 6={i,j} I

k
C(lk)

27: if D′′ 6= ∅ then
28: D′′ := D′′/B(l1, ..., l

′
i, ..., l

′
j , ..., ln)

29: ReduceZero(D′′)
30: {l′n+1, ..., l

′
m} :=FlattenDBM(D′)

31: sout :=
{l1, ..., l′i, ..., l′j , ..., ln, l′n+1, ..., l

′
m}

32: out states := out states ∪ sout
33: return out states

35

explored significantly. It also makes that less improvements can be made on
the representation of the zones, for some models all states are extrapolated
to the same zone, so nothing interesting happens at the timed side of the
model anymore. In opaal this algorithm is implemented in such a way that
all Uppaal locations are always read. The maximum extrapolation is based
on the values of these locations. Only if there is no difference between all
values for a certain location, it is not needed to read this. This results into
a densely populated dependency matrix for the location variables.

4.4.1 Animo Models

We started the project with ANIMO models that were not compatible with
opaal, as opaal does only support a subset of all options of Uppaal. First of
all we changed the model, such that it does not use global variables in in the
system declaration. Also, some smaller changes to the use of structs had to
be made. This resulted in a basic ANIMO model that is compatible. Larger
models are still not compatible due to clock guards on input synchronization
channels. This is a feature only recently implemented by Uppaal (version
4.1.3). Opaal does not support this feature, and its semantics are not com-
pletely clear, as it is not described in the manual. Adding this to opaal can
be done, but is not trivial. It would require significant changes of some parts
of the successor generator function, and the out rolling of its loops. This
improvement of the language module is out of scope of this thesis.

4.5 Correctness

The DDD state space generator needs to be checked for correctness to say
anything about the results. We only checked for partial correctness by com-
paring discrete states. Counting the discrete state-space can be done by
counting the number of paths until the first DDD level in the diagram.
These numbers were compared to the discrete state space in the LDD solu-
tion without reordering, here the discrete state-space can also be determined
by counting paths until the first level representing zones. We can not directly
compare state-spaces to Uppaal, different representations of the timing part
of the state-space can give different numbers.

36

c1

c2

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

(a) Minuend

c1

c2

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

(b) Subtrahend

c1

c2

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

(c) Difference

Figure 15: Minus complexity example

37

c1 −O

O− c1

c2 −O

O− c2

T

< 0

< 0

< 4

< 4

c1 −O

O− c1

c2 −O

O− c2

T

< −1

< −1

< 3

< 3

Figure 16: DDD representation of the minuend and subtrahend of Figure
15

c1 −O

O− c1

c2 −O

O− c2

T

c1 −O

O− c1 O− c1

c2 −O c2 −O

O− c2

≤ 1

< 0

< 4

< 0

< 4

≤ −3 < 0

≤ 1 < 4

≤ −3

Figure 17: DDD representation of the difference of Figure 15

38

5 Experiments

Below we describe the different models we used to run the benchmarks. We
tried to find models that scale up for a number of nodes or processes, so
that we can also check the behaviour of our approaches for different sizes of
the same model. We summarized the number of nodes and clocks in Table
??

5.1 Viking

The set of Viking tests, models the classical Viking and bridge problem. It
models 4 Vikings at a dark bridge, they only carry one torch. The torch is
only strong enough to give light for 2 Vikings. All Vikings have different
walking speeds, a faster Viking will have to adapt to a slower one, when
crossing the bridge together. The walking speed of the Vikings is modelled
by time constraints on the action of letting go of the torch. The model has
a low number of discrete variables, one per Viking, one for the torch and
an indicator for the side of the bridge on which the torch is. It has a global
clock and a clock per Viking. The standard version of this problem has 4
Vikings. This can however be generalized to n Vikings.

The model results in a densely filled dependency matrix. The torch and
all Viking variables are always read for the time extrapolation. Only the
side indicator is not always read. The write matrix is sparser.

The difference between the LDD representation with flattened DBMs and
the DDD representation is quite small for this model. In the extrapolation
step all clock zones are set to [0..∞] for all states, so in both diagrams the
zones are represented by a single path. So the interesting things are only
happening in the discrete parts.

5.2 Fischer

Fischer’s mutual exclusion protocol [20] is modelled for a number of pro-
cesses. There is no synchronization between processes, only blocking of
actions can occur. This model has a slightly higher number of discrete vari-
ables compared to the Viking tests. Each process has a location and an id.
The model also has 2 global discrete variables. Each process has a local
clock, no global clock is used.

The dependency matrix of this model has some sparse rows, as each
model has an id, which is a constant and can only be read. Again, all the
location variables are always read due to the time extrapolation.

5.3 CSMA-CD

The Carrier Sense Multiple Access/Collision Detection [34] is modelled for
a number of senders. The model has a few discrete variables, it only has

39

locations and one global counter. The system is modelled with a single bus
and n senders. Each sender and the bus have a local clock, no global clock
is used. The model uses a lot of synchronizations between the senders and
the bus.

5.4 Animo

We could not use the ANIMO models, only the smallest model with no
synchronizations was possible. As we started the project to work on ANIMO
models, we still included that single model in the benchmark set. It is a
model with only one node, so only one location variable. The model has two
clocks, a global clock and a clock for the node. Further it does have quite
a large number of discrete variables. Both the global declaration and the
node have a portion of C-like code with a number of global variables.

This results in a model with a quite sparse dependency matrix, as only
the single location is used for the time extrapolation. We expected this
model to have good performance for the LDD method with variable re-
ordering.

5.5 Lynch-Shavit

The Lynch-Shavit mutual exclusion protcol [22] is modelled for different
number of processes. The structure of the model is quite like the Fischer
model. It only uses one global variable more than Fischer.

5.6 Milner

Milners scheduler [24] is modelled for a number of nodes. The structure is
like that of the CSMA-CD model, except that it does not use a bus. The
model has a lot of synchronizations between the nodes, and between the node
and a global process. Each node has two clocks, so the zone representation
blows up quickly.

5.7 Other models

We also used some models that we could not scale up enough due to mem-
ory/time limitations, or that could not scale up due to the nature of the
model. We will not describe those models in detail. These models were the
critRegion, Critical, bocdp(-fixed) [18], bando and timelock model.

5.8 Benchmark Runs

We ran benchmarks with the different solutions we described to compare
them to each other. The DDD solution has been ran with the two BFS-
prev algorithms as explained in Section 4.3; we also used the BFS algorithm

40

Model Parameters Components Clocks Discrete variables

Viking n vikings n + 1 n + 1 n + 2
Fischer n processes n n 2n+2
CSMA-CD n stations n + 1 n + 1 n + 2
Animo n nodes n n + 1 9n + 7
Lynch n processes n n 2n + 3
Milner n processes n + 1 2n + 1 n + 1
HDDI n stations n + 1 3n + 1 n + 1

Table 2: Experiment models

from LTSmin. For the LDD solution we only used the original BFS-prev
algorithm. We ran this without reordering and with some of the reordering
algorithms that LTSmin provides. We used the options gsa, rb4w, cw, rs,rn,
rs,ru. These results are compared to the explicit-state multi-core LTSmin
and the original Uppaal. All experiments have been done with and without
the DBM reduction, described in Section 4.1. All solutions are ran with
one thread. The LDD and explicit-state multi-core solutions can be ran
with multiple threads. The DDD solution does not support this, so for
comparison reasons, all methods are used in single-core mode. We also used
the new language module with flattened DBMs in combination with the
explicit-state multi-core tool.

41

6 Results

In this section we will only give an overview of all experiment results. The
complete tables with all results are added in Appendix A. In Table 3 we
have summarized the results for some of the most interesting models. For
the DDD, LDD and mc-flattened column, we give the best result that was
found in the different experiment setups.

6.1 Time

The timed results show that our symbolic solutions are slower for almost
all models, compared to both Uppaal and the explicit state multi-core tool.
Only for the small bocdp models we have a symbolic solution that is faster
than Uppaal.

One of the reasons we found was the high number of next-state calls.
This is significantly higher than for the explicit-state tool as we partitioned
the next-state function. For symbolic solutions this should be an advantage,
as locality of transitions can be used. This same advantage should hold for
the LDD solution we have, but the dependency matrices are too densely filled
to give a real advantage. For the DDD solution we do not even make use of
these localities, so there all advantages are lost. To confirm this hypothesis
we also ran experiments without the partitioned next-state function. This
gave for almost all models better results. The results differ from a small loss
in speed to a speedup of a factor 10. This is still not enough to compete
with Uppaal, but makes it possible to explore larger models within a given
time-bound.

Another problem seems to be the flattening of the DBM. This is an
extra action that has to be executed in each next-state call, compared to
the multi-core tool. This flattening is not a really expensive operation, it is
only copying values, but it has to be executed a lot of times. For the DDD
approach it is also necessary to close each DBM, as the DDD structure
does not guarantee this. This is a more expensive operation and will also
be executed in each next-state call. We implemented this in the language
module, this closing is used for all experiments, so also for the experiments
where it is not explicitly needed. This will also explain why the explicit
state tool with subsumption is in most cases faster than the explicit state
tool with flattened DBMs and without subsumption, even for models where
subsumption will not have a real role, like the Viking models.

The last problem we see are the large state-vectors. This is mostly due
to the quadratic size of the DBMs. For each of these variables a DDD level
is created. As we have shown earlier, in some cases a lot of these levels will
not have any impact on the zone represented. We can exploit this a little
by setting these nodes to (∞, <), but the time-expensive function that does
this has a larger impact on the timing results, which the benefits cannot

42

outweigh. The diagram could make more use of this by skipping levels.
This is not possible in our implementation as we only implicitly store the
level of each node by its depth.

43

Model Discrete states DDD LDD mc-flattened mc-original Uppaal
#nodes time #nodes time time time time

fischer6 16320 15156 481.9 85041 48.3 19.2 0.4 0.0
critRegion4 6629 55890 46.3 100006 39.5 24.3 0.5 0.1
Critical4 - - TO - TO 1.1 0.5 0.6
CSMACD8 10515 96098 1.9 321001 7.3 6.9 0.5 0.1
Viking12 241662 342 17.6 342 18.7 10.4 0.7 1.0
Lynch5 228579 49430 34.2 112397 120.0 50.0 0.3 0.0
bocdp 33 487 0.1 355 0.2 0.2 0.0 0.2
bocdpFIXED 33 488 0.2 427 0.2 0.1 0.0 0.3
bando 33 488 0.2 425 0.2 0.1 0.0 0.3
Milner8 128 11012 0.4 30887 1.2 1.4 0.1 0.0
hddi10 86 - TO 454246 93.3 43.1 0.0 0.0

Table 3: Summarized table of results with number of discrete states, nodes and time in seconds

44

6.2 Memory

We have not measured memory usage. A good symbolic solution will use
a lot of memory for caching when it is available. Comparing this to other
solutions which use less caching will not be representative. We do compare
the number of nodes between the different solutions.

For most models the best DDD solutions use less nodes than the best
LDD solution. This is what we expected as local reductions on clocks can
be made. For the smallest models the LDD sometimes gives less nodes for
some reorderings. These models have such low number of clocks that no
reductions can be made yet. The bocdp and bando models are the largest
models which have a lower LDD than DDD representation. These models
have quite a high number of discrete variables with a low number of clocks.
For most larger models the LDD solution without reordering is smaller than
with reordering. This is probably due to the densely filled matrices, so no
good reorderings can be created from them.

There is a difference between the number of nodes for the normal BFS
and the BFS without minus. This is possible because we do not use a
canonical form of DDDs. Most results show a higher number of nodes for
the runs with the minus. In Figure 18 we show an example of how this
can happen. We assume all zones in the figures belong to the same set of
locations. In Figure 18a we have the zone that is already visited. Now a
new state with the zone in Figure 18b is discovered. If the minus is not
used, successors of this state are directly generated from the set of locations
and this zone. If the minus is used the first zone will first be subtracted
before successors are generated. The result of the subtraction is shown in
Figure 18c. This is not a convex zone, so a DDD with multiple paths is
needed. From this state also other successors can be generated, possibly
needing more nodes to be represented. If the newly generated states are
then unioned with the visited set the result can again have more nodes than
the version without minus. The less fractioned zones in the current set can
also have implications on the time results, as less work in the next-state
function is needed. On the other hand the next-state function can also need
extra time, as some states would otherwise have completely been removed
from the current set, and no work for that states would need to be done.

The DBM reduction does not give the results we aimed for. For most
models exploration is faster without the reduction. This is due to the ex-
pensive algorithm that the reduction is. Also the reduction of the number
of nodes is not what we hoped for. Most models get more nodes when the
reduction is turned on. The reduction can however still become usefull if we
go to a canonical DDD representation.

45

c1

c2

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

(a) Visited Zone

c1

c2

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

(b) Current Zone

c1

c2

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

(c) After Minus

Figure 18: Minus fragmentation

46

7 Different Semantics

We chose in our implementation to take no information from the low edges
of nodes. A node only represents an upper-bound, a false edge does not
implicitly represent a lower bound. This is a design choice we made to
be able to switch efficiently from the DBM representation in the language
module to the DDD representation. We could however also have used a
semantics where the low edges do represent a lower-bound. We did not
implement this, but this section will discuss this other semantics.

Definition 24. The semantics of a vertex are defined recursively by the
function V : V → Exp :

• V[[0]]
def
= false,

• V[[1]]
def
= true,

• V[[v]]
def
=

{
(pos(v)− neg(v) < const(v))→ V[[high(v)]],V[[low(v)]]if op(v) =′<′

(pos(v)− neg(v) ≤ const(v))→ V[[high(v)]],V[[low(v)]]if op(v) =′≤′

The semantics are almost equal to the one in Definition 13, the difference
is in the interpretation of the low edge. In this semantics the low edge does
not just represent that the upper-bound is higher than the bound of the
node, but the actual value of the variable is higher than the bound of the
node.

7.1 DBM Translation

The translation from a single DBM to a DDD will not change. The trans-
lation from multiple DBMs will not change either, as that can be done as
a union of DBMs which are individually translated to a DDD. The other
way around, from a DDD back to a DBM becomes more complicated. For
a DDD with a single path to true nothing will change. For paths that go
down some low edges the translation will change. The falsification of an
upper-bound, leading to a lower-bound, or a upper-bound of the inverse
pair, can overrule the upper-bound of an other node. We give an example
in Figure 19. In this example all nodes that are not in the path we consider
are hidden. The DDD will have more nodes to reach this representation. In
Figure 20 we have a DBM for both interpretations. In Figure 20a we have
the DBM as we use the interpretation from our implementation. In Figure
20b the DBM of the other interpretation is shown. The difference between
the two DBMs is on the position c2 − O. The information from the low
edge of the O − c2 node has overruled the information of the high edge of
the c2 − O node. Using a canonical form of a DDD can also overcome this
problem.

47

O− c1

O− c2 O− c2

c1 −O

c1 − c2

c2 −O

c2 − c1

T

< 0

< −2
< 0

< 5

<∞

< 5

<∞

Figure 19: Implicit bound DDD

To make the translation from DDD to DBM correctly, the relative po-
sitions of the upper- and lower-bound of each pair of variables need to be
known. Also a function to determine the stronger bound of a pair needs
to be created. Lastly the bounds need to be changed correctly. A < sign
changes into a ≤ and vice versa, the constant is multiplied by −1. We give
an example of this change:

c1 − c2 ≮ 3
m

c1 − c2 ≥ 3
m

c2 − c1 ≤ −3

A similar translation will have to be conducted in the relprod function.
This function does not explicitly need the DBMs. The relations that are

48

O c1 c2

O (0,≤) (0, <) (0, <)
c1 (5, <) (0,≤) (∞, <)
c2 (5, <) (∞, <) (0,≤)

(a) Original semantics

O c1 c2

O (0,≤) (0, <) (0, <)
c1 (5, <) (0,≤) (∞, <)
c2 (2,≤) (∞, <) (0,≤)

(b) New semantics

Figure 20: DBM’s of two different DDD interpretations

used are however created in the language module which uses DBMs. In the
current implementation, a path in the state space needs to be found that
has on each level the same high edges as the relation. Which low edges are
traversed on the way is not important. Now this information is taken into
account some changes will have to be made. A simple path in the relation,
might need some false edges in the state-space to get all the correct bounds.

7.2 Minus

Implementation of the minus function will become easier in DDDs, no cou-
pling to the DBM library will be needed any more. First of all we will
give the complement function. We give the pseudocode for this function in
Algorithm 10. The algorithm switches all 0 and 1 nodes. This will have
a running time of O(n) where n is the number of nodes in the tree. Our
current implementation does not skip levels in the DDD towards a 1 node.
This can happen in this complement function. This can be solved by filling
the gap that is created with nodes with (∞, <) as bound. Another solution
would be to allow this behaviour, this would need some extra work when
creating state-vectors out of a diagram.

Algorithm 10 Complement

1: procedure Complement(a)
2: if a = 0 then
3: return 1
4: if a = 1 then
5: return 0
6: h := Complement(high(a))
7: l := Complement(low(a))
8: return MK(bound(a), h, l)

49

With this function we can create a minus function, as for set theory,
minus can be defined as A\B = A∩B. Now we can build the minus function
from the complement and intersection function as shown in algorithm 11.
This algorithm is probably less complex than the DBM minus we currently
use. We do not know the exact complexity of the DBM minus algorithm, so
we cannot call this certain.

Algorithm 11 Minus

1: procedure Minus(a, b)
2: if a = 0 then
3: return 0
4: if b = 0 then
5: return 1
6: notB =Complement(b)
7: result = Intersection(a, notB)
8: return result

50

8 Future Work

In this section we discuss improvements that can be made for better results.
In the previous section we already discussed the possibility of different se-
mantics. This is also future work, but is written in a separate section.

8.1 Canonization

The DDD package does not use any canonical form. This means that some
operations like equality and emptiness become less trivial. They can however
still be done. The diagrams are ordered and locally reduced. The result-
ing state-vectors that the language module produces are also path-reduced.
Most operators do not preserve this path-reducedness, so most diagrams will
not be path-reduced.

We can implement two types of reduced DDDs. A DDD that is only path-
reduced, can be called semi-canonical [28]. This means that a tautology and
an unsatisfiable expression can only be represented by a true or false node.
This will make the checking for an empty DDD trivial, the DDD is only
empty if the top node is a false node. We also defined full reducedness as a
DDD that is tight and saturated, and has no disjunctive vertices. This fully
reduced version is assumed to be canonical. A canonical DDD will change
the equality test into a simple pointer comparison of the top nodes. Several
algorithms to reach a reduced form are known [27].

The canonical forms are not needed at all times, only for some functions
that need the specific form. Therefore we can choose to not have a canonical
form at all times. One can choose to canonize the DDD after each operation,
or to do this only before operations that actually need this form. The first
option will have a lot of canonization calls, where the second option will have
less. The first option, however might have a DDD that is in all cases closer
to the canonical form, so canonization might take less time, especially when
caching is used. The semi-canonical form can also be used for emptiness
checks, as the fully reduced diagram is not needed there. To get optimal
results we need to find out what is the best option.

8.2 Reordering

The current DDD implementation is not compatible with the reordering
algorithms. All algorithms will probably have to be changed. In the current
implementation it is assumed that at the top there is a set of LDD nodes, and
from a certain level only DDD nodes exist. With reordering this could be
mixed, so algorithms cannot rely on this any more. A special case will again
be the minus function. It is now done by recreating DBMs from the DDD.
This can be done, as the nodes are ordered in the same way as the DBM.
When reorderings are used, this is not trivial any more. It will need to be

51

explicitly stored which variable is on which level. For the different semantics
that we introduced in section 7, a similar problem will occur. We suggested
a minus function using the complement. For zones the complement is well
defined, as there is a∞ value representing the most upper- and lower-bounds
of possible values. For discrete variables this is not directly clear.

Another option for reordering, which will probably solve some of the
problems with the minus function would be reordering, but keeping the
discrete and the zone parts separated. The discrete part could use the
normal reordering algorithms. As the matrices for the zone variables are
completely filled, the reordering algorithms cannot do something useful on
that level. Here experiments with manual reorderings can be tried. Now
the standard ordering of the DBMs is used. It might be that having both
bounds on a pair of clocks together gives better results, or maybe even other
orderings.

8.3 Sparser Dependency Matrix

The dependency matrices are densely filled. We already discussed the prob-
lems in Section 4.1. There are some solutions that can improve this. Smaller
transition groups can be created, maybe even splitting the discrete part and
the timed part of a transition. Another option that needs more work, is
also filling the may-write matrices. The current code parsing that generates
the matrices is not powerful enough to make a difference between may- and
must-write variables. On this level more improvements can be made. The
parts of the matrices for the zone variables are always filled, as the change
of a single clock can have an impact on a large part of the DBM. We did
not check however if an analysis can be done that finds fields which are not
changed, or do not need to be read in a transition. A better analysis of the
changes in DBMs can lead to sparser matrices on the zone variable side. The
final improvement can be made for arrays. If the current implementation
sees that a field of an array is read or written, then all fields in the array get
a read or write dependency. It should be possible to only have dependencies
for the fields that are actually read or written.

Splitting the discrete and timed part of a transition can also result in
sparser dependency matrices. This would result in a set of discrete transi-
tion groups which only need access to the clock variables on which a bound
is calculated. A single transition group will be created to model the con-
tinuation of time. This group will also do the time extrapolation. This
group will probably need access to all variables as time extrapolation will
still be dependent on the locations. Still also some location upper bounds
can be present. It will, however lead to a matrix that is less densely filled,
such that the reordering algorithms and short next-state calls can result in
better performance.

52

8.4 Multi-Core

The DDD library is built in the Sylvan framework which allows for multi-
threaded decision diagrams. The DDD library is not suited for multi-
threading however. Most operations are already suited for multi-threading.
The biggest problem is in the minus operation. This uses the DBM library.
This part is not completely thread-safe. We expect this problem to be in
the coupling between the DDD and the DBM library, in the DBM part no
objects can be shared between threads. We expect that making the DDD
part suitable for multi-threading will give better time results.

8.5 Animo Model Compatibility

The project started to find a solution to model-check ANIMO models. This
part has not succeeded. ANIMO models use a Uppaal feature that is not
supported by opaal, using clock bounds on input channels. The problem
why this cannot be fixed directly is in the unrolling of the transitions in
the next-state function. Adding the clock constraints on any of the input
channels can lead to an empty DBM, in such cases the transition would not
be returned. The semantics would, however create the transitions, but not
synchronize with the location leading to the empty DBM. To ensure that
in such cases all possible transitions that can happen will be returned, an
unrolling of all possible combinations of synchronizing transitions would be
needed. This will need a redesign of that part of the successor generator. If
this functionality is added to opaal, all ANIMO models should be compatible
with opaal, and thus with our symbolic solution.

8.6 Subsumption

The subsumption check that is included in the multi-core explicit-state back-
end in LTSmin is not implemented in the DDD library. This can be imple-
mented as a DDD operation, with the implication operator and the apply
function. A check a ⊆ b will result in true if b =⇒ a returns true. If
a canonical form is used as well, the result will be only a true node, or a
single path of (∞, <) nodes, depending on the possibility of skipping lev-
els. This can limit the number of states added to the current set in the
state algorithm, thus reducing the number of next-state calls needed. The
most obvious subsumption check would be the check that a newly discovered
zone is subsumed by the already visited state-space. It can however also be
turned around, check if the visited state-space is subsumed by the newly
discovered zone. In such a case the zone in the state space can be replaced
by this new zone, such that the union function is not needed, this will not
reduce the next-state calls however.

53

8.7 Checking Properties

The model-checker that we have created is only suited for state-space gen-
eration. It is not suited for property checking. One extra function is needed
to use the LTSmin mu-calculus checker, which can also check CTL* formu-
las. The DDD library needs to be extended with a relprev function, which
returns the predecessors given a set of states and a relation. This will only
result in a discrete model-checker. LTSmin is not suited for timing proper-
ties. Some timing properties can be checked by extending the model with
an extra automaton.

8.8 Skipping Levels

In the original DDD structure, it is possible to skip levels. In our implemen-
tation this is not possible as the depth of the nodes is only stored explicitly.
Skipping levels can be a good option however. In our DBM reduction we
already set all unused bounds to (∞, <). In a structure where levels can be
skipped, each node containing this value can be removed. This would need
a change in the DDD nodes. Two choices can be made here. Nodes can be
made of variable size, such that each possible value of depth can be added.
One can also choose for a fixed depth field, and thus node-size. This would
give a maximum bound to the depth of a diagram. The hashtable that is
currently used to store all nodes would also need some changes. The current
table is built specifically for nodes of 128 bits.

We ran some small experiments to see on what scale improvements can
be achieved. The number of infinity nodes in the final state-spaces of some
of our larger models were counted. This was done using the bfs-prev search
strategy and with DBM reduction turned on. This showed that 25% to 90%
of all nodes were nodes with infinity as bound. In theory all of these can
be removed. This will not only reduce the number of nodes, but can also
reduce the depth of recursive calls in the DDD. This can result in significant
speedups.

54

9 Conclusions

The first goal of this project was to build a symbolic model-checker for timed
automata in LTSmin. This has succeeded, we have a model-checker which
uses the opaal language front-end for Uppaal models, and the symbolic back-
end of LTSmin, using either the LDD or the new DDD package. This has
all been achieved without changing the PINS structure. We only added one
call to it which returns the number of discrete variables a model has. The
language module itself has changed, it no longer has a pointer to a DBM,
the DBM is directly in the state vector.

The experiment results were not what we hoped for. The results are
slower than both Uppaal, and the explicit-state tool that was already im-
plemented in LTSmin. We were not able to replicate the results that were
achieved earlier [28]. This can be explained by either the different structure
of our model-checker and our implementation choices of the DDD library,
or by the improvements that have been made by Uppaal since then [3].

One of the most fundamental problems we see are the densely filled
dependency matrices. This makes it harder to find good reorderings for
symbolic structures. This is a fundamental problem, why model checking
of timed automata is a hard problem. From our perspective, this is also
one of the key factors why partial order reduction for timed automata is a
real challenge. Only when sparser dependency matrices can be achieved, the
partial order reduction in LTSmin can be used effectively.

We have proposed a number of improvements that can be made to the
DDD structure. Or even a complete overhaul of the DDDs by changing the
semantics of the diagram. All of these improvements can be built upon the
structure we created. With these improvements we hope that a symbolic
model-checker can be built that can really compete with Uppaal and other
model-checkers for timed automata.

We stuck as much as possible to the LDD design of Sylvan. This to use
all of the optimizations that have already been created. On some points we
expect better results when we step away from this design. Especially the
skipping of levels in a diagram seems to be a serious issue, as this can reduce
the size of the diagram significantly. Doing this will require some extra effort,
as important parts of Sylvan, as the hash table storing all nodes, cannot be
used directly.

55

References

[1] S. B. Akers. Binary decision diagrams. IEEE Trans. Comput.,
27(6):509–516, June 1978.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183 – 235, 1994.

[3] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen,
Paul Pettersson, and Wang Yi. Uppaal implementation secrets. In
Proc. of 7th International Symposium on Formal Techniques in Real-
Time and Fault Tolerant Systems, 2002.

[4] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek.
Lower and Upper Bounds in Zone Based Abstractions of Timed Au-
tomata, pages 312–326. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

[5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on Uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems, volume 3185 of Lecture
Notes in Computer Science, pages 200–236. Springer Berlin Heidelberg,
2004.

[6] Johan Bengtsson. Clocks, DBMs and States in Timed Systems (Uppsala
Dissertations from the Faculty of Science Technology, 39). Uppsala
Universitet, 7 2002.

[7] Dirk Beyer. Efficient reachability analysis and refinement checking
of timed automata using BDDs. In T. Margaria and T. F. Mel-
ham, editors, Proceedings of the 11th IFIP Advanced Research Work-
ing Conference on Correct Hardware Design and Verification Methods
(CHARME 2001, Livingston, September 4-7), LNCS 2144, pages 86–91.
Springer-Verlag, Heidelberg, 2001.

[8] Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A tool
for BDD-based verification of real-time systems. In W. A. Hunt and
F. Somenzi, editors, Proceedings of the 15th International Conference
on Computer Aided Verification (CAV 2003, Boulder, CO, July 8-12),
LNCS 2725, pages 122–125. Springer-Verlag, Heidelberg, 2003.

[9] S. C. C. Blom, J. C. van de Pol, and M. Weber. LTSmin: Distributed
and symbolic reachability. In T. Touili, B. Cook, and P. Jackson, edi-
tors, Computer Aided Verification, Edinburgh, volume 6174 of Lecture
Notes in Computer Science, pages 354–359, Berlin, July 2010. Springer
Verlag.

56

[10] Stefan Blom and Jaco van de Pol. Symbolic reachability for process al-
gebras with recursive data types. In J.S. Fitzgerald, A.E. Haxthausen,
and H. Yenigun, editors, Theoretical Aspects of Computing, volume
5160 of Lecture Notes in Computer Science, pages 81–95, Berlin, Ger-
many, August 2008. Springer Verlag.

[11] Randal E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Trans. Comput., 35(8):677–691, August 1986.

[12] R.E. Bryant. Graph-based algorithms for boolean function manipula-
tion. Computers, IEEE Transactions on, C-35(8):677–691, Aug 1986.

[13] A. E. Dalsgaard, A. W. Laarman, K. G. Larsen, M. C. Olesen, and J. C.
van de Pol. Multi-core reachability for timed automata. In M. Jurdzin-
ski and D. Nickovic, editors, 10th International Conference on Formal
Modeling and Analysis of Timed Systems, FORMATS 2012, London,
UK, volume 7595 of Lecture Notes in Computer Science, pages 91–106,
London, September 2012. Springer Verlag.

[14] Andreas Engelbredt Dalsgaard, Ren Rydhof Hansen, Kenneth Yrke
Jørgensen, Kim Gulstrand Larsen, Mads Chr. Olesen, Petur Olsen,
and Ji Srba. opaal: A lattice model checker. In Mihaela Bobaru, Klaus
Havelund, GerardJ. Holzmann, and Rajeev Joshi, editors, NASA For-
mal Methods, volume 6617 of Lecture Notes in Computer Science, pages
487–493. Springer Berlin Heidelberg, 2011.

[15] David L. Dill. Timing assumptions and verification of finite-state con-
current systems. In Joseph Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems, volume 407 of Lecture Notes in Computer
Science, pages 197–212. Springer Berlin Heidelberg, 1990.

[16] Junwei Du, Huiping Zhang, Gang Yu, and Xi Wang. A full symbolic
compositional reachability analysis of timed automata based on BDD.
In Advanced Computational Intelligence (ICACI), 2015 Seventh Inter-
national Conference on, pages 218–222, March 2015.

[17] R. Ehlers, D. Fass, M. Gerke, and H.-J. Peter. Fully symbolic timed
model checking using constraint matrix diagrams. In Real-Time Sys-
tems Symposium (RTSS), 2010 IEEE 31st, pages 360–371, Nov 2010.

[18] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modeling
and analysis of an audio/video protocol: an industrial case study using
UPPAAL. In Real-Time Systems Symposium, 1997. Proceedings., The
18th IEEE, pages 2–13, Dec 1997.

[19] A. W. Laarman, J. C. van de Pol, and M. Weber. Multi-Core LTSmin:
Marrying Modularity and Scalability. In M. Bobaru, K. Havelund,

57

G. Holzmann, and R. Joshi, editors, Proceedings of the Third Interna-
tional Symposium on NASA Formal Methods, NFM 2011, Pasadena,
CA, USA, volume 6617 of Lecture Notes in Computer Science, pages
506–511, Berlin, July 2011. Springer Verlag.

[20] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Com-
put. Syst., 5(1):1–11, January 1987.

[21] Kim Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock dif-
ference diagrams. BRICS Report Series, 5(46), 1998.

[22] N. Lynch and N. Shavit. Timing based mutual exclusion. In Proc. of
the Annual Real-Time Symposium (RTSS), pages 2–11, 1992.

[23] Jeroen Meijer, Gijs Kant, Stefan Blom, and Jaco van de Pol. Read,
write and copy dependencies for symbolic model checking. In Eran Ya-
hav, editor, Hardware and Software: Verification and Testing, volume
8855 of Lecture Notes in Computer Science, pages 204–219. Springer
International Publishing, 2014.

[24] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1989.

[25] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Differen-
ce decision diagrams. Technical Report IT-TR-1999-023, Department
of Information Technology, Technical University of Denmark, Building
344, DK-2800 Lyngby, Denmark, February 1999.

[26] Jesper Møller, Henrik Hulgaard, and Henrik Reif Andersen. Symbolic
model checking of timed guarded commands using difference decision
diagrams. The Journal of Logic and Algebraic Programming, 5253:53 –
77, 2002.

[27] Jesper Møller and Jakob Lichtenberg. Difference decision diagrams.
Master’s thesis, Department of Information Technology, Technical Uni-
versity of Denmark, Building 344, DK-2800 Lyngby, Denmark, aug
1998.

[28] Jesper Møller, Jakob Lichtenberg, HenrikReif Andersen, and Henrik
Hulgaard. Difference decision diagrams. In Jörg Flum and Mario
Rodriguez-Artalejo, editors, Computer Science Logic, volume 1683 of
Lecture Notes in Computer Science, pages 111–125. Springer Berlin
Heidelberg, 1999.

[29] TruongKhanh Nguyen, Jun Sun, Yang Liu, JinSong Dong, and Yan
Liu. Improved BDD-based discrete analysis of timed systems. In Dim-
itra Giannakopoulou and Dominique Méry, editors, FM 2012: Formal

58

Methods, volume 7436 of Lecture Notes in Computer Science, pages
326–340. Springer Berlin Heidelberg, 2012.

[30] Stefano Schivo, Jetse Scholma, Brend Wanders, Ricardo A. Urquidi Ca-
macho, Paul E. van der Vet, Marcel Karperien, Rom Langerak, Jaco
van de Pol, and Janine N. Post. Modelling biological pathway dynamics
with timed automata. In 12th IEEE International Conference on Bioin-
formatics & Bioengineering, BIBE 2012, Larnaca, Cyprus, November
11-13, 2012, pages 447–453, 2012.

[31] A. Srinivasan, T. Ham, S. Malik, and R.K. Brayton. Algorithms for dis-
crete function manipulation. In Computer-Aided Design, 1990. ICCAD-
90. Digest of Technical Papers., 1990 IEEE International Conference
on, pages 92–95, Nov 1990.

[32] Tom van Dijk and Jaco van de Pol. Sylvan: Multi-core decision di-
agrams. In Christel Baier and Cesare Tinelli, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems, volume 9035
of Lecture Notes in Computer Science, pages 677–691. Springer Berlin
Heidelberg, 2015.

[33] Farn Wang. Efficient verification of timed automata with BDD-like
data-structures. In LenoreD. Zuck, PaulC. Attie, Agostino Cortesi,
and Supratik Mukhopadhyay, editors, Verification, Model Checking,
and Abstract Interpretation, volume 2575 of Lecture Notes in Computer
Science, pages 189–205. Springer Berlin Heidelberg, 2003.

[34] Sergio Yovine. Kronos: a verification tool for real-time systems. In-
ternational Journal on Software Tools for Technology Transfer, 1(1-
2):123–133, 1997.

[35] Huiping Zhang, Junwei Du, Ling Cao, and Guixin Zhu. A full symbolic
reachability analysis algorithm of timed automata based on BDD. In
Autonomous Decentralized Systems (ISADS), 2015 IEEE Twelfth In-
ternational Symposium on, pages 301–304, March 2015.

59

A Experiment Results

This appendix contains all experimental results. The tables were too large
to fit on a single page, so they have been cut in three parts. The first three
tables show the timing results in seconds. The last three tables show the
number of nodes in the final state-space for all the symbolic tools. The first
five rows show the different options that have been used. The first row gives
the state-store, this can be DDD, LDD or explicit-state. The second row
gives the search-order, this can be either bfs-prev, bfs or, no-minus which is
the altered bfs-prev we created as mentioned in section 4.3. The third row
indicates if a partitioned-next state function is used or not. The fourth row
indicates which reordering option, if any, is used. The fifth row indicates if
the DBM-reduction, as mentioned in section 4.1, is used. The third table
also contains a sixth row indicating the representation of the DBM. All
options use a flattened DBM, only the explicit-state multi-core tool can use
a pointer to the DBM, as this is the only point where this is used, the row
is not included in the other tables. A ”TO” in any of the tables means that
a time-out has occurred. For all experiments this time-out has been set to
600 seconds.

60

Statestore DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD
Search-order bfs-prev bfs-prev bfs-prev bfs-prev bfs bfs bfs bfs no-minus no-minus no-minus no-minus
Partitioned + - + - + - + - + - + -
Reorder - - - - - - - - - - - -
DBM-reduction + + - - + + - - + + - -

fischer1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
fischer2 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.1
fischer3 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
fischer4 0.5 0.3 0.3 0.2 0.4 0.2 0.3 0.2 0.3 0.2 0.3 0.2
fischer5 10.7 3.9 7.3 2.8 7.6 2.8 5.7 2.5 6.2 2.9 5.7 2.5
fischer6 TO TO TO TO TO TO TO TO TO 481.9 TO 532.6

critRegion1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
critRegion2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
critRegion3 1.9 1.2 0.4 0.3 1.9 1.2 0.4 0.3 1.8 1.2 0.4 0.3
critRegion4 TO TO 68.4 56.3 TO TO 462.9 TO TO TO 471.7 TO

Critical 01-25-50 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Critical 02-25-50 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Critical 03-25-50 9.5 5.9 0.9 0.6 8.8 5.5 0.9 0.6 8.5 5.9 0.9 0.6
Critical 04-25-50 TO TO TO TO TO TO TO TO TO TO TO TO

CSMACD 01 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
CSMACD 02 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
CSMACD 03 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1
CSMACD 04 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
CSMACD 05 0.7 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.3 0.2 0.2 0.2
CSMACD 06 3.2 1.1 1.0 0.5 0.8 0.4 0.5 0.3 0.6 0.4 0.5 0.3
CSMACD 07 13.4 4.8 3.6 1.6 1.9 0.9 1.1 0.7 1.5 0.9 1.1 0.7
CSMACD 08 53.1 22.3 14.6 6.2 5.3 2.5 3.2 1.9 4.2 2.5 3.2 1.9

viking1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
viking2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
viking3 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.1
viking4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
viking5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
viking6 0.5 0.3 0.4 0.2 0.5 0.3 0.5 0.2 0.6 0.3 0.5 0.2
viking7 0.8 0.4 0.7 0.3 0.8 0.4 0.7 0.3 0.8 0.4 0.7 0.3
viking8 2.3 0.9 1.8 0.5 2.4 0.9 1.8 0.5 2.2 0.9 1.8 0.5
viking9 6.6 2.5 5.2 1.2 6.6 2.5 5.1 1.2 6.5 2.5 5.2 1.2
viking10 20.3 7.2 15.1 3.2 20.5 7.2 15.1 3.2 19.0 7.2 15.1 3.2
viking11 62.4 20.4 43.4 8.5 60.6 20.5 43.3 8.5 54.9 20.5 43.4 8.6
viking12 114.6 40.2 109.4 17.7 114.6 40.2 108.9 17.6 115.1 40.2 109.8 17.7

Lynch1-16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Lynch2-16 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Lynch3-16 0.4 0.2 0.3 0.2 0.4 0.2 0.3 0.2 0.3 0.2 0.3 0.2
Lynch4-16 5.8 2.6 3.6 1.6 5.2 2.6 3.2 1.5 4.6 2.8 3.4 1.6
Lynch5-16 251.3 110.9 114.8 48.2 143.4 67.4 71.8 34.2 130.9 74.1 75.6 36.7

bocdp 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2
bocdpFIXED 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
bando 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
timelock 0.2 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Milner-2Nodes-flat 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.2
Milner-3Nodes-flat 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Milner-4Nodes-flat 0.4 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Milner-5Nodes-flat 0.4 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.3 0.2 0.2 0.2
Milner-6Nodes-flat 0.6 0.3 0.3 0.3 0.6 0.3 0.3 0.3 0.4 0.3 0.3 0.3
Milner-7Nodes-flat 0.8 0.5 0.5 0.3 0.8 0.4 0.5 0.3 0.5 0.4 0.4 0.3
Milner-8Nodes-flat 1.2 0.7 0.7 0.5 1.2 0.6 0.7 0.4 0.8 0.5 0.6 0.4

hddi input 1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
hddi input 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.2
hddi input 3 104.2 104.2 18.2 17.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
hddi input 4 TO TO TO TO 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2
hddi input 5 TO TO TO TO 1.1 0.5 0.3 0.2 1.1 0.5 0.3 0.2
hddi input 6 TO TO TO TO 307.2 22.3 305.2 18.3 308.2 22.2 304.8 18.3
hddi input 7 TO TO TO TO TO TO TO TO TO TO TO TO
hddi input 8 TO TO TO TO TO TO TO TO TO TO TO TO
hddi input 9 TO TO TO TO TO TO TO TO TO TO TO TO
hddi input 10 TO TO TO TO TO TO TO TO TO TO TO TO

ANIMO small 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

61

Statestore LDD LDD LDD LDD LDD LDD LDD LDD LDD LDD
Search-order bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev
Partitioned + - + - + - + - + -
Reorder gsa gsa rb4w rb4w cw cw rs,rn rs,rn rs,ru rs,ru
DBM-reduction + - + - + - + - + -

fischer1 0.4 0.3 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1
fischer2 0.8 0.6 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1
fischer3 1.3 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
fischer4 2.0 1.5 0.5 0.3 0.5 0.3 0.4 0.3 0.4 0.3
fischer5 6.3 4.8 4.6 3.5 4.0 3.0 3.7 2.7 3.5 2.6
fischer6 82.2 66.0 91.4 68.0 78.9 64.9 67.4 57.3 63.4 55.9

critRegion1 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
critRegion2 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
critRegion3 1.3 1.8 0.8 1.2 0.7 1.1 0.6 1.0 0.9 1.5
critRegion4 46.5 131.3 49.6 143.6 43.7 123.7 39.5 114.3 73.5 201.7

Critical 01-25-50 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Critical 02-25-50 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Critical 03-25-50 6.3 5.4 6.0 5.1 4.6 3.8 3.9 3.5 7.1 6.3
Critical 04-25-50 TO TO TO TO TO TO TO TO TO TO

CSMACD 01 0.3 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1
CSMACD 02 0.6 0.4 0.2 0.1 0.2 0.1 0.3 0.1 0.3 0.1
CSMACD 03 0.8 0.5 0.3 0.1 0.2 0.1 0.3 0.1 0.2 0.1
CSMACD 04 0.7 0.6 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2
CSMACD 05 1.1 0.8 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3
CSMACD 06 1.8 1.4 1.4 0.9 1.2 0.9 1.1 0.8 1.2 0.8
CSMACD 07 4.6 3.7 4.4 3.4 4.8 3.4 4.0 2.9 3.8 2.8
CSMACD 08 16.2 13.4 16.2 14.7 16.0 14.7 13.0 12.4 12.3 11.9

viking1 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
viking2 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
viking3 0.5 0.5 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
viking4 0.7 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
viking5 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
viking6 1.4 1.3 0.7 0.6 0.7 0.6 0.6 0.5 0.5 0.4
viking7 1.7 1.6 1.0 0.8 1.0 0.8 0.8 0.7 0.7 0.6
viking8 3.5 2.9 2.9 2.4 3.0 2.4 2.4 1.8 2.0 1.5
viking9 8.3 6.7 9.1 7.5 9.3 7.5 7.2 5.4 6.1 4.4
viking10 23.3 17.7 29.8 22.9 29.5 22.9 22.8 16.2 18.2 12.8
viking11 69.9 49.3 90.4 68.7 85.7 68.8 63.6 47.7 49.6 37.1
viking12 124.1 100.9 164.1 141.5 164.1 141.8 122.2 100.1 100.7 78.5

Lynch1-16 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Lynch2-16 1.0 1.1 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2
Lynch3-16 2.2 1.8 0.5 0.3 0.5 0.3 0.4 0.3 0.4 0.3
Lynch4-16 7.9 6.2 6.6 5.1 5.6 4.2 5.2 3.9 4.9 3.7
Lynch5-16 149.8 134.1 191.8 162.6 162.5 137.9 147.5 126.3 142.8 123.1

bocdp 9.9 9.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
bocdpFIXED 9.8 9.7 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2
bando 11.6 9.8 0.3 0.2 0.3 0.2 0.2 0.2 0.2 0.2
timelock 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.0

Milner-2Nodes-flat 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Milner-3Nodes-flat 0.8 0.6 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2
Milner-4Nodes-flat 1.5 0.9 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4
Milner-5Nodes-flat 1.8 1.2 1.1 0.7 1.1 0.7 1.0 0.6 1.0 0.6
Milner-6Nodes-flat 2.6 1.7 1.7 1.1 1.6 1.1 1.5 0.9 1.5 0.9
Milner-7Nodes-flat 3.6 2.4 2.6 1.7 2.7 1.7 2.4 1.5 2.2 1.3
Milner-8Nodes-flat 5.1 3.4 4.1 2.8 4.1 2.8 3.5 2.2 3.4 1.9

hddi input 1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
hddi input 2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
hddi input 3 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
hddi input 4 0.7 0.8 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5
hddi input 5 1.7 1.8 1.5 1.6 1.6 1.6 1.3 1.3 1.2 1.3
hddi input 6 5.9 6.8 7.4 8.4 7.5 8.5 5.5 6.4 5.5 6.3
hddi input 7 18.9 22.7 27.5 32.1 27.6 32.3 18.9 22.6 18.9 22.6
hddi input 8 64.1 78.9 95.2 113.7 95.1 114.2 64.1 78.9 64.1 79.0
hddi input 9 144.6 172.3 206.6 240.5 207.0 241.5 146.1 171.7 144.0 172.8
hddi input 10 429.6 521.4 TO TO TO TO 428.4 519.9 429.5 520.3

ANIMO small 0.7 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

62

Statestore LDD LDD LDD LDD Explicit Explicit Explicit Uppaal
Search-order bfs-prev bfs-prev bfs-prev bfs-prev bfs bfs bfs
Partitioned + - + - - - -
Reorder - - - - - - -
DBM-reduction + - + - - - +
DBM flat flat flat flat pointer flat flat

fischer1 0.2 0.1 0.1 0.1 0.2 0.1 0.0 0.0
fischer2 0.2 0.1 0.1 0.1 0.3 0.1 0.0 0.0
fischer3 0.2 0.2 0.2 0.2 0.0 0.3 0.2 0.0
fischer4 0.5 0.3 0.3 0.2 0.1 0.9 0.9 0.0
fischer5 3.7 2.4 2.7 2.0 0.2 2.9 3.2 0.0
fischer6 66.4 57.4 57.4 48.3 0.4 19.2 26.2 0.0

critRegion1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
critRegion2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.0
critRegion3 0.7 0.6 1.1 1.0 0.2 2.4 2.1 0.0
critRegion4 45.0 44.5 122.5 136.3 0.5 58.5 24.3 0.1

Critical 01-25-50 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
Critical 02-25-50 0.2 0.2 0.2 0.2 0.1 0.4 0.4 0.0
Critical 03-25-50 4.1 4.8 3.7 4.5 0.3 1.0 1.7 0.0
Critical 04-25-50 TO TO TO TO 0.9 1.1 1.7 0.6

CSMACD 01 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0
CSMACD 02 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0
CSMACD 03 0.3 0.2 0.1 0.1 0.0 0.1 0.1 0.0
CSMACD 04 0.3 0.2 0.2 0.2 0.1 0.4 0.4 0.0
CSMACD 05 0.5 0.2 0.3 0.2 0.2 0.8 0.8 0.0
CSMACD 06 1.3 0.6 0.9 0.5 0.3 1.6 1.6 0.0
CSMACD 07 4.6 1.9 3.3 1.7 0.3 3.0 3.4 0.0
CSMACD 08 15.1 7.9 14.3 7.3 0.5 6.9 8.1 0.1

viking1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
viking2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
viking3 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.0
viking4 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.0
viking5 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.0
viking6 0.7 0.3 0.6 0.2 0.3 0.9 1.0 0.0
viking7 1.0 0.4 0.8 0.3 0.3 1.4 1.5 0.0
viking8 3.0 0.9 2.4 0.5 0.4 2.1 2.4 0.0
viking9 9.7 2.6 7.4 1.3 0.5 2.6 3.8 0.1
viking10 30.3 7.4 22.6 3.3 0.7 3.5 7.6 0.2
viking11 86.6 20.9 67.7 9.0 1.0 6.0 18.0 0.5
viking12 162.9 41.2 140.7 18.7 0.7 10.4 32.9 1.0

Lynch1-16 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
Lynch2-16 0.2 0.1 0.2 0.2 0.0 0.2 0.2 0.0
Lynch3-16 0.5 0.3 0.3 0.3 0.1 1.2 1.2 0.0
Lynch4-16 5.3 3.8 4.0 3.5 0.2 3.4 3.8 0.0
Lynch5-16 164.4 138.0 129.6 120.0 0.3 50.0 68.4 0.0

bocdp 0.2 0.2 0.2 0.2 0.0 0.2 0.2 0.2
bocdpFIXED 0.3 0.2 0.2 0.2 0.0 0.1 0.2 0.3
bando 0.3 0.2 0.2 0.2 0.0 0.1 0.2 0.3
timelock 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Milner-2Nodes-flat 0.2 0.2 0.2 0.2 0.0 0.1 0.1 0.0
Milner-3Nodes-flat 0.3 0.2 0.2 0.2 0.0 0.4 0.4 0.0
Milner-4Nodes-flat 0.7 0.4 0.4 0.3 0.1 0.8 0.8 0.0
Milner-5Nodes-flat 1.0 0.6 0.7 0.5 0.1 0.9 1.0 0.0
Milner-6Nodes-flat 1.6 0.9 1.1 0.6 0.1 1.1 1.3 0.0
Milner-7Nodes-flat 2.6 1.3 1.7 0.9 0.1 1.2 1.6 0.0
Milner-8Nodes-flat 4.1 1.9 2.7 1.2 0.1 1.4 2.1 0.0

hddi input 1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0
hddi input 2 0.2 0.2 0.2 0.2 0.0 0.2 0.1 0.0
hddi input 3 0.2 0.2 0.2 0.2 0.0 0.4 0.3 0.0
hddi input 4 0.5 0.3 0.6 0.3 0.0 0.6 0.6 0.0
hddi input 5 1.5 0.6 1.6 0.5 0.0 0.8 0.8 0.0
hddi input 6 7.4 1.9 8.4 1.6 0.0 1.7 2.1 0.0
hddi input 7 27.4 5.8 32.1 5.1 0.2 3.5 4.9 0.0
hddi input 8 94.6 17.2 114.0 15.1 0.2 8.1 12.5 0.1
hddi input 9 206.9 38.8 240.7 34.4 0.1 17.1 25.7 0.0
hddi input 10 TO 104.6 TO 93.3 0.0 43.1 68.0 0.0

ANIMO small 0.2 0.2 0.2 0.2 0.2 0.4 0.5 0.0

63

Statestore DDD DDD DDD DDD DDD DDD DDD DDD
Search-order bfs-prev bfs-prev bfs-prev bfs-prev bfs bfs bfs bfs
Partitioned + - + - + - + -
Reorder - - - - - - - -
DBM-reduction + + - - + + - -

fischer1 14 14 14 14 14 14 14 14
fischer2 66 66 66 66 66 66 66 66
fischer3 509 509 468 468 288 288 250 250
fischer4 5025 5025 4631 4631 1300 1300 987 987
fischer5 49634 49634 46879 46879 5535 5535 3920 3920
fischer6 TO TO TO 444745 TO TO TO TO

critRegion1 24 24 24 24 24 24 24 24
critRegion2 251 251 227 227 190 190 140 140
critRegion3 4643 4643 3042 3042 3836 3836 1683 1683
critRegion4 TO TO 83145 83145 TO TO 56222 TO

Critical 01-25-50 25 25 25 25 25 25 25 25
Critical 02-25-50 313 313 253 253 262 262 158 158
Critical 03-25-50 12322 12322 5265 5265 10898 10898 3291 3291
Critical 04-25-50 TO TO TO TO TO TO TO TO

CSMACD 01 17 17 17 17 17 17 17 17
CSMACD 02 112 112 107 107 108 108 108 108
CSMACD 03 686 686 525 525 458 458 435 435
CSMACD 04 3305 3305 2210 2210 1356 1356 1357 1357
CSMACD 05 13867 13867 8320 8320 3478 3478 3790 3790
CSMACD 06 51633 51633 28838 28838 7925 7925 10099 10099
CSMACD 07 176965 176965 93717 93717 17069 17069 26381 26381
CSMACD 08 569760 569760 289252 289252 36098 36098 68197 68197

viking1 12 12 12 12 15 15 15 15
viking2 37 37 37 37 37 37 37 37
viking3 86 86 86 86 86 86 86 86
viking4 105 105 105 105 105 105 105 105
viking5 124 124 124 124 124 124 124 124
viking6 233 233 233 233 233 233 233 233
viking7 190 190 190 190 190 190 190 190
viking8 224 224 224 224 224 224 224 224
viking9 263 263 263 263 263 263 263 263
viking10 304 304 304 304 304 304 304 304
viking11 347 347 347 347 347 347 347 347
viking12 342 342 342 342 342 342 342 342

Lynch1-16 24 24 24 24 24 24 24 24
Lynch2-16 162 162 149 149 162 162 149 149
Lynch3-16 1175 1175 915 915 922 922 721 721
Lynch4-16 14280 14280 9795 9795 8246 8246 5750 5750
Lynch5-16 210433 210433 107391 107391 95362 95362 49430 49430

bocdp 541 541 487 487 541 541 487 487
bocdpFIXED 542 542 488 488 542 542 488 488
bando 542 542 488 488 542 542 488 488
timelock 4 4 4 4 4 4 4 4

Milner-2Nodes-flat 442 442 432 432 245 245 133 133
Milner-3Nodes-flat 2709 2709 2671 2671 918 918 528 528
Milner-4Nodes-flat 4999 4999 4809 4809 2968 2968 1776 1776
Milner-5Nodes-flat 9106 9106 8856 8856 5293 5293 3146 3146
Milner-6Nodes-flat 17008 17008 16030 16030 7755 7755 5078 5078
Milner-7Nodes-flat 25493 25493 24347 24347 12188 12188 7668 7668
Milner-8Nodes-flat 39887 39887 37433 37433 16324 16324 11012 11012

hddi input 1 221 221 217 217 119 119 136 136
hddi input 2 2735 2735 2457 2457 693 693 710 710
hddi input 3 20485 20485 18508 18508 2013 2013 2338 2338
hddi input 4 TO TO TO TO 4495 4495 5377 5377
hddi input 5 TO TO TO TO 13824 13824 10331 10331
hddi input 6 TO TO TO TO 14175 14175 18682 18682
hddi input 7 TO TO TO TO TO TO TO TO
hddi input 8 TO TO TO TO TO TO TO TO
hddi input 9 TO TO TO TO TO TO TO TO
hddi input 10 TO TO TO TO TO TO TO TO

ANIMO small 235 235 237 237 235 235 237 237

64

Statestore DDD DDD DDD DDD LDD LDD LDD LDD
Search-order no-minus no-minus no-minus no-minus bfs-prev bfs-prev bfs-prev bfs-prev
Partitioned + - + - + - + -
Reorder - - - - gsa gsa rb4w rb4w
DBM-reduction + + - - + - + -

fischer1 14 14 14 14 13 13 14 14
fischer2 66 66 66 66 65 64 63 61
fischer3 288 288 250 250 505 502 433 413
fischer4 1300 1300 987 987 3905 3757 3190 2877
fischer5 5535 5535 3920 3920 30665 26533 26004 20436
fischer6 TO 22060 TO 15156 240846 177329 215066 140947

critRegion1 24 24 24 24 24 24 20 20
critRegion2 190 190 140 140 358 399 296 362
critRegion3 3825 3825 1701 1701 5798 11387 5506 11296
critRegion4 TO TO 55890 146808 146808 451815 140144 459489

Critical 01-25-50 25 25 25 25 24 24 23 23
Critical 02-25-50 262 262 158 158 499 542 427 489
Critical 03-25-50 11183 11183 3375 3375 29517 34331 28443 34754
Critical 04-25-50 TO TO TO TO TO TO TO TO

CSMACD 01 17 17 17 17 17 17 17 17
CSMACD 02 108 108 108 108 101 111 101 111
CSMACD 03 458 458 435 435 553 578 551 619
CSMACD 04 1356 1356 1357 1357 2528 2737 2520 2729
CSMACD 05 3478 3478 3790 3790 8819 9422 10127 10473
CSMACD 06 7925 7925 10099 10099 37022 36646 36938 36562
CSMACD 07 17069 17069 26381 26381 104287 119267 125019 119022
CSMACD 08 36098 36098 68197 68197 399577 325031 398899 367047

viking1 15 15 15 15 15 15 24 24
viking2 37 37 37 37 37 37 66 66
viking3 86 86 86 86 91 91 176 176
viking4 105 105 105 105 111 111 196 196
viking5 124 124 124 124 131 131 216 216
viking6 233 233 233 233 241 239 504 504
viking7 190 190 190 190 197 200 342 342
viking8 224 224 224 224 235 234 415 415
viking9 263 263 263 263 275 274 495 495
viking10 304 304 304 304 317 317 581 581
viking11 347 347 347 347 359 359 671 671
viking12 342 342 342 342 356 356 621 621

Lynch1-16 24 24 24 24 22 22 27 27
Lynch2-16 162 162 149 149 185 173 217 210
Lynch3-16 922 922 721 721 1757 1738 2600 2531
Lynch4-16 8246 8246 6131 6131 22033 23182 32144 31516
Lynch5-16 95782 95782 51698 51698 236029 265223 406904 400277

bocdp 541 541 487 487 355 379 435 434
bocdpFIXED 542 542 488 488 427 487 448 457
bando 542 542 488 488 425 491 448 457
timelock 4 4 4 4 4 4 4 4

Milner-2Nodes-flat 245 245 133 133 327 532 394 586
Milner-3Nodes-flat 918 918 528 528 1571 2591 1702 2732
Milner-4Nodes-flat 2968 2968 1776 1776 4789 14916 4997 15423
Milner-5Nodes-flat 5293 5293 3146 3146 8596 27351 8946 28078
Milner-6Nodes-flat 7755 7755 5078 5078 14026 45279 14551 46271
Milner-7Nodes-flat 12188 12188 7668 7668 21348 69708 22098 71000
Milner-8Nodes-flat 16324 16324 11012 11012 30883 101633 31874 103272

hddi input 1 119 119 136 136 134 142 134 148
hddi input 2 693 693 710 710 1025 999 1090 1051
hddi input 3 2013 2013 2338 2338 3675 4815 3971 5033
hddi input 4 4495 4495 5377 5377 11493 16680 12572 17468
hddi input 5 13824 13824 10331 10331 19470 40262 21584 43436
hddi input 6 14175 14175 18682 18682 57930 112878 64959 118653
hddi input 7 TO TO TO TO 122999 255603 122999 255603
hddi input 8 TO TO TO TO 218050 503802 218050 503802
hddi input 9 TO TO TO TO 307943 911847 307943 911847
hddi input 10 TO TO TO TO 508598 1621272 TO TO

ANIMO small 235 235 237 237 283 180 405 405

65

Statestore LDD LDD LDD LDD LDD LDD LDD LDD LDD LDD
Search-order bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev bfs-prev
Partitioned + - + - + - + - + -
Reorder cw cw rs,rn rs,rn rs,ru rs,ru - - - -
DBM-reduction + - + - + - + - + -

fischer1 13 13 14 14 14 14 14 14 14 14
fischer2 66 66 66 66 66 66 66 66 66 66
fischer3 532 552 409 420 409 420 409 409 420 420
fischer4 4184 4112 2541 2486 2541 2486 2541 2541 2486 2486
fischer5 32446 27909 17131 14526 17131 14526 17131 17131 14526 14526
fischer6 247845 179025 121944 85041 121944 85041 121944 121944 85041 85041

critRegion1 26 26 24 24 24 24 24 24 24 24
critRegion2 242 321 243 326 243 326 243 243 326 326
critRegion3 4627 11234 3743 9385 3743 9385 3743 3743 9385 9385
critRegion4 116312 428689 100006 369121 100006 369121 100006 100006 369121 369121

Critical 01-25-50 29 29 25 25 25 25 25 25 25 25
Critical 02-25-50 370 404 316 345 316 345 316 316 345 345
Critical 03-25-50 20293 27533 17505 23083 17505 23083 17505 17505 23083 23083
Critical 04-25-50 TO TO TO TO TO TO TO TO TO TO

CSMACD 01 17 17 17 17 17 17 17 17 17 17
CSMACD 02 101 111 99 109 99 109 99 99 109 109
CSMACD 03 551 619 500 558 500 558 500 500 558 558
CSMACD 04 2520 2729 2205 2401 2205 2401 2205 2205 2401 2401
CSMACD 05 10127 10473 8634 9158 8634 9158 8634 8634 9158 9158
CSMACD 06 36938 36562 30862 31948 30862 31948 30862 30862 31948 31948
CSMACD 07 125019 119022 102821 104048 102821 104048 102821 102821 104048 104048
CSMACD 08 398899 367047 324047 321001 324047 321001 324047 324047 321001 321001

viking1 24 24 15 15 15 15 15 15 15 15
viking2 66 66 37 37 37 37 37 37 37 37
viking3 176 176 86 86 86 86 86 86 86 86
viking4 196 196 105 105 105 105 105 105 105 105
viking5 216 216 124 124 124 124 124 124 124 124
viking6 504 504 233 233 233 233 233 233 233 233
viking7 342 342 190 190 190 190 190 190 190 190
viking8 415 415 224 224 224 224 224 224 224 224
viking9 495 495 263 263 263 263 263 263 263 263
viking10 581 581 304 304 304 304 304 304 304 304
viking11 671 671 347 347 347 347 347 347 347 347
viking12 621 621 342 342 342 342 342 342 342 342

Lynch1-16 21 21 24 24 24 24 24 24 24 24
Lynch2-16 187 185 173 180 173 180 173 173 180 180
Lynch3-16 1649 1924 1277 1485 1277 1485 1277 1277 1485 1485
Lynch4-16 17146 22181 11113 14968 11113 14968 11113 11113 14968 14968
Lynch5-16 177187 231890 112397 159146 112397 159146 112397 112397 159146 159146

bocdp 517 532 572 587 572 587 572 572 587 587
bocdpFIXED 514 529 572 587 572 587 572 572 587 587
bando 514 529 572 587 572 587 572 572 587 587
timelock 4 4 4 4 4 4 4 4 4 4

Milner-2Nodes-flat 338 543 338 543 338 543 338 338 543 543
Milner-3Nodes-flat 1602 2622 1602 2622 1602 2622 1602 1602 2622 2622
Milner-4Nodes-flat 4834 14965 4834 14965 4834 14965 4834 4834 14965 14965
Milner-5Nodes-flat 8653 27410 8653 27410 8653 27410 8653 8653 27410 27410
Milner-6Nodes-flat 14100 45357 14100 45357 14100 45357 14100 14100 45357 45357
Milner-7Nodes-flat 21455 69806 21455 69806 21455 69806 21455 21455 69806 69806
Milner-8Nodes-flat 31008 101767 31008 101767 31008 101767 31008 31008 101767 101767

hddi input 1 134 142 130 138 130 138 130 130 138 138
hddi input 2 1023 997 1021 995 1021 995 1021 1021 995 995
hddi input 3 3675 4815 3675 4815 3675 4815 3675 3675 4815 4815
hddi input 4 11499 16686 11501 16688 11501 16688 11501 11501 16688 16688
hddi input 5 19473 40265 19477 40269 19477 40269 19477 19477 40269 40269
hddi input 6 57960 112908 57966 112914 57966 112914 57966 57966 112914 112914
hddi input 7 108366 243123 108374 243131 108374 243131 108374 108374 243131 243131
hddi input 8 189156 479334 189166 479344 189166 479344 189166 189166 479344 479344
hddi input 9 275980 802694 275992 802706 275992 802706 275992 275992 802706 802706
hddi input 10 TO TO 454246 1412675 454246 1412675 TO 454246 TO 1412675

ANIMO small 185 187 197 199 197 199 197 235 199 237

66

	Introduction
	Preliminaries
	Timed Automata
	Zones
	Zone subsumption
	Binary Decision Diagram

	Related Work
	Methods
	Clock Difference Diagram
	Difference Decision Diagram
	Clock Restriction Diagram
	Constraint Matrix Diagram
	Zone BDD
	Digitization
	Orderings

	LTSmin
	Dependency Matrices

	Difference Decision Diagrams
	List Decision Diagram

	Implementation
	Language module
	DDD implementation
	BFS
	Successor Generator
	Animo Models

	Correctness

	Experiments
	Viking
	Fischer
	CSMA-CD
	Animo
	Lynch-Shavit
	Milner
	Other models
	Benchmark Runs

	Results
	Time
	Memory

	Different Semantics
	DBM Translation
	Minus

	Future Work
	Canonization
	Reordering
	Sparser Dependency Matrix
	Multi-Core
	Animo Model Compatibility
	Subsumption
	Checking Properties
	Skipping Levels

	Conclusions
	Experiment Results

