
Automated Program Analysis for Novice Programmers
Tim Blok

University of Twente
7511CW Enschede

The Netherlands
t.blok@student.utwente.nl

ABSTRACT
This paper describes how to adapt a static code analyzer to
help novice programmers realize their mistakes , as current
analyzers give feedback which is not very useful for novice
programmers. An extension to PMD was made so that
feedback messages appear which are easier to understand
for novice programmers. Firstly, the current limitations
of PMD were looked at by looking at their feedback of
common programming mistakes. Afterwards, these lim-
itations were filled in by creating custom rules. Lastly,
the effectiveness of these rules was measured by noting
the difference of errors returned by PMD on a number of
projects using the default ruleset of PMD, and one with
an extended ruleset.

Keywords
Programming; Code analysis; Teaching

1. INTRODUCTION
This paper describes how to adapt static code analysis
tools (tools which check code for errors) to the needs of
novice students. Improving in this context means that the
feedback from such tools should directly point to the pos-
sible misunderstanding of certain programming concepts,
instead of simply saying what may not compile correctly.
This is done by changing the feedback messages.

The reason for using static code analysis tools is that these
kind of analyzers are capable of giving feedback without
compiling and running the code. Therefore, feedback can
be given as quickly as possible to the code writer.

The feedback currently given by tools is meant for experi-
enced developers. Because of this, the current errors refer
to the specific compile or run-time problems that they en-
counter. However, these problems may not directly relate
to the concepts which the students know. As a result, stu-
dents may get stuck trying to fix a bug which is caused
by something entirely different than the IDE, for example,
currently gives as an error.

Additionally, as tools such as Coverity and FindBugs are
meant for experienced developers, the focus of these tools
lies in more advanced concepts, such as security, and as-
sumes the user already knows how to program (fairly) well

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
25th Twente Student Conference on IT July 1st, 2016, Enschede, The
Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

[2] [3]. This means that some errors are assumed to be
known and assumed that the programmer does (barely)
not make, which is not the case for novice students.

char reply;

char Y;

do {

System.out.println("Do you want to continue?");

reply = (char) System.in.read();

} while(reply != Y);

^

Variable ‘Y’ might not have been initialized

Figure 1. Example of a tool giving feedback

A static code analysis tool is extended with custom rules.
This is done so that new and old versions’ feedback can
be compared easily, and to incorporate previous research
(such as analyzing code itself) as much as possible. The
choice is made to only look at Java code, as the University
of Twente mainly uses Java in their programming courses.
PMD is a java code analysis tool, and gives programmers
the option to add their own rules (error detection with
feedback messages) to it.

Afterwards, old code of programmers (early assignments,
projects) is analyzed with the normal version of PMD,
and then with the new, extended version meant for novice
programmers. Code made by professionals is looked at
as well, to see how many ‘beginner mistakes’ professionals
still make in their open source projects.

Finally, these results are looked at and discussed to form
a general opinion of changing PMD in a way to make it
more understandable for novice students.

2. BACKGROUND
Static code analyzers are tools usually used to automat-
ically check for programming errors in code and report
their severity and location. [1] This can range from simple
errors (using a variable which has not been initialized) to
security flaws (hashing passwords without a salt). Often
integrated in IDEs by default, but there are specialized
programs that can be used in combination with IDEs to
catch as many errors as possible (such as FindBugs). The
other kind of code analyzers are dynamic code analyzers,
these also look at code while it is executing. Static code
analysis, however, does not execute a program to look for
errors.

Whenever ‘tools’ are mentioned in this paper without fur-
ther explanation, static code analyzer(s) are meant.

Feedback (messages) are the messages which appear when
hovering over an error (in case of tools with a visual in-

1

terface), or the messages listed after a tool has gone over
code (tools without visual interface).

The rule set (or rules) of a tool is the list containing what
kind of feedback messages should be given when a cer-
tain error is found. Rules can be customized to support
personal preference [6].

Errors are programming mistakes made while coding. This
can range from syntax errors which make code uncompil-
able to small errors which are mainly seen as bad practice.

Abstract Syntax Tree (AST) a tree representing syntac-
tic objects in implementations of systems that manipulate
programs, formulas, rules, etc. In this paper, ASTs will
represent the source code of Java classes.

The founders (Seth Hallem, Dawson Engler, amongst oth-
ers) of Coverity, Inc. made a paper [2] about the creation
of a static code analyzer and building a company around
making a static code analyzer. This reviews mostly the
process of making such a tool and what problems arose
while testing it with users.

Using this paper and the paper about general use, strengths
and limitations mentioned in a paper written by Alexan-
dru Bardas [1] more knowledge is gained about the general
use and knowledge behind static code analysis tools.

FindBugs is a static code analyzer tool for Java, and is able
to give insight in the way a tool looks for faulty code pat-
terns. One of the creators of FindBugs has made a paper
on the creation of FindBugs [3]. This paper contains all
the different bug patterns which FindBugs looks for. This
list could be used to know which errors students currently
make are already able to be tracked without problem. This
paper, however, along with the ones mentioned previously,
do not mention the use of tools in a classroom.

Lastly, a paper by A. Sen reviews the usage of code anal-
ysis in class [6]. There are two points to look at, namely
looking through assignments of students, and the usage of
tools by the students themselves. There are no real results
aside from saying that code analysis can help in the class-
room, and that custom rules help with this. Custom rules
are also mentioned (and used), however not explored.

3. RESEARCH
An example of something to be solved can be seen in Fig-
ure 1. If this were written by a student, it would point to
the student failing to understand the difference between
character variables and character literals. They meant to
check if the input is the character ’Y’, but instead com-
pared it to the (undefined variable) Y. They addressed
the error on the undefined field by declaring char Y. This
results in the code in Figure 1, and the current feedback
message is about a variable not being initialized, not giv-
ing the student enough information to know what they did
wrong. What a student then could do, is do something
which removes the error, such as initializing the variable
with something useless (char y = 0; or char y = ’0’;). This
removes the error, but now the input is being checked to 0
or ’0’, instead of the intended ’y’. This pattern of confus-
ing literal characters with character variables is common
among novice programmers. To counteract this, the error
message should point towards the concept that the student
may not understand, instead of the problem the compiler
encountered.

Research purpose.
The goal of this paper is to see what different kinds of
errors are made by students and to make an extension

to a currently existing static code analysis tool. This is
to make students learn from their errors by changing the
feedback of such tools. This extension could be used by
both students and their teachers. Students are able to im-
mediately see what they did wrong. Teacher can use this
tool to speed up the process of looking through assign-
ments, as a broader range of errors are looked at.

Research question.
The question which relates to the goal above, is: How
can feedback in the form of messages of static code anal-
ysis tools be changed to let novice students know what
concepts of Java they do not understand? To answer this
question, multiple sub-questions have to be answered first.

• What kind of information has to be relayed to a
novice programmer to know what they did wrong?

• How can current code analysis tools be used to know
what mistakes a novice programmer has made?

• What are the effects of changing feedback messages
on the student’s coding?

These questions also indicate the process of the research.
Firstly look at what kind of information is useful for stu-
dents in the first place. Afterwards, use the gained knowl-
edge to extend a tool with new feedback.

Lastly, use this new version of the tool to measure the
increased amount of errors on existing projects. When
all this has been done, the main research question can be
answered.

Research method.
Firstly, literature research is done to create a list of er-
rors. These errors can be divided in 2 different categories:
Errors that are already able to be identified using tools,
and those which cannot be identified yet. Each error will
then be one of two kinds depending on the category: if it
is already identifiable, whether the feedback is sufficient
enough, or if the error is not yet identifiable, whether it is
possible to identify or not. which are mainly bad practice
(bad code style). The example given in figure 1 is cate-
gorized into ‘already identifiable’, but does not yet have
sufficient feedback.

The next step is to correlate certain ways of coding to
known programming mistakes. Using figure 1 again, if a
tool sees both the creation of a variable character with
only one character as its name combined with a ’not ini-
tialized’ error, this could mean that the student tries to
use a character variable as a literal.

Afterwards, PMD is extended with custom rules to make
sure the category ’unidentifiable errors’ is as empty as can
be. Additionally, some feedback messages which are cur-
rently given back may be changed to give the user more
useful feedback.

Lastly, the categorized errors are looked at by going through
code, and comparing the number of issues found by the
standard tool and the extended tool. This is done on two
sets of projects, namely projects made by novice program-
mers and projects made by professional programmers. The
difference of additional errors found with the extended tool
are compared to give a good indication on how effective
the extension is.

When all this information is gathered, the research ques-
tions are able to get answered correctly.

2

4. STATIC ANALYSIS APPROACH
4.1 Examples of solutions
Some examples will help understand what this paper looks
to accomplish. First, a small piece of code is shown. Then
the current feedback of a standard tool (usually the IDE
itself) is shown. Afterwards, a proposed way of changing
the message is shown. Lastly, it is explained why this
proposed feedback was chosen.

Example 1 (variables).
Code:

char q; return q;

Current feedback: Variable ‘q’ might not have been ini-
tialized.

Proposed feedback: Variable ‘q’ has no value. Are you
sure you want to use a variable instead of a literal value?

Explanation: Similar to figure 1, a student might think
‘char q’ is the correct way to say that ‘q’ is the value of a
character. Therefore ‘return q’ should return a character
with value ‘q’. However, this is incorrect, as q in the code
is now simply a variable with the name q.

Example 2 (C++, syntax).
Code:

if(a = b){...}

Current feedback: Statement is always true.

Proposed feedback: If statement does not have a standard
boolean operation. Did you mean ‘a == b’?

Explanation: a = b is an assignment, which normally re-
turns 1 (true). The student most likely meant a == b,
as this is a normal boolean operation. It may be hard to
discover that they used ‘=’ instead of ‘==’, since it could
be that the student is not actively looking for this kind of
error when debugging.

Example 3 (code style).

if(a == 0){a = 1;}if(a == 1){a = 3};

...if(a==13){return 2}

Current feedback: Nothing.

Proposed feedback: Many checks are made of the same
variable. Try using a switch statement?

Explanation: While the code may be correct, it does not
mean that it is clean. Teachers may have certain code
styles that they want the students to follow. If switch
statements have only recently been explained, it may not
be obvious to the student that a switch statement would
be perfect for this situation.

Example 4 (switching ‘or’ and ‘and’ statements).

if(string1 != null || string1.equals(string2)){...}

Current feedback: The variable ‘string1’ can only be null
at this location. This error is given at the second occur-
rence of ‘string1’ in this line.

Proposed feedback: Null check followed by ‘or’. Did you
want to use an ‘and’ (&&) statement?

Explanation: This one is fairly simple, the student switched
up the syntax for ‘or’ and ‘and’. There is the possibility
of the student not getting the concept of logic gates, this
could also be addressed in the feedback.

From these examples one can see that the proposed way,
in addition of saying what is wrong, also gives a way to
fix it, and makes certain problems easier to understand.
During the implementation more types of errors are looked
at and researched to know what feedback is the most useful
to give.

4.2 Tool choice
As mentioned before, PMD has been chosen as the tool to
extend. However, this is far from the only tool available
for java code analysis. The three most popular tools are
FindBugs, PMD and Checkstyle, based off Google’s results
and suggestions given around the internet. The choice was
made to evaluate these three tools and see which one would
fit this research.

Checkstyle is a tool mostly made for correcting certain
code styles. While not bad in itself, this research also aims
to look at more problems in the code, not purely style.

FindBugs is a tool which looks at the java byte code and
bases its detectors off of that [3]. This is very useful for
detecting code patterns which may be problematic, but
leaves little room to look for style issues, as variable names
for example cannot easily be retrieved while checking the
byte code.

Lastly, PMD is a good hybrid between the two previous
tools. It utilizes a generated abstract syntax tree (AST)
from the source code, which is then descended. With this,
both code patterns and bad practices can be tracked.

The only downside which is shared by all tools is that code
which cannot be parsed can also not be checked by tools.
Therefore, bad code which is picked up by the IDE is not
able to be given feedback by the tool.

Additionally, Eclipse is used as the IDE in which the errors
are tested. This is because the University of Twente uses
this IDE as the default IDE in their programming courses.

4.3 Limitations of PMD
After trying out creating custom rules in PMD, is has
become apparent that there are still some flaws which can
cause certain rules to be harder to implement.

The flaws of PMD lie mainly around creating rules rules
which look at multiple classes or projects as a whole. In
PMD, there is no method which is called after the entire
class is analyzed using a certain rule. Therefore, if it is
needed to know everything about a class, it is necessary
to do this in the very first node of a class (ASTCompila-
tionUnit) and then traverse the tree manually.

Another thing is that it is not possible to always know
everything about another class (fields, methods, etc· · ·).
While it is possible to save information after having gone
through a class, there is no way to gain information of
a class which is yet to be analyzed, while it is possible
that this class is used in some way in the class which is
currently analyzed.

4.4 False positives
For novice programming rules, false positives are not of
great concern. This is because the current way of giv-
ing feedback is mainly suggesting changes to be made in
code. For example, if someone creates a character c (not
unusual), it does mean that they for certain do not know
the difference between a variable and a literal. While ‘c’

3

is probably not a good choice of name, as it makes code
harder to read and understand, if it is used properly there
is not a big problem at hand. PMD allows the user to
select errors and mark them as reviewed or remove the
violation entirely, if they think the current error shown is
not actually a problem.

4.5 Feedback messages
One part of helping the programmer is detecting errors,
and another part is giving feedback back so that they
know they did wrong in the first place, so the error can be
avoided in the future. To make this feedback give all the
information the programmer needs, the feedback consists
of two or three elements, depending on the error.

Firstly, what part of the code generates an error. This
typically consist of a line number (or, in Eclipse, a small
arrow in the side column to indicate there is something
wrong on this line) and an explanation of the error. Ex-
ample: (line xy) A null-check is followed by a conditional
OR (||).
Secondly, a suggestion is done to help fix the error. This
could be one suggestion, or multiple. For example, if the
same variable is often checked using if/else, the suggestion
could be to replace the current structure with a switch
statement. An example of multiple suggestions: if an in-
stance variable is only used in one method, one suggestion
could be to make that variable local to that one method.
However, another suggestion could be to make the variable
‘final’, to indicate it being a constant.

Lastly, a source of information on the concept is given, if
applicable to the error. As the University of Twente uses
“Programming and object oriented design using Java” by
Nino and Hosch [5], this book is used as the main source
of information.

These elements were also looked at when testing the cur-
rent tool feedback. If it is clear what part caused the error,
what kind of error caused it, and the suggestions to fix it
are correct, it means that the tool currently gives sufficient
feedback.

5. RULES FOR NOVICE PROGRAMMERS
Now that the tool and all of its surroundings have been
established, it is important to look at what rules should be
changed or added. A list of 20 errors which are often made
by beginning programmers was created and discussed by
M. Hristova [4]. Some of these errors cause the file to be
unparsable, such as misaligned parentheses. These errors
are ignored, as the tool cannot look at unparsable code.

Additionally, known common programming errors by ex-
perts (teachers and student assistants) are added to the
total list of errors as well. These have been gathered by
talking to experts and noting what they have experienced
while teaching students how to program.

The list of errors is as follows:

(A) Confusing the assignment operator (=) with the com-
parison operator (==).

(B) Use of == instead of .equals to compare strings.

(C) Unbalanced parentheses, curly brackets, square brack-
ets and quotation marks, or using these different sym-
bols interchangeably.

(D) Confusing short-circuit evaluators (&& and ||) with
conventional logical operators (& and |).

(E) Incorrect use of semi-colon after an if, while or for
statement.

(F) Wrong separators in for loops (using commas instead
of semi-colons).

(G) Inserting the condition of an if statement within curly
brackets instead of parentheses.

(H) Using keywords as method names or variable names.

(I) Invoking methods with wrong arguments (e.g. wrong
types).

(J) Forgetting parentheses after a method call.

(K) Incorrect semicolon at the end of a method header.

(L) Getting greater than or equal/less than or equal wrong,
i.e. using => or =< instead of >= and <=.

(M) Trying to invoke a non-static method as if it was
static.

(N) A method that has a non-void return type is called
and its return value ignored/discarded.

(O) Control flow can reach end of non-void method with-
out returning.

(P) Including the types of parameters when invoking a
method.

(Q) Incompatible types between method return and type
of variable that the value is assigned to.

(R) Class claims to implement an interface, but does not
implement all the required methods.

(S) Confusing character variables as literals

(T) Null check followed by or (||)

(U) Many if/else checks on the same variable.

(V) Instance variable not being used globally within the
class. I.e, an instance variable can be reduced to a
local variable.

(W) Switch statement does not contain a break.

(X) Switch statement without default case.

(Y) Out of array bounds by using <= instead of <.

Categorization.
As stated above, not all errors are detectable using PMD,
as some errors may cause the code to be unparsable. For
this paper, only the errors with certain properties are
looked at.

The properties that the errors should have are:

(1) The code is still parsable

(2) The current tools (PMD or default Eclipse settings)
already find the error and give sufficient feedback.

From this, four main categories can be deducted. Every
error has been tested in the current tool environment, to
see which error falls in which category.

• Unparsable (C, F, G, H, L)

• Not found (A, D, J, N, S, T, U, V, Y)

4

• Found, but has insufficient feedback (B, E, W, X)

• Found, and has sufficient feedback (I, K, M, O, P,
Q, R).

In this paper, the rules in the second and third categories
are looked at. Errors which make the source code un-
parsable are simply not detectable by PMD, as it relies
on creating an AST of the source code. Errors which are
already detected and give sufficient feedback have no need
to be improved.

6. IMPLEMENTATION
PMD has an option to implement custom made rules and
rulesets. A ruleset “Novice” is made, with custom rules in
it. Eleven custom rules are created to cover as many rules
as possible. To create rules which do not yet exist, an
abstract class (AbstractJavaRule) is extended. This class
is given as part of the PMD source code.

The extended class will override a visit() method. This
method has two arguments: the current node of the AST
it is at, and the current context of the class it is analyzing.
Using this, actions can be done depending on the kind
of node it is currently visiting. It can then inspect the
structure of the tree around the given node, and add a
violation if the structure looks like the structure when a
certain error is made. After the analyzing is done, all the
violations are shown.

The feedback message which is shown when hovering over
an error is as concise as possible. The programmer can
click on ’show details’ to get more information about the
error, such as an example of the error occurring, and how
to fix it.

(A) Confusing the assignment operator (=) with the
comparison operator (==)..
This rule checks for assignments being made inside struc-
tures that usually expect a boolean value, such as an if-
statement. In Java, an assignment inside such a structure
can be made only if the left-hand side of the assignment
is a boolean.

It does the checking by going through the assignments
made in a program. If the parent of this assignment is
either an if, while or for statement, a violation is added.

The feedback message suggests to make sure you are not
confusing = with ==.

(D) Confusing short-circuit evaluators (&& and ||)
with conventional logical operators (& and |).
This rule checks for two booleans being compared using
conventional logical operators. This is done by simply
using the visit() method on a standard ‘AndExpression’ or
‘InclusiveOrExpression’, and making sure that both sides
are of type boolean. If this is true, add a violation.

The feedback message suggests to make sure the user is
not confusing operators with short-circuit evaluators.

(J) Forgetting parentheses after a method call..
This rule has not been implemented, as there is ambiguity
while checking. Maybe the intention was to actually do
something with a field which happens to have the same
name as a method (which may be wrong for other reasons).

Additionally, one would have to go over all the classes and
gather all the information regarding methods and variables
to make sure the error is actually forgetting parentheses,

instead of something else. This can prove troublesome, as
PMD analyzing is done on a class-by-class basis, thereby
not guaranteeing that knowledge of some other classes is
available, as explained in section 4.3.

(N) A method that has a non-void return type is called
and its return value ignored or discarded..
This rule has currently not been implemented, for the
same reason as the last rule for not implementing rule
J.

Furthermore, it is possible that the intention of ignoring
a return is to use the functionality of a method, rather
than working with the returned value (such as the .put()
method of a Map implementation).

(S) Confusing character variables as literals.
This rule is fairly straightforward, it simply looks for dec-
larations of variables of type ’char’ with only a single char-
acter as their name. This could mean that the user tries
to compare something to the variable’s name, instead of
its value (see example 1).

(T) Null check followed by OR (||).
This rule checks for null checks on an object which are
followed by an OR (||), and then trying to use a method
on said object. This is done by looking through conditional
or expressions, and checking whether a null check is made.
If this is true, it looks for the checked object to be used
afterwards, which would lead to a NullPointerException.

The feedback suggests changing the || to &&.

(U) Many if/else checks on the same variable.
This rule looks for an if-statement with multiple else if-
statements. If all these statements are looking at the same
variable, this means it could be replaced with a switch
statement.

The feedback suggests to replace the if/else structure to a
switch.

(V) Instance variable not being used globally..
This rule is a bit more complex to create, as some assump-
tions have to be made. For example, when is a variable
intended to be used as an instance variable? It has been
decided to only look at private variables which are not
final. This is because protected or public variables are
likely intended to be used by other classes as well, and
final variables are constants, therefore logical to create as
an instance variable.

To detect instance variables that could be made local, ev-
erything has to be done as soon as a new class is starting
to get analyzed, to make sure that all information is ready
when it is needed. Firstly, all the instance variable dec-
larations are gathered, and their names saved into a list.
Afterwards, it goes through all the methods to see which
variables are used. Lastly, it looks at the variables which
only have been used in a single method, indicating it could
be made local, and adds a violation.

The feedback suggests making the variable local to the
only method it is used in, or make the variable final if it
is intended as a constant.

(E) Incorrect use of semicolon after an if, while or
for statement..

5

This rule checks for incorrect usage of a semicolon after an
if, while or for statement. This is done by simply looking
for the use of a semicolon after the condition part of an if,
while or for statement instead of either a statement or an
opening curly bracket.

The suggestion is to remove the semicolon.

(W)/(X) Switch statement does not contain a break/default
case.
This rule already existed in PMD’s default ruleset. How-
ever, it did not give a sufficient feedback message.

The feedback message now suggests adding a break and/or
default case, depending on what is missing.

(Y) Out of array bounds by using <= instead of <.
This rule looks for less or equal than (<=) being used on
size/length checks inside a if/while condition, as this has a
good chance of throwing an ArrayIndexOutOfBoundsEx-
ception. This is achieved by looking through the less or
equal checks being used in if statements or while state-
ments, and looking at the check being done on a stan-
dalone .size() or .length (without ‘- 1’).

The feedback message suggests changing the <= to a <.

7. RESULTS
As stated in the research method, multiple projects made
by novice and professional programmers alike are analyzed
using the standard ruleset, and an extended one with the
custom rules mentioned in the previous section. The stan-
dard ruleset has the rules which were changed by the cus-
tom rules (B, W and X) disabled to still be able to see
how much the 20 rules are actually made by novice pro-
grammers.

The novice projects are mostly finished assignments and
final projects from the module ‘Software systems’ of the
University of Twente. When students created these projects,
they had about 8 to 9 weeks of Java experience. These
projects and assignments all had a requirement to be com-
pilable, therefore some rules may not be effective on these
projects.

The professional code is taken from six parts of the ‘org.
apache.commons.codec’ library: .codec itself, .binary, .di-
gest, .language, language.bm and .net.

Table 1. Number of errors found per project per
ruleset

Project Novice rules Standard Lines of code
Novice 592 59462 89056
Errors/line 0.0066 0.67
Professional 16 3679 6485
Errors/line 0.0025 0.57

For the results of novice programmers code, 24 projects
(mixed assignments and projects) were tested with the
default ruleset minus the rules mentioned in the above
section, and with solely the extended ruleset.

7.1 Discussion
It was expected that the rules which looked at errors that
made the code non-compilable were not going to come
up. This is because the projects currently tested were all
either finished projects, or assignments which were signed
off (and therefore correct). For the same reason, the errors
which change the entire behavior of the program (A, B, Y
for example) are not as common either.

Figure 2. The percentage of rules occurring in the
total set of projects

Figure 3. The percentage of rules occurring in the
total set of projects, without rule V.

The prevalence of rule V (instance variable can be made
local) is interesting to look at (see Figure 7, as it was not
expected that this rule would find this amount of the total
errors. An explanation for this would be that the types
of code which cause certain errors (switches for example)
are simply scarcely used compared to the creation and
usage of variables. It could also mean that the concept of
the other errors are generally understood better, or that
the consequences of misusing instance variables are not as
obvious as the other errors.

When leaving V out, a more balanced outcome of given
errors can be noticed (see Figure 7). This figure also shows
that the errors A and Y are rarely made. An explanation
for this would be that when making such errors, the pro-
gram’s behavior changes considerably. Most of the given
projects were working pieces of software, therefore not con-
taining many behavior-changing bugs.

Another thing to look at, is the amount of errors gener-
ated with the custom ruleset compared to the standard
ruleset. As said, around 1% of the total current errors are
given by the extended part of the ruleset. This is a bit less
than expected, as the custom ruleset has about 3.4% the
number of rules compared to the total ruleset. This could
be because of the sheer amount of errors the LawOfDeme-
ter rule and other rules which have little impact on the

6

code itself (such as CommentRequired at constants) re-
turn. These rules, while good to have in general, were not
necessary or even graded on the projects themselves. Af-
ter further testing, it seemed that on average more than
64,7% of the errors were generated by these rules. After
disabling these rules, the final amount of extra errors gen-
erated by the extended ruleset amounted to around 2.8%,
coming close the the expected amount of additional errors.

The weak points of this testing is that the testing was done
on projects and assignments which were already finished,
meaning that they were compilable. The best test scenario
would be to use this tool in a live environment, i.e. while
the students are actually being busy making their projects
or assignments. Then all errors which would lead to un-
expected events, such as using ‘==’ to compare instead of
‘.equals()’, would perhaps occur more often.

As seen by the data in Table 1, the new ruleset returns
nearly no errors compared to the standard ruleset. This
strengthens the point that the created ruleset has been
mainly created for novice programmers, since the profes-
sional programmers (in this case, the Apache Commons
programmers) barely make these mistakes anymore. Also,
from the six professional projects, only two contained er-
rors from the novice ruleset, as opposed to the novice
project, where every project had errors generated by the
novice ruleset.

8. CONCLUSIONS AND FUTURE WORK
With this new ruleset, students can quickly know what
kind of errors they are making and how to fix them. Stu-
dent assistants can use this as well to quickly look over the
errors of a code file when having to grade work. However,
this is only useful when the students do not get to use
PMD.

The research questions have been answered throughout
this paper. The way to relay information to a novice pro-
grammer is by using the feedback messages currently im-
plemented by PMD, and fill them with information. This
information contained three parts: what caused the er-
ror, what could be done to fix it, and where more formal
information about the concept behind the error could be
found.

The current analysis tool (PMD) was able to be extended
using java classes to traverse an AST in which the struc-
ture of source code was contained. This structure was
then used to locate certain patterns which may indicate
the existence of an error.

The effects of the new ruleset, while not tested, is that the
student is further educated while they are programming.
How effective this education is was not able to be tested,
however, and will have to be done in a future research.

This paper was not able to analyze all the errors presented,
so the custom ruleset can still be extended. Other misun-
derstandings of concepts, such as parameters or control
flow, have not yet been touched on either because of time
restraints. And there are of course other errors not dis-
cussed in this paper where rules could be made for.

Future research can look at adding more rules to spot more
errors, or try to test the new ruleset in a real environment,
to see how often the errors currently not seen often appear.

9. REFERENCES
[1] A. G. Bardas et al. Static code analysis. Journal of

Information Systems & Operations Management,
4(2):99–107, 2010.

[2] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak,
and D. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66–75, 2010.

[3] D. Hovemeyer and W. Pugh. Finding bugs is easy.
ACM Sigplan Notices, 39(12):92–106, 2004.

[4] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting java programming errors
for introductory computer science students. In ACM
SIGCSE Bulletin, volume 35, pages 153–156. ACM,
2003.

[5] J. Nino. An introduction to programming and
object-oriented design using JAVA. John Wiley &
Sons, Inc., 2007.

[6] A. Sen. Using code analysis tool in introductory
programming class. Issues in Information Systems,
15(1), 2014.

7

