
Hacking Continuous Probability Distributions into Pieces
Ramon Onis

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
r.onis@student.utwente.nl

ABSTRACT
When dealing with complex systems with probabilistic and
real-time properties, an analysis is often needed in order
to improve or understand certain aspects of the system
(e.g. making machine maintenance more efficient or mea-
sure the chance that a network package gets transferred
in time). In order to get insight in these systems, cer-
tain models can be constructed for analysis. The Mod-
est Toolset supports the modelling and analysis of such
systems. In order to analyse these systems, continuous
probability distributions need to be converted to discrete
probability distributions. The current implementation of
this conversion does not scale well for complex systems
and is not precise enough in many cases. A better method
is required in order for the toolset to provide more accu-
rate analysis. In this paper, we propose different methods
to convert these continuous distributions into discrete dis-
tributions, report on the implementation and evaluate the
performance.

Keywords
stochastic timed automata, probabilistic timed automata,
modelling, continuous probability distributions

1. INTRODUCTION
There are many situations in which finite automata are a
useful tool to model and analyse complex systems.
Finite state automata (FSA) are the most basic model
that can be used to analyse a wide range of systems. For
example, a vending machine counting deposited coins can
perfectly be modelled using FSA.
However, FSA are not able to model all aspects of a sys-
tem. For example, when modelling real-time systems, it
might be a requirement that the model supports timers
and delays. To model and analyse such systems, timed
automata (TA) can be used [1].
Another requirement may be that the transitions might
not be deterministic given a next symbol, but probabilis-
tic. Probabilistic automata (PA) support these kind of
transitions [10]. This allows for discrete probability distri-
butions to be included in PA.
When combining both the timed and probabilistic proper-
ties of these types of automata, we are dealing with prob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
25th Twente Student Conference on IT June 1st, 2016, Enschede, The
Netherlands.
Copyright 2016, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

0 1 2 3 4 5 6

k
P
[X
=
k
]

0

0.05

0.15

0.25

0.3

0.2

0.1

Normal p.d.f.

Binomial p.m.f.

Figure 1. A discrete approximation of a normal
distribution. Note that the discrete distribution is
similar to the binomial distribution [11].

abilistic timed automata (PTA) [7].
A final requirement we might consider is the ability to in-
clude stochastic variables (e.g. time between failure of a
machine, propagation delay of a signal) in a model. The
value of these variables gets to be determined by contin-
uous probability distributions. For example, three fre-
quently used probability distributions are uniform, expo-
nential and normal distributions. When appending PTA
with the feature to include stochastic variables based on
continuous probability distributions (e.g. uniform, expo-
nential and normal distributions), we are dealing with
stochastic timed automata (STA) [3].
The Modest Toolset [6] already has a tool, mcpta, to

perform an exact analysis of PTA [5]. However, in or-
der to analyse STA, the toolset must convert them to
PTA by replacing the stochastic decisions (based on con-
tinuous probability distributions) with probabilistic finite-
state systems.
The tool, mcsta, does this by dividing the continuous prob-
ability distribution into sequential intervals, effectively con-
structing a discrete probability distribution that approxi-
mates the original distribution. The discrete distribution
can be included into the newly constructed PTA. The con-
structed PTA is now a approximation of the original STA.
How precise the approximation will be depends on how
the continuous distribution is divided into finite intervals.
Currently, the toolset divides the continuous distribution
into equally sized intervals of length 1 (see Figure 1). How-
ever, this method does not scale well for more complex
systems and lacks the precision that is desired.
In Section 5, we will describe new methods of approxi-
mating continuous distributions and provide the theory
needed to implement the new methods. In Section 6, we

1



provide details on how the described methods are imple-
mented in the Modest Toolset. In Section 7, we evaluate
the implementations using several models included in the
toolset. Finally, in Section 8, we return to the research
questions and suggest future work.

2. RESEARCH OBJECTIVES
The research in this paper is conducted in order to come up
with the best method to approximate continuous probabil-
ity distributions with discrete distributions which allows
the Modest Toolset to convert STA to PTA.
There are two requirements for the proposed method that
should be taken into account:

• The method should enable the toolset to construct
a precise approximation of an STA in the form of a
PTA.

• The analysis of this PTA should have a reasonable
time/memory performance.

2.1 Research questions
Based on the above requirements, the following research
question can be established. The research can be sub-
divided into three parts: developing, implementing and
comparing possible methods. Each part corresponds to a
subquestion:

• What is the best method, in terms of analysis speed/mem-
ory performance and precision, to convert continu-
ous probability distributions to discrete probability
distributions?

– What are possible methods to convert continu-
ous probability distributions to discrete proba-
bility distributions?

– How can these methods be implemented into
the Modest Toolset in an efficient way?

– How can the implementations be compared in
terms of analysis speed and precision.

3. BACKGROUND INFORMATION
This paper will focus mainly on continuous probability dis-
tributions and two types of automata, STA and PTA, and
the tool that approximates STA with PTA to analyse STA.

3.1 Automaton types
In this paper, there are two types of automata to consider.
The first type is the automaton that combines stochastic
decisions, discrete probabilities and clocks/delays called
stochastic timed automaton (STA).
The second type is the automaton that combines both
discrete probabilities and clocks/delays called probabilis-
tic timed automaton (PTA). It can be obtained from an
STA by replacing the continuous probability distributions
in a PTA with a discrete probability distribution. Cur-
rently, the Modest Toolset is able to only analyse PTA
directly. To analyse STA, an approximating PTA has to
be obtained from it.

3.2 mcsta
mcsta is theModest checker for stochastic timed automata.
An important step in the model-checking of STA is to ap-
proximate them with PTA. In this step it is necessary to
convert continuous probability distributions with approx-
imating discrete distributions. The probability distribu-
tions that have to be converted can be constant, mean-
ing that they have concrete values as parameters (e.g.

Figure 2. This is how the current implementation
would unroll a normal distribution with mean 0
and standard deviation 2.

Exp(1.5) for an exponential distribution with a rate of
1.5), or variable, meaning that they can have mathemati-
cal expressions as parameters (e.g. Uni(a+ 4, b ∗ 4) for a
uniform distribution with bounds a+ 4 and b ∗ 4).
The resulting discrete distribution must be returned as
a mapping of intervals to their corresponding probabili-
ties. In the case of variable probability distributions, the
bounds of the intervals and their corresponding probabil-
ities can be mathematical expressions as well. Further-
more, because of how the toolset only allows PTA to have
integer clock constraints, the bounds of the intervals are
limited to integers [4].
The properties of a STA that can be analysed using mcsta
are minimum and maximum reachability probabilities/re-
wards (e.g. maximum probability that a queue is full
within 10s, minimum time before a packet is received).
The results of the analysis are ’safe’ approximations of
these minimums/maximums, meaning that the resulting
minimums/maximums are lower/upper bounds and do not
violate the actual minimum/maximum (e.g. when the ac-
tual maximum of a property is 10, the resulting maximum
can be higher than 10, but not lower).

4. RELATED WORK
A simple method has already been described to approx-
imate STA with a PTA which is the method that the
Modest Toolset currently uses[4]. However, this method
does not meet the requirements of allowing precise and
fast analysis.

4.1 Current Method
The current implementation divides the probability dis-
tributions into sequential intervals of length 1. For prob-
ability distributions that are supported on (semi-) infi-
nite intervals (e.g. normal/exponential distributions), the
current implementation stops creating interval when the
residual probability is smaller than a given threshold [4].
The residual probability is given as a parameter of the
mcsta tool which can be set to a lower value in order to
increase the amount of intervals that are created.
Figure 2 shows how the current implementation unrolls
the normal distribution Norm(0, 2). To achieve a residual
probability of 0.05, only intervals within [-3.921, 3.921] are
created (this is the white area under the curve). The first
and last bound will be rounded down and up respectively
as only integer bounds are supported. The black areas will
be included as half open intervals.
The current implementation only allows exponential, nor-
mal (only with integer means and constant standard devi-

2



Figure 3. This is how a normal distribution with
mean 0 and standard deviation 2 would be divided
when 10 intervals are needed of equal probability
mass.

ations) and uniform distributions.
The current method creates as many intervals of length
1 as necessary to cover a probability of at least 1 − ρ,
where ρ is the residual probability. However, this does
not scale well with probability distributions with a large
standard deviation. For example, the uniform distribution
U(0, 1000) will yield 1000 intervals, even when 100 inter-
vals would be enough for a precise analysis.

5. RESEARCH - NEW METHODS
In this section, we will describe several methods to ap-
proximate continuous probability distributions with dis-
crete probability distributions. We will first begin with
describing how the current implementation works. After
that, we will describe alternative methods.

5.1 New methods
We now present alternative methods to approximate con-
tinuous distributions.

5.1.1 Intervals with equal probability masses
We will now present a method that creates n intervals,
where n is a number given by the user. By only asking for
the amount of intervals to be created, this method should
scale better when using distributions with a large standard
deviation.
When it is specified how many intervals should be created,
the probability mass of the intervals can be determined.
To achieve intervals of equal probabilities, each interval
must have a probability mass of 1

n
. To do this, we first

define bound numbers:

Definition 1. The bound number of a bound is a num-
ber i ∈ [0, 1, . . . , n − 1, n] that indicates the position of
a bound. The leftmost bound has bound number 0, the
following bound has bound number 1 and the rightmost
bound has bound number n.

To determine what the value of a bound is, we use the
following definition:

Definition 2. The value of a bound x is follows from the
cumulative probability p assigned to it, such that P (X <
x) = p.

To get intervals of equal probabilities, we assign the cumu-
lative probability p = i

n
to every bound. This way each

interval, whose bounds have bound number i and i + 1,

has a probability mass of 1
n
.

Figure 3 visualizes how the distribution from Figure 2
would be divided into 10 intervals with equal probabili-
ties of 0.1.

To determine the value of a bound that follows from proba-
bility p, we need to use the inverse cumulative distribution
function (inverse CDF, or quantile function). For a ran-
dom variable X and a probability 0 < p < 1, the quantile
function can be expressed as follows:

QX(p) = {x : P (X ≤ x) = p}.

Or in words: given a probability p, the quantile function of
a random variable returns the value x for which the prob-
ability of the random variable being less than or equal to
x is equal to p.
However, the interval bounds are limited to integers. There-
fore, the resulting bounds must be rounded in some way to
satisfy this limitation. As a result, the actual probabilities
of the rounded intervals may differ from the initial prob-
ability mass of 1

n
. To solve this problem, the probability

masses corresponding to the rounded intervals must be re-
calculated. In order to do this, we must use the cumulative
distribution function (CDF):

FX(x) = P (X ≤ x).

We can use the CDF to calculate the probability mass
corresponding to the interval [a, b] in the as follows:

P (a ≤ X ≤ b) = P (a < X ≤ b)

= P (X ≤ b)− P (X ≤ a)

= FX(b)− FX(a).

5.1.2 Smaller intervals near median
The method in Section 5.1.1 is based on giving intervals
equal probability masses. Another method might be to
give intervals near the median smaller probability masses
than further away from the median. This could result in
more precision near the median of the probability distri-
bution. We choose the median as a measure of central
tendency to focus on because the median can be easily
determined using the inverse CDF: the bound that has
probability 1

2
assigned to it corresponds to the median. To

determine how we make intervals near the median more
precise, we modify the method in 5.1.1. We look at the
fraction r = i

n
, and how r will be converted to a cumula-

tive probability p assign to the bound with bound number
i. For the method in 5.1.1, we use p = r to let each interval
have a equal probability mass of i

n
. For the implementa-

tion we need to express p in terms of r such that the value
of p increases more slowly near r = 1

2
, the probability

corresponding to the median. In stead of assigning prob-
abilities p = r = i

n
to each interval as in Section 5.1.1, we

thus use a different equation to determine p.

5.2 Scaling
A important restriction to consider is the fact that the
resulting intervals must have integer bounds. When deal-
ing with distributions with small standard deviations it
is therefore hard to return precise intervals due to the
low resolution. A solution to this is to include a scal-
ing factor that scales up the time in the original model
to increase the resolution of the analysis. To make this
work, the parameters of the probability distributions need
to be edited accordingly. For example, when using a time
scaling factor s, the distributions Uni(a, b), Exp(λ) and
Norm(µ, σ) need to be changed to Uni(as, bs), Exp(λ/s)
and Norm(µs, σs) respectively.

3



1 Function GetIntervals(X, n)
Data: X: a random variable, n: amount of intervals
Result: A mapping of intervals to their

corresponding probability masses
2 result = []

// first bound

3 leftBound = ⌊QX(0)⌋
4 leftP = 0
5 foreach i in [1..n-1] do
6 r = i/n
7 rightBound = ⌊QX(r) + 0.5⌋ // nearest int

8 rightP = FX(rightBound)
9 interval = [leftBound, rightBound]

10 p = rightP − leftP
11 result.append((interval, p))
12 leftP = rightP
13 leftBound = rightBound

14 end
// last bound

15 rightBound = ⌈QX(1)⌉
// last interval

16 interval = [leftBound, rightBound]
17 p = 1− leftP
18 result.append((interval, p))
19 return result

Algorithm 1: Determine the rounded intervals and
their corresponding probabilities given a random
variable X and the number of intervals n.

6. IMPLEMENTATION
The implementation is done in C#, the same language the
Modest Toolset is written in. The Math.NET Numerics
library[9] that the toolset already uses is used to compute
several types of distribution functions (e.g. CDF or in-
verse CDF) for a given probability distribution.
In order to also support probability distributions with
mathematical expressions as parameters, the implementa-
tions will use the expression library in the Modest Toolset
in order to support expression based parameters. This
library supports most mathematical operators/functions,
rounding and conditional expressions.

6.1 Intervals with equal probability masses
As described in Section 5.1.1, inverse CDF can be used
to determine the bounds of the resulting intervals. After
that, the bounds must rounded to satisfy the requirement
that the interval bounds must be integers. To guarantee
that the union of the rounded intervals is not smaller than
the union of the unrounded intervals, the first bound (with
bound numer 0) and last bound (with bound number n)
will be rounded down and up respectively. This ensures
that, for example, the uniform distribution Uni(2.7, 6.3)
gets unrolled in intervals within the bounds of 2 and 7
instead of 3 and 6 when rounding to nearest integer. All
other bounds (with bound numbers in [1, . . . , n − 1]) will
be rounded to the nearest integer to approximate the orig-
inal unrounded intervals as precise as possible.
Observe that this results in the possibility that, after round-
ing, an interval might have equal bounds (i.e. a singleton
interval [a, a] = {a}). In this case, the corresponding prob-
ability mass will be zero and the the singleton interval
can be excluded from the result. We could say that the
bounds with equal values are merged and treated as one.
This makes it possible that the actual list of given inter-
vals may have a smaller length than requested.
Algorithm 1 shows how CDF and inverse CDF can be
used to determine the rounded intervals and their corre-

sponding probabilities as described above. Note that when
X arises from distributions with support on (semi-) infi-
nite intervals, such as the exponential and normal distri-
butions, the quantile function might return −∞ and +∞
for the first and last bound respectively. In this case, the
ceiling and floor function will not alter the value of the
bound and thus will return ±∞.

Using the Math.NET Numerics library the following con-
tinuous probability distributions can be supported when
only concrete numbers are used as parameters: beta, Cauchy,
chi-squared, exponential, Fisher-Snedecor, gamma, log-
normal, normal, Pareto, Rayleigh, Student’s t, triangular
and uniform. The implementation also supports expres-
sion based parameters for the exponential, normal and uni-
form distribution with the same parameter requirements
as the original implementation: only the normal distribu-
tion must have integer means and a concrete value for a
standard deviation. The reason for this limitation is that
the CDF and inverse CDF of the normal distribution can
not be expressed using the expressive power of the expres-
sion library. To still support normal distributions with
expression based integer means, we first calculate the in-
terval bounds for a mean of 0, after which we add the
real mean to each bound. The requirement that the mean
must be an integer guarantees that the intervals need not
to be rounded after adding the mean.

var e = new NumericValue(new
Rational(Math.E));

var minusRate = new UnaryMinus(rate ,
rate.Location);

var minusRateTimesX = new
Multiplication(minusRate , x);

var ePow = new FunctionCall (
FunctionSymbol.Pow , new Expression [] {
e, minusRateTimesX });

var one = new NumericValue (1);
return new Subtraction(one , ePow);

Listing 1. How the CDF of the exponential
distribution would be expressed using the
expression library. Location parameters in
the expression constructors are excluded for
simplification.

In order to support other distributions, their CDF and in-
verse CDF must be expressible using the expressive power
of the library. As an example, Listing 1 shows how the
CDF of the exponential distribution (1− e−λx) would be
expressed using the expression library. Note that we ap-
proximate e with a rational number.

Table 1 shows the support level of each distribution in the
Math.NET Numerics library. Syntactically indicates that
the distribution is syntactically supported, but cannot be
unrolled in the implementation (due to Math.NET not
containing the inverse CDF of the distribution). Expres-
sion based means that the implementation fully supports
expression based parameters. Expression based possible
means that expression based support is possible, but not
implementation is limited to only supporting concrete val-
ues as parameters. All other distributions are supported
with concrete values as parameters, but are need addition
expressional power in the expression library to support
expression based parameters.

6.2 Smaller intervals near median
As a function that converts the i

n
ratio as described in

4



Table 1. List of distributions supported by the
toolset.

Name Support Level
Beta Need beta function

Cauchy Expression based possible
Chi Syntactically

Chi-squared Expression based possible
Erlang Syntactically

Exponential Expression based
Fisher-Snedecor Need regularized beta function

Gamma Need incomplete gamma function
Inverse gamma Syntactically

Laplace Syntactically
Log normal Need (inverse) error function
Normal Expression based(limited)
Pareto Expression based possible
Rayleigh Expression based possible
Stable Syntactically

Student’s t Need regularized beta function
Uniform Expression based
Weibull Syntactically

Triangular Expression based possible

0.25 0.5 0.75 1

0.25

0.5

0.75

1

r

p

Figure 4. The equation p = 2r3 − 3r2 + 2r. (curved
line) along with the equation p = r that is used
to create intervals with equal probability mass
(straight line).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

p

t(s)

P(first queue full | t)

Actual Old New 1 New 2

Figure 5. Results of evaluating the maximum
probability of the first queue being full in time
t.

5.1.2 to a cumulative probability p we use the equation

p = 2r3 − 3r2 + 2r.

See Figure 4 for a comparison with the equation that
is used to create intervals with equal probability mass.
Note other equations are also possible (other polynomials
or equations based on trigonometric function), but these
functions would give a similar curve as the function we use
would give.
The implementation of this method is almost identical to
the implementation in 6.1. The only adjustment lies in
line 7 of Algorithm 1 where r has to be replaced with
2r3 − 3r2 + 2r..

7. EVALUATION
In order to evaluate the performance of the implemented
methods, we use different models. The important bench-
marks that are used to compare the methods are how much
memory they will use, how long the analysis will take and
how close the results are to the actual value. In this sec-
tion, method 1 and method 2 to refer to the methods im-
plemented in Section 6.1 and Section 6.2 respectively. All
of the measurements were done on a 2.6GHz (up to 3.2GHz
max turbo frequency) Intel Core i5-3230M system with
8GB RAM (1600MHz) running 64-bit Windows 10.

7.1 Tandem queuing network
The tandem queuing network is a model that is included
as a sample/case study in the Modest Toolset. It simu-
lates two queues connected sequentially. It was used to
evaluate the original implementation of the model checker
[4]. The original model was part of the Prism benchmark
suite[8] as a continuous-time Markov chain (CTMC). Due
to the model being a CTMC, the Prism model checker can
be used to perform precise analysis in order to provide the
actual analysis values.

The model is very challenging for a model checker due to
the effect of errors adding up with four exponential delays.
Also the model already uses a scaling factor that increases
the precision of the analysis, but requires more memory.

5



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

p

scaling factor

P (first queue full; t=0.2 s)

5 intervals 10 intervals 15 intervals actual old

Figure 6. Results of evaluating the maximum
probability of the first queue being full with differ-
ent scaling factors and number intervals for equal
probabilities.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

p

scaling factor

P(first queue full | t=0.2s)

5 intervals 10 intervals 15 intervals actual old

Figure 7. Results of evaluating the maximum
probability of the first queue being full with dif-
ferent scaling factors and number intervals for nar-
rower intervals near the median.

One property to analyse is the maximum probability of the
first queue being full after time t. In Figure 5, we see the
results when evaluating the maximum probability p of the
first queue being full in a given time t. The actual values
were computed using the Prism model checker. For the old
implementation, we use a scaling factor of 20 and ρ = 0.10
for t <= 0.2 and a scaling factor of 10 and ρ = 0.05 for
t > 0.2. For the new implementations, we experimented
with different scaling factors and number of intervals. The
settings that gave the best results while taking a similar
amount of time as the old implementations are: 10 inter-
vals and a scaling factor of 30 for creating intervals with
equal probability mass (New 1 in the figure), and 10 in-
tervals and a scaling factor of 40 when making intervals
narrower near the median (New 2 in the figure). We can
see that both new implementations get better results than
the old implementations. The old implementation took
10 minutes to perform the analysis while the new imple-
mentation took around 8 minutes to perform the analysis.
Note that the second method gave better results than the
first method for t < 0.2 .

In Figure 6 and Figure 7 we see how the probability of the
first queue being full within a time bound of 0.2 s grow
towards the actual value. As the time bounds after scal-
ing must be integers, the scaling factors must be multiples
of 5. For each amount of intervals, the scaling factor was
increased until the analysis required more memory than
the old method required (around 4600 MB) or took more
time than the old method required (10 minutes). The re-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140 160 180 200

p

t(s)

P(queue full | t)

old method 1 method 2

Figure 8. Results of evaluating the maximum and
minimum probability of the fileserver queue being
full within time t.

sult from the old method that is included was done with
a scaling factor of 20 and ρ = 0.10. We see that for both
methods, using 10 intervals yielded the most accurate re-
sults. Also, we can see that the method that makes nar-
rower intervals near the median can handle a larger scaling
factor without using too much memory or time. However,
this does not result in more precise results.

7.2 Fileserver queue
The fileserver queue is a model included in the Modest
Toolset that combines many features of STA, including
nondeterministic delays, nondeterministic choices, uniform
distributions and exponential distributions.
The first property we are interested in is the probability p
that the queue is full within time t. For the analysis, we
use a time bound of 200. The old method with ρ = 0.05
could evaluate the minimum and maximum bound of p in
39s. The settings for the two new methods that resulted
in a similar run time (±1s) are n = 50 and n = 85 for
method 1 and 2 respectively.
The results for the different methods using the above set-
tings are shown in Figure 8. We see that both new meth-
ods give tighter minimums/maximums than the old method,
especially for the minimums. Also, method 1 gives slightly
better results than method 2.
Next, we are interested in the time t before the queue is
full for the first time. We use modes, using a scheduler to
delay events as soon or as soon as posible (ASAP/ALAP)
to resolve the nondeterministic delay, to approximate t.
This gives us t ≈ 978 for ASAP and t ≈ 694 for ALAP.
For the analysis with the old/new methods, we use the set-
tings that give a run time of 20s± 1s when evaluating the
minimum value for p. For the old method, ρ = 0.04 gives
us a lower bound for t of 474. Method 1, with n = 70,
gives us a lower bound of 489. Method 2, with n = 115,
gives us a lower bound of 488.

7.3 M/G/1/c queue
The M/G/1/c queue is a model included in the Modest
Toolset that representing a queue with size c, exponen-
tially distributed time between customer arrivals and nor-
mally distributed processing time for each customer. For

6



0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

p

t(s)

P(queue full|t)

actual old method 1 method 2

Figure 9. Minimum and maximum probabilities of
the queue being within time t. Method 1 and 2
give almost equal results.

Table 2. Expected minimum values for m/g/1/5-
queue of c and t.

Method Emin(c) Emin(t)
modes 6.19 61.1

old method, ρ = 0.014 4.28 46.9
new method 1, n = 200 4.50 47.4
new method 2, n = 400 4.50 47.4

this analysis, we set the queue to size 5, customer arrival
rate 1

6
and processing time for each customer follows the

normal distribution Norm(10, 2). The actual values of the
properties we analyse can be approximated using the sta-
tistical model checker modes [2].
The first property we are interested in is the probability
p that the queue is full in time t. For evaluation, we use
2 different settings for t ≤ 80 and for t ≥ 80. For the old
implementation, we use ρ = 0.05 for t ≤ 80 and ρ = 0.10
for t ≥ 80. The run times are 26.7s for time bound 80
and ρ = 0.05 and 21.0s for time bound 120 and ρ = 0.10.
We choose the amount of intervals for the 2 new methods
such that the run time was equal (±1s) to the run time of
the old implementation. For method 1, this is 25 and 50
intervals for t ≤ 80 and t ≥ 80 respectively. For method
2, this is 45 and 85 intervals for t ≤ 80 and t ≥ 80 respec-
tively.
The results of all methods using the above settings are
shown in Figure 9. We can see that both new methods
give tighter bounds for p, especially the lower bound for
t ≥ 80. There is no significant different between the re-
sults of the new methods.

The next properties we are interested in is the expected
time t until the queue is full and the amount of customers
served c before the queue is full. Using modes, we approxi-
mate the actual value which gives us c ≈ 6.19 and t ≈ 61.1.

For each method, we use the settings that resulted in a
runtime of 20s ± 0.5s. The results are shown in Table 2.
We see that the two new methods give marginally bet-
ter results for c and t than the old method. We also see

that, despite method 2 is done with twice as much inter-
vals without a bigger run time, both new methods give
the same results. This is probably because the calculated
bounds in method 2 have a higher tendency to be merged
near the median after rounding compared to method 1.

8. CONCLUSIONS AND FUTURE WORK
We successfully developed and implemented two meth-
ods for approximating continuous probability distributions
with discrete probability distributions, both based on giv-
ing intervals in the discrete probability distributions cer-
tain probability masses. The implementation supports
many different continuous probability distributions on dif-
ferent levels (see Table 1 for details). By evaluating the
old and new methods with different models provided in
the Modest Toolset, we saw that both new methods gave
better analysis results for all models. However, the evalu-
ation did not clearly tell us which of the two new methods
gives better results in the same time frame. In general,
giving each interval equal probability masses resulted in
slightly better results, but one might say that the differ-
ence between the results of the two methods is not enough
to tell with one is better.

8.1 Future Work
Although we did find methods that are better in terms
of precision/speed than the old method, we did not ex-
plore all of the possible methods to approximate contin-
uous probability distributions in STA. We could, for ex-
ample, develop a method that can look at the model as a
whole and determine how precise each probability distri-
butions in a model need to be approximated in order to
give precise analysis results in a short run time.
Also, more research is needed into the difference between
the two methods that have been developed in this paper.
An interesting question is what would happen when a dif-
ferent equation (see Section 6.2) is used to determine the
probability assigned to the interval bounds.

9. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical computer science, 126(2):183–235, 1994.

[2] J. Bogdoll, A. Hartmanns, and H. Hermanns.
Simulation and statistical model checking for
modestly nondeterministic models. In MMB/DFT,
volume 7201 of Lecture Notes in Computer Science,
pages 249–252. Springer, March 2012.

[3] H. C. Bohnenkamp, P. R. D’Argenio, H. Hermanns,
and J.-P. Katoen. Modest: A compositional
modeling formalism for hard and softly timed
systems. IEEE Transactions on Software
Engineering, 32(10):812–830, 2006. ISSN: 0098-5589.

[4] A. Hartmanns. On the analysis of stochastic timed
systems, 2015.

[5] A. Hartmanns and H. Hermanns. A Modest
approach to checking probabilistic timed automata.
In QEST, pages 187–196. IEEE Computer Society,
September 2009.

[6] A. Hartmanns and H. Hermanns. The Modest
Toolset: An Integrated Environment for Quantitative
Modelling and Verification, pages 593–598. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[7] M. Kwiatkowska, G. Norman, R. Segala, and
J. Sproston. Automatic verification of real-time
systems with discrete probability distributions.
Theoretical Computer Science, 282(1):101–150, 2002.

7



[8] M. Z. Kwiatkowska, G. Norman, D. Parker, et al.
The PRISM benchmark suite. In QEST, pages
203–204, 2012.

[9] C. Ruegg and M. Cuda. Math.net numerics, 2009.
Available at http://numerics.mathdotnet.com/.

[10] M. Stoelinga. An introduction to probabilistic
automata. Bulletin of the EATCS, 78(176-198):2,
2002.

[11] Wikipedia user: Cflm001. Binomial distribution,
2013.

8


