
A Bayesian network reliability
software tool

Master thesis
ing. P.F.Th. Zandbergen

April 29, 2008

Committee

dr. H. Boudali
dr. M.I.A. Stoelinga
Ir. A.F.E. Belinfante

Research Group

University of Twente
Faculty of Electrical Engineering,

Mathematics and Computer Science
Department of Computer Science

Formal Methods and Tools

Abstract

Fault Trees (FT) are widely used for reliability analysis. Static FT who have no temporal and/or
functional failure dependencies are solved by using Binary Decision Diagrams. A FT extended with
gates capable of modelling temporal and/or functional failure dependencies is called a Dynamic
FT. A Dynamic FT is usually solved by a conversion to a Markov Chain (MC). Unfortunately
a MC will have an effect called state space explosion. This means that the number of states of
the MC can become extremely large. This is an undesirable effect. Bayesian Networks (BNs) is
a different method to calculate unreliability. This method requires less states than a MC and is
an attractive alternative to compute unreliability. But since most systems are drawn as (D)FT,
it would be nice if the user can still use (D)FTs but calculate the unreliability via BNs. The
constructed tool (called IDIC) provides this functionality. The user can draw his FT in the GUI
of the tool and by pressing a button he lets the program calculate the unreliability of his system
by translating the FT to a BN and analysing it.

IDIC consists of two main parts, the conversion and the GUI. In the GUI the user can draw
several FT constructs (eg. several types of gates and basic events) with the help of the package
Jgraph. These constructs can be edited, deleted, moved and added to a central drawing area.
Saving and loading functionality is present, therefore drawn FTs can be stored and loaded for
future use. The conversion is a step-by-step process. The first step is reading a specific formatted
file with the help of the ANTLR package. ANTLR uses the information from the file to construct
a standard formatted BN. This BN will be analysed by the package SMILE. The BN is translated
from standard format to SMILE format and analysed.
IDIC will read the drawn FT, convert it to a BN and analyse it. The results, which is the unreli-
ability per state, is displayed in the GUI.

IDIC has been tested via two case studies. The results of these case studies are good. Compared
with the tool Galileo, which uses MCs to analyse the FT, the results are similar. The differences
are smaller than a thousandth in one case and a millionth in the other. But the time needed is
the key factor here. The first case required more than 8 minutes for Galileo to solve using MCs,
IDIC only uses 10 seconds to solve this case. The other case study was similar in computation time.

IDIC is a prototype, the algorithms, data structures and packages used are not the fastest, least
memory/space consuming. They are however easy to use, intuitive and well documented. There-
fore although IDIC is functional, there are several ways to improve several components. This
thesis lists a few of those possible improvements.

3

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Goal of the Project . 11
1.3 Approach . 12
1.4 Result / Contributions . 12
1.5 Layout of this thesis . 12

2 Background 13
2.1 Fault Trees . 13

2.1.1 Static Fault Trees . 13
2.1.2 Dynamic Fault Trees . 15
2.1.3 Markov Chains . 18

2.2 Bayesian Networks . 21
2.2.1 Bayesian Network example Wetgrass . 21
2.2.2 Discrete Time Bayesian Network . 24

3 Design and Implementation 29
3.1 Galileo . 31
3.2 DFT in Galileo format . 31
3.3 Compiler . 32

3.3.1 ANTLR framework . 32
3.3.2 Lexer . 33
3.3.3 Parser . 33
3.3.4 ANTLR tree . 34
3.3.5 Treewalker . 35

3.4 Standard Bayesian Network . 35
3.5 Translator to SMILE format . 37
3.6 BN in SMILE format . 38
3.7 BN Analyser . 38

3.7.1 SMILE package . 39
3.8 Probability data . 39
3.9 GUI . 40

3.9.1 Interface . 41
3.9.2 Display . 41
3.9.3 DFT editing . 42
3.9.4 DFT in Galileo format with coordinates . 43
3.9.5 JGRAPH . 45

3.10 Testing . 45
3.10.1 User interface . 45
3.10.2 Conversion . 46

4 Case Studies 47

5

6 CONTENTS

5 Conclusion 51
5.1 Summary . 51
5.2 Results . 52
5.3 Future Work . 53

6 Abbreviations 55

A Manual 57

List of Tables

2.1 PAND probability table . 25

3.1 AND Gate stored . 37
3.2 Basic events stored . 37

4.1 Probability for HCPS system . 48
4.2 Results from various tools for HCPS system . 48
4.3 Probability for MDCS system . 48
4.4 Results from various tools for MDCS system . 49

5.1 Results from various tools for HCPS system . 52
5.2 Results from various tools for MDCS system . 52

7

List of Figures

2.1 Computer system . 14
2.2 OR gate . 14
2.3 AND gate . 15
2.4 K/M gate . 15
2.5 Computer system extended with circuit boards . 16
2.6 Basic Event . 16
2.7 Priority AND . 17
2.8 SEQuence enforcing . 17
2.9 FDEP . 17
2.10 Cold SPare gate, Warm SPare gate, Hot SPare gate 17
2.11 Hypothetical Example Computer System (HECS) 19
2.12 Markov Chain of Computer system (3P2M) example 20
2.13 A PAND and its corresponding MC . 20
2.14 Example Discrete Bayesian Network . 22
2.15 Correlation between states and intervals . 24
2.16 CSP and equivalent BN . 26
2.17 Exponential distribution . 28

3.1 Overview . 30
3.2 Running example, AND with 2 events . 31
3.3 ANTLR Tree . 34
3.4 The example AND gate and its corresponding BN 36
3.5 Screenshot . 40

4.1 Hypothetical Cascaded PAND System . 47
4.2 Multi-processor Distributed Computing System . 49

9

Chapter 1

Introduction

Reliability analysis is an important concept. Commonly used in areas as space, medical or chemical
industries where it is costly (in money or lives) to correct failed systems.

You want to know how reliable a system is before you send it to Mars, or use it to replace a
person’s heart. Fault Tree modelling is a way to model a system and perform analysis on it. Fault
Trees (FTs) are widely used in this field. This is because they are easy to use and can be effectively
solved with the help of Binary Decision Diagrams (BDDs). These standard or Static Fault Trees
(SFTs) are unable to deal with temporal and functional failure dependencies.FT that include these
temperal and functional failure dependencies are called Dynamic Fault Trees (DFTs). These DFTs
are analysed using the method of Markov Chains (MCs). However Markov Chains are prone to
the state space explosion problem 1. Bayesian Networks (BNs) are a relative new formalism in this
field. Its popularity is starting to grow among system analysts. Bayesian Networks are capable
to model probabilistic models and analyse them. This can be done in a more efficient way than
Markov Chains.

1.1 Motivation

Dynamic Fault Trees are solved using Markov chains. Unfortunately this method has a serious
problem when dealing with large to very large networks. The conversion from DFTs to MCs
requires a lot of space to deal with the additional nodes and edges the MC uses, to correctly deal
with the functionality given in the DFT. This problem is called the ‘state space’ problem.
Bayesian Networks require less space than a Markov chain. This is already evident with small
examples and only increases with the larger DFTs.
Markov Chains will add new nodes and edges with each new variable or component. Bayesian
Networks work differently. They display the functionality similar to Fault Trees. With an (almost)
equal number of nodes, the ‘state space’ is small compared to Markov Chains.
So why not solve DFTs with BNs.

1.2 Goal of the Project

The goal of the project is to deliver a tool and a Graphical User Interface (GUI) in which the
user can create static and dynamic Fault Trees. These trees should represent the desired system
model. Therefore the GUI must incorporate the means to place individual gates and events, com-
bine them, provide means to change properties of these constructs and finally provide means to
set some properties of the network itself. The FT constructs should automatically be converted
to Bayesian Network constructs upon the pressing of a button.

1The size of the model doubles with addition of each new atomic proposition[1].

11

12 CHAPTER 1. INTRODUCTION

The tool should then provide several analysis capabilities. Such as the probability the system
should fail. The tool will use several existing packages, algorithms and libraries.

1.3 Approach

In this work, an analysis is done of Fault Trees, MCs and BNs. The theoretical background will
be laid out. The tool will consist of two main parts; The conversion algorithm that converts the
Fault Trees to Bayesian network and analyses it and the GUI in which the user draws the FT.
The tool will be a prototype with minimal functionality, yet fully functional.

The user can draw a FT in the tool’s GUI, this FT needs to have save and load functionality.
After setting parameters the tool can starts the conversion. With the help of ANTLR generated
JAVA files a textfile containing the FT is read and parsed. The result, a ANTL tree, is then
selected and used for the next step. This next step is the creation of a Bayesian Network using
the information stored in the ANTLR tree. This Bayesian Network exists only in the computers
memory at this point and is a standard network. To get some probability results from this network
it needs to be analysed. The SMILE package from GENIE is used for this step. After transforming
the BN, to a format that SMILE can read and understand, the analysis is started. The results
from this will go back to the tool’s GUI.

1.4 Result / Contributions

The result of this all is a tool in which the user can draw Fault Trees, set their properties and
watch the probability of the network. Internally the tool converts the FT to a BN. Some case
studies done with the tool, deliver the same probability result as tools which use Markov Chains
to calculate the results. The tool has the standard methods to calculate the probability, but can
be extended to included several2 of the capabilities of tools as Galileo and even more functionality
not present in Galileo like setting evidence. Also the tool uses generally less memory and time
compared to tools which use Markov Chains to calculate the probabilities. This is determined by
using a common watch and memory usage statistics of the computer itself. The precise amount of
time and memory the tool is using is not tested. This is left as future work, as the implementation
must be extended to incorporate the most efficient algorithms.
The tool is a prototype. Most of the functionality is present, but there are several extensions
and improvements still left to be implemented. The tool is called IDIC, which stands for Infinite
Diversity in Infinite Combinations (IDIC). The tool is a combination of several unlikely packages
brought together to form a union, which is the core of the Vulcan philosophy of IDIC.

1.5 Layout of this thesis

In the background section some basic theory of Fault Trees is given, both static (section 2.1.1)
and dynamic (2.1.2). Tools like Galileo uses Markov Chains to solve dynamic Fault Trees. Some
theory about Markov chains is given in 2.1.3. Bayesian Networks are introduced in section 2.2.
The main chapter 3 deals with the implementation of the tool. It begins with an introduction on
the design and continues with a step-by-step description of all the steps needed to begin drawing
a FT and ending with the probability of the systems unreliability back in the GUI.
Two case studies implemented in IDIC are discussed in 4. The conclusion is chapter 5.

2Analysis of the capabilities of Galileo is in order to determine the extend of the capabilities to be included.

Chapter 2

Background

This thesis covers the conversion of Fault Trees to Bayesian Networks. But what kind of Fault
Trees, and what constitutes a Bayesian Network?
This Background chapter is divided into 2 main sections. Section 2.1 is on FT and 2.2 is on BN.
Section 2.1 is further divided in section Static Fault Trees 2.1.1, Dynamic Fault Trees 2.1.2 and
Markov Chains 2.1.3.
Section 2.2 has a example on Bayesian Networks and the concept of Discrete Time Bayesian
Networks is introduced.

2.1 Fault Trees

Fault Tree modelling is a way to model a system and perform analysis on it. Fault Trees are
widely used. This is because they are easy to use and can be effectively analysed with the help of
Binary Decision Diagrams (BDD). Fault Tree models are used, to provide a framework, to analyse
quantitatively and qualitatively the failure behaviour of a system. If the failure probability of all
the individual components is known then the probability of the failure of the entire system can be
calculated.
For instance in Figure 2.1, it is useful to determine the probability of all 3 processors to fail
(subsystem of the entire computer system). If the probability is high then extra (redundant)
processors should be incorporated. Fault Tree analysis is also important for systems with high
dependencies. Systems designed to leave this planet should be quite reliable, because replacing
parts is a costly task. In medical systems it is also important. A surgeon replacing a men’s heart
with an artificial one would like his equipment as well as the replacement organ to be highly
reliable.

By analysing the model, one can precisely see which failure events have been considered. This
can be useful in management decisions and risk assessments. There are two versions of Fault
Trees discussed in this document; Static and Dynamic Fault Trees. Static Fault Trees is the
standard Fault Tree. These static FT lack the ability to model dynamic behaviour (e.g. order in
which events occur). Dynamic Fault Trees (DFT) is a extension of static FT with new gates to
incorporate dynamic behaviour of system components.

2.1.1 Static Fault Trees

Fault Trees are not normal trees as in a graph-theoretical sense [9]. A normal tree consists of
nodes and edges. All nodes have exactly one parent, but can have multiple children. A FT is read
from bottom to top. If arrows are used the node without outgoing arrows is called ‘top node’ or,
to use the tree analogy, the ‘root’. The nodes without incoming arrows are called ‘leafs’. Because
a FT is read from leaf to root, there can exist multiple paths. Thus a node can have multiple
parents, in contradiction with normal trees. Fault Trees usually have a root representing the ‘full

13

14 CHAPTER 2. BACKGROUND

Processor 3

3P need 1

2

Memory 1 Bus

2

2 3

4

3P2M

2M need 1

Processor 1 Processor 2

34

Memory 2

3

Figure 2.1: Computer system

system’ with the underlying sub branches being (sub) components, or subsystems, of the whole.
An example is that of a computer system. The tree, with the Computer system failure as root
node (represented by the text “3P2M” Meaning 3 Processors, 2 Memories), and its subcomponents
below is displayed in Figure 2.1. The whole computer fails if all of the three processors fails, both
memories fail or when the bus fails.

OR

It is known that the whole system fails, if one of the subcomponents fails. This situation is
displayed in Figure 2.1 by means of a logical OR, shown in Figure 2.2.

Figure 2.2: OR gate

If any of the subcomponents fails, then the OR will provide a logical ‘1’ to the box “3P2M”.
Consequently the system fails. A component failure or failure event is denoted by a logical ‘1’.

AND

Further down the tree we see three processors. Only when all 3 have failed, this subcomponent
fails. Therefore a logical AND (Figure 2.3) is needed here.

Only when all processors have failed (and therefore become ‘1’) will the logical ‘1’ be trans-
mitted further up the tree.

2.1. FAULT TREES 15

Figure 2.3: AND gate

K/M

Besides the OR and AND gate there is one more gate to choose from in a SFT. The K/M gate;
the output for this gate is only true (i. e. equals ‘1’) when K or more inputs from M inputs occur.
In Figure 2.4 the output occurs when 2 or more inputs (of total 3) occur.

2
3

Figure 2.4: K/M gate

This is an excellent way of showing all sorts of (logical) relationships between several system
components. The tree can be easily extended. For example, the processors could be mounted on
a circuit board; 2 on one board and the third on a second board. This extension is displayed in
Figure 2.5.

Now when either boards fails, the system will fail (OR). A circuit board fails when all the
processors on it have failed (AND).
This can be extended as far as necessary. As long as there is a logical relation between system
components, and therefore between individual system components, and the system failure.

Basic Events

Of course a FT with just gates says absolutely nothing. You need basic building blocks. In case
of the computer system these are the actual processors, memories and bus.
These basic building blocks are called Basic Events Figure 2.6.

A processor does not fail or not. It has a chance of failing. This is called the failure rate.
During its operation the component will have a certain chance of failing. If you would calculate
the failure rate of the entire system, the failure rates of the leafs have to be propagated to the
root.

2.1.2 Dynamic Fault Trees

Static Fault Trees use Boolean gates to represent how component failures combine to produce
system failure. Dynamic Fault Trees add temporal and functional dependencies: system failures
can depend on the order of component failures and component failures can depend on other com-
ponent failures [12]. Dynamic Fault Trees use several (additional) gates to enforce this ordering.

Priority AND

The Priority AND (PAND) displayed in Figure 2.7 behaves almost as a normal AND. The output
occurs only when all inputs occur. In addition the output only occurs when the inputs i. e. failure
events occur in the given order (usually from left to right).

16 CHAPTER 2. BACKGROUND

1P 1P

Circuitboard1
Need 1P

1P on
circuitboard2

2 3

Need 1C

2

3

Memory 1 Bus

2M need 1

2

2

3

4

3P2M

Memory 2

3

Figure 2.5: Computer system extended with circuit boards

Figure 2.6: Basic Event

SEQuence enforcing

The SEQuence enforcing gate (SEQ) asserts that failures can only occur in a given order. In
Figure 2.8 the gate is shown.

As will be shown later, the behaviour of the SEQ gate can also be modelled by a Cold Spare
(CSP)

2.1. FAULT TREES 17

Figure 2.7: Priority AND

Figure 2.8: SEQuence enforcing

Functional DEPendency

The Functional DEPendency gate (FDEP) has no real output. A FDEP consists of a trigger event
and one or more depended events. Only when the trigger event is activated will the depended
events occur. The gate is shown in Figure 2.9
The trigger event can be a basic event or outputs of any AND gate, OR gate, or dynamic gate

FDEP

Figure 2.9: FDEP

(PAND, SPARE) [18].
For Example in Figure 2.11 the FDEP models the memory part of the system. There are 2
Memory Interface Units (MIU). Each MIU has one or more memory to interface with. Memories
1 and 2 depend solely on MIU1 and 4 and 5 solely on MIU2. Memory 3 depends on both MIU’s.
When a MIU i. e. the trigger fails the depended memories fail as well. This is modelled by an
FDEP. Note that the memories can also fail independently from the MIU.

Cold, Warm, Hot Spare

The Cold, Warm and Hot Spare gates (respectively CSP, WSP and HSP) are identical in appear-
ance. In Figure 2.10 the CSP, WSP and HSP are drawn.

CSP WSP HSP

Figure 2.10: Cold SPare gate, Warm SPare gate, Hot SPare gate

18 CHAPTER 2. BACKGROUND

A spare gate has only one primary input and has one or more spare inputs. When the primary
input fails, available spare inputs are used in order until none are left, at which time the gate
fails. The “temperature” of the gate selects the degree to which the failure rate of the spares is
attenuated.
In the case of the CSP the spare can not fail until the primary input fails, this can be compared
with a car. The spare wheel has no tear and wear when in the trunk and is therefore fully functional
when needed.
In Figure 2.11 two CSP ’s are shown. They share a spare component ‘A’. This means that when
‘A2’ fails the cold spare will be used, but ‘A1’ can no longer use the spare.

The WSP spare will fail with a reduced failure rate as compared to the primary. A sort of
‘standby’ state; it isn’t operational, but is standing ready to be activated.

The HSP spare has the same failure rate as the primary component. The spare is operational,
just like the primary component. The HSP will fail when the primary component fails and the
spare has failed earlier or when the spare component fails after the primary has failed.

Static Fault Trees are unable to model the order in which components fail. If the bus from the
computer system example (Figure 2.1) had a spare bus; the system would only fail if both primary
and spare bus fail. So there has to be a construction that would allow the system to switch to
the spare bus. However if this switchconstruction fails first, the spare bus cannot be activated
although it could still be operational and the system should fail. Static Fault Trees cannot model
this behaviour.

An Example of a Dynamic Fault Tree can be seen in Figure 2.11. This Hypothetical Example
Computer System (HECS) depends on 4 subsystems. If either one fails, then the entire system
fails.
The busses or the operator console are standard (or static) components, respectively an OR and
AND gate. The operator console depends on its operator, its software and its hardware. Either
one fails then this subcomponent fails. There are two buses, when both fail, then this subsystem
fails.

Each of the two processors shares a spare processor. To share a spare component means that
if one component fails and the spare component is available it can be used. However the spare
component is no longer available to the other component. If either processor fails then the spare
processor kicks in. The spare processor is not active before use, so it can not fail before activation;
therefore it is modelled using a cold spare.

The computer system needs at least 2 of its 5 memories. If 3 or more fails, the system fails.
The memory units themselves rely on one or two Memory Interface Units (MIU). If MIU1 fails,
then this triggers the FDEP and consequently the failure of M1 and M2.

To analyse such a system it could be converted to a Markov Chain (MC). This is done by
making nodes for each possible state of the system and arrows to indicated each possible transition
between these states. In 2.1.3 a small example is converted to a MC. To convert this entire HECS
system to a MC would result in an extremely large MC. Therefore current tools, such as Galileo
[6] make use of modularization. Modularization means that the Fault Tree is divided into Static
and Dynamic independent modules. The Static modules are solved using BDD based techniques.
For more information about BDD’s see (for example) [14].

Dynamic modules are solved using MC based techniques. Both results are then combined to
compute the overall system failure. The next section explains how to create a Markov Chain from
a System model and shows an example of a MC.

2.1.3 Markov Chains

A Markov chain consists of states (or nodes) and transitions. The example of the computer system
(Figure 2.1 on page 14) could be converted to a MC. The MC (Figure 2.12 on page 20) has one
’start’ node. This node (3,2,1) will have only outgoing arrows. The notation (3,2,1) means that the
3 processors, the 2 memories and the 1 bus can still fail. With each transition either component
will fail and the corresponding number will decrease. All outgoing arrows (or possible transitions)
will go to other possible system states. There are several possible transitions. One of the three

2.1. FAULT TREES 19

HECS failure

Operator
console & SW

HW

operator

SW

2 3

4

'A' processors
and Spare

CSP

CSP

CSP

CSP

A1
A2

Coldspare A

1
1

22

2 3

2 * Bus

FDEP FDEP FDEP

2 3 4

MI U1

M1

M2

1

21

MI U2

13

2

3

M3

2

M4

M5

2

3

Memory units

3

5

2 3 4 5

2

5

6

7
8

9

Figure 2.11: Hypothetical Example Computer System (HECS)

processors can fail, this is displayed by the arrow with 3λ. There are 3 processors; each can fail
with a failure rate of λ. The Memory can also fail in the start position. There are two memory
units, each with a failure rate of µ. The transition with 2 µ displays this possibility. The bus has
a failure rate of σ and is displayed by the transition labelled σ. Three ’end’ nodes (or absorbing
nodes) exist. All three represent valid system failure states. FB, FP and FM which stands for
respectively Failure of Bus, Failure of Processor and Failure of Memory. Note that this example
is static (i. e. no dynamic components are present). Therefore this example is usually solved with
BDD and not, as has been done here, by MC.

To show the importance of the order in which the components fail more clearly, the following
figure (Figure 2.13) is the Markov chain of a PAND gate with 2 inputs. For convenience the PAND
is displayed here again.
From operational state ’11’ Either ’B’ or ’A’ can fail and therefore end up in respectively states
’10’ or ’01’. However since the component only fails when first ’A’ fails and then ’B’ fails, only
the upper path will lead to a failure state. Now the importance of the order in which components
fail is clearly visible.

20 CHAPTER 2. BACKGROUND

Figure 2.12: Markov Chain of Computer system (3P2M) example

Figure 2.13: A PAND and its corresponding MC

2.2. BAYESIAN NETWORKS 21

The general algorithm for converting dynamic Fault Trees to Markov Chains is as follows:

• Start with initial state in which all components are operational.

• For each operational state, enumerate all child states by considering effects of one component
(call it j) failure at a time

• Establish transition rate from parent to child state as failure rate of component j

• Determine if new state is operational or failed.

• Continue until all operational states are enumerated.

This algorithm has been taken from [9].
Following from this conversion algorithm and the above example it is not difficult to see that the
number of states will exponentially grow, thus causing a ”state space explosion”. Because the
example of the computersystem (Figure 2.1) had only six components. Where the FT only needed
3 gates and 3 basic events to display the system. The MC already needs 9 nodes. If there would
have been an additional variable, for example, the system is extended with an external HD. The
MC would need to grow to accommodate this new variable.
A new approach based on BN’s tries to alleviate this state space explosion.

2.2 Bayesian Networks

Bayesian Networks model situations in which causality plays a role but where our understanding
of what is actually going on is incomplete, so we need to describe things probabilistically [5].
Bayesian Networks are in fact Directed Acyclic Graphs (DAG). The nodes represent random vari-
ables. The edges represent relationships (causality) between variables. If there is an arc from node
’A’ to another node ’B’, then values of variable ’B’ depend directly on values of ’A’. Because of
the directionality we call this node ’A’ the child of ’B’ and ’B’ the parent of ’A’. Nodes without
parents are root nodes, nodes without children are called leafs. 1

Some used definitions in the examples are described here first. A BN is a compact representa-
tion of a joint probability distribution. The joint probability distribution of two random variables
is the likelihood of observing all combinations of the two variables [11]. The values or probabilities
for each possible scenario are displayed in Conditional Probability Tables (CPTs) or diagrams
(CPD). In Figure 2.14 on page 22 a Bayesian network with CPTs is given.

In the next section we further explain BN through the use of an example. In the example we
thoroughly examining the different aspects and calculations typically found in a Bayesian Network.

2.2.1 Bayesian Network example Wetgrass

In Figure 2.14 on page 22 there are 4 ’random variables’. These are Cloudy, Sprinkler, Rain
and WetGrass. (C,S,R,W). The Cloudy variable is unaffected by other variable. No arrows are
pointing to this node indicating no dependencies. The chance that it is cloudy is 50% true (0.5
on a scale from 0 to 1). The sprinkler is depended on the fact whether it is cloudy or not. If it is
cloudy, the chance that the sprinklers are on is quite low. Cloudy(C) is True and in the column of
the probability that Sprinklers is True show the value 0.1. This means that there is a 10% chance
that the sprinklers will be on when it is cloudy. The same goes for rain. The chance that it rains
when it is cloudy is greater than when it is not cloudy. The Variable Wetgrass is depended on
two variables. So a larger CPT is needed to represent all the possible combinations. The chance
that the grass is not wet (W=F) when both variables of Sprinkler and Rain are True is quite low,
only 0.01.

1The edges are usually drawn from bottom to top

22 CHAPTER 2. BACKGROUND

Cloudy

WetGrass

RainSprinkler

C P(S=F) P(S=T)

T

F 0.5 0.5

0.9 0.1

P(C=F) P(C=T)

0.5 0.5

C P(R=F) P(R=T)

T

F 0.8 0.2

0.2 0.8

S R P(W=F) P(W=T)

T F

F F 1.0 0.0

0.1 0.9
F T

T T

0.1 0.9

0.01 0.99

Figure 2.14: Example Discrete Bayesian Network
[3]

During this example we will be using the Bayes Law formula:

P(A, B) = P(A|B)P(B) = P(B|A)P(A) (2.1)

Which generalizes to:

P(A1, ..., An) = P(A1)P(A2|A1)...P(An|A1, ..., An−1) (2.2)

With these formulas and without knowing any of the variables we write down the joint prob-
ability of the example. The thing we want to know is the probability that the grass is wet. First
the joint probability of all variables. P(C, S, R, W) = P(W, R, S, C)
= P(W |R, S, C)P(R, S, C)
= P(W |R, S, C)P(R|S, C)P(S, C)
= P(W |R, S, C)P(R|S, C)P(S|C)P(C)
From the Figure we see that S and R are not directly dependent, the same for C and W. Thus
we get the formula:

P(C, S, R, W) = P(C)P(S|C)P(R|C)P(W |S, R)

The probabilities needed are shown in the tables of Figure 2.14 on page 22. From the joint
probability equation we can compute the probability of being in any state of the any node with
any given observations (i. e. evidence).

2.2. BAYESIAN NETWORKS 23

What is the probability then that the grass is wet? P(WT) is the probability of Cloudy being
either True or False, combined with Sprinkler being True or False and Rain True or False. 3
variables with 2 values, 23 = 8 probabilities.

P(WT) =
∑

c∈{T,F}

∑

s∈{T,F}

∑

r∈{T,F}

P(Cc, Ss, Rr, WT)

= P(CT , ST , RT , WT)
+ P(CF , ST , RT , WT)
+ P(CT , SF , RT , WT)
+ P(CF , SF , RT , WT)
+ P(CT , ST , RF , WT)
+ P(CF , ST , RF , WT)
+ P(CT , SF , RF , WT)
+ P(CF , SF , RF , WT)

This transformed to values we actually have in the CPTs.
= P(CTP(ST |CT)P(RT |CT)P(WT |ST , RT)
+ P(CFP(ST |CF)P(RT |CF)P(WT |ST , RT)
+ P(CTP(SF |CT)P(RT |CT)P(WT |SF , RT)
+ P(CFP(SF |CF)P(RT |CF)P(WT |SF , RT)
+ P(CTP(ST |CT)P(RF |CT)P(WT |ST , RF)
+ P(CFP(ST |CF)P(RF |CF)P(WT |ST , RF)
+ P(CTP(SF |CT)P(RF |CT)P(WT |SF , RF)
+ P(CFP(SF |CF)P(RF |CF)P(WT |SF , RF)

Now we fill in the numbers.

= 0.5 · 0.1 · 0.8 · 0.99
+0.5 · 0.5 · 0.2 · 0.99
+0.5 · 0.9 · 0.8 · 0.9
+0.5 · 0.5 · 0.2 · 0.9
+0.5 · 0.1 · 0.2 · 0.9
+0.5 · 0.5 · 0.8 · 0.9
+0.5 · 0.9 · 0.2 · 0
+0.5 · 0.5 · 0.8 · 0
= 0.6471 = 64.7%

(2.3)

To read more information about this example see [15].

The probability that the grass is wet without any evidence is 64.7% as calculated in 2.3 The
same calculations can be done for the probability that the sprinkler was on. This is the probability
that WetGrass is True and Sprinkler is True.
P(WT , ST) =

∑

c∈T,F

∑

r∈T,F P(Cc, ST , Rr, WT)
= P(CT , ST , RT , WT)
+ P(CF , ST , RT , WT)
+ P(CT , ST , RF , WT)
+ P(CF , ST , RF , WT)

This transformed to values we actually have in the CPTs.

= P(CT)P(ST |CT)P(RT |CT)P(WT |ST , RT)
+ P(CF)P(ST |CF)P(RT |CF)P(WT |ST , RT)
+ P(CT)P(ST |CT)P(RF |CT)P(WT |ST , RF)
+ P(CF)P(ST |CF)P(RF |CF)P(WT |ST , RF)

24 CHAPTER 2. BACKGROUND

= 0.5 · 0.1 · 0.8 · 0.99
+0.5 · 0.5 · 0.2 · 0.99
+0.5 · 0.1 · 0.2 · 0.9
+0.5 · 0.5 · 0.8 · 0.9
= 0.2781

(2.4)

This is the probability that both the sprinkler is on and the grass is wet.
However, we wanted to know the probability of the sprinkler to be on with only the wet grass

as evidence. To use this result we need Bayes’s Law which is:

P(H |E) =
P(H) · P(E|H)

P (E)

From this follows that

P(H |E) =
P(H, E)

P (E)

We want to know is the probability of Sprinkler being True given the evidence that WetGrass is
True.

P(ST |WT) =
P(ST , WT)

P(WT)
=

∑

c∈{T,F}

∑

r∈{T,F} P(Cc, ST , Rr, WT)

P(WT)

P(ST |WT) =
P(ST , WT)

P(WT)
=

answer from 2.4

answer from 2.3
=

0.2781

0.6471
= 0.4298 (2.5)

The probability that the Sprinkler was on, when you know that the grass is wet is 43%.

2.2.2 Discrete Time Bayesian Network

The previous sections did not discuss any notion of time. The concept of time is incorporated in
a version of Bayesian Networks called the Discrete Time Bayesian Network (DTBN). Recall that
a node represents the failure of a basic component (or gate) to occur. We now add the concept of
the component failing in timeinterval x.
We define a mission time T and divide the time from 0 to T into n intervals where each interval
represents a certain system state.
This n is called time granularity. This is illustrated in Figure 2.15.

Figure 2.15: Correlation between states and intervals
[4]

The first n states represent the failure of a specific component in one of the n first time intervals
(i. e. , during the mission time); and the last state n+1 represents the failure of this component
after mission time [4].

2.2. BAYESIAN NETWORKS 25

The fact that a component is in State n means that the basic component (or gate) has failed in
that time period. In Figure 2.15 for a component to be in state 3 means that the component
has failed in time interval [2∆, 3∆]. n times this ∆ is the misiontime T, in formula ∆ = T

n
, see

Figure 2.15.
Static gates have no notion of order, you can divide the mission time, but the order in which

subcomponents fail does not matter. The static gate will fail if the proper amount of subcom-
ponents has failed within mission time. This attribute takes care that the solution is still exact
even when not dividing the mission time (e. g. ′n′ = 1, T = 1∆). This creates only two states in a
DTBN. Time periods [0.T] and (T,∞).

• State 1 means the component fails during mission time interval [0, T].

• State 2 means the component fails in interval (T,∞)

For example the static component AND (Figure 2.3 on page 15 in Chapter 2.1.1), with inputs
A and B, will only fail when both subcomponents fail during mission time (meaning that both
inputs will be in state 1).

A dynamic component is more elaborate because the order of failure is important. For instance
the PAND (Chapter 2.1.2 on page 17), with inputs A and B, will only fail if A fails before B and
within mission time. The mission time must be divided in more than one interval. This means
that n must be greater than 1.
This is illustrated in table 2.1.
Here a PAND ’s CPT is given. inputs A and B and a n of 3 make up for four states per component.

A State 1 [0, ∆] State 2 (∆, 2∆] State 3 (2∆, T] State 4 (T,∞)
B State 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

PAND

State 1 1
State 2 1 1
State 3 1 1 1
State 4 1 1 1 1 1 1 1 1 1 1

Table 2.1: PAND probability table

There are 4 states. State 1,2 and 3 divide the mission time in three. State 1 is [0, ∆], State 2
is (∆, 2∆]. State 3 is (2∆, T], State 4 is outside mission time (T,∞).
Because A must fail before B fails in order for the PAND to fail there are several possibilities
where the PAND will not fail. Because , for example, if A is in state 3 (this meant that A failed
in the time period of (2∆, T]) the PAND will now only fail when B fails after A (e. g. state 4, and
not states 1 and 2). The PAND will always fail at the same time as B (only when A has failed as
well). Thus when A fails in state 3 and B fails in the same time interval, the PAND will fail in
this same interval.
All possibilities where the PAND will fail are written with a ’1’ in the table. All other combinations
will not cause the PAND to fail. Therefore in the table all empty squares are actually filled with
zeros (’0’). The light Gray coloured states are those states where both A and B fail in the same
time interval. The convention is to let the PAND fire as well, although theoretically B could have
fired before A. State 4 is a special state. Because the probabilities always add up to 1 there are a
number of ones that are somewhat counter-intuitive. When the PAND doesn’t fire within mission
time it will fire at infinitum (i. e. state 4, which included the infinity).
Instead of describing every single state using a large table, we can use a simpler way to describe
which instances the gate fires. Through the use of a Probability Mass Function (PMF). The CPT
of the PAND in table 2.1 can be displayed as a conditional (PMF).
This function gives the probability that a discrete random variable is exactly equal to some value.
A probability mass function differs from a probability density function in that the values of the
latter, defined only for continuous random variables, are not probabilities; rather, its integral over

26 CHAPTER 2. BACKGROUND

a set of possible values of the random variable is a probability [17]. For example if X is a discrete
random variable, taking values on some countable sample space S ⊆ R. Then the probability
mass function fx(x) for X is given by:

fX(x) =

{

P(X = x), x ∈ S,

0, x ∈ R\S.

in 2.6 the CPT of the PAND is given in the form of a PMF.

fX|A,B(x|a, b) = P(X = x|A = a, B = b) =

1 if a ≤ b, x = b, (1)

1 if a > b, x = n + 1, (2)

0 otherwise, (3)

(2.6)

This formula represents the same result as in the table. The PAND will only fire when A has
failed in a earlier (or equal) time interval as B and where the current time interval is the same as
the interval where B failed. This is in words what the line (1) means.
Line (2) means that when A fails after B, the PAND will only fire in time interval n + 1. Which
is the last interval from T to ∞.
The dark Gray coloured cells in the table means that there the rule on line (2) has been applied.
The third line (3) indicates that all other scenarios will be 0 (i. e. the PAND will not fire in those
possibilities).

A PAND will always immediately fire when B fires with the only condition that A has fired
previously. There are no delays that would cause the PAND to fire in a later time interval.

A CSP doe not behave similarly. The CSP only fails when the primary fails followed by a
failure of the spare. See Chapter 2.1.2.

Figure 2.16: CSP and equivalent BN

2.2. BAYESIAN NETWORKS 27

In Figure 2.16 the CSP is given. In the CPT of node B there are 5 places in the table where
the probability isn’t 1 or 0. Also in the CPT of state A the values are not 1 or 0.

But how do we calculate these probabilities?

The possibility that the system fails on a timescale from 0 through infinity is always 1 (100%).
You know the system will eventually fail. When the input B has failed in state 1, the values for
the CSP in all four states will be equal to 1. This is the case because the CSP fails at the same
time as input B fails.
If primary input A fails in state 1, spare B can fail in state 2, three or four. However because
the system eventually fails, those three numbers (indicated by P1,2,P1,3,P1,4) must equal 1. The
probabilities in Figure 2.16 are derived from a failure distribution F. The probability of an event
X to occur at time x (x is the statenumber) is the probability of this event to occur in time period
(x − 1)∆ to x∆.
If during missiontime we subtract the failure distribution of period (x− 1)∆ from period x∆ then
we end up with the failure distribution of the period in which event X occurs. The failure distribu-
tion of the infinite period (e. g. timeperiod n+1 or outside mission time) is 1. For the probability
in this timeinterval we substract the failure distribution of mission time period from 1.
In a formula:

{

P(X = x) = P((x − 1)∆ < X ≤ x∆) = F (x∆) − F ((x − 1)∆) for 1 ≤ x ≤ n

P(X = n + 1) = P(T < X ≤ ∞) = 1 − F (T) otherwise
(2.7)

If we now want to calculate the probability of A being in state 2, we start with filling in 2.7

P(A = 2) = P(∆ < A ≤ 2∆) = F (2∆) − F (∆) (2.8)

Now we need the failure distribution function. We assume for now that the subcomponents of the
CSP are exponentially distributed. Failure of the components is distributed over the mission time
as in Figure 2.17 on page 28.

The equation now takes in the following form:

(1 − e−λ·2·∆) − (1 − e−λ·∆)

(Remember that ∆ = T
n
)

The λ represents the component failure rate. Now to fill in equation 2.8. We take missiontime 1
second ∆ = T

n
= 1

3
, we set the lambda of the inputs to 0.01.

(1 − e−0.01·2· 1
3) − (1 − e−0.01· 1

3) (2.9)

0.006644-0.003327=0.003317. P2 = 0.003317 The probability of input A failing in state 2 is
0.003317.

28 CHAPTER 2. BACKGROUND

Figure 2.17: Exponential distribution

Chapter 3

Design and Implementation

The tool IDIC allows the user to draw DFTs via a GUI and to analyse these DFTs via a conversion
to BN. IDIC consists of four main parts.

1. GUI

2. Compiler

3. (BN to SMILE) translator

4. BN analyser

These main parts are visualised in Figure 3.1 by the boxes.
The GUI is the central part of IDIC. Here the FT is drawn and the conversion to BN is started and
the results of the analysis are viewed here. The next part of IDIC is the compiler. The compiler
takes a textfile which is saved from the GUI and compiles this to a standard Bayesian Network.
This network is the input for the next part; The BN to SMILE translator. The translator will
transform the standard BN to a BN in SMILE format. This SMILE format is input to the BN
analyser. The analyser will analyse this BN network and deliver probability data to the GUI. This
probability data is the unreliability of the system.

The overview of the tool is depicted in Figure 3.1
Here the 4 main parts are visible in this overview. The subcomponents and intermediary

deliverables are also in this schema. The next sections will be overviews of the individual parts
visible in the figure. The sections are given also in the following list.

• Galileo 3.1

• DFT in Galileo format 3.2

• Compiler 3.3

ANTLR 3.3.1

Lexer 3.3.2

Parser 3.3.3

ANTRL tree 3.3.4

Treewalker 3.3.5

• Standard Bayesian Network 3.4

• Translator to SMILE format 3.5

• BN in SMILE format 3.6

29

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

DFT in Galileo
format

ANTRL tree

Standard
Bayesian Network

Parser

Written by
developer

(external) Tool

Delivered object

Treewalker

Galileo

SMILE
package

package

Translator to
SMILE format

BN in SMILE
format

Probability data

Analyser

Jgraph
package

Lexer

Compiler

GUI

DFT editing

DFT in Galileo
format with
coordinates Display

Indicates a Use-relation. The
arrowhead is the using entity

Interface

ANTLR
framework

Input/Output

Translator

Analyser

3.1

3.2

3.3

3.3.1

3.3.2 3.3.3 3.3.4 3.3.5

3.4

3.5

3.6

3.7
3.7.1

3.8

3.9

3.9.1

3.9.2

3.9.3

3.9.4

3.9.5

3.x Sectionnumber
in Thesis

Figure 3.1: Overview

• BN Analyser 3.7

SMILE package 3.7.1

• Probability Data 3.8

• GUI 3.9

interface 3.9.1

Display 3.9.2

DFT editing 3.9.3

DFT in Galileo format with coordinates 3.9.4

JGRAPH 3.9.5

The implementation is written in JAVA and uses the programming environment Eclipse[7] in
which the used packages were combined to form the final tool.

3.1. GALILEO 31

We will be using an example throughout this chapter. It will be a DFT consisting of an
AND gate with two children. This is depicted in Figure 3.2. The left basic event has a discrete

Basic Event 1 Basic Event 2

AND_Gate

2 3

Figure 3.2: Running example, AND with 2 events

probability of 0.2 and a dormancy of 0.5, the right basic event has a discrete probability of 0.5
and a dormancy of 0.5. Because Galileo uses a standard dormancy of 0.5 and IDIC a standard
dormancy of 0.0, this property must be set to get a consistent example through all the phases of
the program and thus all the sections of this chapter.

3.1 Galileo

Galileo is a dynamic fault tree analysis tool used by engineers to model and analyse the reliability
of a system. Fault trees are models of system failure, where particular combinations and orders
can cause overall system failure [6]. One can either create the FT textually in Galileo with help
of MS Word or visually with help of MS Visio. Galileo uses BDDs for static Fault Trees and MCs
to solve Dynamic Fault Trees.

3.2 DFT in Galileo format

The start of the conversion process to a BN starts with the FT. To be precise with a textfile
containing the FT. Therefore the FT needs be of a certain format and written to this textfile. The
format chosen is Galileo. This format is easily read by human eye and is easy to produce. The
creation of this file will be discussed in the GUI section 3.9. To visualize this format a simple FT
is chosen. An AND gate called “AND Gate” and two discrete basic event (“basic event 1” and
“basic event 2”). One has probability of 0.2 and the other 0.5. Both gates will have a dormancy
of 0.5(our running example Figure 3.2.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

1 t o p l e v e l ”AND Gate” ;
2 ”AND Gate” and ”Basic event 1” ”Basic Event 2” ;
3 ”Basic Event 2”
4 phase 1 prob=0.2 cov=1 r e s=0 r ep l=1 dorm=0.5 ;
5 ”Basic event 1”
6 phase 1 prob=0.5 cov=1 r e s=0 r ep l=1 dorm=0.5 ;
7

8 page 1 ”AND Gate” ;
9 page 1 ”Basic Event 2” ;

10 page 1 ”Basic event 1” ;

The gate that is the top of the tree is called toplevel. This gate is mentioned separately in the
textfile. The word toplevel followed by the name is listed first, line 1. Then all of the connections
are listed. In this example there is only one and it is the gate called “AND Gate”. It is of type
AND and has two children, line 2. Once all connections are listed, the basic events that are in the
tree are listed with their properties. Some properties are used by the conversion, others are not.
Phase, cov, res and repl are not used. prob and dorm in this case are. prob stands for (discrete)
probability and dorm stands for dormancy. The next part of this format are page listings, lines 8
through 10, these are needed by Galileo to enable the file to be read by Galileo itself and is used
by Galileo’s layout algorithm. This Galileo formatted file is the input for the compiler.

3.3 Compiler

The compiler has as input the textfile with the DFT in Galileo format. It outputs a Bayesian
network in a standardized format. The compiler needs a way to determine what nodes there are
in the file, which basic events are present and which properties these have. Also the tree structure,
that is the connections between the gates and events, needs to be represented. These are all needed
to be able to output a BN.
For this task the ANTLR framework is used. This program provides a framework in which a lexer
(to read the textfile), a parser (to represent the gates, basic events etc. that are in the tree) and
a treewalker (to make the BN) can be easily created. These individual parts are now discussed in
separate sections.

3.3.1 ANTLR framework

ANTLR, ANother Tool for Language Recognition, is a language tool that provides a framework for
constructing recognizers, interpreters, compilers, and translators from grammatical descriptions
containing actions in a variety of target languages. ANTLR provides excellent support for tree
construction, tree walking, translation, error recovery, and error reporting. [13]

ANTLR provides support for tree construction. The input is a file, which is read. Predefined
portions are identified as ‘tokens’. This part, called a lexer, is used to construct the tokens.
Predefined keywords are tokens. IDIC uses for instance AND, prob as keywords.
Comments in the style of programming with the \\ or *\,* can also be identified. These can be
ignored or handled differently.

The second part, the parser, constructs the actual tree. Every possible occurrence of a token
must be handled here. For example, a token indicating a name of a node can be followed by a
type and one or more strings indicating its children. The constructed tree is therefore a node with
its children as actual children. This token can also be followed by nothing (to be precise with a
end-of-line character). This indicates that the token represents the name of a basic event and the
next line will be the properties of this event.

The last part of the ANTLR package is the treewalker. The treewalker starts at the top of

3.3. COMPILER 33

the tree. At every node the treewalker looks and determines what action to take. IDIC needs to
make a Bayesian Network, so every new gate it encounters will result in the creation of a new BN
node.

3.3.2 Lexer

The lexer has as input a DFT formatted textfile. After the lexer it should output a large stream
of tokens. One of the tokens is a STRING. Everything between a “ and ” including multiple words
is called a String. This is needed because a name of a node is always between “ and ” and can
consist of several words. Everytime the lexer encounters a “ it will put everything that follows in
one token, until it encounters the ”.
The textfile of the example Figure 3.2 looks like this:

t o p l e v e l ”AND Gate” ;
”AND Gate” and ”Basic event 1” ”Basic Event 2” ;
”Basic Event 2”
phase 1 prob=0.2 cov=1 r e s=0 r ep l=1 dorm=0.5 ;

”Basic event 1”
phase 1 prob=0.5 cov=1 r e s=0 r ep l=1 dorm=0.5 ;

page 1 ”AND Gate” ;
page 1 ”Basic Event 2” ;
page 1 ”Basic event 1” ;

In the end it will pass its result to the parser. Because the lexer reads the file and makes tokens
out of the individual letters and characters the result will look like this for the first two lines:

top l eve l , STRING, SEMICOLON, EndOfline ,
STRING, AND, STRING, STRING, SEMICOLON, EndOfLine

Ofcourse these tokens have a field where the actual value is stored, for the first STRING this will
be “AND Gate”.
All the lexer does is grouping several characters together. It has predefined words, if recognised
they will be identified as such. Example is the AND.
Every word between quotes is the name of a gate or basic event and therefore it is grouped into a
token called STRING.
The special characters EoL (End of Line) and EoF (end of File) are also tokenized for use by the
parser. This stream of tokens is then passed on to the parser.

3.3.3 Parser

The parser receives the stream of tokens from the lexer. The task for the parser is to group these
tokens in a tree in order for the treewalker to use the tree for the creation of the BN. The tree
of our running example Figure 3.2 is displayed in Figure 3.3 The structure of the original tree is
visible in the tree. The topgate is called “And Gate”. Next line we see this And Gate and it has
two children, called “Basic Event 1” and “Basic Event 2”. This is exactly as the original FT. Next
line we have the name Basic Event 2, directly followed by its properties. We see ‘prob’ (which
stands for probability) and the number 0.2 which is the discrete probability we had given to this
event. The last three children of this property branch is dorm, ‘=’ and 0.5. The dormancy is 0.5.

This tree is very simply made. Just read the stream of tokens you get from the lexer and de-
termine how to build your tree. If the token is a STRING followed by an AND then you build
the tree with the STRING as the parent. The two STRINGS that follow the AND token will
become its children. If the token following STRING is a EoL character, then the next token will
be the token PHASE. PHASE is always followed by a NUMBER, so NUMBER is its first child,

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.3: ANTLR Tree

the second child will become an other subtree. The root of this tree is either PROB, LAMBDA,
or RATE. In all cases the value that follows will become the first child and the token COV the
last child. All tokens that follow COV will become its children. The PAGE tokens that Galileo
adds to its files will be added at the end of the tree. Presently they are not used, but a possible
future layout algorithm could use this data. The output of the parser is now an ANTLR tree.

3.3.4 ANTLR tree

The tree displayed in Figure 3.3 is the tree delivered by the parser and input to the treewalker.
This tree is always the same format. First the Toplevel with as child the name of this toplevel. In
this case “AND Gate”. Followed by all the gates in the original FT. In the example it is only one
gate; the AND gate called “AND Gate”. The first leaf is that of the name “AND Gate” followed
by a branch. The root of this branch is of type AND and has two children called “Basic Event
1” and “Basic Event 2”. Each node is put in the tree as root followed by a branch. For gates this

3.4. STANDARD BAYESIAN NETWORK 35

means a node of the type of the gate followed by its children.
For a basic event this branch begins with a node called phase, followed by a number and then
either prob for (discrete) probability, lambda for exponential and rate for Weibull probability. This
is then followed by a equals node followed by the actual value. This goes one for all the properties
until the last node denoting the value of the dormancy.
After the toplevel, all the gates, all the events only the page attributes are left at the bottom of
the tree.

This ANTLR tree is now passed on to the treewalker.

3.3.5 Treewalker

The treewalker will receive the ANTLR tree from the parser. Its job will be to create a Bayesian
Network from it. With a treewalker the process starts at the top of the tree and works its way
down through every branch and leaf. It is up to the treewalker what actions will occur when
visiting the branches and leaves of this tree.
The toplevelname is saved for futher use. We are only interested in the gates themselves and the
connection between them. The FT in Figure 3.2 consisted of an AND gate and two basic events.
This example is displayed in Figure 3.4 with its BN equivalent.This is what must be created by
the treewalker.
For construction of the BN there are functions and classes written. One class actually creates

the network. It adds nodes, edges and the CPTs and it stores them in a hashmap [16]. A second
class controls the nodes themselves. It will add the children to this node and most important it
will create the CPTs.
The AND looks simular in FT as it does in BN format. Simply add a node to the BN with type
AND, create its children, add connections between parent and children and finally add a CPT to
the AND and its children.
The stored node will be stored under its name and have the type, the names of the two children
and a CPT within.
If our AND gate would have had multiple children at this point, they would have been cascaded
into multiple AND gates with maximum of two children.
The two basic events are created the same way. Because basic events are always children of a
gate, they usually already exist and don’t have children, so only the CPT needs to be added. A
basic event has only one line in its CPT. The values are the discrete probability divided by the
number of states during missiontime. The value substracted from 1 is the probability for outside
missiontime (n+1).

1 for (int i =0; i<statenumber −1; i++) {
2 aBas icEventdi scDef [i]= prob /(statenumber −1) ;
3 i n t e r r e s u l t=i n t e r r e s u l t+aBas icEventd iscDef [i] ;
4 }
5 aBas icEventdi scDef [statenumber −1]=(1.0− i n t e r r e s u l t) ;

A simple for loop fills a array with this value, line 2 and will calculate the remaining probability
for time n+1, line 5. This is done by subtracting all the values from within missiontime, line 3,
from 1. After all the individual gates and basic events are handled the BN generation is finished.

3.4 Standard Bayesian Network

The standard BN is simply a list of nodes. Every node has a field for the name of the node, the
type of the gate, an array containing the CPT, the number of states of which the BN is build up
from and two fields for each of its two children.
The AND gate from the example will be stored like this:
The first item is the name of the node, the second item is the CPT of the BN with four states

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

Basic Event 1 Basic Event 2

AND_Gate

2 3

BE2 State 1

Probability 0.05

State 4State 3

0.05

State 2

0.05 0.05 0.8

State 5BE1 State 1

Probability 0.0125

State 4State 3

0.0125

State 2

0.0125 0.0125 0.5

State 5

BE2

BE1

BE2 State 2State 1 State 3 State 4 State 5

State 1

State 1

AND

1

00

0

1

State 2 0 0

0

State 3

0

10

0

0

State 4 0 1

0

State 5 000 0

0

1

0

0

0

State 2State 1 State 3 State 4 State 5

State 2

1

00

1

0

0 0

0

0

10

0

0

0 1

0

000 0

0

1

0

0

0

State 2State 1 State 3 State 4 State 5

State 3

0

00

0

0

0 0

0

0

11

0

1

0 1

0

000 0

0

1

0

0

0

State 2State 1 State 3 State 4 State 5

State 4

0

00

0

0

0 0

0

1

00

1

0

1 1

0

000 0

0

1

0

0

0

State 2State 1 State 3 State 4 State 5

State 5

0

00

0

0

0 0

0

0

00

0

0

0 0

0

111 1

0

1

0

0

0

BE1

AND

Figure 3.4: The example AND gate and its corresponding BN

3.5. TRANSLATOR TO SMILE FORMAT 37

Field contents

Name AND Gate
CPT 1,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,

0,1,0,0,0, 1,1,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,1,0,0, 0,0,1,0,0, 1,1,1,0,0, 0,0,0,0,0, 0,0,0,0,0,
0,0,0,1,0, 0,0,0,1,0, 0,0,0,1,0, 1,1,1,1,0, 0,0,0,0,0,
0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1, 1,1,1,1,1

statenumber 4
child 1 Basic Event 1
child 2 Basic Event 2

Table 3.1: AND Gate stored

during mission time and a fifth outside mission time. The number of states during mission time
is stored in the next item.
The last two items are its children or “none” when the node has no children, usually the basic
events.
The two basic events are:

Basic Event 1 Basic Event 2
Field contents

Name Basic Event 1 Basic Event 2
CPT 0.125, 0.125, 0.125, 0.125, 0.5 0.05, 0.05, 0.05, 0.05, 0.8

statenumber 4 4
child 1 none none
child 2 none none

Table 3.2: Basic events stored

3.5 Translator to SMILE format

The input for this translator is the BN from section 3.4. The output will be a BN in a format
understood by the package that will analyse the BN. This package is called SMILE, see section
3.7.1. This package contains 3 functions needed to create the BN in its own format. These
functions are addNode, addArc and setNodeDefinition, respectively to add a node, add an arc and
add a CPT. The addNode function requires a name and a number of states to be able to add a
node to the new Smile formatted network. Both are fields in the node stored in the BN network.
So we just need a list of all the nodes, go over this list and just add the nodes you encounter. This
is line 5 in below code fragment.
Each Node has its own children as fields. When the node itself is made, each of its children is also
created. This is done because an arc can only be created between two nodes who already exist in
the network. Once a child is created, the function addArc is called. This function requires nothing
more than the names of the two nodes between the arc needs to be drawn, lines 9 and 14.
The CPT of a node can only be added if the node itself exists and if there is a arc between the
node and its two children (if present). This is because the SMILE package will have a internal
representation of the CPT. This representation is initially the same size as the number of states
as indicated upon creation. When a child is added, the CPT needs to be bigger to account for the
states of the child as well. So only when both childs have been added to the network will the gate
have enough room to hold the entire CPT.
This is the last step of the translator, add the CPT. This function setNodeDefinition requires the
name of the node to which to add the CPT and a double array containing all the values. This

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

happens to be the exact format as the CPT has in the BN network. This is done on line 16.

1 private void adding (BNNetwork vnet , S t r ing topLevelName , Node n) {
2 . . .
3 name=n . getName () ;
4 nrOfStates=n . getnrOfStates () ;
5 addNode (name , nrOfStates) ;
6 ch i l d 1=n . getChi ld1 () ;
7 i f (ch i l d 1 !=”None”) {
8 addNode(ch i ld1 , nrOfStates) ;
9 addArc (ch i ld1 , name) ;

10 }
11 ch i l d 2=n . getChi ld2 () ;
12 i f (ch i l d 2 !=”None”) {
13 addNode(ch i ld2 , nrOfStates) ;
14 addArc (ch i ld2 , name) ;
15 }
16 net . s e tNodeDe f in i t i on (name , n . getCPT ()) ;
17 . . .

The arguments for this function are the original BN network, the name of the toplevel (needed
later for the analyses) and the current node.
The resulting BN is now translated into the SMILE format.

3.6 BN in SMILE format

The BN in SMILE format is not stored as a list of nodes, but instead it is stored as a network.
This network is an internal representation of SMILE, but the network is still the same BN as in
Figure 3.4. This network is then passed to the analyser.

3.7 BN Analyser

The analyser has as input the BN in SMILE format. It analyses the network and creates the
probability data the user wants. The first step is actually analyse the network. SMILE will
analyse the network and store the results for all the nodes internally. The analysis is done using
the function updateBeliefs(). Now the results are prepared in the network with the function
getOutcomeIds(name) The name argument is the name of the node from which you want the
results. Currently it is always the topnode. A array is used to retrieve the data from the network
using the formula getNodeValue(name). The code below is this first part of the analyser.

1 public Str ing prob (St r ing name , I n t e g e r n , Network net) {
2 r e s u l t=”” ;
3 net . upda t eBe l i e f s () ;
4 net . getOutcomeIds (name) ;
5 double [] aValues = net . getNodeValue (name) ;

The second part is to build a certain format in which to represent the results. Using a loop all
the values are taken from the array of values and added to a resultstring along with a few index-
markers, line 4. The unreliability of the system is added to this string, line 6. The format of this
probability data taken from the running example is given in section 3.8.

3.8. PROBABILITY DATA 39

1 r e s u l t = r e s u l t + (”Toplevelname : ” + name + ” \n”) ;
2 for (int index =0; index <(n) ; index++) {
3 double prob = aValues [index] ;
4 r e s u l t= r e s u l t + (” Index”+index + ” Prob : ”+ prob+” \n”) ;
5 }
6 r e s u l t=r e s u l t +(1.0−aValues [n−1]) ;
7 return r e s u l t ;
8 }

The resulting data is passed to the GUI. An example of this data is in section 3.8. The functions
used are from the SMILE package.

3.7.1 SMILE package

SMILE (Structural Modelling, Inference, and Learning Engine) is a fully portable library of C++
classes implementing graphical decision-theoretic methods, such as Bayesian networks and influ-
ence diagrams, directly amenable to inclusion in intelligent systems.[8]
The SMILE package is used to calculate the probabilities. Its input is a Bayesian network. There
are many different variations possible with this package. For now, this program only utilizes the
probability of the top node (usually the full, or composed system) within a Bayesian Network.

The SMILE package requires a network or a file as input, as well as the name of the node of
which you want the results. SMILE requires a specific format with Doublearrays for the CPT
values.
The tool saves the resulting Bayesian network as a GeNIe-formatted file before passing it to the
SMILE package for analysis.
GeNIe is SMILE’s windows interface and is a versatile and user-friendly development environment
for graphical decision-theoretic models[8]

3.8 Probability data

The probability data is the output from the analyser. It is a String which can be written to
standard output, printer, file or a part of a GUI. Here the data is inserted into a specific field of
the GUI.
The running example Figure 3.2 is executed and the results are given in the fragment below.

New conversion:

Toplevelname: node0

Index0 Prob: 0.00625

Index1 Prob: 0.01875

Index2 Prob: 0.03125

Index3 Prob: 0.04375

Index4 Prob: 0.9

0.1

The data is set up as follows. The first line is to indicate a new conversion has started, this is
done because the field in the GUI can hold several conversions after each other.
The toplevelname is given, because this is the node of which the results are requested. The
following lines are the actual results. For each of the states (0 until n+1) the result is displayed.
For state 0, the chance that the system will fail is 0.00625. For state n+1 (outside missiontime)
it is 0.9.
The chance that the system will fail outside missiontime was 0.9, therefore, the chance that the
system would fail within missiontime is 0.1. The last number is not 1 minus the 0.9, but the

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

individual results from all the states within missiontime added up. which is 0.1. This entire string
is directly inserted in a textfield of the GUI.

3.9 GUI

The Graphical User Interface (GUI) allows the user to draw a Fault Tree and customize it. The
main part of the GUI is a central drawing area. The nodes are inserted into this area through the
use of buttons marked with the type of node to add.
For the basic events, a drop down choice box is present. After selecting the desired type, the
button can be pressed.
Also present are a few fields to the right of the drawing area. They present info about the current
selected node, like name, type and if applicable values like lambda, alpha or rate. As can be seen
in Figure 3.5 Basic Event 1 is currently selected. These values can also be edited and changed.

Figure 3.5: Screenshot

The remaining buttons deal with saving the JGraph as Galileo file (button “save”) and saving
as derived ‘Jgraph’ format with coordinates (button “Save JGraph”) in order to load (“Load”)
and ofcourse to start the conversion (button “Conversion”).
For conversion two fields are available where the n, and T (which is the mission time as discussed
in the background section) can be entered. These can be found at the bottom of the screen.
The result is displayed in a scrollable window on the left.

The GUI is therefore able to take two inputs. Either the user draws his own tree from scratch,
or he loads a previously drawn tree. The output is always the unreliability at every interval (n=0
through n+1) and the unreliablity of the system as a whole during missiontime. The three dif-

3.9. GUI 41

ferent parts of the GUI are discussed next. Interface, Display and DFT editing. The saving and
loading of the DFT is discussed in section 3.9.4 followed by a section describing the package used
in this part of IDIC; JGraph, section 3.9.5.

3.9.1 Interface

Interface is all the parts of the GUI where the user can communicate with the tool. This is
therefore all the buttons and edit fields. There are two columns of buttons on the left side of the
screen. The rightmost column of buttons are the buttons which call upon the functions to create
a new gate (or basic event) in the central drawing area. Pressing the button will result in a new
gate of the type that was written on the button to appear in the left top corner of the drawing
area. With the mouse the gates can be moved to other locations.
The pulldown box directly below the ‘basic event’ button contains three types of basic events.
The discrete, exponential and weibull type. Selecting a type and then clicking on the ‘basic event’
button will create a basic event in the left top corner of the type selected in the drop down box.
The type of the event is not visible, instead the type of event can be determined upon selecting
the basic event. At the right side of the screen the contents of the fields will change to represent
the type of the basic event. When the type is discrete, the fields for lambda, rate and shape will
change to n.a. (Not Applicable) and the field for discrete changes to the value previously entered
or 0.0 as initial value.
To change the value, enter a new value and press enter. This will change the value in the selected
event or gate. This is also the way to change the name of a gate or event.
Below the drawing area are the two ‘global’ fields. Here the n and MissionTime are entered. The
n is a value of IN . The larger the n the more accurate the results will be. The MissionTime is
entered in seconds and is also ∈ of IN . Any deviation of this format including extra tabs will
be rejected as valid formats. The leftmost column of the screen are the rest of the buttons and
fields. The top button will start the conversion if both the n and Missiontime are entered conform
specification. If the values are correct the conversion will start. The next button is called “save”.
This button will save the drawn tree in Galileo format. This format cannot be loaded in the tool,
but this file can be loaded in Galileo. The editfield below the button lets the user choose where
to store the file. Standard this is a file called ‘test.txt’ in the root of the ‘c’ drive.
The button delete lets the user delete any part of the drawing currently selected. Either a gate,
arc or a combination of both. The load button can load any previously saved drawing as long
as it is in specified format. This format is give in section 3.9.4. Again the editbox below the
button determines the location and name of the file to be loaded. If the file cannot be found
at these coordinates the file cannot be loaded. The standard name and location to be loaded is
“c:\testJ.txt”. The button below will save the drawing with coordinates to the same standard
name and location.

3.9.2 Display

The display is all the fields which the user cannot edit or control. There are only two of those
fields. The central drawing area and the scrollable box on the left side of the screen. This leftside
box is for displaying the results of a conversion. The format of this is given in section 3.8. The
central drawing area is where the gates, basic events and lines are drawn. How this is done can
be read in section 3.9.3 The basic events are simple rectangles. The lines are drawn from top to
bottom. The toplevel gate has no incoming edges and the leaves will have no outgoing edges.
The gates are standard. The pictures representing the gates are all given in the background section
(section 2).

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.9.3 DFT editing

There are three subsections in this section. Nodes, edges and deleting/updating. In each subsection
a short description of the steps taken for each task is given.

nodes

The nodes are created by creating a Cell. Because I want to store several properties I need to
create my own format. This is called ‘MyGraphCell’. This cell is then inserted to the graph.
JGraph makes sure this created cell is inserted in the graph and displayed on screen. But what
about this ‘MyGraphCell’. This is a format based on JGraph’s own DefaultGraphCell. It has the
following fields:

1 public class MyGraphCell extends DefaultGraphCel l {
2 private Str ing name ;
3 private Str ing gateType ;
4 private Str ing alpha ;
5 private Str ing lambda ;
6 private Str ing ra te ;
7 private Str ing shape ;
8 private Str ing d i s c r e t e ;
9 private Str ing basicEventType ;

10 private Boolean primary ;
11 private int x=20;
12 private int y=20;
13 private int w=45;
14 private int h=20;
15 private Defaul tPort port1 ;
16 private Defaul tPort port2 ;
17 private Defaul tPort port3 ;

The strings are all attributes of a gate. The gateType is the type of gate e. g. AND, PAND etc. or
the type basicEvent. In which case the applicable attributes of a basic event are filled. discrete,
lambda or rate and shape and for easy access the field basicEventType.
The integers x and y are the location of the gate or event. Standard in the leftmost corner (20,20).
The dimensions (Width and Height) are 45 by 20, see the values in the list above.
Each gate will have three ports. These ports are the hooks to which a line can be attached.
Because there is a distinction in only the children (for example, primary and spare for a spare
gate), there is one port on top of the node and two at the bottom.
The way the gate looks e. g. the displayed picture is determined by the field of gateType.

edges

The edges are drawn from port to port. Each time the left mousebutton is clicked, the program
checks for a port at this location. this is the start port. If the mouse is moved after this a line is
drawn on the screen. This is done by the JGraph package. When the mousebutton is now released
and there is an other port at this location a line is drawn between these two points. The parents
of these ports are then notified of this. This means that the source gate will now have a child and
the target will have a parent.

deleting/updating

The delete is straightforward. Just tell the graph that the current selected node(s) and or edges
need to be deleted. However because the ports are added to the standard GraphCell these need
to be deleted separately. Simply delete the ports and then proceed with the gates themselves.

3.9. GUI 43

The updating is mostly changing values in the stored nodes. Because everytime a node is se-
lected it will (re)read the values stored and update the field on the screen. The names of the
nodes is different because they need to be changed on screen and in the internal graphstructure as
well. Fortunately the graph has his own update function. Simply change the name in the stored
node and update the name in the graphstructure, this way JGraph will automaticly change the
name as it appears on screen. After all this you will want to save your drawn tree for future
use.The next section is about saving and loading and the format used for this.

3.9.4 DFT in Galileo format with coordinates

This section will explain the DFT format used for saving and loading of the drawn trees. This
format is identical to the Galileo format with the addition of coordinates. The reason for using
the Galileo format and adding coordinates is because the Galileo format is easily read and the
savefunction for this format is already written. The drawn tree is saved to the Galileo format to
initiate the conversion. To add coordinates is a small addition. The format of the runningexample
is:

toplevel "AND_Gate";

"AND_Gate" and "Basic Event 1" "Basic Event 2" 353.0 202.0;

"Basic Event 1" 290.0 358.0

phase 1 prob=0.5 cov=1 res=0 repl=1 dorm=0.5;

"Basic Event 2" 419.0 359.0

phase 1 prob=0.2 cov=1 res=0 repl=1 dorm=0.5;

The format is the same as in section 3.2. However now after each gate the coordinates of the
gate are written. First the name (AND Gate), type (AND) and children (Basic Event 1 and
Basic event 2) followed by x-coordinate (353.0) and y-coordinate (202.0). The gate definition is
completed with the semicolon (;). The basic events have no type, so when a name is followed by
a number this is always the x- and y- coordinates of this basic event.

Saving

The input for saving is the global graph which is a JGraph component. No individual nodes or
edges. These must be extracted from this graph in order to be able to save the graph in Galileo for-
mat with additional coordinates. The output will be a file at the location determined by the field
below the button “save JGraph”. The format of this file is Galileo with added coordinates. Be-
cause the JGraph package is used this format is also called JGraph format, hence the name on the
button. To save the graph in a file, we need to have the nodes from the graph. Now we need to con-
struct the file. The file consists of three parts. The toplevel, the gates with type and children and
finally the basic events. In order to find the toplevel we use the following pseudo code algorithm.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

Make a list of all nodes;
Make a copy of this list;
Create empty list of processed nodes;
for all nodes do

Get neighbours;
if neighbours==0 then

Node is leaf;
else

If neighbour is not processed then process it and add to processed list.;
// This basically ensures that every node which is a child will be written to the
processed list.

Compare the list of all nodes with list of processed nodes. Overwrite the positions of the
nodes that are already processed. What remains is a list of unprocessed nodes and empty
strings. Print Toplevel with the unprocessed nodes.

The result of this conversion is that the nodes who have children (and are therefore gates) are
already handled. These nodes should be saved in a string in the format ‘Name type child1 child2
x-coordinate y-coordinate;’ All this information is stored in the nodes themselves.
Because a check is made for leafs, these can be stored as well.

All that has been written to the file so far has been toplevel. The next part of the file are the
gates. We had already formatted these lines, so simply write the resultstring to the file ensures
the gates.

The leafs are a bit more work. Because the type of event determines the exact format to write.
So after printing the name, coordinates and the nextline symbol a check is made for the type of
basic event which is also part of the node. Depending on the type, the correct values are printed.
The result is the file given in the beginning of section 3.9.4

Loading

Loading requires a location and name of a previously saved (or manually created) file. This file has
to be in Galileo format with added coordinates. The result will be the original drawn graph in the
central drawing area, just at it appears in Figure 3.5. The first thing this function does is removing
all the nodes, edges and ports from the drawing e. g. making the screen empty. Because loading
requires a empty graph to which the loaded nodes, edges and properties are added. Because the
build of the file is known and there are only a few different variations ANTLR is not used here.
Instead a large case statement is used. The file is read and based on the current token one of the
cases is taken. If the token is the word toplevel, then we know the next token will be a string with
the name of this toplevel. If the token is a String (characters enclosed by quotes) followed by a
Word (several characters without enclosing quotes) then we know this is a gate with its type. So
we now do the same as we would have pressed the corresponding button on the GUI interface.
We create a new node with the type that is the read word. The next token is the first child. This
child is created and added as child to the gate. The next token is the second child. Again the
child is created and added as child to the gate. The next two tokens are x- and y-coordinates.
Simply updating the node involves removing and recreating this node in order to place this node
on the new coordinates on screen.
Once all the gates are processed, the basic events come next. Again the node is created on
the coordinates read directly after the name of the event. The properties are all added as the
appropriate token is read. After reading the last token all the nodes are now created. However the
observant reader should realize by now that there are no arcs drawn. This is because the source
and target cells must be created before an arc can be added. However because the basic event
are recreated and replaced upon reading of the coordinates for the basic events the arcs cannot be
added when reading the gates. The connections are therefore stored and read at the end.
The arcs are drawn from port to port. The ports with their internal location relative of their
parentport are read from source and target node and the connect function of JGraph is called.

Now all the nodes are drawn and the connecting arcs are present as well. The properties are

3.10. TESTING 45

also stored and the network is now ready for use. Next section will give some information about
the JGraph package used.

3.9.5 JGRAPH

The JGraph package is a graphical package and enables the user to create nodes and draw edges
between them. The package also allows for moving nodes and edges, delete them and change
appearance.

JGraph is a mature, feature-rich open source graph visualization library written in Java. JGraph is
written to be a fully Swing compatible component, both visually and in its design architecture.[2]
The GUI is build using this package. There is a global graph defined to which nodes and edges
can be added, changed or deleted. The package takes care for updating the visual container which
has been initialized with this graph. With help of JGraph, mouse events are captured and lines
can be drawn from node to node. The saving and loading is also done with help from JGraph.
When saving, the program requests all the nodes from the graph. It will save the nodes and all its
children in the memory. It identifies the basicevents and save them too. Until all nodes are pro-
cessed until just the topnode is left. This topnode can now be saved in a file. This is because the
Galileo format requires the topnode first, followed by the gates with their children and concluded
by the basicevents with their properties.

3.10 Testing

There are a few points where the implementation needs to be tested. These main focus points are:

• User interface

• conversion

For each of these points a description of the subcomponents and the checked functionality is
given.

3.10.1 User interface

The user interface consists of:

A central drawing area
The central Drawing area is the most important aspect of the program. Without this you
can’t draw (or load) a Fault Tree. Without a Fault Tree, there is no conversion. However,
without additional functionality there isn’t much this area can do. Without some way to
add nodes to this area nothing can be drawn. As soon as there are nodes, edges can be
drawn. Simply by clicking on specific points of a node (called ports) the user starts to draw
an edge. Releasing the mousebutton on a (target) port will connect both ports with an edge.
Testing this is straightforward. Either by displaying some text, or checking the connection
in the total graph or the saved textfile is sufficient.

Several buttons
There are a number of buttons in the program. Checking these can, in some cases, be straight
forward. The ’node’ buttons, e. g. the AND, OR, basic event, PAND, etc. are simply checked
by observing the appearance of the correct node in the drawing area.
The Save/load buttons do more, and therefore require more work. Not only do they need
to display the entire graph (respectively in a text file or on screen) but they need to show
them correctly.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

Not all possible configurations of gates and events can be checked. Only the most basic
networks e. g. one gate with two children and the case studies have been thoroughly tested.

some node properties
The properties of the current selected node needs to be received from the current selected
node. Simply clicking on different nodes and observing the change in the properties is
sufficient. These values are taken from the file on loading, but the values can also be
changed by the user. Allowing the user to change the properties and saving these changed
values (if correct values e. g. Type must be one of the allowed ones, values must be in the
correct format) is checked by observing the change after editing.

result area
The result area must be scrollable (if multiple results).

global properties
Inserting global properties like the filename to save to, the n and missiontime are checked
by reading and printing these values.

3.10.2 Conversion

The analysis of the conversion is the most difficult part. Not only the basic building blocks need to
be correct, but also the program in itself. What better way to compare the results than actually
comparing the probability result from this program to Galileo. This has been done for all the
basic networks, these are just a single gate with two children.
Two case studies are also fully checked.

The next chapter shows these two case studies.

Chapter 4

Case Studies

There are 2 case studies which have been used for this thesis. Both shall be introduced and the
results are given and discussed.

The first case study is the Hypothetical Cascaded PAND System (HCPS). This system is shown
as DFT in Figure 4.1

system

BA

AA

C

D

AB AC AD

2 3 4 5

2 3

2

3

CA CB CC CD

DA DB DC DD

2 3 4 5

2 3 4 5

Figure 4.1: Hypothetical Cascaded PAND System

Because the topnode is a Dynamic gate, the whole system has to be converted to MC in Galileo.
This means that the (fast) BDD technique can’t be used and the time needed for the analysis is
increased.
The probability of the top node (“system”) is displayed in table 4.1 for several values for ‘n’.

47

48 CHAPTER 4. CASE STUDIES

n probability
4 0.00242830
10 0.00176829
15 0.00162748
30 0.001490108
80 0.001406222
85 0.00140329
87 0.00140221

Table 4.1: Probability for HCPS system

From this table it can be seen that the larger you choose the ‘n’, the more accurate the answer
is becoming. Note that solving this, including the conversion to BN, takes place in 10 seconds for
the largest ‘n’
The Galileo file saved can also be solved by Galileo itself. This results in:

Unreliability ===> 0.00135668

Elapsed time: 0 hours, 8 minutes, 4 seconds.

A lower and more accurate result, but very slow. The BN that has been saved in GeNIe format
provides the same answers as in table 4.1. The IDIC result approaches the exact number from
Galileo, however it never reaches it. The ‘n’ of 87 is the highest result. Any higher will cause a
memory overload and no result is reached. We assume that for higher ‘n’ the result will be even
closer to the exact result of Galileo.
Now to group these results in table 4.2.
Coral is a tool which solves FT via MC. The results from Coral are taken from [10]. We see that

Tool used Result n used Time needed
Galileo 0.00135668 none 8m 4s
IDIC 0.00140221 87 0m 10s
Coral 0.00135668 none 1m 7s

Table 4.2: Results from various tools for HCPS system

both MC-based tools have the same answer and that IDIC is very close. This is due to the fact
that IDIC works with intervals. The higher the n, the more accurate the results will be. The n
of 87 as seen in the table is the highest reachable with the current implementation and machine
used.

The second case study is the Multi-processor Distributed Computing System (MDCS). This
system is shown as DFT in Figure 4.2

This system includes some WSP gates with spares and several exponential basic events.
The results are given in table 4.3 with the same values for ‘n’.

n probability
4 2.0002545175756836E-9
10 2.0002547396202885E-9
15 2.000254628597986E-9
30 2.0002547396202885E-9
80 2.000254850642591E-9
85 2.000254850642591E-9
87 2.000254850642591E-9

Table 4.3: Probability for MDCS system

49

system

N

2

S

CMA

CMB

DiskA

WSP

3

2

3

2

PA MemA

WSP

3 4

DAA DAB MA

1
1 2

MC

2

DiskB

WSP

PB MemB

WSP

2 3 4

DBA DBB MB

11 2

MD

2

Figure 4.2: Multi-processor Distributed Computing System

Again this system is also checked by Galileo. This is where Galileo is slightly faster. Where
Galileo has the result directly, IDIC needs 5 seconds for the upper values of ‘n’. The result however
appears less accurate than IDIC because Galileo cuts the result of after the fifth decimal.

Unreliability ===> 2.00025e-009

Elapsed time: 0 hours, 0 minutes, 1 seconds.

Now to group the results in table 4.4.
In this example IDIC is slightly slower. This is because the higher parts of the tree can and have

Tool used Result n used Time needed
Galileo 2.00025e-009 none 0m 1s
IDIC 2.000254850642591E-9 87 0m 5s
Coral 2.00025e-009 none not known

Table 4.4: Results from various tools for MDCS system

been solved by using BDD techniques in Galileo. In this case, the n of 87 is accurate enough to
get the same result as Galileo and Coral.

Chapter 5

Conclusion

We discussed some background to the definitions used in this thesis. We discussed Fault Trees
and Bayesian Networks. Some insight was given in Markov Chains and we saw the benefits of
Bayesian Networks in probability analysis. We introduced a tool where the user could draw his
fault trees and with the press of a button get the unreliability of the FT back. The tool, called
IDIC, used Bayesian Networks for the analysis and is independent of other programmes (Galileo
is dependent on MS Word and MS Visio).
We also saw some case studies in which the results of IDIC were compared to other programmes.
In this chapter a summary of the work is given. This is followed by the results from the tool and
we draw the conclusion if it ’was worth it’. The work and benefits are put into their perspective.
This chapter is followed by a section on future work. What can be done to enhance the tool and
to ensure future use.

5.1 Summary

Fault Trees are widely used for reliability analysis. Static FTs who have no temporal and/or
functional failure dependencies are solved by using BDDs. Dynamic FT are usually solved by
MCs. Unfortunately a MC will have a potential effect called state space explosion. This means
that the number of states necessary to solve the MC (e. g. calculate the unreliability of the com-
posed system) can become extremely large. Bayesian Networks is a different method to calculate
unreliability. This method requires less states than a MC and is an attractive choice for this. But
since most systems are drawn as FT opposed to BN it would be nice if the user can still use FTs
but calculate the unreliability via BNs. IDIC provides this functionality. The user can draw his
FT in the GUI of the tool and by pressing a button he lets the program calculate the unreliability
of his system by translating the FT to a BN and analysing it.
The tool consists of a GUI in which several FT constructs can be drawn. These are:

• static gate

AND

OR

• dynamic gate

PAND

FDEP

CSP

HSP

WSP

51

52 CHAPTER 5. CONCLUSION

• basic events

Discrete distributed BE

Exponential distributed BE

Weibull distributed BE

For the basic events the variables “discrete” (for discrete BEs), “lambda” (for exponential BEs),
“rate” and “shape” (for Weibull BEs) and “alpha” (for all types of BE and gates) can be set. The
variables of “n” (The missiontime is divided into n sections) and missiontime (time considered the
lifetime of the system or the time considered as the mission duration) can also be set prior to the
conversion.
IDIC will read the drawn FT, convert it to a BN and analyses it. The results, which is the
unreliability per state, is displayed in the GUI.
IDIC has been tested via two case studies. The results of these are discussed in the next section.

5.2 Results

IDIC is intended to work with FTs and use BNs to analyse the system, modelled in the FT
structure. To say this method is indeed an improvement a comparison is made with Galileo and
Coral. Galileo uses MCs to analyse its FTs and IDIC used BNs to do the same. In table 5.1 the
results, for the first case study (HCPS), are given. The tools used and their results are given in
respectively columns 1 and 2. In column 3 the n is given. The higher the n the more accurate the
results will be. The time needed to calculate the results is given in column 4.
We see from the table that IDIC is not as accurate as the other two tools. This is due to the

Tool used Result n used Time needed
Galileo 0.00135668 none 8m 4s
IDIC 0.00140221 87 0m 10s
Coral 0.00135668 none 1m 7s

Table 5.1: Results from various tools for HCPS system

fact that BNs become more accurate when the n is increased. The n of 87 in the table is the
maximum reachable. A higher n resulted in memory overflows, however the results is fairly close
to the results obtained by the other tools. The time however is faster. 67 seconds for Coral and
484 seconds for Galileo to 10 seconds for IDIC. This could be profitable for larger systems.

The second case study (MDCS) and its results are given in table 5.2

Tool used Result n used Time needed
Galileo 2.00025e-009 none 0m 0s
IDIC 2.000254850642591E-9 87 0m 5s
Coral 2.00025e-009 none not known

Table 5.2: Results from various tools for MDCS system

This case the results are identical, the time needed however is not. This however can be im-
proved upon by selecting better algorithms and/or data structures and improving memory usage.

Construction of IDIC was meant to be modular and adaptable. This has been done. If the
used Galileo format was found to be inadequate, it can be replaced. The same goes for the package
used to implement the GUI, or analyse the BN.

From both case studies it is shown that this method, using BN to solve unreliability questions
in FT models, is in these cases faster and results in nearly the same results as MC-based programs.

Because this is still a prototype numerous improvements and/or adaptations can be done. In
the next section a number of these improvements are discussed.

5.3. FUTURE WORK 53

5.3 Future Work

IDIC is not finished. The GUI is functional, but not faultproof and there are several improvements
still to be implemented.

A few of these improvements are listed below.

• Errorhandling. Most of the errors that can exist are not yet distributed back to the GUI.
The user will not know what is wrong.

• Erroneous user input. Although most edit fields will not accept anything other that numbers,
some fields will present a error when a TAB token is detected or when letters are used instead
of numbers. However in the case of exponential numbers with a E in the number this is
desired.

• User friendlyness. The TAB key can be used to ‘tab’ to other field. The editfields should
update when the focus leaves the field. Currently this is only done upon the pressing of the
Enterkey.

• Adaptation. Provide a browse screen where the user can browse to the field where he/she
wants to save the files. Use a profile file for this. Also make the screensize adaptable for
larger (or smaller) screens.

• extend. Provide evidence, use different algorithms for solving, give results for every node,
not just the topnode.

• intelligently. Let the tool use the E for very large (or very small) numbers, make use of
either plus or minus tokens, make Missiontime not just whole numbers but also reals.

• Surveyable. Make a menu structure, make use of contextmenus upon the press of a (mouse)button.

• Results. Results can be altered to suite the need of the user, they can be displayed graphically
in a chart, or table.

• add functionality. Several constructs of spare gates and (shared) spares is not detected yet.
Such as multiple spares shared by mulitple gates.

• upgrade. A FT cannot have some type of constructs, such as having a gate as spare. BNs
can deal with these.

Chapter 6

Abbreviations

3P2M 3 Processors 2 Memory units
BDD Binary Decision Diagram
BE Basic Event
BN Bayesian Network
CPD Conditional Probability Diagram
CSP Cold Spare
CPT Conditional Probability Table
DAG Directed Acyclic Graph
DBN Dynamic Bayesian Network
DFT Dynamic Fault Tree
DTBN Discrete Time Bayesian Network
FDEP Functional DEPendency
EoF End of File
EoL End of Line
FT Fault Tree
GUI Graphical User Interface
HECS Hypothetical Example Computer System
HCPS Hypothetical Cascaded PAND System
HSP Hot Spare
IDIC Infinite Diversity in Infinite Combinations
MC Markov Chain
MIU Memory Interface Unit
n.a. Not Applicable
PAND Priority AND
PMF Probability Mass Function
SEQ SEQuence enforcing
SFT Static Fault Tree
WSP Warm SPare

55

Appendix A

Manual

This Appendix is a manual on how to use this tool. It is divided into several paragraphs and
contains all the different tasks that can be executed.

Creating nodes: To create a gate node, click on the button displaying the name of the gate
you want to create. To create a basic event, select the appropriate distribution from the pull-down
box below the ‘basic event’ button. For exponential distribution, select exponential. For discrete
distribution select discrete and for Weibull distribution, select Weibull.

Creating Edges: Each gate has 3 points where a line can be attached. 1 centre top, and the
other two at 1/3 and 2/3 of the bottom line. These points are called ports. To draw a line, hold
your mouse above one of the ports, click and hold the mousebutton. If the mouse is moved a line
will appear. When the mousebutton is released above an other port, it will draw the line.

Deleting nodes or edges: To delete a node or edge, select the desired edges and nodes. This
can be done by either by selecting them with the mouse (hold shift to select multiple items) or to
click with the mouse on a empty place on the canvas and holding the button. Moving the mouse
will result in a selection box.
After selecting the nodes and or edges to delete, press the button ‘delete’.

Modifying attributes: To modify an attribute of a node, click on the node. On the right side
of the screen the properties of the node will appear. To modify them, click in the field, change the
value and press enter. Pressing enter is the signal for the program to store the value in the graph.
The fields n and MissionTime can be altered at any moment. Pressing enter is not required,
because these values are checked and processed when the user presses the button ‘conversion’.

Changing location of saving and loading: On the left of the screen are three boxes containing
a filename. Standard this is “c:\test(J).txt”. To change the location, edit the field to contain the
desired location and name for the new file. The file will be automatically overwritten. To load a
file, the desired location and name of the file to be loaded must be entered. None existing files will
not be loaded. The topfilename is the location where the program saves the Galileo formatted file
used in the conversion. The other two are the locations for saving and loading the specific format
for IDIC.

57

Bibliography

[1] M Chechik A. Gurfinkel. Extending extended vacuity. Technical report, Department of
Computer Science, University of Toronto, 2004.

[2] Gaudenz Alder. Design and implementation of the jgraph swing component. Technical report,
KHLim, February 2002.

[3] L. Bosia and P. von Rohr, editors. A Class for discrete Bayesian Networks in Darwin, volume
ETH Zurich, 2005.

[4] H. Boudali. A Temporal Bayesian Network Reliability Modelling and Analysis Framework.
PhD thesis, University of Virginia, 2005.

[5] Eugene Charniak. Bayesian networks without tears. The American Association for Artificial
Intelligence, 1:15, Winter 1991.

[6] Kevin J Sullivan David Coppit, editor. Galileo: A tool built from mass-market applica-
tions, Limerick Ireland, June 2000. 22nd Iternational Conference on Software Engineering.
http://www.cs.virginia.edu/ ftree/2003-redesign/pages/Research/abstracts.html.

[7] Robert McGovern David Gallardo, Ed Burnette. Eclipse in Action - A guide for Java devel-
opers. Manning Publications Co., 2003.

[8] Marek J. Druzdzel, editor. GeNIe: A development environment for graphical decision-analytic
models, volume Annual Symposium of the American Medical Informatics Association (AMIA-
1999),, Washington D.C., November 6-10 1999.

[9] J.B. Dugan. Reliability Analysis of Computer-Based Systems using Dynamic Fault Trees
(Tutorial). Department of Electrical, Computer & Systems Engineering from the university
of Virginia, June 2001.

[10] P. Crouzen H. Boudali and M. Stoelinga. A compositional semantics for dynamic fault trees
in terms of interactive markov chains. In LNCS 4762, 2007.

[11] P.E. Mandar Khanal. probability concepts. April, 2007
http://coen.boisestate.edu/mkhanal/probabil.htm.

[12] A. Villafiorita M. Bozzano. Esacs: References on dynamic fault trees. April, 2007
http://www.cert.fr/esacs/doc/dynamicFT.html.

[13] Terence Parr. Antrl website.

[14] J.D. Andrews R.M. Sinnamon, editor. Fault Tree analysis and Binary Decision, volume
RMAS symposium, Las Vegas USA, Jan. 1996.

[15] T. Seppnen. Exercise 2 a2 and q2.pdf. website from Finish Uni-
versity of Oulu, Department of Electrical and Information engineering
http://www.ee.oulu.fi/research/tklab/courses/521497S/, March 2006.

59

http://coen.boisestate.edu/mkhanal/probabil.htm
http://www.cert.fr/esacs/doc/dynamicFT.html
http://www.ee.oulu.fi/research/tklab/courses/521497S/

60 BIBLIOGRAPHY

[16] Sun Microsystems. Java API.

[17] K.S. Vastola. Essentials of probability. Online guide into probability from the Departement
of Electrical, Computer and Systems Engineering Rensselaer Polytechnic Institute Troy NY
http://networks.ecse.rpi.edu/~vastola/pslinks/perf/node12.html, 1996.

[18] Relex website articles. Fault tree construction: Events and gates part iii: Dynamic gates.
http://www.relex.com/resources/art/art_faulttree3.asp, September 2006.

http://networks.ecse.rpi.edu/~vastola/pslinks/perf/node12.html
http://www.relex.com/resources/art/art_faulttree3.asp

	Introduction
	Motivation
	Goal of the Project
	Approach
	Result / Contributions
	Layout of this thesis

	Background
	Fault Trees
	Static Fault Trees
	Dynamic Fault Trees
	Markov Chains

	Bayesian Networks
	Bayesian Network example Wetgrass
	Discrete Time Bayesian Network

	Design and Implementation
	Galileo
	DFT in Galileo format
	Compiler
	ANTLR framework
	Lexer
	Parser
	ANTLR tree
	Treewalker

	Standard Bayesian Network
	Translator to SMILE format
	BN in SMILE format
	BN Analyser
	SMILE package

	Probability data
	GUI
	Interface
	Display
	DFT editing
	DFT in Galileo format with coordinates
	JGRAPH

	Testing
	User interface
	Conversion

	Case Studies
	Conclusion
	Summary
	Results
	Future Work

	Abbreviations
	Manual

