
Vulnerability Analysis of Cyber Security Modelling
Language models using Probabilistic Logic

Rick Hindriks
h.n.hindriks@student.utwente.nl

Tuesday 6th December, 2016
MSc Thesis - Final (r3452)

Supervisors

Arend Rensink University of Twente

Mariëlle Stoelinga University of Twente

Frank Fransen Netherlands Organisation for Applied Scientific Research TNO

mailto:h.n.hindriks@student.utwente.nl?subject=Vulnerability Analysis of Cyber Security Modelling Language models using Probabilistic Logic

ABSTRACT

Computer systems are an essential asset of large companies such as banks, financial institutions,
utility companies and telecommunication providers. Given their important roles for the functioning
of society, these companies are under a constant threat of cyberattacks. Enterprises rely on the
availability of these complex ICT systems for their day-to-day operations, and disruptions in the
availability of these systems can have disastrous consequences. Given the growing complexity of the
attacks and the growing size of network infrastructures, security experts require the use of automated
tools to determine the security of their systems. To this end, we propose an automated method for
the analysis of vulnerabilities within network architectures, based on the Cyber Security Modelling
Language[35] (CySeMoL). We aim to improve the time required for inferring the likelihood of
a successful cyberattack in a given network infrastructure, based on the threat model defined by
CySeMoL. We define an alternative implementation of the vulnerability analysis using Probabilistic
Logic[17] (ProbLog). By using a model-based approach to the analysis of CySeMoL, we provide
an extensible method for the development of such an alternative analysis. We have succeeded in
achieving this by using intermediate models which capture the threat model of CySeMoL and the
definition of concrete network infrastructures. However, our measurements show that the proposed
analysis method using ProbLog does not perform better than CySeMoL for larger models.

Keywords

Threat modelling, dynamic risk assessment, SEGRID, CySeMoL, P2AMF, attack trees, vulnerability
analysis, probabilistic logic, Prolog, ProbLog, probabilistic inference, weighted model counting,
model driven engineering, Eclipse Epsilon, model transformation, model-to-model transformation,
model-to-text transformation.

i

Preface

“Then, one day, a student who had been left to sweep up the lab after a particularly unsuccessful party
found himself reasoning this way: If, he thought to himself, such a [Infinite Improbability Drive] is a
virtual impossibility, then it must logically be a finite improbability. So all I have to do in order to
make one is to work out exactly how improbable it is, feed that figure into the finite improbability
generator, give it a fresh cup of really hot tea . . . and turn it on! He did this, and was rather startled to
discover that he had managed to create the long sought after golden Infinite Improbability generator
out of thin air.”

Discovery of the Infinite Improbability generator — Douglas Adams

This is the thesis for the final project of the Computer Science master programme with a specialization
in Methods and Tools for Verification at the University of Twente. After a ‘research topics’ phase of
10 ECTS, which resulted in a research proposal, the thesis was written during a time period of 30
ECTS at TNO (Netherlands Organisation for Applied Scientific Research).

The goals of this research were inspired by the requirements of the SEGRID (Security for Smart
electricity GRIDs) collaboration project. The SEGRID FP7 project was established in 2014 with the
goal of enhancing the protection of smart grids against cyberattacks[89]. The broader scope where
the research presented in this thesis belongs to, concerns the automated assessment and prediction
of security in computer networks.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Goals . 2
1.4 Approach . 3
1.5 Validation . 4
1.6 Structure . 5
1.7 List of abbreviations . 6

2 Background 7
2.1 Introduction . 7
2.2 Threat Modelling . 8
2.3 The Cyber Security Modelling Language . 10
2.4 Model Driven Engineering . 20
2.5 The Eclipse Modelling Framework . 24
2.6 Eclipse Epsilon . 26
2.7 Logic Programming . 28
2.8 Parser generators . 32
2.9 Conclusion . 34

3 The Probabilistic Vulnerability Analysis model 35
3.1 Introduction . 35
3.2 Probabilistic Vulnerability Analysis model design . 36
3.3 Probabilistic Vulnerability Analysis Instance model design 41
3.4 The ProbLog model . 44

4 Transforming P2CySeMoL models 46
4.1 Introduction . 46
4.2 iEaat file format . 47
4.3 Deriving PVA models from PRM files . 47
4.4 Deriving PVAI models from EOM files . 50
4.5 Transformations to ProbLog models . 51

5 Implementation 53
5.1 Introduction . 53
5.2 Used Software . 53
5.3 The iEaat Parser . 55
5.4 The Analysis Generator . 66

6 Measurements and Evaluation 77
6.1 Introduction . 77
6.2 CySeMoL sampling parameters . 78
6.3 Analysis execution time measurements . 79
6.4 Analysis correctness . 82

iii

6.5 Discussion . 82

7 Related Work 85
7.1 Attack Graph analysis . 85
7.2 Probabilistic Programming . 85
7.3 Model transformation for analysis . 86

8 Conclusions and Recommendations 87
8.1 Conclusions . 87
8.2 Recommendations and Future Work . 88

A Metamodels A – 1
A.1 Overview . A – 1
A.2 The PVA metamodel . A – 1
A.3 The PVAI metamodel . A – 5
A.4 The ProbLog metamodel . A – 6

B Parser grammars A – 7
B.1 Overview . A – 7
B.2 General P2AMF parser grammar . A – 7
B.3 Path parser grammar . A – 10
B.4 Derived edge parser grammar . A – 11

C Command-line tools A – 12
C.1 Overview . A – 12
C.2 iEaat Parser . A – 12
C.3 Analysis Generator . A – 13

iv

Chapter 1

Introduction

1.1 Motivation

Computer systems are an essential asset of large companies such as financial institutions, utility
companies and telecommunication providers. Given the recent developments in smart grids and the
Internet of Things, the importance of ICT systems for society is growing as well. People rely heavily
on the availability of these computer systems for their day-to-day operations, and disruptions in
the availability of these systems can therefore have disastrous consequences. Examples of potential
consequences are financial costs, physical injuries, reputation damage, and theft of intellectual
property. Due to their critical role for the functioning of society and enterprises, computer systems
are under a constant threat of attacks by external parties such as criminals, other companies, and
nation states. Therefore, considering the potential consequences, it may come to no surprise that
the prevention of these attacks, and the security of computer systems as a whole, is becoming more
and more important concerns for enterprises.

From a business perspective, the owners of such critical computer systems undertake security
risks assessments to identify the risks involved. Such assessments analyse the state of security of the
computer systems within an enterprise, and investigate the potential harm which may be caused by
an adversary. Using this information, it is possible to weigh the likelihood of a particular potential
attack with the costs involved with the damage caused by that attack.

Approaches to perform these kind of assessments for digital systems have already been developed.
Examples of such approaches are the CORAS[28] and OCTAVE methods[1], which provide techniques
to investigate the risks and potential harm in a structured manner (see also section 2.2). These
methodologies often require security experts to manually perform the assessments, which is becoming
a problem due to the increasing size and complexity of the computer systems involved. Therefore, in
order to be able to perform the required risk assessments in the future, an automated method for risk
assessment is required. Another consequence of the large complexity of the infrastructure involved
in such computer systems is a large amount of security events which have to be investigated. These
events, which can range from login failures to overheating servers, are collected and have to be
analysed by security experts.

At TNO, it has been observed that security experts in the field feel that their work would benefit
from the support of automated tools for the purpose of the assessment of threats, vulnerabilities and
risks. As an example, security experts require the evaluation of the potential impact of emerging
threats to their system. When some parts of their system are vulnerable to a particular threat,
immediate action may be required. On the other hand, unnecessary interventions in a computer
system may incur costs due to the reduced availability of that system. Therefore, the significance of
these threats and vulnerabilities have to be carefully evaluated. Other questions which might require
an answer are questions such as "What is the most likely goal of an attacker, given my observations?",
and "Which system is the most likely to be compromised?". Automated risk assessment is an approach
which is able to provide answers to these questions, by automating the process.

1

During the collaboration with the KTH university in the SEGRID[89] project, TNO has in-
vestigated the use of the Cyber Security Modelling Language (CySeMoL)[35] for the purpose of
automating the risk assessment of network infrastructures. CySeMoL is a system which aids in the
design of secure enterprise network architectures, by providing an automated risk assessment for
the design phase of networked computer systems. CySeMoL has been applied in practice for the
design of secure System Control And Data Acquisition (SCADA) systems[35]. The risk assessment
provided by CySeMoL consists of an analysis of the potential vulnerability of the computer systems
under analysis. The supported systems take the form of network architectures, which are defined
using a model of predefined components such as servers, clients and firewalls. Based on these
components, CySeMoL is able to provide an indication of the chances of success a potential attacker
has to compromise parts of the defined system. In section 2.3, we will go into more detail on
CySeMoL and will discuss the details of its analysis algorithm.

1.2 Problem Statement

CySeMoL is aimed at aiding in the development of secure networks during their design. In practice,
the need the assessment of security risks is also present for live networks, beyond the design phase.
In a running network infrastructure, the development of new threats and changes in the (network)
infrastructure need to be taken into account. Consequently, TNO is investigating the possibility to
apply the risk assessment of CySeMoL to live networks. However, the CySeMoL framework in its
current form is not suitable for this type of dynamic analysis. A major problem in this regard is the
amount of time required for its analysis[35]. Currently an analysis of a large network takes minutes,
where depending on the usage scenario, we require the runtime to be a few seconds or less.

Another problem is that of automating the discovery of a dynamic network topology. TNO is
actively investigating how this can be achieved, which is still ongoing research. However, eventually
the results from the automated discovery need to be integrated into CySeMoL in order to execute its
analysis on the most recent state of the network infrastructure. In the current design of CySeMoL,
its purpose is the modelling and analysing the vulnerabilities of a network under design. Due to this
construction, it is currently not possible to automatically integrate changes to the network topology in
existing models.

1.3 Research Goals

In order to successfully develop a system for automated risk assessment of network infrastructures,
we have to tackle the problems stated in section 1.2. To summarize, the modelling and analysis of
network infrastructures using CySeMoL is not as flexible as desired. We are unable to alter the models
or the analysis. Moreover, we want to investigate whether replacing the current analysis of CySeMoL
with a completely different method will result in a faster analysis. To drive this investigation, we
have formulated the following research goals. These goals represent prerequisites for the use of
CySeMoL in operational environments, and for the development and integration of other analysis
methods:

Goal 1 - Improved vulnerability analysis speed The vulnerability analysis of CySeMoL is not
fast enough for our goals, the authors show that their testing model with 200 assets took about 2
minutes to analyse. This performance makes effective use in real-time environments impractical or
impossible. Therefore, we aim to improve the speed of the vulnerability analysis of CySeMoL for large
network infrastructures, by an order of magnitude. The intended analysis should provide the same
answers as the original analysis performed by CySeMoL.

As a side note, the current analysis of CySeMoL covers the whole network, while sometimes
only the probability of a single goal is desired. It might be worthwhile to be able to perform small
fast inferences of selected goals.

2

Goal 2 - Automatable analysis input Our aim is to support the automatic integration of network
topology updates. In order to meet our requirements regarding the support of live networks, it must
be possible to automate the input to the vulnerability analysis.

Goal 3 - Extensible analysis Apart from a changing input to the analysis, itself, we foresee that
in the future, new types of attacks will arise. These attacks will need to be supported in order to
ensure that the vulnerability analysis remains up-to-date. Moreover, as vulnerability analysis is only
a small part of a fully fledged risk analysis, we want to be able to support other types of analysis
as well. As an example, the model of the network components supported by CySeMoL could be
extended to provide an analysis of the cost of failures within a network infrastructure. Therefore,
we want to produce an extensible and pluggable version of the vulnerability analysis currently provided
by CySeMoL.

1.4 Approach

We have developed two models which can be used to store the information required for performing
the vulnerability analysis provided by CySeMoL. In order to construct a extensible and accessible
system of models, we use techniques from the field of model-driven engineering. This field focuses
on using models and model transformations for the purpose of software engineering in favour of
using computer code (for more details see section 2.4).

The first model, the Probabilistic Vulnerability Analysis (PVA) model, stores the definition of
network infrastructure components, potential methods for attack, and defences for these attacks.
Additionally, the model contains the information required to perform the same vulnerability analysis
as defined by CySeMoL. In the second model, the Probabilistic Vulnerability Analysis Instance (PVAI)
model, we store a concrete network infrastructure definition. The available components for this
definition are based on the components defined in an existing PVA model. The specification of the
PVA and PVAI models is discussed in chapter 3.

As CySeMoL’s vulnerability analysis is based on years of research on the modelling of attacks and
vulnerabilities[37, 35], we would like to integrate this knowledge into our own models. Therefore,
we have developed a program which is able to derive all this information from existing CySeMoL
models. Using our program, we are able to construct instances of our PVA and PVAI models.
Consequently, using this program and our models, it is possible to reconstruct CySeMoL’s original
vulnerability analysis.

CySeMoL explores all potential sequences of attacks an attacker can execute. By keeping track
of the success probabilities of those sequences it is possible to determine those paths which have
the highest success probabilities. On an abstract level, this is a probabilistic reachability problem;
inferring the probability of reaching a given node in a graph where edges can be traversed with
a given probability. An advantage of defining the PVA and PVAI models is that, as a consequence,
we obtain the ability to define an alternative analysis for CySeMoL models. In order to leverage
this advantage, we have investigated different methods for performing the vulnerability analysis
of CySeMoL models, which might improve the speed and scalability of said analysis. In this thesis,
we define a method using probabilistic logic (ProbLog)[17], which allows us to specify the in
which we model the vulnerability analysis as a probabilistic logic program. In addition, we have
automated the construction of these programs by implementing a model transformation for our PVA
and PVAI models. By combining the transformation from CySeMoL to our PVA and PVAI models
with the transformation to ProbLog, we obtain an automated method for the vulnerability analysis
of CySeMoL models using ProbLog.

3

Figure 1.1: An overview of the architecture of models and transformation steps involved in automat-
ing the vulnerability analysis of CySeMoL. The dashed objects indicate the potential existence of
objects, used to demonstrate potential uses of our approach.

A schematic overview of the required transformation steps and intermediate results is shown
in figure 1.1. On the first section of the diagram, we see two potential inputs for our PVA and
PVAI models: The original CySeMoL model, and the results from a topology scan of a live network
(which takes the form of a PVAI model, based on an existing PVA model). From the obtained PVA
and PVAI models, we are able to apply our transformation to ProbLog, but it remains possible to
define additional transformations in order to implement another analysis. For the full discussion of
design of our developed transformations, we refer to chapter 4 and the more detailed schematic in
figure 3.1. The implementation details of the transformations are discussed in chapter 5.

1.5 Validation

Our first goal is to improve the analysis speed of the vulnerability analysis of CySeMoL models.
We validate this goal by comparing the execution time of the current analysis of CySeMoL to the
execution time of our proposed analysis using ProbLog. The input models for the analysis are
specified using CySeMoL and transformed to ProbLog. We scale the size of the models in order to
determine the asymptotic behaviour of the analysis times. Furthermore, we validate whether the
results of the ProbLog implementation are equivalent to the results from the vulnerability analysis
of CySeMoL.

It is difficult to verify our extensibility requirements (goals 2 and 3) within this research, as this
depends on how well others are able to use and extend our methods. However, the effort required to
repair mistakes in our approach provides information on the extent of its extensibility. Furthermore,
we have verified the ability to incorporate changes to the CySeMoL model into our method, as this
can provide an indication of the extensibility of our analysis method as well. For a more in-depth
discussion of our validation methods and our results, we refer to chapter 6.

4

1.6 Structure

This report has been structured as follows: We start by providing all the necessary preliminaries
required to understand the full extent of our work in chapter 2. In this chapter, we explain the
operation and use of CySeMoL, provide details on model driven engineering techniques and some
of their implementations, and probabilistic programming.

In the next chapter, chapter 3, we introduce the models which we use to model the network
architectures defined using CySeMoL as well as its vulnerability analysis definitions. Chapter 4
discusses how we obtain instances of our previously defined models from models created with the
most recent version of CySeMoL (known as P2CySeMoL). In the same chapter, we explain how
we reproduce the analysis of P2CySeMoL using ProbLog, and how we transform our probabilistic
analysis models to a ProbLog program. The implementation details of these transformation processes
and the analysis are discussed next in chapter 5. In this chapter, we examine the details of the
techniques used to perform the tasks specified in chapter 3.

The validation of our work is described in chapter 6. Within the same chapter, we present
measurements of the execution time of our analysis method, followed by an interpretation of the
results. In the next chapter, chapter 7, we turn to the work of others which might be related to our
work for further reading. We summarize our work and results in chapter 8, and we present ideas
which are open for exploration in the future.

We have also included some materials in the appendix to this report, which are useful to reproduce
our work. In appendix A we show the metamodels of our PVA, PVAI and ProbLog models. Our
model transformation tools need to interpret some of the source code used to define the vulnerability
analysis of CySeMoL. For this, we employ the ANTLR4 parser generator, which is able to generate
parsers from EBNF grammar definitions (see section 2.8). We list the grammars of our parsers in
appendix B. Finally, we provide instructions on the usage of our developed command-line tools in
appendix C.

5

1.7 List of abbreviations

The following table provides an overview of the abbreviations used in this thesis, and their meaning.

Abbreviation Meaning

ANTLR Another Tool for Language Recognition

AST Abstract Syntax Tree

ATL ATLAS Transformation Language

CDF Cumulative (probability) density function

CNF Conjunctive Normal Form

CySeMoL Cyber Security Modelling Language

d-DNNF Deterministic Decomposable Negation Normal Form

EAAT Enterprise Architecture Analysis Tool

EBNF Extended Backus-Naur Form

EGL Epsilon Generative Language

EMC Epsilon Model Connectivity (layer)

EMF Eclipse Modelling Framework

EOL Epsilon Object Language

EOM Entity Object Model

ETL Epsilon Transformation Language

JAR Java Archive

LPAD Logic Program with Annotated Disjunctions

MDE Model-Driven Engineering

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Model Group

P2AMF Predictive Probabilistic Architecture Modelling Framework

P2CySeMoL Predictive Probabilistic Cyber Security Modelling Language

PDF Probability Density Function

ProbLog Probabilistic Logic

PRM Probabilistic Relational Model

PVA Probabilistic Vulnerability Analysis

PVAI Probabilistic Vulnerability Analysis Instance

RMSE Root-Mean-Square Error

SAX Simple API for XML

SCADA Supervisory Control And Data Acquisition

SDD Sentential Decision Diagram

SEGRID Security for Smart electricity GRIDs

QVT Query/View/Transform

UML Unified Modelling Language

UUID Universal Unique Identifier

XMI XML Metadata Interchange

XML Extensible Markup Language

YAP Yet Another Prolog

6

Chapter 2

Background

2.1 Introduction

In this chapter, we will discuss the preliminaries of the concepts and technologies used in this thesis.
We begin by providing an introduction to threat modelling and vulnerability analysis in section 2.2.
These concepts form the base for the functional rationale of the analysis tool produced for this
research. In addition we will briefly investigate some popular methods which are employed for
threat modelling.

With the security preliminaries in place, we continue by introducing CySeMoL in more detail in
section 2.3. Here, we will examine the rationale behind the framework provided by CySeMoL, and
how it has evolved over time. We conclude by considering the inner workings of the vulnerability
analysis provided by CySeMoL, and provide an example of a vulnerability analysis and its results.

Our aim is to support realistically sized networks, which means that we have to cope with
large input models. We require a robust framework for the definition of models which we use the
representation of the information required for our probabilistic vulnerability analysis. Additionally,
we require flexible methods for the generation and transformation of instances of such models. For
these purposes, we use technologies from the field of model driven engineering[72] (MDE), which
we introduce in section 2.4. Moreover, we will provide an overview of the relevant MDE frameworks
and tools used in this research. Specifically, we discuss the Eclipse Modelling Framework, and tools
from the Eclipse Epsilon project[48].

In an attempt to improve the speed of the vulnerability analysis of network infrastructures,
we have replaced the probabilistic analysis of CySeMoL which is based on sampling. Our new
analysis is uses probabilistic logic[17] (ProbLog). In section 2.7, we will explain the concept of
logic programming, including the preliminaries of logic reasoning. Next, we introduce ProbLog,
and describe how it computes marginal probabilities in probabilistic logic programs.

CySeMoL defines P2AMF, a language which is used to define the computation of the vulnerability
analysis, which supports the definition of probabilistic computations. We require to automatically
dissect and understand programs defined in this language for our transformation purposes. The
automated analysis of the structure of a language is known as parsing. We go into detail on this
concept in section 2.8. We will introduce the basic concepts of language parsing, and will discuss
the tools used in this research which are able to automate this process.

7

Figure 2.1: An overview of the concepts which arise in the discussion of threat modelling, as defined
in ISO/IEC 15408-1:2009[39].

2.2 Threat Modelling

2.2.1 Introduction

The availability of Computer systems and ICT infrastructures is vital for companies. Due to their
dependence of these systems, cyberattacks pose a significant threat. Therefore, companies employ
security risk assessment in order to obtain insight in the severity and the nature of the security risks
that these companies are facing.

We will define some of the concepts which are relevant to the practice of security analysis first.
An overview of the terminology is shown in figure 2.1. First, we have to identify the individual
system components which are important for a company. These components are known as assets,
as they are valuable for the company. When we refer to the attacker, we denote an individual or
group who is potentially trying to attack these assets. If an asset is open to an attack, we say that
that asset is vulnerable. The specific way by which some part of the asset is attacked, is known as a
vulnerability of that asset. Finally, systems and parties which prevent or disrupt an attack are known
as defences or countermeasures.

One of the activities within a risk assessment is the investigation which assets of the company
are part of the ICT system, and how these assets are organized. Another follow-up activity is the
identification of potential attacks on these assets, and their consequences. An approach to the
identification of threats is by creating a model of the threats, which aids in the identification of those
threats. This practice is known as ‘threat modelling’. Within threat modelling, multiple approaches
which can be taken. For instance, it is possible to model how a system will react, or defend, against
attacks. Another modelling approach is the identification of steps which lead to the compromise of
a system. In order to assist in the application of threat modelling for complex computer systems,
frameworks, tools and methodologies have been developed which aid in the process of manually
performing such assessments. We list some examples of such methodologies and tools.

The CORAS method[28] provides a framework for performing risk assessment, it defines visual
models similar to UML which aid in the process of the analysis. The CORAS Risk Assessment Platform
is a tool based on Eclipse and EMF (see section 2.5), which is used to draw CORAS diagrams. These
diagrams are stored using the XMI serialization format (see section 2.5), and consequently provide
potential interoperability with external tools.

8

OCTAVE is another set of methodologies for risk assessment, with goals similar to the CORAS
method. The newest OCTAVE-compliant methodology is the OCTAVE Allegro methodology[1],
which provides a set of worksheets, which can be used to perform a structured risk assessment of an
organization.

Secure Tropos[57] is an agent based modelling language, which allows for a socio-technical
analysis. The STS-tool, which is developed by the university of Trento, provides an Eclipse-like
environment where Secure Tropos models can be defined. In addition, the tool provides automated
analyses in the form of a well-formedness analysis, a security analysis, and a threat analysis.

The Microsoft Security Development Lifecycle (SDL)[65] is aimed to induce a security-aware
software development process, and comes with tools to support this. Examples of such tools are:

• The Attack Surface Analyser, which automatically determines the parts of new software which
are potentially vulnerable.

• The Microsoft Threat Modelling Tool, which aids in drawing threat model diagrams, and is
able to automatically determine potential threats to assets based on the created diagrams.

• The MiniFuzz basic file fuzzing tool, a tool which attempts to find bugs in software by trying
out random inputs.

SDL defines seven software development phases, comprising of ‘practices’ which aim to integrate
the design, implementation and verification of software security into the development process.
Step 7 of the design phase explicitly specifies the use of threat modelling. The threat modelling is
performed according to the STRIDE[38] threat model, which defines six threat categories which aid
in determining potential threats to a software application.

Recent research effort has been dedicated to performing automated threat modelling analysis
through a menagerie of attack tree formalisms[50]. The analysis provided by CySeMoL is similar to
this type of analysis[37]. In the old method of the analysis of CySeMoL models (see section 2.3.2), a
network of Bayesian networks is generated, on which the marginal probabilities are estimated using
rejection sampling[37]. However, Holm et al. have developed a newer analysis method, which
focuses on the modelling of the interactions of the network components. Consequently, its similarity
to attack tree analysis has faded to an abstract level; the analysis of structures of attack steps.

2.2.2 Vulnerability analysis

Given a threat model of a system, we are (to the extent provided by the threat model) able to
analyse the system for threats. A different type of analysis on a threat model is the identification
of vulnerabilities, e.g. the determination of which parts of the modelled system are vulnerable to
threats. There are many types of systems for which vulnerability analysis exists. For instance, the
SEGRID project aims to develop an analysis of vulnerabilities for smart grids[89].

In this report, we will refer to the aforementioned definition of a ‘vulnerability analysis’. Even so,
the term is also used for the practice of finding exploitable bugs in software. This can be identified
as a subset of our (more general) definition. Still, the practice of finding vulnerabilities in software
consists of different concerns, and applies other types of techniques (e.g. fuzzing and symbolic
execution).

9

2.3 The Cyber Security Modelling Language

2.3.1 Introduction

Our work is based on the analysis approach used by CySeMoL, therefore we will explain how the
current version of CySeMoL came to be, and define the characteristics of the analysis it provides. The
Cyber Security Modelling Language (CySeMoL[37]) was developed at KTH as part of the VIKING[5]
project, to aid in the automated analysis of vulnerabilities for the design of SCADA systems. In
subsequent research, the analysis method has been improved in a version called P2CySeMoL[35].
This final version of CySeMoL formed the basis of a commercialized version, securiCAD[20], which
is under active development by the foreseeti[19] company.

2.3.2 Versions

CySeMoL has been under development over time. Our work is based on P2CySeMoL, which is
the successor of CySeMoL. The main difference between CySeMoL and P2CySeMoL is the method
both tools use to perform their analysis. The old approach CySeMoL, uses a so-called Probabilistic
Relational Model, which specifies how blocks of Bayesian networks can be generated from system
components. The PRM also describes how these blocks relate to each other, which is used to construct
a large Bayesian network for the entire system under analysis. The separation between the network
component types and the system definition is already present in CySeMoL.

P2CySeMoL and its commercial successor SecuriCAD, use the Predictive Probabilistic Architecture
Modelling Framework (P2AMF), to perform the analysis of a defined network. P2AMF provides
an alternative method for the inference of the probabilistic model of CySeMoL based on sampling
methods. This new approach is able to support larger models while simultaneously providing a
faster analysis. P2CySeMoL extends the threat model of CySeMoL by including more types of attacks,
defences and assets.

2.3.3 The Enterprise Architecture Analysis tool

CySeMoL models can be created and analysed using the Enterprise Architecture Analysis Tool
(EAAT)[7], which consists of two parts. The first part of EAAT is the Class Modeller, which is used
to graphically define classes with their relations and operations, in a similar fashion as EMF and
UML. P2AMF is used to specify the behaviour of the operations, which means that these operations
are able to exhibit probabilistic behaviour. The class modeller interface is shown in figure 2.2.
The second part of EAAT is the Object Modeller, which is used to graphically model and define
instances of previously created Class Models. It provides an interface for the invocation of the P2AMF
analysis for the loaded object model. On completion, the results are displayed in the graphical
interface. A screenshot of the interface is shown in figure 2.3. The CySeMoL manual[36], contains
a full specification of the use cases of the class modeller and the object modeller. It also provides a
complete overview of the analysis features, and how these are specified.

The class modeller allows the grouping of classes and their relations into templates. These
templates can be used in the object modeller to quickly create multiple instances of the classes defined
within the templates. This feature reduces the modelling complexity and allows the composition of
functional units of a model within templates.

2.3.4 The CySeMoL threat model

The threat model of CySeMoL specifies how an attacker who is attacking a predefined network
infrastructure can be simulated. The components involved in this threat model are defined using the
Class Modeller of EAAT. We list some components in table 2.1, for the other components, we refer to
the CySeMoL papers, and the manual[35, 37, 36]. Within P2CySeMoL, there are four classes which
play an important role in its analysis, these classes, which are also shown in figure 2.4, define the
main components of a P2CySeMoL analysis.

10

Figure 2.2: A screenshot of the class modeller, in which a template is being edited.

Table 2.1: Non-exhaustive list of P2CySeMoL assets, and some of their associated attack steps and
defences.

Asset Attack step Defence

NetworkZone FindUnknownEntryPoint PortSecurity

ObtainOwnAddress DNSSec

DoS

DNSSpoof

PhysicalZone Access

OperatingSystem Access AntiMalwareInstalled

ARPSpoof HasAllPatches

ExecuteMaliciousPayload USBAutoRunDisabled

FindUnknownService

DenialOfService

ApplicationServer ExecuteArbitraryCode LoadBalancer

ConnectTo HasAllPatches

FindExploit

11

Figure 2.3: A screenshot of the object modeller, in which a network infrastructure is being defined
using templates (indicated by the guillemots). Note the available templates in on the left side of the
interface.

The Asset class models components of the network infrastructure which can be attacked.
Examples of such assets are servers, clients, and persons. For examples, see table 2.1 and the
P2CySeMoL manual[36].

The AttackStep class is used to model a specific attack, or a part of such an attack. The
source and target relations are used to link attack steps to assets. An example of an attack step
is the ExecuteArbitraryCode attack step, which is linked to the ApplicationServer asset.
This attack step models the execution of arbitrary code on this server, and is a prerequisite for the
execution of exploits on that server.

The Defence class models countermeasures for attacks. Defences are modelled with a prob-
abilistic isFunctioning method, which allows to specify how the probability that a defence is
functioning should be evaluated. For instance, a defence may perform better in the presence of other
defences. The existence of these defence classes (which are connected to assets) is used in the deriva-
tion code of attack steps to influence the success probability of those attack steps. For instance, if
the PortSecurity defense is enabled for the NetworkZone asset, than the ObtainOwnAddress
attack step will always fail.

At the bottom of the diagram are the Attacker and AttackStep classes, which model the
potential actions the attacker can take. The getPaths() operation of the AttackStep class is
used to determine the allowed sequences of attack steps. Whereas the isAccessible() operation
is used to determine whether the AttackStep can be performed. The latter operation plays a
double role by allowing more fine-grained restrictions on the sequence of attack steps, as well as
determining the success likelihood of the attack.

An attacker is allowed to have one or more ‘entry points’. These entry points represent parts of
the system where the attacker can begin his attacks. In CySeMoL, entry points are defined through
the ‘source’ relation between the Attacker and AttackStep class. As a consequence, an entry
point is modelled as an initial attack step which will succeed in all cases.

12

attacker (*)

attackStep (*)

attackerProxy (*)

visitedStep (*)

source (*)

target (*)

Attacker

Time

unlockedSteps(AttackStep [*] visited) : AttackStep [*]

nextAttackWave(AttackStep [*] unlocked , AttackStep [*] visited) : AttackStep [*]

AttackStep

Likelihood

Likelihood_InjectEvidence

Likelihood_EvidenceToInject

defenseAvailable(Defense [*] defense) : Boolean

getPaths(AttackStep [*] visited) : AttackStep [*]

isAccessible(AttackStep [*] visited) : Boolean

getAttackSteps(AttackStep [*] visited) : AttackStep [*]

Asset

Defense

Functioning

Functioning_InjectEvidence

Functioning_EvidenceToInject

isFunctioning() : Boolean

defenseAvailable(Defense [*] defense) : Boolean

Figure 2.4: The root classes of P2CySeMoL.

In CySeMoL, the success of an attacker is modelled with respect to the time invested by the
attacker. This allows the implementation of the notion that spending more time on an attack makes it
more likely that it will succeed. One drawback of the CySeMoL implementation, is that the workdays
parameter is defined as a constant which is the same for all attack steps. This design choice allows
the analysis of CySeMoL to return a single probability of success, but makes it impossible to estimate
the time-to-compromise of an asset.

For individual CySeMoL model instances, EAAT permits the definition of ‘evidence’. This evidence
amounts to specifying a constant outcomes for any probabilistic attribute in the CySeMoL model
instance. When analysing models with evidence, CySeMoL conditions the probability distributions
on this evidence. This way, evidence can be used to determine the success probabilities of an attacker,
given a set of observations.

13

2.3.5 Vulnerability Analysis

With the threat model in place, we will now examine how P2CySeMoL calculates the probabilities of
success for an attacker. Recall that the method in which P2CySeMoL is defined, assumes a ‘workdays’
parameter, which indicates the amount of time an attacker spends on each individual attack step.
Using this variable as its input, CySeMoL invokes P2AMF to estimate the success probabilities of the
attacker.

When starting the analysis, P2CySeMoL first instantiates all probability distributions for the given
amount of workdays into a single probability[35]. For example, consider the following instantiation
of a cumulative exponential distribution:

P(success, w) = 1− e−0.2w λ= 0.2

P(success, w= 5)≈ 0.632

Next, the model is sampled according to the procedure described in section 2.3.7, however, we
will go into more detail on how the OCL program is evaluated. For each sample, each with its own
version of the P2AMF code due to the sampling of all probabilistic elements, CySeMoL determines
the attack steps which are reachable by the attacker within the context of that sample.

P2CySeMoL searches for reachable attack steps by invoking the recursive
Attacker.nextAttackWave operation. This operation recursively searches through a
graph of attack step sequences. For a given set of reached attack steps V , the operation first
determines the frontier set F : the set of attack steps reachable from V , which are not already
in V . The reachability relation is implemented through the AttackStep.getPaths operation,
which returns a set of attack steps reachable from that attack step. For each attack step in F , the
AttackStep.isAccessible method is evaluated to test whether that attack step is reachable.
The accessible attack steps from the frontier set are added to V . More formally, letA be the set of
accessible attack steps, then V ′ = V ∪ (F ∩A).

The Attacker.nextAttackWave operation is recursively invoked, until a fixed point C is
reached, in which no new attack steps are reachable. This set C contains all attack steps which
are reachable by the attacker for the sample. Ultimately, the set C of reachable attack steps is
determined for every sample. Next, these sets are aggregated to obtain an overall success probability
for each individual attack step in the model. The success probability for a single attack step is
determined by the amount of samples in which that attack step was reachable.

2.3.6 Monte Carlo methods

We will introduce the details of how CySeMoL derives the required probabilities in the next section,
however, this discussion requires some technical knowledge on Monte Carlo methods. Therefore,
we will first describe what Monte Carlo methods are, and how they can be applied for the inference
of probabilities.

Monte Carlo methods concern the drawing of many random samples from a system in order to
obtain an estimate of its properties. The methods are often used to estimate properties of systems of
high complexity[9]. The reason for this, is that by drawing samples, it is possible to quickly obtain a
ballpark figure of the probability space. Using exact methods would require an exact inference of
this space, which would be too complex. CySeMoL Monte Carlo methods by drawing samples from
probability distributions to estimate the likelihood of success for attack steps.

In modern systems, we have access to pseudo-random number generators, which are able to
quickly generate large sets of numbers which are (almost) uniformly distributed. These methods
use deterministic algorithms (for instance, the Mersenne Twister[55] algorithm), and are therefore
not truly random, but suitable for Monte Carlo purposes[55]. In addition to uniformly distributed
numbers, we often require to generate numbers which are not uniformly distributed. We will discuss
some methods for generating samples from different distributions. The supported distributions of
P2CySeMoL are listed in table 2.2.

14

Table 2.2: The probability distributions used in P2CySeMoL.

Parameters Meaning Definition Description

c ∈ [0, 1] ⊂ R Constant F(x) = c The Bernoulli ‘distribution’

λ ∈ R Rate F(x) = 1− e−λx The cumulative Exponential
distribution.

µ,σ ∈ R Mean,
standard deviation

F(x) = 1p
2σ2π

e−
(x−µ)2

2σ2 The Normal probability den-
sity function.

µ,σ ∈ R Mean,
standard deviation

F(x) = 1
2 +

1
2 erf

�

log x−µ
σ
p

2

�

The cumulative Log-normal
distribution. Where the Gauss
error function is denoted by
erf(x).

α,β ∈ R>0 Shape, rate F(x) = γ(α,β x)
Γ (α) The cumulative Gamma distri-

bution. With Γ (x) the Gamma
function, and γ(x , y) the in-
complete gamma function.

Old versions of EAAT employed forward sampling, where every time a probability distribution
was encountered, a sample was drawn from the corresponding distribution. An extension of forward
sampling, which also supports the sampling of conditional probabilities is rejection sampling[85].
Rejection sampling is executed similar to forward sampling, with the difference that every sample
which does not conform to the evidence is discarded. An advantage of this method is that its
implementation is simple when forward sampling is already in place. A disadvantage is that in some
cases, many samples might be discarded, which requires a large number of samples to be drawn.

With the introduction of P2AMF, EAAT switched its sampling method to the Metropolis-Hastings
algorithm[43]. The algorithm as popularized by Hastings[33, 9] is a Markov Chain Monte Carlo
(MCMC) method, which generates new samples which depend on earlier samples. During this
sampling, the underlying Markov Chain reaches a point where its stationary distribution nears the
target distribution. This has the advantage that more samples conform to the desired distribution
which reduces the amount of samples which need to be discarded when compared to rejection
sampling. A disadvantage of the Metropolis-Hastings algorithm is that, because the underlying
Markov Chain needs some time to reach its stationary distribution, some burn-in samples need to be
drawn. These initial samples do not necessarily conform to the desired distribution, but instead
reflect a transient state of the markov chain. Therefore, these burn-in samples need to be discarded.

2.3.7 P2AMF

P2AMF[43], which stands for the ‘Predictive Probabilistic Architecture Modelling Framework’ is an
extension to the OCL language. The extensions include support for uncertainties in model variables
and connections between classes. In addition, P2AMF inherits the support for collections, logic
formulae and set operations from OCL. The uncertainties are specified using probability distributions,
and P2AMF provides a method for performing inference on the resulting probabilistic models[43].
The supported probability distributions are listed in table 2.2. Additionally, P2AMF supports a
linear approximation of a probability distributions, by providing it with a list of points from that
distribution. These points are used to define a set of linear equations which model the probability
density between those points. In section 2.3.5, we will examine a practical application of P2AMF
when we explain how P2AMF is used to perform a vulnerability analysis of P2CySeMoL models. An
overview of the context of each CySeMoL-related concept which we have discussed is shown in
figure 2.5.

15

An analysis by P2AMF is conducted in the following way[35]: First, a user-specified amount
of versions of the model are instantiated. Next, for each version, all probabilistic expressions are
sampled and evaluated. After this step, all probabilistic expressions have been cast into regular
OCL expressions, which can be evaluated by the OCL parser. Finally, the results from each model
instance are aggregated, and presented to the user in the graphical interface.

We will provide an example of the usage of P2AMF. Consider a coin with two sides which can
have different (positive) weights for each side. We say that the probability that the coin lands
on a side is determined by the fraction of the total weight that side has. Ergo, we can calculate
the probability that a coin with two sides which weigh wheads and wtails grams respectively in the
following way:

P(Heads) =
wheads

wheads +wtails

P(Tails) =
wtails

wheads +wtails

Using P2AMF we can model this problem by defining a Coin class with two double-precision
attributes weightHeads and weightTails, which denote the weight of each side. Next, we define
a flipCoin operation, which will flip this coin and return ‘true’ if the coin landed on the ‘Heads’
side of the coin. The derivation of this operation can be specified as follows, using P2AMF:

1 let probability : Double = weightHeads/(weightHeads+weightTails) in
2 bernoulli(probability)

This code specifies the operation as a Bernoulli experiment, which results in either true or false,
with probability P(Heads). P2AMF can be used to infer the probability of both ‘Heads’ and ‘Tails’.
Even though this example is extremely trivial, we note that P2AMF supports the dependency of
the weight of the coins on other classes. For example, we could model a minting machine, which
outputs coins with different normally distributed weights for each side. This way, the Coin class
can be reused in more complex models.

2.3.8 Vulnerability analysis example

We will now explain the operation of P2AMF using an example network architecture defined
in CySeMoL. Our example concerns the CySeMoL object model shown in figure 2.6. In this
model, we model an attacker ‘Fred’, who has successfully broken into a server room, reflected
by the PhysicalAccess entry point in the PhysicalZone instance. In this server room, it
is possible to connect to two separate networks, modelled by the two NetworkZone template
instances. From these networks, it is possible to connect to a web server, which runs Apache on
an instance of the Linux operating system. This has been modelled by the ApplicationServer,
OperatingSystem and SoftwareProduct instances. All template instances are left at their
defaults, except for one network zone, the EngineerLAN zone. For this network, we know that
its PortSecurity defence has been disabled by the administrator. We model this by providing
evidence that EngineerLan.PortSecurity.functioning is false. We will use the default value
for the ‘workdays’ parameter of five work days per attack step.

Returning to our example, we will now examine how the success probability of some example
attack steps is determined by P2AMF. We will denote individual attack steps by their type, and will
enclose their target in parentheses. For example, the attack step A with target T will be denoted
A(T). In our model, we have specified the PhysicalAccess attack step as an entry point for the
attacker. This will be our initial visited set V0. We will list this, and all other relevant sets from our
example in table 2.3. Next, the frontier set F0 is determined by evaluating the getPaths operation
for every element in V0.

16

EAAT

Class model

spec Object model

spec

Probabilistic
Inference

provides

P²AMF
code

can use

references

of

CySeMoL

defined using

is a

Vulnerability
analysis

provides

defined
in

Network
architecture

of

defined
using

Figure 2.5: An overview of the relations of the relevant CySeMoL-related concepts.

Table 2.3: The progression of the construction of the visited set in our example.

Set Contents

V0 PhysicalAccess(PhysicalZone)

F0 OrganizeParty(PhysicalZone), ObtainOwnAddress(EngineerLAN),

ObtainOwnAddress(CorporateLAN).

V1 91.6% : OrganizeParty(PhysicalZone), ObtainOwnAddress(EngineerLAN),

50%: ObtainOwnAddress(CorporateLAN).

17

<
<
At
ta
ck
er
>
>

Fr
ed

W
or
kd
ay
s

<
<
Ph
ys
ic
al
Zo
ne
>
>

Ph
ys

ic
al

Zo
ne

Ac
ce
ss

O
rg
an
iz
eP
ar
ty

<
<
Ap
pl
ic
at
io
nS
er
ve
r>
>

W
eb

 S
er

ve
r

H
as
Al
lP
at
ch
es

Lo
ad
Ba
la
nc
er

Se
cr
et
Ro
am

in
g

Ac
ce
ss

Co
nn
ec
tT
o

D
en
ia
lO
fS
er
vi
ce

Ex
ec
ut
eA
rb
itr
ar
yC
od
e

Fi
nd
Ex
pl
oi
t

Fl
oo
dD
O
S

Se
m
an
tic
D
O
S

<
<
O
pe
ra
tin
gS
ys
te
m
>
>

Li
nu

x
AS
LR

An
tiM

al
w
ar
eI
ns
ta
lle
d

Ex
ec
ut
ab
le
Sp
ac
eP
ro
te
ct
io
n

H
as
Al
lP
at
ch
es

H
os
tF
ire
w
al
l

St
at
ic
AR
PT
ab
le
s

U
SB
Au
to
Ru
nD
isa
bl
ed

AR
PS
po
of

Ac
ce
ss

Ac
ce
ss
Th
ro
ug
hP
or
ta
bl
eM

ed
ia

Ac
ce
ss
Th
ro
ug
hU
I

D
en
ia
lO
fS
er
vi
ce

Ex
ec
ut
eA
rb
itr
ar
yC
od
e

Ex
ec
ut
eM

al
ic
io
us
Pa
yl
oa
d

Fi
nd
Ex
pl
oi
t

Fi
nd
U
nk
no
w
nS
er
vi
ce

<
<
So
ftw

ar
eP
ro
du
ct
>
>

A
pa

ch
e

D
ev
el
op
Ex
pl
oi
tF
or
Pu
bl
ic
Pa
tc
ha
bl
eV
ul
ne
ra
bi
lit
y

D
ev
el
op
Ex
pl
oi
tF
or
Pu
bl
ic
U
np
at
ch
ab
le
Vu
ln
er
ab
ili
ty

D
ev
el
op
Ze
ro
D
ay
Ex
pl
oi
t

Fi
nd
Pu
bl
ic
Ex
pl
oi
tF
or
Pu
bl
ic
Pa
tc
ha
bl
eV
ul
ne
ra
bi
lit
y

Fi
nd
Pu
bl
ic
Ex
pl
oi
tF
or
Pu
bl
ic
U
np
at
ch
ab
le
Vu
ln
er
ab
ili
ty

Fi
nd
Pu
bl
ic
Pa
tc
ha
bl
eV
ul
ne
ra
bi
lit
y

Fi
nd
Pu
bl
ic
U
np
at
ch
ab
le
Vu
ln
er
ab
ili
ty

G
et
Pr
od
uc
tIn
fo
rm
at
io
n

Bi
na
ry
Se
cr
et

H
as
Be
en
Sc
ru
tin
iz
ed

H
as
N
oP
at
ch
ab
le
Vu
ln
er
ab
ili
ty

H
as
N
oU
np
at
ch
ab
le
Vu
ln
er
ab
ili
ty

Im
pr
ov
ed
W
ith
St
at
ic
Co
de
An
al
ys
is

So
ur
ce
Co
de
Se
cr
et

W
rit
te
nO

nl
yI
nS
af
eL
an
gu
ag
es

<
<
N
et
w
or
kZ
on
e>
>

En
gi

ne
er

LA
N

D
N
SS
po
of

D
oS

Fi
nd
U
nk
no
w
nE
nt
ry
po
in
t

O
bt
ai
nO

w
nA
dd
re
ss

D
N
SS
ec

Po
rt
Se
cu
rit
y

<
<
N
et
w
or
kZ
on
e>
>

Co
rp

or
at

eL
A

N
D
N
SS
po
of

D
oS

Fi
nd
U
nk
no
w
nE
nt
ry
po
in
t

O
bt
ai
nO

w
nA
dd
re
ss

D
N
SS
ec

Po
rt
Se
cu
rit
y

So
ur
ce

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

O
pe
ra
te
s

Se
rv
er
Pr
od
uc
t

O
pe
ra
tin
gZ
on
e

O
pe
ra
tin
gZ
on
e

O
SP
ro
du
ct

Figure 2.6: A working example of a P2CySeMoL model, as defined using the EAAT object modeller,
modelling an attacker and two small networks with a single server.

18

The first attack step from F0 is the OrganiseParty(PhysicalZone) attack step. This is an
attack step we have introduced ourselves for testing purposes, and is not normally part of CySeMoL,
it models the probability that an attacker who has access to a physical zone can attempt to organize
a party in that area. CySeMoL evaluates the isAccessible operation of this attack step, in order
to determine whether it should be added to V1.

In the isAccessible operation of the OrganizeParty attack step, we encounter a proba-
bilistic distribution. The success probability of this particular attack step has been defined as being
cumulative Gamma distributed with parameters α = 0.014593 and β = 3630.152. We copied these
parameters from a different attack step, and used this resulting distribution to test the ProbLog
implementation of the Gamma distribution. Before starting the sampling process, this distribution
has been converted to the evaluation of a single probability using the ‘workdays’ parameter. Since
we use the default value of five workdays, the resulting success probability is

F(x) =
γ (α,β x)
Γ (α)

F(x) =
γ (0.014593,3630.152x)

Γ (0.014593)
≈ 0.91585

Analogous to this probability, the OrganizeParty attack step will be contained in V1 in roughly
91.6% of all samples.

The next attack steps are the ObtainOwnAddress attack steps for the CorporateLAN and
EngineerLAN network zones. In the P2AMF code of the isAccessible operation of this attack
step, we discover that this attack step is accessible when:

a) PhysicalAccess(PhysicalZone) ∈ V .

b) The PortSecurity defence is not operational.

Item a) is already satisfied at this point. However, we have yet to determine whether the
PortSecurity defence is operational for each network zone. Recall that we have defined evidence
for the PortSecurity(EngineerLAN) defence, as being disabled. This satisfies items a) and b)
for the EngineerLAN network zone, and therefore ObtainOwnAddress(EngineerLAN) is added
to V1. The PortSecurity defence has no implementation for its isFunctioning operation. In-
stead, the default implementation is used, which states that the defence is functioning in 50% of all
cases. Combining items a) and b) for the CorporateLAN network zone, we conclude that it will be
added to V1 in approximately 50% of all samples.

The search procedure described above is repeated until no new attack steps are reached. Ulti-
mately, a set of reachable attack steps is obtained for each sample, which is aggregated to estimate
the marginal success probabilities for each attack step.

19

Table 2.4: An overview of the model-driven-engineering languages and techniques discussed in
sections 2.5 and 2.6.

Framework Modelling General-purpose Model-to-model Model-to-text

Eclipse Modelling Framework Ecore OCL ATL Xpand

QVT

Eclipse Epsilon EOL ETL EGL

2.4 Model Driven Engineering

2.4.1 Introduction

In order to develop an extensible method for performing the vulnerability analysis of network
infrastructures, we have developed models for the representation of these infrastructures, and for
the definition of their components and how their vulnerability should be inferred. Such models
have the potential to become quite large, for example a telephone carrier must be able to have a
network infrastructure model in which each individual phone has to be modelled. Furthermore, we
want to support the adaptation of our models, without requiring that our analysis methods have to
be redesigned from scratch.

This type of problems also arise for software development, in which complex systems have to
be developed which might require to be supported for over 20 years. An example of where the
complexity of the long-term support of software is causing problems in practice, is the reliance of
some financial institutions on legacy systems written in COBOL[26, 74], a programming language
which is over 50 years old. With the need for new methods for the development of complex software,
with a focus on the design instead on the implementation details, standards which are based on
models rather than code have been developed. A well-known example of such a standard is UML,
which is frequently used for the specification of software architectures.

Model Driven Engineering (MDE), is the practice of employing models as a first-class entity in
the software engineering process[73], as opposed to computer programs. Due to the emergence of
methods for code-generation, and modelling standards (for instance UML[27] and XML[70]), it is
currently possible to use models for purposes other than for just the visualization of software design.
Techniques from MDE involve the transformation of models into other models and code generation.

For our purposes, we use the MDE techniques of modelling, code generation, model-to-model
transformations, and model-to-text transformations. In this section, we will discuss the relevant
aspects of these techniques, and will also go into detail on the concrete implementations of the
techniques which we use. For this research, we use two frameworks with implementations of
the techniques described below. In table 2.4 we provide an overview of the used model driven
engineering tasks, and their respective implementations. For an overview of meaning of the
abbreviations, we recommend section 1.7.

2.4.2 Modelling

Before we can do anything related to model driven engineering, we have to start with the construction
of models. In MDE, the construction of such models is structurally governed by using metamodels.
Generally, a model specifies the classes and their relations which are allowed occur in instances of
such a model. The notion of what ‘classes’ and ‘relations’ are, is determined through the metamodel.
Some common examples of metamodels are: the XML Schema Definition[70], Unified Modelling
Language[56], the Meta-Object Facility[60], and Ecore (part of EMF[76]).

20

Node

label : EString

Graph

Edge

label : EString

[1..1] target

[0..*] connections

[0..*] nodes

Figure 2.7: An (Ecore) model for representing directed multi-graphs.

For software development applications, developers need only focus on the last two layers of
modelling: the model and its instances. Consider the model as shown in figure 2.7, which is a
definition (represented using UML) of a model designed for representing directed multi-graphs.
This representation is defined using the Ecore metamodel from EMF. Figure 2.8 shows an instance
of the model, where the UML inheritance arrows indicate which class the instances correspond
to. All instances have their own values for the attributes defined in the model. Finally, figure 2.9
shows what the defined graph would look like. One way to obtain such a visual representation, is to
transform the graph model instance to the Graphviz[22] format, and use the dot tool to generate
the graph image.

2.4.3 Model-to-model transformation

One of the concepts which give rise to practical flexibility of MDE, is the concept of model trans-
formation. Model-to-model transformation is the act of taking one or more input models, and
transforming these models to one or more output models in a structured way.

Transformations are often described as being either horizontal or vertical. A horizontal trans-
formation uses the same source and target metamodel. Vertical transformations transform source
models to a target model with a different metamodel. Consider a model for a program written in C.
Performing a method-inlining optimization can be understood as transforming the C-program to a
different C-program. This is an example of a horizontal transformation. Compiling the C-program
to assembly code is an example of a vertical transformation.

Model transformations are applied to translate between multiple layers of abstraction[52].
Consider a social network application, where we model users who are connected to other users. We
could directly model the connection graph of the users, however, it makes more sense to add one
layer of abstraction, and use two models. One model for representing the users, and another for the
graphs (for instance, the model we defined in figure 2.7). Using model transformations, we are able
to achieve a ‘separation of concerns’, where the users model does not need to take any intricacies of
potential target models into account.

Furthermore, models can be reused for different purposes, provided that the models are correctly
separated from other models. Instead of generating a Graphviz program for our graphs, we could
also generate a database schema, or something totally different. One occasion where this reuse is
exploited, is when a pivot model is created (see figure 2.10). When using such a pivot model, multiple
models are transformed to an intermediate model. This concept follows the same principles as
intermediate compilation targets. Apart from providing more flexible support for new transformation
targets, using a pivot model also reduces the amount and the complexity of transformations which
need to be defined in order to transform between all models. The PVA model (see chapter 3) also
has the potential function as a pivot model.

21

Figure 2.8: An instance of the graph model of figure 2.7, with three nodes, and two edges.

The model transformations themselves are often specified using specialized model transformation
languages, such as QVT[52], ATL[44] and ETL[49]. These transformations languages are either
‘declarative’, ‘imperative’, or a mixture of the two. In declarative transformation languages, the
transformations are specified using rules. These rules in turn specify how to transform some element
from the source language to the target language. The order of applying the transformation rules
is determined by the transformation engine. Imperative languages explicitly specify the order of
transformations, they advocate a more procedural style of programming. In practice, features from
both declarative and imperative languages have their own strengths and weaknesses for practical
transformations[49]. Therefore, there are also languages which support a mixture of declarative
and imperative transformation specifications.

2.4.4 Model-to-text transformation

In addition to model-to-model transformations, a special type of transformation are those which
generate text output. From an abstract perspective, we can consider text output as simply another
type of model. However, because there are special tools for this class of transformations, we will
discuss this kind of transformation in more detail. Furthermore, we have implemented some of our
transformations as a model-to-text transformation (see section 4.5.4).

Using model-to-text transformation, it is possible to transform models to programs and other
structured text. Examples of potential target formats are XML, JSON, HTML, C, Java, LATEX, SVG,
Graphviz, or any other text-based format. From the perspective of software engineering, code-
generation is one of the most compelling applications of model-to-text transformations[73].

22

Flower

Petal_1

petal

Petal_2

petal

Figure 2.9: The graph as defined by figure 2.8.

Figure 2.10: Demonstration of a pivot model. Instead of having to create new transformations for
the new model, only one new transformation needs to be defined. The gains rapidly increase when
more models are added.

The concrete model-to-text transformation is defined using templates. Examples of some com-
mon template languages are Xpand[18] and the Epsilon Generation Language (EGL)[69]. These
languages contain specialized constructs to separate text generation from procedural code. For
instance, Xpand treats any tokens not inside guillemot signs (‘«’ and ‘»’) as text which is to be
generated. Another common features of template languages are aggregate operations over model
types, which allow the definition of operations for all objects of some type. This has the potential to
reduce the amount of code required to specify text generation over types which occur in different
contexts. For our work, we have used EGL, which we will discuss in more detail in section 2.6. Its
application for our work is discussed in sections 4.5.2 and 4.5.3.

Another concept which is relevant in the context of model-to-text transformation is its reverse,
where models are defined using Domain Specific Languages (DSLs). These languages are designed to
describe some model, and usually come with parsing technology (Xtext[24] is a popular framework
for this purpose) which is able to automatically generate the corresponding model elements, based
on a program written in a DSL.

23

1 context Person
2 inv validAge : self.age >= 18

Listing 2.1: An example of a simple OCL constraint.

1 context Person::befriend(stranger : Person) : Void
2 pre : not self.nemeses->contains(stranger)
3 post : self.buddies->contains(stranger)

Listing 2.2: An example definition of a method, with pre- and postconditions. In the example, we
define a befriend method, which takes another person as an argument. The operation may only
be executed when the argument is not in the list of nemeses (we assume that such a list exists) of
the current context. When the operation completes, we require that the buddies list contains the
person which was passed as the argument to the operation.

2.5 The Eclipse Modelling Framework

2.5.1 Introduction

The Eclipse Modelling Framework is a popular collection of open-source MDE tools[76]. It provides
facilities for the definition and execution of models, model transformations, (custom) domain
specific languages, and code generation.

The central part for modelling using EMF is the Ecore metamodel. It is defined in terms of itself,
and is used as the metamodel for all EMF other models. It is inspired by the MOF (Meta-Object
Facility) standard from the Object Management Group. To integrate with arbitrary EMF facilities
and tools, it suffices to support the Ecore metamodel. EMF provides two built-in model editors
for Ecore models, based on Eclipse. The first editor, the Ecore model editor, provides a view of the
tree structure of the model elements, and supports the specification of all Ecore features, according
to the Ecore metamodel. The second editor, the diagram editor, features a UML-like interface for
specifying views for Ecore models. In addition, it supports the creation of most features from Ecore
models. Diagrams are stored in aird files, which are coupled with the Ecore model. This separate
coupling (as opposed to storing the diagrams in the Ecore file, if that would be possible) enables
multiple diagrams to be created to allow for multiple different views of Ecore models.

2.5.2 Model invariants

In some cases, we want to restrict the amount of valid models, based on the values stored within
those models. For instance, if we have a class Person who has a field Age, we might want to require
that its value is always greater than zero. This is an example of a model which contains invariants.
For the specification of invariants on models, EMF provides the Object Constraint Language (OCL).
Using the OCLinEcore technology, these constraints can be embedded into Ecore models. OCL
constraints are specified for a context, usually an instance of a class. The aforementioned invariant
can be specified as shown in listing 2.1.

Apart from invariants, OCL also supports the specification of pre- and postconditions on opera-
tions. These pre- and postconditions are used to specify the state of the model before and after the
execution of operations. In listing 2.2, we have defined an example operation with a pre- and a
postcondition. Furthermore, the language provides a set-operations and a standard library with
auxiliary functions to enhance the modelling capabilities of the language.

24

1 <?xml version="1.0" encoding="ASCII"?>
2 <nl.utwente.fmt.pvai:PVAIContainer
3 xmi:version="2.0"
4 xmlns:xmi="http://www.omg.org/XMI"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 xmlns:nl.utwente.fmt.pvai="http://nl/utwente/fmt/pvai">
7 <attacker name="Fred"></attacker>
8 </nl.utwente.fmt.pvai:PVAIContainer>

Listing 2.3: An example of a XMI serialization of a PVAI model, containing a single instance of the
Attacker class, for which the name field has been set to ‘Fred’.

2.5.3 Model transformation languages

For model transformation purposes, EMF provides facilities for the specification and execution of
model-to-model transformations for the QVT and ATL languages. QVT is a set of model-to-model
transformation languages aimed at transforming MOF models into other MOF models. The difference
between imperative and declarative transformations as mentioned in section 2.4.3 is also observed
in the QVT languages. QVT provides a unidirectional imperative transformation language, as well
as a bidirectional declarative language.

ATL is a declarative model transformation language, which supports the transformation of a
set of input models to a set of output models. Its programs define transformation rules, where
the transformation engine determines a suitable transformation order for objects. The language
distinguishes non-essential operations from transformation operations through the support for
‘helper’ functions. These functions provide a better separation between transformation code and
calculations.

2.5.4 Serialization

XMI, which stands for XML Metadata Interchange[31], is a serialization format for MOF models based
on XML. It is commonly used as a encapsulation vehicle for passing models between transformation
steps in transformation workflows, and for storing model instances on a filesystem. Being based
on XML, it is also used for transferring model data using web services[23]. EMF contains an
implementation of XMI for the serialization and deserialization of Ecore models.

An example of a XMI serialization of our PVAI model (see section 3.3) is shown in listing 2.3.
In the first line of this example, we have the XML identification line which provides an indication
that the XML format is used, and contains some metadata which might be relevant to XML parsers.
The next tag denotes the existence of an instance of the PVAIContainer class. Lines 3 until
5 provide some metadata which describe the version and schema of the XMI implementation
which was used. In line 6, the namespace of the metamodel which is used is stored, which is
used by the XMI reader to reconstruct the model objects stored in an XMI file. Nested within the
PVAIContainer tag is an attacker tag, which specifies an instance which is contained in the
PVAIContainer.attacker relation. As there can only be one attacker instance in this relation
(see also section 3.3 and appendix A.3), the class of the attacker is not specified. The name field of
the attacker is specified using the name attribute of the attacker tag, and is specified as ‘Fred’. In
the last line, the PVAIContainer tag is closed, which concludes the container definition and the
XMI file.

25

2.6 Eclipse Epsilon

2.6.1 Introduction

In addition to the languages provided by EMF, Eclipse Epsilon is another framework for MDE tasks.
For our model-driven engineering goals, we will use the technologies and languages provided by this
framework. The goal of Eclipse Epsilon is to provide accessible and flexible task-oriented languages
for a wide range of model-driven engineering purposes.

The framework is centred around a newly defined general purpose language, the Epsilon Object
Language (EOL)[47, 48]. Using this language, it is possible to create, read and modify models. The
Eclipse Epsilon framework provides an execution engine for EOL, which runs on the Java Virtual
Machine. The Epsilon Object Language is designed in such a way that most of the OCL syntax is
also valid EOL syntax.

Eclipse Epsilon is able to interact with multiple model technologies, among which EMF and XML.
This is implemented through the Epsilon Model Connectivity (EMC) layer[47]. This layer provides
an abstraction to hierarchical models, and provides general operations such as the addition and
removal of classes, and the definition of inheritance. Models are loaded in read-only, write-only or
read/write mode, after which all other Epsilon tools are able to refer to the loaded models. The
Epsilon framework provides EMC implementations for models and metamodels stored using the
Ecore, XML and XMI formats. These implementations enable the tools from the Epsilon framework
to be used on EMF models.

2.6.2 The Epsilon Object Language

The Epsilon Object Language (EOL) is general-purpose programming language, which is used
as the base for all other languages from the Epsilon family. An important feature provided by
EOL is the ability to import code from other scripts, which greatly enhances the portability and
reusability of EOL scripts. EOL supports the iteration constructs often found in imperative languages,
specifically while loops, if-then-else and switch constructs, and collection iteration. Similar to the
helper functions from ATL, EOL introduces user-defined operations, which may be invoked in other
code. In order to quickly optimize expensive operations, EOL has a caching annotation, which
causes the engine to cache values for that operation.

The execution engine of EOL uses a dynamic dispatch mechanism[47]. This means that when
an overloaded method is called, the concrete method which will be invoked is determined during
runtime, based on the runtime types of its arguments. A similar dispatch mechanism is used by the
Groovy[77] and JavaScript languages, whereas Java implements a limited form of dispatch using
virtual methods. Nevertheless, EOL is able to import and use native Java classes when they are
available on the classpath of the execution engine. Other execution related features of EOL are the
support for exceptions and transactions. This allows scripts to gracefully handle potential errors
during execution.

Two very useful features introduced by EOL are the support for extension functions and proper-
ties[47]. An extension function is a new function which is defined from the scope of an existing class.
Such functions may refer to the methods and variables available within the public scope of such
classes, as if they were defined within the scope of the class itself. Extension functions are useful for
transformation purposes, as it allows the encapsulation of frequently encountered operations for a
single type. This allows EOL scripts to define additional functionality for objects without changing
their source code (which might not always available). An added advantage is that operations which
are only relevant from the context of the scripts are only used within those scripts, and do not
require additional code elsewhere. Extension properties are similar to extension functions, but
add a new field to existing class instances. This is useful to store intermediate results or auxiliary
information in existing model objects without having to make changes to the metamodel.

26

2.6.3 The Epsilon Transformation Language

We will now dive deeper into the task oriented languages themselves. The first task-oriented
language which we will discuss is the ETL language, the Epsilon Transformation Language, which is
oriented at the specification and execution of model-to-model transformations. The ETL language
extends EOL by introducing additional language features on top of the specification described in
section 2.6.2. Being a part of the Epsilon ecosystem, ETL is able to use the Epsilon Model Connectivity
Layer to support transformations from multiple input models to multiple output models[47].

From a programming perspective, the language is designed as a ‘hybrid’ transformation language
by supporting features from both the imperative and declarative styles of model transformation
programming. ETL introduces transformation rules which can be invoked to transform a source
entity to a number of target entities. On the other side of the spectrum, ETL allows to define a
complete model-to-model transformation using imperative EOL operations.

As mentioned, ETL introduces the concept of transformation rules. These language construct
define a (unidirectional) mapping from a single instance from one of the source models to one
or more instances from the target models. When the ETL execution engine is invoked on an ETL
program, normal rules are applied to all instances of the source type. The result of which is the
generation of new instances for the target models. Instead of transforming all instances, it is possible
to filter the selection of source instances by defining guards for the transformation rules. These
guards are defined as boolean functions over the input instance, which determines whether that
instance is applicable for transformation by the rule for which the guard is defined.

It is also possible to obtain the resulting objects from the transformations during the transforma-
tion by invoking the special equivalent or equivalents functions on instances from the source
model. Whenever possible, the ETL engine will obtain the transformed instance for the source
instance, which can then be accessed from the code which requested the transformation. Related
to this feature is that ETL supports so-called ‘lazy’ rules (a concept borrowed from ATL[45, 47]),
which are transformations which are not applied automatically, but only so when they are explicitly
requested by invocation of one of the equivalents functions.

Finally, ETL supports inheritance of rules to facilitate the transformation of hierarchical class
structures. A child rule which extends another parent rule first applies the transformation defined
in the parent rule, after which the child rule is executed, which obtains access to the transformation
result from the parent rule.

2.6.4 The Epsilon Generation Language

Another language from the Epsilon family which we use in our research is the Epsilon Generation
Language, or EGL. This language, which extends the EOL language (see section 2.6.2), is oriented
at model-to-text transformation, and is a template-based code generator[47]. Programs in EGL use
special separator tags (‘[%’ and ‘%]’) to distinguish between the dynamic and static parts of the
program. The static parts are directly exported to the output of the program, whereas the dynamic
parts are evaluated, and are able to alter their text output.

Within the dynamic parts, it is possible to use any features from the EOL language, including the
definition of new functions. The dynamic code has access to the special out parameter, which has
methods which will export text to the output. Instead of using the out parameter, it is also possible
to use the special [%=expr %] construct, which will evaluate expr and directly append its result
to the output.

EGL introduces the TemplateFactory class, which allows EGL scripts to load and manipulate
other scripts (called templates in this context). It is possible to add or change variables to other
templates, to procedurally execute their code and subsequently obtain the generated text. This
feature improves the modularisation and reuse of templates by allowing the development of dynam-
ically configurable general-purpose templates. These general-purpose templates can then be reused
within other templates.

27

Table 2.5: Truth table for some commonly used logic functions over boolean variables.

x y ¬x x ∧ y x ∨ y x → y x ← y

> > ⊥ > > > >
> ⊥ ⊥ ⊥ > ⊥ >
⊥ > > ⊥ > > ⊥
⊥ ⊥ > ⊥ ⊥ > >

2.7 Logic Programming

2.7.1 Propositional Logic

In this thesis we often refer to logic programming, therefore it makes sense to introduce the basics
of logic programming. However, we will begin by considering its theoretical origin: predicate logic
and propositional logic.

Propositional logic is a branch of logic, which is used for reasoning about propositions (hence
the name). These propositions take a truth value, they are either > (‘true’) or ⊥ (‘false’). Some
examples of a proposition are:

“It is currently raining”
“The TV is switched on”

“The house is empty”

Over these propositions, we define logic functions, which are mappings f : Bn → B of input
variables to a single truth value. In this thesis, we will refer to some of these logic functions, which
are listed in table 2.5. Using these functions, we are able to compose new complex formulae, which
allow us to specify more complex relations and facts about propositions. For example, consider the
following formula:

(R∧ T)→ (¬E)

We choose to interpret this formula as follows: R states that it is raining, T that the TV is switched
on, and E that the house is empty. This formula then specifies the proposition that if it is raining,
and the TV is switched on, then the house is not empty. Note that it is not of importance for the
construction of formulae whether they make sense, as this is dependent on the interpretation of the
formula.

2.7.2 Predicate Logic

Predicate logic (also known as first-order logic) extends propositional logic by adding quantification
over individuals to logic formula. Using quantification, we are able to specify statements over a
range of values from some domain. We use the for-all (∀) quantifier to quantify over all possible
values of the quantification domain, and the existence (∃) quantifier to specify that at least element
from the domain satisfies the statement. We list the following examples of formulae and an example
interpretation:

∀x ,y,z

�

(gt(x , y)∧ gt(y, z)→ gt(x , z)
�

x , y, z ∈ R,gt/2 : >, > is transitive

∃x [x 6= 0] x , 0 ∈ R, R contains values other than 0

∀x

�

∃y[x > 0→ x + y < 0]
�

x , y ∈ R, Mixed quantification example

28

Moreover, predicate logic introduces the concept of predicates. These are named groups of
atoms, variables, and other predicates. Their use includes the specification of relations between
other elements of the formula. For instance, the gt predicate in the example specifies a binary
relation between two variables. In the example, we interpret it as the ‘greater than’ relation for real
numbers. Predicates are identified by their name and the amount of arguments they require, the
latter amount is known as the ‘arity’ of a predicate, and is denoted using a forward slash notation.
As the gt predicate from our example carries two arguments, we refer to it as gt/2.

The statements of these examples all hold for their respective domains, however, we are free
to specify false statements. Finding a satisfying interpretation for an arbitrary formula in general
first-order logic is undecidable (it is possible to express Peano arithmetic in first-order logic)[29, 81].

2.7.3 Horn Clauses

Horn clauses are defined as a subset of predicate logic[79]. A Horn clause is a universally quantified
disjunction of clauses, in which at most one clause can be positive, whereas the other clauses must
be negated. For instance, we can have the following Horn clause:

∀X [¬cat(X)∨ animal(X)]

A common notation for Horn clauses uses a conjunction of clauses and inverse implication. The
implication-notation for the previous example is:

∀X [animal(X)← cat(X)]

which can be interpreted as “If something is a cat, it must be an animal”. As Horn clauses are defined
as always being universally quantified over all variables, the forall quantifier is usually left out.

2.7.4 Logic Programs with Annotated Disjunctions

One method for integrating probabilistic components into Horn Clauses are Logic Programs with
Annotated Disjunctions[82] (LPADs). Vennekens et al. demonstrate[82] that LPADs can be used to
express Bayesian Networks, and other probabilistic models. LPADs extend logic programming by
adding (disjunctive) probabilities to the left-hand side of rules. Such rules are of the following form
(as defined by [82]):

(h1 : α1)∨ . . .∨ (hn : αn)← b1, . . . , bm.

Here, αi defines the probability that atom or literal hi holds, given that the right-hand side of the
rule can be proven. To maintain correctness, αi must be in the range [0, 1) ⊂ R. As an example, we
can express the tossing of a coin using LPADs in the following way:

(heads(coin) : 0.5)∨ (tails(coin) : 0.5)
← toss(coin).

29

2.7.5 ProbLog

ProbLog[14] builds on the ProLog logic programming language[11], which is a declarative language
with a focus on logic reasoning. Programs defined in ProLog are analogous to a set of Horn clauses.
Being based on ProLog, ProbLog inherits most of its syntax elements, including lists and tuples[15].
The most notable non-supported operations are the cut-operator (!/0) and the if-then-else rule
(if/3). Instead of just > and ⊥, ProbLog labels each fact with the probability that it is true[14].
By supporting this syntax, ProbLog introduces support for LPADs, which is demonstrated by the
following ProbLog program:

1 0.5::heads1.
2 0.6::heads2.
3 twoHeads :- heads1, heads2.
4 query(heads1). % 0.5
5 query(heads2). % 0.6
6 query(twoHeads). % 0.3

The predicate 0.5::heads1 indicates that if this predicate were sampled, it would be found to be
> in 50% of all cases. By consisting of a conjunction, the twoHeads predicate can only be proven >
when the both the predicates heads1 and heads2 are proven >. The query/1 predicate instructs
ProbLog to infer the probability of its argument.

Another feature of ProbLog is the support for ‘intensional probabilistic facts’. These facts are of
the following form:

1 0.8::hearsAlarm(X) :- person(X).
2 person(john).
3 query(hearsAlarm(_)).

During analysis, the variable X in this example is substituted with all suitable ground facts. In this
example, there is only a single ground fact, namely person(john). The resulting ground program
is as follows:

1 0.8::hearsAlarm(john) :- person(john).
2 person(john).
3 query(hearsAlarm(john)). % 0.8

These intensional probabilistic facts are useful for specifying multiple probabilistic rules at once.
In addition to constant probability annotations, ProbLog also supports variable probability

annotations, provided that they can be evaluated at runtime. We use this feature to implement
probability distributions. For instance, consider the following program:

1 P::expCDF(X, Lambda) :- P is 1 - exp(-Lambda * X).
2 query(expCDF(0.1,8)). % 0.550671

ProbLog provides auxiliary functions for floating point calculations, of which the exp/1 function
(which implements f (x) = ex) used above is an example.

30

2.7.6 Probabilistic inference of ProbLog programs

The latest engine of ProbLog (ProbLog2) is implemented in Python, and therefore runs on all systems
which have support for the Python language. ProbLog supports multiple knowledge compilation tools,
among which Sentential Decision Diagrams[46], and two d-DNNF (Deterministic Decomposable
Negation Normal Form) compilers DSHARP[58] and C2D[13]. Inference using Sentential Decision
Diagrams (SDDs) is the most recent method for inferring marginal probabilities in ProbLog programs.
We will briefly describe the how ProbLog uses SDDs for inference of probabilistic logic programs,
for the technical details, we refer to the Fierens et al.[25].

First, the ProbLog program is grounded, which means that all intensional facts are instantiated,
and that as many variables are instantiated to predicates which are true in their context. This
process is similar to finding the Least Herbrand Model[25]. During grounding, ProbLog reduces the
program by removing rules, evidence and facts which are not required to prove the queries in the
program. The resulting program is usually smaller, which saves time in the following analysis steps.

When the ground program has been constructed, it is converted to CNF, in such a way that
the closed-world assumption of ProLog programs is retained. This is achieved by applying Clark’s
completion[10, 41], along with cycle-breaking for recursive rules[25]. Next, any evidence is included
into the formula by constructing the conjunction of the formula for the evidence and the program
formula.

The resulting logic formula is converted to a weighted formula, by assigning weights to each
truth value of each proposition with an annotation in the ground program. The value of each
weight is equal to the probability as specified in the ground program. After this step, the problem of
inferring the marginal probabilities has been transformed to an instance of the WMC (Weighted
Model Counting[30]) problem.

The weighted model counting problem is solved by compiling the formula into a sentential
decision diagram using the approach described by Vlasselaer et al. [83, 84]. In the same work, the
authors define a method for efficiently solving the WMC problem when the SDDs have been obtained.
The solution to the WMC problem is interpreted within the context of the ProbLog program, and
the marginal probabilities are presented to the user.

2.7.7 Additional ProbLog features

In addition to the normal mode in which the marginal probabilities of a probabilistic logic program
are inferred, ProbLog supports different operational modes. We will briefly two modes which overlap
the subject matter of this thesis, the ’shell’ mode and the ’most probable explanation’ modes.

Shell mode ProbLog features a ‘shell’ mode, where users are able to load ProbLog programs, and
then execute queries against these programs. This mode of operation is more similar to how ProLog
implementations usually behave. The ‘shell’ feature uses the shell of the operating system, and can
therefore be used by external software to interactively execute queries.

Most probable explanation Another feature of ProbLog is its ‘most probable explanation mode’
(MPE). For this mode, ProbLog uses the concept of ’possible worlds’, which form the set of assignments
of the probabilistic clauses of a given program. The MPE mode determines the possible world, where
all evidence and queries are true, with the highest probability.

31

2.8 Parser generators

2.8.1 Introduction

In order to transform the P2AMF programs used by CySeMoL, we require a method for systematically
analysing and storing such programs. Building a data structure for the representation of languages
is known as ’parsing’. In this section, we will discuss the theory and practice regarding parsing. We
will first introduce the notion of formal languages, and grammars over languages.

A (formal) language L over an alphabet Σ, is defined as a set of strings of words Σ∗ from that
alphabet, i.e. L ⊆ P(Σ∗). When we put constrains on the structure of words which is allowed to
occur in languages, we obtain classes of languages which satisfy these constraints.

One method for specifying structural constraints on a language are (formal) grammars. Gram-
mars define how valid sentences of a formal language can be generated by applying transformation
rules, starting from a starting symbol S. For example, we can define the language over the alphabet
{a} of sequences of ‘a’ symbols with arbitrary length as follows:

S→ ε
S→ Sa

where ε stands for the ‘empty string’, the string containing no symbols at all. By starting from the
start symbol S, we can form any sequence of ‘a’ symbols by applying the two rules. For instance, the
following derivation proves that the string ‘aaa’ is in our language:

S S→ Sa

Sa S→ Sa

Saa S→ Sa

Saaa S→ ε
aaa

Note that the second rule is a recursive definition, the symbols occurring on the left-hand side of
the rule, also appear on the right-hand side.

In this example, we have used the two types of symbols which occur in grammars: terminal (a)
and non-terminal (S) symbols. Non-terminal symbols are not part of the alphabet of the language,
and serve as intermediate symbols used to structure the application of rules. Terminal symbols on
the other hand are part of the language alphabet, and will eventually form the sentences generated
by the grammar.

Similar to the restrictions we can impose on languages, we can create classes for grammars, by
restricting the form of the transformation rules. These restrictions have given rise to the Chomsky-
hierarchy, which divide all grammars into four categories: regular grammars, context-free grammars,
context-sensitive grammars, and unrestricted grammars. For the specification of parsers, we often
use grammars from the family of context-free grammars or CFGs. CFGs are defined as grammars
which only have a single non-terminal symbol at the left-hand side of their rules. This means
that the application choices of rules depend on non-terminals only, and not on other terminals or
non-terminals (e.g. context) next to some non-terminal. For instance, the previously shown example
of a grammar is in fact a context-free grammar.

32

Table 2.6: EBNF operators, and their function.

Operator Function

<a> `|' Choice operator, which specifies that either <a> or is a valid alternative.

<a> ‘ ’ Concatenation operator (empty space), which specifies the concatenation of
 after <a>.

<a> `?' Optionality, which specifies that <a> is allowed to be included, or left out.

<a> `*' Kleene-star operation, which specifies zero or more consecutive repetitions
of <a>.

<a> `+' Alternative repetition operator, specifying that <a> should be repeated one
or more times.

2.8.2 Extended Backus-Naur Form

One of the more popular grammar normal forms for specifying context-free grammars for parsers, is
the Extended Backus-Naur Form (EBNF). Grammars written in EBNF form a set of production rules,
which specify how all valid strings from a given language can be generated, starting from the root
symbol S. An EBNF production rule has the following form:

<rulename> ::= <rulebody> ;

where the rule body can contain other rules, or terminals. By defining multiple rules, the grammar
can be specified in a structured and intuitive manner. Furthermore, EBNF introduces special
operators, which we list in table 2.6. These operators are used to define more complex patterns of
rules and non-terminals.

2.8.3 ANTLR4

ANTLR4 (ANother Tool for Language Recognition), is a tool for generating parsers for the class of
ALL(*) grammars[64]. The design goals of ANTLR4 are focused on ease-of-use in favour of speed.
The generated parsers however, are able to efficiently parse grammars in practice.

The ANTLR4 file format is analogous to an EBNF grammar, with additional instructions for the
generated code. ANTLR4 is able to generate a parser program which is able to recognize whether
a string conforms to the specified language. Additionally, ANTLR provides the parse tree which
represents the rule application choices of the parser. Another useful feature is the support for
labelled rules, which allows the definition of a label for terminals or non-terminals in a rule, which
will be present in the parse tree. We use this feature to label the arguments of our binary expression
rules, which provides us convenient access to these arguments.

In order to smooth the integration of generated ANTLR parsers in existing projects, ANTLR is
able to generate listener interfaces. These interfaces allow existing code to be notified of the parsing
of elements from the language, and allows the code to access and query the generated parse tree.
When compared with the previous version, ANTLR3, the parse tree of ANTLR4 is better accessible.
A common usage scenario which has been improved is the representation of nodes formed by the *
or + operations. The ANTLR4 tree nodes representing that operation provide a list interface to such
rules, which improves the accessibility of the information in these nodes.

33

2.9 Conclusion

In this chapter, we have discussed the tools and technologies which we use in our work. We have
introduced CySeMoL and thoroughly explained the modelling features it provides, and the details of
its vulnerability analysis. In the following chapter, we will use Model-Driven Engineering principles
for the construction of models which will capture the information used for our new vulnerability
analysis. Furthermore, we construct a model for the representation of a ProbLog program, for which
we have developed a model-to-text transformation which is able to generate a valid ProbLog program
from such a model. In order to reconstruct the vulnerability analysis of CySeMoL in ProbLog, we
apply a model-to-model transformation from our vulnerability analysis models to our ProbLog
model.

The existing CySeMoL vulnerability model contains a specification of how the vulnerabilities
should be derived from a network infrastructure model. This specification is written in a probabilistic
programming language (P2AMF), which we automatically parse using ANTLR. The resulting parse
tree is used to include the derivation in our own vulnerability analysis model.

34

Chapter 3

The Probabilistic Vulnerability
Analysis model

3.1 Introduction

Following our first goal (see section 1.3), the improvement of the analysis speed of the vulnerability
analysis of CySeMoL, we have investigated an alternative method of analysis using ProbLog. The
details on how the probability of a successful attack can be inferred for a given network infrastructure
is defined in the threat model used by CySeMoL. We aim to reuse the threat model of CySeMoL as
much as possible, given that it has been developed as a result of years of research[36]. CySeMoL
and its analysis have been documented in published articles, and the documentation of EAAT is
publicly available from the KTH website[37, 36, 35, 43, 7]. However, both the analysis and the
metamodel of CySeMoL depend on the availability of the EAAT framework, and are not accessible
or usable outside of the EAAT ecosystem.

From our investigation of iEaat files, the storage format used by EAAT, we have derived a
method which allows us to access the threat model of CySeMoL outside of EAAT. For a description
of the iEaat format, and how we are able to extract information from these files, see section 4.2.
Guided by these results, we have to choose between the following two approach options:

1. Transform the information from an iEaat file directly to a ProbLog program.

2. Use an intermediate pivot model, and transform the information from an iEaat file to this
model. Next, define an additional transformation to ProbLog.

We have opted to choose the approach as described in item 2, the rationale for this choice is twofold:
First, we aim to achieve our second and third goals (see section 1.3) which prescribe both the input
to the vulnerability analysis, as well as the analysis itself to be extensible. The approach of item 2
has more potential for achieving these goals, as each step can be implemented by different means.
Second, the iEaat file contains a deliberate separation between the definition of the vulnerability
analysis, and the definition of network infrastructure under analysis. We foresee that for real
networked computer systems, the network architecture may change rapidly, whereas the component
definitions and the threat model will be subject to change over longer time periods. The approach
in item 2 allows to retain this separation, which potentially will result in a more flexible and faster
method for performing the vulnerability analysis of CySeMoL using ProbLog.

35

Figure 3.1: A schematic overview of the transformation process of transforming CySeMoL models
stored as iEaat files into ProbLog programs. Details of the transformations steps are shown in
table 4.1 and in chapter 4, where we discuss the design of the model transformations.

In figure 1.1, we show our design of the process for extracting the information stored in iEaat
files into a pivot model, and how the pivot model is transformed to a ProbLog program which is
used to perform the intended vulnerability analysis. Due to the separation between the specification
of the vulnerability analysis and the definition of the input network infrastructure, we have decided
to split the pivot model into two models. We refer to the vulnerability specification model as the
Probabilistic Vulnerability Analysis (PVA) model, and to the network infrastructure instance model as
the Probabilistic Vulnerability Analysis Instance (PVAI) model. Ultimately, the PVA and PVAI models
are transformed into a ProbLog program. In order to reduce the complexity of our transformation
scripts, we employ an additional intermediate model which represents ProbLog programs. We have
developed a model-to-text transformation which generates ProbLog programs from instances of the
ProbLog model.

The complete system of models and model transformations is shown in figure 3.1. This figure
shows the parts of a CySeMoL model stored as an iEaat file on the left hand side, and the output of
ProbLog on the right hand side. The rest of the figure shows all the intermediate steps of the process
which we employ to obtain ProbLog programs when starting with CySeMoL models. In this figure,
we also show the role of the PVA and PVAI models as a pivot model; changing the vulnerability
analysis amounts to the replacement of the ‘ProbLog’ block of models and model transformations.

In this chapter, we discuss the details of the design of the PVA, PVAI and ProbLog models, and
the design choices made during the development of these models. We cover the design of the
transformation scripts in chapter 4, and we discuss the implementation of these scripts in chapter 5.

3.2 Probabilistic Vulnerability Analysis model design

3.2.1 Overview

CySeMoL can not easily be used outside of the EAAT environment, which obstructs the possibility to
extend its analysis or replace it with alternative methods. In order to retain these abilities, we choose
to define our own model using a model-driven approach. Concretely, model-driven entails that
we define the PVA, PVAI and ProbLog models using metamodelling. The aforementioned models
are defined as EMF models in the Ecore format (see sections 2.4 and 2.5). By using EMF and the
industry-standard Ecore format, we greatly enhance the extensibility and usability properties of
our models.

36

The PVA model is designed to capture the semantics of EAAT class models, tailored to the class
model defined by CySeMoL. In practice this means that, using the PVA model, we are able to
represent the current definition of CySeMoL (version 2.3), including all assets, defences, attack
steps, and derivations. Using the PVA model, we are able to extract and store the definition of the
threat model of CySeMoL from iEaat files.

During the discussion of the PVA model, it can be helpful to review the class diagrams listed in
appendix A.2. These diagrams provide a schematic overview of the structure of the PVA model. Due
to its structural size, the model diagrams have been split into functional units in order to improve
their readability.

3.2.2 Structure

In our PVA and PVAI models, we want to support the EAAT workflow which is used for the modelling
of network infrastructures and the analysis of their vulnerabilities. In P2CySeMoL, related assets,
attack steps and defences have been grouped into ‘templates’ (see also section 2.3.3). During the
modelling of the network architecture, structures of these templates are composed together in order
to construct a valid model of assets, and their associated attack steps and defences. With this use in
mind, we have divided the PVA model into three parts:

1. The concrete part, which is used to model network components.

2. The template part, which groups of concrete parts in the form of templates.

3. The probabilistic expression part, which is used to model the P2AMF code.

The three parts are joined together by the PVAContainer class, which serves as the root of the
model. The PVAContainer class holds a reference to all concrete and template classes.

All top level classes (those classes with PVAContainer as a parent) implement the PVAType
interface. This interface ensures all implementing instances are uniquely identifiable through the
use of a 64-bit UUID. In addition, it is possible to assign a human-readable name. The design choice
was made to allow names to occur more than once, while still maintain support for correct XMI
serialization (see also section 2.5). A common scenario in which the use of these UUIDs is required,
is with templates and asset naming: as CySeMoL defines many (10+) templates with the same
name as an asset, instances for these classes are not globally identifiable by their name only.

3.2.3 Individual model components

CySeMoL is defined using the rich feature set of EAAT. However, for our goals we are only required
to model the vulnerability analysis provided by CySeMoL. For this reason, we refrain from defining
a model for the representation of arbitrary EAAT models, but focus on CySeMoL features instead.
Consequently, explicitly model Assets, Defences, Attack Steps, and the Attacker, instead of modelling
EAAT classes.

The Assets model the core network components and systems. In the context of CySeMoL, these
components can range from individual systems to users, networks, data flows, and office spaces.
The classes representing such assets are modelled as the AssetType class in the PVA model.

These assets can be attacked by performing a sequence of Attack Steps (modelled as the
AttackStepType class). An AttackStepType always has one AssetType as its target. Some
attack steps are only available when some prerequisite attack step has been completed first (the
case where multiple attack steps need to be completed is modelled through the P2AMF code). This
feature is modelled using the ‘enables’ edge. In CySeMoL an attack step being enabled means that
its code for determining its success can be evaluated. We store this code in the probabilistic property
which is contained in the ‘succeeded’ edge. For details on how the probabilistic code is modelled in
our PVA model, we refer to section 3.2.5.

37

A BR A BtoB
toA

Figure 3.2: The example relation R between classes A and B, and their respective views.

For the purpose of modelling of countermeasures to attacks, CySeMoL has the notion of defences.
We model defences using the DefenceType class. In CySeMoL, whether defences are functioning
is a binary state, ergo defences are either functioning or they are not. Furthermore, defences
can become less or more effective, depending on external factors such as completed attack steps.
These properties are all modelled in the same fashion as attack steps, by the probabilistic property
contained in the ‘functioning’ edge.

EAAT implements class inheritance, which has the same semantics as Object Oriented inheritance.
CySeMoL leverages the inheritance support for the implementation of default behaviour of operations.
In particular, defences are specified as having a 50% probability of functioning by default. And
attack steps succeed by default if they are enabled. In the PVA model, this behaviour is modelled
by defining the implementation of probabilistic properties as optional. The intended semantics
are such that when the implementation is absent, the default behaviour is generated. When an
implementation is not absent, the behaviour specified by the probabilistic property is used.

3.2.4 Connections

EAAT supports the definition of bi-directional relations between arbitrary classes. In the PVA model,
we chose to implement this feature using uni-directional edges. The class used for edges between
attacks, defences, and attack steps is the ConcreteConnection class. The rationale for this design
choice is that uni-directional edges are more flexible, given that bi-directional edges can be trivially
implemented by using two uni-directional edges instead.

The bi-directional relations from EAAT support different labels for each relation, depending on
the class at each end of the relation. Consider the example of figure 3.2, where we have defined a
relation R between two classes A and B can have be navigated from A to B by the label ‘toB’, and
from B to A by the label ‘toA’. To be able to refer to the local navigation labels, connections in the
PVA model always have a ‘label’ field, which reflects this feature from EAAT. The direction of each
label is stored in the model by assigning the connections with the correct labels to their respective
owners.

Another feature from EAAT are the so-called ‘derived’ connections, which consist of a sequence
of other existing relations. These derived connections are used to simplify the navigation of long or
complicated paths of relations in a class model. Derived edges are also bi-directional, however, the
path of relations is specified from the perspective of the owner of the relation. We implement these
derived edges in the VirtualConnection class, which stores a list of the relations which have
to be traversed. Given our design choice for uni-directional edges, we encounter a slight problem
here, as we have to traverse the path in reverse for one end of the relation. We solved this problem
by storing whether the path of a single virtual connection has to be traversed in reverse using a
boolean variable.

38

3.2.5 Probabilistic expressions

In the PVA model, the ‘functioning’ and ‘succeeded’ properties of the DefenceType and
AttackStepType classes represent probabilistic properties. In CySeMoL these are the
AttackStep.likelihood and Defense.functioning properties, which are specified using
P2AMF. In the implementations of the CySeMoL properties, we noticed the following recurring
patterns:

• Probability distributions are defined before any other code through ‘let ... in’ declarations.

• Probability distributions are always referred to by their name, and are never defined inline.

• A check whether some defence is functioning always has the same syntactical form, all such
checks are always specified in the exact same way.

• A check whether some attack step has succeeded always has the same syntactical form.

• The code sometimes contains null checks for some reference, the target of these references
are always assets.

We verified whether these observations hold for all P2AMF code blocks in the P2CySeMoL model by
writing a parser grammar conforming to these observations. In sections 4.3.3 and 5.3.5, we tread
into detail on the development and specification of these grammars. The generated parser from the
grammar was able to correctly parse all P2AMF code blocks, which confirms that these observations
apply to all current P2AMF code of CySeMoL.

We model the implementation of the probabilistic properties as single expressions, which are
allowed to use an arbitrary number of named probability distributions. The expressions may
contain references to existing concrete types, where the scope of the reference is the owner of the
probabilistic property. The result of the expressions is a number in the range [0, 1] ⊂ R, which maps
the probabilistic property to the probability that the property will be evaluated to ‘true’.

A probabilistic code block may define an arbitrary number of independent probability distribu-
tions which are (implicitly) parametrized by the amount of time an attacker has. These distributions
are identified by a unique name within the rest of the code. Our current model supports the proba-
bility distributions used in P2CySeMoL (see section 2.3.7). This amounts to the following types of
probability function:

a) The Bernoulli distribution.

b) The Exponential cumulative distribution function.

c) The Exponential probability density function.

d) The Normal probability density function.

e) The Log-normal cumulative distribution function.

f) The Gamma cumulative distribution function.

The metamodel of the probabilistic code partially reflects the abstract syntax tree of the P2AMF
code. We define the following operands:

g) Constant probabilities, this includes 0.0 for ‘false’ and 1.0 for ‘true’.

h) One of the declared probability distributions.

i) A reference to some defence, which tests whether this defence is functioning.

j) A reference to some attack step, which tests whether this attack step has been completed.

k) A reference to some asset, which tests whether this asset can be obtained by following the
provided reference.

39

PhysicalZone

<<PhysicalZone>>

Access

<<PhysicalAccess>>

Likelihood

Likelihood_InjectEvidence

Likelihood_EvidenceToInject

PhysicalAccessToZone(PhysicalAccessToZone : PhysicalZone --> NetworkZone)

PhyicalAccessOS(PhyicalAccessOS : PhysicalZone --> OperatingSystem)

ClientPhysicalAccess(ClientPhysicalAccess : PhysicalZone --> ApplicationClient)

ServerPhysicalAccess(ServerPhysicalAccess : PhysicalZone --> ApplicationServer)

Source(Source : AttackStep --> Attacker)

Ref94

physicalAccess

physicalZone

Figure 3.3: A demonstration of the definition of the PhysicalZone template of CySeMoL as
displayed in the EAAT class modeller. Note that the small gray boxes represent potential external
connections. For example, the Access instance can be connected through a ‘Source’ edge to an
instance of the class Attacker.

We can combine the leaf nodes using one of the combining elements. These are the following:

l) Probabilistic And, which returns the probability that both leaves evaluate to ‘true’.

m) Probabilistic Or, which returns the probability that at least one of the leaves evaluates to ‘true’.

n) Probabilistic Not, which returns the probability that its leaf evaluates to ‘false’.

o) Probabilistic If-Then-Else, which returns the probability that both its condition and the
true leaf will evaluate to ‘true‘ or that its condition will evaluate to ‘false’ and its false leaf
evaluates to ‘true’.

The aforementioned components are sufficient to express the P2AMF code which occurs in P2CySeMoL.
This was verified by transforming the P2AMF code to the PVA model. This specific part of the trans-
formation is described in section 4.3.3.

3.2.6 Templates

On top of the concrete vulnerability analysis classes (those classes which subclass Asset,
AttackStep or Defense), CySeMoL utilizes the ‘template’ feature of EAAT. This feature introduces
the definition of collections of interconnected class instances. In the object modeller, instances of
these templates can be defined and connected to other templates or class instances. CySeMoL uses
these templates to conveniently define complex structures of attack steps, assets and their defences.
This facilitates the construction of models from reusable components. In addition, the templates are
used to filter the displayed attack steps for their corresponding asset. For example, intermediate
attack steps are often hidden to improve the readability of the analysis results. In figure 3.3, we
show the contents of the PhysicalZone template definition as they are displayed in the EAAT
class modeller. When used in the object modeller, the concrete template is displayed as shown in
figure 3.4.

We have implemented our interpretation of the templating feature from EAAT in the PVA model
as well. Our interpretation of templates defines a template as a structure which specifies an arbitrary
number of concrete types which may or may not be connected to other concrete types. The intended
purpose of the templates in the PVA model is to generate a collection of class instances along with
their connections during the analysis for each template instance.

40

<<PhysicalZone>>
PhysicalZone

Access

<<Attacker>>
Attacker

Workdays

Source

attacker

attackStep

Figure 3.4: The Attacker and PhysicalZone template as displayed when used in the EAAT
object modeller. Note that the ‘Source’ edge represents a relation between class instances defined in
both templates.

The PVA model distinguishes intra-template connections from extra-template connections. The
extra-template connections mimic the ‘port’ feature from EAAT, which allows templates to support
connections to classes outside templates. The classes which are responsible for the intra-template
connections are the TypeInstantiation and InstantiationConnection classes. When a
template instance is defined in the PVAI model, it denotes the generation of instances represented by
these two classes. To facilitate this, these instantiation classes keep a reference to the concrete type
the generated instances will have. In other words, the ‘concretization’ edges specify the concrete
type of the generated instances during the analysis. The extra-template connections are specified as
connections to concrete types, in the same fashion as the ports from EAAT (we will demonstrate
how these external connections are populated when we introduce the PVAI model in section 3.3).

EAAT allows to specify arbitrary properties from entities inside templates as ‘template attributes’.
This causes these attributes to show up in the object modeller (for example, see the likelihood
property of the PhysicalAccess attack step in figures 3.3 and 3.4). This feature is used by
CySeMoL to display the success probability of attack steps and the likelihood that defences are
functioning. The only attributes referenced by CySeMoL happen to correspond to our probabilistic
properties, so it suffices to include a reference to these properties in the PVA model.

3.3 Probabilistic Vulnerability Analysis Instance model design

3.3.1 Introduction

In the previous section, we have laid out the general design of the Probabilistic Vulnerability Analysis
model. In the PVA model, we have included the ability to specify templates which are used to model
collections of assets, attack steps and defences. The PVA model is designed to the specification of
the components which constitute network infrastructures.

In order to facilitate the definition of concrete network infrastructures, we have developed the
Probabilistic Vulnerability Analysis (PVAI) model. The PVAI model serves as an intermediate model
for modelling the information specified using the Object Modeller from EAAT (see section 2.3.3). Such
a concrete infrastructure is defined as a set of instances of templates, which may be interconnected.

In this section, we will discuss the design of the PVAI model. Similar to the PVA model, we have
included the class diagrams of the PVAI model in appendix A.3. We have also developed a method
which is able to create PVAI models from the information stored in iEaat files. The details of this
method will be discussed in section 4.4.

To maintain the consistency of PVAI models, we require that a set of model invariants is enforced.
These invariants and their definition are listed in table 3.1. When we require one of the invariants,
we will refer to the names as listed in this table.

41

Table 3.1: The PVAI model invariants

n Entity label Invariant

INV1 EntryPoint : E E.target ∈ E.targetTemplateInstance.definition

.instantiations

INV2 Evidence : Ev Ev.target ∈ Ev.propertyOwner.properties

INV3 ConnectionTemplate : C C .source ∈ C .eContainer.instantiations

INV4 ConnectionTemplate : C C .target ∈ C .targetOwner.instantiations

INV5 ConnectionTemplate : C C .definition ∈ C .source.concretization

.connectedTo

INV6 ConnectionTemplate : C C .definition.target== C .target.concretization

Similar to the PVA model design, we have defined the PVAIContainer class, which serves as
the root container class for PVAI models. The root container holds references to all top-level classes
through the PVAIType interface. This interface is also used for objects which must be uniquely
identifiable. In this sense, the PVAIType interface is similar to the PVAType interface from the PVA
model. Furthermore, we use a unique 64-bit unsigned integer is used for identification, and an
optional name to enhance the readability for humans.

In addition to the classes implementing the PVAIType, the root container also maintains a
reference to a single Attacker object. We observe that every meaningful analysis in CySeMoL
requires an attacker. In our model, we generalize CySeMoL’s analysis to a single attacker, we will
discuss our rationale for this decision in section 3.3.5.

3.3.2 Template instances

Central to the usability of EAAT is the definition of templates (as discussed earlier in section 3.2.6). In
CySeMoL it is possible to create models using a mixture of templates and concrete classes. However
the use of concrete classes is prone to human error, as it is possible to create incomplete or invalid
models. Therefore, in order to prevent modelling mistakes, we enforce the use of templates in the
PVAI model by not supporting concrete classes in the instance models. An additional advantage is
that templates are able to encapsulate complex interactions between components, and filter only
the relevant information for users.

As mentioned before, a PVAI model consists of a set of template instances, along with an
attacker. The TemplateInstance class reflects the instantiation of the template defined in a
TemplateDefinition object. The template instance holds a reference to its definition object
through the ‘definition’ edge. The instantiation of a template comprises the creation of instances
for all TypeInstantiation objects of the template definition. By the use of an additional
TemplateInstance class, we allow the instantiation of multiple templates of the same type.
Usage within CySeMoL of this feature is demonstrated in figure 2.6. EAAT allows evidence to be
defined on a per-template basis. To implement this, the TemplateInstance class also keeps track
of its specified evidence through the ‘evidence’ relation.

3.3.3 Template connections

In CySeMoL it is possible to connect template instances. This is performed by drawing lines between
templates, and selecting the desired relation if multiple types of relations are allowed. These
connections actually reflect connections between instantiations instead of the templates themselves.
This is also displayed in the Class Modeller of EAAT, as shown in figure 3.3.

42

In the PVAI model, connections between templates are associated with the source template. The
model class reflecting this is the ConnectionTemplate class. To maintain coherence with the
CySeMoL semantics, we also store the definition, source and target of the template connection. Note
that we could also model the template connection as an association class on the relation between
two template instances. However, the framework in which we define the PVA and PVAI models
(EMF, see section 2.5) does not support association classes, which means that the current design
with 1 incoming and 4 outgoing edges is a workaround, resulting in a substandard class diagram.
In order to maintain model consistency we define invariants INV4, INV5, INV6, and INV7, to ensure
that all defined template connections remain valid.

3.3.4 Evidence

Another important feature of CySeMoL is reasoning under evidence. We interpret this feature as
casting the outcome of a probabilistic property to a value of either zero or one. Effectively, this means
that the evidence is assumed, and that all other probabilities are conditioned with the evidence.

We restrict the use of evidence to the following two cases:

1. Success or failure of an attack step.

2. Whether a defence is functioning or not.

In our metamodel, this is reflected by the Evidence class, which has a ProbabilisticProperty
instance as its target. Due to our design, the only uses of this class are for the two cases for which we
support evidence. The probabilistic property is owned by the TypeInstantiation contained in
the ‘propertyOwner’ field of the Evidence class. The ownership is enforced by INV3. The concrete
outcome of the evidence is contained in the Evidence class itself, as a boolean attribute.

3.3.5 Entry points for the Attacker

CySeMoL allows to define multiple attackers, although it does not support multiple entry points of
the same type. This effectively restricts models to the definition of entry points, instead of a number
of hostile individuals. Furthermore, the analysis of P2CySeMoL does not distinguish the individual
attackers during the analysis. The only advantage of allowing multiple (independent) attackers, is
the ability to take into account different time investments by each individual attacker.

We set our goal to be more independent on the ‘workdays’ parameter, which limits all attacks
to the same exact time-frame. To this end, we decided to model a single attacker only. When an
input CySeMoL models contains multiple attackers, we model their entry points as originating from
a single attacker. In our model, the attacker is modelled through the Attacker class, which carries
an identifying name, and a reference to entry points. Performing our analysis is not meaningful
when there are no entry points (the probability of the attacker succeeding at anything would be
zero), likewise we require the definition of at least one entry point.

We model an entry point as some initial attack step which has already succeeded. We model
this in the EntryPoint class, where we store the attack step type, and some type instantia-
tion within a template. As this is the PVAI model, we refer to a template instance. To keep the
model correct, it must be invariant that the EntryPoint.target reference must be defined in
EntryPoint.targetTemplateInstance template, ergo, for an entry point the invariant is as
shown in INV2.

43

3.4 The ProbLog model

3.4.1 Introduction

In this thesis, we define a method for performing the vulnerability analysis of CySeMoL using
ProbLog. In order to achieve this, we have opted to use a model-based approach, where the PVA
and PVAI models function as a pivot model. Next up is the ProbLog model, which we will use as
the target model for representing the probabilistic vulnerability analysis. The model needs to be
suitable for model-to-text transformations, as we plan to perform such transformations after the
transformation from either a PVA or PVAI model has been completed. For the class diagram of the
ProbLog model, we refer to appendix A.4. The transformation to ProbLog, and the implementation
of the vulnerability analysis will be discussed in sections 4.5 and 5.4.

We designed the ProbLog model to contain only low level information, without any knowledge
on the vulnerability analysis. Consequently, the ProbLog model is also applicable to different usage
scenarios. The ProbLog model cannot be directly used as an input to the ProbLog inference tool.
Therefore, we use a model-to-text transformation which generates a valid ProbLog program from a
ProbLog model. The details of this transformation are discussed in section 4.5.4.

3.4.2 Program structure

We model a ProbLog program as a sequence of statements, represented by the Statement interface.
There are two main types of statements, rules and ProbLog statements. Rules model arbitrary ProbLog
rules, and a ProbLog statement is either a query or an evidence specification.

Queries are specified using the Query class, which behaves similar to a regular term instance
with a single argument. The Evidence class models the special ‘evidence’ predicate of ProbLog,
which is used to assign either ‘true’ or ‘false’ to existing probabilistic rules. Both queries and evidence
are specified using a single statement, which is stored in the ‘subject’ property of these classes.
Furthermore, we include some auxiliary statements which do not directly influence the logic rules.
The Comment and ImportLibrary classes represent such statements. Respectively, they model
single-line comments and the importing of libraries.

We model rules as having a left-hand side (LHS) of possibly annotated disjunctions, and having an
optional right-hand side (RHS) of conjunctions. We have explicitly chosen not to support disjunctions
in the RHS, as the same semantics can also be achieved by adding multiple rules with an equal LHS
instead.

The combination of a term and its arguments plays a special role in ProbLog programs. This
combination is used as a target in queries and may appear in both the LHS and RHS of a rule.
Considering this use and scope of terms, we specify that terms must be declared at the program
level using the Term class. References to terms are constructed by means of the TermInstance
class, which holds a reference pointing back to the Term of which it is an instance.

3.4.3 Annotated disjunctions

Following the Prolog specification, we only allow atoms or term instances on the LHS. In order to
annotate only these types, we introduced the Annotatable interface. Annotations are specified
using the AnnotatedReferable class, which wraps an Annotatable instance.

The corresponding probability values are specified using the children of the
ProbabilityMeasure (abstract) class. We explicitly model fractions and (double-precision)
literals. The AnnotatedReferable holds a reference to such a definition to keep track of the
probability assigned to it.

44

3.4.4 Referable entities

Entities which are allowed to occur on the right-hand side of a rule, as arguments of lists, tuples and
term instances, are grouped under the Referable interface. The following types can be referenced,
and implement the Referable interface:

• The TermInstance class, which introduces support for nested terms.

• Variables through the Variable class.

• Atoms through the Atom class.

• Special collection types for which ProbLog has built-in support, specifically tuples and lists.
These types are implemented using the PLList and PLTuple classes.

By creating compositions of referable entities, which may also refer to other referable entities, we
support the definition of complex combinations of deeply nested language elements. A common use-
case for this feature is the nesting of predicates, in which some predicate is passed as an argument
of another predicate.

45

Chapter 4

Transforming P2CySeMoL models

4.1 Introduction

In the previous chapter, we have introduced the PVA, PVAI and ProbLog models. In order to
reproduce the vulnerability analysis provided by CySeMoL with an alternative methods, we use
the PVA and PVAI models as pivot models which store the information contained in iEaat files.
Our alternative analysis method is based on probabilistic logic (ProbLog) instead of CySeMoL. We
transform the information contained in a pair of PVA and PVAI models to a ProbLog program, which
we use to infer the likelihood that an attacker succeeds in compromising components of the network
infrastructure defined in the PVAI model.

In this chapter, we will discuss the method which we designed to transform the problem of
Monte Carlo estimation of CySeMoL models using P2AMF, to the problem of inferring probabilities
in probabilistic logic programs using ProbLog. A schematic overview of the entire process is shown
in figure 3.1. In the previous chapter, we have discussed the design of the PVA, PVAI and ProbLog
models. Recall the outline of the transformation process as shown in figure 3.1, the first step of
which is the extraction of the CySeMoL information stored in iEaat files into instances of the PVA
and PVAI models. In this chapter, we will outline the process which we developed to perform this
transformation of a CySeMoL model into PVA and PVAI models.

In section 4.2, we begin with the introduction of the file format used to store CySeMoL models,
and then define the transformation to the PVA and PVAI models. From those models, we derive a
ProbLog program which reflects the analysis of CySeMoL which we will discuss in sections 4.5.2
and 4.5.3. Finally, we will tend to the concern of the orchestration of the transformation process
between all these models.

In total, we have constructed five different model transformations. Furthermore, these model
transformations have been implemented with different underlying technologies. In table 4.1 we list
the transformations, their type, the technologies used to implement the transformations, and an
estimate of their complexity indicated by the total lines of code used for their specifications.

46

Table 4.1: An overview of all transformations constructed for this research. In this table, we list the
source and target models, the technologies used to implement the model transformations, and the
complexity of the transformation scripts.

Source model Target model Type Technologies LoC

1 CySeMoL PRM PVA Model-to-model Kotlin + ANTLR4 875 + 188

2 CySeMoL EOM PVAI Model-to-model Kotlin 351

3 PVA ProbLog Model-to-model Kotlin + ETL 34 + 1126

4 PVAI ProbLog Model-to-model Kotlin + ETL 36 + 397

5 ProbLog ProbLog Program Model-to-text Kotlin + EGL 40 + 138

4.2 iEaat file format

The starting point of our transformation process are CySeMoL object and class models. These models
are generated by the EAAT tool, and can be exported to the local filesystem.

CySeMoL projects are saved using the iEaat format. By analysing the exported files, we
conclude that iEaat files conform to the following structure: an iEaat file is a compressed archive
(ZIP v2.0), which contains all required files for the editing and analysis of CySeMoL models. The
files contained in the archive can be the following (based on the file extension):

• EOM, a file in the XMI format, containing the specification of the defined network architecture.

• PRM, a file which contains a serialized Java object. After examination using a Java debugger,
this object seems to contain the class model, including the specification in P2AMF on how the
probabilistic analysis is performed for each attack step and defence.

• amxCanvas files specify the view definitions for the Class Modeller in XML format.

• cmxCanvas files specify the view definitions Object Modeller in XML format.

With the goal of providing easier access to the internals of iEaat files, we wrote a small library
using Kotlin. This library provides access to a stream to the EOM file, and a method to deserialize the
Java object stored in the PRM file. For this last step, we require a class definition of the ClassModel
object. Fortunately, EAAT includes jar libraries with these definitions. After performing these steps,
we were able to obtain a more usable interface to the class and object model stored in iEaat files.

In order to implement our model-based approach to the construction of an alternative vulnera-
bility analysis for CySeMoL models, we extract the information stored within iEaat files. Using
this information, we construct PVA and PVAI models which are able to represent the threat model
of CySeMoL. In the next section, we will discuss how we use this interface to the iEaat files to
achieve this.

4.3 Deriving PVA models from PRM files

4.3.1 Design considerations

The iEaat files from the previous section contain both an object model and the CySeMoL class
model. This separates the definition of network components from the definition of instances of these
components. In our own models, we also maintain this separation wherever possible. In this section,
we will discuss the transformation to the PVA model, and we will explain the transformation to the
PVAI model in section 4.4.

47

PVA

Concrete Types

Templates

Virtual
Connections

Asset
instances

Defence
instances

AttackStep
instances

Special relations

P²AMF
operations

Concrete
Connections

AttackStep
TargetDefendedBy AttackStep order

AttackStep
isAccessible

Defence
isFunctioning

Figure 4.1: A graph representing the construction dependencies of the PVA model. The arrows
indicate a dependency on the existence of another object.

4.3.2 Derivation order

In order to construct our PVA model instances, we will need to extract the relevant data (i.e. the
class model) from the PRM files contained in the iEaat files. For the implementation details on
how we achieve this, see section 5.3. The result of our efforts with regard to the parsing of iEaat
files, is that we end up with a Java object representation of the class model of CySeMoL. Using the
code-generation feature from EMF, we first generate (Java) classes conforming to our PVA model.
During the transformation from a PRM file, we use these classes to construct a PVA model in-memory.
Afterwards, serialize the resulting PVA model using XMI (see section 2.5.4), and pass the serialized
model to the next transformation stage.

We have implemented a program in Kotlin(see also section 5.1) which constructs a PVA model
from the CySeMoL class model by using the aforementioned generated EMF classes. Due to the
design of the PVA model, there are some difficulties in the transitive creation dependencies, that
is, the creation order of valid objects is complicated by dependencies in their relations. For this
reason, we opt to create partial objects during runtime, which are completed when applicable. We
determine the creation order in such a way that, when a reference is required, the corresponding
object (which might be incomplete) can always be identified. The construction dependencies are as
shown in figure 4.1.

48

From these construction dependencies we derived the following order suitable for the construc-
tion of PVA models:

1. The model container

2. Concrete Types

(i) Assets

(ii) Defences

(iii) Attack steps

(iv) Concrete connections

3. Templates

(i) Template definitions

(ii) Type instantiations

(iii) Internal connections

(iv) External connections

4. Special relations

(i) AttackSteps.target relation

(ii) Asset.defendedBy relation

(iii) Attack step dependencies

5. P2AMF operations

(i) AttackStep.isAccessible

(ii) Defense.isFunctioning

6. Virtual connections

The data for the components is derived from the PRM, by traversing the class model it contains.
In section 5.3 we will go into detail on this process, and will show the specific parts of the PRM
where the data for our PVA model elements is obtained. The end result of applying the construction
ordering is a complete and valid PVA model.

4.3.3 Parsing P2AMF code

In this section, we will discuss how we derive the P2AMF code for the P2AMF operations stored in the
PRM. These operations are stored in the PRM as strings, which are parsed during our transformation
to the PVA model. By analysing the structure of the P2AMF code of CySeMoL, we noticed that the
most code blocks follow a common pattern. For this reason, we have developed a parser for the
P2AMF code in CySeMoL using the ANTLR4 parser generator engine (for more details on parser
generators and ANTLR, see section 2.8).

The code blocks which our parser targets are:

• The AttackStep.isAccessible operations.

• The AttackStep.getPaths operations.

• The Defense.isFunctioning operations.

• The code describing how derived edges should be resolved.

49

XMIObject

ObjectModelObject

id : ELong
name : EString
metaConceptId : ELong
metaConcept : EString
template : EBoolean = true

Association

metaConcept : EString
metaConceptId : ELong
id : ELong

Evidence

metaConceptId : ELong
metaConcept : EString
evidence : EBoolean = false

[0..*] objects [0..*] associations

[0..*] evidenceAttributes

[1..1] parentObject

[1..1] childObject

Figure 4.2: The derived structure of the EOM model. Displayed as an Ecore class diagram.

These code blocks are all written within the scope of the containing instance. For example,
the code in PhysicalAccess.isAccessible is written from the scope of an instance of the
PhysicalAccess class. For derived edges, the scope of the ‘owner’ of the relation is used. Given
that all relations used in CySeMoL are bi-directional, this scope seems to be irrelevant. However, in
the case of derived relations, the scope of the program remains unchanged when the relations are
referenced by the ‘child’. In this case, when resolving derived edges, the owner of a bidirectional
edge is likely to be relevant. In practice, the navigation path specified by the P2AMF code of these
relations must be resolved in both the normal and reverse directions.

For our approach, to the parsing of the aforementioned P2AMF scripts, we have developed a set
of three parsers. We have constructed one large parser which is able to parse the isAccessible
and isFunctioning methods, and two smaller specialized parsers which each are able to parse
one of the other two P2AMF code sources.

4.4 Deriving PVAI models from EOM files

The first step in deriving PVAI models from EOM files the deserialization of the information contained
in those files. Although we do not have the Ecore model of the EOM files, the structure is simple
enough to hand craft a SAX-parser[61] (a Java API for parsing XML files) for the deserialization
task in Kotlin. From our analysis of the EOM files, we conclude that it conforms to the XMI format,
and contains the information as if it had been defined according to the class diagram shown in
figure 4.2.

50

Using this structure, we follow the parsing order of the SAX-parser to generate model objects
for the PVAI model. We handle the XML nodes in the following way: The objects tag in an EOM
file triggers the generation of a TemplateInstance. Nested within the objects tag can be an
optional evidence tag, which adds evidence to the template generated for its enclosing tag. The
associations tags are mapped to bi-directional associations between two TemplateInstance
objects created before. By generating classes as their corresponding tags are encountered, a single
pass over an EOM file results in the construction of a valid PVAI model. Similar to the PVA model,
the PVAI model is serialized using XMI and passed to the next transformation stage.

4.5 Transformations to ProbLog models

4.5.1 Introduction

From the PVA and PVAI models, we systematically construct a ProbLog program. Due to the deliberate
separation of concerns between PVA and PVAI models, we have implemented this transformation
in two separate steps (see also the last box of figure 3.1). This results in two separate ProbLog
programs, which can be merged to form a complete program. The reason for this separation is that
we can quickly generate a new program when the object model changes, without generating code
for the class model.

4.5.2 Transformation of PVA models to ProbLog models

We implement the transformation of PVA models to ProbLog models as a model-to-model transfor-
mation. Our transformation of a PVA model to a ProbLog model attempts to address the following
two concerns:

1. The data stored in PVA models.

2. The vulnerability analysis has to conform to the analysis of CySeMoL.

For item 1, we generate non-probabilistic facts denoting the existence of the objects in the PVA
model. This results in a long list of facts (in our tests using CySeMoL we generate 1636 facts in
total), which we will use in the implementation of item 2, to construct the analysis.

Item 2 is implemented using a different inference approach than CySeMoL. This is due to
the fact that ProbLog does not require sampling to infer the marginal probabilities of a model.
Instead of sampling, we use ProbLog to infer the exact probabilities by the algorithm as described in
section 2.7.6. Given that the scope of the P2AMF derivations are specified relative to the attack step
and defence instances, we generate ProbLog code with unique statements for each derivation. This
way, we ensure that derivations of attack steps are independent from other derivations. Furthermore,
we define helper functions for the probability distribution function evaluation, which return a single
probability. For testing purposes, we conform to the ‘workdays’ parametrization as used in CySeMoL.
However, by abstracting from the implementation through these helper functions, we are free to
change this parametrization if we so desire.

The probability of success for an attack step instance is determined as follows: first, we let
ProbLog determine which attack steps are reachable, according to the graph induced by the
AttackStepType.target edges. For these attack step instances, we calculate the success prob-
ability by evaluating the converted P2AMF code for each attack step instance. ProbLog allows us
to specify that attack steps success probabilities may depend on the success probabilities of other
attack steps, and manages the corresponding calculation using conditional probabilities. Due to
the fact that we use parametrized probability distributions, we are able to infer the exact success
probabilities of attack steps using this approach with ProbLog.

51

4.5.3 Transformation of PVAI models to ProbLog models

The transformation from PVAI models to ProbLog models is independent from the transformation
of PVA models to ProbLog. This due to the fact that the PVAI model references its corresponding
PVA model, which is accessed during the transformation process to ProbLog. Consequently, this
transformation relies on the same information used by the PVA transformation.

We designed the resulting ProbLog program for the PVA program in such a way, that it is able
to derive the entire analysis from the specification of template instances, their connections, and
an entry point for the attacker. Therefore, most of the transformation effort is performed in the
PVA transformation. This allows our PVAI transformation to remain simple and fast. Due to our
implementation of the PVA transformation, the PVAI transformation comprises the generation of
facts about the data in the PVAI model. We are able to trivially generate facts for:

• Template instances

• Entry Points

• Evidence

However, due to the construction of our PVAI model, the generation of connections between
templates is more involved. In order to generate connections between templates, the transformation
script derives the concrete relation the template connections resolve to, and creates facts which
directly instantiate these concrete connections.

4.5.4 Transformation of ProbLog models to ProbLog programs

ProbLog requires a program written in text as its input, therefore, we apply a model-to-text transfor-
mation from our models to ProbLog code. Due to the low-level design of the ProbLog model, the
model already bears structural similarities to ProbLog programs. Recall that the ProbLog model was
designed with the intention to serve as an input for model-to-text transformations, which is reflected
in the property that all components have local references to all other model elements required for
the generation of their text representation.

We have implemented a single transformation script using EGL, which is able to transform
arbitrary ProbLog models into a ProbLog program. This script is executed for both the PVA and PVAI
model. The output from both transformations is merged into a single file. Finally, some auxiliary
ProbLog code is appended to the resulting total program, resulting in a valid ProbLog program.
Running this program will cause ProbLog to determine the success probability for all attack steps
and the probability that all defences are functioning.

52

Chapter 5

Implementation

5.1 Introduction

In the chapter 3, we have introduced the PVA, PVAI and ProbLog models. We intend to use the
PVA and PVAI models as a pivot model between CySeMoL models and our ProbLog model, as
shown in figure 3.1. The use of a pivot model requires the definition of a set of model-to-model
transformations to and from that model. The overall design of these transformations have been laid
out in chapter 4. In this chapter, we will focus on the implementation of the transformation steps
for our approach to an alternative vulnerability analysis of CySeMoL models using ProbLog. For
this implementation, we have constructed two software programs, which we describe next.

We have structured this chapter according to these two aforementioned programs, which are
the following:

• The iEaat Parser, which transforms CySeMoL models into PVA and/or PVAI models.

• The analysis generator, which transforms a set of PVA and PVAI models into a ProbLog model,
which is in turn transformed to a ProbLog program.

CySeMoL models are stored in EAAT instance iEaat files. These files contain the model containing
specification of the vulnerability analysis and the model representing a concrete network architecture.
The iEaat parser is able to extract these models from iEaat files, and transform them into a PVA or
a PVAI model respectively. We will examine its implementation design and mode of operation in
section 5.3.

The analysis generator program orchestrates the execution of model transformation scripts, with
the goal of transforming PVA and PVAI models into a ProbLog program. This process consists of two
parts, the model-to-model transformation of PVA and PVAI models into a ProbLog model, and the
model-to-text transformation of ProbLog models into ProbLog programs. The details of the analysis
generator implementation will be discussed in section 5.4.

5.2 Used Software

In the following sections, we use a variety of technologies for the implementation of our software
programs. Before diving into the design of those programs, we will first describe these technologies.
In order to provide a better insight into the state-of-the-art at the time of writing, we list the exact
versions of each program or technology.

Eclipse Epsilon 1.3 The implementation of the Eclipse Epsilon framework. The framework
provides implementations and APIs for Ecore, XMI, ETL, EGL and EOL. We use Eclipse Epsilon as
the engine for our MDE transformation tasks. For more details on Eclipse Epsilon, see section 2.6.

53

Kotlin 1.0.3 Kotlin is an object-oriented open source programming language, developed by
Jetbrains[42], which targets the Java Virtual Machine. We list some important features of the
language below. For a more complete overview, we refer to the Kotlin website[42].

The language aims to be concise, reducing the amount of required boilerplate code to a minimum.
In addition, it provides all the object-oriented features from Java 8 such as classes, interfaces, and
traits. Kotlin code is able to call arbitrary Java code, and vice-versa, the generated Kotlin classes can
be used in Java code.

Kotlin uses type inference to provide null-safety. At any point in the code, it is unmistakably
clear whether a value can be null or not. The language provides specialized constructs which allow
concise null-safe code to be written. Two of such constructs are:

• The null-safe invocation operator ?.

• The elvis operator ?:

The null-safe invocation operator specifies an operation on a potentially null variable, which is only
executed if the variable is not null. The return type of the operator remains potentially null, which
allows a chain of null-safe invocations to be specified. The elvis operator takes two arguments A?
and B, and returns A if it is not null, and returns B otherwise.

It is possible to add methods to existing classes (i.e. the ‘host’ class) by defining extension
functions (with similar semantics as the Epsilon Object Language, see section 2.6.2). When such
extension functions are defined, they can be invoked on any instance of their host classes.

Lambda-functions, and functional idioms are supported, and have a prominent role in the
language. For instance, the language provides (non-stream) map, and filter methods on List
instances using a combination of extension functions and lambda functions.

Apache Maven 3.3.3 Apache Maven (usually abbreviated to just ‘Maven’) is a build automation
tool aimed at Java projects. The build features provided by Maven are similar to the Ant program,
which is also developed by Apache. Maven is a command-line tool, which reads a Project Object
Model (pom) file. Such a pom-file is specified using the XML format, and contains the information
required to automatically compile and package a software application.

The specification is based on the principle of convention before configuration, which means that
only options which deviate from the defaults need to be specified. One of the assumptions made by
Maven is on the folder structure of its projects. For instance, Maven expects Java source files to
reside in the ‘<project>/src/main/java’ folder, unless specified otherwise.

Moreover, Maven provides transitive dependency management, which allows Java projects to
easily include a wide range of libraries from the central Maven repository. We use Maven to create
a self-contained software package, and to automatically include all required dependencies in our
project.

ProbLog 2.1.0.15.dev2 We use the second development version of ProbLog in order to perform
probabilistic inference on the probabilistic logic programs which we generate. This specific version
of ProbLog fixes a bug where the ‘explain’ feature of ProbLog did not function correctly. We run
ProbLog under Linux, for the reason that the SDD library of ProbLog is only available under that
operating system. In section 2.7, we have extensively discussed ProbLog and its features, and for
more details on ProbLog we refer to that section.

CySeMoL 2.3 and EAAT v1.0.0 For our research, we have used version 2.3 of CySeMoL, in
conjunction with build 2015025271427 of EAAT. This is the most recent version of P2CySeMoL at
the time of writing. We thoroughly explain the use cases and operation of CySeMoL in section 2.3.
We used the object modeller from this version of EAAT to create the initial test cases for our research,
as well as the example listed in figure 2.6. We have verified that our probabilistic vulnerability
analysis framework is able to transform this version of the CySeMoL class model to the PVA model.

54

5.3 The iEaat Parser

5.3.1 Introduction

The iEaat Parser is the first tool which we have developed for our research. It was developed with the
goal of transforming arbitrary CySeMoL (class and object) models in the iEaat format to our own
PVA and PVAI models. The iEaat parser is able to transform the vulnerability analysis specification
of CySeMoL (PVA), as well as network infrastructure instances (PVAI).

In this section, we will describe how we implemented our parser, and the methods used for the
transformation. The software program itself is written in Kotlin, and is compiled into a single JAR
file for distribution. To obtain the model classes using which we construct our PVA and PVAI models,
we use EMF to generate model classes for our Ecore models. We package these model classes inside
a JAR file, and include this file on the classpath of our transformation application.

5.3.2 Dissecting iEaat files

Recall from section 4.2 that the iEaat file format is a zip file, containing two models:

1. The Probabilistic Relation Model (PRM), which specifies the network components which can
be part of a network infrastructure, and how the likelihood of compromise by an attacker can
be inferred.

2. The Entity Object Model (EOM), which contains a set of network component instances, forming
a network infrastructure.

We use the ZipFile class provided by the Apache Commons Compress library to decompress the the
iEaat file. The ZipFile implementation is used to search for the PRM and EOM files, and to
open up an input stream for each file. This allow us to read the contents of these compressed files
without decompressing the entire iEaat file to disk.

In section 4.4 we have introduced our approach to transforming EOM models to our PVAI model.
Our model transformation uses the SAX-parser from the Java standard library, which requires an
input stream to an XML source for its operation. From the iEaat file we have already obtained
such a stream, hence we are able to directly pass the EOM input stream to the EOM SAX-parser.

However, the PRM input stream contains a serialized Java object, which needs to be deserialized
using the Java API. The Java class which provides this API is the ObjectInputStream class. This
class is able to deserialize arbitary classes which are on the classpath of a running Java application.
Consequently, we need to ensure that all Java classes stored in the PRM file exist on the classpath
before we are able to employ the ObjectInputStream class To ensure that this is the case, we
included all JAR libraries from the ‘plugins’ folder of EAAT into our own classpath. Using this
method, we were able to deserialize the class model contained in the PRM file.

However, the method of including all EAAT dependencies requires the inclusion of over 200 JAR
files which unnecessarily slows down the compilation process of the iEaat Parser. We reduced the
amount of dependencies by removing JAR files one by one, and verifying whether the class model
could still be correctly deserialized. Furthermore, we have created empty mock classes for some
dependencies. For example, the OCLClass class also stores view information, and holds a reference
to the Rectangle class from the (platform-dependent) Eclipse SWT graphics library. By loading
these mock classes before importing the other classes from the JAR files, we are able to exclude
most of the Eclipse graphics classes (and therefore their dependencies) stored in the PRM.

55

To summarize, by defining the following mock classes and interfaces:

• org.eclipse.core.runtime.IAdaptable interface

• org.eclipse.draw2d.geometry.Translatable interface

• org.eclipse.draw2d.geometry.Rectangle class

• org.eclipse.swt.graphics.RGB class

we have reduced our dependencies to the following 8 JAR files from EAAT and Eclipse:

• AbstractModellerPrm_1.0.0.201505271427

• ics.eaat.abstractmodeller_1.0.0.201505271427

• ics.eaat.abstractnode_1.0.0.201505271427

• ics.eaat.concretemodeller.main_1.0.0.201505271427

• ics.eaat.pivot_1.1.0.201505271427

• ics.eaat.property_1.0.0.201505271427

• org.eclipse.ocl.examples.pivot_3.5.0.201411241414

• org.eclipse.ui.views_3.7.0.v20140408-0703

The result of our efforts, is that we are able to obtain a deserialized version of the class model,
which appears to be of the ClassModel type from the ics.eaat.abstractmodeller.newmodel
package. This instance is sufficient to perform a complete transformation to our PVA model, and
ultimately allows us to reproduce the vulnerability analysis of CySeMoL using ProbLog (see also
section 5.4 and chapter 6). Furthermore, we have succeeded in excluding the dependencies on
platform-dependent libraries, most notably the Eclipse SWT library.

5.3.3 The PRM contents

Using the debugger of our IDE (IntelliJ 15.0.6), we have analysed the structure of the newly
obtained ClassModel instance. This instance provides us with access to the template, class and
view definitions from the iEaat file. We only require access to the classes and the templates, which
can be obtained from the class model as lists of OCLClass and MetaTemplate objects respectively.

Classes An OCLClass instance models an EAAT class, and is used to store the definition of the
attack steps, defences, and assets of CySeMoL. Each OCLClass is allowed to have one single parent.
This property is used by CySeMoL to identify classes as either an asset, defence, or as an attack step,
by specifying the respective class as a parent.

EAAT allows the definition of operations for classes, which are stored in the OCLClass instance
as well. Each operation stores its name, and body, and return type. For our purposes, we only
require the use of the name and body of the operations, which are both stored as String instances.

OCLClass instances can be associated with each other by means of references. These references
are bidirectional, and support different multiplicities and labels for each direction. One of the
connected OCLClass instances is designated as the parent. References can also be ‘derived’, such
references are defined a P2AMF expression which specifies a navigation path from the parent of the
reference by means of other existing references. The OCLClass target instance which is found at
the end of the relation is stored within the reference as well.

56

Templates The MetaTemplate class stores an EAAT template definition. In its ‘children’ attribute
it contains TemplateObject instances, which correspond to an OCLClass which will be instanti-
ated for each instance of its owning MetaTemplate class. Additionally, the class defines a number of
‘ports’, which can be used to connect the type instantiation to other types. This port object points to a
reference between two OCLClass instances.. When two TemplateObject instances are associated
with each other, they are associated by their ports. For bookkeeping purposes, an association object
is instantiated, which is referenced from the involved ports of these TemplateObject instances.

Templates are also able to be associated with each other. This is also achieved using
ports, but these ports are stored in the MetaTemplate instances themselves instead of in the
TemplateObject instances. The ports map a TemplateObject instance from the template to an
instance of the OCLCLass class.

Finally, templates allow to visually display interesting attributes of their contents in the ob-
ject modeller from EAAT. These attributes are modelled through the ‘attributes’ property of the
MetaTemplate objects, and directly map onto OCLClass properties. In CySeMoL, template at-
tributes are leveraged to display the results of the vulnerability analysis to the user. This is done by
showing the estimated values of the success likelihood of attack steps within a template.

5.3.4 PRM data transformation

We will now discuss the process which we employ to extract the information from the PRM into a
PVA model. We generate the data classes (everything except for the P2AMF code) from the PRM
according to the order specified in figure 4.1. The transformation process begins with the creation
of an empty model container in the form of a PVAContainer instance, after which all other objects
are created according to the dependency order mentioned earlier. The PVA model (chapter 3)
requires that all instances are uniquely identifiable by a UUID. During the transformation of the
PRM to the PVA model, we generate such UUIDs using the java.util.UUID class from the Java
standard library.

In the following paragraphs, we will discuss the construction of the components of the PVA
model in the following order:

1. Concrete Types

2. Templates

3. Special relations of assets and attack steps

4. Probabilistic properties

5. Virtual Connections

Concrete Types At the beginning of the transformation process, all classes from the PRM are
partitioned by the name of their parent class. This name is obtained from the OCLClass objects.
The resulting partitioning consists of the following partitions:

a) Assets

b) Attack steps

c) Defences

d) The attacker

e) Orphaned classes

57

As indicated by item e), we are unable to identify every OCLClass instance this way. This
final partition contains two orphaned OCLClass objects: BypassDetectionSystems and
NetworkVulnerabilityScanner. From the signatures of their methods in the PRM, we de-
rived that these classes should be instances of an attack step and a defence respectively. We work
around this issue by manually detecting these specific classes, and creating the corresponding types
accordingly. As a consequence, these classes are indistinguishable from regular classes from the
perspective of the PVA model.

For each item in the identifiable groups, an instance of either the AssetType, AttackStepType
or DefenceType class is created. The name field of these instances is populated using the name in
the OCLClass instance. All created instances are added to the model container as well, as we will
search through the model container to retrieve previously generated instances later. While creating
these instances, we already generate empty ProbabilisticProperty instances, as we need to
obtain a reference to these instances from the templates later in the transformation process.

After all concrete types have been instantiated, we are able to transform all their references.
From this point, we are able to retrieve any concrete type from the original model by searching
through the model container. We proceed by collecting all reference objects from all OCLClass
instances.

These reference objects store both their origin, and their target. By searching through the model
container, we obtain previously generated ConcreteType instances for the source and target of
each reference. All references in CySeMoL are bi-directional, however, in our PVA model we use two
uni-directional relations instead. In order to retain the bi-directional capabilities of the relations,
each created relation stores both its label and the name of its relation. The label will be used to
navigate the PVA model later.

Furthermore, we determine at this point whether a relation should be virtual or not, by checking
whether the derivedBody field of the reference has been populated. We will fill the path relation
of the VirtualConnection instances at the very end of the transformation process. We choose to
create these objects at this point, as we need to be able to retrieve their names for path traversals in
other transformation steps.

Templates After creating the concrete types and their connections, we are able to construct
templates. We do not use the template list directly, but obtain the defined templates by querying the
OCLClass instances. This is achieved by retrieving the instantiations of these classes (by following
the instance relation), and then obtaining the parent of these instantiations, which corresponds
with a template. By removing duplicate templates, we are left with a set of meaningful templates.
Unused or empty templates are not transformed. After obtaining a list of all unique template
definitions (in the form of MetaTemplate instances) stored in the PRM, we filter out the attacker,
as the attacker is modelled implicitly in the PVA model. For each template, we create an instance of
the TemplateDefinition class from our PVA model, and assign the name of the template to it.

Next, from the PRM templates, we create TypeInstantiation instances for all instance
types which have been defined for those templates. These instances are stored in the
getTemplateChildren method, which returns a list of TemplateObject instances. The
TemplateObject instance holds a reference to the OCLClass instance it is an instantiation for.
We retrieve the ConcreteType counterpart for this OCLClass by searching in the PVA model
container. The retrieved concrete type is assigned as the concretization of the newly created type
instantiation. For an overview of the relations between the involved PRM and PVA classes in this
transformation, see figure 5.1.

After we have generated all type instantiation instances for this template, we generate the
connections between those instantiations. Here we make a distinction between connections within
a template (internal) and between templates (external). Every TemplateObject instance contains
a list of its internal associations. We use this list to generate the internal connections for the current
template definition.

58

PRM

OCLClass

contains

MetaTemplate

contains

ConcreteType

transformed
to

TemplateObject

children

TemplateDefinition

transformed
to

type

TypeInstantiation

transformed
to

definition

contains

Figure 5.1: An overview of the transformation relationships of PVA template definitions, type
instantiations, concrete types, and their PRM counterparts.

An association is bi-directional but is defined using a source and a target, the bi-directionality lies
in the fact that both the source and target of an association refer to the same association object. To
determine whether the current TemplateObject is the source or the target, we examine these fields
of the association first. After this point, we have a reference to two TemplateObject instances, for
which we look up the TypeInstantiation counterpart in the PVA model container. Using this
information, we are able to create a InstantiationConnection instance, and populate all its
fields. Since we know which type instantiations are connected, as well as the relevant association,
we are able to determine the concrete connection which resembles this instantiation connection.
We achieve this by matching the name and labels of this connection with the connections between
the ConcreteType definitions of the type instantiations.

In addition to the internal connections, we also search for the concretization of the external
connections. We obtain the external connections in the PRM from the connectionPorts list.
This list contains all potential connections of classes in the template, both internal and external.
Which we first remove the internal connections, by comparing the references of the ports to the port
objects found in the associations list used for the creation of the InstantiationConnection
instances. From the references stored in the remaining ports, we are able to search through the
model container for any ConcreteConnection instance which matches this reference.

59

Since we are able to reference all type instantiations and their connections from this point, we are
able to transform the template attributes. We retrieve the list of attributes from the MetaTemplate
instance which are stored in its ‘attributes’ property. We designed our PVA model to only support
attributes reflecting either the success likelihood of attack steps or whether defences are functioning.
For this reason, we filter the attributes for these properties by checking whether their concrete target
is one of such properties. We distinguish the type of an attribute through the name of its target. By
the definition of inheritance in the PRM, all attack step attributes have the name ‘likelihood’, and
all defence functioning attributes have the name ‘functioning’, which have been inherited from the
AttackStep and Defense classes respectively. Each attribute stores the OCLClass owner of the
attribute, therefore we are able to identify the AttackStepType or DefenceType instance which
owns the property, and add a reference to that property to the TemplateDefinition attribute
list.

This concludes the transformation of templates definitions from the PRM model to our PVA
model. When each template definition has been completed, it is added to the template types bin of
the model container.

Special relations This step is performed after the transformation of templates, but may be per-
formed earlier if desired, as this step only depends on the presence of all concrete types. The
transformation procedure starts by determining which OCLClass instances map to assets, and
which instances map to attack steps. The method for this determination is the same as for the
transformation of the concrete types. Again, we use the superclass of the OCLClass objects to
determine whether a class is either an asset an attack step, or a defence.

For attack steps, the AttackStepType.target relation is populated by finding all at-
tack steps which reference the OCLClass associated with each asset. The contents of
AssetType.defendedBy relation in turn are formed by those defences which have a reference to
the OCLClass associated with each asset.

The AttackStepType holds a enables reference to all the attack steps it enables. In the PRM,
this information is stored in the getPaths method of the corresponding OCLClass of the attack
step. For every attack step, we parse the paths stored in the getPaths method (see section 5.3.5,
where we show how this is performed), and resolve those paths within the PVA model by navigating
a chain of ConcreteConnection instances. This way we immediately obtain an instance of the
AttackStepType class without having to resort to additional lookups. The referenced attack steps
are added to the enables relation.

Probabilistic properties The PRM of CySeMoL defines probabilistic properties which specify the
derivation of the success likelihood of attack steps and the probability that defences are functioning.
In the PVA model, the AttackStepType and DefenceType have been designed to support such
probabilistic properties. From the PRM, the P2AMF bodies of the operations containing the derivation
of the probabilistic properties are stored in the OCLClass objects. By parsing these derivations, we
are able to generate a ProbabilisticCode instances by the process described in section 5.3.5. This
instance is wrapped in the implementation field of a newly created ProbabilisticProperty
instance, which is then assigned to the attack step or defence type corresponding to the owning
OCLClass instance from the PRM.

60

Virtual connections At the very end of the PRM transformation process we will tend to the
transformation of the derived edges, which are mapped to the VirtualConnection class in
the PVA model. The process of generating virtual connections is similar to the generation of
concrete connections. During the construction of the concrete types, we have already created
VirtualConnection instances (see the part on concrete types at the beginning of this section).
During the creation of these connection instances, we have cached their PRM counterparts in the form
of a Reference object, which we look up to obtain the derivation body. This derivation specifies the
navigational path which defines this virtual connection. By the procedure specified in section 5.3.5,
we obtain the concrete relations required to travel to the goal of a virtual connection. We reproduce
this traversal within the PVA model, in order to retrieve a list of ConcreteType instances. The
list of intermediate connections are added to the path list of our current VirtualConnection
instance.

5.3.5 P2AMF transformation

We will now tend to the implementation of the P2AMF parsing routines. For their context and
general design, see section 4.3.3. As mentioned in section 4.3.3, we have designed three P2AMF
parsers. We have integrated all parsers within the PRM transformation code.

We will begin by describing the design of our large P2AMF parser, which is used to transform the
AttackStep.isAccessible and Defense.isFunctioning from P2AMF to our own model.
The parsing of such methods is invoked when the PRM transformer reaches an instance of the
AttackStep or Defense class. First, the program is parsed by an ANTLR4 parser generated
according to the grammar as listed in appendix B.2, this gives us an abstract syntax tree of the
P2AMF program. The parser takes care of some P2AMF statements which are redundant in our
model. Specifically, we remove references to ‘self’, and replace probability distributions nested
within a Bernoulli distribution with just the wrapped distribution. This construct is used in CySeMoL
to cast a probability distribution into a distribution which generates boolean values. As our approach
does not use sampling, we do not need to perform this operation.

Next, an instance of the P2AMFBuilder class is created, and its visitProgram method is
invoked on the AST generated by ANTLR. This invokes the transformation process, ultimately
resulting in an instance of the ProbabilisticCode class which stores the converted program
according to the semantics of our PVA model.

In order to explain the transformation dependencies, we define the T function, which denotes
the transformation of its argument from P2AMF to an instance of the ProbabilisticExpression
class. In the following text, we will use this function to refer to the transformed counterpart of
P2AMF statements.

Most of the AST nodes from the P2AMF parser output are transformed by creating a relevant
instance of a class from the probcode package of the PVA model, and populating this instance with
the the output of the transformation of the child nodes. For instance, the P2AMF statement “χ and
ξ” is transformed to an instance of the probcode.And class, with {T (χ),T (ξ)} as its children.
When we ignore code optimizations, which are described in section 5.3.6, the transformation of
most other statements from P2AMF is performed similarly, as shown in table 5.1. The non-trivial
transformations are the referential statements and the linear distribution.

The linear probability distribution has been described in section 2.3.7, and is specified using a
list of x-coordinate values, and a list of y-coordinate values. When transforming a linear probability
distribution definition, the lists are zipped together into pairs of coordinate values, forming a list
of coordinates. This list of coordinates is converted to a list of ApproximationPoint instances,
which is in turn wrapped in a new LinearDistribution instance.

61

Table 5.1: An overview of the straightforward transformations of P2AMF to PVA.A is a reference
to the time spent by the attacker.

P2AMF statement Transformation result

χ and ξ And, children: {T (χ),T (ξ)}
χ or ξ Or, children: {T (χ),T (ξ)}
not χ Not, child: T (χ)
if χ then ξ else ψ IfThenElse, condition: T (χ), true: T (ξ), true: T (ψ)
true Constant, value: 1.0

false Constant, value: 0.0

c, c ∈ [0, 1] ⊂ R Constant, value: c
bernoulli(c), c ∈ [0,1] ⊂ R Bernoulli, probability: c
exp(l,A), l ∈ R ExponentialCDF, lambda: l
normal(m, s,A), m, s ∈ R NormalPDF, mu: m, sigma: s
lognormal(m, s,A), m, s ∈ R LogNormalCDF, mu: m, sigma: s
gamma(a, b,A), m, s ∈ R GammaCDF, alpha: a, beta: b

Table 5.2: Conversion of P2AMF referential statements.

P2AMF format Generated instance type

visited → intersection(<reference>) → notEmpty() AttackStepSucceeded

defenseAvailable(<reference> → asSet()) DefenceOperational

<reference> → notEmpty() ConnectionAvailable

P2CySeMoL code can also contain structured referential statements: a sequence of relations
which can be navigated to arrive at an attack step, defence, or asset instance. We encounter this
type of statements in the isAccessible and isFunctioning implementations, as well as in the
getPaths methods and particularly in the specification of derived edges. For the probabilistic
P2AMF properties, we have defined the ReferencingOperand interface. Classes which implement
this interface own a ‘reference chain’, a sequence of ConcreteConnection instances, which are
used to model the sequence of relations. Depending on the form of the P2AMF code, and the target
of the reference chain, we generate one of the following instances:

• DefenceOperational, which queries whether a defence is functioning.

• AttackStepSucceeded, which queries whether an attack step has been achieved.

• ConnectionAvailable, which queries whether an asset is reachable by the provided path.

The P2AMF patterns are converted as shown in table 5.2. The reference chain is obtained from
the AST, which contains a list of navigable labels. The labels are used to iteratively obtain the
intermediate ConcreteConnection instances and ultimately arrive at the target ConcreteType
instance. The pattern for transforming reachability might reference other types, however, this
pattern is used in P2CySeMoL to retrieve assets only.

62

Table 5.3: An overview of the P2AMF optimizations applied during the PRM parsing process.

Source pattern Optimized into

if not c then t else f if c then f else t

if c then x else false c and x

if c then true else false c

if c then false else true not c

if not c then false else true c

The getPaths and the derived connection bodies use a slightly different format of P2AMF
code to specify their contents. To this end, we developed two separate ANTLR4 scripts (listed
in appendices B.3 and B.4) to be able to correctly parse those pieces of code. On an high level,
the getPaths bodies consist of a chain of unions on individual attack steps, which results in a
set of reachable attack steps. This formatting allows us to parse the getPaths methods, and
obtain a list of AttackStepType objects, by looking up the reference chains in a similar way as
described before. The resulting set is used to populated the AttackStepType.enables edge.
The derived edges use an even simpler format, as they only contain a single navigable expression
which points at some OCLClass instance. Using the path obtained from the AST generated by the
ANTLR4 parser, we again obtain both the reference chain and the target, which we store in the
VirtualConnection.path relation.

5.3.6 P2AMF optimizations

During parsing, we apply some optimizations of the P2AMF on-the-fly. We noticed some patterns in
the P2AMF code blocks of P2CySeMoL, which had room for easy improvements. These optimizations
have been implemented in the P2AMF walker code from the PRM transformer which walks over the
AST generated by ANTLR.

We list the individual optimizations in table 5.3. The resulting code after applying these op-
timizations requires fewer operators, and results in a smaller PVA model. These optimizations
resulted in improvements in the speed of both our model transformation and the time required for
performing vulnerability analysis with ProbLog.

5.3.7 EOM parser implementation

The transformation of the EOM input model from CySeMoL differs from the transformation to the
PVA model. A major difference is that we have access to the plain-text XML description, which is
also used as an input by CySeMoL. It turns out that this is more important than expected, as the
deserialization of EOM files has some bugs in CySeMoL, which are caused by the structure of the
EOM format. These bugs are described in more detail in section 6.5.4.

63

The EOM parser has been implemented as a SAX parser[61]. It consists of a single class, which
extends the DefaultHandler class from the org.xml.sax.helpers package of the Java 8
standard library. By using the SAX parser API, our parser functions as a stateful listener. This method
uses a notification architecture, in which our listener is notified of XML tags by the SAX parsing
back-end, in the order that they are encountered. To hide the statefulness from external users of
our class, we provide a single parse method. The parse method takes the dissected iEaat parts
as an argument, and returns an instance of the PVAI model container. Our implementation assumes
that the XML structure of the EOM file conforms to the XMI serialization of the model shown in
figure 4.2. By making this assumption, we are able to correctly determine the context of data when
the SAX back-end signals that a new XML tag has been reached.

The parser is able to handle the following four cases of tags, which we will describe in order:

1. The root tag, which contains the XMI metadata. This information is discarded by our parser,
as it is not used in the PVAI model.

2. A objects tag, which indicates the definition of a template instance.

3. A evidenceAttributes tag, which specifies evidence for the current context.

4. A associations tag, indicating the definition of a relation between templates.

Template Instances The objects tag contains the information which is used to specify instances
of templates. In P2CySeMoL, the attacker is also a template, whereas we have defined a special class
in the PVAI model. Therefore, the first action of the instance definition handling code is to detect
whether the encountered tag specifies an attacker, or a template instance. When we encounter an
attacker, we create an instance of the Attacker class in the PVAI container, and obtain the name
of the attacker from the objects tag.

The detection of template instances is more involved. Our current specification of the PVAI model
does not support two template instances with the same name, whereas the EOM format allows
this. It is unclear whether CySeMoL supports this feature, as it is possible to serialize models with
multiple template instances with the same name. We work around this limitation of our PVAI model
by detecting duplicate template names, and generating a unique name by appending an identifier to
the template instance name. When all potential problems have been either avoided or corrected, we
generate an instance of the TemplateInstance class, and set our current scope to that instance.
Additionally, we cache the identifier of that template as specified in the EOM file, which allows us to
efficiently retrieve TemplateInstance objects based on their EOM identifier when we need to
resolve associations later on. The definition field of the generated TemplateInstance object
is populated by searching the PVA model for the corresponding TemplateDefinition instance.
This search is performed using the name provided in the metaConcept attribute of the objects
tag.

Evidence Evidence is specified in a evidenceAttributes tag, within the context of a template
instance. The EOM parser stores the current context, which allows us to retrieve the context when
the SAX parser notifies the EOM parser of an encountered evidenceAttributes tag. First, the
evidence name is generated based on a combination of the property it refers to, and the name of its
owner. Conjointly, the boolean value of the evidence is extracted from the tag attribute.

After the gathering of initial information for evidence, the EOM parser searches for type instantia-
tions within the owning template definition to which the evidence can be applied. This search is based
on the name of the type instantiations. Due to a bug in EAAT, it is possible to specify evidence for
multiple type instantiations with the same name. We work around this bug by applying the evidence
to only one of the multiple instantiations, and by warning the user of this bug. Depending on the
type of the target instantiation which can be either an AttackStepType, or a DefenceType, the
corresponding (probabilistic) property is retrieved and stored as the target of the evidence. Finally,
the now completed Evidence object is assigned to the current TemplateInstance context.

64

Associations Finally, the EOM parser processes the associations between template instances, as
defined using the associations tags. For our implementation, we assume that all other tags
(especially the relevant objects tags) have been processed at this point. The associations tag
contains identifiers which refer to earlier defined objects tags. The target of these references is
either the attacker, or one of the template instances. Recall from the previous paragraphs that the
EOM parser has cached the identifiers. We use this cache to look up the created instances, and to
check whether we are dealing with any references to the attacker.

When the association involves the attacker, we generate an EntryPoint instance. The entry
point requires a target and an attack step for that target, which is looked up from the PRM. We have
already retrieved the target from the identifier cache, which leaves the EOM parser with the task of
finding the correct attack step. Within the PRM, we filter the associations from the attacker template
to the target template on the provided association in the EOM file. Note that in practice, the label
as specified in the EOM is not unique and can refer to multiple entry points simultaneously. This
case is handled incorrectly by EAAT as described in section 6.5.4. When the EOM parser encounters
this erroneous case, the algorithm selects the first match for the attack step, and the user is warned
of the potential problems and notified which concrete entry point has been selected.

The other type of association is between template instances. From the identifiers from the
associations tag, we are able to retrieve the relevant TemplateInstance objects. However,
an association between templates maps to a concrete bidirectional connection between two type
instantiations, which the algorithm needs to look up from the PVA model. From the definition
relations of the template instances, the EOM parser accesses the definitions of the templates. From
the external connections of the source template, the potential type instantiation targets of the
association are obtained. By filtering on the relation name, only a single association is left (provided
that the PRM is not ambiguous), which leaves a single potential ConcreteConnection. Following
this procedure, we have obtained all required information referenced by the ConnectionTemplate
instance, which models associations between template instances. The EOM parser creates and
populates such an instance, and adds the association to the source template. The aforementioned
procedure is repeated with the source and target templates switched, in order to create a bidirectional
relation.

5.3.8 Interoperability

In order to exchange our constructed PVA and PVAI models, we serialize our generated Java
data structure using XMI. The XMI format is independent of Java, and therefore provides better
interoperability than using Java object serialization using the ObjectOutputStream class.

The XMI serialization code recognizes the model classes (as they implement an EMF-specific
interface), and is able to easily serialize the PVA model. However, for the PVAI model, we noticed
that simply serializing the model resulted in both the PVA and the PVAI model being serialized. Our
intention being that multiple PVAI models could reference a single PVA model, this was not ideal.
We resolved this by explicitly unloading the PVA model before serializing the PVAI model, which
causes the generation of proxy references where the PVAI model classes reference PVA classes. The
XMI serializer serializes these proxy references to an external reference in the generated XMI file.
Using Eclipse Epsilon in the next transformation stage, we were able to successfully load and read
the serialized PVA and PVAI models.

65

5.4 The Analysis Generator

5.4.1 Introduction

Using the data from the PRM contained in the PVA and PVAI models, we want to reproduce the
analysis of CySeMoL by means of the inference of probabilities within a ProbLog program. In this
section, we will describe our design of the vulnerability analysis of a combination of a PVAI and
PVA models, specified in ProbLog. We implement the generation of the ProbLog program using
model-to-model transformations and model-to-text transformations, as shown in figure 3.1. The
execution of the transformation scripts has to be orchestrated. To this end, we have developed the
‘analysis generator’ program, which is able to transform the PVA and PVAI models to ProbLog.

The PVA and PVAI models roughly consist of data and definitions of probabilistic derivations.
How these probabilistic inference is executed is left open (e.g. independent of ProbLog or CySeMoL),
which allows for multiple potential implementations. In this section, we will describe our approach
to the implementation of these derivations using ProbLog. The construction of our probabilistic
analysis using ProbLog can be separated into two parts. On one hand, we have a dynamic part
which depends on the information contained in the PVA and PVAI models, specified as a long list of
facts. On the other hand, we have a static part of ProbLog code, which specifies how the requested
probabilities are derived from the first part.

The ProbLog code generated by the transformation script which transforms the PVA model uses
many auxiliary ProbLog rules. These rules are the same in every program, as they are used to capture
most of the model and analysis semantics. The auxiliary ProbLog code is kept separate from the
transformation scripts, and is only added to the generated ProbLog program after all transformation
steps have been completed.

In the analysis generator program, the ProbLog code is stored as a Java resource, which ensures
that the code is packaged inside the program JAR file on deployment. As the PVA and PVAI models
can be transformed to ProbLog in any order, the analysis generator supports partial and complete
transformations (see also section 5.4.7). On a complete transformation, the program injects the
static code into the output file, producing a legal executable ProbLog program. Summarizing, we
inject three parts of static code:

1. The auxiliary ProbLog code, which forms the base of our vulnerability analysis (section 5.4.2).

2. The queries which instruct ProbLog to infer the required probabilities (section 5.4.3).

3. Implementations for the probability distributions used in the vulnerability analysis (sec-
tion 5.4.4).

We will first describe the implementation details of the three static code blocks. After these
sections, we follow up with the dynamic code transformation in section 5.4.5. Note that the static
code references components from the dynamic code, and vice-versa, which means that it may
be required to read all four sections. Next, we describe how the model-to-text transformation of
ProbLog models to ProbLog code is implemented. Finally, we will describe the design of the ‘analysis
generator’ program, and how the analysis results from ProbLog are presented to the user.

5.4.2 ProbLog Analysis base implementation

One of the main purposes of the base ProbLog code is the coupling between types and instances
of types. From the specification of the existence of template instances using ProbLog facts, we let
ProbLog automatically derive the instances of concrete classes which should be instantiated. The
information on how this should be done is stored in the type instantiations of the templates, which
will be stored as facts in the ProbLog program. Moreover, we assume the existence of all attack
steps which target an asset.

66

To model the existence of instances in ProbLog, we have defined the instance/4 predicate.
The first argument of the predicate is an atom which represents the type of the instance. We have
defined the following atoms:

1. attackStepType, for attack step instances.

2. defenceType, for defence instances.

3. assetType, for asset instances.

The instance definitions for the assets and defences have the following arguments:

1. The instantiation name which identifies multiple instantiations of the same type.

2. The name of the type.

3. The name of the template instance which defines the instantiation of this instance.

In other words, an instance definition is derived from the existence of type instantiation for some
template instance. For the attack steps however, we do not use instantiations, but depend on the
attackedBy/2 predicate. For each asset instance, we generate instance definitions for all attack
steps which target the type of the asset instance. As a consequence, we do not store the instantiation
name of the attack step in the instance/4 predicate, but the instantiation name of the asset which
is targeted by the derived attack step instance. To demonstrate this feature, we list a few derivations:

1 instance(assetType,applicationServer,applicationServer,web_Server).
2 instance(attackStepType,applicationServer,floodDoS,web_Server).
3 instance(defenceType,secretRoaming,secretRoaming,web_Server).

Similar to the derivation of instances of types, we have to derive instances of connections. In
this case, we have specified rules which derive a concreteConnectionInstance/4 for each
generated instantiationConnection/4 fact for which a template instance exists. The infor-
mation stored in both predicates is nearly the same, we first have a role name, then the source
and target instantiations within a template, and finally the template name. The only difference is
that the connection instantiation refers to its template definition, whereas the concrete connection
instance refers to a template instance. As we have automatically constructed attack step instances,
we also have to generate concrete relations for those instances. To achieve this, we do not resort to
connection instantiations, but base the configuration of the concrete connection instance on the
concrete connections between the attack step types and the assets which they attack.

In the base program, we have defined static rules which we use for the resolution of the virtual
connections. The facts generated for the dynamic part or the program contain a list of tuples which
form edges and nodes the paths. For the path resolution, we use the following four predicates:

1. getAnyPath/3, which navigates the connections from instance to instance.

2. virtualConnectionInstance/3, which allows the discovery and resolution of virtual
connections when one exists.

3. reverseVirtualConnectionInstance/3, due to CySeMoL’s bidirectional relations, it
is sometimes required to resolve virtual connections backwards, which is reflected in this
predicate.

4. connectionExists/3, used for the discovery of any kind of connection between instances.

The getAnyPath/3 predicate defines a sequential search for instances which can be reached
by a given path. The elements from the path are navigated until an endpoint is reached. The
arguments of this predicate are the source instance, target instance, and the desired path. The path
is specified as a list of label/type tuples, which specify both the label of the connection which should
be navigated and the type of the target. By setting either the source or target as a variable, ProbLog
can be used to resolve the reachable instances using the given path.

67

The virtualConnectionInstance/3 and reverseVirtualConnectionInstance/3
have the same role as the concreteConnectionInstance/4 predicate, with the difference
that the virtual predicates are defined on top of concrete connections and potentially also other
virtual connections. The existence of a virtual path is proven by verifying whether the provided
path for a virtual connection between two types can be navigated. To verify this navigation, the
getAnyPath/3 predicate is used. Reversed virtual connections are resolved by switching the source
and target instances. This causes ProbLog to determine all source instances for which the target
instances is reachable by the given path.

Finally, the connectionExists/3 predicate is used to generalize over connections. The
arguments of this predicate again consist of a relation label, source instance, and a target instance.
The predicate can be proven when either a virtual or concrete connection can be proven. The
getAnyPath/3 rules use this predicate to resolve individual steps within a path. Consequently,
virtual connections are allowed to refer to other virtual connections in their paths.

In the probabilistic code in the PVA model, we support checking whether some attack step has
succeeded, whether some defence is functioning, or whether some asset exists. This feature is
invoked by specifying a path to the respective instance which should be evaluated. In the static
ProbLog code, we define auxiliary rules which are able to resolve the path and simultaneously
evaluate the required property. To implement this feature, we define the following three predicates:

1. checkAttackStepSucceeded/3

2. checkDefenceWorking/3

3. checkConnectionExists/3

All predicates take the same arguments, a source instance, a target type, and a path to the
target type. Their operation is also similar, first, the path is resolved to test which instance
can be reached, and to verify its type. Additionally, the checkAttackStepSucceeded/3 and
checkDefenceWorking/3 predicates require that their respective probabilistic property can be
proven. This is achieved by invoking the dynamically generated predicates for this task:

1. attackStepSucceeded/4, which can be proven with the probability that the requested
attack step succeeds.

2. defenceIsFunctioning/1, which can be proven with the probability that the requested
defence instance is functioning.

By using these predicates, the dynamic code is able to verify the required properties using a single
predicate instead of having to generate multiple predicates.

Finally, the dynamic code for attack steps requires the determination of the set of reachable attack
steps. Before a probabilistic property is evaluated, the somePathToAttackStep/4 predicate is
evaluated to determine whether the current attack step instance is reachable. The reachability
graph is built by starting from the entry points, and then using the attackPrerequisite/2 facts
whether all prerequisites for some attack step are reachable. For the entry points, we use the
entrypoint/3 fact, which is dynamically generated. For all other attack step instances, we require
that at least one attackPrerequisite/2 targets the current attack step instance, and that the
somePathToAttackStep/4 predicate can be proven for the source attack step instance.

Evidence in CySeMoL has different semantics than the observation of probabilistic events. In
particular, evidence is CySeMoL simply overrides the outcome for the variable the evidence is
defined on. This led to some problems in ProbLog, which does not allow the specification of
evidence which conflicts with a non-probabilistic derivation. We solved this problem by introduc-
ing the hardEvidenceTrue/1 and hardEvidenceFalse/1 predicates. The argument of these
predicates is an instance definition of an attack step or a defence.

68

These rules are used to override the (normally probabilistic) evaluation of the
attackStepSucceeded/1 and defenceIsFunctioning/1 predicates. The overriding nature
is achieved by specifying two new rules, which allow ProbLog to directly prove the two probabilistic
success rules from the evidence predicates. Using this system, the evidence can be generated by the
PVAI transformation script. The following example demonstrates such a generated fact:

1 templateInstance(web_Server, tApplicationServer).
2 hardEvidenceTrue(
3 instance(defenceType, loadBalancer, loadBalancer, web_Server)
4).

5.4.3 Querying the ProbLog program

In order to obtain the desired information from the ProbLog program, we have to generate queries
which will retrieve this information. For our vulnerability analysis we are interested in the following
probabilities:

1. The success probability for every attack step instance.

2. The likelihood that a defence is operational.

We have captured both properties in the attackStepSucceeded/4 and
defenceIsFunctioning/1 predicates. Therefore, we use a query containing variables to
let ProbLog determine the applicable attack steps and defences, and to infer the probability of the
chosen predicates. Our queries have the following form:

1 query(attackStepSucceeded(_,_,_,_)).
2 query(defenceIsFunctioning(instance(defenceType,_,_,_))).
3 workdays(5).

Note the inclusion of the workdays parameter, which sets the amount of work days used in the
analysis. We currently use this parameter to mimic the analysis of CySeMoL, which is why we
include this predicate in the query code. When a different analysis approach is used, this code has
to be adapted accordingly.

5.4.4 Probability Distribution implementations for ProbLog

P2CySeMoL uses a set of probability distributions which it uses during for the generation of proba-
bilities during its vulnerability analysis (see section 2.3.5). In order to reproduce this analysis, we
have to provide implementations for all the probability distributions used by CySeMoL in ProbLog.
Fortunately, ProbLog provides us with some auxiliary maths functions[15], which we can use to
construct the probability density and cumulative probability functions.

We use the feature from ProbLog which supports dynamic probabilities for facts, given that these
probabilities can be calculated when required. Provided, we have developed a function f (x , ~p),
which returns a probability value for a given value of x and a set of parameters ~p, we can specify
this in ProbLog as follows:

Probability::F(x,~p) :- Probability is f (x , ~p).

If we are able to compute f (x , ~p), ProbLog is able to prove F(x,~p) with probability f (x , ~p).
As we are reproducing the P2CySeMoL analysis, we have also generated auxiliary functions,

which invoke the probability distribution implementations with the value of x which corresponds
to the amount of work days. In practice, this means that for our analysis we use the value of
x = 5, as P2CySeMoL sets the amount of work days to 5 by default. The reason that we provide
general implementations, is to abstract from this single value, and allow multiple values to be used.
Nevertheless, it is possible to provide different implementations for these distributions, which do
not depend on a static amount of work days.

69

Bernoulli distribution We have implemented the Bernoulli distribution using annotated disjunc-
tions.

Output::bernoulli(X) :- Output is X.

Exponential cumulative density function The exponential cumulative density function has been
implemented using the ProbLog built-in functions of ex . This way, we are able to implement the
following function:

expCDF(x ,λ) = 1− e−λx x > 0

Normal probability density function The normal probability density function can be imple-
mented according to its definition:

normalPDF(x ,µ,σ) =
1

p
2σ2π

e−
(x−µ)2

2σ2

Log-Normal cumulative density function The log-normal cumulative density function can be
implemented according to its definition, using the build-in ProbLog function for the complementary
error function (erfc):

logNormalCDF(x ,µ,σ) =
1
2

erfc
�

log(x)−µ
σ
p

2

�

LogGamma function For some of the formulae used to calculate the exact probabilities from a
distribution, we require an implementation of the LogGamma function. We use the following formula
to approximate the value for the LogGamma function, as specified by Macleod[54] (constants have
been rounded to 4 decimals for readability):

log(Gamma(x))≈ log

�

0.1659 · 10−6

x + 7
+

0.9935 · 10−5

x + 6
−

0.1386
x + 5

+
12.51
x + 4

−
176.6
x + 3

+
771.3
x + 2

−

1259
x + 1

+
676.5

x
+ 1.000

�

− 5.581− x +
�

x −
1
2

�

· log(x + 6.5)

The reason for taking the logarithm, is that it prevents potential arithmetic overflows caused by the
Gamma function. For the final calculation, we raise the result of the logarithmic formula to the e-th
power to obtain the normalized result.

The GammaCDF function The cumulative density function of the gamma distribution does
not have a closed form notation using the functions provided by ProbLog. However, there ex-
ist approximation algorithms for the cumulative gamma distribution. The Apache Commons
Math 3.6.1 library contains an implementation for the cumulative Gamma distribution in the
GammaDistribution.cumulative method. This method uses the definition of the cumulative
Gamma distribution in terms of the regularized gamma function P(a, z) and the incomplete gamma
function γ(a, z):

D(x) = P(k,
x
θ
)

=
γ(k, x

θ)

Γ (k)

the Java implementation approximates the logarithm of γ(k, x
θ) using an infinite sum[80], and

calculates log(Γ (k)). These values are used to obtain a value for log(D(x)), which is then raised to
the e-th power to obtain a value for the cumulative density of the Gamma distribution.

We have copied this implementation to ProbLog, and use our own implementation of the
log-Gamma function as described above. We choose an error bound of ε= 10−6 for our approxima-
tion, which should be accurate enough for the purpose of indicating the likelihood of compromise
for assets.

70

Table 5.4: An overview of the trivial parts of the generated ProbLog code for the PVA and PVAI data.
The top classes originate from the PVA model, whereas the bottom classes have been defined within
for PVAI model.

Source Generated ProbLog template

ConcreteConnection concreteConnected(relationName,source,target).

TemplateDefinition templateDefinition(name).

AssetType assetType(name).

AssetType.defendedBy defendedBy(name).

DefenceType defenceType(assetName,defenceName).

AttackStepType attackStepType(name).

AttackStepType.target attackedBy(assetName,attackStepName).

TypeInstantiation assetInstantiation(name,typeName,templateName).

defenceInstantiation(name,type,template).

AttackStepType.enables attackPrerequisite(sourceName,targetName).

TemplateInstance templateInstance(name,definitionName).

EntryPoint entryPoint(targetName,attackStep,templateName).

Linear approximation of probability distributions The authors of CySeMoL use the EAAT feature
of approximating a probability distribution using a list of points. When evaluating the probability for
that distribution, linear interpolation is used to determine probability values for points not included
in the list. In ProbLog, we have implemented this feature using the linearApproximate/2
predicate, which takes a value of x and an ordered list of points (sorted on the x-coordinate of the
points), and can be proven with the probability of x according to the list of points.

The linearApproximate iterates over the list, and looks for a sequence of two points for
which x lies between the x-coordinate values of the points. If this sequence cannot be found, the
function returns a probability of 0. Otherwise, it linearly approximates the probability using the
following formula:

p(x , (x1, y1), (x2, y2)) = y1 +
x − x1

x2 − x1
· (y2 − y1) x ∈ [x1, x2)

the resulting value for p(x) is returned as the probability of the linearApproximate predicate.

5.4.5 The ProbLog facts

In this section, we will focus on the representation of the data from the PVA and PVAI models in
ProbLog. We have separated the generation from the PVA and PVAI models in such a way, that
the PVAI models can be exchanged, as long as they refer to the same PVA model. For the trivial
transformations, we list a template-based description of the generated ProbLog code in table 5.4.
These trivial transformations consist of the generation of facts containing the information contained
in the source class.

71

The first non-trivial transformations which we will discuss are the virtual connections. These
connections consist of the information contained in a regular connection, and a path from the
source to their target. Moreover, the virtual connections can be defined as being ‘reversed’, which
means that their path has te be resolved backwards. For the regular virtual connections, we
generate a virtuallyConnected/4 term, and for the reversed connections, we generate a
reverseVirtuallyConnected/4 term. The first three arguments are similar to the concrete
connections, the name of the relation, the source type, and the target type. However, the fourth
argument is used to store the path to the target in the form of a list of tuples. For these lists and
tuples, we use the built-in Prolog syntax. The list stores pairs of relation-type pairs. The relation
part is used to navigate the PVA model, whereas the type is used to restrict the potential destinations
to the types which lie on the defined path. By also storing the type as well, the ProbLog grounder is
able to reduce the size of the program by a factor 2, which resulted in a large improvement of the
analysis time.

For the inference of attack step success probability and defence availability likelihood,
we have to refer to the transformed probabilistic code, which we will discuss in the next
section. Each AttackStepType and each DefenceType instance causes the generation of
attackStepSucceeded/4 and defenceIsFunctioning/1 rules. These rules verify the exis-
tence of an instance of the type which they model, and whether their evaluation should be executed.
Additionally, the rules are used to implement the aforementioned ‘hard’ evidence. Finally, the
transformation of the probabilistic property is invoked to obtain a reference to the rule denoting the
evaluation of that piece of code in ProbLog. Using the name of this property, we are able to refer to
the probabilistic derivation it entails, and by conjunction we add it to the attackStepSucceeded
and defenceIsFunctioning rules.

On the template side, we have two types of connections for type instantiations. On one hand,
we have internal connections, which associate type instantiations within a template. On the other
hand, we have defined external connections, for associations between different templates. As the
external connections are only relevant for the PVAI transformation, we do not generate ProbLog
facts for those connections. For the InstantiationConnection class which represents internal
connections, we generate instantiationConnection/4 facts. These facts store the relation
name, two tuples representing the kind and name of the instantiations, and finally the template to
which the connection applies.

We have two non-trivial transformations from the PVAI model ProbLog. Specifically, we will
describe the transformation of evidence, and the connections between templates. By the definition
of the aforementioned ‘hard’ evidence structure, the transformation of the PVAI Evidence instances
amounts to the generation of a single fact for each piece of evidence. From the references to the PVA
model, the transformation script obtains the required names for the specification of the instance/4
predicate used in the evidence specification.

Connections between template instances are based on the ConnectionTemplate class. The
transformation consists of the generation of the concrete connections instances which will connect
instances of concrete types. The role name is obtained from the ConcreteConnection definition as
stored in the ConnectionTemplate instance. The fields required for the instance/4 terms are all
contained in the fields of the referenced source and target TypeInstantiation instances, and in
the referenced TemplateInstance instances. Our current implementation of this transformation
does not support virtual connections between instances within templates. This feature was not
implemented due to time constraints, although its implementation can be achieved using a similar
approach as the regular connections.

5.4.6 Probabilistic code implementation for ProbLog

Our transformation of the probabilistic code starts by invoking the transformation rule for the
top-level element of the probabilistic expression. By using the declarative features from ETL, our
parent probabilistic code classes specify whenever they require their children to be transformed.
The resulting transformation sequence generated by the ETL engine corresponds with a post-order
traversal of the probabilistic code tree.

72

In order to correctly perform the transformation of the probabilistic code objects from the
PVA model to ProbLog, we have to make sure that our implementation corresponds with the
original semantics from CySeMoL. To accomplish this, we have designed our PVA model (and the
transformation from CySeMoL) in such a way that our probabilistic code is ‘CySeMoL-agnostic’.
We use the fact that P2AMF derivations in CySeMoL are single expressions, with independent
probabilistic components. This means that the order of evaluation of the probability distributions
within a single expression is not relevant, which leaves us with the problem of encoding the first-
order logic, and the probabilistic components of these expressions. We will now explain for each
class from our PVA model how it is transformed to ProbLog.

We have to be careful to use the correct scope in our expressions. In CySeMoL, and in our PVA
model, the expressions of different concrete classes have to be independent. To guarantee this, we
assign a unique label to each generated ProbLog term, which ensures that ProbLog will consider those
terms separately. This label is procured by increasing a counter, which simultaneously guarantees
that all labels remain unique up to the bounds of the counter. Furthermore, all components of our
expressions need to be aware of their local scope. The probabilistic code blocks are defined for a
specific concrete types, however, we need to be able to identify multiple instances of those types.
We solve this issue by passing the instance definition of the owning type instance as an argument
to each generated ProbLog term of the probabilistic code. An example of such an instance definition
is as follows:

instance({Kind},{InstantiationName},{InstantiationType},{TemplateName}).
instance(assetType,applicationServer,applicationServer,web_Server).

For probabilistic properties, the transformation script first checks whether an implementation
is provided. Depending on the outcome, and the type of the owner of the property (either an
attack step or a defence), the transformation script initializes a unique property name for reference
by other parts of the ProbLog code. When an implementation is present, the implementation is
first transformed, and its ProbLog rule is referenced from the property rule. This results in one
of the following three lines of ProbLog code, where e_ID/1 is the root expression instance of the
probabilistic code implementation:

% With implementation
property_ID({INSTANCE}) :- e_ID({INSTANCE}).
% AttackStepType without implementation
attackStepSucceededProperty_ID({INSTANCE}).
% DefenceType without implementation
1/2::defenceProperty_ID({INSTANCE}).

We start with one of our leaf nodes, constants. In P2CySeMoL, only the > and ⊥ constants are
used. However, P2AMF allows the use of arbitrary floating point literals in the range [0, 1] ⊂ R. We
use the variable probability annotation feature from ProbLog. For a constant class with attribute
c ∈ [0,1] ⊂ R, we generate the following ProbLog rule:

P::const_ID(Context) :- P is c.

For performance reasons, we only generate a single const_ID rule for each constant. This greatly
reduces the size of the ProbLog program, and does not change its semantics, as constants independent
by definition. Another optimization is the special treatment of probability values of 0.0 and 1.0.
Instead of using variable probability annotations, we directly assign a value of > or ⊥ using the
ProbLog constants true/0 and false/0:

const_ID(Context) :- true.
const_ID(Context) :- false.

73

The advantage of this notation is that the ProbLog grounder is able to quickly optimize programs
containing true and false predicates. This is due to the propagation of the truth values to the
other rules which depend on these rules. Note that the constants will never depend on their input,
which is why the argument of the term is not used in the right-hand side of the rule.

For And nodes, we generate a new predicate, which is a conjunction of the predicates generated
by the children of the and node. Given two child predicates a(X) and b(X), we generate the
following ProbLog code:

and_ID({INSTANCE}) :- a({INSTANCE}), b({INSTANCE}).

Or nodes are treated in a similar way as And nodes. However, we chose to refrain from using
the or-operator (;/2), and define two rules with the same name instead. This is purely for aesthetic
reasons, as the ProbLog semantics of both approaches are the same. Given two child predicates
a(X) and b(X), we generate the following ProbLog code:

or_ID({INSTANCE}) :- a({INSTANCE}).
or_ID({INSTANCE}) :- b({INSTANCE}).

We have implemented the negation of probabilistic expressions in our PVA model. This is also
possible in ProbLog, however, we need to be careful for the negation-as-failure interpretation of
ProbLog. As the analysis only reasons about elements within the PVA model, we are able to conform
to the closed-world assumption of ProbLog. Therefore, we implement negation through the not/1
function of ProbLog. For a child predicate a(X), we generate the following ProbLog code:

not_ID({INSTANCE}) :- not(a({INSTANCE})).

In contrast to some popular Prolog engines, ProbLog does not have a dedicated if-then-else
function. However, we can transform our IfThenElse nodes by generating multiple rules for each
outcome of the condition. When the condition evaluates to true, we require that the ‘then’ branch
is evaluated, and if the condition evaluates to false, we evaluate the ‘else’ branch. For a condition
c(X), a then-block t(X) and an else-block e(X), we generate the following ProbLog code:

ite_ID({INSTANCE}) :- c({INSTANCE}), t({INSTANCE}).
or_ID({INSTANCE}) :- not(c({INSTANCE})), e({INSTANCE}).

With the goal of reducing the size of the transformation script, we have defined some static aux-
iliary rules which are added to the ProbLog program after the transformation. Two of these rules are
used to reduce the code required to verify whether an attack step has succeeded, or whether a defence
is operational. The transformation of the AttackStepSucceeded, DefenceOperational and
ConnectionAvailable classes uses these helper rules to implement their semantics in ProbLog.
The resulting rules which can be called from regular probabilistic code results have the following
form, where PATH denotes the list of path navigation tuples as described for virtual connections:

% ConnectionAvailable
checkConnectionExists_ID({INSTANCE}) :-
{INSTANCE}, checkConnectionExists({INSTANCE}, target, {PATH}).

% DefenceOperational
checkAttackStepSucceeded_ID({INSTANCE}) :-
{INSTANCE}, checkAttackStepSucceeded({INSTANCE}, target, {PATH}).

% AttackStepSucceeded
checkDefenceWorking_ID({INSTANCE}) :-
{INSTANCE}, checkDefenceWorking({INSTANCE}, target, {PATH}).

74

The final leaf nodes from the probabilistic code in the PVA model are the probabilistic distribution
references. We will discuss the implementation of the probability functions in section 5.4.4, but first,
we will focus on how these distributions are referenced within the ProbLog program. Probability
distributions are unique up to their names within a probabilistic code block of the PVA model. This
means that for each call of a probability distribution, we need to make sure that it is independent
from other calls. This is achieved by generating predicates with a unique name, by including a
identifier similar to the other rules. However, as the context of the code is no longer required for
the independent evaluation of the probability distributions, the generated predicates no longer
have any arguments. The generated predicate is specified in such a way that it can be proven with
the probability equal to the probability distribution it references. We accomplish this using the
auxiliary definitions of the probability functions. An example probability distribution reference has
the following form:

dRef_ID({INSTANCE}) :- d_ID2.
d_ID2 :- logNormalCDF(4.85, 0.98).

Finally, we want to provide access to the evaluation of the probabilistic properties based on an
instance of the owning the attack steps or defences. In other words, given an instance definition for
an attack step or defence, how will we provide a means to evaluate the transformed probabilistic code
for that instance? For defences, this is directly implemented using the defenceIsFunctioning/1
rules. These rules can be referenced for any given instance. For the attack steps however, we
require some additional processing to conform to the CySeMoL semantics. For each attack step,
we generate a attackStepSucceeded/4 rule, which references the probabilistic property. The
arguments of this rule are the target asset name and type, the attack step type, and the instance
in which the attack step is defined. The rule enforces the evaluation of the reachability of the
attack step instance, meaning that it requires that the attack step is either an entry point or that
an enabling attack step is reachable instead. This requirement is evaluated by means of the static
somePathToAttackStep/4 predicate, which conjuncts each generated rule.

5.4.7 Generating ProbLog programs from ProbLog models

The final step in the generation of the alternate analysis using ProbLog, is the transformation of
the ProbLog model into a text program. We have developed a model-to-text transformation script
using the Epsilon Generation Language (EGL), which transforms the generated ProbLog models
into text. For implementation details on the transformation to text, we refer to the source code of
the transformation script.

Our transformation process generates two separate ProbLog models, one for the PVA model,
and another one for the PVAI model. We are able to transform both models to text, which result in
partial ProbLog programs. These partial programs are then merged to create the complete program.
This separation of transformation is reflected in the following modes of operation for the analysis
generator:

1. Only transform a PVA model into a partial ProbLog program.

2. Only transform a PVAI model into a partial ProbLog program.

3. Construct the complete analysis ProbLog program.

Using this separation, it is possible to transform only the PVAI model to ProbLog, based on a
previously transformed PVA model. Consequently, when the PVAI model changes, we do not need
to transform both the PVA and the PVAI models, but are only required to transform the PVAI model
to a ProbLog model, and transform that model to ProbLog.

75

We have implemented the distinction between transformations by generating multiple files,
which are labelled ‘X_pva’, ‘X_pvai’ or ‘X_complete’. When we merge the results from both
model-to-text transformations, we also include the handwritten ProbLog code, which is stored on
the analysis generator classpath. This auxiliary code is comprised of the queries, the definitions of
the probability distributions, and the ProbLog code, which couples the PVA with the PVAI model,
by deriving PVA instances based on template definitions from the PVAI model. The resulting file
is a valid ProbLog program and, when executed using the default mode in ProbLog, derives the
marginal probabilities of all attack steps and defences.

5.4.8 Reporting analysis results

When the analysis completes, we would like to report the results to the user in a meaningful way.
The current feedback to the user consists of the output provided by ProbLog. This output comes in
the form of solutions to the queries, which relate to the components defined in the object model.
The predicates of the queries are constructed in such a way that the result provides the following
information for each attack step:

1. The attack step which succeeded.

2. The (named) target of the attack step.

3. The asset type of the target of the attack step.

4. The template in which the attack step target is defined.

5. The probability of success.

And for each defence:

1. The name of the defence instance.

2. The (named) target of the defence.

3. The template in which the defence is defined.

4. The probability of a success defence.

From this information it is possible to construct a graphical representation in a similar fashion as
EAAT. Because of time limitations, we were unable to implement a graphical interface to the results
of our analysis.

Another form of feedback is listing the most likely attack paths. At this moment, it is not possible
to efficiently search for the n most probable paths using ProbLog, and therefore, searching for the
most probable paths using ProbLog amounts to finding all possible paths with a positive probability.
For ProbLog, this results in a state space explosion, where most effort is spent in the ProbLog
grounder searching for all possible paths.

76

Chapter 6

Measurements and Evaluation

6.1 Introduction

In the previous chapters, we have introduced an approach to performing vulnerability analysis on
CySeMoL models. We use a model-based approach, and have as a result arrived at using pivot
model. The design of this model has been laid out in chapter 3. From this pivot model, we have
reconstruct the vulnerability analysis of CySeMoL using ProbLog, as described in chapters 4 and 5.

For this research, we have set the three goals (see section 1.3 for details), stating that we aim to
achieve the following:

1. An improved vulnerability analysis speed

2. Analysis input which can be automated

3. An analysis which is extensible

In order to verify whether our proposed approach to performing the vulnerability analysis of CySeMoL
using ProbLog accomplishes our goals, we have performed experiments, which we will describe in
this chapter. First we have determined the behaviour of the analysis configuration parameters of
P2CySeMoL, which we describe in section 6.2. Using the resulting configuration parameters, we
compare the performance of P2CySeMoL to our ProbLog implementation for different model sizes,
which we will discuss in section 6.3. Finally, in section 6.5 we will provide our interpretation of the
results from our measurements.

The specification of our experimentation environments is listed in table 6.1. Note that we
use a slightly different environment for the ProbLog experiments, in comparison to the CySeMoL
measurements. The reason for this, is that the SDD library used by ProbLog is not available for
Windows. To circumvent this problem, we have decided to run the ProbLog experiments under
GNU/Linux using a virtual machine running on the same host system as used for the CySeMoL
experiments.

Table 6.1: The specifications of the machine on which the experiments where performed.

Part Host machine Guest machine

Operating System Windows 10 Ubuntu 14.04.1 LTS

CPU Intel Core i5-5200U @ 2.20GHz Intel Core i5-5200U @ 2.20GHz

Logical cores 4 (hyperthreading) 2

Memory 8GB 2GB

Storage 200GB SSD 16GB SSD

77

Table 6.2: The observed statistics for the RMSE of models of different sizes.

Model Model size Measurements Mean RMSE RMSE Standard deviation

1 6 5 2.2 0.51

2 12 5 2.2 0.39

6.2 CySeMoL sampling parameters

6.2.1 Introduction

To ensure that we conduct a fair comparison between the analysis provided by CySeMoL and our own,
we have conducted two experiments to determine suitable comparison parameters for the sampling
algorithm of CySeMoL. Recall from section 2.3.6, that CySeMoL utilizes the Metropolis-Hastings
algorithm. The two main configuration parameters of this algorithm are:

1. n, the total amount of samples drawn for the model.

2. b, the amount of burn-in samples.

First, we have determined whether the number of samples needs to be adjusted for the size of the
model. In addition, we have established a number of samples which provides us with sufficient
accuracy for inferring probabilities in CySeMoL models. We use the resulting values for n and b to
run an execution time comparison between CySeMoL and our ProbLog implementation.

6.2.2 Scaling the amount of samples with respect to the model size

Our first experiment aims to discover whether CySeMoL requires more samples for larger models,
or that n resembles the amount of times the entire model is sampled. For this experiment, we
constructed two models. The first model contains a single attacker, directly connected to 6 web
servers. The second model contains 12 web servers. Assuming that the total amount of samples
indicates the amount of times the entire model is samples , when sampling with a low amount of
total samples, we expect that increasing the amount of components will not lead to an increase in
the error of the estimations. We measure the error using the root-mean-squared-error (RMSE):

RMSE =

√

√

√1
n

n
∑

i=0

(t i − x i)2

For our sampling parameters, we defined n= 500, and b = 10. Our null-hypothesis states that the
RMSE’s are equal, e.g. increasing the model size does not increase the error due to a lack of samples.
By taking 5 samples of the RMSE of each model, we obtain the values as listed in table 6.2. Our
smallest sample size is equal to 5, which corresponds (the RMSE samples follow a t-distribution) to
a p-value of 2.132 for 95% confidence. This provides is with the following confidence interval for
the difference in means:

(2.2− 2.2)± 2.132

√

√0.512

5
+

0.392

5
≈ [−0.61,+0.61]

This interval includes the value of 0, which means our observations are not significant at the 95%
confidence level, and we are unable to reject our null-hypothesis. Because of this result, we assume
that we do not need to adjust the total amount of samples when the model size increases.

78

6.2.3 Appropriate sample size

For our experiments we need to account for the difference in accuracy between CySeMoL and
ProbLog. Where our method using ProbLog infers the exact probabilities, CySeMoL is only able
to provide approximations (which are in addition rounded to percentiles), where the accuracy is
determined by the total amount of samples n.

In the previous section, we have concluded that we do not need to account for the size of the
model when choosing a value for n. Therefore, we can suffice with the determination of a single
value for n for all other experiments. Moreover, for practical purposes, security experts might only
require a rough indication of risk, instead of the exact probabilities.

Starting with a sample count of 5000, we determined the accuracy of CySeMoL by calculating
the RMSE for 10 measurements using this sample size. For this experiment, we created a model of a
single attacker, who is connected to a single ApplicationServer instance.

After taking 10 measurements of the ExecuteArbitaryCode estimation, we obtained the
following RMSE:

RMSE5000 ≈ 0.008

which roughly reflects an error of a single percentile, which we deem acceptable for our comparison
purposes. Consequently, our expectation is that a value of 5000 samples will provide sufficient
accuracy for our comparison.

6.3 Analysis execution time measurements

6.3.1 Experiment design

Our main goal concerns improving the analysis speed of CySeMoL models. We use a scaling
experiment in order to compare the performance of our ProbLog analysis approach, to the analysis
performance of P2CySeMoL.

Our scaling experiment is based on the minimal working example (see figure 2.6). We created
copies of this model, where we gradually increase the amount of network components, and thereby
the amount of attack steps and defences which have to be taken into account.

For our model size N , we use the total amount of ApplicationServer objects in the model. To
increase the size by one, we connect two new NetworkZone objects to the existing PhysicalZone
object, and connect a new ApplicationServer object to these network zones. The operating
system and software product of the application servers is shared for all ApplicationServer
objects. See figures 2.6 and 6.1 for the models of sizes N = 1 and N = 3.

For CySeMoL we measure the analysis time by the value reported by EAAT. For ProbLog, we use
the Linux time command, which measures the difference in clock time between the start and end
of its execution. We measure each model size at least 4 times, and determine the 95%-confidence
interval of the execution time, based on those measurements.

6.3.2 Measurement results

Before selecting ProbLog as a potential target for replacing the CySeMoL analysis, we measured its
execution time on hand-crafted models. From these experiments, we obtained the results shown in
figure 6.2. In this graph, ProbLog is shown to perform faster than all other methods for our input
models. These results have led to our decision to further examine the scalability of ProbLog when
applying our analysis method to full-scale CySeMoL models.

We have run experiments with our new method up to N = 20. The results of our timing
experiments are shown in figure 6.3. The difference with the old measurements is noticeable, and
we will pay attention to these results in section 6.5.1. From these results, we observe that our
method is faster for small values of N , but its performance worsens for larger values when compared
to CySeMoL. From our measurements, CySeMoL appears to scale linearly for these model sizes.
Our method on the other hand exhibits exponential scaling behaviour.

79

<
<
At
ta
ck
er
>
>

Fr
ed

<
<
Ph
ys
ic
al
Zo
ne
>
>

Ph
ys

ic
al

Zo
ne

<
<
Ap
pl
ic
at
io
nS
er
ve
r>
>

W
eb

 S
er

ve
r

<
<
O
pe
ra
tin
gS
ys
te
m
>
>

Li
nu

x

<
<
So
ftw

ar
eP
ro
du
ct
>
>

A
pa

ch
e

<
<
N
et
w
or
kZ
on
e>
>

Co
rp

or
at

eL
A

N

<
<
N
et
w
or
kZ
on
e>
>

En
gi

ne
er

LA
N

<
<
N
et
w
or
kZ
on
e>
>

Co
rp

or
at

eL
A

N
_1

<
<
N
et
w
or
kZ
on
e>
>

En
gi

ne
er

LA
N

_1

<
<
Ap
pl
ic
at
io
nS
er
ve
r>
>

W
eb

Se
rv

er
_1

<
<
N
et
w
or
kZ
on
e>
>

En
gi

ne
er

LA
N

_1
_1

<
<
N
et
w
or
kZ
on
e>
>

Co
rp

or
at

eL
A

N
_1

_1

<
<
Ap
pl
ic
at
io
nS
er
ve
r>
>

W
eb

Se
rv

er
_1

_1

So
ur
ce

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

Ph
ys
ic
al
Ac
ce
ss
To
Zo
ne

O
pe
ra
te
s

Se
rv
er
Pr
od
uc
t

O
pe
ra
tin
gZ
on
e

O
pe
ra
tin
gZ
on
e

O
SP
ro
du
ct

O
pe
ra
te
s

O
pe
ra
te
s

Se
rv
er
Pr
od
uc
t

Se
rv
er
Pr
od
uc
t

O
pe
ra
tin
gZ
on
e

O
pe
ra
tin
gZ
on
e

O
pe
ra
tin
gZ
on
e

O
pe
ra
tin
gZ
on
e

Figure 6.1: The model used for the analysis execution time measurement for N = 3.

80

100 101
10−1

100

101

102

103

N

Ti
m

e
in

se
co

nd
s

Uppaal
ProbLog Inference

ProbLog Estimation
CySeMoL

SecuriCAD

Figure 6.2: An overview of the execution times (on the logarithmic y-axis) of four analysis methods
for N = 1 . . . 10 (on the logarithmic x-axis).

100 100.2 100.4 100.6 100.8 101 101.2 101.4

101

102

103

N

Ti
m

e
in

se
co

nd
s

P2CySeMoL
ProbLog

Figure 6.3: The measurement results of the scalability of CySeMoL versus ProbLog, along with their
95% confidence intervals. The x and y axes are logarithmic.

81

6.4 Analysis correctness

We have verified the correctness of our exact answers by comparing the results of ProbLog with the
results of CySeMoL for a number of test models. By drawing 10000 samples, we ensure that the
RMSE of CySeMoL becomes insignificant with respect to the significance of the results reported by
CySeMoL (which amounts to two significant digits). The test models are the following:

1. The scaling experiment model of size N = 1.

2. The scaling experiment model of size N = 4.

3. The scaling experiment model of size N = 1, with an extra introduced (independent) attack
step.

4. A model constructed by arbitrarily adding CySeMoL templates, and connecting them.

In these tests, the results of our ProbLog analysis match the results of CySeMoL, up to the accuracy
supported by CySeMoL. From these results, we conclude that our ProbLog analysis is likely to be
correct for valid CySeMoL models.

6.5 Discussion

6.5.1 Measurement results

Clearly, the performance of our new implementation differs significantly from our old implementation.
We believe this is caused by the hand-crafted nature of the derivation rules. The definition of our
new analysis shifts more work to the relatively slow ProbLog grounding phase, as more complex
paths within the rule system have to be considered. For instance, the destinations of all relevant
references (concrete and virtual connections) in the PVA model have to be resolved. This difference in
performance does serve as inspiration for possible improvements, as we will mention in section 8.2.

From the resulting measurements of our method and the analysis using P2CySeMoL, we conclude
that our proposed approach using ProbLog has a worse scaling performance. We investigated the
distribution of time for some of the ProbLog phases, the parsing, grounding, and the SDD analysis
in particular. The appalling conclusion from this investigation is that ProbLog spends most of
the analysis time in the grounding phase, rather than the probabilistic inference phase. This is
interesting, given the fact that the grounding has the similar properties as a non-probabilistic
reachability search using ProLog, which is known to be fast[14]. After enquiring the authors of
ProbLog, we learned that the grounder has been re-implemented in the Python language, as part of
the new SDD framework and the transition from YAP-Prolog[12]. As a consequence, the grounder
of ProbLog “can definitely be a bottleneck"[16].

Another interesting result is that both ProbLog and CySeMoL fail to identify the potential for
the reuse of calculations in the testing models. For instance, the scaling of our models results in
some properties which all should have the same probability. A possible cause for this failure is
our implementation of the P2AMF to ProbLog transformation. From our experiments, we noticed
ProbLog on one hand, is able to use only a single processing core, whereas CySeMoL is able to use
all available processing power, which might result in a linear performance advantage. However,
given that we measured the performance of CySeMoL and ProbLog using linear scaling, this would
only result in a repositioning of the break-even point.

CySeMoL has a higher memory usage than our ProbLog implementation. For the largest model,
P2CySeMoL uses about 2 gigabytes of heap memory, where ProbLog uses a maximum of 700
megabytes for the same model. This might be an indication that we have not reached a performance
bottleneck for CySeMoL where one might be reached for even larger models. The reason that we
have not run experiments with larger models, or with a lower memory limit, is that the performance
of both CySeMoL and ProbLog does not meet our requirements at those model sizes.

82

As a side note, CySeMoL does not report any accuracy statistics on its analysis. From experiments
we learned that it is possible to determine a suitable number of samples for any level of accuracy by
hand. Using our method, we are able to infer the exact probabilities of success for an attacker. A
consequence of this, is that the probabilities inferred using our method are more reliable, as they
will not vary between analyses. Therefore, we conclude that we have improved the accuracy of the
vulnerability analysis of CySeMoL models.

6.5.2 Model robustness

Near the completion of the design of the PVA model and the transformation from the PRM to the
PVA model, we discovered the existence the derived edges feature of EAAT. Our model proved its
extensibility, as we were able to implement this feature in the PVA model by using inheritance,
and were not required to redesign the entire model. We did however require an additional parser
grammar in order to read the path specifications from the PRM. Moreover, we were able to add a
new attack step to the PRM using EAAT, and this attack step was correctly identified and transformed
to the PVA model by the iEaat Parser.

During the design of our models, we have encountered some problems with CySeMoL and EAAT
as described in section 6.5.4. Our models and transformation tools have been designed to be able to
cope with these bugs in EAAT and CySeMoL, and allow us to continue the analysis in the presence
of these bugs. The user is notified of the presence of these bugs, and the applied solution. Note that
these bugs might be fixed in the future, and that we are able to design around these bugs because
we have their existence became known to us during our design process. However, the fact that we
were able to find these bugs speaks positively for our development process.

6.5.3 Goal evaluation

We will now backtrack to the goals we set in section 1.3. Using the results described previously, we
are able to reflect on the extent to which we have achieved our goals. We will examine our goals
one by one, and assess if and to what extent we have achieved each individual goal.

Goal 1 - Improved vulnerability analysis speed We set out the goal to improve the analysis time
of CySeMoL models. Our proposed analysis has a worse performance when compared to P2CySeMoL
for larger models. For smaller models however, our analysis is much faster. As we did not achieve
the intended speed improvements for large models, we have failed to meet this goal.

Goal 2 - Automatable analysis input We have succeeded in achieving this goal by designing and
implementing the PVA and PVAI models, which capture the data and semantics of CySeMoL models.
The IEAATParser program enables us to convert any CySeMoL model to a combination of PVA
and PVAI models. Therefore, a specific network infrastructure input can be constructed either by
transforming an existing CySeMoL model, or by creating an instance of the PVAI model. By using a
combination of EMF and XMI, the automated generation of input models is straightforward. For
instance, a network scanner could generate an XMI file containing a PVAI model, which is then
transformed to ProbLog using our analysis generator tool.

Goal 3 - Extensible analysis In order to make our models accessible, adaptable, and extensible,
we have implemented our models using EMF (specifically XMI and Ecore). This technology facilitates
the use and accessibility our models. On the transformation level, it is possible to completely replace
our probabilistic analysis with a different analysis. Our approach separates the transformation to
ProbLog in two stages with a pivot model inbetween. The first stage generates PVA and PVAI models,
and the second stage generates ProbLog models, which allows us to investigate different analysis
methods, or to extend our ProbLog method. Furthermore, the robustness of our approach was
proven during design, as we were able to discover and cope with model extensions, and bugs in the
EAAT implementation (see the additional discussion in section 6.5.2).

83

For testing and comparison purposes, we have used the same attack time parameters as CySeMoL,
including the workdays parameter. The adaptability of our ProbLog transformation code facilitates
the design of a completely different interpretation of the probability distributions. As we only store
the information contained in the original P2AMF code, it is possible to construct alternate analyses
using the same probability distributions. As an example, we are now able to replace the analysis
using workdays with a calculation using the expected means of the probability distributions.

6.5.4 Encountered problems with CySeMoL and EAAT

During our work with CySeMoL, we have encountered some bugs and deficiencies. The authors
at KTH have been notified of these issues, which means that these issues might be resolved in the
future. Here we provide an overview of the most notable ones. Our developed tools either detect or
work around these issues, which ensures their correct operation as far as possible.

CySeMoL model errors The CySeMoL model contains two classes, BypassDetectionSystems
and NetworkVulnerabilityScanner, who have not been assigned a parent class. We have
manually assigned a parent class to them, based on their role in the Class Modeller. From these
observations, we determined that BypassDetectionSystems is supposed to be an instance of the
AttackStep class, and NetworkVulnerabilityScanner should be an instance of the Defense
class.

EOM (de)serialization errors During the implementation of a parser for the EOM model, we
tested the semantics of the serialization format of attack steps. We noticed that too little information
is stored to reconstruct the correct attack step. This leads to errors when the file is deserialized.
The object modeller is unable to determine the correct attack step, and assigns an arbitrary attack
step instead. This can be observed when assigning the ServerConnectTo attack step where, after
saving and loading, the attack step type is changed to ServerAccess, which also leads to different
outcomes of the vulnerability analysis.

Another problem with the serialization of entry points, is when an attacker is assigned multiple
entry points to a single target. In this case, one of the entry points is not serialized, which leads to
an incorrect analysis when the model is reloaded.

Finally, when a template contains multiple instantiations of the same type (for instance, two
instances of the PortSecurity class), evidence of their properties is serialized based on their class.
This leads to situations where it is possible to store evidence that a property is both true and false,
which is obviously not what a designer usually intends. Furthermore, when such a model is loaded,
only the last evidence is used, which means that some evidence of the model can be lost.

Template attributes When a template has some attributes defined, it is possible to delete the
object which owns the referred attributes. However, when this object is removed, the reference in
the template is not cleaned up, which results in a dangling reference. This bug is not inherent to the
CySeMoL model, but is a mistake in the Class Modeller. The bug prevents the analysis from taking
place without first repairing the dangling reference.

84

Chapter 7

Related Work

7.1 Attack Graph analysis

The vulnerability analysis of CySeMoL bears some similarities with the work on threat modelling
using attack graphs and trees[50]. This similarity is likely caused by earlier work of the authors
on Bayesian Defense Graphs[75], which resemble attack trees much more closely. On an abstract
level, CySeMoL generates a probabilistic attack graph for the currently defined network architecture,
and searches for potential paths. Most other attack tree formalisms reason from the perspective of
the goals instead of the attacker[50], on the other hand, the automated reasoning of CySeMoL is
performed from the perspective of an attacker, and from there, determines which goals that attacker
is able to reach.

Hermanns et al. propose a method for the analysis of attack-defence diagrams using Stochastic
Timed Automata[34]. This work extends on earlier methods for performing risk analysis using
priced timed automata, incorporating both time and cost[51]. The vulnerability analysis of CySeMoL
incorporating both the time required for attacks, as well as the probabilistic components can also
be modelled with Stochastic Timed Automata. Where the analysis of Kumar et al. uses Uppaal
CORA[3] for PTAs, the approach in [34] uses the Modest tool set[32] for STAs. Hermanns et al.
pay more attention to the game-theoretic approach of threat modelling, by incorporating costs (e.g.
monetary) into their models, and by searching for attack paths optimal in both time and cost.

7.2 Probabilistic Programming

ProbLog has been developed as part of research in the domain of probabilistic programming. On an
abstract level, the analysis of CySeMoL using P2AMF can be interpreted as a probabilistic program,
including the support for observations by means of evidence. Apart from ProbLog, there exist
more tools from the probabilistic programming domain, which might be suitable for the efficient
implementation of the CySeMoL analysis.

In preparation for the development of an alternative analysis engine, we assessed whether we
could perform the vulnerability analysis of CySeMoL using Uppaal SMC[6]. An extension of the
Uppaal model checker[4], which supports stochastic model checking of timed models. Uppaal has
been used for the analysis of attack trees[51], and the SMC extension would allow the definition of
probabilistic models. For the inference of probabilities, Uppaal SMC currently resorts to sampling
methods, which suggests that its performance would be similar to CySeMoL. Nevertheless, the
support for timed models allows for a more elaborate modelling of the time required for performing
attacks on a network.

85

The PRISM probabilistic model checker[53] is a model checker with support for nondeterministic,
probabilistic, and timed models, as well as the model checking of Discrete and Continuous Time
Markov Chains (DTMCs and CTMCs). Similar to Uppaal, PRISM provides analysis facilities for
Probabilistic Timed Automata (PTA) models. PRISM supports two types of analysis, one based on
abstraction refinement, and the other on symbolic methods using Binary Decision Diagrams. Using
these methods, it is possible to obtain PRISM defines a language for the description of the models
it supports[63]. The language is used to specify modules, in which states are described through
the use local and global variables and clocks. Transitions are described using so-called ‘guarded
commands’, which specify one or more probabilistic or nondeterministic transitions which are only
enabled when a given expression (the guard) holds.

PITA (Probabilistic Inference with Tabling and Answer subsumption)[68] is a method for inferring
probabilities in probabilistic logic programs. PITA has been implemented as an extension to XSB[78],
an implementation of Prolog which leverages tabling (the memoization of proven facts) to improve
its performance. The language provided by PITA is able to express Logic Programs with Annotated
Disjunctions[82]. Similar to ProbLog, PITA supports estimating the probabilities of predicates using
a specialized predicate prob(atom,P), which enumerates the probability of atom in P.

MulVAL[62] is an open source vulnerability analysis tool. The tool uses Datalog[8], a subset of
the Prolog language. Using Datalog, the authors define a logic program, which is used to describe the
network infrastructure, exploits, attack steps, and security policies. Due to the design of ProLog, MulVAL
serves as a system of facts and inference rules, which enables the tool to determine security policy
violations. MulVAL is able to generate traces of attack steps which lead to those violations. MulVAL
collaborates with OVAL[87] compliant vulnerability scanners to obtain vulnerability information on
hosts within the network under analysis. This makes MulVAL suitable for finding vulnerabilities
in real-world networks. MulVAL is built upon XSB[71], a Datalog implementation which provides
tabled resolution and supports multi-threading.

7.3 Model transformation for analysis

Model transformation provides a generic approach to translate between different models. This
flexibility allows the definition of multiple analyses by transforming models to representations of
formal reasoning systems, for which the analyses can be defined. For instance, Wolters[88] defines
a model transformation to transform attack trees to Timed Automata[4]. Next, Uppaal is used to
perform a timed reachability analysis for components of the original attack tree.

A similar approach is used by Anastasakis et al.[2]. Their research focuses on the transformation
of UML models with OCL constraints to the textual modelling language Alloy[40]. The Alloy
framework provides the Alloy Analyser, a tool which is able to automatically discover design flaws
in software. Anastasakis et al. employ their model transformation to be able to apply the analysis
by the Alloy Analyser on arbitrary UML models.

86

Chapter 8

Conclusions and Recommendations

8.1 Conclusions

We have been able to successfully reconstruct the vulnerability analysis of CySeMoL using a different
analysis method. In this paper, we have presented a model-based approach which provides accessible,
robust and extensible models for representing CySeMoL models, and its vulnerability analysis. We
have succeeded in extracting this information from arbitrary serialized CySeMoL models.

By means of model transformations, we have defined a method for reconstructing the CySeMoL
vulnerability analysis using probabilistic logic. Our approach allows us to infer the exact likelihood
an attacker to succeed in compromising components of the input network. Furthermore, we were
successful in maintaining the separation between the network component definitions, and the
network architecture definitions. Due to our usage of metamodelling, model transformations and
model-to-text transformations, we have kept the definition of the vulnerability analysis separate from
the definition of the network infrastructure. As a result, when the network architecture changes,
only those changes need to be evaluated by our tools.

We have compared the asymptotic behaviour of the time required to perform a vulnerability
analysis using our ProbLog method to the analysis provided by CySeMoL. Although our approach
using ProbLog is faster for smaller models, it exhibits worse performance for larger models when
compared to CySeMoL.

Summarizing, we have achieved two out of our three goals, as shown in table 8.1. Due to our
successes in goals 2 and 3, TNO is investigating how our model-based approach and solution to
their problem can be integrated with the results from an automated topology scan.

Table 8.1: An summary of the status of our goals.

No. Goal description Succeeded

Goal 1 Improved vulnerability analysis ×
Goal 2 Automatable analysis input Ø
Goal 3 Extensible analysis Ø

87

8.2 Recommendations and Future Work

We have succeeded in achieving most of our goals. Given our successful development of an extensible
approach to the development of a vulnerability analysis, we are able to investigate alternative options
for the analysis using ProbLog. Due to time constraints, we have focused on reproducing the analysis
provided by CySeMoL. A limited amount of attention has been dedicated to the improvement of the
realism, extent or soundness of the analysis. In this section, we will discuss some of the research
paths which are yet to be explored, and other potential improvements to our work.

Most of the analysis time of our ProbLog implementation of the vulnerability analysis of CySeMoL
models is spent in the grounding phase (see section 2.7.6). From discussions with the authors
of ProbLog[16], we learned that the grounder has been re-implemented, and can very likely be
improved. This claim is supported by the fact that during the implementation, most performance
gains were achieved by indirectly simplifying the grounding problem. In addition, the authors of
ProbLog have suggested[16] the possibility for removing the grounding phase by directly generating
logic formulae representing the analysis from the PVA and PVAI models.

The current conversion of P2AMF to ProbLog ensures total independence between derivations.
Even though this is desirable, it has the side-effect of eliminating the sharing of calculations between
derivations, even in the cases where this does not change the outcome. We would like to investigate
whether we can alter our transformation such that the sharing of results between derivations is
optimized, while retaining the independence of probabilities. We have already implemented one
such an optimization by reusing the generated predicates for the ‘true’ and ‘false’ expressions from
P2AMF.

Our method calculates the exact probabilities of success for an attacker. This level of accuracy
might not be required for the intended purposes. Therefore, it might be worthwhile to investigate
whether (preferably bounded) approximate methods can improve the analysis speed. During the
research topics phase, we have already investigated whether Uppaal SMC might be suitable for this
task, however, it was unable to outperform ProbLog at that time.

The problem of determining the probability distribution of success based on time investment is
still an open problem. We have introduced some flexibility for different mechanisms of determining
success probabilities, yet we are still required to resort to single probabilities instead of probability
distributions. CySeMoL contains the information for the inference of such distributions, as we have
observed during our experiments with Uppaal SMC. However, analysis of such (hybrid) probabilistic
models is still subject to ongoing research[21, 59, 86, 32].

CySeMoL couples the notion of the time investment by the attacker with his chance for success.
The explicit usage of time might make timed models better suited for probabilistic analysis. However,
we do not constrain the passage of time in any way, which might indicate that probabilistic timed
model checking is not required. It remains that we need to take into account varying time investments
for different kinds of attack steps, as mentioned before.

Aside from ProbLog, we have also investigated PITA as a candidate for our analysis engine. PITA
is an extension to Datalog, which also supports the evaluation of Logic Programs with Annotated
Disjunctions. From [67, 66, 68], we concluded that ProbLog had the potential to be better suitable,
as it seemed to perform better on our intended class of problems (large probabilistic graphs)
with respect to PITA. With our current results, we cannot dismiss the possibility that the current
implementation of ProbLog might not be suitable for our performance goals. As PITA supports the
same type of annotated programs as ProbLog, we believe we should examine the performance of
our analysis when we substitute ProbLog with PITA as our inference engine.

The transformation from CySeMoL to PVAI takes more time than necessary. A lot this time
can be attributed to the serialisation and deserialisation of the PVA model. This process might be
improved in a number of ways. For instance, using compression will reduce the time required for
I/O operations. Another method would be to replace the XMI serialization with a more efficient
binary format, although this would reduce the portability of the generated PVA and PVAI models.

88

Bibliography

[1] Christopher J Alberts and Audrey Dorofee. Managing information security risks: the OCTAVE
approach. Addison-Wesley Longman Publishing Co., Inc., 2002.

[2] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. Uml2alloy: A challenging
model transformation. In International Conference on Model Driven Engineering Languages and
Systems, pages 436–450. Springer, 2007.

[3] Gerd Behrmann and KG Larsen. Uppaal-cora, 2005.

[4] Glenn Behrmann, Alexandre David, Kim G Larsen, John Hakansson, Paul Petterson, Wang Yi,
and Monique Hendriks. Uppaal 4.0. In Quantitative Evaluation of Systems, 2006. QEST 2006.
Third International Conference on, pages 125–126. IEEE, 2006.

[5] Gunnar Björkman. The viking project–towards more secure scada systems. 2011.

[6] Peter Bulychev, Alexandre David, Kim Gulstrand Larsen, Marius Mikučionis, Danny Bøgsted
Poulsen, Axel Legay, and Zheng Wang. Uppaal-SMC: Statistical model checking for priced
timed automata. arXiv preprint arXiv:1207.1272, 2012.

[7] Markus Buschle, Pontus Johnson, and Khurram Shahzad. The enterprise architecture analysis
tool–support for the predictive, probabilistic architecture modeling framework. In 19th
Americas Conference on Information Systems, AMCIS 2013; Chicago, IL; United States; 15 August
2013 through 17 August 2013, pages 3350–3364. Association for Information Systems, 2013.

[8] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know about
datalog (and never dared to ask). Knowledge and Data Engineering, IEEE Transactions on,
1(1):146–166, 1989.

[9] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm.
The american statistician, 49(4):327–335, 1995.

[10] Keith L Clark. Negation as failure. In Logic and data bases, pages 293–322. Springer, 1978.

[11] William Clocksin and Christopher S Mellish. Programming in PROLOG. Springer Science &
Business Media, 2003.

[12] Vítor Santos Costa, Ricardo Rocha, and Luís Damas. The yap prolog system. Theory and
Practice of Logic Programming, 12(1-2):5–34, 2012.

[13] Adnan Darwiche. New advances in compiling cnf to decomposable negation normal form. In
Proc. of ECAI, pages 328–332. Citeseer, 2004.

[14] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In IJCAI, volume 7, pages 2462–2467, 2007.

[15] Anton Dries. Problog documentation. http://problog.readthedocs.io/en/latest/,
August 2016. Accessed on 14 september 2016.

89

http://problog.readthedocs.io/en/latest/

[16] Anton Dries. Problog mailing list. https://ls.kuleuven.be/cgi-bin/wa?A0=PROBLOG,
October 2016. Accessed on 13 october 2016.

[17] Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas
Vlasselaer, and Luc De Raedt. Problog2: Probabilistic logic programming. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 312–315. Springer,
2015.

[18] Sven Efftinge, Peter Friese, Arno Hase, Dennis Hübner, Clemens Kadura, Bernd Kolb, Jan
Köhnlein, Dieter Moroff, Karsten Thoms, Markus Völter, et al. Xpand documentation. Technical
report, Technical report, 2004-2010.(cited on page 64), 2004.

[19] Mathias Ekstedt. Foreseeti website. https://www.foreseeti.com/, 2016. Accessed on
11 november 2016.

[20] Mathias Ekstedt, Pontus Johnson, Robert Lagerstrom, Dan Gorton, Joakim Nydren, and Khur-
ram Shahzad. Securi CAD by foreseeti: A CAD tool for enterprise cyber security management.
In Enterprise Distributed Object Computing Workshop (EDOCW), 2015 IEEE 19th International,
pages 152–155. IEEE, 2015.

[21] Christian Ellen, Sebastian Gerwinn, and Martin Fränzle. Statistical model checking for stochas-
tic hybrid systems involving nondeterminism over continuous domains. International Journal
on Software Tools for Technology Transfer, 17(4):485–504, 2015.

[22] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon Woodhull.
Graphviz–open source graph drawing tools. In International Symposium on Graph Drawing,
pages 483–484. Springer, 2001.

[23] Thomas Erl. Service-oriented architecture: a field guide to integrating XML and web services.
Prentice Hall PTR, 2004.

[24] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than the quick
and dirty way. In Proceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, pages 307–309. ACM, 2010.

[25] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of Logic Programming, 15(03):358–401,
2015.

[26] Elizabeth Spangler Flint. The cobol jigsaw puzzle: Fitting object-oriented and legacy applica-
tions together. IBM Systems Journal, 36(1):49–65, 1997.

[27] Martin Fowler. UML distilled: a brief guide to the standard object modeling language. Addison-
Wesley Professional, 2004.

[28] Rune Fredriksen, Monica Kristiansen, Bjørn Axel Gran, Ketil Stølen, Tom Arthur Opperud, and
Theo Dimitrakos. The CORAS framework for a model-based risk management process. In
Computer Safety, Reliability and Security, pages 94–105. Springer, 2002.

[29] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und verwandter
systeme i. Monatshefte für mathematik und physik, 38(1):173–198, 1931.

[30] Carla P Gomes, Joerg Hoffmann, Ashish Sabharwal, and Bart Selman. From sampling to model
counting. In IJCAI, pages 2293–2299, 2007.

[31] Object Management Group. XML metadata interchange specification. http://www.omg.
org/spec/XMI/, June 2015. Accessed on 7 september 2016.

90

https://ls.kuleuven.be/cgi-bin/wa?A0=PROBLOG
https://www.foreseeti.com/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/

[32] Arnd Hartmanns and Holger Hermanns. The modest toolset: an integrated environment for
quantitative modelling and verification. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 593–598. Springer, 2014.

[33] W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[34] Holger Hermanns, Julia Krämer, Jan Krčál, and Mariëlle Stoelinga. The value of attack-defence
diagrams. In International Conference on Principles of Security and Trust, pages 163–185.
Springer, 2016.

[35] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt. P2CySeMoL: Predictive, probabilistic
cyber security modeling language. IEEE Transactions on Dependable and Secure Computing,
12(6):626–639, Nov 2015.

[36] Hannes Holm, Mathias Ekstedt, Teodor Sommestad, and Matus Korman. A manual for the
cyber security modeling language. Royal Institute of Technology (KTH), Tech. Rep, 2013.

[37] Hannes Holm, Teodor Sommestad, and Mathias Ekstedt. CySeMoL: A tool for cyber security
analysis of enterprises. In 22nd International Conference on Electricity Distribution (CIRED),
2013.

[38] Michael Howard and David LeBlanc. Writing secure code. Pearson Education, 2003.

[39] ISO ISO and IEC Std. Iso 15408-1: 2009. Information technology-Security techniques-Evaluation
criteria for IT security-Part, 1, 2009.

[40] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[41] Tomi Janhunen. Representing normal programs with clauses. In ECAI, volume 16, page 358,
2004.

[42] Jetbrains. Kotlin programming language. https://kotlinlang.org/, September 2016.
Accessed on 20 september 2016.

[43] Pontus Johnson, Johan Ullberg, Markus Buschle, Ulrik Franke, and Khurram Shahzad. An
architecture modeling framework for probabilistic prediction. Information Systems and e-
Business Management, 12(4):595–622, 2014.

[44] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model transformation
tool. Science of computer programming, 72(1):31–39, 2008.

[45] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In International Conference
on Model Driven Engineering Languages and Systems, pages 128–138. Springer, 2005.

[46] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential
decision diagrams. In Proceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning (KR), 2014.

[47] Dimitrios Kolovos, Louis Rose, Richard Paige, and A Garcıa-Domınguez. The epsilon book.
Structure, 178:1–10, 2010.

[48] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. Eclipse development tools for
epsilon. In Eclipse Summit Europe, Eclipse Modeling Symposium, volume 20062, page 200,
2006.

[49] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The epsilon transformation
language. In International Conference on Theory and Practice of Model Transformations, pages
46–60. Springer, 2008.

91

https://kotlinlang.org/

[50] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. Dag-based attack and
defense modeling: Don’t miss the forest for the attack trees. Computer science review, 13:1–38,
2014.

[51] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. Quantitative attack tree analysis via
priced timed automata. In Formal Modeling and Analysis of Timed Systems, pages 156–171.
Springer, 2015.

[52] Ivan Kurtev. State of the art of qvt: A model transformation language standard. In International
Symposium on Applications of Graph Transformations with Industrial Relevance, pages 377–393.
Springer, 2007.

[53] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[54] Allan J Macleod. Algorithm as 245: A robust and reliable algorithm for the logarithm of
the gamma function. Journal of the Royal Statistical Society. Series C (Applied Statistics),
38(2):397–402, 1989.

[55] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 8(1):3–30, 1998.

[56] Nenad Medvidovic, David S Rosenblum, David F Redmiles, and Jason E Robbins. Modeling
software architectures in the unified modeling language. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11(1):2–57, 2002.

[57] Haralambos Mouratidis and Paolo Giorgini. Secure tropos: a security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge Engineering,
17(02):285–309, 2007.

[58] Christian Muise, Sheila A McIlraith, J Christopher Beck, and Eric I Hsu. Dsharp: fast d-dnnf
compilation with sharpsat. In Advances in Artificial Intelligence, pages 356–361. Springer, 2012.

[59] Davide Nitti. Distributional clauses (beta) extension to problog2. https://github.com/
davidenitti/DC, March 2016. Accessed on 29 march 2016.

[60] Object Management Group (OMG). Meta object facility (MOF) v2.5 specification. http:
//www.omg.org/spec/MOF/2.5/, June 2015. Accessed on 19 september 2016.

[61] Oracle. Simple api for xml. https://docs.oracle.com/javase/tutorial/jaxp/sax/
index.html, August 2016. Accessed on: 15 august 2016.

[62] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. Mulval: A logic-based network
security analyzer. In USENIX security, 2005.

[63] Dave Parker. Prism manual. http://www.prismmodelchecker.org/manual/, February
2016. Accessed on 10 march 2016.

[64] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive ll (*) parsing: the power of dynamic
analysis. In ACM SIGPLAN Notices, volume 49, pages 579–598. ACM, 2014.

[65] Bruce Potter. Microsoft sdl threat modelling tool. Network Security, 2009(1):15–18, 2009.

[66] Fabrizio Riguzzi. Speeding up inference for probabilistic logic programs. The Computer Journal,
page bxt096, 2013.

[67] Fabrizio Riguzzi and Terrance Swift. Tabling and answer subsumption for reasoning on logic
programs with annotated disjunctions. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

92

https://github.com/davidenitti/DC
https://github.com/davidenitti/DC
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/MOF/2.5/
https://docs.oracle.com/javase/tutorial/jaxp/sax/index.html
https://docs.oracle.com/javase/tutorial/jaxp/sax/index.html
http://www.prismmodelchecker.org/manual/

[68] Fabrizio Riguzzi and Terrance Swift. The PITA system for logical-probabilistic inference. Latest
Advances in Inductive Logic Programming, page 79, 2014.

[69] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. The epsilon
generation language. In European Conference on Model Driven Architecture-Foundations and
Applications, pages 1–16. Springer, 2008.

[70] Jaideep Roy and Anupama Ramanujan. Xml schema language: taking xml to the next level.
IT professional, 3(2):37–40, 2001.

[71] Konstantinos Sagonas, Terrance Swift, and David S Warren. XSB as an efficient deductive
database engine. In ACM SIGMOD Record, volume 23, pages 442–453. ACM, 1994.

[72] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER SOCIETY-,
39(2):25, 2006.

[73] Bran Selic. The pragmatics of model-driven development. IEEE software, 20(5):19, 2003.

[74] Alex Sellink, Harry Sneed, and Chris Verhoef. Restructuring of cobol/cics legacy systems. In
Software Maintenance and Reengineering, 1999. Proceedings of the Third European Conference
on, pages 72–82. IEEE, 1999.

[75] Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. Cyber security risks assessment
with bayesian defense graphs and architectural models. In System Sciences, 2009. HICSS’09.
42nd Hawaii International Conference on, pages 1–10. IEEE, 2009.

[76] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse modeling
framework. Pearson Education, 2008.

[77] Venkat Subramaniam. Programming groovy. Dallas: The Pragmatic Programmers LLC, 2008.

[78] Terrance Swift and David S Warren. Xsb: Extending prolog with tabled logic programming.
Theory and Practice of Logic Programming, 12(1-2):157–187, 2012.

[79] Sten-Åke Tärnlund. Horn clause computability. BIT Numerical Mathematics, 17(2):215–226,
1977.

[80] Nico M Temme. Computational aspects of incomplete gamma functions with large complex
parameters. In Approximation and Computation: A Festschrift in Honor of Walter Gautschi,
pages 551–562. Springer, 1994.

[81] Alan Mathison Turing. On computable numbers, with an application to the entscheidungsprob-
lem. J. of Math, 58(345-363):5, 1936.

[82] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic programs with annotated
disjunctions. In Logic Programming, pages 431–445. Springer, 2004.

[83] Jonas Vlasselaer, Joris Renkens, Guy Van den Broeck, and Luc De Raedt. Compiling proba-
bilistic logic programs into sentential decision diagrams. In Workshop on Probabilistic Logic
Programming (PLP), Vienna, 2014.

[84] Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt.
Anytime inference in probabilistic logic programs with tp-compilation. In Proceedings of 24th
International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[85] John Von Neumann. 13. various techniques used in connection with random digits. 1951.

[86] Qinsi Wang, Paolo Zuliani, Soonho Kong, Sicun Gao, and Edmund M Clarke. Sreach: a
bounded model checker for stochastic hybrid systems. arXiv preprint arXiv:1404.7206, 2014.

[87] Matthew Wojcik, Tiffany Bergeron, Todd Wittbold, and Robert Roberge. Introduction to OVAL:
A new language to determine the presence of software vulnerabilities, 2003.

93

[88] NH Wolters. Analysis of attack trees with timed automata (transforming formalisms through
metamodeling), 2016.

[89] Reinder Wolthuis and Frank Fransen. Segrid project website. http://www.segrid.eu/,
February 2016. Accessed on 16 february 2016.

94

http://www.segrid.eu/

Appendix A

Metamodels

A.1 Overview

This appendix lists the diagrams of the PVA, PVAI and ProbLog metamodels. These metamodels
define the structure of these models. In chapter 3, we elaborately discuss the design of each model.

A.2 The PVA metamodel

PVAContainer

PVAType

name : EString
UUID : ELongObject

ConcreteTypeTemplateType

[0..*] templateTypes

[0..*] concreteTypes

Figure A.1: The diagram of the root of the PVA metamodel.

A – 1

PV
AT
yp
e

na
m

e
: E

St
rin

g
U

U
ID

 :
EL

on
gO

bj
ec

t

Co
nc

re
te

Co
nn

ec
tio

n

re
la

tio
nN

am
e

: E
St

rin
g

Co
nc
re
te
Ty
pe

D
ef

en
ce

Ty
pe

As
se

tT
yp

e

At
ta

ck
St

ep
Ty

pe

Pr
ob

ab
ili

st
ic

Pr
op

er
ty

Pr
op
er
ty

Pr
ob

Co
de

Ed
ge

la
be

l :
 E

St
rin

g

Vi
rt

ua
lC

on
ne

ct
io

n

re
ve

rs
ed

 :
EB

oo
le

an
 =

 fa
ls

e

[1
..1

] t
ar

ge
t

[0
..*

] c
on

ne
ct

ed
To

[0
..*

] d
ef

en
de

dB
y

[0
..*

] e
na

bl
es

[1
..1

] f
un

ct
io

ni
ng

[1
..1

] s
uc

ce
ed

ed

[0
..1

] i
m

pl
em

en
ta

tio
n[1

..1
] t

ar
ge

t

[1
..*

] p
at

h

Figure A.2: The part of the PVA metamodel used for representing all concrete model objects.

A – 2

Te
m
pl
at
eT
yp
e

Te
m

pl
at

eD
ef

in
iti

on

Co
nc

re
te

Co
nn

ec
tio

n

re
la

tio
nN

am
e

: E
St

rin
g

Pr
op
er
ty

Co
nc
re
te
Ty
pe

Ty
pe

In
st

an
tia

tio
n

In
st

an
tia

tio
nC

on
ne

ct
io

n

Ed
ge

la
be

l :
 E

St
rin

g

[1
..1

] t
ar

ge
t

[0
..*

] c
on

ne
ct

ed
To

[1
..1

] c
on

cr
et

iz
at

io
n

[0
..*

] i
nt

er
na

lC
on

ne
ct

io
ns

[1
..1

] t
ar

ge
t

[0
..*

] i
ns

ta
nt

ia
tio

ns
[0

..*
] e

xt
er

na
lC

on
ne

ct
io

ns

[1
..1

] c
on

cr
et

iz
at

io
n

[0
..*

] p
ro

pe
rt

ie
s

Figure A.3: The part of the PVA metamodel used for representing all template model objects.

A – 3

At
ta

ck
St

ep
Su

cc
ee

de
d

D
ef

en
ce

O
pe

ra
tio

na
l

Pr
ob
ab
ili
st
ic
Ex
pr
es
sio
n

An
d

O
r

Pr
ob
ab
ili
ty
D
ef
in
iti
on

IfT
he

nE
ls

e

O
pe
ra
nd

N
ot

D
ef

en
ce

Ty
pe

At
ta

ck
St

ep
Ty

pe

Be
rn

ou
lli

pr
ob

ab
ili

ty
 :

ED
ou

bl
e

=
 0

.0

Ex
po

ne
nt

ia
lP

D
F

la
m

bd
a

:
ED

ou
bl

e
=

 0
.0

N
or

m
al

m
u

: E
D

ou
bl

e
=

 0
.0

si
gm

a
: E

D
ou

bl
e

=
 0

.0

Li
ne

ar
Ap

pr
ox

im
at

io
n

Ap
pr

ox
im

at
io

nP
oi

nt

x
: E

D
ou

bl
e

=
 0

.0
y

: E
D

ou
bl

e
=

 0
.0

Co
ns

ta
nt

va
lu

e
: E

D
ou

bl
e

=
 0

Lo
gN

or
m

al

N
am

ed
D

is
tr

ib
ut

io
n

na
m

e
: E

St
rin

g
U

U
ID

 :
EL

on
g

As
se

tT
yp

e

G
am

m
a

al
ph

a
: E

D
ou

bl
e

=
 0

.0
be

ta
 :

ED
ou

bl
e

=
 0

.0
Co

nn
ec

tio
nA

va
ila

bl
e

Pr
ob

ab
ili

st
ic

Co
de

Pr
ob

ab
ili

ty
Re

fe
re

nc
e

Re
fe
re
nc
in
gO

pe
ra
nd

Co
nc

re
te

Co
nn

ec
tio

n

re
la

tio
nN

am
e

: E
St

rin
g

Ex
po

ne
nt

ia
lC

D
F

la
m

bd
a

:
ED

ou
bl

e
=

 0
.0

[2
..2

] c
hi

ld
re

n [2
..2

] c
hi

ld
re

n

[1
..1

] t
ru

e

[1
..1

] f
al

se

[1
..1

] c
on

di
ti

on

[1
..1

] c
hi

ld

[1
..1

] t
yp

e
[1

..1
] t

yp
e

[2
..*

] a
pp

ro
xi

m
at

io
np

oi
nt

s

[1
..1

] d
ef

in
it

io
n

[1
..1

] t
yp

e

[0
..*

] d
is

tr
ib

ut
io

ns

[1
..1

] e
xp

re
ss

io
n

[1
..1

] r
ef

er
sT

o

[1
..*

] r
ef

er
en

ce
Ch

ai
n

Figure A.4: The part of the PVA metamodel used for representing probabilistic P2AMF programs.

A – 4

A.3 The PVAI metamodel

PV
AI
Ty
pe

na
m

e
: E

St
rin

g
U

U
ID

 :
EL

on
g

Te
m

pl
at

eI
ns

ta
nc

e

Ev
id

en
ce

va
lu

e
:

EB
oo

le
an

O
bj

ec
t

=
 tr

ue

Co
nn

ec
tio

nT
em

pl
at

e

At
ta

ck
er

na
m

e
: E

St
rin

g

Te
m

pl
at

eD
ef

in
iti

on

En
tr

yP
oi

nt

PV
AI

Co
nt

ai
ne

r

At
ta

ck
St

ep
Ty

pe
Ty

pe
In

st
an

tia
tio

n

Co
nc

re
te

Co
nn

ec
tio

n

re
la

tio
nN

am
e

: E
St

rin
g

Pr
ob

ab
ili

st
ic

Pr
op

er
ty

[0
..*

] e
vi

de
nc

e

[0
..*

] a
ss

oc
ia

tio
ns

[1
..*

] e
nt

ry
Po

in
ts

[0
..*

] p
va

iT
yp

es

[1
..1

] d
ef

in
it

io
n

[1
..1

] a
tt

ac
ke

r

[1
..1

] d
ef

in
it

io
n

[1
..1

] s
ou

rc
e

[1
..1

] t
ar

ge
t

[1
..1

] d
ef

in
it

io
n

[1
..1

] p
ro

pe
rt

yO
w

ne
r

[1
..1

] t
ar

ge
t

[1
..1

] t
ar

ge
tT

em
pl

at
eI

ns
ta

nc
e

[1
..1

] t
ar

ge
tO

w
ne

r

[1
..1

] t
ar

ge
t

Figure A.5: The diagram of the Probabilistic Vulnerability Analysis Instance metamodel. Unfortu-
nately the graph is non-planar (K3,3 is subgraph of the diagram), which hampers its readability.

A – 5

A.4 The ProbLog metamodel

Pr
ob

Lo
gP

ro
gr

am

St
at
em

en
t

Ru
le

Ev
id

en
ce

va
lu

e
:

EB
oo

le
an

O
bj

ec
t

Q
ue

ry

LH
S

RH
S

At
om

na
m

e
: E

St
rin

g
Va

ria
bl

e

na
m

e
: E

St
rin

g

Te
rm

na
m

e
: E

St
rin

g
ar

gu
m

en
ts

 :
EI

nt

An
no

ta
te

dR
ef

er
ab

le

Pr
ob
ab
ili
ty
M
ea
su
re

Pr
ob

ab
ili

ty
Li

te
ra

l

va
lu

e
: E

D
ou

bl
e

=
 1

Pr
ob

ab
ili

ty
Fr

ac
tio

n

no
m

in
at

or
 :

EI
nt

de
no

m
in

at
or

 :
EI

nt

Re
fe
ra
bl
e

An
no
ta
te
ab
le

Pr
ob
Lo
gS
ta
te
m
en
t

Te
rm

In
st

an
ce

Co
m

m
en

t

te
xt

 :
ES

tr
in

g

Ch
ea

t

co
nt

en
ts

 :
ES

tr
in

g

Im
po

rt
Li

br
ar

y

na
m

e
: E

St
rin

g

Co
lle
ct
io
n

PL
Li

st
PL

Tu
pl

e

Pr
op
os
iti
on

[0
..*

] s
ta

te
m

en
ts

[1
..1

] l
hs

[0
..1

] r
hs

[1
..1

] p
ro

ba
bi

lit
ym

ea
su

re
[1

..1
] a

nn
ot

at
es

[1
..*

] c
on

ju
nc

ti
on

[1
..1

] s
ub

je
ct

[0
..*

] t
er

m
s

[1
..1

] t
em

pl
at

e

[0
..*

] a
rg

um
en

ts

[0
..*

] c
on

te
nt

s

[0
..*

] p
ro

po
si

tio
ns

Figure A.6: The diagram of the metamodel used for modelling ProbLog programs.

A – 6

Appendix B

Parser grammars

B.1 Overview

In this appendix, we list the actual ANTLR4 definitions of the grammars used to generate the parsers
used by the IEAAT Parser program. The design and use of the parsers defined by these grammars is
discussed in chapters 3 and 4.

B.2 General P2AMF parser grammar

1 grammar P2AMF;
2

3 program :
4 letblock* expression EOF
5 ;
6

7 letblock:
8 'let' ID ':' type '=' probabilitydistribution 'in'?
9 ;

10

11 //Explicitly left-recursive, let ANTLR4 take care of it
12 expression:
13 left=expression AND right=expression
14 | left=expression OR right=expression
15 | NOT expr=expression
16 | ifthenelse
17 | operands
18 | '(' expression ')'
19 ;
20

21 operands: booleanoperand
22 | numberoperand
23 | reference;
24

25 ifthenelse:
26 'if' condition=expression 'then'
27 t=expression
28 'else'
29 f=expression 'endif';
30

A – 7

31 probabilitydistribution:
32 //Inline distributions wrapped in a bernoulli distribution
33 'bernoulli' '(' probabilitydistribution ')'
34 | ('self' '.')? (
35 lineardist
36 | expdist
37 | lognormaldist
38 | normaldist
39 | gammadist
40 | bernoullidist
41)
42 ;
43

44 reference:
45 attackstepEnabled
46 | attackstep
47 | defence
48 | connectionavailable
49 | ID;
50

51 connectionavailable: objectreference '->' 'notEmpty' '(' ')';
52

53 attackstep:
54 'visited'
55 '->' 'intersection' '(' objectreference ')'
56 '->' 'notEmpty' '(' ')';
57

58 attackstepEnabled:
59 'visited'
60 '->' 'intersection' '(' 'self' '.' 'source' ')'
61 '->' 'notEmpty' '(' ')';
62

63 defence: 'defenseAvailable' '(' objectreference '->' 'asSet' '(' ')' ')';
64

65 objectreference:
66 ('self' '.')? (ID '.')* ID;
67

68

69 //distributions
70 bernoullidist:
71 'bernoulli'
72 '(' p=numberoperand ')';
73

74 expdist:
75 'exp'
76 '(' lambda=numberoperand ',' attackertime ')';
77

78 lineardist:
79 'linear'
80 '(' x=arrayexpression ',' y=arrayexpression ',' attackertime ')';
81

82 normaldist:
83 'normal'
84 '(' mu=numberoperand ',' sigma=numberoperand ',' attackertime ')';

A – 8

85

86 lognormaldist:
87 'lognormal'
88 '(' mu=numberoperand ',' sigma=numberoperand ',' attackertime ')';
89

90 gammadist:
91 'gamma'
92 '(' alpha=numberoperand ',' beta=numberoperand ',' attackertime ')';
93

94 arrayexpression:
95 '[' numberoperand (',' numberoperand)* ']' ;
96

97 //constants
98 booleanoperand:
99 TRUE

100 |FALSE;
101

102 numberoperand:
103 DASH? (intop | doubleop);
104

105 intop:
106 NUMBER ;
107

108 doubleop:
109 NUMBER '.' NUMBER;
110

111 type:
112 'Real'
113 | 'Bool'
114 | 'Int';
115

116 attackertime:
117 'Attacker' '.' 'Time';
118

119 //Named tokens
120 //Only define those which are required to be referenced from the AST
121 DASH: '-';
122 AND : 'and';
123 OR : 'or';
124 NOT : 'not';
125 TRUE : 'true';
126 FALSE : 'false';
127 CHAR: 'a'..'z' | 'A'..'Z';
128 NUMBER: DIGIT+;
129 DIGIT: [0-9];
130 ID : CHAR (CHAR | NUMBER | '_')* ;
131 WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines
132 COMMENT : DASH DASH ~[\r\n]* -> skip;

A – 9

B.3 Path parser grammar

1 grammar GetPaths;
2

3 paths :
4 (
5 attackStepList
6 |
7 '(' attackStepList ')'
8 |
9 TARGET putInSet

10) DASH 'visited' EOF
11 ;
12

13 attackStepList:
14 attackStepReference union*;
15

16 attackStepReference:
17 reference castToAttackStep putInSet;
18

19 reference:
20 'self'? '.' ID;
21

22 union: '->' 'union' '(' attackStepReference ')';
23

24 castToAttackStep:
25 '.' 'oclAsType' '(' 'AttackStep' ')';
26

27 putInSet:
28 '->' 'asSet' '(' ')';
29

30 //Named tokens
31 //Only define those which are required to be referenced from the AST
32 TARGET: 'target';
33 DASH: '-';
34 AND : 'and';
35 OR : 'or';
36 NOT : 'not';
37 TRUE : 'true';
38 FALSE : 'false';
39 CHAR: 'a'..'z' | 'A'..'Z';
40 NUMBER: DIGIT+;
41 DIGIT: [0-9];
42 ID : CHAR (CHAR | NUMBER | '_')* ;
43 WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines
44 COMMENT : DASH DASH ~[\r\n]* -> skip;

A – 10

B.4 Derived edge parser grammar

1 grammar VirtualEdges;
2

3 path:
4 'self' ('.' ID)+ '->' 'asSet' '(' ')';
5

6 DASH: '-';
7 CHAR: 'a'..'z' | 'A'..'Z';
8 NUMBER: DIGIT+;
9 DIGIT: [0-9];

10 ID : CHAR (CHAR | NUMBER | '_')* ;
11 WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines
12 COMMENT : DASH DASH ~[\r\n]* -> skip;

A – 11

Appendix C

Command-line tools

C.1 Overview

We have developed two command-line tools which perform the transformation steps described
in this thesis. In this appendix, we will show how the tools are used. The source code of these
programs is hosted at the following URL:

https://github.com/SwiftPengu/ProbabilisticVulnerabilityAnalysis

C.2 iEaat Parser

The iEaat Parser has been packaged as a runnable JAR file. It can be run using the Java runtime
environment with the following command-line instruction:

java -jar IEAATParser-1.10.jar <arguments>

When running the program without arguments, it outputs its usage information:

usage: IEAATParser <source> [-f] [-pva] [-pvai]
-f Force overwriting existing files
-pva Generate a PVA model file
-pvai Generate a PVAI model file

The f switch will overwrite any pre-existing pva or pvai files. If this option is left-out the tool will
detect any existing PVA model, and generate a pvai file based on that model. The generation of
models is specified through the pva and pvai switches.

For example, to generate both the PVA and PVAI models for a file named Input.iEaat, we can
use the following command:

java -jar IEAATParser-1.10.jar Input.iEaat -pva -pvai

A – 12

https://github.com/SwiftPengu/ProbabilisticVulnerabilityAnalysis

C.3 Analysis Generator

The analysis generator executes the transformation of pva and pvai models to the ProbLog model,
and the model-to-text transformation to ProbLog code. Similar to the IEAATParser, the analysis
generator is packaged as a runnable JAR file, and can be run by executing the following command-line
instruction:

java -jar AnalysisGenerator-1.1.jar <arguments>

When running the program without arguments, it outputs the following usage information:

usage: AnalysisGenerator [-complete] -o <outputFile> [-pva <pvaSource>]
[-pvai <pvaiSource>]

-complete Whether a complete ProbLog file should
be generated.

-o,--out <outputFile> The name of the output file.
-pva <pvaSource> Whether to generate the PVA skeleton.
-pvai <pvaiSource> Whether to generate the PVAI rules and

queries.

The pva and pvai command-line arguments signal the transformation of the provided PVA or PVAI
models to ProbLog. The base name of the output file is specified through the o/out parameter.
When the complete switch is used, the generated ProbLog code for the PVA and PVAI models is
merged into a single file, along with the auxiliary ProbLog code. The resulting file is a legal ProbLog
program.

For example, to construct a complete analysis program from the generated files from the iEaat
Parser example, we can use the following command:

java -jar AnalysisGenerator-1.1.jar -o output -pva Input.pva

-pvai Input.pvai -complete

This will generate a complete ProbLog program for the given PVA and PVAI models.
To re-use an existing result of a PVA model transformation, we use the following command:

java -jar AnalysisGenerator-1.1.jar -o output -pvai Input.pvai -complete

This will look for an existing file named output_pva.pl and generate a output_pvai.pl file.
The output is merged with the auxiliary program to generate a complete ProbLog program.

The resulting complete program can be run by invoking ProbLog, which will instruct ProbLog to
perform the probabilistic vulnerability analysis. For this, we use the following command:

problog output_complete.pl

A – 13

	Introduction
	Motivation
	Problem Statement
	Research Goals
	Approach
	Validation
	Structure
	List of abbreviations

	Background
	Introduction
	Threat Modelling
	The Cyber Security Modelling Language
	Model Driven Engineering
	The Eclipse Modelling Framework
	Eclipse Epsilon
	Logic Programming
	Parser generators
	Conclusion

	The Probabilistic Vulnerability Analysis model
	Introduction
	Probabilistic Vulnerability Analysis model design
	Probabilistic Vulnerability Analysis Instance model design
	The ProbLog model

	Transforming P2CySeMoL models
	Introduction
	iEaat file format
	Deriving PVA models from PRM files
	Deriving PVAI models from EOM files
	Transformations to ProbLog models

	Implementation
	Introduction
	Used Software
	The iEaat Parser
	The Analysis Generator

	Measurements and Evaluation
	Introduction
	CySeMoL sampling parameters
	Analysis execution time measurements
	Analysis correctness
	Discussion

	Related Work
	Attack Graph analysis
	Probabilistic Programming
	Model transformation for analysis

	Conclusions and Recommendations
	Conclusions
	Recommendations and Future Work

	Metamodels
	Overview
	The PVA metamodel
	The PVAI metamodel
	The ProbLog metamodel

	Parser grammars
	Overview
	General P2AMF parser grammar
	Path parser grammar
	Derived edge parser grammar

	Command-line tools
	Overview
	iEaat Parser
	Analysis Generator

