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Chapter 1

Introduction

Software Engineering is the field in Computer Science concerned with the process of software
development and all its intricacies. The system design life cycle can be modeled using the
waterfall model, in which the sequential development phases are conceptually linked [34] as is
depicted in Figure 1.1. The phases are often repeated iteratively, resulting in a new version of
the software every iteration.

analysis

design

code

test

Figure 1.1: Waterfall Model

A major goal of software engineering is to enable developers to construct systems that operate
reliably despite their scale and complexity. To this end a lot of time and attention is spent on
testing whether the software system meets its requirements.

Formal methods are mathematically based languages, techniques, and tools that can be used to
specify and verify large and complex systems [7]. Tools have been derived from these formal
methods that offer functionality supporting activities in the design, coding and testing develop-
ment phases. The software industry is motivated to use these tools because they can play an
important role in developing reliable and quality software. They can help in the early identifica-
tion of software (design) errors which become more expensive and time-consuming to find and
repair later in the system design cycle. The tools that we are concerned with in this thesis report
are explicit state model checkers and debuggers.
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CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

1.1 Background

Model checkers, compilers and debuggers are tools that provide specific contributions to the
formal design of software systems. This section introduces basic ideas concerning them.

1.1.1 Model Checking

Model. A model formally describes the behaviour of a system whilst abstracting from details
which are not relevant for its use. The representation of a model may be abstract, but mod-
els may also be textually represented in a modeling language. Design models can be used to
formally specify systems before they are implemented or they can be extracted from system
implementations.

Simulation. A simulation is a step-by-step execution of a model. Simulations can be used to
show the behaviour of a system. In particular, it can be used to show a counter-example, which
is sequence of steps leading to an undesired situation.

Property. A property specification formally describes a requirement about the system which
can be an invariant or related to safety, fairness, liveness, etc. Properties are typically described
using formal specifications which are expressed as logic formulas, e.g. Linear Temporal Logic
(LTL) or Computation Tree Logic (CTL) and may be associated with an automaton [23].

Model Checking. Model checking is a formal method used to automatically verify the cor-
rectness of finite-state systems with respect to specification properties. Verification algorithms
are used to traverse every possible behaviour of the model, also referred to as the state space, to
check whether a property holds (is true) or not. If the property holds then the model satisfies a
specification. If the property does not hold, a counter-example is produced.

In [13] the two fundamental approaches to model checking are described: In symbolic model
checking a symbolic representation for the state set is used, usually based on binary decision
diagrams. Validating a property in symbolic model checking amounts to performing a symbolic
fixpoint computation. Symbolic model checking works especially well for hardware verification.
In explicit state model checking an explicit representation of the system’s global state graph is
used, usually given by a state transition function. The validity of LTL properties over a model
are evaluated by interpreting its global state transition graph as a Kripke structure. For every
LTL formula there exists a Büchi automaton that accepts precisely those runs that satisfy the
formula. Verifying that a model M satisfies a property Φ: M |= Φ entails performing a partial
or a complete exploration of the state space. A comprehensive foundation to model checking is
given in [6].

Model Checker. A model checker is a tool that is concerned with automating the search
for errors in software (designs) by providing model checking as a push-the-button functionality.
Usually a model checker also supports one or more forms of simulation.

One model checker that has been successfully applied in many software design projects is Spin

[20]. The input language of Spin is Promela (Process Meta-Language) which is a high level
language used to model concurrent systems. Spin will be a benchmark tool reference in this
report. Indeed much of the ideas in this report, the context and the reasoning have been derived
from Spin or are strongly related to it as will be made apparent in subsequent chapters.
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CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

1.1.2 Compiling and Debugging

Compiling and debugging code are strongly related activities. We will give an introduction to
both compilers and debuggers and explain what they have to do with each-other.

Compilers can be used by programmers to translate high level languages to low level runnable
machine code. The process of compiling a program from human-readable form into the machine
code that a processor can execute is described in [10] as: ”successively recasting the source
programs into simpler and simpler forms, discarding information at each step until, eventually,
the result is a sequence of simple operations, registers and memory addresses and binary values
that consist of zeros and ones.”

A multi-pass compilation scheme can be described as a sequence of steps (or passes). Each
step performs a specific operation on the same structures in order to perform a translation.
In contrast, a single-pass compilation scheme performs the translation in one step. Figure 1.2
schematically depicts a multi-pass compilation scheme at compiler time and shows that we can
either run or debug a program at run-time. Multi-pass compilers are also explained in [49].

source

program

Compiler-Time Run-Time

Syntactic Analysis Contextual Analysis Code Generation

scanner

parser

checker

symbol table

generator

tokens

AST

Running Debugging

debugger

debugging 

information

target code machine

in
te

ra
c
ti
o
n

program user programmer
in

te
ra

c
ti
o
n

Figure 1.2: Multipass Compiler

Multi-pass compilation. The first phase of the compilation process is the syntactic analysis
phase in which the source program is scanned by a scanner (also called lexer) and represented
as a stream of tokens, the basic textual building blocks of the language. They are the input
for the parser which is based on a grammar and creates an Abstract Syntax Tree (AST), an
intermediate representation of the program syntax. It is practical to describe a grammar in
EBNF (Extended Backus-Naur Form) which is a standard form to describe the structure of
programming languages. After the syntactic analysis phase, the compiler performs a contextual
analysis of the AST which means it is analyzed for type correctness and contextual constraints.
A symbol table is used to store and retrieve information about variable declarations in order to
facilitate scope and type checking and code generation. The information about variables that
may be retrievable are its type, the source line and column number of the corresponding token
and the memory location at which the variable will be saved within the machine at run-time.
The final phase of the compilation is the code generation in which the AST of a program is
translated to a lower level language called the target language. Sometimes it is necessary for an
assembler to transpose the generated code before it can be executed. Assemblers may create
object files, binary files that contain object code which consists of zeros and ones. In order to
create an executable, object files have to be linked to other object files by a linker. Compilers
can be automatically generated from compiler generator tools such as Lex and Yacc [24, 22],
ANTLR [30] and SableCC [16].

9



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

Run-time. A compiled program can be run by a program user who may interact with the
program and view the results on the screen. The compiled program consists of code that is either
run directly on the Central Processing Unit (CPU) or it is a byte code that is interpreted by a
Virtual Machine (VM). A VM differs only from physical machines in that it is not represented
by a hardware component directly but is a program itself running on another machine.

Debugging. In case of a program error at run-time the programmer can either examine the
source code or the generated code. In order to be able to examine binary target code it must be
analyzable in terms of the source code. A source-level debugger is a tool that depicts the progress
of a program in terms of its program source and allows control over the program control flow in
order to find software bugs.

Debugging is the process in which software developers use a debugger to prove or disprove
hypotheses about the source program. Debugging is related to model checking, simulation and
testing. In testing, hypothesis about the program are described as test-cases which consist of a
predefined expected result and the observed result. When the two correspond the test passes,
otherwise it fails. Aside from being used for complete validation to certify the quality of the
product or design model by establishing its absolute correctness, a model checker can be used
as a debugging aid to find residual design and code faults using partial state space exploration
methods [13]. The counter-examples produced by model checkers provide a means to simulate
the source program and direct the behaviour to the error state. Testing, debugging and model
checking are complementary activities because any verification is only as good as the validity of
the system model.

Ryu et. al describe two fundamental approaches to source-level debugging of compiled code in
[39]: The first approach is reverse engineering where the compiler generates code and additional
information that enables the debugger to analyze the object code and report information at
the source level, e.g. ldb [35], GDB and ACID [52]. The second approach is instrumentation
where the compiler modifies the program code and inserts extra instructions that are used for
debugging, e.g. smld [45]. Although instrumentation can provide debugging support with a
modest effort it is also slow at run-time [39].

Debugging Information. We define debugging information as the extra, optional information
generated by the compiler which is (usually) not necessary for programs to run, but which is
necessary for debuggers to make source-level debugging possible.

Reflection. Debugging information is related to an object oriented design pattern called re-
flection. Bobrow et al. define reflection in [4] as a mechanism for observation and modification:
”Reflection is the ability of a program to manipulate as data something representing the state of
the program during its own execution”. There are two aspects of such manipulation: introspec-
tion and intercession. The first aspect is the ability of a program to observe and reason about
its own state. The second is the ability for a program to modify its own execution state or alter
its own interpretation or meaning. Both aspects require reification, which is a mechanism for
encoding execution state as data.

Parson et al. pose in [31] that: ”Reflection provides a powerful means for a target software
system to expose aspects of its implementation to a tool such as a debugger, so that the tool can
configure its user interface and command set to adapt to the special requirements and capabilities
of the target system.”

10



CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMENT

1.1.3 The Nips VM

The Nips VM is targeted to be a fast, reusable, Embeddable Virtual Machine for State Space
Generation [50]. The Nips VM and the Nips byte code it runs are designed for operational
models of high-level languages for use with verification tools. The VM can play the role of the
state space generation back-end in an explicit state model checking framework. Using the Nips

VM as tool back-end saves the tool engineer the often complex and time-consuming task of
having to design and implement a model checking engine. Furthermore, the design allows the
reuse of modeling languages and common (byte code) analyses.

The Nips VM runs Nips byte code supplied by a compiler, executes its semantics and generates
states vectors, low level snapshots of the system behavior, based on the byte code and an input
state vector. The Nips VM Application Programming Interface (API) is schematically depicted
in Figure 1.3.

get successorssvin

return successors

svout1

Nips VM

svoutn

Figure 1.3: Nips VM API

The Nips Promela Compiler translates Promela models, created by the tool user into Nips

byte code. Together with the Nips VM and a scheduler component, it forms an explicit state
model checker that offers comparable functionality to the Spin model checker.

The Nips VM is mainly distinguished from other explicit state model checkers by its modular
design and its small implementation. Consequently, it can be embedded in host-tools as a model
checker engine. The host-tools determine the strategy for the search of the state space and may
use any high level language, provided that it can be translated to Nips byte code. Furthermore,
the Nips byte code can be optimized as a means for state space reduction and the Promela

compiler allows the reuse of a large amount of case-studies.

1.2 Problem Statement

This thesis is concerned with working towards fulfilling the promise of the Nips VM as a reusable
component for state space generation that is part of a extensible tool set of explicit state model
checker components. The following problems related to model checking and debugging regarding
the Nips VM can be identified.

State BLOBs. The main problem with the Nips VM is that it cannot be properly used since
the output consists of state vectors, i.e. arrays of unnamed, untyped bytes which are displayed
as Binary Large Objects (BLOBs).

Debugging. Consequently, the Nips VM misses debugging functionality. Users of Nips VM
tools cannot analyse the behaviour of design models compiled to Nips byte code. The need
exists for a debugger that enables users of Nips VM based tools to analyse the results the tool

11



CHAPTER 1. INTRODUCTION 1.3. OBJECTIVES

generates.

Debugging Information. We lack the language to describe source level information that can
be used by a debugger for Nips to display states at run-time. The question is what kinds
of debugging information there are and what they can be used for. What should debugging
information tailored towards the Nips VM look like, and how can this information be provided
by compilers targeting it?

Embeddable Nips VM. The Nips VM is designed to be an embeddable component for state
space generation, but it is unclear how it can be embedded in host applications because it consists
of undocumented C code. For tool engineers that wish to embed the Nips VM as a explicit state
model checker back-end, it needs to be clear what the Nips VM API is in terms of functions
and procedures and their arguments, such that they can design host applications that can gain
access to the VM. How can the Nips VM be embedded? Does the VM offer all the services host
applications need to make use of it? If not, then in what way does the API need to be extended
or altered?

1.3 Objectives

The primary goal of the research work elaborated in this thesis is to allow users to make use of
Nips VM based tools and to make it more attractive to tool engineers to embed the Nips VM
as a tool back-end. The objectives are sub-devised as follows.

• Readable States. States and counter-examples should be unparsed to their source-level
equivalent allowing program debugging, simulation and viewing model checking results.

• Embeddable Nips VM. The Nips VM should be more easily embeddable in host ap-
plications by giving access to state components and facilitating state introspection, paving
the way for state-of-the-art state space reduction techniques such as state collapsing [19]
and Partial Order Reductions (POR) [6, 36].

The research must be applicable to the field of explicit state model checking but the specific goal
of the research is to extend the application field of the Nips VM.

1.4 Approach

We discussed the problems regarding the Nips VM related to model checking and debugging in
Section 1.2 and set specific goals to achieve a subset of these problems in Section 1.3. Here we
give an outline of the approach on how to achieve the objectives and a chapter structure of the
report. Figure 1.4 shows the chapter overview.

Chapter 2 places the thesis research in context. It elaborates and explains references used in the
introduction background. Existing definitions of debugging information formats are discussed
to see if there is a likely candidate to be used with the Nips VM. Existing implementations of
explicit state model checkers similar to the Nips VM are compared with the Nips VM.

The study into related work in Chapter 2 yielded no immediate solution that could easily be
adapted to support a debugger for the Nips VM. Therefore, a new debugging information lan-
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CHAPTER 1. INTRODUCTION 1.4. APPROACH

guage must be defined which is both general and reusable, but which can be specifically used to
support a debugger for the Nips VM.

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6

used in

Chapter 1

Appendix

(a) Chapter Structure

Chapter 1: Introduction
Chapter 2: Related Work
Chapter 3: The SDI Language
Chapter 4: The SDI Framework
Chapter 5: Case Study:

The Nips Debugger
Chapter 6: Conclusions & Future Work

Appendix A: Enhancing the Nips VM

(b) Chapters

Figure 1.4: Chapter Overview

In this thesis the reverse engineering approach to debugging is applied. We believe that debugging
information provides a means to define an API that gives access to the memory model of a running
program, which can be used for debugging1.

A debugging API provides the means for a debugger to offer debugging functionality such as
displaying states at run-time to the user in an understandable way and allowing users to edit
state values. Displaying states can be seen as a form of introspection, editing state values as a
form of intercession and debugging information as a means for reification.

The principal contributions of this thesis for reaching the objectives defined in Section 1.3 are
presented in Chapters 3, 4 and 5. This thesis introduces a simple multi-use readable format for
Static Debugging Information (SDI) in Chapter 3 and the SDI Framework for state manipulation,
which is based on the SDI language, in Chapter 4. SDI is a high level modeling notation for
debugging information that is meant to describe the source-level elements of modeling languages
used with explicit state model checkers. The SDI Framework facilitates a reflective debugging
API that consists of function calls that enable debuggers to display and modify the information
in state vectors associated with running programs for which memory models have been defined
using SDI.

The generic results of the research are applied to the Nips VM in particular. The Nips VM
Tool Set is extended with a source-level command-line debugger that allows users to simulate
the behaviour of Nips byte code in Chapter 5. The design of the debugger based on the SDI
framework is treated as a case study, an in-depth examination of the application in order to gain
understanding about the investigated approach.

1though its applications are not limited to debugging
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The thesis is concluded in Chapter 6 with considerations about the results of the research,
motivations and the design and implementation of the SDI Framework and its application to the
Nips VM.

Additionally, the Nips API is documented and it is described how to embed it as a tool back-
end in model checker host applications in Appendix A. This appendix also describes design
suggestions for enhanced components for future versions of the Nips VM. Appendix B describes
the extensions to the Nips Promela Compiler. Appendix C details an example used throughout
this thesis to illustrate our approach. In Appendix D a user manual for the Nips Debugger is
presented.
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Chapter 2

Related Work

This chapter discusses work related to our approach. The Nips Virtual Machine (Nips VM)
is more thoroughly introduced than thus far in Section 2.1. After this introduction we discuss
debugging information formats as candidates for use with the Nips VM in Section 2.2. Next,
explicit state model checkers related to the Nips VM are discussed in Section 2.3, particularly
the debugging solutions employed in the tools. How are counter-examples related to the source
and how are they presented to the tool user? The debugging solutions offered by the discussed
formats and tool designs and languages are compared in Section 2.4 to finally decide about the
approach for the debugger for Nips in Section 2.5.

2.1 The Nips VM

The Nips VM is described in [50, 51] as a Virtual Machine for state space generation that is
designed as a modular, efficient, reusable, embeddable explicit state model checker tool engine
(or back-end). It can execute Nips byte code instructions that are translations for high level
modeling languages. Executing a Nips byte code program yields a state space that can be used
with model checkers simulators and testing tools. The Nips acronym is the reverse of Spin and
has (at least two) different meanings: New Implementation of Promela Semantics and Never
Implement Promela Semantics (again).

2.1.1 Motivation

The design of the Nips VM and Nips byte code for implementing an operational model of high-
level languages for use in verification tools is motivated by four main arguments [50]. Firstly,
it is highly desirable to reuse an already existing modeling language like Promela and reuse
existing case studies instead of having to resort to artificial examples. Secondly, the tool de-
veloper can focus on the design and implementation of algorithms when using a reusable (or
re-implementable) component for state space generation that can easily be interfaced with the
tool infrastructure. Thirdly, tool users can switch to other tools with the same input language
without having to reimplement the model in another formalism. Lastly, using the Nips VM as
a tool back-end allows the implementation and reuse of common analyses such as dead variable
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reduction and statement merging irrespective of the high level modeling language being used.

2.1.2 Language

The Nips VM runs Nips byte code, an intermediate language, that serves as a means to describe
the operational semantics of modeling languages. Nips byte code works on three types of run-
time components: the global component, processes and channels which can be used with all
compilers targeting the Nips VM.

Nips byte code supports non-determinism, concurrency1 of run-time created processes, ren-
dezvous and asynchronous communication between processes via channels, sending a channel as
a variable message via another channel, priority control of byte code execution and speculative
execution. Speculative execution entails that the changes to states caused by byte code of which
the execution cannot complete are undone (rolled-back). The byte code can be used to encode
LTL properties in the model itself into a monitor process. LTL properties are described in
Promela as never claims. A full description of the Nips byte code can be found in [50].

The Nips byte code contains incomplete debugging information for Promela programs in the
form of debugging information strings. These strings are limited in their expressiveness and their
meaning depends on the relative placement in the code. Source location markers consist of line
and column. Name markers consist of a begin or end tag, followed by a keyword and possibly
a name. They do not provide a means for a debugging API and they seem to be designed only
with Promela in mind.

int n;

active proctype p(){

  do

  :: n<5; n++;

  od;

}

never{

  do

  :: assert(n<5);

  od;

}

!module "main"

!modflags monitor

  GLOBSZ 4

!strinf begin scope_init 0

  LDC    0

  STVA   G    4    0

!strinf end scope_init 0

  LRUN   0    0    P_p     1

  POP    r0

  LRUN   0    0    P_never 0

  MONITOR

  STEP   T    0

!strinf begin proc p

  P_p:

!srcloc 3 3

!strinf begin do

  L0:

!strinf begin option

!srcloc 4 6

!strinf begin var n

  LDVA   G    4    0

!strinf end var n

  LDC    5

  LT

  NEXZ

  STEP   N    0

!srcloc 4 11

PROMELA Model NIPS byte code State VectorNIPS VMCompiler

Global 

Component

Process p[2]

Process p[3]

Figure 2.1: Nips Byte Code Example

Figure 2.1 shows an example byte code snippet compiled from the Promela source program on
the left. Its source statements can be deduced from the byte code, but the location of variable

1Modeled by interleaving semantics
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n in the memory is not saved with its source name. Therefore, ”variable n” is unknown in the
resulting state vector on the right.

The Static Code Optimization for Nips byte code described in [2], that works for all compilers
targeting the Nips VM, can in some cases improve the performance substantially. In such cases
the amount of byte code and the state space can be statically reduced.

2.1.3 Design

The Nips VM was designed using pragmatic design solutions. First, a formal semantics was
written that completely describes the model behavior for each of the Promela language features
[42]. This formal description was then used to derive the Nips byte code instructions that are as
generic as possible, in order to be able to reuse them for describing the operational semantics of
different languages [41]. The Nips VM was designed to create a model that is simple, efficient
and embeddable as a component into host applications [43]. Conceptually the design of Nips

VM based tools is split in the Nips VM back-end for state successor calculation, a scheduler
algorithm that determines the next state to evaluate and a compiler that targets the Nips VM.
The VM makes use of a stack-based architecture for expression evaluation. It has registers for
the translation of counting loops. The RISC-like instruction set is motivated by the need for
fast decoding inside the instruction dispatcher, the VM’s most executed routine. As a design
principle the Nips VM executable remains the same for each model and is not recompiled for
specific models as happens with Spin.

States. Nips VM states are memory BLOBS, untyped sequences of bytes called state vectors.
States contains all the information the VM needs to continue its execution. During the execution
of a process step, the process contains execution stacks and registers but these are removed
before the state vector is returned. The Nips state vector starts with a global component that
contains global variables, followed by processes that contain local variables and channels that
may contain messages up to their predefined capacity. All compilers for the Nips VM that
support components or objects that do not fit global variables, processes or channels precisely
must encode these objects as global or local variables. The order in which the components are
placed in the state vector is referred to as the state format. Figure 2.2 shows the Nips VM state
format.

State

Global Component

Process 1

Process n

...

Channel 1

...

Channel n

Global Component

State Decriptor

Global Variables

Channel

Process

Process Descriptor

Local Variables

Stack

...

Register 1

...

Register 8

Channel Descriptor

Channel Type Bits

Message 1

...

Message n

Figure 2.2: Nips State Format
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variable describes

gvar size size of the global variables in bytes
process count number of processes in the state vector
exclusive pid pid of the exclusively executing process
monitor pid pid of the process used for monitoring
channel count number of channels in the state vector

(a) Global Component Descriptor

variable describes

pid process identifier
flags process execution mode
lvar size size of the process’ local variables
pc program counter

(b) Process Descriptor

variable describes

cid creating process identifier and channel identifier
max length maximum number of messages in the channel
cur length current number of messages in the channel
msg length message length
type length type preamble length

(c) Channel Descriptor

Figure 2.3: Nips VM State Component Descriptors

Each component starts with a component descriptor that describes component state information
relevant to the execution of the VM. The information in the descriptors is relevant to the place-
ment of the component in the state vector and the retrieval of the component from the state
vector. The Nips component descriptors are depicted in Figure 2.3. Processes are ordered inside
the state vector by increasing value of the pid and channels are ordered inside the state vector
by increasing value of the cid. Even though processes are not explicitly typed, depending on the
type of the process the pc stays within the range of the section of the byte code.

Channel identifiers contain the creating process identifier as means for a simple symmetry reduc-
tion. The order in which channels are created by different processes does not lead to different
states. Furthermore, a Nips channel component is always the same size, it is padded with zeros.
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For each instruction, the component subject to the instruction must be retrieved from the state
vector. This is done by an algorithm reminiscent of a scanner. It uses a component descriptor
look-ahead to identify the next component in the state vector. The type of the component and
thus the type of the descriptor is determined by the state format. Algorithm 1 describes the
retrieval of Nips VM state components from the state vector.

Algorithm 1 (Nips Component Retrieval). retrieve(sv , comp, id) is a function to retrieve
component comp with component identifier id from state vector sv that starts at Global
where

• Argument sv is a state vector, argument comp is a Nips component where comp ∈
{global , process, channel} and argument id is the process identifier if comp = process ,
the channel identifier when comp = channel or not defined if comp = global .

• Local variable process count is the number of processes in the sv , Local variable
channel count is the number of channels in the sv , Local variable curp is the current
number of visited processes and Local variable curc is the current number of visited
channels.

• And let functions size(global g) = size(global descriptor) + g .descriptor .gvar size,
size(process p) = size(process descriptor)+p.descriptor .lvar size and size(channel c) =
size(channel descriptor) + c.descriptor .type length + c.descriptor .cur length ∗
c.descriptor .msg length be help functions.

1. Global: The global component g is at offset zero.

(a) If the object of the search is the global component, i.e. comp = global return g.

(b) Otherwise read the global component descriptor. Save the number of processes and
channels in process count and channel count . Set the number of visited processes
and channels to zero: curp = 0 and curc = 0. Goto process at offset size(g).

2. Process(int o): Process p is a component at offset o. Increment the number of visited
processes: curp++. Read the process component descriptor.

(a) If the process was found then comp = process and id = p.descriptor .id then return
process p.

(b) Else if there are more processes i.e. curp < process count then goto Process at
offset size(p) + o.

(c) Else if there are more channels i.e. curc < channel count then goto Channel at
offset size(p) + o.

(d) Else terminate, component not found.

3. Channel(int o): Channel c is a component at offset o. Increment the number of visited
processes: curc++. Read the channel component descriptor.

(a) If the channel was found then comp = channel and id = c.descriptor .id return
channel c.

(b) Else if there are more channels i.e. curc < channel count then goto Channel at
offset size(c) + o.

(c) Else terminate, component not found.
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2.1.4 Applications

Promela Semantics. The Nips VM is particularly well-suited for Promela models because
Nips byte code has been developed to express the formal semantics of Promela models [42,
41, 43]. The efforts are implemented in the Nips Promela Compiler. Together with the Nips

VM and a scheduler component, it provides functionality comparable to that of the Spin Model
Checker that fast enough for practical use, although a debugger is missing2. The goal is to reuse
Promela in order to be able to reuse case studies and be interchangeable with tools that use
Promela.

Schedulers. The Nips VM distribution contains built-in DFS and BFS schedulers. The algo-
rithm for nested DFS described in [44] has been implemented in Java to gain insight into the
algorithm.

Adaptive Model Checker. The Nips VM has been used as a state-space generation component
in an adaptive external-memory model checking tool [17]. The tools scheduler uses not only the
main memory but also the hard drive to store the state space, making it possible to model check
Promela models with larger state spaces.

Nips and DiVinE. The Nips VM has been used with DiVinE [3] in distributed algorithms for
verification, in which multiple scheduler algorithms run on different PCs. By letting each sched-
uler perform a BFS the state space is partitioned and stored distributively. Like the external-
memory model checker it makes it possible to use more memory for model checking Promela

models.

Model Checking Embedded System Software. The Nips VM has been used to model
check correctness of assembly code for ATMEL ATmega family of micro-controllers [40].

Tapir. Tapir is a programming language designed for systems programming. It is a minimalistic
object oriented language which has no automatic memory management, no exception handling,
no inheritance and no type-casts. Its domain, systems programming, includes networking proto-
cols, operating systems, middlewares, DSM systems, etc. The services provided by such systems
are critical for the stability of the programs that rely on them. Therefore the semantics of Tapir

is modeled using Nips byte code. A model checker has been implemented that uses the Nips

VM which provides a means to check the correctness of the system [46].

2.2 Debugging Information Formats

Over the years many debugging information formats for programming languages have been used
such as stabs [28] , COFF, IEEE-965 [47] (a withdrawn standard) and Dwarf [15]. Debugging
information format standards are either combined with object file formats (COFF, IEEE-695)
or separately described (stabs, Dwarf) to be used in combination with an object file format.
An important example of such a format is the Executable and Linking Format (ELF) which
is a standard Unix object file format. ELF largely replaced the Common Object File Format
(COFF). The Java programming language uses its own format, called the Java class file format,
to store both byte code and debugging information. Java virtual machines require part of the
debugging information to run Java programs whereas the rest only serves for debugging. In this
section we discuss the stabs, Dwarf and the Java class File debugging information formats as

2See Chapter 5 for the Nips Debugger.
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candidates for use with the Nips VM.

2.2.1 Stabs

The stabs (symbol table strings) debugging information format was originally used with Unix’s
a.out (assembler output) object format for executables, but has been extended over the years
for use with Cobol, C, C++, Pascal and other languages. Problematic with the stabs format
is its standardization, with some exceptions [28, 29] stabs have not been properly documented.
Compilers that support stabs, such as the GNU Compiler Collection (GCC), can generate the
debugging information encapsulated in so called assembler directives known as stabs, formatted
information strings, which are interspersed with the generated code. The assembler adds the
information from stabs to the symbol information it places in the symbol table and the string
table of the object file it builds. The linker combines the object files into an executable such that
it contains one symbol table and one string table. The resulting linked object or executable can
be parsed by a debugger on the same platform, as a source of debugging information about the
running program.

Language. A documented version of stabs used with the GNU Debugger [28], describes the lan-
guage that consists of three differently formatted stab assembler directives called string (.stabs),
number (.stabn) and dot (.stabd).

.stabs "string", type, other, desc, value

.stabn type, other, desc, value

.stabd type, other, desc

The type field is a number which uniquely determines the stabs type. The stabs type defines
the exact interpretation of, and possible values for, any remaining string, desc, or value fields
present in the stab. The overall format of the string field for most stab types is:

"name:symbol-descriptor type-information"

The field describes the names of symbols and their type. Stabs symbols include the: (stack)
variable, constant, nested name, (nested) function or procedure, reference or register parameter,
module, an enumeration or an array. Stabs type supports includes: built-in (base-), method-,
pointer-, reference-, array-, function-, structure-, set- and union- types. Stabs may also describe
unnamed entities.

2.2.2 Dwarf

The Dwarf3 debugging information language acronym is said to mean Debugging With At-
tributed Record Formats [10]. There are three documented versions, the first of which was first
used with the sdb debugger in Unix System V Release 3 (SVR3) developed by Bell Labs in the
mid 1980’s. It was first documented by the Programming Languages Special Interest Group
(PLSIG), part of Unix International (UI), in 1989 as the Dwarf 1 standard [32] and is still used
for debugging small embedded systems processors. Dwarf 2 was introduced as a draft standard
[33] in 1990 but a final version was never released. It addressed issues related to the amount of
generated data and introduced support for C++. Dwarf was revived in 1999 in order to provide
better debugging support for the HP/Intel IA-64 Architecture as well as better documentation
of the Application Binary Interface (ABI) used by C++ programs4. The Dwarf 3 standard

3The name Dwarf is a funny reference to ELF.
4An ABI allows compiled object code to function without changes on any system that supports the ABI.
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was released in January 2006 [15, 1]. It is backwards compatible with Dwarf 2 and therefore
resembles it closely. It adds support for Java, C name spaces, C99 base types, cross module entry
reference, discontinuous scopes, stack structures and stack unwinding.

Language. Dwarf 3 is designed to be extensible to support procedural programming languages
on any machine architecture. Dwarf uses a series of debugging information entries to define a
low-level representation of a source program. It is commonly used with ELF but it can be used
with other object file formats as well. It does not duplicate information located in the object
file.

Dwarf is block structured, like many programming languages. The Dwarf description of a
program is a tree structure which resembles an AST. Dwarf tree nodes represent types, variables
or functions. The basic descriptive entity in Dwarf is the Debugging Information Entry (DIE).
Each entity, except the top-most entity, is contained in a parent entity and may contain child
entities. Entities may contain multiple entities called siblings. Each DIE has a tag, which
specifies what the DIE describes and a list of attributes which fill in details and further describes
the entity.

There are a vast amount of Dwarf entries, e.g. used for describing: functions, procedures, lexical
blocks, labels, statements, error handling, sets, built-in (base-) types, pointer-types, array-types,
structure-types, union-types, class-types, interface-types, and member-function types. Further-
more, Dwarf contains instructions to describe call frame information and to provide a mapping
between target code and the program source.

2.2.3 GDB

Arguably the most popular debugger for UNIX systems is GDB, the GNU debugger. It is a
source-level debugger that can be run on most UNIX variants and Microsoft Windows that allows
debugging of programs written in C, C++, Objective-C, Pascal, Java, Fortran and Modula-2,
etc. GDB can display variable values and can be used to determine where in the execution
errors occurred. It can be used to set break-points, which entails selecting a source line where
the execution op the program should halt and it can be used to step through the code line by
line or instruction by instruction. GDB can read various debugging information formats that are
output by the GNU Compiler Collection (GCC), including stabs and a modified undocumented
modified version of Dwarf 2. It is however difficult to extend GDB with support for new
languages, because the requirements are not clearly described and it requires an extensive amount
of programming [39].

2.2.4 Java class File Format

The Java virtual machine class file format describes the Java byte code structure. Each class

file consists of a tree structure. Its nodes are described as tables that consist of zero or more
variable-sized items. The Java class format is extensible because all tree nodes may have any
number of attributes, general information items, associated with them. Compilers are permitted
to define and emit class files containing new attributes in the attributes tables of class file
structures. Java virtual machine implementations are permitted to recognize and use new at-
tributes, e.g. to support vendor-specific debugging, provided that these attributes do not affect
the semantics of class or interface types. Unrecognized attributes must be silently ignored,
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allowing byte code with additional attributes to run on different implementations of the Java
VM also [25].

The root of class tree, which is represented by the ClassFile structure, contains the Constants,
Fields, Methods and Attributes tables. The class format tree structure is schematically de-
picted in Figure 2.4. We discuss the tree nodes one-by-one.

... ... ...

optional

...

ClassFile

AttributesConstants Fields Methods

LocalVariableTableLineNumberTable

Code

optional optional

Exceptions

SourceFile

optional

Method InnerClasses

ConstantValue

Field

Deprecated

Synthetic

Constant

Figure 2.4: Java class Format

Constants. The ConstantPool is a table of entries that among other things, represents a flat
representation of the compiler symbol table. Constants in the ConstantPool are referred to by
other tree nodes by array index number. The format of each entry is indicated by the tag, the
first byte in the constant entry. Table 2.1 depicts the possible constant types and their tag value.
A full description of constant types is given in [25].

constant type tag value

Class 7
Fieldref 9
Methodref 10
InterFaceMethodRef 11
String 8
Integer 3
Float 4
Long 5
Double 6
NameAndType 12
Utf8 1

Table 2.1: class format constants

Fields. The Fields node is a table of entries that represent the fields declared for this class

or interface. A field entry contains the name, type and flags that indicate if the field is public,
private or static. For fields that are declared as constants the ConstantValue attribute is used to
store the constant value. The Deprecated attribute is used to indicate that a field is deprecated.
The Synthetic attribute is used to indicate that a field has been generated by the compiler.
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Methods. The MethodInfo node describes the methods declared by this class or interface type,
including instance methods, class (static) methods, instance initialization methods, and any
class or interface initialization method, but no inherited methods from superclasses or superin-
terfaces. A method entry contains the name of the method, the type of its parameters and of
its return value, flags that indicate if the method is public, private or static. The Exceptions

attribute contains the names of the exceptions that can be thrown by the method. The method
field Code attribute contains the code of the non abstract methods.

The LocalVariableTable attribute and the LineNumberTable are optional attributes of the
Code attribute. The LocalVariableTable attribute may be used by debuggers to determine
the value of a given local variable during the execution of a method. The LineNumberTable

attribute may be used by debuggers to determine which part of the Java virtual machine code
array corresponds to a given line number in the original source file.

Attributes. The Attributes node is a table of class attributes. The optional SourceFile
attribute refers to the name of the source file. The InnerClasses attribute describes nested
classes and interfaces. This concludes the description of the Java class file format.

Java VM. The Code, ConstantValue, and Exceptions attributes must be recognized and cor-
rectly read by a class file reader for correct interpretation of the class file by a Java virtual
machine implementation. Furthermore, the InnerClasses and Synthetic attributes must be
read correctly in order to support the Java and Java 2 platform class libraries. These libraries in-
clude support for reflection, loading and creation of classes and interfaces (e.g. the ClassLoader),
linking and initialization of a class or interface, security and multi-threading. Additionally, the
LineNumberTable, LocalVariableTable and SourceFile attributes of a class file and its meth-
ods are needed to support source-level debugging.

2.3 Model Checkers

In this section, explicit state model checkers that bear resemblance to the Nips VM are discussed
with respect to the motivation, the technologies and the modeling languages. The focus is on
the debugging solutions in particular, since counter-examples produced by the tools must be
returned to the user at a source level and this has yet to be achieved with the Nips VM.

2.3.1 Spin

Spin is an explicit state model checker that can be used for the formal verification of distributed
software systems. The Spin acronym, introduced with the first version of the tool, means Simple
Promela Interpreter. Nowadays Spin is neither simple nor merely an interpreter, it is a mature
model checker that has been successfully applied in many software development projects. Spin

is thoroughly described in [20].

Motivation. The motivation for Spin is to verify the correctness of the design models of
concurrent and distributed systems which are difficult to debug and test with traditional means.

Language. Promela means Process Meta-Language. It is a high level modeling language
intended to find good abstractions of system designs (i.e. models) of concurrent software systems.
Its commands are guarded which means statements are blocking (will not execute) until they
evaluate to true. It features asynchronous processes to model threads, buffered and unbuffered

24



CHAPTER 2. RELATED WORK 2.3. MODEL CHECKERS

channels for communication between processes with message passing, synchronizing statements,
non-deterministic control structures, conditional branching statements, loops, atomic sequences,
deterministic steps, structured data, etc. The full language features and their syntax are too
numerous to explain here, they are described in detail in [20].

Tool. Spin can perform a depth first search (DFS) or a breadth first search (BFS) to validate LTL
properties, which are translated to never claims in the Promela model. To check invariants,
assertions can be placed in the model at strategic locations in the model. During a DFS Spin

uses a stack to keep track of visited states. Once a counter-example has been found the stack
is simply printed. It is returned to the user as execution trace that consists of a sequence of
states and transitions, which are described using source level variables and values and Promela

source statements. Spin keeps track of the source statements and variable types with internal
look-up tables. It does not have to resort to the use of separately defined debugging information
to explain counter-examples. However, the symbol table information that is collected by Spin

while parsing a Promela model can be emitted to a file in a machine readable format.

Debugging Information Format. The Spin debugging information format uses one line to
describe each symbol table object. Similar to stabs, each line is a string that consists of infor-
mation fields. All objects are described by type and name.

type name ...

Depending on the type of the object additional information is specified.

For a variable of type bit, byte, short, int, mtype and proctype the additional information fields
are the initial value, the scope and its role.

type name initial value scope role

The scope of variable is global, part of a struct field or local to a process. A variable either plays
the role of a variable or that of an argument. The values that the type, scope and role field can
range over are depicted in Table 2.2. If the variable is declared as an array the name field also
contains the array length: name[length] where the length is a positive integer. If the variable
is a structure field then its name is composed of the type name and the field name separated by
a dot: type name�field name.

type scope role

bit <:global:> <variable>

byte <:struct-field:> <argument>

int <process name>

mtype

proctype

struct

channel

...

Table 2.2: Promela Debugging Information Field Values

For structure variables, where the type is struct, the third field defines the name of its structure
type declaration.

struct name type name scope role

Structures can be structure-fields themselves in which case its name is composed of the type
name and the field name separated by a dot: type name�field name analogous to variables that
are structure fields.
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For a channel, the additional information fields are the size, the scope, the role, the number of
message parts and the message part types. The size is an integer value greater than or equal to
zero, the number of of message parts is an integer value greater than zero, and the message type
parts are not struct types but single-value types.

channel name size scope role msg parts type 1. . .type n

Optimization Strategies. Many optimizations have been made to Spin to reduce the state
space, such as state collapsing, state compressions [19] and the minimized automaton [21]. The
state space explosion is curbed by means of Partial Order Reduction [20, 6]. Spin also supports
approximate model checking where bit state hashing or hash compaction are used store the state
space.

2.3.2 JPF

Java Path Finder (JPF) is a second generation explicit state model checker tool environment for
the verification, analysis and testing of Java programs, or Java models as they are referred to in
this context. The original version of JPF translated Java programs to Promela. This approach
was abandoned because of the difficulties of mapping the language features of Java to Promela.
The current version uses a virtual machine based approach and runs Java byte code.

Motivation. The design of JPF is motivated by practical language and tool design arguments
[48]. Programs often contain fatal errors, such as critical section and deadlock errors, despite
the existence of careful designs. Therefore there should also be focus on model checking real
programs written in modern programming languages. Because modern programming languages
are well designed, they may be good design modeling languages as well. Using programming
languages as modeling languages may increase the access to real examples and case studies. It
may also enlarge the number of potential users of the tool.

Tool. JPF is designed as an extensible tool environment for model checking and debugging,
which is as modular and easily understandable to developers as possible at the cost of model
checking speed. The tool, which his implemented in Java, simulates non-determinism by using
backtracking, such that JPF can restore previous execution states, which are heap and thread-
stack snapshots, in order to explore different previously unexplored execution paths. The JPF
VM runs on a Java VM. It intercepts method invocations and delegates property-irrelevant
executions to dedicated classes running the host VM. JPF can only exhaustively explore the
state space for small programs, which should be no greater than approximately 10000 lines and
may not contain platform specific native code, because the JPF VM cannot execute it. Aside
from model checking, JPF offers debugging functionality in the form of run-time analyses such
as data race condition detection and lock order analysis, that can be used to pinpoint potentially
problematic code fragments, deadlocks and unhandled exceptions.

Explaining Counter-Examples. To understand how JPF counter-examples can be related
to the Java source it is necessary to explain what JPF states are. States are represented in a
complex Java data structure which consists of three components: 1) information for each thread
in the Java program, 2) the static variables (in classes) 3) and the objects in the system. The
information for each thread consists of a stack of frames, one for each method called, whereas the
static and dynamic information consists of information about the locks for the classes/objects
and the fields in the classes/objects [48].
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The state space size is reduced by using a generalized collapse compression where state compo-
nents are stored in separately indexed spaces (hash-tables) and states are represented by indexes
referring to component hash-table positions. The states are compressed losslessly and stored in
a single integer, making it very fast to compare states.

Explaining a counter-example in JPF entails uncollapsing the integer state vectors and using
reflection, a Java language feature, to view run-time models and relate the states to source
level information. The java byte code contains debugging information which is used to support
reflection at run-time, as is explained in Section 2.2.4. JPF is integrated with BANDERA for
its error-displaying capabilities which allow users to step through the code line by line, forwards
and backwards, while observing the objects in the memory.

Optimization Strategies. To improve its scalability and allow use with larger programs JPF
supports directed model checking using a heuristics search. The set of follow-on states is filtered
according to a property related relevance directs the JPF VM, which is either supplied by the
user or gained from a run-time analysis. With this inexhaustive model checking the tool does not
provide a proof of correctness with respect to a system property, but rather serves as a debugging
tool (that may also yield false positives).

JPF uses symmetry reductions for class loading and the heap, where the ordering of the classes
being loaded and the order in which dynamic objects are created in the heap are canonicalized,
such that different orderings are recognized as equivalent. A mark-and-sweep garbage collection
algorithm prevents states from growing indefinitely and facilitates heap symmetry reduction.

The static analyses : slicing and partial evaluation are used to generate smaller functionally
equivalent programs that result in a smaller state space. A different static analysis called partial
order computation does not change the program size but reduces the state space by eliminating
unnecessary interleavings of the program behaviour.

2.3.3 Bogor

Bogor is a modular model checker framework with an extensible input language for defining
domain specific constructs. Its modular interface is designed to ease the optimization of domain-
specific state-space encodings, reductions and search algorithms [38, 8, 37, 18].

Motivation Bogor was developed as an answer to difficulties with the application of existing
model checker frameworks to particular domains [38]. The authors observed that it is problematic
to apply existing model checker frameworks to domain specific model checker problems because it
is difficult to: 1) efficiently map domain constructs to model checker input languages; 2) change
the encoding of system data to achieve state space reductions; 3) configure the search mode of
the model checker based on the reasoning with the particular model checking problem; 4) alter
or combine state space reduction strategies with collections of reduction strategies in order to
target related model checking problems.

Language. The input language of Bogor is an extended version of the Bandera Intermedi-
ate Representation (BIR). BIR features language constructs for types, expressions and actions.
Unlike most model checker languages, BIR features include dynamic thread creation, object cre-
ation, exception handling, virtual functions and recursive functions. BIR can express all features
of the Java Programming Language. Bogor can be extended with new semantics primitives.
An extension declaration consists of a signature declaration which specifies new symbols and
associated number of arguments to the name-spaces for types, expressions and actions, and the
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name of the Java package that implements the semantics of the extension. Extensions do not
alter the BIR grammar, but add names to the set of built-in expressions, actions, etc [38].

Tool. Bogor is designed to make it easy to extend the model checker with new semantic primi-
tives and optimize the state-space-storage and exploration strategies in order to tailor it towards
different application domains. Bogor is developed as a plug-in for the Eclipse platform. The type
of properties supported by the tool are invariants and LTL properties. The state space can be
explored with a DFS, BFS or directed search. The tool offers and editor with syntax highlight-
ing, a well-formedness checker, a user simulation mode and counter-example display. Just like
Spin, Bogor keeps track of the source statements, line numbers and variable types in an internal
symbol table. It does not have to resort to the use of separately defined debugging information
in order to depict counter-examples. In line with Bogor’s modular design, the symbol table may
be extended to support new actions and expressions.

Uses. Bogor is used for education in a graduate-level model checking course at (among oth-
ers) Kansas State University [9]. Because its design aspects are functionally separated and it is
programmed in Java, students and professional developers alike can easily add functionality to
Bogor.
Bogor has been used to model check Java programs [9]. The prototype Bytecode-to-BIR Transla-
tor (BB) translates Java source to BIR. The BB translator makes use of the ASM Framework [14],
a Java class manipulation tool designed to dynamically generate and manipulate Java classes,
which are useful techniques to implement adaptable systems. ASM is not an acronym but refers
to C assembly code functions. The debugging information is saved inside the Java byte code as
discussed in Section 2.2.4.

2.4 Evaluation

In Section 1.1.2 we stated that debugging information is the extra, optional information generated
by the compiler which is usually not necessary for programs to run, but which is necessary for
debuggers to make source-level debugging possible.

In this section we evaluate the debugging approaches used with Spin, Bogor and JPF in Sec-
tion 2.4.1. In the design of each of the tools, except the Nips VM, the problem of relating
counter-examples back to the source has been solved. To what extent do approaches used with
the explicit state model checkers related to the Nips VM, discussed in Section 2.3, make source-
level debugging possible for the Nips VM? Furthermore, we evaluate the debugging formats,
discussed in Section 2.2, in Section 2.4.2 in order to reach a conclusion about an debugging
approach for Nips.

2.4.1 Model Checkers

Modularity & Extensibility. What Bogor, JPF and Nips have in common is that they all
aim to be easily extensible with new algorithms and standardize model checking solutions by
offering an extensible explicit state model checking tool set. This is done by modular design,
separating the tools into easily replaceable components. JPF and the Nips VM both employ
schedulers to direct the state space evaluation. Components can be reused without the need for
a lengthy design process.
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Source Language. In contrast to Spin, Bogor and JPF which use high level modeling languages
which contain variable and type information, the Nips VM uses the low level Nips byte code as
its input language which may be derived from a Promela model but which contains almost no
source-level elements. The debugging information strings the Nips byte code contains will not
be extended because they are tangled with the byte code and they do not support a debugging
API. Spin parses high level Promela models itself and keeps track of the source statements and
types using internal look-up tables. It has no need for separately defined debugging information
to show counter-examples to the user.

Although Nips byte code and BIR are both intermediate representations, in the design of Bogor
there is no need for separate debugging information. Like Promela, BIR contains the source
level elements that Nips byte code lacks. The debugging approaches used with Spin and Bogor
cannot be used because the source level elements are not described separately from their respec-
tive modeling languages. Consequently, if we wish to either of the approaches, the modeling
language associated with it must be reused as well.

The design of JPF is similar to that of the Nips VM in that both are virtual machines that
run byte code and both can be used to model check programming languages. JPF uses Java as
its modeling language, is written in Java itself and runs on a Java virtual machine. The JPF
approach to show counter-examples to the user is to use the debugging information stored in the
class files generated by a Java Compiler from a Java model.

A comparison of the discussed modeling languages is shown in Table 2.3. Each of the tools use
different languages, some of which are source level modeling languages and some are intermediate
representations of models. What the tools have in common is that debugging information is never
separately described at a high level.

tool modeling language low level language debugging information

Spin Promela none Promela

JPF Java class file format class file format
Bogor BIR none BIR
Java + BB compilers Java BIR class file format
Nips VM based tools Promela, Tapir, etc. Nips byte code to be decided

Table 2.3: Modeling Languages

Debugger Design. Bogor makes use of the Eclipse platform to show counter-examples to the
user. The Nips VM would benefit from a user interface that can embed the Nips VM as an
Eclipse plug-in. JPF makes use of the reflection language feature of Java. The Nips VM would
benefit from a reflective layer that can be used for meta-programming and supports introspection
and intercession not only for immediate debugging purposes, but also for dynamic partial order
reduction in the long run.

2.4.2 Debugging Information

Is there a debugging information format, discussed in Section 2.2, that is suitable to be used
with the Nips VM in order to provide general, reusable debugging support? If not, then what
can be learned from the approaches and formats?

Since Nips byte code designed is not just designed to describe the semantics of Promela,
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but also different modeling languages, the debugging information should be tailored to support
common modeling structures and data types. More generally, it should focus on the abstract
meta-modeling of the memory encoded by state vectors that are produced by explicit state model
checkers and the source level elements of the used modeling languages. This includes mainly the
types of static structures of Nips run-time components and source information. We prefer a
high level debugging information language over a low level description because the goal of the
language is to be used for modeling the memory of running programs. Therefore the design of
the language should be separate from the low level implementation or object file format. The
debugging information language must be clearly defined and not a vague standard of which the
specification is adjusted for various projects without documentation. It should not be the case
that implementing a debugging information format costs an excessive amount of effort in terms
of programming. The different debugging information formats are discussed with respect to these
requirements.

Stabs. The stabs format consists of formatted Strings of type information. Though stabs is
extensible to support modeling languages a problem with stabs is that it is not standardized and
can be complex and occasionally cryptic [10]. Therefore stabs will not be used with Nips.

Spin. Like stabs the Spin debugging information consists of formatted Strings of type informa-
tion, but it is not extensible. It can only define symbol table information that can be extracted
from Promela models. Although it is simple and could easily be documented in Section 2.3.1
by reverse engineering the format, the Spin debugging information is not sufficiently general
to describe run-time memory models of programs in languages other than Promela and will
therefore not be used.

Dwarf. In contrast to stabs and Spin debugging information, Dwarf debugging information is
block structured, such that each entry (except the top level entry) is contained within another
entry and trees of information are easily represented at run-time. The Dwarf documentation
[15] describes in detail how to support different facets of debugging such as describing data
types, but also memory location expressions and source location mappings. We favor Dwarf

over stabs as because of its uniform standard, its block structure, its clear specification and its
expressiveness. However providing complete support for Dwarf for the Nips VM is difficult
and unnecessary, because Dwarf is tailored towards procedural programming languages and
not towards modeling languages, such as Promela, that are used with the Nips VM.

GDB An implementation of a debugger for Nips in GDB is deemed impractical because of the
features it supports and the large amount of programming required to add a new language to it
[39]. We do not wish to restrict Nips to Promela and we do not wish to have to extend GDB’s
feature set with non-deterministic languages.

Java class file format. The Java class file format is used by JPF and by the Bogor Bytecode-
to-BIR compiler as an intermediate representation of models and to store debugging information.
The format is well documented and extensible via the using new attributes [25]. However its
description is strongly tied to the implementation of Java virtual machines and the Java pro-
gramming language and therefore its design is not high level or easily reusable. The format is
not block structured as Dwarf.
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2.5 Concluding Remarks

In this chapter we have presented debugging approaches that are related to this thesis work.
The Nips VM, debugging information formats and debugging approaches for model checkers
were introduced and evaluated. The comparison of debugging approaches used in Spin, Bogor
and JPF yielded no solution for Nips because of architectural differences and differences in
the modeling languages. The study of the debugging information formats also did not show a
precision fit candidate. Therefore a new debugging information languages is necessary which is
similar in structure to Dwarf, using a block structure and extensible attributes, but which is
more high level and can be used for explicit state model checking. The language introduced in
this report is called Static Debugging Information (SDI). It is described in Chapter 3.
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Chapter 3

The SDI Language

In this chapter, a description of the Static Debugging Information (SDI) language is given. It
facilitates a debugging API through which the access to source program variables, their types
and values, and location information is realized. The SDI language is part of the SDI Framework,
which will be described in Chapter 4.

The structure of this chapter is as follows. Firstly, the creation of the SDI language is motivated
in Section 3.1. The SDI memory model is described in Section 3.2 and the list notation of the
language is described in Section 3.3. Next, the SDI notation for variable and scope declarations
is described in Section 3.4, types are described in Section 3.5 and locations are described in
Section 3.6.

3.1 Introduction

Debugging information is commonly not described at a high level, but rather it is a low level
byte format integrated with object files, such that its representation is tied to the implementation
of a storage format. In explicit state model checking, debugging information is usually stored
internally in a symbol table specific to a modeling language, such that the information cannot
easily be exchanged with other tools. When source models are represented by an intermediate
language for an operational semantics, source level debugging information may be lacking. The
SDI language is designed to remedy these problems. The main motivation for its creation is that
it can represent information known at compile-time that can be used for debugging at run-time.

SDI is used to build a memory model at run-time which relates otherwise unreadable binary
state vectors back to source-level variables, names and types. This memory model provides a
means for source level debugging. SDI is used to describe a flattened symbol table, run-time
component information and source language constants.

The SDI language is described with entries and attributes that are written down using a list
notation. Entries can describe symbol table entries, run-time component types and locations.
They contain attributes which are a constant name and constant value. Some attributes have a
special meaning in an entry and must always be defined whereas other attributes are optional.
Attributes that do not have a predefined meaning may be added to static debugging information
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to be queried at a later time. Debugging information of which the value is only known at run-time
is referred to as run-time debugging information. We avoid the term dynamic information because
SDI does not support dynamically typed variables, variables of which the type is generically
declared and is only precisely known at run-time. This chapter describes the different SDI
entries and for each of them describes the required attributes and their meaning.

3.2 Memory Model

This section describes what a program memory model is, how it can be described by SDI variables
and types and where the SDI definitions used to construct the model come from.

A run-time state of a program consists of components. Each of these run-time component has a
descriptor, a part of the component that contains variables that describe what is in the component
or meta-information that describes the run-time state of the component. Component descriptors
are described in more detail in Section 4.4. In order to understand how a memory model describes
run-time components and what a memory model expresses, we first explain the different sources
of information for a memory model of a running program.

Nips Promela Compiler

Nips VM

input generate

input

Symbol Table

SDI(MP)

Program

Constants

SDI(Pc)

Language

Constant

SDI(Lc)

Nips VM

Constants

SDI(VMc)

definition

generate

definition

Nips Byte Code

Pbytecode

d
e
fi
n
e

s

Program Memory Model Mp

User

Name Space

Machine

Name Space

State Vector generate

Promela

Source Program 

Ppromela

Figure 3.1: Nips Memory Model

In the context in which we are using SDI we describe three information sources. The first source
is the program for which the memory model is constructed. The second source is the language
the program is written in. The third source is the machine the program will run on and the
ultimate supplier of the memory model. Figure 3.1 describes the sources of information for the
Nips memory model. Definition 1 describes the memory model of a program that runs on a
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virtual machine.

Definition 1 (SDI definition of a memory model MP for a program P ). We assume there
exists a compiler C, a high level language L, a program P written in L, a low level byte code
representation PB generated by C from P and a virtual machine VM which runs PB . We assume
it is possible to get snapshots of the memory of the running program we call state vectors sv. The
VM and manages the memory of the running program sv as a sequence of bytes. The memory
model MP is a model of the memory of the running program sv, which consists of named and
typed variables and their values.

1. For each compiler C that takes language L as input there exist language constant types Lc

which are predefined in SDI that are the same for each program.

2. For each program P there exists program constant debugging information Pc, which can
be written down as SDI definition, that describes the variables in the memory model Mp of
the running program. This information is described in the symbol table of the compiler C
that translates P . The program SDI Pc is a flattened representation of the symbol table.

3. For each virtual machine VM there exist virtual machine constants VMc , that describe
machine related information in the memory model Mp. The VM environment variables
describe the system state of run-time components, parts of the state vector that represent
managed objects. The environment variables are described using system types we call
component descriptors. This information is defined according to the design of the machine
and how the machine manages the memory model Mp.

The complete SDI description of a memory model MP of a program P is the union of the SDI
definitions for the compiler language constants Lc, the compiler program constants Pc and the
machine constants Mc thus SDI(Mp) = SDI(Lc)∪ SDI(Pc)∪ SDI(VMc). The memory model
MP describes a name space, which consists of a user name space and a system name space. The
user name space is composed of the scopes, variables and type fields defined by the user in the
source program. The system name space is composed of the user name space possibly with extra
scope levels and component descriptors.

Memory model. A memory model of a program described by SDI defines the types of com-
ponents and named variables inside a program’s memory. For each component in the program
memory there exists an SDI component type that describes the memory range of the component.
A name tree is associated with each component type that defines the names and types of variables
inside a run-time component associated with information constant to the program, the compiler
and the VM. A memory model is the collection of all the name trees associated with run-time
components in a program’s memory and forms a representation of both user and system name
spaces.

The user name space and the system name space are merely different views of the same informa-
tion described with the SDI language. The information is separated because it can be hidden or
shown to whom the information concerns. Programmers are familiar with the user name space
which they themselves defined in the source program. System engineers may also be interested
to view information from the system name space. The memory may contain more than just
program variables. A compiler may introduce extra scope levels in the symbol table of which
the programmer is unaware. The VM may use environment variables that define the state of the
system. The names of program variables, compiler constructs and VM environment variables
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together form the system name space. The system name space contains more information than
the user name space.

3.2.1 Modeling Notation

Memory models are depicted using a modeling notation for SDI entries and types. First we
explain the modeling notation, then an example memory model is described graphically using
the modeling notation.

Shapes. The basic modeling shapes are depicted in Fig-
ure 3.2. Rectangles with rounded edges are types (type
t). Rectangles are scope and variable entries (scope a,
variable b). Text inside rectangles displayed in bold is
included in the name space (variable b). Text inside rect-
angles displayed in italics is removed from the name space
(scope a). The long light gray rectangle denotes the com-
ponent memory. Variables inside the component memory
are ordered by increasing addresses from left to right.

memory

type t variable bscope a

variable b

Figure 3.2: Shapes Legend

Connectors. The modeling shape connectors are de-
picted in Figure 3.3. Line connectors describe the entry
sub-entry relation. The sub-entries appear below entries.
When an entry has a sub-entry we say the entry contains
the sub-entry. Type t contains scope a. Scope a contains
variable b. Arrows describe type completions for variable
entries. Variable b is of type t2.

scope a

type t variable b

type t2

scope a

variable b

Figure 3.3: Connectors Legend

Colors. The modeling colors are depicted in Figure 3.4.
Light gray signifies program constants, light gray variable
and scope entry names appear in the user name space as
well as the system name space. Gray signifies VM con-
stants, gray variable and scope entries appear in the sys-
tem name space. Dark gray signifies language type con-
stants, dark gray variable and scope entry names appear
in both the system and the user name space.

type t

variable b

scope a

type t

variable b

scope a

type t

variable b

scope a

Figure 3.4: Colors Legend
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3.2.2 Furniture Factory Example

To illustrate Definition 1 we use a running example throughout this chapter. Our example VM is
the Nips VM, which was described in Section 2.1. Our example compiler is the Nips Promela

Compiler which was described in Section 2.1.4. We extended the Nips Promela Compiler to
generate SDI for its symbol table for any source program and we have defined the Promela

language constant types and the Nips VM constant types in SDI. The Nips VM state vectors
are the memory models which we describe using SDI. Figure 3.1 shows the sources of the SDI
with respect to Promela models. It makes clear that the combined SDI for thePromela source
program defines a memory model for the running program. The example Promela program we
will be using is a simple model of furniture factory which is described as follows:

Furniture Factory Example: A furniture factory produces chairs and tables. It can hold up
to 50 chairs and 30 tables in the factory. There are two trucks that are used to ship the furniture
to a storage facility. The trucks can be used as soon as 10 chairs or 7 tables are completed. A
truck is loaded with either chairs or tables. Sometimes a table or one or two chairs break and
they are not loaded onto the truck. The material of broken furniture is reused in the factory. We
assume the storage facility can hold all the furniture that is unloaded there. When a chair or a
table is sold, it is removed from the storage. For the example we abstract from the delivery of the
furniture to the customer.

1 mtype = {CHAIR, TABLE} ;
2 chan trucks = [ 2 ] o f {mtype , short } ;
3 i n t s o l d t a b l e s ;
4 i n t s o l d c h a i r s ;
5
6 active proctype producer ( )
7 {
8 short c ; /∗ c ha i r s ∗/
9 short t ; /∗ t ab l e s ∗/

10 do

11 : : c >= 10 ; t rucks !CHAIR, 1 0 ; c=c−10;
12 : : c >= 10 ; t rucks !CHAIR, 9 ; c=c−10;
13 : : c >= 10 ; t rucks !CHAIR, 8 ; c=c−10;
14 : : t >= 7; trucks !TABLE, 7 ; t=t −7;
15 : : t >= 7; trucks !TABLE, 6 ; t=t −7;
16 : : c < 50 ; c++; /∗ produce a cha i r ∗/
17 : : t < 30 ; t++; /∗ produce a tab l e ∗/
18 od ;
19 }
20
21 active proctype s to rage ( )
22 {
23 in t c ; /∗ c ha i r s in stock ∗/
24 in t t ; /∗ t ab l e s in stock ∗/
25 short a ; /∗ amount r e c e i v ed ∗/
26 do

27 : : t rucks ?CHAIR, a ; c=c+a ; /∗ rcv c ha i r s ∗/
28 : : t rucks ?TABLE, a ; t=t+a ; /∗ rcv t ab l e s ∗/
29 : : c−−; s o l d c h a i r s++; /∗ s e l l a cha i r ∗/
30 : : t−−; s o l d t a b l e s++; /∗ s e l l a t ab l e ∗/
31 od ;
32 }

(a) Promela Model

1 GLOBSZ 10
2 ! s t r i n f begin s c o p e i n i t 0
3 LDC 0
4 STVA G 4 6
5 LDC 0
6 STVA G 4 2
7 LDC 8
8 LDC −15
9 CHNEW 2 2 0

10 STVA G 2u 0
11 ! s t r i n f end s c o p e i n i t 0
12 LRUN 4 0 P producer 1
13 POP r0
14 LRUN 10 0 P storage 2
15 POP r0
16 STEP T 0
17 I 2 :
18 ! s t r i n f begin s c o p e i n i t 2
19 LDC 0
20 STVA L 2 s 0
21 LDC 0
22 STVA L 2 s 2
23 ! s t r i n f end s c o p e i n i t 2
24 RET
25 E 2 :
26 ! s t r i n f begin s c op e e x i t 2
27 LDC 0
28 STVA L 2 s 0
29 LDC 0
30 STVA L 2 s 2
31 ! s t r i n f end s c op e ex i t 2
32 RET
33
34 . . . byte code cont inues . . .

(b) Nips Byte Code Snippet

Figure 3.5: Furniture Factory Example
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The example is modeled in Promela, the resulting model is shown in Figure 3.5(a). A channel
with a capacity of two messages is used to model the two trucks. Two global integers are used
to keep track of the amount of sold chairs and tables. The process named producer models the
factory that produces the chairs and the tables. Line 11 models that no chair breaks during
transport, line 12 models that one chair breaks and line 13 models that two chairs break. Line
14 models that no table breaks during transport and line 15 models that one table breaks. Lines
16 and 17 model that chairs and tables are produced if they can be stored within the factory.
The process named storage models the storage facility where the furniture is stored. The local
variables named c and t are used to keep track of the number of stored chairs c and the number
of stored tables t. Lines 27 and 28 model the delivery of furniture. Lines 29 and 30 model the sale
of a chair or a table without going into details. The code is compiled with the Nips Promela

Compiler to Nips byte code. The first part of the generated byte code is shown in Figure 3.5(b).
The initialisation of the global scope and the two processes is depicted in Nips byte code. The
full byte code can be found in Appendix C.

State

Global Component

Process 1

Process 2

Channel 1

Producer Process

Process Descriptor

Local Variables

Storage Process

Process Descriptor

Local Variables

Global Component

State Descriptor

Global Variables

Trucks Channel

Process Descriptor

Channel Type Bits

Message 0

Message 1

Figure 3.6: Furniture Factory - Example Nips State

The furniture factory program memory model has four run-time components. The components
are stored in a state vector depicted in Figure 3.6. The global component consists of the state
descriptor and the global scope. The factory process and the storage process each consists of a
process descriptor and a local scope. The trucks channel consists of a channel descriptor and up
to two messages. The descriptors describe the state of the component for the VM and do not
appear in the user name space. Instead these are part of the system name space.
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variable descriptor scope global_scope

sold_chairssold_tablestrucks

usertype state_descriptor

basetype cid basetype int

global_scope type

gvar_size process_count exclusive_pid monitor_pid channel_count

basetype uint8_tbasetype uint16_t

Figure 3.7: Furniture Factory - Global Component Type Name Tree

Figure 3.7 shows the name tree of the global component type. This is the type of the component in
the Nips state vector that contains the state descriptor and the globally declared variables. The
variable name descriptor is included in the system name space. System variables are named de-
scriptor.gvar size, descriptor.process count, descriptor.execlusive pid, descriptor.monitor pid and
descriptor.channel count. The scope name global scope is excluded from the name space. Global
variable declarations are named trucks, sold chairs and sold tables respectively just as they were
declared on lines 2, 3 and 4 of Figure 3.5(a).

variable descriptor scope local_scope

tc

usertype process_descriptor

basetype short

proc_type producer

pid flags lvar_size ptype_id pc

basetype uint32_tbasetype uint8_t

Figure 3.8: Furniture Factory - Producer Type Name Tree

Figure 3.8 shows the name tree of the producer process type. This is the type of the component
in the Nips state vector that contains the state descriptor and the locally declared variables. Sys-
tem variables are named: descriptor.pid, descriptor.flags, descriptor.lvar size, descriptor.ptype id
and descriptor.pc. Each of the variables is defined to be of the uint8 t base type except for de-
scriptor.pc which is of the uint32 t base type. The scope name local scope is excluded from
the name space. Local variable declarations of lines 8 and 9 of Figure 3.5(a) of the producer
process type are named c and t respectively. Both variables are declared to be a short which is
a Promela base type. The variable name descriptor is included in the system name space.
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variable descriptor scope local_scope

c

usertype process_descriptor

basetype short

proc_type storage

pid flags lvar_size ptype_id pc

basetype uint32_tBasetype uint8_t

a

basetype int

t

Figure 3.9: Furniture Factory - Storage Type Name Tree

Figure 3.9 shows the name tree of the storage process type. This is the type of the component in
the Nips state vector that contains the state descriptor and the variables locally declared. The
variable name descriptor is included in the system name space. System variables are the same
as in the type tree of the producer type tree. The scope name local scope is excluded from the
name space. Local variable declarations on lines 23, 34 and 25 of Figure 3.5(a) of the storage
process type are named c, t and a respectively. The variables c and t are declared to be of the
int type and the variable a is declared to be of the short. Both the int and short types are
Promela base types.

variable descriptor

usertype channel_descriptor

chan_type trucks

cid max_length cur_length mgs_length type_length

basetype uint16_t basetype uint8_t

ctype_id typebits_msg_part0 typebits_msg_part1

Figure 3.10: Furniture Factory - Trucks Type Name Tree

Figure 3.10 shows the name tree of the trucks channel type. Note that it only contains system
name space variables. The user name space variables are in the messages exchanged via the
channel. The message type of the trucks channel type is displayed in Figure 3.11. Note that
both parts of the message are in italics which means the names do not appear in the name space.
This makes sense because programmers cannot directly access message parts in Promela but
rather read the parts directly from the channel into program declared variables.
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basetype short

message_type trucks

message_part0 message_part1

enumtype mtype

Figure 3.11: Furniture Factory - Message Type Name Tree

3.3 List Language

Up until now we have described SDI entries in an abstract graphical way. It was explained that
SDI definitions describe memory models. A modeling notation was used to depict SDI name
trees and the user and system name spaces. Here we explain the textual notation of the SDI
language.

The syntax of the SDI language is derived from Lisp [26]. SDI is comprised of a modular list
structure which is represented using parenthesis. The choice for a Lisp-like notation is made
to design SDI as a concise modeling language. SDI definitions can also be written down in an
XML format if it is preferred, e.g. to store in a database. The SDI entries and attributes are
represented as list elements. Parenthesis denote the scope of the list element. The element starts
with a left parenthesis and ends with a right parenthesis. A list can contain list elements.

list := LPAREN element* RPAREN;

element := entry | attribute | list;

entry := LPAREN IDENTIFIER element* RPAREN;

attribute := LPAREN IDENTIFIER value RPAREN;

value := IDENTIFIER | INT;

LPAREN := ’(’

RPAREN := ’)’

IDENTIFIER := (a..z|A..Z)(0..9|a..z|A..Z)*

INT := (’-’)?(0..9)+

Figure 3.12: SDI EBNF grammar

Figure 3.12 shows the SDI list grammar in the Extended Backus-Naur Form (EBNF) notation.
The predefined entry and attribute keywords are listed in Table 3.1. Entries may contain sub-
entries whereas attributes just consist of a name and a value. Attributes must appear within an
entry and cannot exist separately by themselves. The modular structure allows parse trees of
entries to be built up.

Short-hand notation. The list notation has a head-tail structure, each list begins with an
element and the tail is a list. The SDI notation is written down in a so-called short-hand
notation. This means that the left and right parenthesis that are not needed to identify the
scope of an entry are left out of the notation. For instance, (a (b (c (d ())))) can be written as
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subject entries

variables scope

variable

field

state

types base type

user type

array type

enum type

enum field

global scope

component type

proc type

chan type

msg type

pointer type

locations t2s

(a) Entry Keywords

attributes

name

offset

size

type

length

marked

value

format

id

src *

tgt *

etc.

(b) Attribute Keywords

Table 3.1: Predefined Entry and Attribute Keywords

(a b c d). Since SDI entries and attributes are unordered lists, it does not matter which entry or
attribute comes first in a list, it only matters which list they appear in.

The grammar does not depict any context constraints. Possible context constraints could be that
certain entries must or must not contain certain attributes or sub-entries. What the predefined
entries and attributes from Table 3.1 mean and which attributes are required for the entries is
described in Sections 3.4, 3.5 and 3.6.

3.4 Variables

In this section we describe scope and variable entries and their required attributes. Among
variables we regard the variable, field and state entries.

3.4.1 Entries

Scope entries represent symbol table scopes and contain variables. Scopes may contain child
scopes to form a hierarchy of scope levels. Variable entries describe variable declarations from
the symbol table or variable definitions from a descriptor. Variable entries and field entries have
identical attributes. Using fields instead of a variable can be preferred if the variable is part of
a record type.

State entries describe an untyped sequence of bytes or Binary Large Object (BLOB). States are
variables that do not have a static type but instead are intentionally left untyped. In fact, the
SDI memory model is used to describe memory that without SDI is effectively a BLOB. The state
memory area contains variable components that do have types. Component types are described
in Section 3.5. Components are not SDI entries since they are dynamic entities that must be
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instanced at run-time. Although they not explicitly part of the SDI language, components are
part of the SDI Framework and are described in Section 4.4.

Variables may not overlap with other variables, one variable corresponds with one sequence of
bytes in the memory. This means that a memory location may be occupied by one variable only.
It can be determined if this constraint is observed by completing type references and checking
offset attributes of the variables and size attributes of the types and scopes. The offset attributes
of nested entries, and the size attribute of the types determine the memory range of the variable.
Although we demand that no variable overlap may occur we do not demand that every memory
location must be defined, i.e. there may be gaps in the description of the memory about which it
is unknown what it contains. This is in accordance with the notion of strictly optional debugging
information.

name offset size type marked

scope × × × o

variable × × × o

field × × × o

state × ×

(a) Required Attributes

sub entries

scope scope variable state type

variable

field

state type

(b) Allowed sub-entries

Figure 3.13: SDI Variable Entries

Figure 3.13 shows a schematic table of variable entries and attributes. Figure 3.13(a) depicts the
required attributes for variable and scope entries. The top row shows the attributes that have
a predefined semantics, from left to right: name, offset, size, type and marked. The semantics
of other attributes are not defined. Other attributes can be added when needed. The left most
column shows the scope and variable entry keywords, from top to bottom: scope, variable, field
and state. For each entry an × in the column of an attribute denotes that the attribute is
required, an o denotes it is optional and neither denotes it is not supposed to be defined. For
example a scope must have a size attribute and for other variable entries it is not supposed to
be defined.

Figure 3.13(b) depicts the allowed sub-entries for variable and scope entries. Scopes may contain
scope, variable, state and type entries. States may only contain type entries which are local to
the state.

3.4.2 Attributes

We give an explanation for each of the variable entry attributes from Figure 3.13(a). Attributes
are all implicitly typed as a string attribute or an int attribute depending on their values. Numeric
values imply an int attribute and alphabetical values imply a String attribute. The name, type
and marked attributes are String value attributes and offset and size attributes are int value
attributes.

Name. Each SDI entry is required to have a name attribute. The name attribute of a variable or
scope is used in the name tree. The name tree is built up from the names of scopes and variables.
It is the set of unique variable names that can be referred to. In programming languages variables
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must have a name that is unique to the scope level. In SDI variables must have a name unique
to the name space. This is a more strict requirement.

Offset. The offset attribute of an entry describes the offset in bytes within its parent entry. The
parent entry of a variable entry may either be a scope or a user type. Figure 3.13(a) shows that
scope, variable, field and state entries must all have an offset attribute.

Size. Scope entries are required to have a predefined defined size in bytes defined by the size
attribute. Scope entries define the content of a specific memory range, the variables (and scopes)
contained in the scope must be within scope bounds. The size attribute is not defined for variable
entries. Instead, the size of a variable entry is determined by the size of its type.

Type. The type attribute of a variable is a reference to a type entry. The value of the type
attribute may be the name attribute of any defined type entry. A variable declaration is an
instance of a type and the type entry is a type definition. Figure 3.13(a) shows that variable and
field entries must have a type attribute. In line with the strictly optional notion of debugging
information we allow type attribute values to have the unknown value which does not refer to a
type but to the absence of one.

Maximum size. The size attribute defines the static constant size of an entry. The size of
a state is the sum of the size of its components. By definition a state may contain different
components of different types. Therefore the size of the state is variable. The state size may
not grow beyond the maximum size defined by the max size attribute. The size and max size
attributes signify the initial size and the maximum size of a state which may grow and shrink
dynamically.

Marked. The marked attribute is an optional attribute. It describes a marking of an entry,
annotating the entry with a label. The two predefined markings at this time are invisible and
descriptor which are both used in the construction of the name space. Figure 3.13(a) shows that
the marked attribute is optional for the scope, variable and field entries and is not defined for
state entries.

In Section 3.2 the notion of the user name space and the system name space were introduced. It
was also explained that both name spaces are represented by a type tree. Here we explain how
the marked attribute can be used to annotate entries and entry sub-trees to be excluded from
the user name space.

Entries may be marked invisible in which case their name is hidden from the user. This can be
useful if the entry was not introduced in the language but a result of the compiler symbol table
structure and the name is not meaningful to the user. In such a case the name of the entry can
be removed from the name space. Variable entries which have a marked attribute of which the
value is invisible correspond with the italics notation for variable entry shapes that was used in
the modeling of SDI entries in Section 3.2.

Figure 3.14 sketches an example where the two scopes that are marked invisible are excluded
from the name space. A compiler has a symbol table of which the name tree is depicted in
Figure 3.14(a). The SDI generated for this name space is shown in Figure 3.14(b).

Because of the invisible markings a user may refer to variables a.a and a.b as opposed to a.b.a
and a.c.b which are the names inside the compiler symbol table. The user name space consists
of a.a and a.b, The middle part of the name is omitted. The symbol table name space consists
of a.b.a and a.c.b. It is not always possible to use the invisible marking since names must be
unique. If both variable entries would have a name attribute value a then the user name space
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scope b

basetype int

scope a

scope c

variable a variable b

(a) Symbol Table Name space

1 ( scope
2 (name a )
3 ( o f f s e t 0)
4 ( s i z e 8)
5 ( scope
6 (name b)
7 (marked i n v i s i b l e )
8 ( o f f s e t 0)
9 ( s i z e 4)

10 ( v a r i a b l e
11 (name a )
12 ( o f f s e t 0)
13 ( type in t )
14 )
15 )
16 ( scope
17 (name c )
18 (marked i n v i s i b l e )
19 ( o f f s e t 4)
20 ( s i z e 4)
21 ( v a r i a b l e
22 (name b)
23 ( o f f s e t 0)
24 ( type in t )
25 )
26 )
27 )

(b) Invisible Marking SDI

Figure 3.14: Invisible Marking Example

would be ambiguous.

Entries may also be marked as a descriptor in which case their name is also hidden from the
user. However, unlike sub-entries of an entry that is marked invisible, all sub-entries and type
instances of an entry that is marked descriptor are also recursively marked descriptor automati-
cally. Marking an entry a descriptor thus makes the whole name tree associated with the entry a
descriptor. Descriptors are part of the system name space and describe system variables. These
variables are in the memory, but they are not defined by the programmer as variables within in
the program. Entries that have a marked attribute of which the value is descriptor corresponds
with the dark gray colourings in the modeling of SDI entries in Section 3.2.

3.5 Types

This section gives a description of the type entries in the SDI language. All variables entries have
a type attribute that refers to a type entry name. Types all contain static information about
variables. There can of course be more variables that have the same type attribute value. Types
allow the translation from a sequence of bytes to a user readable form. Whereas all variables
reside at a specific location determined by their offset, types define the size that determines the
number of bytes used to store the variable value from the variable offset. All type entries have
a name and size attribute.

Name. The name attribute specifies the name of the type. Type names attribute values, unlike
variable names are unique with respect to all types. Currently types are defined globally. This
means that at this time SDI does not allow types that are valid within a limited scope.
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Size. The size attribute specifies the type size in bytes. Types do not have an offset attribute
because types can be instantiated in a variable and have no predefined memory location. For
the same reason types may not have marked attributes. Types can be reused.

name size type format length value id

base type × × ×

user type × ×

array type × × × ×

enumeration type × ×

enumeration field × ×

component type × × ×

pointer type × × ×

(a) Required Attributes

sub entries

base type

user type scope variable state

array type

enumeration type enumeration field

enumeration field

component type scope variable state

pointer type

(b) Allowed sub-entries

Figure 3.15: SDI Type Entries

Figure 3.15 shows a schematic table of type entries and attributes. Figure 3.15(a) shows the
required attributes for type entries. The top row shows the attributes that have a predefined
semantics, from left to right: name, size, type, format, length, value and id. The name, type and
format attributes are String value attributes and size, length, value and id attributes are int

value attributes. The left most column shows the type entry keywords, from top to bottom: base
type, user type, array type, enumeration type, enumeration field, component type and pointer
type. For each entry an × in the column of an attribute denotes that the attribute is required
and an empty space denotes the attribute is not supposed to be defined. For example, a base type
must have a format attribute but for a user type (or any other type) it is not supposed1 to be
defined. Attribute keywords that are not listed in the table do not have a predefined semantics.
Type constants can be encoded using additional attributes.

Figure 3.15(b) shows the allowed sub-entries for type entries. User type and component type
entries may contain scope, variable and state entries. Enumeration type entries may only contain
enumeration field entries.

Base Types. Base types allow the representation of the type of a single value. Usually base
types include booleans, characters and integers. The format attribute determines how this value
is translated to bytes. An SDI base type used with the Furniture Factory Example is the int
type2 depicted in Figure 3.16.

1 ( base type
2 (name in t )
3 ( s i z e 4)
4 ( format be s i n t )
5 ( b i t s −31)
6 )

Figure 3.16: Example int Base Type SDI Definition

1It may however be defined and used for a different purpose.
2Note that the bits attribute in Figure 3.16 is not a predefined attribute, it is added to the base type for the

implementation of Nips VM which uses the type bits to send base type message parts over channels.
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1 ( base type
2 (name beu in t8 t )
3 ( s i z e 1)
4 ( format beu int )
5 ( b i t s 8)
6 )

(a) beuint8 t

1 ( base type
2 (name beu in t16 t )
3 ( s i z e 2)
4 ( format beu int )
5 ( b i t s 16)
6 )

(b) beuint16 t

1 ( base type
2 (name beu in t32 t )
3 ( s i z e 4)
4 ( format beu int )
5 ( b i t s 32)
6 )

(c) beuint32 t

Figure 3.17: Nips VM Base Type SDI Definitions

Figure 3.17 describes base type SDI definitions used to describe the descriptors of the Nips VM.
Note that these are commonly used C types. Figure 3.17(a), Figure 3.17(b) and Figure 3.17(c)
describe a big endian unsigned int of one, two and four bytes respectively.

The SDI framework has a number of built-in byte formats that allow the translation from bytes
to a user readable string.

format base type byte order signedness number of bytes

beuint int big endian unsigned 1, 2 or 4
besint int big endian signed two’s complement 1, 2, 4 or 8
leuint int little endian unsigned 1, 2 or 4
lesint int little endian signed two’s complement 1, 2, 4 or 8
char character none none (ASCII encoding) 1 byte
bool boolean none none 1 byte

Table 3.2: SDI Built-in Byte Formats

Table 3.2 shows the SDI built-in formats. The first column refers to the value of the format
attribute. The second column refers to the natural name of the base type the format is used to
represent. The third column refers to the byte order of the format. The forth column refers to
the signedness of the format. The last column refers to the value of the size attribute and the
constraints with respect to the format. Note that the smallest size of a format is one byte and
that the bool format must be encoded using one byte.

There is no part in the SDI notation that allows the definition of new byte formats. SDI is
designed this way because the translation of a sequence of bytes to a user readable string is
dependent on the programming language used to implement it. We wish the variables to be
accessible as elementary types in the implementation language as well. Note that if SDI is
implemented in Java it is therefore only possible to define base types that can somehow be
encoded in Java. If other formats are needed they must be added to the implementation manually.
The SDI base types cover Promela base types and should suffice for other modeling languages
as well.

User Types. User type entries allow the construction of type records. User types contain fields3

which themselves are of a specific type. User types may contain state entries, such that part of
the user type memory is reserved for components. User types may not contain any other entries.
A memory location range contains one variable at most and variables are defined within type
bounds. An SDI user type used with the Furniture Factory Example is the Nips state descriptor
user type depicted in Figure 3.18(a). It corresponds with the dark gray part of Figure 3.7. The

3Fields are variable entries for user type entries.
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two process components in our example both contain a descriptor variable of which the type is
depicted in Figure 3.18(b). The SDI description of Figure 3.18(b) corresponds with the dark
gray parts of Figure 3.8 and Figure 3.9. The SDI description of Figure 3.18(c) corresponds with
the dark gray parts of Figure 3.10. Although in this case the size attribute of the user type entry
duplicates the size information of its child entries we choose to add it in order to allow unknown
type attribute values and type omissions.

1 ( u se r type
2 (name
3 s t a t e d e s c r i p t o r )
4 ( s i z e 6)
5 ( v a r i a b l e
6 (name gva r s i z e )
7 ( type beu in t16 t )
8 ( o f f s e t 0)
9 )

10 ( v a r i a b l e
11 (name proc e s s c oun t )
12 ( type beu in t8 t )
13 ( o f f s e t 2)
14 )
15 ( v a r i a b l e
16 (name ex c l u s i v e p i d )
17 ( type beu in t8 t )
18 ( o f f s e t 3)
19 )
20 ( v a r i a b l e
21 (name moni tor p id )
22 ( type beu in t8 t )
23 ( o f f s e t 4)
24 )
25 ( v a r i a b l e
26 (name channe l count )
27 ( type beu in t8 t )
28 ( o f f s e t 5)
29 )
30 )

(a) Nips State Descriptor

1 ( u se r type
2 (name
3 p r o c e s s d e s c r i p t o r )
4 ( s i z e 8)
5 ( v a r i a b l e
6 (name pid )
7 ( type beu in t8 t )
8 ( o f f s e t 0)
9 )

10 ( v a r i a b l e
11 (name f l a g s )
12 ( type beu in t8 t )
13 ( o f f s e t 1)
14 )
15 ( v a r i a b l e
16 (name l v a r s i z e )
17 ( type beu in t8 t )
18 ( o f f s e t 2)
19 )
20 ( v a r i a b l e
21 (name ptype id )
22 ( type beu in t8 t )
23 ( o f f s e t 3)
24 )
25 ( v a r i a b l e
26 (name pc )
27 ( type beu in t32 t )
28 ( o f f s e t 4)
29 )
30 )

(b) Nips Process Descriptor

1 ( u se r type
2 (name
3 c h ann e l d e s c r i p t o r )
4 ( s i z e 7)
5 ( v a r i a b l e
6 (name c id )
7 ( type beu in t16 t )
8 ( o f f s e t 0)
9 )

10 ( v a r i a b l e
11 (name max length )
12 ( type beu in t8 t )
13 ( o f f s e t 2)
14 )
15 ( v a r i a b l e
16 (name cu r l eng th )
17 ( type beu in t8 t )
18 ( o f f s e t 3)
19 )
20 ( v a r i a b l e
21 (name msg length )
22 ( type beu in t8 t )
23 ( o f f s e t 4)
24 )
25 ( v a r i a b l e
26 (name type l eng th )
27 ( type beu in t8 t )
28 ( o f f s e t 5)
29 )
30 ( v a r i a b l e
31 (name c type id )
32 ( type beu in t8 t )
33 ( o f f s e t 6)
34 )
35 )

(c) Nips Channel Descriptor

Figure 3.18: Nips VM Descriptors - User Type SDI Definitions

Enumeration Types. Enumeration type entries provide a mapping from symbolic names to
byte values. Enumeration type entries must have a format attribute which determines the integer
value of the enumeration type instance. An enumeration type contains one or more enumeration
field entries. The enumeration type keyword is enum type.

Enumeration field entries have a name and a value attribute and may only appear within enumer-
ation type entries. The enumeration field’s name and value attributes determine the symbolic
value associated with the integer value of the enumeration type instance . Typically we may
view blue instead of 1, where blue is the symbolic value and 1 the value that is stored. The
enumeration field keyword is enum field.

An SDI enumeration type used with the Furniture Factory Example is the mtype depicted in
Figure 3.19. The enumeration type is used to encode the Promela mtype feature. In the
furniture factory example the value zero represents the symbolic value chair and the value one
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1 ( enum type
2 (name mtype)
3 ( s i z e 1)
4 ( format beu int )
5 ( b i t s 8)
6 ( enum f ie ld
7 (name cha i r )
8 ( va lue 0)
9 )

10 ( enum f ie ld
11 (name tab l e )
12 ( va lue 1)
13 )
14 )

Figure 3.19: Furniture Factory - mtype Enumeration Type SDI Definition

represents the symbolic value table.

Array Types. Array Type entries describe array type declarations. The length attribute, which
is only used with array type entries, describes the number of array elements. The type attribute
of the array type entry specifies the type of the elements of the array type. The value of the size
attribute of an array type is equal to length times the size of the type of the array type entry.

The names of array elements are constructed from the variable name attribute referring to the
array type followed by the left bracket, a number n ∈ {0...length − 1} followed by the right
bracket where length is the value of the length attribute of the array. e.g. a[2] denotes the third
position the array type variable a.

Component Types. Component types describe the type of run-time components that together
form the system state. Components are described in depth in Section 4.4. Querying a compo-
nent’s variable values and attribute values using the SDI framework are important API functions
as will be shown in Section 4.3 and Section 4.4.

Components contain variable debugging information, information of which the value is unknown
at compile time. Examples of variable debugging information are: the size of the component, the
type id which determines the static type of the component and the component id which gives a
unique name to the component.

Aside from the name and size attribute that are required for every type entry, component type
entries must have an id attribute. For each component type an id unique to the component type
entry must be defined. The id attribute is used to identify the type of a component. The type
id serves as an index for a query table from which the component types can be retrieved. The
size attribute describes the initial component size. If the component is dynamically sized it is
variable debugging information for which a size variable is described. Optionally the max size
attribute can be used to describe the maximum size to which a component of this type may
grow.

SDI contains different component types which can be used for different purposes. The global
scope type entry is a special component type entry of which there may only exist one per memory
model. The name tree of the global component type defines the global name space. The global
component can be used to store a state descriptor and global variables. The global component
entry keyword is global scope. Component types represent the type of run-time components4. The

4We avoid the term object because SDI does not yet support the methods associated with objects.
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name tree of the component type defines a name space local to the component. The component
type entry keyword is component type.

Process types are component types that represent the type of run-time processes. The process
type entry keyword is process type. Object types and process types are semantically the same
except that they use different indexes for type id, i.e. there are object type ids and process type
ids.

A special component type to describe channels is the channel type. Conceptually channels are
a sort of array type component that contains messages. Channel message types are described
separately from the channel type but have the same type id in order to relate the corresponding
channel and message types to each other. Channels have a length attribute that describes their
maximum length. To allow the access to the current channel length the channel type should
contain a variable which represents a range of byte in the channel component where the length
variable is stored to access this information.

1 ( g l o b a l s c op e
2 ( o f f s e t 0)
3 ( s i z e 16)
4 ( v a r i a b l e
5 (name de s c r i p t o r )
6 ( type s t a t e d e s c r i p t o r )
7 ( o f f s e t 0)
8 (marked d e s c r i p t o r )
9 )

10 ( scope
11 (name g l o b a l v a r i a b l e s )
12 ( o f f s e t 6)
13 (marked i n v i s i b l e )
14 ( v a r i a b l e
15 (name s o l d c h a i r s )
16 ( type in t )
17 ( o f f s e t 6)
18 )
19 ( v a r i a b l e
20 (name s o l d t a b l e s )
21 ( type in t )
22 ( o f f s e t 2)
23 )
24 ( v a r i a b l e
25 (name trucks )
26 ( type c id )
27 ( o f f s e t 0)
28 )
29 )
30 )

(a) Global Component Type

1 ( proc type
2 (name producer )
3 ( s i z e 12)
4 ( id 1)
5 ( v a r i a b l e
6 (name d e s c r i p t o r )
7 ( type p r o c e s s d e s c r i p t o r )
8 ( o f f s e t 0)
9 (marked de s c r i p t o r )

10 )
11 ( scope
12 (name l o c a l v a r i a b l e s )
13 (marked i n v i s i b l e )
14 ( o f f s e t 8)
15 ( scope
16 (name s2 )
17 (marked i n v i s i b l e )
18 ( o f f s e t 0)
19 ( v a r i a b l e
20 (name c )
21 ( type short )
22 ( o f f s e t 0)
23 )
24 ( v a r i a b l e
25 (name t )
26 ( type short )
27 ( o f f s e t 2)
28 )
29 )
30 )
31 )

(b) Producer Component Type

Figure 3.20: Furniture Factory - Component Type SDI Definitions

An SDI component type used with the Furniture Factory Example is the global component
type SDI definition depicted in Figure 3.20(a). On lines 4 to 9 a variable called descriptor is
defined. Its type, specified on line 6, is state descriptor of which the definition is depicted in
Figure 3.18(a). On line 8 the variable is marked as a descriptor. It explains the darker gray
colouring of the name tree associated with the variable in Figure 3.7. Lines 10 to 29 define the
global scope for the Furniture Factory Example. The scope is has the name global scope but it
is marked as an invisible entry which means the name global scope is removed from the name
space. Figure 3.7 shows the type name tree of the global component which can be constructed
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using the global component type SDI definition.

Similarly the process component type SDI definition depicted in Figure 3.20(b) can be used to
construct the type name tree shown in Figure 3.8. The producer process type has an id attribute
which is used to distinguish Not depicted here are the SDI definitions for the storage process
type and the trucks channel type.

Pointer Types. Component names cannot be statically resolved in the name space built up
by SDI definitions. By this we mean that at compile-time we do not know what the value of
a variable holding a component identifier will be at run-time. Consequently, we do not know
the name of a component in the memory even if we know its component identifier. To find a
component in the memory by name, the name of the component must be linked to the component
identifier in the run-time environment.

The SDI language has pointer types to resolve component names. In the memory model defined
by SDI a pointer type variable a sequence of bytes in the memory that holds the identifier of a
component. The type attribute denotes the type the pointer type references. We only allow the
reference of component types for now because component type pointers add component names to
the name space. A global pointer type variable connects the global name space to a component
name space5.

The attributes of a pointer type are those of a base type plus the type attribute. The name,
size and format attribute are treated as they are in the base type. The type attribute is used to
denote the type references. The pointer type entry keyword is pointer type.

1 ( po in t e r type
2 (name producer ptr )
3 ( type producer )
4 ( s i z e 1)
5 ( format beu int )
6 ( b i t s 8)
7 )

(a) producer ptr Pointer Type

1 ( po in t e r type
2 (name s t o ra g e p t r )
3 ( type s to rage )
4 ( s i z e 1)
5 ( format beu int )
6 ( b i t s 8)
7 )

(b) storage ptr Pointer Type

1 ( po in t e r type
2 (name t r u c k s p t r )
3 ( type trucks )
4 ( s i z e 2)
5 ( format beu int )
6 ( b i t s 16)
7 )

(c) trucks ptr Pointer Type

Figure 3.21: Furniture Factory - Pointer Type SDI Definitions

For the running example this means that the base type pid should be replaced by two pointer
types. The first pointer type is producer ptr that points to the producer proc type. Its SDI
definition is shown in Figure 3.21(a). The second pointer type is storage ptr that points to
the storage proc type. Its SDI definition is shown in Figure 3.21(b). Both processes are run as
an unnamed instance of the producer proc type and storage proc type respectively. There are
no global variables of the type producer ptr or storage ptr. Therefore the name space of the
processes is not connected to the global name space. Process variables are only accessible after
a process is selected by process id. The base type cid should be replaced by the pointer type
trucks ptr that points to the trucks chan type. Its SDI definition is shown in Figure 3.21(c). The
global variable trucks is a trucks ptr variable.

Using the SDI modeling notation we are now able to give an SDI memory model of the example
state depicted in Figure 3.6. The Nips VM example state modeled in SDI is shown in Figure 3.22.
The white rectangles are not SDI entries but are run-time entities. States and components will
be explained in more detail Section 4.4. In Figure 3.22 figure we abstract from variables in

5Provided that its value references a component and is not null.
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proc_type storage

d...

usertype state_descriptor

global_scope type proc_type producer

state

processglobal component process

scope global_scope

sold_chairssold_tablestrucks

pointer_type trucks_ptr

basetype int

channel

scope

local_scope

tc

basetype short

usertype channel_descriptor

d... d... d...

usertype process_descriptor

scope

local_scope

tc a

chan_type trucks

msg_type trucks

Figure 3.22: Furniture Factory - Example Nips State

state, process and channel descriptor user types and message types. It can be seen that the base
type cid has been replaced by the pointer type trucks ptr. The text d... in the gray rectangles
is an abbreviation for descriptor. The dashed arrow denotes a resolved pointer. The global
variable trucks declared on line 2 in Figure 3.5(a) is resolved to the channel component with
the corresponding id attribute. The name space is extended with trucks.descriptor.* where
the descriptor variable is of the channel descriptor user type and * are the variables in the
channel descriptor type.

3.6 Locations

Source level debuggers require that there exists a mapping from the source code to the target
code and vice versa. Such a mapping allows a debugger to execute a target program step by step
whilst keeping track of the source code.

Target code is typically described as a sequence of instructions. A target to source mapping
describes for each instruction in the target code from which source line and column it is generated.
Each instruction is associated with a program counter, a number that represents start of the
instruction in the code. Points in the code, defined by a line and column number or a program
counter, are referred to as locations. Source locations and target locations need to be related to
each other by use of debugging information.

A mapping form target locations to source locations can be established in different ways. The
source code can be interleaved with the target code such that source code references appear
in between the target code instructions. This can be done by means of special instructions
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or comments with a discrete debugging language or using the source code itself. SDI offers a
different approach which requires no interleaving in the target code. In the SDI approach the
target to source mapping is stored separately.

Target-to-Source entries. To create the mapping the compiler must generate target to source
entries. The compiler must keep track of the instruction numbering during code generation.
The target to source entry keyword is t2s. Target to source location entries provide a mapping
between the source code and the target code which resembles a three way database tupple. The
mapping is bidirectional. If the program counter is known then the source line and column can
be queried. If the source line and column are known then the program counter(s) can be queried.

Program Counter. The pc attribute specifies the target line of the target-to-source entry. The
target code program counter is saved with this attribute.

Source Line. The line attribute specifies the source line of the target-to-source entry. The
source line refers to the line number in the compiler source.

Source Column. The col attribute specifies the source column of the target-to-source entry.
The source column attribute refers to the column number within the line in the compiler source.

1 . . . p reced ing t2s e n t r i e s . . .
2 ( t2s
3 ( pc 143)
4 ( l i n e 10)
5 ( c o l 3)
6 )
7 ( t2s
8 ( pc 146)
9 ( l i n e 10)

10 ( c o l 3)
11 )
12 ( t2s
13 ( pc 149)
14 ( l i n e 10)
15 ( c o l 3)
16 )
17 . . . f o l l ow in g t2s e n t r i e s . . .

Figure 3.23: Furniture Factory - Target-to-Source Definition SDI Snippet

Figure 3.23 shows three SDI target-to-source entries for the Furniture Factory model which map
three instructions to line 10, column 3.

The SDI language allows the user to save additional location information within the SDI entries
representing the locations of variable, scope and process type declarations. It is necessary to add
attributes to the entries that specify the declaration start and end points in the source code and
the corresponding low and high program counters.

Table 3.3 shows the attributes that can be used to save the declaration location information.
It is not necessary to add the attributes defined in the table in order to distinguish variables
from each other since each variable has its own unique name and place in the name space.
The memory locations of variables can be associated with source locations. The first column
of Table 3.3 denotes the attribute name, the second column denotes the attribute value type,
the third column gives a suggestion for when the attribute is useful and the fourth shows which
location information the attribute describes.
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attribute type useful for entries value denotes

src line start int all variable and type entries declaration begin source line
src col start int all variable and type entries declaration begin source column
src line end int all variable and type entries declaration end source line
src col end int all variable and type entries declaration end source column
pc low int scope and proc type declaration begin target line
pc high int scope and proc type declaration end target line

Table 3.3: Additional Variable and Scope Attributes

3.7 Concluding Remarks

In this chapter we have presented the SDI language. The language has a list structure and is
composed of entries and attributes for scopes, variables, types and locations. SDI is designed
to describe the debugging information for modeling languages used with explicit state model
checkers. SDI is used to build a memory model at run-time which relates otherwise unreadable
binary state vectors back to source-level variables, names and types. We have shown that the
Nips memory model can be described using SDI.

To place the SDI language in context to work related to it we give a comparison of SDI with
stabs, Spin symbol table debugging information, Dwarf and the Java class file format which
were discussed in Chapter 2.

language or format SDI Dwarf stabs class Spin

language support modeling programming programming Java Promela

block structured X X

graphical notation X

specifies a byte format X X X

is an object format X

Table 3.4: Debugging Information Notations

SDI Language

SDI Encoding

encode

DWARF, stabs, class

Modeling Language

compile

Programming Language

compile

Low level

High level

Figure 3.24: Debugging Language Levels

Table 3.4 shows the debugging information languages and the traits these languages have. It
can be seen they are designed for use with different sources languages. Dwarf supports many
procedural programming languages and has a rich set of entries to describe their features. Stabs

54



CHAPTER 3. THE SDI LANGUAGE 3.7. CONCLUDING REMARKS

a has less rich set of predefined features. SDI is a designed to describe debugging information
of modeling languages used with explicit state model checkers and as such does not support all
features of modern programming languages. Notably missing features of SDI that are supported
by Dwarf include functions, methods and procedures and associated call frame constructs and
object oriented features for access restrictions and error handling.

SDI and Dwarf are both block structured as are programming languages but Figure 3.24 shows
that SDI is truly a high-level modeling notation since it does not describe a low-level byte file
format. From the formats Table 3.4, only the Java class file format contains runnable code
which makes it an object file format.

The SDI language is part of the SDI Framework which uses the memory models defined by
SDI to facilitate a debugging API which provides a means for source-level debugging. The SDI
framework is described in Chapter 4.
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Chapter 4

The SDI Framework

This chapter describes the Static Debugging Information (SDI) Framework. The SDI Framework
is a state manipulation framework that offers support for source level debugging by constructing
memory models of running programs.

The design of the SDI Framework is described in terms of its components. Section 4.1 gives a
top level view of the design. Section 4.2 describes the syntactic analyser. Section 4.3 describes
the symbol table. Section 4.4 describes the state API. Section 4.5 describes the transition API.
Finally, Section 4.6 describes the compiler extensions and Section 4.7 describes the SDI Debugger.

4.1 Introduction

The SDI language, described in Chapter 3, drives the SDI Framework. The memory models,
defined by SDI language definitions, are the basis for the debugging functionality supported by
the SDI framework. Recall that Definition 1 defines a memory model of a program described
by SDI as the types of components and named variables inside a program’s memory at run-
time. For each run-time component in the program memory, there exists an SDI component type
that describes the memory range of the component in terms of scopes, variables, constants and
types. A name tree is associated with each component type that defines the names and types of
variables associated with program constants, compiler constants and VM constants that describe
a run-time component. A memory model is the collection of all the name trees associated with
run-time components in a program’s memory and forms a representation of both user and system
name spaces.

The SDI framework fits in a tool architecture where the tool consists of separate tool components.
The memory model described by SDI definitions allows the tool components to communicate
state information with each other, through a clearly defined debugging Application Programming
Interface (API) called a debugging API.

The SDI Framework facilitates a debugging API, which consists of function calls that enable
debuggers to access the information in state vectors associated with running programs, for which
memory models have been defined using SDI. We require that this debugging API, as stated
in Section 1.1, consists of function calls that can be used by a debugger when the need exists
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for source-level debugging functionality, such as displaying and modifying information in the
memory of running programs and logging and replaying the program’s behaviour. Displaying
states can be seen as a form of introspection, editing state values as a form of intercession and
debugging information as a means for reification.

The debugging API should be easy to implement in existing tools that make use of state vectors
to store states. In particular, we would like to use it for debugging within explicit state model
checkers, specifically the Nips VM.

SDI Framework

Syntactic Analyser

Debugging API(MP)

Compiler

VM

input generate

input

Symbol Table

SDI(MP)
Program-

Constant

SDI(Pc)

definition

generate

definition

in
p

u
t

State Vectors

generate

Source Program PL

Symbol Table

Component Types

Scanner

Parser

SDI Compiler Extension Byte Code Pbytecode

Language-

Constant

SDI(Lc)

VM-Constant

SDI(VMc)

Tokens

AST

State API

StateFactory

generate

State

Component

input

Transition API

TransitionFactory

input

TransitionVM

input

input

Transition Vectors

generate

input

output

input

Debugger

Location Information

V
M

 A
P

I 
c
o
m

m
u
n
ic

a
ti
o
n

Component

Observer

State

Observer

Debugging API 

communication

4.6

4.2 4.4 4.5 4.7

4.3

(a) SDI Framework Architecture

Section 4.1: Introduction

Section 4.2: Syntactic Analyser

Section 4.3: Symbol Table

Section 4.4: State API

Section 4.5: Transition API

Section 4.6: Compiler Extensions

Section 4.7: SDI Debugger

Section 4.8: Concluding Remarks

(b) Chapter Structure

Figure 4.1: SDI Framework Design Overview

The architecture of the SDI Framework is depicted in Figure 4.1(a). The SDI state manipulation
framework is composed of a syntactic analyser, a reconstructed symbol table, a generic run-
time component API, a component factory that generates the component API and a component
transitions language. The chapter structure is shown in Figure 4.1(b).

The syntactic analyser consists of a scanner and a parser. The scanner reads SDI input and
generates a token stream. The parser reads this token stream and generates an Abstract Syntax
Tree (AST). The design of the syntactic analyser is given in Section 4.2.

58



CHAPTER 4. THE SDI FRAMEWORK 4.1. INTRODUCTION

In the SDI Framework, a symbol table is used at run-time to relate otherwise unreadable binary
target code back to high level names and types. The symbol table is used to store and retrieve
debugging information defined by the SDI language. It allows the retrieval of types, component
types and source locations. The SDI Framework symbol table is explained in Section 4.3.

The debugging API consists of two parts, the State API and the Transition API. The State
API is designed to allow debuggers to navigate the name spaces associated with component
types and the memory as a whole, in order to retrieve constants and variable values and modify
variable values. The SDI Framework State API is described in Section 4.4. Central to the
framework are the run-time components. For each run-time component, its SDI component
type definition determines its debugging API. A component API is composed of functions for
retrieving constants and variable values by name, as a String or an Integer. Additionally it offers
functions for modifying the variable values.

To facilitate debugging of state vectors we must know what the state components are and what
their type is, in order to gain access to variables and values. Furthermore, SDI components may
contain a state variable that consists of separate components. This yields a hierarchy or graph
of components. A factory class can be used to produce component objects from a state vector
input, which is supplied by state vector generator. We call this factory class the state factory.
The state factory produces the hierarchy of typed components. The approach for the generation
of states in the SDI Framework is defined in Section 4.4.1.

The Transition API is designed to be used for logging, observing and replaying the behaviour of
programs for which there are SDI memory models. The SDI Framework, as a state manipulation
framework, uses a transition language that works together with components and their types. The
transition language defines instructions for component creation, component disposal, component
resizing and changing component values. Component transition instructions work on high level
components, as well as the state vector. The component transition semantics is bidirectional.
For every instruction there is an inverse instruction, that when executed undoes the changes
made to the state. The SDI transition language is described in Section 4.5.

The SDI compiler extensions can assists a programmer in extending a compiler with SDI gen-
eration functionality. This is necessary in order to use the SDI framework and the debugging
functionality it offers. The compiler must be extended to generate variable, scope and type SDI
from its symbol table. Location information must be encoded separately to relate source and
target code to each other. The SDI compiler extensions are described in Section 4.6.

The SDI framework is designed to be used with a graphical debugger that can display states to
the user. A design of a graphical debugger that uses SDI is described in Section 4.7.
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SDITypes

<< create >> +SDITypes():SDITypes

+getTypeStatic(str:String):int

+getTypeStatic(t:int):String

+getType(str:String):int

+getFormat(format:String):int

SDIException
util

symboltable stateemit ast

cd: sdi

Figure 4.2: SDI Framework packages Class Diagram

The design of the SDI framework described here is implemented in Java. This is done because we
would like to be able to integrate a graphical debugger into the framework that makes use of Java
graphical user interface components. In particular, the Eclipse Framework [11] offers a variety
of graphical component to choose from. As a result, only tools that have a Java implementation
(or a Java language binding) can make use of the SDI Framework.

The Java implementation is stored in the sdi package, as is shown in Figure 4.2, which contains
five sub packages: emit, ast, symboltable, state and util. The ast package contains an SDI scanner
and an SDI parser, it serves as a syntactic analyser. The symboltable package contains the look-
up structures for static debugging information. It includes component types, type invariants and
location information. The state package contains the classes used to represent instances of states
and components. Since the state format is an implementation choice for the explicit state model
checker, and no assumptions about it can be made, it is not possible to provide a state factory
class that is compatible with all explicit state model checkers. A generic state factory that can
be used in some cases is provided. The util package contains classes that perform help functions
such as the encoding of unsigned types which are not native to Java.

The next sections give a more detailed description of the modular design components and the
Java implementation packages of the SDI Framework.
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4.2 Syntactic Analyser

In order to use the SDI language, we need to read SDI specifications into the SDI Framework.
The syntactic analyser consists of a scanner and a parser.

Token

+ERROR_TOKEN:short= 0

+LPAREN_TOKEN:short= 1

+RPAREN_TOKEN:short= 2

+IDENTIFIER:short= 3

+INT:short= 4

−type:short

−line:int

−col:int

−length:int

−str:String

<< create >> +Token(type:short,str:String,line:int,col:int,length:int):Token

+getType():short

+getString():String

+getLine():int

+getCol():int

+getLength():int

+getNextToken():Token

+hasNextToken():boolean

+setNextToken(t:Token):void

+print():void

+type2String(type:short):String

ScannerException

Scanner

−char_ptr:int

−start_ptr:int

−cur_line:int

−token:short

<< create >> +Scanner():Scanner

+getRootToken():Token

+scanString(sdi_str:String):void

+scanFile(file_name:String):void

−scan(sdi_str:String):void

−newToken(sdi_str:String,type:short):void

+print():void

ParserException

Parser

−ast_stack:Stack

−shorthand:boolean= true

<< create >> +Parser(scanner:Scanner):Parser

+getAST():AST

+getScanner():Scanner

+setShortHand(shorthand:boolean):void

+parse():void

−parse_list():void

−parse_element():void

−accept(type:short):void

−accept_it():void

−insert_ast_node():AST

ASTException

AST

−type:int

<< create >> +AST(t:Token):AST

+getType():int

+isEntry():boolean

+getToken():Token

+setType(type:int):void

+setParent(prnt_ast:AST):void

+setHead(head_ast:AST):void

+setTail(tail_ast:AST):void

+parent():AST

+head():AST

+tail():AST

+toString():String

+lookupAttributeInt(attribute_name:String):int

+lookupAttribute(attribute_name:String):String

+lookupAttributeAST(attribute_name:String):AST

+print():void

+print(depth:int):void
tail_ast−

head_ast−prnt_ast−

root_ast−

cd: ast

cur_token−

cur_token−

next−

scanner−

root_token−

token−

Figure 4.3: SDI Framework - ast package Class Diagram

Figure 4.3 shows the Class Diagram of the ast package. The scanner takes an SDI definition as
input and generates a token stream from it. Token objects contain line and column number, the
token string and a token type, which can be LPAREN, RPAREN, IDENTIFIER or INT, as is explained
in Section 3.3. The parser takes the token stream as input and generates an Abstract Syntax
Tree (AST). The AST has a list structure where every list AST node has a head and a tail. The
AST contains the information defined in the SDI definition input.
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4.3 Symbol Table

In the SDI Framework a symbol table is used at run-time, in order to relate otherwise unreadable
binary target code back to high level names and types. The symbol table is used to store
debugging information described in the SDI language, such as the variables, types and source
locations described in Chapter 3.

The run-time symbol table is constructed in conformance with the memory model of the SDI
language (see Definition 1 in Section 3.2). Recall that we defined three sources of static debugging
information used to construct a memory model of a running program: the language, the program
and the (virtual) machine the program runs on. The language SDI constants consist of type
constants, such as base types defined with the compiler. The program SDI constants consist
of user-defined variables, types and source locations that may be stored in the compiler symbol
table. The machine SDI constants consist of machine types and meta structure definitions, used
by the machine to manage the memory of the program. The more information is available about
the source program defined in SDI, the better the source level debugging functionality will be.
Incomplete information will result in an incomplete memory model.

The SDI symbol table allows the retrieval of types, state component types and location infor-
mation. Types can be retrieved from the symbol table by name. Component types are retrieved
from the symbol table by type identifier. Locations can be retrieved either by program counter
or by source line and column number.

In this section we also explain the process of how component types are created from SDI source.
The list AST created by the parser is transformed into a structure of Entries to facilitate a
fast look-up structure for static debugging information. Each entry keyword in an SDI definition
is represented by an Entry object at run-time, from which its attributes can be queried by
name. Component type entries are transformed into ComponentType structures. These structures
are placed in the symbol table represented by the SymbolTable class, from which they can be
retrieved by their type id attribute value.

Figure 4.4 depicts the class diagram of the symboltable package, which contains the SymbolTable,
Entry, TypeNode, TypeTree, BaseType and ComponentType classes.

Figure 4.5 depicts part the object diagram of the SymbolTable for the Furniture Factory example.
It only shows the attribute values of the global component Entry object, neither the attributes of
other Entry objects nor the target to source location mapping which are also stored are displayed.
The values of the integer attributes offset (zero) and size (sixteen) can be retrieved from the
ComponentType by accessing the Entry object it was constructed from. The descriptor and global
variable entries can be accessed by name and offset. It can also be seen that the Promela and
Nips VM types can be retrieved from types map in the symbol table. The process and channel
ComponentTypes named producer, storage and trucks can be retrieved from the symbol table by
process and channel type id respectively.
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Figure 4.4: SDI Framework - symboltable package Class Diagram
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st:SymbolTable

1

types:Map<String, Entry>

“uint32_t”

“uint8_t”

“int”

“producer”

“storage”

“uint16_t”

“short”

“process_descriptor”

“state_descriptor”

proctypeIdEntries:Map<Integer,ComponentType>

“trucks”

“channel_descriptor”

chantypeIdEntries:Map<Integer,ComponentType>

key: process type id

key: channel type id

key: type name

uint8_t:Entry

uint8_t:Entry

uint8_t:Entry

channel_descriptor:Entry

channel_descriptor:Entry

channel_descriptor:Entry

int:Entry

short:Entry

trucks:Entry

storage:Entry

producer:Entry

globalComponentType

Entry globalComponentEntry = ge

ComponentType globalComponentType = gt 

types: Map<String, Entry> = ts

proctypeIdEntries: Map<Integer, ComponentType>

chantypeIdEntries: Map<Integer, ChannelType>

globalComponentEntry

entry

ge:Entry

AST ast = globalComponentAST

int type = GLOBAL_COMPONENT_TYPE

String name = “global_component_type”

Map<String,String> string_attrs = <empty map>

Map<String,Integer> int_attrs = int_attrs

Map<String,Entry> names = name2entry

Map<Integer,Entry> offsets = offset2entry

List<Entries> entries = List(de,ge)

boolean visible=false

boolean descriptor=false

int_attrs:Map<String,Integer>

key: integer attribute name

“offset”

“size”

0

16

gt:ComponentType

int_attrs

name2entry:Map<String,Entry>

key: sub-entry entry name

“descriptor”

“global_variables”

d:Entry = de

Gv:Entry = ge

types

proctypeIdEntries

proctypeIdEntries

producer:ComponentType

storage:ComponentType

trucks:ComponentType

names

offset2entry:Map<Integer,Entry>

key: sub-entry entry name

0

6

d:Entry = de

Gv:Entry = ge

offsets

1

2

1

Figure 4.5: Furniture Factory - SymbolTable Object Diagram
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4.3.1 Component Types

For each run-time component in the program memory, there exists an SDI component type that
describes the memory range of the component in terms of scopes, variables, constants and types.
How component types are structured and why they are defined as both trees and flat look-up
structures is discussed in this sub-section.

The design decision to represent component types as tree structures is made because a name tree
is associated with each component type. A modeling notation for SDI, introduced in Section 3.2,
was used to depict name trees. We wish to be able to navigate such name trees in order to
access uniquely named pieces of information in the program memory such that users can use a
debugger to access variables by name. The design decision to represent component types as flat
structures is made because the names of the variables may not be known. In that case the names
must be retrievable from the type and the information must be accessible by its offset within the
component, i.e. its memory location.

Type Trees. For each component type, one component type tree is constructed. A component
type tree is the name tree of a component type entry, in which the types of variables are resolved
to base types. Type tree leafs are base type instances that allow the translation of component
values to String values or integer values.

Navigating Type Trees. Component type trees contain all the information there is to know
about component type entries in terms of the SDI definition. They allow debuggers to to query
variable values at offsets within the component type, as well as variable names from the name
space. Single value queries can be seen as paths in the type tree from the root component type
entry to a base type leaf. Multi-value queries can be seen as paths in the type tree from the
root component type entry to a user types or a scope entry. It is even possible to query all the
variable values of a component type at once. Each part of a name refines the search further. The
coarsest refinement of a search is the entire state, the finest refinement is a base type instance.
However, every time a query is done a search over the tree must reveal the path to the requested
information. We observe that there are a limited amount of possible queries. Calling a search
algorithm which performs a search on a type tree every time a query is made is not desirable.
In order to prevent this situation, queries are preprocessed.

Flat Type Trees. The component type tree is flattened into a single component type object.
When the type tree is flattened, the component name space is generated. Variable names are
constructed from the variable, scope and type names, which are appended to each other and
separated by dots.

Figure 4.6 depicts the object diagram of the global component type of the Furniture Factory
example state of Figure 3.22.

A slightly more formal definition of the names of variables and constants in component types
is described in Definition 3, 4, and 5. First, we give an informal definition of the type tree
refinement step relation in Definition 2, which can be intuitively understood from the graphical
representation of component type trees. In each of the definitions: E denotes a scope, variable
or field entry; name(E) returns the name attribute string value of entry E; attributes(E ) is
the set of attributes of E; and visible(E ) denotes that the entry is not marked invisible, i.e.
invisible /∈ markings(E) and markings(E) ⊆ {invisible, descriptor }.

Definition 2 (Type tree refinement relation R). The type tree refinement step relation R(Ep, Eq)
is a binary relation defined as follows. We say that Eq is a type tree refinement step of Ep in a
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...

name : String = "descriptor"

descriptor : bool = true

offset : int = 0

size : int = 6

entry : Entry = state_descriptor_type

parent : TreeType = global_ct

children : Map<String,TypeNode>

t1 : TreeType

name : String = "gvar_size"

descriptor : bool = true

offset : int = 0

size : int = 2

entry : Entry = uint16_t

parent : TreeType = t1

format : int = BEUINT

flat_name : String = "descriptor.gvar_size"

b1 : BaseType

name : String = "process_count"

descriptor : bool = true

offset : int = 2

size : int = 1

entry : Entry = uint8_t

parent : TreeType = t1

format : int = BEUINT

flat_name : String = "descriptor.process_count"

b2 : BaseType

name : String = ""

descriptor : bool = false

offset : int = 0

size : int = 16

entry : Entry = globalEntry

parent : TreeType = null

children : Map<String,TypeNode>

basetype[] : BaseType

basetype_name : Map<Integer,String>

name2offset : Map<String,Integer>

name2refs : Map<String,List<BaseType>>

basetypes : List<BaseType>

constants : Map<String,String>

int_constants : Map<String,Integer>

states : Map<String,State>

global_ct : ComponentType

children<"descriptor",t1>

children<"gvar_size",b1>
children<"process_count",b2>

name : String = "sold_chairs"

descriptor : bool = false

offset : int = 12

size : int = 4

entry : Entry = int

parent : TreeType = global_ct

format : int = BESINT

flat_name : String = "sold_chairs"

b8 : BaseType

name : String = "trucks"

descriptor : bool = false

offset : int = 6

size : int = 2

entry : Entry = trucks_ptr_type

parent : TreeType = global_ct

format : int = BEUINT

flat_name : String = "trucks"

type : String = trucks

b6 : PointerType

name : String = "sold_tables"

descriptor : bool = false

offset : int = 8

size : int = 4

entry : Entry = int

parent : TreeType = global_ct

format : int = BESINT

flat_name : String = "sold_tables"

b7 : BaseType

children<"trucks",b6>

children<"sold_tables",b7>
children<"sold_chairs",b8>

name : String = "channel_count"

descriptor : bool = true

offset : int = 5

size : int = 1

entry : Entry = uint8_t

parent : TreeType = t1

format : int = BEUINT

flat_name : String = "descriptor.channel_count"

b5 : BaseType

children<"channel_count",b5>

Figure 4.6: Furniture Factory - Global Component Type Object Diagram

component type tree C, when there is a path starting at the component type entry at the root
of the tree C. Ep and Eq must be on this path and all variable, field and scope entries on the
path between Ep and Eq (possibly none) are invisible if and only if R(Ep, Eq).

Definition 3 (Single value variable name). If C is a component type, then the name of a single
value value name in the memory defined by a component type C, is defined by

String value name = ”name(E1 ) � name(E2 ) � . . . � name(En)”

where En is a variable that has a base type. For each two entries Ep and Eq whose name attribute
appear in name n separated by a dot, i.e. value name = ” . . . name(Ep) � mame(Eq ) . . . ”, it
holds that Eq is a type tree refinement of Ep. Every base type instance has a unique name in
the name space.

Definition 4 (Multi value variable name). If C is a component type, then the name of a single
value multi value name in the memory defined by a component type C, is defined by

String multi value name = ”name(E1 ) � name(E2 ) � . . . � name(En )”
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where En is not a base type entry, but instead is an entry tree with at least one base type leaf.
For attribute ∈ attributes(En) and for each two entries Ep and Eq whose name attribute appear
in name n separated by a dot, i.e. multi value name = ” . . . name(Ep) �name(Eq ) . . . ”, it holds
that Eq is a type tree refinement of Ep.

The component name space also contains constants. Constant names are constructed from the
variable, scope and type names just like variable names, except that a constant name ends with
and attribute.

Definition 5 (Constant name). If C is a component type, then the name of a constant constant name
in the memory defined by a component type C, is defined by

String constant name = ”name(E1 ) � . . . � name(En ) � attribute”

where attribute ∈ attributes(En). For each two entries Ep and Eq whose name attribute appear
in name n separated by a dot, i.e. constant name = ” . . . name(Ep) � name(Eq ) . . . ”, it holds
that Eq is a type tree refinement of Ep.

The definition purposely does not describe the names of type constants of sub types that appear
in the component type tree. The reason for this is that variables and types can have the same
attributes and their names would be the same. In order to prevent ambiguity and avoid a name
space clash, the name of type constants can be augmented with the string ”type”.

Implementation. A brief description of the Java implementation of SDI type structures is
sketched. Component types are represented by the ComponentType class, which contains flat
look-up structures that can be queried in the following way. The ComponentType class contains
a Map from which BaseType instances can be retrieved, using the (single value) variable name of
the base type instance as a key by means of the function:

BaseType getBaseType(String name).
The component type contains a Map from which sets of BaseType instances can be retrieved
using the name of the multi-value variable name as an input parameter of the function:

List<BaseType> getBaseTypes(String name).
The component type contains an array of base types, which allows the retrieval of base type
instances for an offset within the component type bounds using the function

BaseType getBaseType(int offset).
The type tree can be navigated using the functions getType(String name) to get child type
trees and getParent() to get the parent type tree. A base type instance is a BaseType object,
which is used to get and set values in the memory. The translation between a String or int

value and a sequence of bytes is made using the format and size attributes. Sets of base type
instances are computed for names that do not denote base type instances.

4.4 State API

This section describes the SDI Framework component API. A component is accessible through
different API functions, which make use of the look-up functions defined in the component type.

State components (or components for short) are central to the SDI Framework. A component is a
self-contained run-time entity that exists in the memory of a running program. Each component
starts at a certain offset and is stored a sequence of bytes in the state vector. Components may
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grow and shrink in size dynamically and may be finite entities that can be created and destroyed.
Typical components within a state can be processes, but also objects or meta structures used in
a VM. The components may be separately regarded and altered, retrieved from and stored in
the state-space allowing the application of collapse compression [19].

Each component is associated with a component type which determines the debugging API for
the component. The component API is composed of functions for retrieving constant and variable
values and setting variable values. Variables can be accessed by name, or by offset within the
component. The reason a component and its type are separated is that it facilitates a generic
component API. In contrast, combining a component with its type yields classes of components
with predefined component specific API functions, which require hard-coded function calls.

Section 4.3.1 explains how the variable and constant names are created when a component type
tree is flattened. The name of a variable or constant is the argument for the API function
that retrieves the constant or variable value. The name of a variable and a new value are the
arguments for the API function that sets the variable value.

Component Descriptors. Recall that in Section 3.2 it was defined that each run-time com-
ponent has a descriptor. Component descriptors contain variables that describe what is in the
component or meta-information about the run-time state of the component. The descriptor vari-
ables we describe are its type, its identifier and its size. The component type variable relates an
instance of an SDI component type to the memory. A look-up in the symbol table with its value
yields the component type. The component identifier gives the component a unique name and
place within its parent state. Components are stored in the state by increasing component id. If
the descriptor contains a size variable, the size of the component is assumed to be dynamic. If
the descriptor does not contain a size variable, the component size must be statically defined by
use of the size attribute. If the size is dynamic, the size variable value can only be accessed by
use of the component type, which defines its memory offset, its number of bytes in the memory
and its the byte format.

Component Hierarchy. In the SDI Framework, a high level representation of a state consists
of a hierarchy of state components, each having a component type that facilitates the compo-
nent API. State components may themselves contain a state variable which consist of separate
components. An important design decision is that, instead of allowing several state variables
to exist inside one component, we allow only one state variable per component type. This does
not restrict the hierarchy of components, since a state variable may still contain multiple com-
ponents, but it ensures a well-defined name space. The name of the state variable or the name
of the component it is part of uniquely denote the parent name of any possible sub-components
in the name space. Furthermore, the static offset of the state variable must be the highest offset
of any variable within the component. This allows the state to grow without the risk of growing
out-of-bounds within its parent component, avoiding the overhead of run-time bound checks.

Component API Implementation. States are represented in the framework by a State class
and components by the StateComponent class. Both classes are stored in the state package,
which is depicted as a class diagram in Figure 4.7. The StateComponent class contains the
component API functions. The function getValue(String name) retrieves the value of the
base type instance represented by name. The function getConstant(String name) retrieves
the value of the constant value of name. The value argument must also be given for setting
a variable value. It is translated to bytes using the basetype format attribute. The function
setValue(String name, String value) sets the value of the base type instance represented
by name.
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<< dataType >>

StateSpaceEntry[][]

StateSpaceException

StateSpaceEntry

−expanded:boolean

−sv:ByteBuffer

<< create >> +StateSpaceEntry(sv:ByteBuffer):StateSpaceEntry

+getByteBuffer():ByteBuffer

+isExpanded():boolean

+markExpanded():void

StateSpace

−entries:int

−retries:int

−stateCount:int

−collisionCount:int

<< create >> +StateSpace():StateSpace

<< create >> +StateSpace(entries:int,retries:int):StateSpace

+getStateCount():int

+getCollisions():long

+put(sv:ByteBuffer):void

+markExpanded(sv:ByteBuffer):int

+contains(sv:ByteBuffer):boolean

+isExpanded(sv:ByteBuffer):boolean

+get(sv_buf:ByteBuffer,len:int):ByteBuffer

+hashCode(sv:ByteBuffer,length:int):int

StateFactory

−symtab:SymbolTable

<< create >> +StateFactory(symtab:SymbolTable):StateFactory

+getSymbolTable():SymbolTable

+getState(buf:ByteBuffer,pos:int):State

+getState(sv:ByteBuffer):State

+getState(sv:ByteBuffer,name:String,offset:int):State

StateComponent

#offset:int

−type:ComponentType

−parent:State

−child:State

−sv:ByteBuffer

<< create >> +StateComponent(sv:ByteBuffer,type:ComponentType,offset:int):StateComponent

+getAddress():int

+getByteBuffer():ByteBuffer

+setByteBuffer(sv:ByteBuffer):void

+setOffset(offset:int):void

+setParentState(s:State):void

+setChildState(s:State):void

+getType():ComponentType

+getSize():int

+getIntValue(name:String):int

+getValue(name:String):String

+getIntConstant(name:String):int

+getConstant(name:String):String

+setValue(name:String,value:String):void

State

#offset:int

#name:String

#children:Map<Integer,StateComponent>

−sv:ByteBuffer

−global:StateComponent

<< create >> +State(sv:ByteBuffer,name:String,offset:int):State

<< create >> +State(sv:ByteBuffer,offset:int):State

+getName():String

+getSize():int

+setGlobalComponent(g:StateComponent):void

+getGlobalComponent():StateComponent

+addComponent(id:int,c:StateComponent):void

+getComponent(id:int):StateComponent

+getAddress():int

+getByteBuffer():ByteBuffer

+setByteBuffer(sv:ByteBuffer):void

+setOffset(offset:int):void

cd: state

child#

space−

#global#parent

Figure 4.7: SDI Framework - state package Class Diagram

Unsigned

+uShort2Int(s:short):int

+uByte2Short(b:byte):short

+uByte2Int(b:byte):int

+uInt2Long(i:int):long

+long2uInt(l:long):int

+short2uByte(s:short):byte

+int2uByte(i:int):byte

+int2uShort(i:int):short

+int2uInt(i:int):int

+int2uLong(i:int):long

cd: util

Figure 4.8: SDI Framework - util package Class Diagram
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The util package contains the Unsigned class, which is used by the component API to retrieve and
store values of variables with an unsigned type. These values must be encoded, since unsigned
types are not native to Java. The conversion methods can be seen in Figure 4.8.

4.4.1 State Factory

The previous section explained how component types provide an API for components. This
section sketches a comprehensive approach for generating state components from state vector
BLOBs using SDI descriptions.

A state factory is a factory class which provides methods for producing high level states (com-
posed of components) from a state vector. It associates the components it produces with compo-
nent types and memory locations within the state. A tool that provides the state vector inputs
for the state factory can be seen as its supplier. The state factory is necessary to produce the
memory model of a running program as a queryable structure.

We require that the SDI Framework can be reused in different designs. It should be easy to
integrate the state factory into an existing architecture. Furthermore, we would prefer not have
to design a state factory for every different type of state vector and for every different tool. We
would like to have a generalized state factory that can be reused to process state vectors from
different kinds of tools.

SDI state entries are used to describe memory areas that contain state components. The compo-
nents contained in the memory area must be identified and associated with a component type by
the state factory. This should be done based on the format of the state vector which describes
how the components are stored. The format is either described as a discrete algorithm for state
generation, which is tied to a specific state format, or based on a generic algorithm. An example
of a discrete algorithm for state generation is given in Algorithm 1 in Section 2.1. In this section
we give a generic approach for state component generation. The generic state component produc-
tion algorithm defined in Algorithm 2 is an integral part of the SDI Framework. The algorithm
is used to describe the design of a generic state factory that can be reused with different state
formats.

The design of the generic state factory is currently being implemented as a generalized factory
class for state production. In the generic approach algorithm defined here, the type identifier is
required to be in the first byte of the component descriptor. The reason for this requirement is
that it would otherwise not be possible to use SDI to determine the type of the component. More
drastically, without the type identifier variable it would not be possible to identify components
in the memory at all.

Algorithm 2 describes a generic algorithm for state production. We assume there is a global
component in the top level state. The components are all assumed to be dynamically sized,
which means the components can grow and shrink over time. We assume that the size is stored
in a variable called descriptor .size .
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Algorithm 2 (Algorithm for State production). generate(sv) is a function that generates
state components and returns a State , which contains a graph of the generated components.
Let input state vector sv be an array of bytes of length n be the input where sv [i ] denotes the
ith byte. Let c be the current component, let a be the current component address, let c.offset

be the offset of the component within sv and let c.type be the component type of c. Let st be
a symbol table symbol table with type look-up functions. st .getComponentType(int t) returns
the component type ct with id = t. Finally, let c.getValue(String n) be the function that
retrieves the value of variable n from the component.

1. Base. Then the first step of the algorithm is to generate the global component gc ∈
State . The offset gc.offset of the component is 0. The type gc.type of gc is the global
scope type. The size of gc is in the variable named descriptor .size , of which the value
gc.getValue(”descriptor .size”) represents the dynamic size of the component.

(a) If gc does not contain sub-states then the next component starts at a = a +
c.getValue(”descriptor .size”). Goto step.

(b) If gc contains a substate svs then apply Algorithm 2 to svs starting at step. Goto
step.

2. Step. The second step of the algorithm is to generate state component c ∈ State , which
has a component type determined by type identifier at location sv [a]. The component
type c.type is st .getComponentType(sv [a]).

(a) If sv [a] = 0 then the type is a null-type and there is no component at this location,
terminate the algorithm for this sv return State .

(b) If c contains a sub-state svs then apply Algorithm 2 to svs starting at step. Goto
step.

(c) Otherwise, generate a new component with offset c.offset = a. The size of c is in the
variable named descriptor .size of which the value c.getValue(”descriptor .size”))
represents the dynamic size of the component. The next component starts at
a = a+ c.getValue(”descriptor .size”). If the current component address is smaller
than the length of the state vector, i.e If a < n goto step else return.

We observe in Algorithm 2 that sub-state vectors may be of a variable size and that, in order to
compute the size of the component with a state variable, the size of the sub-state must first be
computed. This must be done by the state vector generator which is the supplier of the state
vectors for the algorithm. The generic state format with sub-states we create by use of Algo-
rithm 2 requires the state vector generator to compute the component sizes. This may be done
by performing a top down traversal of component structures. The size of each of the components
within a sub-state is returned to the parent component.

We also observe that Algorithm 2 does not provide a canonical ordering of components within
the state vector. The same component must be stored at the same location within the state
vector for two states to be equal. The SDI Framework does not interfere with this internal tool
design choice.
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4.4.2 Modeling Notation

Algorithm 2 is best explained using an example. To this end, we first extend the modeling
notation introduced in Section 3.2.1 with components, top level states and the null-type, in
order to model states.

States. The abstract modeling notation for states is de-
picted in Figure 4.9. The top level state is a run-time en-
tity depicted as a white rectangle. Top level states are
implied and do not appear explicitly in the SDI nota-
tion. The rectangle line may be thicker than that of other
shapes, to clarify the shape is a state. States consist of
components but we also say states contain components.
The line connector is used to denote that a state contains
a component. Components are depicted below states.

state

component

Figure 4.9: States Legend

Components. The modeling notation for components is
depicted in Figure 4.10. Although components have the
shape of rectangles, they are not SDI entries. The white
component colour signifies components are part of the SDI
Framework. Component types have the shape of rectangles
with rounded edges. Components have a component type
which is denoted as usual with an arrow.

component

component_type

Figure 4.10: Components Legend

Null-Type. The null-type is depicted in Figure 4.11. It
is a special pre-defined component type which signifies the
absence of a component in the state. As the name implies,
its type id attribute value is zero. A state that does not
contain components contains a null-type.

null_type

descriptor

basetype uint8_t

type_id=0

Figure 4.11: Null-Type Legend

proc_type storageglobal_scope type proc_type producer

state

componentcomponent component component

chan_type trucks

Figure 4.12: Furniture Factory - Example State

In Chapter 3, we used the running example of the Furniture Factory. The example Nips VM
state of Figure 3.6 can be modeled as an SDI Framework State, as shown in Figure 4.12.
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4.4.3 Threads Example

In this example we abstract from the modeling language and the program semantics, focusing
just on the memory model. We reason that the Nips VM uses Algorithm 2 for state production
instead of Algorithm 1. The global scope contains a variable a which is of the int basetype.
There are two types of processes. The first process type is called p1, it has a variable b which is
of the short basetype. The second process type is called p2, it has a variable c which is of the
byte basetype and a variable s which is a state. The type id of p1 is a byte with the value 1.
The type id of p2 is a byte with the value 2.

In the Threads Example, the type trees of the component types are constructed before Algo-
rithm 2 is applied to a sample state vector. The example is concluded by modeling the resulting
state using the extended modeling notation.

variable descriptor scope global_scope

a

usertype state_descriptor

global_scope type

gvar_size exclusive_pid monitor_pid

basetype uint8_tbasetype uint16_t pointer_type p1_ptr

Figure 4.13: Threads - Global Component Type Name Tree

Figure 4.13 shows the global component type for the Threads Example. The state descriptor user
type has been altered. The process count and channel count variables needed by Algorithm 1 to
identify Process and Channel components are no longer needed.
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variable descriptor scope local_scope

b

component_type p1

basetype short

usertype process_descriptor

flags lvar_size pc

basetype uint32_tbasetype uint8_t

pidtype_id

Figure 4.14: Threads - p1 Process Type Name Tree

Figure 4.14 shows the p1 process component type. The process descriptor user type has also
been altered. The type id is now the first byte in the descriptor. This allows the component and
the type to be identified within the memory.

scope local_scope

c

component_type p2

state s

variable descriptor

usertype process_descriptor

flags lvar_size

basetype uint32_tbasetype uint8_t

pidtype_id pc

basetype int

Figure 4.15: Threads - p2 Process Type Name Tree

Figure 4.15 shows the p2 process component type. The process descriptor is the same as in
the type tree of p1. The process contains a state variable s which may contain more state
components.
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global 1 ...

(a) Algorithm Step 1

p1 2 ...global

(b) Algorithm Step 2

s 2 ...global p1 p2

(c) Algorithm Step 3

sglobal p1 p2 p2 s 0 ...

(d) Algorithm Step 4

sglobal p1 p2 p2 s 0 1 ...

(e) Algorithm Step 5

sglobal p1 p2 p2 s 0 p1

(f) Algorithm Step 6

Figure 4.16: Threads - Example State Production

Figure 4.16 schematically shows how Algorithm 2 is applied to an example state vector. Each of
the sub-figures represents a step in the application of Algorithm 2. The outer rectangle represents
the state vector or top level state. The gray rectangles represent the next part of the state vector
that should be analysed according to the algorithm. Rectangles within the top level state are level
one components. Components within level one component sub-states are level two components,
and so on. In the Threads Example, we assume that the altered Nips VM is able to assign the
proper component identifier to each of the components and sub-components.

• Step 1: Figure 4.16(a) shows the first step of the state production. The global component
is a level one component which always exist. The global component is produced, its size is
determined and then the next component must be identified. Its type id is 1.

• Step 2: Figure 4.16(b) shows the second step of the state production. A level one process of
type p1 is produced, its size is determined and then the next component must be identified.
Its type id is 2.

• Step 3: Figure 4.16(c) shows the third step of the state production. A level one component
of type p2 is produced. Processes of the type p2 have a sub-state variable s. This variable
must be analysed before the next level one component can be identified. The sub-state
variable s contains a second level component of which the type id is 2.
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• Step 4: Figure 4.16(d) shows the fourth step of the state production. A second level
component of type p2 is identified. The sub-state variable s must be analysed before the
next second level component can be identified. It contains a third level component of which
the type id is 0.

• Step 5: Figure 4.16(e) shows the fifth step of the state production. A null-type is iden-
tified. This means that the second level p2 process variable state s does not contain any
components. The next second level component must now be identified. Its type id is 1.

• Step 6: Figure 4.16(f) shows the sixth step of the state production. A second level
component of type p1 is produced. The combined size of the components is the size of the
state vector. The algorithm terminates.

scope local_scope

c

component_type p2

state s

descriptordescriptor

scope

global_scope

a

usertype state_descriptor

global_scope type

scope

local_scope

b

component_type p1

basetype short

usertype process_descriptor

descriptor

state

c

component_type p2

state sdescriptor

componentcomponent component

component

null_type

component

component_type p1

bdescriptor

scope

local_scope

scope

local_scope

pointer_type

p1_ptr basetype int

Figure 4.17: Threads - Example State

The result of the application of Algorithm 2 to the example state vector sketched in Figure 4.16
is shown in Figure 4.17.
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4.5 Transition API

Mutations to state components can be seen as transitions. A semantics for the transitions of state
components can be used to describe, log and store the behaviour of a model which can be replayed
whilst the high level representation of the memory model is kept up to date. Transitions can also
be used to define changes to states and apply or unapply them. We extend the SDI Framework
with a Transition API that uses transitions to improve the state manipulation framework. A
debugger can use SDI to display the low level changes made by transitions to the user at source
level.

Requirements. As a primary requirement, we pose that the design facilitates a debugger with
respect to logging behaviour, editing and displaying states. We require the design to provide
component transition primitives that allow the manipulation of the high level representation of
states and as a hierarchy of components as is described by the SDI Framework in Section 4.4.
We require transitions to be bi-directional, which means that for every transition there must be
a reverse transition that undoes the changes made by the transition. We require that we can
apply transitions to states and produce transitions from changes that have happened to states
such that transitions can be logged, analysed using a debugger and rolled back. We would like
to be able to store transitions in a compact format, since transitions might be used during model
checking to store on the search stack instead of state vectors as e.g. in JPF [48].

Means. First we define the component transition semantics in terms of transition primitives.
The semantics should contain primitive operations for component creation and component dis-
posal because state components may have a limited life-span. Another primitive operation is to
set the size of a state component, since state components may grow and shrink during a transi-
tion. Because state component variable values may change, the need exists for an operation that
changes a sequence of bytes of a component to a new value. Each of the transition primitives we
identified can only be applied to make the correct changes to the state if there is a way to select
the component the transition primitive works on. We use the component id, which we assume is
present in the component descriptor, to select the component by an operation.

Design. The design of the Transition API is as follows. The operations for component creation,
disposal, resizing and changing values are described using transition primitives. A transition is
described using a sequence of instructions derived from the transition primitives. This is much
like editing a stream of data such is done with SED [27].

The instructions are used to design a transition factory that can be used to produce transitions
from state vector inputs and a transition machine that can be used to apply the semantics of a
transition to a state. The transition factory provides a means for logging or replaying the system
behaviour. The transition machine offers primitive methods that apply transition instructions
as a means for state manipulation.

4.5.1 Component Transition Instructions

For each component we require there exists a variable descriptor.size that stores the component
size, a variable descriptor.id that contains the component id and a variable descriptor.type id that
contains the component type id. This enables the transition machine that processes the transition
semantics to make use of the state API. It can also notify the observers of the components and
facilitate a debugger using a model view controller.
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The semantics of the component transition instructions and their arguments are listed in Ta-
ble 4.1.

instruction arguments semantics

select depth id selects a component for an mutation
new depth id type size values creates a new component
dispose depth id destroys a component
resize depth id size resizes a component
change depth id offset val size val changes component values

Table 4.1: Component Transition Instructions

Select. Each instruction requires the selection of the component it works on. The depth argu-
ment in each of the instructions refers to the depth of the state component in the hierarchy of
components, with zero being the top level state. A state variable in a component that is in the
top level state is a second level state and so on. The id argument is the sequence of component ids
to be traversed to reach the component selected to undergo a mutation. The argument consists
of depth component ids. Each id denotes a component on a state level, because a component
can have only one state variable. The select instruction is defined by ”select depth id”. It
acts as a cursor which is placed on a component.

sv : ByteBuffer = sv_a

offset : int = 0

name : String = ""

children : Map<Integer,StateComponent> = ...

s1 : State

children<1,c1>

parent

sv : ByteBuffer = sv_a

offset : int = 6

name : String = "a"

type : ComponentType = p1_type

parent : State = s1

child : State = null

c1 : StateComponent

sv : ByteBuffer = sv_a

offset : int = 27

name : String = "s"

children : Map<Integer,StateComponent> = ...

s2 : State

child

sv : ByteBuffer = sv_a

offset : int = 16

name : String = ""

type : ComponentType = p2_type

parent : State = s1

child : State = s2

c2 : StateComponent

sv : ByteBuffer = sv_a

offset : int = 0

name : String = ""

type : ComponentType = glob_type

parent : State = s1

child : State = null

g : StateComponent

children<0,c1>

parent

children<2,c1>
parent

sv : ByteBuffer = sv_a

offset : int = 27

name : String = ""

type : ComponentType = p2_type

parent : State = s2

child : State = null

c3 : StateComponent

children<0,c3>

parent

id
[1

] 
=

 0

getComponent(2,[2,1])

id
[0

] 
=

 2

(a) Threads Example - select Example

TransitionVM

StateComponent getComponent(State s,
byte depth, byte id[]){

if(depth==0) return null;
int level = 0;
State cur s = s;
while(level<depth){

if(level==depth){ //found component
return cur s.getComponent(id[level]);

} else { //find next state
cur s=cur s.getState(id);
level++;

}
}
//throw exception ”component not found”

}

(b) TransitionVM select Java Pseudo Code

Figure 4.18: Component selection

Figure 4.18 gives a description of component selection, Figure 4.18(a) shows the selection of a pro-
cess in the Threads example and Figure 4.18(b) shows the Java pseudo code for the getComponent
method in the TransitionVM class.

78



CHAPTER 4. THE SDI FRAMEWORK 4.5. TRANSITION API

New. A transition in which a component is created contains a new instruction. The creation
of a component requires we know its component type. The link between a component and its
type is preserved by storing the type argument value in the component descriptor in the type id
variable.

..
.

c1: StateComponent

descriptor.id=0

s1:State

cn: StateComponent

descriptor.id=n

new

..
.

c1: StateComponent

descriptor.id=0

s1:State

cn: StateComponent

descriptor.id=n

cnew: StateComponent

descriptor.type_id=type

descriptor.size=size

descriptor.id=n+1

depth

id[]

type

size

values[]

(a) new Transition Schema

TransitionVM

StateComponent newComponent(State s,
byte depth, byte id[],
byte type, byte size, byte values[]){

//get the parent state and the offset
if(depth>0){

StateComponent prnt =
getComponent(s, depth, id);

State prnt state = prnt.getState();
int prnt sz = //new parent component size

prnt.getIntValue(”descriptor.size”)+size;
prnt.setIntValue(”descriptor.size”,prnt sz);

} else {
prnt state = s;

}
int offset = prnt state.getOffset(id);

//create the new state vector
byte sv[] = new byte[s.getSize()+size];
//copy old sv up to offset
sv[0..offset] = s.sv[0..offset];
//copy (insert) new component values
sv[offset..offset+size] = values;
//copy old sv after offset
sv[offset+size..sv.length] =

s.sv[offset..s.getSize()]

//create the new component object
ComponentType ct =

symboltable.getComponentType(type);
Component c = new Component(sv, ct,

offset);
prnt state.addComponent(c);
s.setStateVector(sv);

//creates new component observer
prnt state.notifyObservers();
return c;

}

(b) TransitionVM new Java Pseudo Code

Figure 4.19: new Component Instruction

Figure 4.19 gives a description of the new instruction, Figure 4.19(a) shows the schema of the
creation of a component and Figure 4.19(b) shows the Java pseudo code for the newComponent

method in the TransitionVM class. The instruction for the creation of a component is defined by
”new depth id type size values.” The two arguments depth and id determine in which component
state variable a new component is created. The type argument is needed to determine the
component type of the newly to be created component. The argument is sized one byte and
stored at offset zero within the descriptor of the component. This allows the use of Algorithm 2.
The new component’s id is determined by the values argument, this identifier must be unique
to the component within the state. The components are stored by increasing component id.
Although it seems logical that components always start their existence with the same size and
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start values, this is not necessarily true if we consider inverse transitions. Components may be
destroyed at any time and components may grow and shrink during their lifetime. Therefore,
the component size must be added as an argument. Furthermore the current values of the
component must also be restored. The inverse of the new instruction is the dispose instruction
and vice versa.

Dispose. A transition in which a component is disposed contains a dispose instruction. The
instruction for the disposal of a component is defined by ”dispose depth id”. The two arguments
depth and id are used to determine which component is destroyed.

..
.

c1: StateComponent

descriptor.id=0

s1:State

cn: StateComponent

descriptor.id=n

cnew: StateComponent

descriptor.id=n+1

dispose

..
.

c1: StateComponent

descriptor.id=0

s1:State

cn: StateComponent

descriptor.id=n
depth

id[]

(a) dispose Transition Schema

TransitionVM

void disposeComponent(State s,
byte depth, byte id[]){

StateComponent c =
getComponent(s, depth, id);

int size = c.getSize();
int offset = c.getOffset();
State parent state = c.getParent();
parent state.remove(c);

//create the new state vector
byte sv[] = new byte[s.getSize()−size];
sv[0..offset] = s.sv[0..offset];
sv[offset..sv.length] =

s.sv[offset+size..sv.getSize()];
s.setStateVector(sv);

//destroys component observer
parent state.notifyObservers();

}

(b) TransitionVM dispose Java Pseudo Code

Figure 4.20: dispose Component Instruction

Figure 4.20 gives a description of the dispose instruction, Figure 4.20(a) shows the schema of the
disposal of a component and Figure 4.20(b) shows the Java pseudo code for the disposeComponent
method in the TransitionVM class.

In the design we must take into account that it may be the case that only the component with
the highest id is allowed to be destroyed, while the other components that can be disposed of
are queued for removal. This may be the case when the equals operation on state vectors naively
compares the bytes within the state vectors and does not compare components. In such a case, it
may be that the components must be aligned by default by means of this condition. Otherwise,
state vectors are deemed unequal when they really signify the same thing and a state space
explosion can be the result.
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Resize. A transition in which a component is resized contains a resize instruction. The
instruction for resizing components is defined by ”resize depth id size”. The two arguments
depth and id are used to determine which component is resized. The size argument refers to the
new component size in bytes. The size argument value is stored in the component descriptor. To
undo a resize instruction the size must be reset to what it was before. The resize instruction
is its own inverse.

..
.

..
.

..
.

..
.

c1: StateComponent

descriptor.id=0

s1:State

cn: StateComponent

id=n

resize

cm: StateComponent

descriptor.id=n

descriptor.size=s

cm: StateComponent

descriptor.id=n

descriptor.size=size

c1: StateComponent

descriptor.id=0

s1:State

cn: StateComponent

descriptor.id=n

s
iz

edepth

id[]

size

(a) resize Transition Schema

TransitionVM

StateComponent resizeComponent(State s,
byte depth, byte id[], byte size){

StateComponent c =
getComponent(s, depth, id);

if(size == c.getSize()) return c;
int offset = c.getOffset();
c.setIntValue(”descriptor.size”,size);

//create the new state vector
int shift = size − c.getSize();
byte sv[] = new byte[s.getSize()+shift];
if(shift < 0){ //component shrinks

//copy old sv including component (−
shift)

sv[0..offset+size] = s.sv[0..offset+size];
//copy old sv starting from next

component
sv[offset+size..sv.length] =

s.sv[offset+c.getsize()..s.getSize()];
} else { //component grows

//copy old sv including component
sv[0..offset+c.getSize()] =

s.sv[0..offset+c.getSize()];
//pad sv with zeros
sv[offset+c.getSize()..

offset+getSize()+shift] = 0;
//copy the rest of the old sv
sv[offset+c.getSize()+diff..sv.length] =

s.sv[offset+c.getSize()..s.getSize()]
}
s.setStateVector(sv);

//updates view on state
c.notifyObservers();

}

(b) TransitionVM resize Java Pseudo Code

Figure 4.21: resize Component Instruction

Figure 4.21 gives a description of the resize instruction, Figure 4.21(a) shows the schema of
resizing of a component and Figure 4.21(b) shows the Java pseudo code for the resizeComponent
method in the TransitionVM class.
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Change. A transition in which component values are changed contains the change instruction.
The instruction for changing bytes within a component is defined by ”change depth id offset
val size val”. The two arguments depth and id are used to determine of which component byte
values are changed. The offset, val size and val arguments determine at which offset within
the component a number of val size bytes will be changed to val. To undo the changes to a
component, the values of the component must be changed back to what they were before the
instruction was executed. The change instruction is its own inverse.

..
.

..
.

c1: StateComponent

component.id=0

s1:State

cn: StateComponent

id=n

change

cm: StateComponent

component.id=n

..
.

..
.

c1: StateComponent

component.id=0

s1:State

cn: StateComponent

id=n

cm: StateComponent

component.id=n
depth

id[]

offset

val_size

val[]

(a) change Transition Schema

TransitionVM

StateComponent changeComponent(State s,
byte depth, byte id[], byte offset,
byte val size, byte val[]){

StateComponent c =
getComponent(s, depth, id);

//create the new state vector
sv = new byte[s.getSize()];
//copy old sv completely
sv[0..s.getsize()] = s.sv[0..s.getSize()];
//write the new values
sv[c.getOffset()+offset...

c.getOffset+offset+val size] = val;
s.setStateVector(sv);

//updates view on state
c.notifyObservers();

}

(b) TransitionVM change Java Pseudo Code

Figure 4.22: Change Component Instruction

Figure 4.21 gives a description of the change instruction, Figure 4.22(a) shows the schema of
changing the values of a component and Figure 4.21(b) shows the Java pseudo code for the
changeComponent method in the TransitionVM class.

Implementation. An important implementation choice is how to represent the transition in-
structions. Since it can be useful to store transitions in a compact way, they are saved in transition
vectors. It must be decided how many bytes are used for the instruction arguments. The number
of bytes used per argument depends on the number of bytes used to store the information in the
descriptor. A transition machine can be implemented in Java by the TransitionVM class which is
discussed using pseudo-code in the examples. It offers primitive methods for state manipulation.
A transition factory can be implemented in Java by the TransitionFactory class which creates
transitions built up out of the instructions defined here as a means for logging or replaying the
behaviour. The Java implementation is of the transition API is ongoing work.
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4.6 Compiler Extensions

In this section, the design of the SDI compiler extensions is explained. Compilers were introduced
in Section 1.1.2. The extensions can help a compiler programmer extend a compiler in order for
it to generate SDI definitions, such that the debugging support offered by the SDI Framework
can be used.

As a primary requirement we specify that it should be easy to implement the SDI compiler exten-
sions into an existing compiler. Aside from the normal output, the compiler should also generate
its symbol table consisting of scopes, variables, types and location information as a flattened SDI
definition. We require that it should be possible to use the SDI Framework irrespective of the
compiler design.

The means for the SDI compiler extensions are the SDI language description of Chapter 3, the
compiler and the design of its symbol table. The SDI language is used to define the symbol table
of the compiled program. The compiler determines the static memory locations and the sizes of
types of variables within the memory. Source locations are implicitly introduced by generating
byte code. A numbering of the instructions and the source line and column numbers is used to
explicitly save this association between target and source locations. We may not assume that a
fully constructed symbol table is ever available at compile time, since there exist compiler designs
where the symbol table is never complete due to the design of opening and closing scopes as a
lossy procedure. Even if the symbol table is not constructed as a static structure at compile
time we should be able to use the SDI compiler extensions. Therefore, the best we can do is to
provide functions that assist in generating SDI code.

Design. The design of the SDI compiler extensions is a collection of elementary code generation
functions, called emit functions, that assist in the generation of SDI descriptions of symbol tables.
Although we may not assume a scope exists as an object at compile time, we know that each
scope is first opened, then defined and finally closed. Recall from Chapter 3 that all SDI entries
must have names. The open scope(String name) and close scope() functions are defined that
generate scope information for SDI. Alternatively, a scope that does not have a name meaningful
name to programmers can be hidden using the function open scope() instead. It generates a
scope entry with a dummy name and a marked attribute which has the value invisible. We use
the same approach for each of the SDI entries and provide open and close list functions for each
of them. Attributes can be inserted in entries using the insert attribute(String name, String
value) function. Enumeration types which may be constructed from information gathered from
different scopes should be treated differently. They should be stored in one place and emitted
after the type is fully constructed.

Implementation. The Java implementation of the SDI compiler extensions is contained in
the emit package. The class diagram of the emit package is depicted in Figure 4.23. The
SDIEmitter class contains functions that are used to facilitate a structured way for generating
the SDI specification in parts during the contextual analysis phase. The EnumType class serves
as a storage class for enumeration types.

To use the SDI compiler extensions the following pattern must be followed. First an SDIEmitter

object is created. The SDI definition list is opened using the open() function. Starting with an
empty list, the debugging information is built up and stored in the SDIEmitter object using the
provided functions. The entries are generated by opening them, inserting the required attributes
and any other relevant attribute information using insert attribute(String name, String

value) and finally closing them. The SDI definition list is closed using the close() function.
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Class_1

SDIEmitter

−code:String

−cur:Stack

−enum_types:Map

−depth:int

−dummy_label:int

<< create >> +SDIEmitter():SDIEmitter

+write(file_name:String):void

+getCode():String

+open():void

+close():void

+emit(s:String):void

+emitLocation(tgt:String,src_line:String,src_col:String):void

−getIndentString(indent:int):String

−inLeafEntry():boolean

−inMarkableEntry():boolean

+insert_attribute(name:String,value:String):void

+mark_invisible():void

+mark_descriptor():void

+open_scope():void

+open_scope(name:String):void

+close_scope():void

+open_variable(name:String):void

+close_variable():void

+open_field(name:String):void

+close_field():void

+open_array(name:String):void

+close_array():void

+open_state():void

+open_state(name:String):void

+close_state():void

+open_usertype(name:String):void

+close_usertype():void

+open_basetype(name:String):void

+close_basetype():void

+open_pointertype(name:String):void

+close_pointertype():void

+open_globalcomponenttype():void

+close_globalcomponenttype():void

+open_componenttype(name:String):void

+close_componenttype():void

+open_enumtype(name:String):void

+close_enumtype():void

+open_enumfield(name:String):void

+close_enumfield():void

+open_storage_enumtype(name:String):void

+add_storage_enumfield(type:String,name:String,value:int):void

EnumType

−name:String

−code:String

−closed:boolean

−fields:int

<< create >> +EnumType(name:String):EnumType

+getName():String

+getCode():String

+isClosed():boolean

+close():void

+addField(name:String,value:int):void

EmitException

cd: emit

Figure 4.23: SDI Framework - emit package Class Diagram

The function write(String file name) must then be called to write the SDI definition to a
file.

Evaluation. The SDI Compiler Extensions can help inexperienced and experienced program-
mers alike to extend their compiler with SDI generation functionality. The debugging function-
ality of the SDI Framework thereby becomes available to a wider group of users.
The compiler extensions do not assist the compiler engineer in constructing a good compiler
design. The design of the compiler is relevant to the use of the code emitter functions. Although
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it is outside the scope of this thesis report, we mention that in case the fully constructed symbol
table is intact after the contextual analysis phase, a visitor pattern can be used to generate
the program-constant SDI based on the information contained within the symbol table entries.
Alternatively, we can use overloading where each of the entry classes contains an overloaded
method that is called recursively in order to acquire the debugging information. An example of
this approach is the SDI extension of the Nips Promela Compiler, introduced in Section 2.1.4,
which was extended using this approach. The implementation of the Nips Promela Compiler
SDI extension is described in Appendix B.

4.7 The SDI Debugger

The SDI debugger is designed to be a tool that can graphically display the memory model of a
running program when this model can be described using SDI. The debugger makes it easy for
compiler and tool engineers to extend the feature set of their tools with a debugger, which can
allows users to simulate and evaluate the behaviour of programs.

The main requirement of the SDI debugger is that it should provide users with a graphical
representation of states and sequences of states, as well as with a means to choose transitions
in an interactive simulation of a program. The graphical representation should be in terms of
the program source. The debugger should function with all memory models that are supported
by the SDI Framework. Finally, we wish to know if the Eclipse platform [11] can be used to
create a Graphical user Interface (GUI) for states and components, since it offers a wealth of GUI
components to choose from. The Eclipse platform has a modular design consisting of so-called
plug-ins that offer interoperability for the tools using it.

Design. The design of the SDI debugger is incorporated in the SDI Framework. It uses the state
API described in Section 4.4 for a source level view of run-time states. The Model View Controller
(MVC) programming paradigm which is used to create an observer pattern for components in
order to create a naturally modular design. An observer is an object which extends a graphical
user interface component that provides a view on the data. The data it observes is referred to
as the model. When the model is modified, the observer is notified of the changes and the it
updates the modified fields on the screen.

The transition API introduced in Section 4.5 can be used in the observer pattern. Transitions
are used to create and destroy components and their observers at the same time. The transition
machine that processes the transitions is the controller, it changes the model (the state vector)
and updates the view by notifying all concerned observers of the changes to the component
memory.

Fortunately, the Graphical Editing Framework (GEF) [12] that is offered by the Eclipse platform
makes use of the MVC paradigm. The design for the graphical component observers is not
complete, since no design choices have been made about the exact GEF component to use for
the different functionalities the debugger should have. It should provide a view on states and
components. Moreover, it should display transitions and it should have a component that enables
users to choose which transition to execute in an interactive simulation.
The design is complicated by the finite nature of components, because for each component an
observer must be instantiated at the beginning and destroyed at the end of a component’s life
time. The architecture of the MVC paradigm is shown in Figure 4.24(a) and its application to
the design of the SDI debugger is shown in Figure 4.24(b).
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Model
Encapsulates application state

Responds to state queries

Exposes Application

Notifies views of change

View
Renders the models

Request updates from models

Sends user gestures to controller 

Allows controller to select view

Controller
Defines application behavior

Maps user actions to model 

updates

Selects view for response

One for each functionality

State Change

State Query

View Selection

User Gestures

Change Notification

(a) General MVC Architecture

View
GUI components

StateObserver

ComponentObserver

CounterExampleObserver

implements Observer

void update(Observable t, Object o)

SDI Memory Model
Debugging API

States and StateComponents

extends Observable

State Query

model.addObserver(this)

Controller
Debugger

Simulator

State Space Explorer 

Algorithms

StateFactory

TransitionFactory

TransitionVM

State Change

User Gestures

View Selection

Change Notification

notifyObservers()

Nips VM
Interprets Byte Code

Generates Successor States

JNI mapping

(b) SDI Framework MVC Architecture

Figure 4.24: Model View Controller Architecture

Implementation. The implementation in Java is ongoing work. However, a schematic sketch
of the implementation can already be given. We can use Java GEF components to create a GUI.
GEF components, but also other GUI components such as Frames and Panels can be extend the
Observer class. These GUI components are represented in this sketch by the ComponentObserver
and the StateObservers classes. A StateObserver object provides a view of the current state
of the memory of the running program A ComponentObserver object provides a view of the
current status of a run-time component. ComponentObserver objects form a hierarchy, just like
Component objects. Changes to both hierarchies occur simultaneously. The Component class
implements the Observable interface such that ComponentObserver objects can register to this
components (i.e. added to its observers) and notified of changes made to it by a TransitionMa-
chine class that processes transitions.

Frame

StateObserver

proc_type storageglobal_scope type proc_type producer

state

componentcomponent component component

chan_type trucks

Component

Observer

Component

Observer

Component

Observer

Component

Observer

Figure 4.25: Furniture Factory - State Observer

Figure 4.25 shows a schematic view of the Furniture Factory example state. The dashed lines be-
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tween the Component and the ComponentObserver objects denote that the ComponentObserver

provides a view of the Component. Similarly, the dashed line between the State and the
StateObserver objects denotes that StateObserver provides a view of the State.

4.8 Concluding Remarks

The SDI Framework is a framework for state manipulation. It provides functionality for viewing
and altering values in state vectors by means of a debugging API that consists of a state API
and a transition API. The SDI debugging API can be reused by compiler and tool engineers for
different tool implementations, specifically Nips VM based tools. It easy for them to extend the
feature set of their tools with a debugger which can simulate the behaviour of a program. The
design of the SDI Debugger can be reused, since it works for all tools that use the SDI Framework,
avoiding the need to design a new debugger for every tool. The debugging functionality can be
shared between tools by using the SDI debugger and the SDI debugging API. The SDI framework
can assist in the design of a modular explicit state model checking tool set, providing a means
to connect and compare the tools.

It is not strictly necessary for the compiler to use byte code to represent an intermediate semantics
to use the SDI framework. The SDI Framework can also be used with tools that have an internal
compiler that does not produce intermediate byte code, provided that the tool can produce states
as state vectors. Such tools may use internal structures such as an abstract syntax graph which
is transformed to execute the program semantics. Note that without a byte code semantics it
will not be possible to use the SDI target to source mapping described in Section 3.6, but source
location annotations in type definitions will still be possible.

The SDI framework also has its limitations. The use of the debugger is limited to tools that are
compatible with Algorithm 2. For tools that use a discrete algorithm for state production, such
as Algorithm 1, parts of the SDI framework must be designed and implemented for the specific
application.

Design Feature Current Status Package Implementation goal

SDI Parser implemented ast reached
Symbol Table implemented symboltable reached
State API implemented state, symbol-

table

reached

Transition API designed only transition Transitions for state manipulation with
TransitionFactory and TransitionVM classes

Compiler Extensions implemented emit reached
Generic SDI Debugger designed only sdi SDI MVC Debugger with ComponentObserver

and StateObserver classes
SDI Language implemented,

designed pointer
types

state, transi-

tion, symbol-

table

Full SDI including pointer types

Table 4.2: SDI Framework Features Implementation Level

Furthermore, the design of the SDI Framework is not yet fully implemented. The Java imple-
mentation has a modular package structure. Table 4.2 shows for the different design features, the
level of the implementation, the package that contains the implementation and the implementa-
tion goal. The difficulty in completing the implementation lies primarily in the implementation
of the already designed SDI Debugger.
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Chapter 5

Case Study

In the introduction of this thesis, the problem statement poses that the Nips VM generates
states that cannot be displayed in a way the user understands. This chapter presents the Nips

debugger, which provides the source-level debugging solution to this problem. This case study
applies the SDI Framework to the design of extensions for Nips. It provides an opportunity for
an in-depth examination of the application of the SDI Framework to a real-life example of an
explicit state model checker.

Firstly, in Section 5.1 we explain the extensions to the Nips VM and the Nips Promela compiler
that are necessary in order to support a debugger, as well as the design of the Nips debugger
itself. We then evaluate the Nips Debugger and the design of the SDI Framework with respect
to the amount of effort needed to implement it in a debugger, the amount of functionality offered
and the usefulness of the results in Section 5.2. The chapter is ended with concluding remarks
in Section 5.3.

5.1 A Debugger for Nips

In this section the design and implementation of the Nips debugger is explained. First the re-
quirements for the debugger are enumerated. Then the design and implementation are explained.
We show that the SDI Framework fulfills the requirements for a debugger for Nips.

Requirements. A debugger for Nips should provide a source level representation of states that
is esthetically pleasing, but it is mainly important that it provides debugging functionality. It
should depict states and transitions and allow users to inspect counter-examples produced by
Nips VM based tools. It should offer interactive simulation modes that allow the user to exper-
iment with source model behaviours by choosing transitions, stepping forwards and backwards
through the model as a Labelled Transition System (LTS). It should allow users to edit state
variables such that users can step outside of the predefined model behaviour.

We want tool engineers to use the Nips VM as a back-end for their explicit state model checker
and provide a debugger with as little extra implementation effort as possible. A debugger should
be able to communicate with the Nips VM via a clearly defined debugging API. A debugging
API consists of function calls that enable a debugger to display the information in Nips VM
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states to the user at source-level, i.e. in terms of variable names and types. We neither wish
to alter the semantics of the Nips byte code nor do we wish to alter the existing Nips VM
implementation in order to fulfill the requirements.

Design. We use the SDI Framework, described in Chapter 4, in the description of the memory
model of Nips states that facilitates a debugger for Nips by means of a debugging API composed
of a state API and a transition API. The SDI Framework facilitates a debugging API that provides
the function calls that allow a debugger to display and modify the information in Nips VM states.
Figure 5.1(a) gives a schematic overview of the Nips debugging architecture and Figure 5.1(b)
shows how the design is structured in sections.

NIPS VM JavaSDI Framework

NIPS PROMELA Compiler

NIPS VM

input generate

input

Symbol Table

SDI(MP)

Program

Constants

SDI(Pc)

Language

Constant

SDI(Lc)

Nips VM

Constants

SDI(VMc)

definition

generatedefinition

NIPS Byte Code

Pbytecode

in
p

u
t

State Vectors

generate

PROMELA

Source Program 

Ppromela

J
N

I
M

a
p

p
in

g

Symbol Table

NIPS Debugger

Component 

Types (MP)

Debugging API(MP)

State API

StateFactory

generate

State

Nips VM 

Components

Transition API

TransitionFactory

TransitionVM

input

Transition Vectors

generate

input
output

input

input

input

debugging

5.2.1

5.2.3

5.2.2

(a) Nips Debugging Architecture

Section 5.1.1: Nips Memory Model

Section 5.1.2: Nips Debugging API

• State API

• Transition API

• Traces

Section 5.1.3: Nips Debugger

(b) Section Structure

Figure 5.1: Nips Debugging Design Overview

Implementation. We use the existing Java version of the Nips VM, which is a Java Native
Interface (JNI) mapped version of its implementation in C. The Java implementation is extended
with a debugging API based on the SDI Framework and with the Nips debugger. The changes
made to the C implementation of the Nips VM are small and consist primarily of the addition of
component type identifiers to the descriptors of processes and channels to allow identifying their
type at run-time. The Nips byte code instructions LRUN and CHNEW, which respectively create
a process and a channel respectively, receive an extra type id argument. Additionally, functions
for querying the state-space size, the state count and the hash-table conflict count were added
to hashtab.c in order to view state-space statistics.

Figure 5.2 is a class diagram that gives an abstract overview of the nipsvm Java package. The
gray classes are already designed and implemented before. The white classes and packages are
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added to the nipsvm base package. The state API is in the nipsvm package, the transition API
is in the transition package, traces are supported by the trace package and the Nips debugger is
in the debugger package

NipsVMStructureInformation NipsVMSourceLocation NipsVMExceptionNipsVM

debuggertracetransition

StateFactoryException

StateFactoryProcessNipsState

GlobalComponent

Channel
chans

procs

glob−

cd: nipsvm

Figure 5.2: Nips VM Design Overview Class Diagram

5.1.1 Memory Model

In order to use the debugging API, the memory of programs running on the Nips VM must
be modeled using SDI. For the Nips VM, constant SDI definitions of its run-time component,
described in Section 2.1, must be modeled and maintained1. The SDI definitions of base types
and component descriptors are shown in Figure 3.17 and Figure 3.20. The component type id has
been added to process and channel descriptors to allow a mapping from the components to their
respective component types. For the Nips Promela compiler, language constant information
is modeled such as the Promela base types. Furthermore, the compiler has been extended
to generate SDI definitions for each program representing the symbol table which describes
the scope, variable and type definitions. Additionally, it generates location information which
provides a Nips byte code to Promela source location mapping. The SDI Extensions to the
Promela Compiler are described in Appendix B.

1Changes to the state format within the Nips VM have to be reflected within the SDI component descriptor
definitions.
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5.1.2 Debugging API

The design of the Nips VM debugging API is in line with the SDI debugging API described in
Section 4.4 and Section 4.5. Therefore, only a brief description of the Nips debugging API is
given. There are however some differences, since parts of the design predate the generic design of
the SDI Framework and are specifically tailored towards the Nips VM. For each of the debugging
API components, descriptions of its design and implementation are given. The argumentation
for the design and implementation from Chapter 4 is not repeated, only the differences between
the designs are explained.

State API

The Nips VM State API consists of a state factory based on Algorithm 1 instead of the generic
Algorithm 2 and it produces the global, process and channel components as separate component
sorts. Instead of retrieving components and returning C structs, as Algorithm 1 does, the
state factory produces Nips component objects and the algorithm does not terminate until each
conceptual component in the state vector is produced as an object. The Nips components, aside
from inheriting generic API functions from the SDI State API, also contain specialized API
functions. Furthermore, Nips VM states do not represent a hierarchy of components, but are a
list of components ordered according to the state format defined in Section 2.1.

Implementation. The generic API functions are inherited by the GlobalComponent, Process
and Channel classes which represent the Nips run-time components. Each of the classes contains
specialized functions that complement the functionality offered by the SDI Framework. Figure 5.3
shows the class diagram of Nips VM state component classes in relation to the SDI Framework.
Only the most important attributes and functions are depicted in the class diagram.

+getScopeSize() : int

+getExclusivePid() : short

+getMonitorPid() : short

+getProcessCount() : short

+getChannelCount() : short

GlobalComponent

+getScopeSize() : int

+getPC() : long

+getFlags() : short

+getPid() : short

+getTypeId() : short

Process

+getPid() : short

+getCid() : short

+getTypeId() : short

+getMaximumLength() : short

+getCurrentLength() : short

+getMessageLength() : short

+getTypeLength() : short

-messageType : ComponentType

Channel

+getType() : ComponentType

+getParentState() : State

+getSize() : int

+getAddress() : int

+getConstant(in name : String) : String

+getIntConstant(in name : String) : int

+getValue(in name : String) : String

+getIntValue(in name : String) : int

+setValue(in name : String, in value : String)

+setIntValue(in name : String, in value : int)

#sv : ByteBuffer

-type : ComponentType

-offset : int

-parent : State

-child : State

StateComponent

#sv : ByteBuffer

-offset : int

-global : StateComponent

-children : Map<Integer,StateComponent>

-name : String

State

+getProcess(in id : short) : Process

+getChannel(in pid : short, in cid : short) : Channel

-processes[] : Process

-channels[] : Channel

NipsState

Figure 5.3: Nips VM State API Classes
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The nipsvm package is extended with a state API. Figure 5.4 shows the class diagram of these
extensions. A StateFactory object takes Nips state vectors as input in the form of ByteBuffer
objects and it returns NipsState objects as output. NipsState objects allow access to Nips

state components. Process, Channel and GlobalComponent each extend the StateComponent

class from the SDI Framework. The SDI State API can be used to access variables and change
variable values. Each of the components can be retrieved from a NipsState using an API
function. The Process, Channel and GlobalComponent classes contain API functions to directly
read descriptor values.

StateFactoryException

StateFactory

−symtab:SymbolTable

<< create >> +StateFactory(symtab:SymbolTable):StateFactory

+getSymbolTable():SymbolTable

+getState(buf:ByteBuffer,pos:int):NipsState

+getState(sv:ByteBuffer):NipsState

Process

<< create >> +Process(sv:ByteBuffer,type:ComponentType,offset:int):Process

+clone():Process

+print():void

+toString(opt_descriptors:boolean):String

+getName():String

+getAddress():int

+getSize():int

+getScopeSize():int

+getPc():long

+getFlags():short

+getId():short

+getTypeId():short

NipsState

−procs:List<Processes>

−chans:List<Channels>

−glob:GlobalComponent

<< create >> +NipsState(sv:ByteBuffer):NipsState

+getByteBuffer():ByteBuffer

+print():void

+getSize():int

+getBufferSize():int

+getName():String

+setByteBuffer(sv:ByteBuffer):void

+equals(that:NipsState):boolean

+getProcess(pid:short):Process

+getChannel(pid:short,cid:short):Channel

+getChannel(cid:int):Channel

+getGlobalComponent():GlobalComponent

+setGlobalComponent(glob:GlobalComponent):void

+addProcess(p:Process):void

+addChannel(c:Channel):void

+removeProcess(p:Process):void

+removeChannel(c:Channel):void

+getProcessAddress():int

+getChannelAddress():int

+processExists(pid:short):boolean

+channelExists(pid:short,cid:short):boolean

+getProcessCount():int

+getChannelCount():int

+correctComponentOffset(shift:int):void

+correctComponentOffset(pid:short,shift:int):void

+correctComponentOffset(pid:short,cid:short,shift:int):void

+print(opt_globalvars:boolean,opt_localvars:boolean,opt_descriptors:boolean):void

+toString(opt_globalvars:boolean,opt_localvars:boolean,opt_descriptors:boolean):String

GlobalComponent

<< create >> +GlobalComponent(sv:ByteBuffer,type:ComponentType,offset:int):GlobalComponent

+toString(opt_descriptors:boolean):String

+getName():String

+getAddress():int

+getSize():int

+getScopeSize():int

+getExclusivePid():short

+getMonitorPid():short

+getProcessCount():int

+getChannelCount():int

Channel

<< create >> +Channel(sv:ByteBuffer,type:ComponentType,messageType:ComponentType,offset:int):Channel

+getMessageType():ComponentType

+getName():String

+getId():int

+getPid():short

+getCid():short

+getTypeId():short

+getMaximumLength():short

+getCurrentLength():short

+getMessageLength():short

+getTypeLength():short

+getAddress():int

+getSize():int

cd: nipsvm

parent channels+

global

parent+

processes+

Figure 5.4: Nips VM State API Class Diagram
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Transition API

Although the Nips VM is used to evaluate behaviour of models, it does not offer API functions
that assist in the discovery of what happened between state snapshots, it is a history-less byte
code interpreter. Nips byte code describes a unidirectional computational semantics of behaviour
models. One could say that it describes the forward transitions between states. The Nips VM
does not log the control flow with the state vector successors it computes. To remedy the lack of
a representation for transitions we use the SDI Transition API design, described in Section 4.5,
to add support for bidirectional instructions for logging, reversing and replaying the behaviour.
The approach is less precise than a full log of the control flow of each process, but does not
require the design of the Nips VM to be altered substantially.

The transition API operates using transitions described by sequences of instructions specific
to Nips VM run-time components. Transitions can help a debugger to distinguish between
different types of events for Nips components. Furthermore, transitions can be stored in a
compact byte format, which may be more compact than state vectors. However, the preciseness
of the description comes at the cost of loss of generality2.

The transition factory generates Nips VM component transitions for two state inputs and the
transition machine (in this case called debugging VM) applies transitions to states. Table 5.1
shows the instructions for Nips component transitions. Table 5.2 shows the instruction arguments
and their meaning.

Instruction Arguments Semantics Inverse

glob new Creates a new global component glob kill

glob kill Disposes of the global component glob new

glob sz size Resizes the global scope glob sz

glob diff offset val sz val Changes global variable values glob diff

glob excl pid pid Sets the exclusive executing process glob excl pid

glob mon pid pid Sets the monitor process glob mon pid

proc new pid ptype id size pc Creates a new process proc kill

proc kill pid Disposes of a process proc new

proc sz pid size Resizes a local scope proc sz

proc diff pid offset val sz val Changes local variable values proc diff

proc pc pid pc Sets the program counter proc pc

proc flags pid flags Sets the execution flags proc flags

chan new cid ctype id Creates a new channel chan kill

chan kill cid Disposes of a channel chan new

chan add cid pos msg Adds a message to a channel chan remove

chan remove cid pos Removes a message from a channel chan add

Table 5.1: Nips Transition Instructions

Constraints. A global component, of which exactly one must exist at all times during the exe-
cution of a model, is implicitly declared to be of the SDI global component type. The kill proc

instruction may not dispose of a process while processes with a higher process identifier exist, in
line with the Nips semantics. The chan kill instruction cannot occur if we reason only with
forward transitions because channels exist for a model checking eternity. However, since channels
can be created in a forward transition by any process component at any given time, we must
also consider the inverse transition where the channel is destroyed.

Channels contain messages that consist of a number of bytes equal to the size of the message type

2The generic SDI design was derived from the design of the Nips component transitions.
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Argument Denotes

size The size in bytes a scope will have (excluding the preceding descriptor).
offset The offset from the start of a scope address in bytes.
val sz The size in bytes of the val argument.
val A sequence of bytes that will replace byte values in a scope.
pid The process identifier of the process the instruction works on.
pc The value the program counter of a process component will have.
ptype id The component type of a new process.
cid The channel identifier of the channel the instruction works on.
ctype id The component type of a new channel.
pos The position of a message in the channel where pos ∈ {0..max length}.
msg A message that will be written into a channel.

Table 5.2: Nips Transition Instruction Arguments

of the channel that can be retrieved from the component type via the debugging API. Though we
would expect messages to be sent from a sender process through a channel to a receiver process,
it is not possible to observe who sent what message to whom by means of the information in
the state vector3. Therefore, the component transitions only contain instructions that can add
messages to, and remove messages from positions within the channel. It is also not always
possible to determine which message was removed because the messages shift towards the start
address of the channel when a lower positioned message is removed. It is thus indistinguishable
which one of two identical adjacent messages is removed.

Implementation. Figure 5.5 shows the class diagram of the transition API. The transition API
classes are stored in the transition package. The TransitionFactory is used to generate bidirec-
tional transitions from two state snapshot inputs. BiTransition objects store two ByteBuffer

objects which represent the forward transition and the backward transition in a compact byte
code. The DebuggingVM executes the Nips component transitions and applies the instructions
stored in transition ByteBuffers objects to NipsState objects.

Traces

Model checkers use search algorithms to perform state space explorations, as is described in
Section 1.1. A counter-example may be returned by such an algorithm which is a trace or
sequence of state vectors. Alternatively, traces consist of transition vectors. The Nips VM
debugging API provides support for reading and writing counter-examples to files on the hard
disk and loading them to an application that can make use of them, such as a debugger.

Implementation. Figure 5.6 shows the class diagram of the trace package. The TraceRepository
class is used to store Trace objects which represent Nips VM counter-examples. Trace ob-
jects contain high level states represented by NipsState objects and transitions in the form of
BiTransition objects. A Trace object can be saved to the hard-disk as a sequence of state-
vectors. When read back from the hard-disk, the state vector trace is transformed into a Trace

object again.

3Distinguishing sender and receiver processes would be possible with a fully logged control flow.
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UnstepTransitionBuffer

−cur_pos:int

−info:boolean= false

<< create >> +UnstepTransitionBuffer(capacity:int):UnstepTransitionBuffer

+position():int

+clear():void

+addInstrComponentDiff(component:byte,id:byte,offset:int,val_sz:byte,val:byte[]):void

+addInstrProcNew(id:byte,ptype_id:byte,size:byte,pc:int):void

+addInstrProcKill(id:byte):void

+addInstrGlobSz(size:short):void

+addInstrProcSz(id:byte,size:byte):void

+addInstrProcPc(pid:byte,pc:int):void

+addInstrProcFlags(pid:byte,flags:byte):void

+addInstrGlobDiff(offset:short,val_sz:byte,val:byte[]):void

+addInstrGlobInit(offset:short,val_sz:byte,val:byte[]):void

+addInstrProcDiff(pid:byte,offset:byte,val_sz:byte,val:byte[]):void

+addInstrProcInit(pid:byte,offset:byte,val_sz:byte,val:byte[]):void

+addInstrGlobExclPid(pid:byte):void

+addInstrGlobMonitorPid(pid:byte):void

+addInstrChanNew(pid:byte,cid:byte,ctype_id:byte):void

+addInstrChanKill(pid:byte,cid:byte):void

+addInstrChanAdd(pid:byte,cid:byte,msg_pos:byte,msg:byte[]):void

+addInstrChanRemove(pid:byte,cid:byte,msg_pos:byte):void

+addInstrChanInit(pid:byte,cid:byte,cur_len:byte,msgs:byte[]):void

t−

TransitionBuffer

#tv:ByteBuffer

<< create >> +TransitionBuffer(capacity:int):TransitionBuffer

+getByteBuffer():ByteBuffer

+position():int

+clear():void

+addInstrGlobSz(size:short):void

+addInstrGlobDiff(offset:short,val_sz:byte,val:byte[]):void

+addInstrGlobInit(offset:short,val_sz:byte,val:byte[]):void

+addInstrGlobExclPid(pid:byte):void

+addInstrGlobMonitorPid(pid:byte):void

+addInstrProcNew(id:byte,ptype_id:byte,size:byte,pc:int):void

+addInstrProcKill(id:byte):void

+addInstrProcDiff(pid:byte,offset:byte,val_sz:byte,val:byte[]):void

+addInstrProcInit(pid:byte,offset:byte,val_sz:byte,val:byte[]):void

+addInstrProcSz(id:byte,size:byte):void

+addInstrProcPc(pid:byte,pc:int):void

+addInstrProcFlags(pid:byte,flags:byte):void

+addInstrChanNew(pid:byte,cid:byte,ctype_id:byte):void

+addInstrChanKill(pid:byte,cid:byte):void

+addInstrChanAdd(pid:byte,cid:byte,msg_pos:byte,msg:byte[]):void

+addInstrChanRemove(pid:byte,cid:byte,msg_pos:byte):void

+addInstrChanInit(pid:byte,cid:byte,cur_len:byte,msgs:byte[]):void

Transition

+print(state:NipsState,tv:ByteBuffer,debuggingVM:DebuggingVM):void

+toString(state:NipsState,tv:ByteBuffer,debuggingVM:DebuggingVM):String

+instr2String(state:NipsState,tv:ByteBuffer,cur_instr_ptr:int):String

StepTransitionBuffer

−info:boolean= false

<< create >> +StepTransitionBuffer(capacity:int):StepTransitionBuffer

+clear():void

+position():int

+addInstrComponentDiff(component:byte,id:byte,offset:int,val_sz:byte,val:byte[]):void

+addInstrProcNew(id:byte,ptype_id:byte,size:byte,pc:int):void

+addInstrProcKill(id:byte):void

+addInstrGlobSz(size:short):void

+addInstrProcSz(id:byte,size:byte):void

+addInstrProcPc(pid:byte,pc:int):void

+addInstrProcFlags(pid:byte,flags:byte):void

+addInstrGlobDiff(offset:short,val_sz:byte,val:byte[]):void

+addInstrGlobInit(offset:short,val_sz:byte,val:byte[]):void

+addInstrProcDiff(pid:byte,offset:byte,val_sz:byte,val:byte[]):void

+addInstrProcInit(pid:byte,offset:byte,val_sz:byte,val:byte[]):void

+addInstrGlobExclPid(pid:byte):void

+addInstrGlobMonitorPid(pid:byte):void

+addInstrChanNew(pid:byte,cid:byte,ctype_id:byte):void

+addInstrChanKill(pid:byte,cid:byte):void

+addInstrChanAdd(pid:byte,cid:byte,msg_pos:byte,msg:byte[]):void

+addInstrChanRemove(pid:byte,cid:byte,msg_pos:byte):void

+addInstrChanInit(pid:byte,cid:byte,cur_len:byte,msgs:byte[]):void

DebuggingVM

−symtab:SymbolTable

−source:ArrayList

−intr_ptr:int

−intr_type:int

−stateSpace:StateSpace

+getSymbolTable():SymbolTable

+getSource():ArrayList

+getStateSpace():StateSpace

+step(s:NipsState,tv:ByteBuffer):void

<< create >> +DebuggingVM(stateSpace:StateSpace,symtab:SymbolTable,source:ArrayList,vm:NipsVM):DebuggingVM

BiTransition

<< create >> +BiTransition(t:ByteBuffer,u:ByteBuffer):BiTransition

+getStep():ByteBuffer

+getUnStep():ByteBuffer

cd: transition

u−

TransitionFactory

−s:StepTransitionBuffer

−u:UnstepTransitionBuffer

−stateFactory:StateFactory

<< create >> +TransitionFactory(stateFactory:StateFactory):TransitionFactory

+getBiTransition(src_sv:ByteBuffer,tgt_sv:ByteBuffer):BiTransition

+getBiTransition(state:NipsState,tgt_sv:ByteBuffer):BiTransition

TransitionException

Figure 5.5: Nips VM Transition API Class Diagram
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TraceRepository

−MAX_TRACES:int= 256

−traces:Map<Integer,Trace>

−traceNumber:int

−info:boolean= false

<< create >> +TraceRepository():TraceRepository

+init(modelName:String,stateFactory:StateFactory):void

+addStackTrace(stackTrace:Stack,modelName:String,stateSpace:StateSpace,stateFactory:StateFactory,transitionFactory:TransitionFactory):Trace

+getTrace(id:int):Trace

TraceException

Trace

−id:int

−model_name:String

−time_stamp:String

−sTrace:List<NipsState>

−tTrace:List<ByteBuffer>

−uTrace:List<ByteBuffer>

<< create >> +Trace(id:int,n:String,ts:String):Trace

+getModelName():String

+getTimeStamp():String

+getId():int

+getLength():int

+getPosition(sv:ByteBuffer):int

+addState(s:NipsState):void

+addBiTransition(b:BiTransition):void

+addForwardTransition(tv:ByteBuffer):void

+addBackwardTransiton(tv:ByteBuffer):void

+getFlatStateTrace():ByteBuffer[]

+getFlatForwardTransitions():ByteBuffer[]

+getFlatBackwardTransitions():ByteBuffer[]

+getStateTrace():List

+getForwardTransitions():List

+getBackwardTransitions():List

+getState(i:int):NipsState

+getBiTransition(i:int):BiTransition

+getForwardTransition(i:int):ByteBuffer

+getBackwardTransition(i:int):ByteBuffer

+print(debuggingVM:DebuggingVM):void

+toString(debuggingVM:DebuggingVM):String

cd: trace

traces

Figure 5.6: Nips VM Trace Class Diagram
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5.1.3 The Nips Debugger

The Nips debugger is a command-line tool that makes it possible for users of tools based on the
Nips VM to experiment with the behaviour of their models and evaluate the Nips VM results
at source-level. A readily available debugger makes it more attractive for tool programmers to
embed the VM as the back-end engine in their explicit state model checker tool.

The source-level functionality of the Nips Debugger is based on the debugging API supported
by the SDI Framework. Depicting and modifying state variables is achieved by using the state
API. It provides functions to view and manipulate Nips VM states in terms of named and typed
global variables, processes and channels. The interactive transition choices, which offer a way
to log and undo steps in the behaviour, are supported by the transition API. The component
transition instructions provide a means to observe events and display them. The program counter,
the proc pc instruction and the target to source mapping make it possible to deduce the source
location of a process at the beginning and at the end of a transition, but not the control flow in
between.

States, as well as sequences of states (or counter-examples) can be passed to the debugger and
it can depict them state by state, transition by transition. The debugger can perform random,
interactive and guided simulations. In an interactive simulation the debugger allows the user to
walk through the state space as a labelled transition system (LTS), by letting the user choose
transitions. The debugger keeps a log of transitions and their inverse. Stepping back implies
executing the inverse transition. In a guided simulation a trace of states is followed step by
step, provided that the model can simulate the behaviour. A user may digress from the guided
behaviour, switching to interactive simulation mode. A user may also switch from interactive
to random mode, letting the debugger make the non-deterministic choices. Appendix D is a
user manual for the Nips Debugger. It explains how to use the simulator in guided, interactive,
automated and hybrid modes.

Implementation. The Nips Debugger is implemented in the debugger package depicted in
Figure 5.7. The Debugger, which can be run from the command-line, can start Search threads.
A class that extends Search is a scheduler algorithm which uses the JNI mapping of the API
to schedule states. It determines when to stop a state-space exploration and when to return
results. The Simulator class contains the simulator implementation. The IterativeDFS,
TransIterativeDFS, RecursiveDFS, NestedDFS [44] and CouvreurSearch classes implement
various experimental state-space exploration algorithms (some of which were already imple-
mented) and algorithms to perform sanity checks for transitions. Sanity checks include checking
whether a transition really unapplies its inverse.
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Figure 5.7: Nips VM Debugger Class Diagram
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5.2 Evaluation

In this section an evaluation is made of the Nips Debugger and the SDI Framework it is based
on. We discuss the offered functionality for debugging Promela models by means of simulation
in Section 5.2.1 and the amount of effort needed to implement the Nips Debugger Section 5.2.2.

5.2.1 Debugging Functionality

The Nips Debugger is compared with the Spin command-line tool and the Nips VM built-in
tool in order to evaluate the Nips Debugger and the SDI Framework it is based on. The built-in
simulator of the Nips VM is included in the comparison to show the improvement that could be
achieved with the Nips Debugger. The Spin command-line debugger is included because it is
the default environment for debugging Promela models.

Nips Debugger command-line Spin Nips VM
random simulation X X X

display source-level states X X

display descriptors X

interactive simulation X X X

interactive choice transition statement successor state
undo, step back X

interactive state editing X

save current trace X

switch between modes X

guided simulation X X

interactive guided simulation X

limited depth simulation X X

skip first N steps X

make message sequence chart (ps) X

make state graph (graphviz) X

Table 5.3: Promela Debugger Functionality

Table 5.3 shows the simulation functionality supported by the three tools. Each tool supports
random simulation modes where the step-by-step behaviour of the model is randomly selected.
An important improvement of the Nips Debugger over the Nips VM built-in tool is that it
displays source-level states, in a way similar to Spin. Each of the tools support interactive
simulation modes where the user can make choices regarding the non-deterministic control flow
in the behaviour, however the interactive choices are different. A choice in the Nips Debugger is
a transition, the differences between state snapshots, a choice in Spin is a source statement and
a choice in the Nips VM is a binary successor state.

Added functionality of the Nips Debugger not yet supported by command-line Spin are stepping
back in the behaviour to a previous state and editing state values. A step back entails performing
the inverse transition of the transition that was just performed. Editing state values implies
introducing a transition, which may or may not coincide with the model behaviour. A description
of how to use the Nips Debugger is given in Appendix D.

We can conclude that the design of the SDI Framework provides a means to support a debugger
for Nips that meets the functional requirements. The Nips debugger serves as a proof of concept
for the SDI Framework and offers functionality that is comparable to that of the Spin command-
line tool.
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To make a fair assessment we must note that graphical shells are available for Spin such as
Xspin that give additional functionality and provide an ease of use not commonly achieved
with command-line tools. Therefore it is suggested that future work includes a graphical Nips

debugger that profits from the SDI Framework. The Nips debugger represents a first step towards
a reusable graphical debugger based on the SDI language.

5.2.2 Implementation Effort

This section gives an indication of the amount of effort it requires to use the SDI Framework in
existing tool designs by enumerating the design and implementation requirements.

The goal of the research is to give the designers of explicit state model checkers a means to
provide a source-level debugger for their tool with a modest effort. The idea is that the design
and implementation efforts are primarily condensed in the SDI Framework. The framework
provides the API functions for debugging support for modeling languages used with these tools.
The effort required on the part of the tool engineer is to extend a compiler to generate SDI for
its symbol table. The extensive documentation of the SDI Language and the SDI Framework
in Chapter 3 and Chapter 4, the simplicity and readability of the SDI Language, and the SDI
compiler extensions described in Section 4.6, can be used to facilitate that implementation.

An enumeration is given of the design and implementation efforts for the Nips Debugger.

1. The extensions to Nips VM required little implementation effort and consist of only a few
lines of code. The debugging API is an addition to the VM and does not alter its design.

2. A greater amount of effort was required to extend the Nips Promela compiler to generate
SDI for its symbol table, but the difficulty was primarily understanding the compiler and
its symbol table design.

3. The Java implementation of the debugging API for the Nips VM predates the design of
SDI Framework. Therefore it cost an additional amount of effort to implement.

4. The Nips Debugger cost a moderate amount of effort to implement, a few days of pro-
gramming for one person with domain knowledge at most.

Without the use of software metrics, it cannot be stated with absolute certainty that it is easy
to provide a source-level debugger for explicit state model checkers using the SDI Framework.
We believe however that the amount of effort needed to gain access to its functionality is much
less than to design and implement a completely new debugger. When a fully completed SDI
Framework becomes available, which includes a generic SDI Debugger, these efforts can be further
reduced.
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5.3 Concluding Remarks

In this chapter we presented the Nips command-line debugger for use with tools based on the
Nips VM. Although the design of the debugger itself is simple, it extends the Nips VM tool
set with debugging functionality that its users require. The Nips VM, the Nips Promela

Compiler and the Nips Debugger together provide a simulator comparable to that of the Spin

command-line tool.

The SDI output required from the Nips Promela Compiler is supported by the SDI compiler
extensions explained in Section 4.6. The simplicity of the language and its readability can help
in quickly extending Nips VM based tools with debugging functionality.

Although currently the design of the Debugging API is tied to the current version of the Nips

VM, the SDI Framework is flexible and can be used with future versions of the Nips VM. Because
of the extensible design of the SDI Framework, it can be used in future graphical versions of the
Nips Debugger.

The Nips Debugger provides a proof of concept for the Nips Debugging API and the SDI
Framework it is based on. It shows that the Nips Debugging API provides the functionality
needed to support a source-level debugger. More generally, the case study shows that the SDI
Framework provides a means to create a source-level debugger for explicit state model checkers
using state vectors.
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Chapter 6

Conclusion

This chapter presents the general conclusions of this thesis. A summary of the main contributions
is presented as well as possible research directions for future work.

6.1 Contributions

In this thesis we have presented an approach for extending the application field of the Nips VM
by adding source level debugging functionality to it.

In order to achieve this we have developed a language with a simple multi-use readable format
for Static Debugging Information (SDI) and the SDI Framework for state manipulation, which
is based on this language. The framework can generally be applied to debugging designs for
explicit state model checkers using state vectors. It is used in particular for a debugger for the
Nips VM which is presented in this thesis. The main contributions are the following:

• A modeling language for debugging information. The SDI Framework makes use
of the SDI Language, which is introduced in Chapter 3. SDI is a meta-language for static
debugging information that describes memory models of running programs in terms of
variables, types and source locations. SDI deals with the following difficulties: i) It can
used to model the memory of modeling languages used with explicit state model check-
ers in order to relate otherwise unreadable binary state information back to its program
source. It is particularly useful for model checkers that use a separate compiler to gen-
erate a low level intermediate representation that lacks source level information; ii) SDI
is a high level list language that consists of entries and attributes which cover common
modeling language types and structures; iii) It is extensible to support additional entries
and attributes such that more language features can be described as meta-level objects; iv)
Unlike most debugging information formats the SDI language is not tied to an object file
format. A low level implementation is left as an implementation choice; v) In contrast to
stabs and the Java class file format SDI is block structured like Dwarf, as is common in
programming languages. However SDI supports less features than Dwarf which is meant
for use with procedural programming languages; vi) SDI can easily be learned by means
of the graphical modeling notation introduced in Section 3.2.1.
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• A framework for state manipulation. The SDI framework is a state manipulation
framework that offers support for source level debugging functionality by constructing
memory models of running programs for explicit state model checkers. The SDI Framework
is described in Chapter 4. The SDI framework solves the following problems regarding
debugging functionality and state introspection. It provides debugging API, a means for
programs e.g. debuggers, to perform meta-level operations at run-time. Such programs can:
i) view and edit binary state vectors in terms of variables names and types via a reflective
state API; ii) relate target programs and source programs to each other by means of a
source location mapping; iii) Log, replay, create and undo transitions that manipulate
states via a transition API. Additionally, it is made easier for compiler engineers to extend
the compiler design with support for SDI code generation by means of the SDI compiler
extensions.

• A debugging API for the Nips VM In order to support the Nips Debugger we add a
debugging API to the Nips VM based on the SDI Framework in Chapter 5.

• A debugger for the Nips VM. We extended the Nips VM Tool Set with a debugger
that allows users to simulate the behaviour of Nips byte code. The debugger graphically
depict states and transitions at source-level. In an interactive simulation, which may be
guided by a counter-example, users may choose transitions and edit state values. The
Nips Debugger and the SDI Framework are evaluated in a case study of the debugger in
comparison with Spin in Chapter 5.

In addition, this thesis provides secondary contributions.

• Embeddable Nips VM. The API of the Nips VM has been documented in Section A.2.
It was clarified how the Nips VM, as a virtual machine for state-space generation, can
be embedded as an explicit state model checker engine by means of its API. We have
documented what the API functions are, when they must be called, what arguments they
have and what actions they perform. This report does not answer questions regarding
whether the Nips VM offers all the services needed for host-applications to embed it, and
whether the API should be extended. However, some of the difficulties regarding these
open issues are discussed in Appendix A, and preliminary ideas of how to enhance the
Nips VM are proposed.

• Debugging Information Education. The design can be useful for education because
of the ease of use of the SDI compiler extensions, the simplicity of the SDI notation and
the possibility of sparking the imagination of students with the SDI modeling notation
described in Section 3.2.1.

With the contributions of this thesis the Nips VM can more easily be used. It is now possible
to embed the Nips VM and provide source level debugging support for Nips VM based tools
with the Nips command-line debugger. The SDI framework is easy to reuse in existing explicit
state model checking frameworks because of its simple language and graphical notation, the
documentation of the SDI Framework and its debugging API and the existence of compiler
extensions. We believe that the SDI Framework provides debugging support for the Nips VM
that is sufficiently flexible and extensible to be reused with future implementations.
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6.2 Future Work

The following list presents topics which are indicated for further investigation. The list is cate-
gorized to the amount of effort that we believe it costs to research.

Major future work includes:

• A Nips VM based model checker can be created that uses the Nips debugging API. The API
may be made accessible to models with byte code instructions that support reflection. An
interesting question is whether such a model checker can employ debugging information
to facilitate techniques that reduce the state space. Particularly if it can be applied to
Dynamic Partial Order Reduction and guided model checking [36, 38] since the debugging
API gives access to types and values of variables by name at run-time.

• The current version of the Nips Debugger is a command-line simulator. Its user manual is
described in Appendix D. It is future work to implement the design described in Section 4.7
of a generic graphical SDI debugger that is programmed with Eclipse [11, 12].

Other future work includes:

• The SDI language is currently small and describes debugging information best for modeling
languages such as Promela. It could be interesting to extend SDI with functions in order
to support functions and procedures of programming languages to extend its application
field, e.g to support more programming languages.

• The SDI language is designed in such a way that it can naturally be combined with state
collapsing, a technique for state space optimization [19]. It could be researched to what
extent can the SDI Framework can be responsible for supporting and storing the state
space.

• Various enhancements for the Nips VM can be conceptualized. Some of these are briefly
mentioned Appendix A. Among them are language features supported by additional in-
structions. One such a feature could be dynamic heaps to support object oriented lan-
guages. This will require algorithms for heap canonicalization and heap compression that
is similar to that in JPF [48] as is mentioned in Section A.3.4.

• The Nips byte code can be optimized using static code analysis [2]. This alters the byte
code in terms of the number of lines and the memory utilization at run-time. It breaks the
contract of the compiler with the SDI Framework and the debugger. It can be interesting
to research debugging optimized Nips byte code as is mentioned in Section A.3.5.
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[51] Michael Weber and Stefan Schürmans. A Virtual Machine for State Space Generation.
SENVA 2005 Workshop, 2005.

[52] Phil Winterbottom. Acid: A Debugger Built From a Language. Technical report, AT&T
Bell Laboratories, Murray Hill, NJ, USA, 2000.

110



Appendix A

Enhancing the Nips VM

The Nips VM was introduced in Section 2.1. This appendix serves to clarify how the Nips VM
can be embedded in host-tools as an explicit state model checker engine and how the tool set
can be enhanced with new components. The most important Nips VM API functions are briefly
explained in Section A.2. Design suggestions which stem from experience with the Nips VM
gained during the thesis are discussed in Section A.3.

A.1 Introduction

A Nips VM based tool, depicted in Figure A.1, consists of a tool compiler that encodes the
language semantics as Nips byte code, the Nips VM interpreter and state vector generator, and
a scheduler algorithm that manages the state space and the search.
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Figure A.1: Nips VM Tool Schema
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In order to use the Nips VM with a new tool, some tool components may have to be built
while others are readily available such as the Nips Promela Compiler, DFS and BFS scheduler
algorithms in search.c and a Hash-Table to store states in hashtab.c.

Developers that use the Nips VM as the explicit state model checker engine in their tool may wish
to design a new modeling language specific to a particular domain. For a new modeling language
a new compiler must be defined. The semantics of the language must be defined using Nips byte
code in order to be able to use the Nips VM. Byte code instructions encode the features of the
language, which can be statements and control flow constructs such as if or while statements,
variables and types. The run-time components must be represented by a global component plus
sequence of process and channel components. The tool compiler can extended to provide an
optional SDI specification of the run-time memory model that provides a means for debugging
as explained in Section 4.6.

A.2 The Nips VM API

The Nips VM is a byte code interpreter that generates state vectors given a state vector input,
a schema of its API is depicted in Figure A.2. The Nips VM does not log instructions while it
executed. The control flow of what has happened is intentionally hidden.

get successorssvin

return successors

svout1

Nips VM

svoutn

Figure A.2: Nips VM API

The Nips VM is a modular design which is consists of the Nips VM byte code interpreter
back-end and scheduler algorithms which control the state space exploration.

A.2.1 Initialization

To initialize the Nips VM the following steps have to be performed.

1. Initialize the Nips VM module.
nipsvm module init();

2. Load the Nips byte code from a file.
st bytecode *bytecode;

char *bytecode file = ...

char *bytecode module = ...

bytecode = bytecode load from file( bytecode file, bytecode module );

3. Initialize the run-time environment.
nipsvm t nipsvm;
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nipsvm scheduler callback t search succ cb = ...

nipsvm error callback t search err cb = ...

nipsvm init (&nipsvm, bytecode, &search succ cb, &search err cb); //return 0 = ok

The first three steps are straightforward. In step four the nipsvm init function is called to set
the run-time environment context of the VM. The first argument is the address of Nips VM
structure. The second argument is the loaded byte code. The third argument is the scheduler
callback function which returns the successors and thread of control to the scheduler after the
successors are computed. The fourth argument serves to replace the default error handling which
translates the error code and prints the error message on the screen, the error context consists
of process run-time information (process id and program counter).

A.2.2 Scheduler

Tools that embed the Nips VM as a tool back-end must use a scheduler algorithm that iteratively
determines which state is expanded in the search and is responsible for the state space. The Nips

VM source contains a built-in scheduler algorithm in search.c. The results of the Nips VM are
stored in a hash-table. Schedulers must provide their own search context such as the maximum
search depth, the hash-table, the state buffer in which the results are returned, but it must
also keep track of run-time status information. A typical scheduler is set up by performing the
following steps.

1. Allocate a buffer for states.
unsigned long buffer len = ...

p buffer = (char *)malloc( buffer len );

2. Allocate a Hash-Table.
unsigned long hash entries = ...

unsigned long hash retries = ...

t hashtab hashtab = hashtab new( hash entries, hash retries ); //built-in hash-table

3. Get the initial state.
nipsvm state t *state;

state = nipsvm initial state();

4. Schedule states: iteratively choose states for which to get successors.
ctx = ... //private search context

nipsvm scheduler iter (nipsvm, state, ctx);

5. Scheduler termination condition.
nipsvm state monitor accepting (state) //1 = true, 0 = false

nipsvm state monitor terminated (state) //1 = true, 0 = false

nipsvm state monitor acc or term (state) //1 = true, 0 = false

Schedulers use the monitor process to check the system state which can be excepting or terminated
and determine if a counter-example has been found Counter-examples must be represented by
the scheduler as a sequence of states which can be analysed using the Nips Debugger which is
described in Section 5.1.3.

For the deinitialisation following steps must be performed.
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1. Free the State Buffer and any other memory allocated for the scheduler.

2. Unload the byte code.
bytecode unload( bytecode );

3. Finalize the Nips VM.
nipsvm finalize (&nips vm);

A.3 Design Suggestions

Unfortunately the scarcely documented software design of the Nips VM makes it difficult to add
API functionality without a redesign of the VM. The research in this thesis has been hampered
by this. The goal is to use the experience to formulate constructive suggestions for the next
design iteration of the Nips VM.

A.3.1 Depth First Search

The Nips VM API returns the state vector successors given an input state vector. For Breadth
First Search (BFS) this is desirable because each of the successors will be used in the next
evaluation step. Figure A.3 shows a BFS search schema where the black dots are states and
arrows are transitions.

Figure A.3: Breadth First Search

For Depth First Search (DFS) state space explorations this poses a difficulty. Only one successor
is needed at a time but all successors are constructed by the VM and returned at the same time.
To not waste the effort the unevaluated state vectors are cached in the state space and stored
on the DFS stack once they are expanded in the search they are marked with a byte value to
denote this. Figure A.4 shows the DFS schema for the Nips VM.

It is a waste of time and space for the computation of these potentially unnecessary states
(depicted gray). We can conclude that the Nips VM is biased towards performing a BFS. In
contrast, Spin is biased towards DFS and it provides the BFS only as a user friendly option
which is only effective for safety properties [20].

A solution to the Nips BFS-bias is not easily found. Theo Ruys has coined the idea of a DFS state
iterator which is an extension to the Nips API that only calculates and returns one successor at
a time.

The difficulty in adding such an iterator to the Nips VM is that the state of the environment
of the VM is scattered throughout the functions that compute the successors. The successors
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...

...

...

i2.next()

Figure A.4: Nips VM Depth First Search

...

i1.next()

i2.next() i2.next()

i4.next()

i2 = new iterator(s2)

i1 = new iterator(s1)s1

s2

s3 s4 i4 = new iterator(s4)

s5

Figure A.5: Nips VM Depth First Search Iterator

evaluation-state, the variables and values of functions that compute the successors, must be
stored within the state iterator which itself is placed on the DFS stack. It requires a redesign
of the Nips VM in order to make it possible to store the successor evaluation-state in state
iterators. Even if this design is implemented it may be that iterators are too large to store on
the DFS stack to efficiently perform a DFS.

A.3.2 State Space Organisation

Using the JNI mapping of the Nips VM API to calculate successors has the side-effect of storing
states in the state space. Tool engineers that want to create their own state space can only do
so at the cost of a duplicate state space. The Nips API JNI mapping needs to be adapted in
order to give easy support for alternative state space organisations and to turn off the built-in
state cashing routine.

State Compression. Only one hash-table is provided with the Nips VM which is not optimized
in any way. In [19] a static compression technique called byte masking is suggested, where
constant fields in the state-vector are marked by a byte mask. Before the state vector is stored
only the unmarked bytes are copies, the others are ignored. An example of constant information
in Nips VM channels are the type constants in channel descriptors the maximum length, message
length, the type length and and the type bits, these can be marked and they can be stored in and
retrieved from a type table built up from SDI. This means that invariant debugging information
is no longer saved in the state space. The author of [19] also suggests to byte mask any fields that
are not used, rendez-vous channel content, compiler-added byte alignment padding, the number
of active processes and channels and process identifiers. The SDI language can be extended with
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an extra marked attribute (discussed in Section 3.4) value, e.g. masked that denotes the byte
mask of a sequence of bytes to convey this information.

Collapse Compression. The Nips VM debugging API Chapter 5 regards the representation of
a state as a hierarchy of components. This hierarchy can be compressed using collapse compres-
sion discussed in [19] where each local state-vector component, encoding the local state of a single
process or channel, is stored separately in the hash-table, and assigns it a unique index-number.
The index-numbers for all components together form the compressed global state-vector. The
SDI states that represent a sub-state within a state component must also be indexed. This ap-
proach constitutes an iterative collapse compression such that a complete graphs of components
can be stored in the state space as separate components and the compressed state is saved as a
global state-vector. The global state-vector can be decompressed by looking up the component
index and the debugging API allows reading from typed named variables stored in the compo-
nent vectors. This simple form of collapse compression can be optimized using recursive indexing
where the number of components and the number of bytes used per index in the global state
vector as well [19].

A.3.3 Error Handling

Error handling can pose a difficulty for both embedding the Nips VM in a C tool as model
checking engine and for API Error handling for Java programs using the API JNI mapping. The
Nips VM API allows tools to replace the default error handling callback function and the global
errno variable can be queried for an error code. The JNI mapping does not return error values
to the Java thread of control and therefore errors cannot be thrown or caught and proper Java
error handling cannot be done. In future versions care must be taken to ensure that error values
are retrieved with the return value of the called API function.

A.3.4 Language Support

The claim is that Nips byte code can be more widely applied than just to Promela semantics,
i.e. cover more languages. However implementing a compiler with functions and procedures
is complex because the Nips byte code support is not offered with instructions for activation
frames and only call and return instructions are offered. Be that as it may, a domain specific
programming language for systems programming called Tapir has been created that uses Nips

byte code for its semantics [46].

Adding more instructions for dynamic language features to the Nips byte code to support imper-
ative languages can extend its application possibilities but will also make the VM considerably
more complex as the need arises for model checking techniques to reduce the state space. Pos-
sible additions include objects and heaps for dynamic object creation. To curb the state space
explosion resulting from different heap orderings, heap symmetry reductions ([48, 38]) will then
need to be implemented.

As the Nips VM is a virtual machine for state space generation and it alone decides the visible,
relevant states, a compiler-specific implementation for heap symmetry reductions seems to con-
tradict the VM’s design. Furthermore, the compiler-specific design may be difficult to reuse in
other tools and violates the modularity concern. There is a balance between the generality of
the byte code instructions and the difficulty to use these instructions to build complex reusable
language features and explicit state model checker technologies.

116



APPENDIX A. ENHANCING THE NIPS VM A.3. DESIGN SUGGESTIONS

An implementation of a modeling language feature that is supported by Nips byte code, makes
it easier to provide flexible, reusable debugging support via the Nips VM debugging API. For
features natively supported by the Nips VM, reflection can be offered via meta structures called
mirrors [5]. Mirrors can be used for reflective purposes such as debugging and meta-programming
applications such as model checking with state introspection.

A.3.5 Code Optimization

In the Chapter 1 it was explained that static analyses can be used for state space reduction. The
static code optimization used with Nips byte code neither preserves the mapping between target
and source code nor does it update the memory model in case variables are removed. In future
versions the byte code control flow graph transformation described in [2] should also transform
the debugging information to provide a means to debug optimized code.

A.3.6 Transitions

Part of the research of this thesis is to find out what transitions are within the Nips VM and
how they can be represented. Transition information is especially useful to view events and
these events can be used to study the model behaviour by means of a debugger. The design
of the VM is a state centric history-less black-box interpreter. Like Spin the focus is on states
rather than transitions or events, and this also extends to the way in which correctness properties
are verified [20]. Transition choices are made by the VM, it does not allow being steered by the
scheduler which cannot select statements and determine the control flow. Rudimentary transition
information is returned with the state successors.

The component transitions presented in Section 4.5 are constructed from the source and the
target state after the transition has been performed by the Nips VM. They express changes
to components in between state snapshots without the knowledge of the control flow of the
process program counters and allows users of Nips VM based tools to observe the system be-
haviour with the Nips debugger. As opposed to Nips byte code, Component transitions are
bi-directional meaning what is done by a Nips byte code step can be undone by the inverse
component transition.

The Nips API is state-centric in that the focus is on states and transitions are implicitly defined
by the execution of the byte code. A design suggestion is to optionally log the control flow of
the executed byte-code with the computed successor states for debugging purposes as is depicted
in Figure A.6. It returns transition vectors, sequences of control flow program counters choice
points associated with ndet instructions, with each state vector it returns. A transition vector
is associated with each source statement.

Partial Order Reduction. If the Nips VM is to support Partial Order Reduction it must make
an educated choice to execute a statement. Using static code analysis the control flow of the
program an be constructed as a graph and an analysis can be made to determine independence
relation between statements [6] which can be used to identify partial orderings on-the-fly that
in turn can be used to prevent states from ever being stored in the state space while preserving
coverage of the state space.

The Nips VM must be allowed to choose statements by itself, the API schema depicted in Fig-
ure A.7 is not feasible because they force a design with a tremendous overhead and optimizations
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get successorssvi

return successors

+ transitions

svout1

tvout1

Nips VM 2.0

svoutn

tvoutn

Figure A.6: Nips VM API + transition log

Nips VM 2.0svi

tvi

perform transition

svo return successor

Figure A.7: infeasible Nips VM API concept: control flow transition

such as reusing partial results cannot be used.

Instead of implementing the POR by letting the scheduler choose statements it should be placed
in the Nips VM itself. For a DFS scheduler POR can be combined with the notion of a state
iterator introduced in Section A.3.1, to an ample-set state iterator.

Reflective Layer. The research into a debugging API for the Nips VM has been primarily
focused on debugging with the Java JNI mapping of the Nips VM. However it has also been con-
sidered that debugging information can be used for model checking purposes using the debugging
API as a reflective layer.

The Nips VM can make decisions at run-time about which statement to execute next based on
the values of variables relevant to the verification property. The debugging API provides a means
for directed model checking.

A.4 Concluding Remarks

Some design suggestions can be implemented with the current version of the Nips VM such as
alternative schedulers and state space organisations, state collapsing and channel space optimiza-
tions, and JNI error handling, but others require a more rigorous redesign of the Nips VM such
as the state iterator, transition logging and activation frames to support additional imperative
programming languages. Hopefully the experiences regarding the Nips VM can be put to good
use.
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Nips Compiler Extensions

The Nips Promela Compiler must be extended to generate SDI with the Nips byte code in
order to use the SDI Framework to support source-level debugging. First SDI definitions which
are constant to the Promela language are defined in Section B.1. Then an approach is given in
Section B.2 used to describe the symbol table in a flattened SDI definition.

B.1 Predefined SDI

The Promela modeling language has a number built-in types which include: int, short, byte
and bit. The Nips VM uses big endian byte ordering and a two’s complement memory notation
for signed integers. Using this information we can now create the predefined basetypes which are
used with every program generated by the Nips Promela Compiler.

1 ( base type
2 (name bool )
3 ( s i z e 1)
4 ( format bool )
5 ( b i t s 1)
6 )

(a) bool

1 ( base type
2 (name b i t )
3 ( s i z e 1)
4 ( format beu int )
5 ( b i t s 1)
6 )

(b) bit

1 ( base type
2 (name byte )
3 ( s i z e 1)
4 ( format be s i n t )
5 ( b i t s 8)
6 )

(c) byte

1 ( base type
2 (name short )
3 ( s i z e 2)
4 ( format be s i n t )
5 ( b i t s −15)
6 )

(d) short

1 ( base type
2 (name in t )
3 ( s i z e 4)
4 ( format be s i n t )
5 ( b i t s −31)
6 )

(e) int

Figure B.1: Promela base type SDI definitions

Figure B.1 shows the base type SDI definitions for Promela on the Nips VM. The five basetypes
are defined in terms of name, size and format as is required by the definition of SDI base type
entries requires in Section 3.5. The bits attribute is added to the basetypes which is used by
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channels within the Nips VM. Note that the bool type could also have been defined using an
SDI enumeration type entry with two enum field sub-entries describing the symbolic values for
zero and one which are false and true respectively.

B.2 Program defined SDI

Program defined SDI cannot be predefined since it differs per program. For different Promela

statements different Nips byte code is generated and because of this different source locations
are computed. Programs may contain different variable, scope and type declarations.

To generate program defined SDI adjustments to the symbol table of the compiler have to be
made. Each of the classes in the Nips Compiler symbol table is extended with the generateSDI

function that both returns a String and fills up a debugging information structure. The SDI
generated by the Nips Compiler consists of, program scopes, type declarations, and variables
and program source and target locations.

B.2.1 Variables

Promela variables and scope levels are encoded into debugging information using the respective
SDI entries. For each of the symbol table entries code templates show how debugging information
is generated. For variable declarations stored in SymTabVarBase or SymTabVarUType class objects

evaluate(SymTabVarBase e) =
(variable

(name e.name)
(type e.type)
(offset e.offset)

)

Figure B.2: Variable SDI code template

variable entries are generated. Figure B.2 shows the variable SDI code template. The name,
offset and type attributes values are determined by information contained in the symbol table
entry. The type of the variable is also defined in the symbol table. It is safe to assume this because
the contextual analysis phase should stop the compilation when type errors are encountered. For
array declarations array type entries are generated.

Array variables are stored in SymTabArrayBase class objects. The name, offset, length and type
attributes of the array type entry are determined by the information in the SymTabArrayBase

entry. Figure B.3 shows the array SDI code template.

Scope levels are the global scope and processes local scopes. In the Nips Compiler, processes
also use argument scopes. For each scope level entry in the symbol table an SDI scope entry is
generated. Figure B.4 shows how SDI code is generated for the symbol table Scope class.

There is only one Scope class in the SymbolTable which represents scope information for the
global component as well as local and argument scopes. The code generation template shows
the two cases. If the id of the scope is zero then it is the global scope and the function returns
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evaluate(SymTabArrayBase e) =
(variable

(name e.name)
(type e.type+label)
(offset e.offset)

)
(array type

(name e.name)
(type e.type)
(length e.length)
(offset e.offset)

)

Figure B.3: Array SDI code template

evaluate(Scope e) =
if(e.id = 0) return

(
(global scope

(offset 0)
(size size(state descriptor) + size(e.symbol table))
(variable

(name descriptor)
(type state descriptor)
(offset 0)
(marked descriptor)

)
(scope

(name global variables)
(offset 6)
(marked invisible)
evaluate(e.symbol table)

)
)
and predefined promela types

and sdi .types

and sdi .mtype

and sdi .locations

)
else return

(scope
(name concat(”s”, id))
(marked invisible)
(offset offset)
evaluate(e.symbol table)

)

Figure B.4: Global Component SDI code template
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a list of all the Promela SDI. The global component SDI is generated and its sub-symboltable
is evaluated. If the id of the scope is not zero then the scope is an ordinary scope and its
sub-symboltable is evaluated.

During the evaluation a structure called sdi is used to store information, an instance of the
DebuggingInfo class The types are saved in the sdi.types variable and the mtype are saved in
the a sdi.mtype variable. The location information is stored in the sdi.locations variable and is
not deduced from the symbol table.

B.2.2 Types

The information regarding the type definitions is stored in the symbol table. Promela allows type
definitions by use of the typedef keyword. For each typedef a user type entry is generated.
Depending on the type definition sub-entries specify the fields of the user type.

The mtype Promela feature allows the user to define one enumeration type which allows the user
to view symbolic values instead of bytes. The mtype is encoded in debugging information using
the enum type entry with the type name mtype which is a reserved type name in Promela.
Since mtype declarations may be done anywhere in the model the enumeration type entry can
only be generated when all declarations have been inspected. For each of the symbolic mtype

values the appropriate enum field entry is generated as a sub-entry of the enum type entry.

Array type declarations are stored in SymTabArrayUType class objects. An array type entry is
generated for these type declarations. The name, size, length and type attributes of the array
are determined by information contained within the SymTabArrayUType class entry.

For each process type or channel type an id attribute value is generated. A global label variable
is incremented every time a component type is added to the symbol table. There is one counter
variable for process types and one for channel types. Nips VM process and channel components
each have one byte available to store the component type id thus there can be 256 component
types of each. Figure B.5 shows the process type code template.

For each process type declaration a process type entry is generated. The process type starts
with a variable named descriptor which contains the process descriptor. The process descriptor
type is defined by the Nips VM. The process local scope follows the descriptor. Since the Nips

Compiler does not save offsets with respect to the component but only with respect to the local
variables the offset of the local scope within the component must be displaced using an invisible
scope level that offsets the local scope to the correct offset.

For each channel declaration a channel type entry is generated. The channel type starts with a
variable named descriptor which contains the channel descriptor. Figure B.6 shows the channel
code template.

B.2.3 Locations

Location information is buried between the translation from source code to target code. Nips

Compiler AST’s neither allow easy access to this information nor do the functions for code
generation. The approach sketched in Section 4.6 does therefore not work. The designers of the
compiler choose a different approach for generating debugging information. Information strings
were output as special information instructions which are filtered out by the assembler. The
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evaluate(SymTabProc e) = sdi .addType(
(proc type

(name e.name)
(size size(process descriptor) + size(e.argument scope))
(id e.proctype id)
(pc low e.pc low)
(pc high e.pc high)
(variable

(name descriptor)
(type process descriptor)
(offset 0)
(marked descriptor)

)
(scope

(name local variables)
(marked invisible)
(offset size(process descriptor))
evaluate(e.argument scope)
evaluate(e.body scope)

)
)

)

Figure B.5: Process SDI code template

location information contains both names and locations with start and end tags. The output
stream of instructions is scanned for these instructions to filter out a target to source mapping
which is saved in t2s SDI entries. The location information in the byte code is left intact, it can
be accessed via the Nips VM API.
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evaluate(SymTabVarChan e) = sdi .addType(
(message type

(name concat(”msg type”, ctype id))
(id ctype id)
(size sum(msg parts))
for(int i = 0; i¡msgs.length ; i++){

(variable
(name concat(”msg part”, i))
(type msg [i ].type)
(offset msg offset)
(marked invisible)

)
}

)
)
and sdi .addtype(

(chan type
(name e.name)
(size size(channel descriptor) + size(e.type preamble))
(id ctype id)
(max len maxLength)
(variable

(name descriptor)
(marked descriptor)
(type channel descriptor)
(offset 0)

)
for(int i = 0; i¡msg .length ; i++){

(variable
(name concat(”type bits msg part”, i))
(type byte)
(offset size(channel descriptor) + i)
(marked descriptor)

)
msg addr + +;

}
)

)
and return

(variable
(name e.name)
(size e.size)
(type cid)
(offset e.offset)

)

Figure B.6: Channel SDI code template
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Furniture Factory Example

In the Furniture Factory Example introduced in Section 3.2 we use the Nips Promela Compiler
to translate the Promela model of Figure 3.5(a) to Nips Byte Code. Because of the amount of
Byte Code and SDI generated only part of it was shown in Figure 3.5(b). The full Byte Code
can be found in a separate Appendix not included with this thesis report, the full SDI is given
in Appendix C.1.

C.1 SDI

1 (
2 ( proc type
3 (name i n i t )
4 ( s i z e 12)
5 ( id 0)
6 ( pc low 0)
7 ( v a r i a b l e
8 (name de s c r i p t o r )
9 ( type p r o c e s s d e s c r i p t o r )

10 ( o f f s e t 0)
11 (marked d e s c r i p t o r )
12 )
13 ( v a r i a b l e
14 (name mag i c va r i ab l e )
15 ( type in t )
16 ( o f f s e t 8)
17 (marked d e s c r i p t o r )
18 )
19 )
20 ( base type
21 (name in t )
22 ( s i z e 4)
23 ( format be s i n t )
24 ( b i t s −31)
25 )
26 ( base type
27 (name short )
28 ( s i z e 2)
29 ( format be s i n t )
30 ( b i t s −15)
31 )
32 ( base type
33 (name byte )

34 ( s i z e 1)
35 ( format be s i n t )
36 ( b i t s 8)
37 )
38 ( base type
39 (name b i t )
40 ( s i z e 1)
41 ( format beu int )
42 ( b i t s 1)
43 )
44 ( base type
45 (name bool )
46 ( s i z e 1)
47 ( format bool )
48 ( b i t s 1)
49 )
50 ( base type
51 (name pid )
52 ( s i z e 1)
53 ( format beu int )
54 ( b i t s 8)
55 )
56 ( base type
57 (name c id )
58 ( s i z e 2)
59 ( format beu int )
60 ( b i t s 16)
61 )
62 ( base type
63 (name beu in t8 t )
64 ( s i z e 1)
65 ( format beu int )
66 ( b i t s 8)
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67 )
68 ( base type
69 (name beu in t16 t )
70 ( s i z e 2)
71 ( format beu int )
72 ( b i t s 16)
73 )
74 ( base type
75 (name beu in t32 t )
76 ( s i z e 4)
77 ( format beu int )
78 ( b i t s 32)
79 )
80 ( u se r type
81 (name c h ann e l d e s c r i p t o r )
82 ( s i z e 7)
83 ( v a r i a b l e
84 (name c id )
85 ( type beu in t16 t )
86 ( o f f s e t 0)
87 )
88 ( v a r i a b l e
89 (name max length )
90 ( type beu in t8 t )
91 ( o f f s e t 2)
92 )
93 ( v a r i a b l e
94 (name cu r l eng th )
95 ( type beu in t8 t )
96 ( o f f s e t 3)
97 )
98 ( v a r i a b l e
99 (name msg length )

100 ( type beu in t8 t )
101 ( o f f s e t 4)
102 )
103 ( v a r i a b l e
104 (name type l eng th )
105 ( type beu in t8 t )
106 ( o f f s e t 5)
107 )
108 ( v a r i a b l e
109 (name c type id )
110 ( type beu in t8 t )
111 ( o f f s e t 6)
112 )
113 )
114 ( u se r type
115 (name p r o c e s s d e s c r i p t o r )
116 ( s i z e 8)
117 ( v a r i a b l e
118 (name pid )
119 ( type beu in t8 t )
120 ( o f f s e t 0)
121 )
122 ( v a r i a b l e
123 (name f l a g s )
124 ( type beu in t8 t )
125 ( o f f s e t 1)
126 )
127 ( v a r i a b l e
128 (name l v a r s i z e )
129 ( type beu in t8 t )
130 ( o f f s e t 2)
131 )
132 ( v a r i a b l e
133 (name ptype id )
134 ( type beu in t8 t )
135 ( o f f s e t 3)
136 )
137 ( v a r i a b l e
138 (name pc )
139 ( type beu in t32 t )

140 ( o f f s e t 4)
141 )
142 )
143 ( u se r type
144 (name s t a t e d e s c r i p t o r )
145 ( s i z e 6)
146 ( v a r i a b l e
147 (name gva r s i z e )
148 ( type beu in t16 t )
149 ( o f f s e t 0)
150 )
151 ( v a r i a b l e
152 (name proc e s s c oun t )
153 ( type beu in t8 t )
154 ( o f f s e t 2)
155 )
156 ( v a r i a b l e
157 (name ex c l u s i v e p i d )
158 ( type beu in t8 t )
159 ( o f f s e t 3)
160 )
161 ( v a r i a b l e
162 (name moni tor p id )
163 ( type beu in t8 t )
164 ( o f f s e t 4)
165 )
166 ( v a r i a b l e
167 (name channe l count )
168 ( type beu in t8 t )
169 ( o f f s e t 5)
170 )
171 )
172 ( g loba l component type
173 ( o f f s e t 0)
174 ( s i z e 16)
175 ( v a r i a b l e
176 (name d e s c r i p t o r )
177 ( type s t a t e d e s c r i p t o r )
178 ( o f f s e t 0)
179 (marked de s c r i p t o r )
180 )
181 ( scope
182 (name g l o b a l v a r i a b l e s )
183 ( o f f s e t 6)
184 (marked i n v i s i b l e )
185 ( v a r i a b l e
186 (name s o l d c h a i r s )
187 ( type in t )
188 ( o f f s e t 6)
189 )
190 ( v a r i a b l e
191 (name s o l d t a b l e s )
192 ( type in t )
193 ( o f f s e t 2)
194 )
195 ( v a r i a b l e
196 (name trucks )
197 ( type c id )
198 ( o f f s e t 0)
199 )
200 )
201 )
202 ( proc type
203 (name producer )
204 ( s i z e 12)
205 ( id 1)
206 ( pc low 138)
207 ( pc h igh 525)
208 ( v a r i a b l e
209 (name d e s c r i p t o r )
210 ( type p r o c e s s d e s c r i p t o r )
211 ( o f f s e t 0)
212 (marked de s c r i p t o r )
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213 )
214 ( scope
215 (name l o c a l v a r i a b l e s )
216 (marked i n v i s i b l e )
217 ( o f f s e t 8)
218 ( scope
219 (name s2 )
220 (marked i n v i s i b l e )
221 ( o f f s e t 0)
222 ( v a r i a b l e
223 (name cha i r s )
224 ( type short )
225 ( o f f s e t 0)
226 )
227 ( v a r i a b l e
228 (name tab l e s )
229 ( type short )
230 ( o f f s e t 2)
231 )
232 )
233 )
234 )
235 ( proc type
236 (name s to rage )
237 ( s i z e 18)
238 ( id 2)
239 ( pc low 526)
240 ( pc h igh 743)
241 ( v a r i a b l e
242 (name d e s c r i p to r )
243 ( type p r o c e s s d e s c r i p t o r )
244 ( o f f s e t 0)
245 (marked d e s c r i p t o r )
246 )
247 ( scope
248 (name l o c a l v a r i a b l e s )
249 (marked i n v i s i b l e )
250 ( o f f s e t 8)
251 ( scope
252 (name s18 )
253 (marked i n v i s i b l e )
254 ( o f f s e t 0)
255 ( v a r i a b l e
256 (name amount)
257 ( type short )
258 ( o f f s e t 8)
259 )
260 ( v a r i a b l e
261 (name cha i r s )
262 ( type in t )
263 ( o f f s e t 0)
264 )
265 ( v a r i a b l e
266 (name tab l e s )
267 ( type in t )
268 ( o f f s e t 4)
269 )
270 )

271 )
272 )
273 ( message type
274 (name msg type0 )
275 ( id 0)
276 ( v a r i a b l e
277 (name msg part0 )
278 ( type mtype)
279 ( o f f s e t 0)
280 )
281 ( v a r i a b l e
282 (name msg part1 )
283 ( type short )
284 ( o f f s e t 1)
285 )
286 ( s i z e 3)
287 )
288 ( chan type
289 (name trucks )
290 ( s i z e 9)
291 ( id 0)
292 ( max len 2)
293 ( v a r i a b l e
294 (name d e s c r i p t o r )
295 (marked de s c r i p t o r )
296 ( type c h ann e l d e s c r i p t o r )
297 ( o f f s e t 0)
298 )
299 ( v a r i a b l e
300 (name type b i t s msg par t0 )
301 ( type byte )
302 ( o f f s e t 7)
303 (marked de s c r i p t o r )
304 )
305 ( v a r i a b l e
306 (name type b i t s msg par t1 )
307 ( type byte )
308 ( o f f s e t 8)
309 (marked de s c r i p t o r )
310 )
311 )
312 ( enum type
313 (name mtype)
314 ( s i z e 1)
315 ( format enum)
316 ( b i t s 8)
317 ( f i e l d
318 (name cha i r )
319 ( va lue 0)
320 )
321 ( f i e l d
322 (name tab l e )
323 ( va lue 1)
324 )
325 )
326 . . . t2s e n t r i e s . . .
327 )
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Nips Debugger User Manual

The simulator is used to visualize states and transitions. It allows stepwise walking through the
model. And we may choose to view global variables, local variables and variables related to the
state format.

Visualization Argument Default

Global variables -g on
Local variables -l on
State variables -v off

Table D.1: Visualization Modes

Where for exhaustive model checkers for any given state each outgoing transition is evaluated
the simulator evaluates only one outgoing transition. The simulator visualizes the current state
and the outgoing transitions. The visualization modes are shown in Table D.1.

It either performs a step forward choosing a transition to a successor of the current state or it
performs a step back to the predecessor of the current state. Note that forward steps can only be
performed if a successor state exists and that a step back can only be performed is a predecessor
exists. e.g. the initial state has no predecessor and deadlock states have no successors. Successor
states are numbered from one to n with one the first successor and n the last, the predecessor
state is always numbered zero.

The simulator may be run in one of four main modes. The simulator runs either interactively
or automatically and it runs either guided or unguided. Each of the modes behaves differently.
The simulation modes are shown in Table D.2.

Mode Automatic Interactive

Unguided Random (default) Interactive
Guided Automatic Guided Interactive Guided

Table D.2: Simulation Modes

In automatic mode the simulator can be influenced to run a finite number of steps. By default the
simulator runs indefinitely in random mode unless a finite number of steps is given in which case
it terminates after this number of steps. Furthermore the simulator may be delayed between
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transitions such that it runs at a user readable speed. The automatic simulation options are
shown in Table D.3 and the interactive simulation options are shown in Table D.4.

Mode Argument Default Description

Finite -uN off Terminate after N
steps.

Delayed -dN off Delay transitions by
N milliseconds.

Table D.3: Automatic Simulation Options

Mode Argument Description

Interactive -i Run the simulator interactively.

Guided -tN
Load trace number N related to the model
and run the simulator guided by a trace.

Table D.4: Interactive Simulation Options

Random Simulation

In default mode the simulator runs randomly starting at the initial state. It chooses one of the
numbered transitions. This may either be a step forward or a step back. Note that there is no
guarantee for progress as it can repeatedly step forward and back between the same two states.

Automatic Guided Simulation

In automatic guided simulation the simulator repeatedly chooses the transition within the trace
until the trace has been completed or until it is no longer possible. If the transition form the
trace cannot be simulated the user is prompted to ether go to random simulation or quit. The
trace transition is always numbered one.

Interactive Simulation

In interactive mode the simulator allows the user to choose a transition. The user may step back
by selecting transition zero or let the simulator perform a step forward by selecting a transition
number equal or or higher than one. The stack trace can be saved to a file at any moment. The
simulator may be set to random mode also in which case user input is no longer accepted. The
interactive commands are shown in Table D.5.

Figure D.1 gives a view of the command-line debugger. In this situation a state is shown from the
Furniture Factory example, introduced in Section 3.2.2, where only two transitions are possible.
A message is either removed from channel trucks or the previous transition is undone.
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Command Description

0 Do a step back. Pops the top from the stack
trace.

1..n Do a step forward. Pushes the state and tran-
sition.

r Go to random mode.
lN Load trace number N and start a guided sim-

ulation.
s Save the current stack trace.
e Edit the current state.
exit Exit.

Table D.5: Interactive Commands

Figure D.1: Nips Debugger Screen-shot

Interactive Guided Simulation

In interactive guided simulation the user may select either a transition from the trace if this is
possible or may choose to enter interactive unguided simulation. When the transition from the
trace cannot be simulated the user is prompted to either go to unguided interactive simulation
or quit.
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Interactive State Editing

In interactive state editing mode the user may change variable values. First the user inputs the
variable name. Variable names are freely accessible from the state printouts which occur after
every transition. Next, the user is asked to input a new value which is set in a buffer state vector.
New values may be entered until the user commits the changes and returns to the simulation.
Committing to the newly created state is shown as a transition to the new state. The changes
can also be cancelled in which case the current state is kept. The transition can be undone by
selecting the inverse transition at the next choice. This feature offers the freedom to explore
unreachable system states. It is left up to the user to decide which interactive simulations are
deemed useful.
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