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ABSTRACT
Attack trees are used in structured approaches to describe
all actions that an attacker must undertake to achieve a
certain (malicious) goal. The analysis of such an attack
tree provides insight in the vulnerabilities of this system.
One way of attack tree analysis is the transformation of the
attack tree into a priced timed automaton, and analysing
this automaton with Uppaal. This approach generates a
large amount of trace data, which is proof of the results
that Uppaal provides. This trace data is undocumented
and needs further parsing in order to gain usable informa-
tion. These drawbacks make the isolation of information
relevant to the attack tree rather cumbersome. This pa-
per proposed a meta-model to model Uppaal and Uppaal
trace data and shows that it is possible to build a compiler
that compiles raw trace data into instances of this meta-
model effectively. This paper also suggests how to derive
insightful information and map this onto the original at-
tack tree. This yields the original attack tree enriched
with information derived from the trace data.
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1. INTRODUCTION
To understand the level of safety of computer systems or
even physical systems, one needs to have knowledge about
the possible threats. Attack trees are used in structured
approaches to describe all actions that an attacker must
undertake to achieve a certain (malicious) goal, such as
hacking a website or breaking into a vault. The analy-
sis of such an attack tree provides insight in the vulner-
abilities of this system and the resources required for a
successful attack on the system being modeled. The in-
formation acquired in analysis can be used to determine
countermeasures for such attacks.

This paper focuses on one method for attack tree analysis,
namely the transformation of the attack tree into a timed
automaton (TA) and analysing this automaton with Up-
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paal, as showed by Kumar, Ruijters and Stoelinga in [8].
Uppaal is described as a tool that finds the cheapest path
to a state satisfying certain goal conditions in an TA [2].
Besides the properties of the end state, this analysis also
generates a large amount of trace data. This trace data
contains the proof of the provided results. This trace con-
tains information which can be used to increase the infor-
mation represented in the attack tree. However, the raw
trace data needs further parsing in order to gain usable
information. These drawbacks make the isolation of in-
formation relevant to the attack tree rather cumbersome,
and therefore this possible source of information currently
remains unused.

Figure 2 shows the steps proposed to parse the trace data
into a generic model and map this data onto the original
attack tree. These models are instances of ecore meta-
models, except for ’Native Uppaal trace data’, which is
encoded text.

However, due to unexpected issues with the first step there
was not enough time left to finish the last step, details and
further recommendations are discussed in section 9

Section 2 gives a more precise description of the prob-
lem and provides requirements for a solution, followed by
sections 3 and 4 describing respectively background knowl-
edge and related work. Sections 5 and 6 discuss the details
of steps 3 and 4, whose validations are described by sec-
tion 7. Section 8 gives a discussion, followed by section 9
containing the conclusion.

2. PROBLEM DEFINITION
The goal of this paper is to investigate the possibilities of
tracing useful information from attack tree analysis back
into a visually representable attack tree. More concretely,
this project tries to answer the following question: How is
the trace output of Uppaal usable to gain new information
when analysing attack trees? An example of a (simple)
attack tree can be found in figure 1.

Figure 2 gives an overview of all steps required in the scope
of this project. Step 1 represents the conversion of an ex-
isting Attack tree model into a model that Uppaal can
analyse, i.e. a native Uppaal model. Step 2 represents
the attack tree analysis. Details of steps 1 and 2 are be-
yond the scope of this paper. It is enough to realize that
this analysis method, like any other analysis using Uppaal,
produces a state trace. This state trace describes which
(TA-)transitions were traversed to find a valid end state,
satisfying certain goal conditions. The states also contain
the values for variables described by the original attack
tree, and for other variables added for the purpose of the
analysis. The state trace of Uppaal looks like the example
shown in appendix A. Step 3 and 4 are described in the
following two subsections.
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Figure 1. An example of an attack tree without
attributes. Node R represents the goal of the at-
tacker, nodes B, C and D represent Basic Attack
Steps and node A represents a goal. Whenever the
type of gate is omitted, it is an OR-gate.

2.1 Interpretation of the state trace
Step 3 describes the translation of this ”Uppaal-trace”model
into a usable variant that still covers the same data. To
promote reusability, this project should also provide a so-
lution to this step that will apply for all models that can
be analysed using Uppaal. This brings an additional issue,
as trace data of Uppaal is encoded, as shown in section 5.1
figure 5. This step also leads us to the first sub-question:
How can we compile the output format of Uppaal into
usable data?

If this trace data is decoded, the next steps should be
similar to those applied on a trace of Uppaal. This means
that the resulting data should be modeled in such a way
that the provided solution is also usable on Uppaal models
from other scientific domains. This leads us to the next
sub-question: How can we model Uppaal trace data in a
usable model?

2.2 The enrichment of the original attack tree
Step 4 describes the process of analysing the solution found
in step 3 and extracting data that can be consider useful
in the context of attack trees. If this data is available,
it should be modeled into the original attack tree. The
amount and the kind of information that can be learned
depends on the information that is outputted in the state
trace, thus depends on the information that is contained
in the attack tree before analysis.

2.3 Requirements
The proposed solution should satisfy the following require-
ments.

• Correctness. It should be correct, thus not show any
data that cannot be found in the trace, and should
be complete;

• Scalability and performance. It should be scalable
and not take longer than the duration of the analysis
that generated the trace.

• Extensibility. it should be extensible to promote re-
use of the provided solution in other contexts.

• Fitness for purpose. Just as parts of the solution
should be usable in other contexts, the solution should

fit its purpose. It should enrich an attack tree with
new knowledge, based on the trace data gained dur-
ing the analysis.

Section 7 discusses to what degree these conditions are
checked .

3. BACKGROUND KNOWLEDGE
3.1 Attack Trees
Attack trees (ATs) are used to model the available actions
of an attacker of a system. There is no single definition
of attack trees: since a basic definition was proposed by
Schneider [15], a lot of extensions have been studied. A
broad overview of these extensions is given by Kordy et al.
[7]. This project uses the definition of attack trees from
Kumar, Ruijters and Stoelinga [8].

An AT is a directed acyclic graph [9] that is composed of
basic attack steps (BAS) and goals. A BAS can be seen
as an atomic step of an attack that an attacker can un-
dertake, and they are the leaves of an AT. Goals represent
an aggregation of BAS’s and other goals and cannot be a
leaf of an AT, so each should have at least one child. Dur-
ing analysis, each BAS or goal can have a state of either
achieved or not achieved.

Each goal also contains one operator, the so-called gate,
which specifies the relation between the states of it chil-
dren and the state of the goal itself. An AT has 4 types
of gates, as given by definition 1, AND-gates, OR-gates,
SAND-gates and SOR-gates. AND-gates require all chil-
dren to be achieved before the subgoal is achieved it-
self, where-as an OR-gate only requires one child to be
achieved. Sequenced AND-gates (SAND) and Sequenced
OR-gates (SOR) mostly resemble their unsequenced vari-
ants, they however differ in the chronological order that
children should be achieved. Where this order is irrelevant
for unsequenced gates, sequenced gates will only succeed if
the children of the goal are achieved in the order specified
by their sequence [5].

Given that the root element of an AT, or target of the
attacker, has the same semantics as any other goal. We
define the root element to be a goal that is not a child of
any other goal.

An example of such attack tree can be found in section 2,
figure 1.

Definition 1. The set of attack tree gate types is given
by GateTypes : {AND ,OR,SAND ,SOR}

Furthermore, during attack tree analysis, an AT is exe-
cuted by a specific attacker. Such attacker is described by
an attacker profile, which is a fixed set of attributes. At-
tributes can specify, for example, a skill-level or available
budget. We define an attacker profile Profile according to
definition 2.

Definition 2. An attacker profile is a fixed set of real-
valued attributes Profile : {a1 ...an}whereai ∈R

Each BAS has a special attribute, Time, that represents
time spent to achieve this BAS. Additionally, each BAS
also contains two preconditions(Enable, CanSucceed) and
a resulting effect(Effect). The preconditions are Boolean
combinations of linear equations of attributes. Enable is a
function over {a1 ...an}, whereas CanSucceed is a function
over {Time, a1 ...an}. Both preconditions always evaluate
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Figure 2. An overview of the entire process. Rectangles represent data-instances, Ovals represent pro-
cesses. Step 1 represents the conversion of an attack tree to a model that Uppaal can evaluate. Step 2
represents the analysis of an attack tree, the specifics of this step are out of scope for this paper. Step 3
represents the parsing and modeling of the Uppaal trace data into a generic Uppaal trace model. Step 4
represents the enrichment of the original attack tree with information gained from Step 3 (and is not
finished because of time constraints).

to either 0(false) or 1(true), which indicates whether a
specific BAS is enabled, respectively can be achieved. The
resulting effect Effect updates the attacker profile Profile
when the BAS is achieved. Effect is a function of all at-
tributes {a1 ...an} over all values of these attributes, over
the elapsed time Time, or Effect : {a1 ...an}×ValuesOf{a1 ...an}×
Time → newValue{a1 ...an}. This specification leads to
definition 4.

An example of attribute calculations can be found in ex-
ample 1.

Example 1. Example of attribute calculations

Given attacker profile Profile : {budget , skill} valued at
{1500, 50}, and given a BAS with following functions:
Enabled({budget , skill}) : skill ≥ 50
CanSucceed({Time, budget , skill}) : (Time > 15)∧(budget >
200)
Effect(budget, {Valbudget ,Valskill})(Time) : valbudget−T ime∗
(100− skill)
Effect(skill, {Valbudget ,Valskill})(Time) : valskill

The initial (Time = 0) preconditions evaluate as follows:
Enabled({1500, 50}) = 50 ≥ 50 = 1
CanSucceed({0, 1500, 50}) = 0 > 15 ∧ 1500 > 200 = 0

After some time elapsed, Time = 20.
CanSucceed({20, 1500, 50}) = 20 > 15 ∧ 1500 > 200 = 1
Effect(budget, {1500, 50})(20 ) = 1500− 20 ∗ (50) = 500
Effect(skill, {1500, 50})(20 ) = 50

From this follows the new attacker profile, valued at {500, 50}.

Definition 3. An basic attack step (BAS) is a tuple (Time,
achieved, Enable, CanSucceed, Effect), where

• Time represents the time elapsed since the start of
the BAS

• achieved : {1, 0} indicates whether or not the BAS is
achieved

• Enable : {a1 ...an} × {1, 0} indicates whether or not
the BAS is enabled

• CanSucceed : {Time, a1 ...an}×{1, 0} indicates whether
or not the BAS can be achieved

• Effect : {a1 ...an} ×ValuesOf {a1 ...an} × Time →
newValue{a1 ...an} is the update function that gets
invoked when the state is achieved

Attributes {a1 ...an} refer to attributes of the attacker pro-
file, explained in definition 2.

Definition 4. An attack tree AT is a tuple (BAS, Goal,
Target, Relation, Gate), where

• BAS is a finite set of basic attack steps, as defined
by definition 3

• Goal is a finite set of goals, disjoint from BAS

• Target ∈ Goal is the attacker goal

• Rel : Goal → (Goal \ {Target} ∪ BAS)∗ is the map-
ping of a goal to its children

• Gate : Goal → GateTypes is the assignment of gates
to goals, as specified in definition 1

3.2 Timed Automata
Finite state automata (FSA) are the most basic type of
automata used to model and analyze systems. However
an FSA does not provide functionality to describe real-
time systems. This is where timed automata (TA) come
into play: they extend the basic FSA by adding a finite set
of clocks that increase during evaluation and which can be
used as transition constraints. [1]

A (simplified) example of a timed automaton can be found
in figure 3. The fastest trace can be found in example 2.

Uppaal is a verification tool for TA, and is used in both
academia and industry as model checker [2].
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Figure 3. An example of a timed automaton. This
example does not have any real application as it is
simplified to be an understandable example.

Example 2. Example of an TA trace for figure 3

State S1 Clock = 0

Delay: 6

State S1 Clock = 6

Transition: S1->S2 {Clock > 5}

State S2 Clock = 6

Delay: 2

State S2 Clock = 8

Transition S2->S3 {Clock > 7 && Clock < 10}

State S3 Clock = 8

3.3 Model-driven development
Model-driven development is the development of applica-
tions using meta models. A meta-model is a model which
describes a group of models. For example, a meta-model
describing buildings can state that any building consists
of multiple rooms and that those rooms contain doors and
windows. An instance of this meta-model is a specific
building, and can be referred to as a model of a building
or as an instance of a meta-model of a building.

3.3.1 Eclipse Modeling Framework
Eclipse modeling framework (EMF) is a framework that
provides modeling and code generation tools [16], only the
features relevant for this project will be explained in this
section. The framework uses .ecore-files to define meta-
models and generate Java-code that corresponds to this
definition. EMF also provides an API to programati-
cally create new instances of these meta-models in Java
or ETL(see next subsection). It is possible to define a
meta-model so that it re-uses certain properties defined
in another meta-model, this will cause the instance of the
meta-model to have references to instances of an other
meta-model.

3.3.2 Epsilon
Epsilon is a toolset containing different kind of tools and
languages that can be used for modeling-related activities,
including, but not limited to, modeling itself, model-to-
model transformation and code-generation [11]. One of
these languages is the Epsilon Transformation Language,
described below.

Epsilon Transformation Language
Epsilon Transformation Language (ETL) is a rule-based
model-to-model transformation language and is used to
specify the rules that are used to define the relation be-
tween an instance of one meta-model into an instance of
another meta-model [6]. These rules can be evaluated by
Epsilon to transform the first model into the latter, this
makes use of the API provided by EMF to create a new

instances of a meta-model.

4. RELATED WORK
Sampaio describes a similar application, he describes the
user-friendly visual interface to manage industry control
systems for process automation [13]. Sampaio traces in-
formation during Uppaal analysis of TA, by naming con-
ventions in both original models and Uppaal intermediate
models. He analyses the result trace in case of a fail, in
order to identify which software module is responsible for
the faulty condition. Havelund et al. modeled a Bang &
Olufsen audio/video protocol in Uppaal to find an error in
this protocol [4]. They detected that their model reached
a state unreachable with a valid protocol, which indicated
that there was indeed an error. After finding the shortest
trace to reach this state, Uppaal produced a state trace
containing 1998 transition steps. The mistake was found
by searching those transitions using an intelligent devel-
opment environment. The authors however state that this
approach was tedious and error-prone and argue that an-
other approach is desirable.

5. STEP 3: UPPAAL TRACE PARSER
Step 3 of figure 2 is the compilation of Uppaal trace output
into a format which makes sense, this task is split up in
three parts. Figure 4 shows a more detailed overview of
step 2 and step 3.

5.1 Uppaal encoding
Part 1 of figure 4 is the decoding of the Native Uppaal
trace data. This unprocessed trace data, as shown in
figure 5, has all string replaced by references to a spe-
cific model that is used internally by Uppaal, the Uppaal
internal format. As there is no documentation available
on this model, this step should be addressed using exist-
ing solutions. To achieve this, this paper uses the library
named libutap, Uppaal Timed Automata Parser LIBrary
[10]. Libutap transforms the Native Uppaal trace data
into Human readable Uppaal trace data, using the Up-
paal internal format. As libutap that contained numerous
errors, these were resolved with help of the author. An
example of the output of the (fixed) libutap can be found
in appendix A.

5.2 Trace meta-model
The concrete data from the previous part should be used
in a logic model, this leads to part 2: the design of an
Uppaal trace model. There is a generic meta-model avail-
able, created by Gerking [3], that can be used to create a
model of Uppaal input. This paper proposes a meta-model
describing Uppaal trace data in a way that it links prop-
erties that are already defined in the existing meta-model
to this new meta-model. This means that instances of the
Uppaal trace meta-model have references to (properties
of) instances of the Uppaal input meta-model. This new
Uppaal trace meta-model will be defined as an .ecore-file
in EMF.

However, during development of the parser (described in
section 5.3) it turned out that the Java interface provided
by EMF is not able to load instances of the (already exist-
ing) Uppaal meta-model. Extensive debugging and test-
ing showed that the this interface failed to recognize the
type of class of the entities in the model. The so-called
ClassifierIDs, which is used to find the class of a model
entity, mismatched the IDs in the model classes generated
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Figure 4. A detailed overview of steps 2 and 3. Rectangles represent data-instances, Ovals represent
processes. Data-instances ending in ’model’ represent instances of .ecore meta-models. Step 3 has been
split up in parts, ordered by the order that these parts are mentioned in section 5.

2 0 0 2 . 0 1 0 . 1 2 0 . 2 3 0 . 3 0 0 . . 0 1 0

5 6 0 10 12 1 0 0 0 0 0 . 1 0 0 2 . 0 1 0 . 1 2 0

. 2 3 0 . 3 1 0 . . 0 1 0 5 6 0 10 12 1 0 0 0 0 0

. 0 2 . 1 0 3 2 . 0 3 0 . 1 2 0 . 2 1 0 . 3 0 25

. 3 1 0 . . 0 1 0 5 6 0 10 12 1 0 0 0 0 0 . 2 1 .

1 3 3 2 . 0 2 0 . 2 0 13 . 2 3 0 . 3 0 25 . 3 1 0

. . 0 1 0 5 6 0 10 12 1 0 0 0 0 0 . 1 1 . .

Figure 5. The format that trace-data of Uppaal ad-
heres to. Newlines have been replaced with spaces
to enhance readability.

by EMF. In order to work around this issue, we defined a
new intermediate trace (ecore) meta-model that is equal
to the definitive trace meta-model in every way except for
the references to the Uppaal meta-model. All references
to the Uppaal input meta-model are replaced by string at-
tributes. The value of those attributes should be unique,
e.g. a template name, so that future work can identify
what these values refer to. The parser creates an instance
of this intermediate meta-model.

A class diagram of the trace meta-model can be found in
figure 6 and is built from the following components.

• Each trace is represented by an instance of class
Trace.

• Each instance of Trace contains multiple instances
of State, AbstractTransition and TemplateInstance

• Each TemplateInstance represents an instance of an
Uppaal template and contains multiple instances of
LocationInstance

• Each LocationInstance represent an instance of Up-
paal locations.

• Each instance of an AbstractTransition can either
be a DelayTransition or an EdgeTransition, repre-
senting respectively a time delay or (a list of) Up-
paal edge(s) that have been traversed. Instances of

AbstractTransition also have a source and a target,
representing the instances of State that the Abstract-
Transition bridges.

• Each instance of a state represent snapshots of Up-
paal model evaluation, and contains Valuations.

• Each instance of a Valuations represents the value
of a certain variable at a specific moment, and con-
tains an instance of Value. Furthermore each Valua-
tion has references to instances of LocationInstance,
TemplateInstance and also refers to the incoming
and outgoing AbstractTransition.

The meta-model was designed this way in order to resem-
ble the Uppaal input meta-model as much as possible. For
this reason, there are a lot of different types of values. To
keep the overview uncluttered, classes implementing the
abstract class ’Value’ have not been included in the de-
scription and in the class diagram.

5.3 Parser
The third part is the design of a parser that reads the
Human readable Uppaal trace data, and parses it into a
valid model Uppaal trace model (as defined by section 5.2).
This parser is created using the parser-generator ANTLR
[12] to read the trace data, and the appropriate API from
EMF to generate the correct instance of the meta-model.

6. STEP 4: ATTACK TREE ENRICHER
Step 4 of figure 2 represents the extraction of useful infor-
mation from the model generated by step 3, and the map-
ping of this information onto the original attack tree. As
the attack tree meta-model is also defined as an .ecore-file,
the model-to-model transformation language ETL can be
used to transform data from the trace-data model to the
attack tree model. The amount and the kind of informa-
tion that can be learned depends on the information that
is output in the state trace, thus depends on the informa-
tion that is contained in the attack tree before analysis.
The solution should be validated using two attack trees
with different information.
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Figure 6. The class diagram of the designed trace meta-model. Implementations of abstract class Value
are omitted to keep this overview accessible.
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• An attack tree containing numerous attributes at
each BAS, the solution should deduce the appropri-
ate values at all goals the trace passes.

• An attack tree containing mostly sequenced gates.
The solution should recognize that such attack tree
does have a specified order of steps and apply this
information to the model.

While attempting to create an ETL-script that does the
transformations described in the list above, we ran into
several issues.

• Eclipse Epsilon crashed every time moderately large
trace files(about 50MB) were transformed.

• ETL was unable to load dependent meta-models. As
the meta-model of the attack tree is defined as two
separate meta-models(structure and values), one de-
pendent on the other, this is an issue.

Because of these reasons and taking into account that step
3 took more time than expected, there was not enough
time left to finalize step 4. However, given enough time
the issues mentioned above should be solvable.

7. VALIDATION & EVALUATION
The requirements stated in section 2 are addressed in this
section to validate whether or not the provided solution
satisfies them. However, as not all problems are solved,
some requirements could not be tested.

Section 7.3 specifies a requirement that needs to be tested
in multiple scientific domains, this is to ensure that the
solution is usable in the other applications. These differ-
ent domains, are provided by researchers or PhD-students
working with models in diverse domains at the Univer-
sity of Twente, Department of Formal Method and Tools.
These ’different domains’ are, besides the domain of At-
tack Trees, the domain of biological pathway modeling
[14].

Along the set of models that are used for testing these
requirements, there should ideally be at least one small
and one large model from every different domain. The
small model will be used to manually verify the results,
whereas the big model can be used to verify performance.
However, for some domains it was not feasible to acquire
small models. In these cases a few trace states were taken
from the larger model, parsed and their results verified
manually.

7.1 Correctness
The provided solution will be tested to ensure that it is
correct, this means that the solution should not put any in-
formation in the trace model that cannot be derived from
the result trace. Furthermore, the solution should be com-
plete, this means that it should transform all useful data
from the trace back into the trace model.

This is tested manually using several different models, all
tested models are shown in table 1, none failed.

7.2 Scalability
The provided solution should be scalable and not take
longer than the duration of the (Uppaal) analysis that
generated the trace. This is tested by acquiring differ-
ent large Uppaal models, and benchmarking the time it
takes to generate the generic (or model-specific) ”Uppaal
model”.

Table 1. All models tested for correctness, results
were verified manually. States means ’number of
states’. All biological models have been stripped
to 25 states, as described in section 7. Models with
(CORA) annotation in their name are analysed us-
ing Uppaal CORA, this is explained later in this
paper.

Name States
Attack Tree #1 5
Attack tree #2 14

Attack tree (CORA) #1 5
Attack tree (CORA) #2 14

Biological model #1 25
Biological model #2 25
Biological model #3 25

Time measurements are taken by taking the times just
before and right after the process measured is executed,
using the method
Java.lang.System.currentTimeMillis(). Results are shown
in table 2.

7.3 Extensibility
The solution provided should also have the ability to model
trace output other scientific domains. The results of cor-
rectness and scalability testing, shown in tables 1 and 2,
are sufficient to demonstrate this is the case.

7.4 Fitness for purpose
As explained in sections 5.2 and 6, due to time constraints
’step 4: The attack tree enricher’ was not finished. There-
fore this requirement cannot be verified.

8. DISCUSSION
Despite the fact that the entire solution is not fit for pur-
pose, the result of step 3, the compilation of Uppaal trace
data into a usable model, is usable in other research. As
section 9 states, it seems fully compatible for models anal-
ysed by either Uppaal from different scientific domains.
The biggest limitation seems to be the use of memory,
which is the result of the building of the parse tree by
ANTLR, as can be seen in table 2. ANTLR is config-
ured to parse all information contained in the trace, while
it might be less memory- and CPU-intensive to not parse
unused and complex rules, such as the description of edges
in the trace. As the description of the edge traversed is
only saved entirely as unique identifier, parsing its con-
tents seems like a waste of resources.

9. CONCLUSION
Correctness testing in section 7 shows that the solution
works with models from different domain.

Scalability testing indicates that the solution requires a lot
of memory: a trace file of 534MB cannot be parsed with
30GiB of memory available. Furthermore, it satisfies the
requirement to compile faster than the analysis takes for
attack tree models, but not for biological models. This is
because Uppaal analysis of biological models is very fast,
where-as Uppaal analysis of attack trees takes much longer
as shown in table 2. As the duration of trace seems to
scale linearly with the size of the trace file, the solution is
scalable given that enough RAM is available.

Extensibility testing indicates that the provided solution
can be used in other scientific domains, given that the
trace data does not get too large or that enough memory
is available.
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Table 2. Scalability testing. Parse time represents the duration of our solution. Analysis time represents
the duration of analysing the Uppaal model and generating the trace. Measurements have been taken
using a machine with 16-core 2.8GHz Intel Xeon E5-2680 v2 and 30GiB of RAM, the JVM was configured
to use all system resources if necessary. Uppaal analysis have been cut off after 15 minutes, as this clearly
indicates that the requirement (Parse time is lower than Analysis time) has been met. Time intervals
have been measured without the time it took to write the results to the file system. Total Parse time
(duration of step 3) equals to Time ANTLR parsing + Time generating output.

Name States Trace file size (MB) Analysis (s) ANTLR parsing (s) Output generation (s)
Biological model #1 60021 1100 6 Out of memory -
Biological model #2 29790 534 6 Out of memory -
Biological model #3 12875 230 6 604 116

Attack tree #1 757 26 > 900 50 10
Attack tree #2 290 10 > 900 18 3

The solution is not fit for its purpose, as within the scope
of this paper there was no time to write step 4, the enrich-
ment of the original attack tree.

The first research sub-question: ”How can we compile the
output format of Uppaal into usable data” can now be an-
swered. Section 5.1 shows that we can decode the Uppaal
trace using the (open source) library libutap, providing
us with a human-readable trace file. Furthermore, the
most recent versions of Uppaal (but not Uppaal CORA)
can provide trace data similar to the trace file generated
by libutap. The provided solution has been extended to
parse this trace data without issues.

Our second sub-research question: ”How can we model
Uppaal trace data in a usable model?” can be answered
using section 5.2. We cannot model the trace data based
on the Uppaal input meta-model in Java, because EMF
cannot not load instances of the Uppaal input meta-model.
By removing the references to the Uppaal input model
from the Uppaal trace model, it is possible to effectively
model the trace data of both Uppaal. If one wants to use
the original trace meta-model based on the Uppaal input
meta-model, it should be possible to apply ETL to both
the intermediate trace model and the Uppaal input model
in order to generate an instance of the original trace meta-
model. However, because of time constraints this could
not be done in the course of this paper.

With the answer to these sub-questions, we address the
main research question: ”How is the trace output of Up-
paal usable to gain new information when analysing at-
tack trees?”. As the sub-questions indicate, the trace data
can be modeled in a structured manner. Furthermore the
data contained in the trace seem to contain enough infor-
mation to enrich attack trees using the patterns described
in section 6. However, as there was not enough time to
implement step 4, it cannot be concluded for sure that the
described approach is effective to gain new information
when analysing attack trees.

.
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APPENDIX
A. HUMAN-READABLE TRACE DATA, GEN-

ERATED BY LIBUTAP

State: Sys._id9 d_Door._id3 d_Window._id3

d_EnterRoom._id2 f = 0 t = 1 system_done = 0

d_Door.min = 5 d_Door.max = 6 d_Door.id = 0

d_Window.min = 10 d_Window.max = 12 d_Window.id =

1 t(0)-Sys.clk<=0 t(0)-d_Door.clk<=0

t(0)-d_Window.clk<=0 Sys.clk-d_Door.clk<=0

d_Door.clk-d_Window.clk<=0 d_Window.clk-t(0)<=0

Transition: Sys._id9 -> Sys.busy {1; 0; clk = 0;}

State: Sys.busy d_Door._id3 d_Window._id3

d_EnterRoom._id2 f = 0 t = 1 system_done = 0

d_Door.min = 5 d_Door.max = 6 d_Door.id = 0

d_Window.min = 10 d_Window.max = 12 d_Window.id =

1 t(0)-Sys.clk<=0 t(0)-d_Door.clk<=0

t(0)-d_Window.clk<=0 Sys.clk-d_Door.clk<=0

d_Door.clk-d_Window.clk<=0 d_Window.clk-Sys.clk<=0

Transition: d_Door._id3 -> d_Door._id6 {1; 0;

clk = 0;}

State: Sys.busy d_Door._id6 d_Window._id3

d_EnterRoom._id2 f = 0 t = 1 system_done = 0

d_Door.min = 5 d_Door.max = 6 d_Door.id = 0

d_Window.min = 10 d_Window.max = 12 d_Window.id =

1 t(0)-Sys.clk<=0 t(0)-d_Door.clk<=0

t(0)-d_Window.clk<=0 Sys.clk-d_Window.clk<=0

d_Door.clk-t(0)<6 d_Door.clk-Sys.clk<=0

d_Window.clk-Sys.clk<=0

Transition: d_Door._id6 -> d_Door.fired {clk > min

&& !system_done; a!; 1;} d_EnterRoom._id2 ->

d_EnterRoom._id1 {1; b?; 1;}

State: Sys.busy d_Door.fired d_Window._id3

d_EnterRoom._id1 f = 0 t = 1 system_done = 0

d_Door.min = 5 d_Door.max = 6 d_Door.id = 0

d_Window.min = 10 d_Window.max = 12 d_Window.id =

1 t(0)-Sys.clk<=0 t(0)-d_Door.clk<-5

t(0)-d_Window.clk<=0 Sys.clk-d_Window.clk<=0 h

d_Door.clk-t(0)<6 d_Door.clk-Sys.clk<=0

d_Window.clk-Sys.clk<=0

Transition: d_EnterRoom._id1 -> d_EnterRoom.done

{1; a!; 1;} Sys.busy -> Sys.done {1; a?;

system_done = 1;}

State: Sys.done d_Door.fired d_Window._id3

d_EnterRoom.done f = 0 t = 1 system_done = 1

d_Door.min = 5 d_Door.max = 6 d_Door.id = 0

d_Window.min = 10 d_Window.max = 12 d_Window.id =

1 t(0)-Sys.clk<=0 t(0)-d_Door.clk<-5

t(0)-d_Window.clk<=0 Sys.clk-d_Window.clk<=0

d_Door.clk-Sys.clk<=0 d_Window.clk-Sys.clk<=0
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