Optimistic Concurrency Control in Geographically
Distributed Databases for Concurrent OLTP Transactions

Lukas Miedema
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

p.l.miedema@student.utwente.nl

ABSTRACT

The need for distributed, scalable databases is larger than
ever. Applications handling user-generated data like T'wit-
ter and Facebook have a global presence, but require per-
formance characteristics from their database as if it was
close to the user. Current database solutions either only
offer low-latency reads by replicating the data, or skip
ACID compliance by letting transactions do dirty writes
with the possibility of overwriting the work of others. To
solve this, we propose a way of using optimistic concur-
rency control (OCC) between nodes in the network. Every
node holds a full copy of the data, but takes ownership
over only a specific partition of the data that is geograph-
ically close to the users who may need to write to it. To
evaluate this approach, a distributed database testing sys-
tem is implemented, simulating latency between the nodes
representative of various real-world network sizes. On this
database our solution is then compared to an implementa-
tion of two-phase locking (2PL) using the TPC-C bench-
mark.

Keywords

Transactions; Optimistic Concurrency Control; Geograph-
ically Distributed

1. INTRODUCTION

Databases are typically used by many users at the same
time. These users, however, must be allowed to treat the
database as if they were the only user. It is up to the
database to solve any problems caused by this. Such an
interaction with the database is called a transaction. The
technique used to solve these problems is called a concur-
rency control technique. For example, imagine two users
adding money to the same account. User 1 adds €20,
user 2 adds €30. The database typically does not sup-
port an atomic tncrement operation but instead requires
both users to read the value, increment it in application
code, and write a new value. A possible interleaving of
the writes (wn(x)) and reads (r,(z)) could then look like
this: r1(z),r2(x), wi(x), wa(x).

If there was no concurrency control, user 2 would overwrite
the value x written by user 1 without having seen it. If

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

27th Twente Student Conference on IT July 7th, 2017, Enschede, The
Netherlands.

Copyright 2017, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

for instance the original amount in the account was €100,
both users have read €100, user 1 has incremented it with
€20 and written €120, which user 2 has then overwritten
with €130. The end result is €130 in the account, whereas
€50 was added. This behavior is unacceptable for certain
applications, especially in finance. An ACID [5] compliant
database may never allow such interference.

Isolation, the I in ACID, is violated in the example above.
Isolation requires that the interactions from one user with
the database must appear as if they are the only user of
the database. The result of multiple users interacting with
the database concurrently should not differ from the same
users interacting with the database sequentially. If user 2
in the example above were to perform a read after w1 (z),
it would have read a different value than at the start of its
transaction. This is a non-repeatable read. Likewise, the
write wa(z) is a dirty write. Both non-repeatable reads
and a dirty writes are signs of an isolation violation, as
they would not have occurred if the transactions had been
executed sequentially. It is the task of the concurrency
control mechanism to generate a serialization, which is a
sequence of transactions ensuring that the current state
is the same as the state that would be obtained if the
transactions were executed one by one in that sequence.

Various concurrency control techniques exist to solve these
problems, like two-phase locking (2PL) and optimistic con-
currency control (OCC).

Two-phase locking.

2PL is a commonly used technique where locks are used
to ensure transactions do not interfere. Locks are only re-
leased when the transaction terminates. Two-phase lock-
ing is characterized by differentiating between read locks
(read “phase”) and write locks (write “phase”). When the
write lock for an object is not held, any transaction can
obtain a read lock. The read lock can be held by many
transactions at the same time. The write lock, however,
can only be obtained by one transaction, and while it is
held no transaction can obtain a read lock. 2PL is vulner-
able to deadlocks, where two transactions wait for each
other to complete. A common strategy to resolve dead-
locks is to detect them and restart one of the offending
transactions.

In the previous example, transaction 1 and 2 would obtain
a read lock on z for r1(z) and r2(z) respectively. Before
any transaction can write to x, it will have to wait until
all read locks on x are released. In this example, that
results in a deadlock, as both transactions wait for the each
other’s read locks to be released on x. Transaction 1 may
be aborted, releasing the read lock on z. Transaction 2 can
now obtain the write lock and complete. Next, transaction
1 can restart and finish contention-free. The effective order

with 2PL would be: r2(x), wa(z), r1(x), wi(z).

2PL ensures serializability by ordering the transactions as
they commit and blocking any transaction that conflicts
until the conflicting transaction completes. When two or
more transactions cannot be serialized like this, 2PL will
detect the deadlock and restart one of the transactions
involved in the deadlock.

Optimistic Concurrency Control.

Another common technique is Optimistic Concurrency Con-
trol (OCC), which takes a central role in this paper. OCC
typically consists of three phases:

1. Startup phase. Here the transaction obtains a snap-
shot of the current state of the database.

2. Transaction phase. The transaction can read and
write to its own snapshot.

3. Commit phase. The read and write actions done by
the transaction on the snapshot are compared to the
current state of the database. If no data was written
or the data read has not changed, the changes are
integrated into the current state. If this is not the
case, the transaction is either aborted or restarted.

During the transaction phase, all reads done by the trans-
action are tracked in the set S’ C S, where S is the
snapshot taken in step 1. If none of the fields in S” have
been written to by other transactions, the writes from this
transaction can be integrated into the new state, placing it
at the end of the current sequence of transactions. When
there are no writes, the transaction can always be placed
at the point in time where the transaction started. When
there are reads to places that have been written to, like in
the banking example from before, the transaction cannot
be serialized and it must be rejected.

This paper introduces a geographically distributed opti-
mistic concurrency control (GDOCC) method which makes
use of OCC to achieve faster response times in geograph-
ically distributed databases. Because OCC requires no
synchronization except for the final part of the transac-
tion, it is no problem to start work with an older snapshot
of the data. If the most recent data cannot be accessed (for
instance because it is stored across the Atlantic), but a 50
milliseconds old version is available, the transaction can
start anyway using this as a snapshot. Additionally, every
node controls the write to a partition of the data. Trans-
actions which need data controlled by the node they are
connected to, do not need to wait for updates from other
nodes. By placing the control over the data strategically
at the node closest to a user who might need it, the aver-
age latency will be minimized and as such it should reduce
the number of rejected transactions. When a transaction
does need access to data from more than one node, an al-
gorithm is required to make sure that all nodes agree on
the interleaving of the transactions, and to validate that
there are no conflicts.

TPC-C.

The TPC-C benchmark is used to test and compare the

performance of various concurrency control methods. TPC-
C is an Online Transaction Processing Benchmark (OLTP)

which simulates a typical workload of a database. The

TPC-C benchmark models a set of warehouses and inter-

actions within the warehouses.

1.1 Problem Statement

Classical methods of concurrency control cannot efficiently

be implemented in distributed databases. Even when trav-
eling at the speed of light, the round-trip latency between
Amsterdam and Los Angeles is approximately 60 millisec-
onds. When adding the overhead introduced by network
switches and other equipment along the way, the latency
becomes unacceptable to acquire locks as is done with the
2PL concurrency control method. As such, other methods
concurrency control techniques are needed.

In this paper, we suggest a new way of using OCC (GDOCC)

for increased concurrency in geographically distributed databases,

which is then compared using the TPC-C benchmark with
2PL.

In section 4, the benchmarking framework is introduced
on top of which our 2PL and OCC variants will be im-
plemented. Section 5 and 6 discuss the distributed 2PL
and OCC variants respectively. In section 7, preliminary
results are shown using a microbenchmark. Section 8 dis-
cusses the implementation of TPC-C and the final results.
Finally, section 9 presents the conclusion and looks at fur-
ther possible improvements of the GDOCC method.

1.2 Research Questions
The following questions will be addressed:

1. How can two-phase locking be implemented on a dis-
tributed database?

2. How can GDOCC be implemented?

3. How does GDOCC compare to two-phase locking in
a distributed database?

4. At which scales and latencies does GDOCC perform
best compared to two-phase locking?

2. RELATED WORK

Concurrency control techniques have long been researched.
Chiu et al. [4] combines optimistic concurrency control in
a distributed system. However, Chiu et al. do not repli-
cate the entire database to every node. Instead, all reads
for data not present on the node the transaction is run
on need to pass through the network, which differs from
the approach we take. It also utilizes properties of OCC
by having transactions read potentially-inconsistent val-
ues, however, the implementation differs wildly. They let
transactions see each other’s uncommitted work. If trans-
action 77 has seen uncommitted work from transaction 7%
and T» is aborted, 77 will be restarted as to not violate
isolation and atomicity.

Bernstein et al. [1] put forth a framework for comparing
distributed database concurrency control mechanisms and
compare variants of two-phase locking with timestamp or-
dering concurrency control. Timestamp ordering concur-
rency control is similar to 2PL, but instead of locking it
rolls back any conflicting transaction. Bernstein et al.,
however, do not look at optimistic concurrency control.

Other methods for concurrency control also exist. Wev-
ers et al. [7] introduce a completely different method of
concurrency control. They use lazy evaluation and have
the readers of transactions perform the actual transaction.
This amortizes the cost of bulk transactions over longer pe-
riods of time without blocking other transactions. How-
ever, the paper does not cover methods for scaling the
technique and takes a white box approach to transactions.
The database needs to be able to have full control over the
execution of the transaction and how they execute.

Boral et al. [2] also take a white box approach to trans-
actions with the Bubba project, executing them in a dis-
tributed database on the node that stores the data to re-

duce the strain on the network. Boral et al. introduce a
parallelizing compiler which allows large portions of con-
sumer applications of the database to be directly executed
on the database’s nodes.

3. METHOD OF RESEARCH

The first and second question are answered by means of
a literature research in combination with the creation of
new techniques. For the third and fourth question, an im-
plementation is created of both 2PL and of the GDOCC
method. Finally, a framework for testing has been pro-
duced which can simulate a set of nodes that communicate
with a set latency to mimic network delays introduced by
geographical distance.

A microbenchmark is introduced to find which parame-
ters are interesting to measure. Then, based on the result
of the microbenchmark, TPC-C will be run with selected
parameters. All transactions from the TPC-C benchmark
are implemented. Every warehouse entity and its related
data in the TPC-C benchmark is stored on its own node.
With TPC-C, 1% of the orders from a warehouse have to
be retrieved from other warehouses, which is where the
inter-node communication is put to the test. Simulations
of a network with various latencies are tested. This data
will then lead to answers to the research questions.

All benchmarks are executed via the Java Microbench-
mark Harness (JMH). JMH is part of the OpenJDK project
specifically for performance testing. It provides extensive
facilities to ensure minimal interference with any bench-
mark. All tests are executed on an Intel i5-3750K-based
desktop system with 16GB of memory, running OpenJDK
1.8.0_131. The tests are compiled with kotlinc v1.1.2-5.
and JMH 1.19 (both via their respective Maven plugins).
The number of concurrent transactions varies per test.

4. MEASUREMENT AND BENCHMARK
FRAMEWORK

To answer the third and fourth question a benchmark
framework is needed. This framework simulates a fixed
number of nodes interacting with messages. It also pro-
vides a set of primitives that are used by the implemen-
tations of 2PL and GDOCC. Transactions come in at one
node but may read, write and modify data stored on any
node via the same API. The nodes exchange messages via
channels that simulate latency. The framework itself is not
actually distributed - latencies are only simulated and the
whole benchmark runs in a single application. The data
held by the database is never persisted - it only exists
in-memory for the duration of the benchmark.

4.1 Channels

The nodes communicate with each other via Channels, an
abstraction which provides first-in-first-out (ordered) mes-
sage passsing between nodes. An implementation may set
up multiple channels between any two nodes, and com-
munication may only happen via the channels. The chan-
nels facilitate Remote Procedure Calls (RPC) - a technique
where one node can run code on another node, and then
do something with the returned value. Delay is introduced
both before the Remote Procedure Call is invoked to sim-
ulate the call traveling to the other node, and again after
the call to simulate the response traveling back. There is
no restriction on how much data is sent or returned, and
this does not affect the latency. This simulates a “fat long
pipe” type of connection, where there is ample bandwidth
but, due to the distance covered, a high latency.

4.2 Common API

All concurrency control techniques implement a set of in-
terfaces via which database operations can be performed.
This is done such that no benchmark is specifically writ-
ten for any of the concurrency control algorithms, but
rather every benchmark can run on every implementation
by changing which DatabaseFactory is used. Each con-
currency control technique implements four interfaces:

DatabaseFactory to create instances of the database.

Database is the product of the DatabaseFactory. Its API
only provides a list of nodes.

Node is where transactions are submitted to.

TransactionManager (or TM for short) is the class trans-
actions interact with. It contains methods like set,
insert, get, among others. A new TransactionMan-
ager is created for every transaction, and it handles
the lifecycle of the transaction. After a successful
commit the TM is destroyed. Transaction managers
themselves are not thread safe, as they assume the
transaction is running on just one thread.

No database implementation is specifically written with
the schema and structure of the tables of the benchmark
in mind, nor are they only limited to those structures. In-
stead, the tables are defined at runtime before the bench-
mark begins. Multiple tables can be defined, each with
a primary key. Table records (“rows”) are represented by
classes and the primary key by a class that implements
the Java Comparable interface. When defining the table,
a special bridge function must be supplied which can take
an instance of the record class and extract the primary
key from it. Optionally, a key generator function can be
supplied which facilitates the generation of new primary
keys for the insert operation. Without this, insert is not
supported and any transaction must supply its own pri-
mary keys instead of having the database generate them.
The tables and the number of nodes and latencies are set
at creation time via the DatabaseFactory. After instanti-
ation there is no way to change the schema or the number
of nodes. The benchmark framework does not simulate
nodes going offline or new nodes coming online during the
benchmark, as those aspects are not relevant to concur-
rency control.

In order to support the rerunning of transactions, the
thread starting a transaction offers a function which rep-
resents the transaction. This function is then started by
the database implementation, and possibly rerun. How-
ever, the transaction is always executed on the thread that
started the transaction and will not be moved to another
thread. This is to simulate a typical database applica-
tion, where the application and the database itself are
separated. The application has a client-side library (for
instance a JDBC driver in case of Java), which communi-
cates with the database. The actions the client-side library
can take are limited: it can only block the execution of the
transaction on an API call, and it can restart the trans-
action. No other operations are supported. It cannot for
instance move the code of the transaction to another node
for execution, or perform some kind of static analysis on
the code to determine if the transaction is read only.

As such, any database implementation may only do two
things to a transaction: restarting and blocking. Abort-
ing and restarting transactions happens by throwing an
exception from any method invocated on the transaction
manager, or waiting until the transaction returns control
to the transaction manager at the end of the transaction.
Blocking refers to suspending the transaction thread un-

til some condition becomes true, for instance to wait until
a lock is acquired or until a message is received by the
transaction manager.

4.3 TPC-C Benchmark

The TPC-C benchmark is a mixture of read-only and write
intensive transactions which simulates a large business us-
ing a database. As mentioned, TPC-C models a retailer
with multiple warehouses. Each warehouse serves 10 dis-
tricts, 100,000 customers per district and all their orders.
TPC-C has a total of 9 tables and 5 transactions which run
at various frequencies. TPC-C is very suitable to test the
performance of a distributed database with, as its model
lends itself well to being distributed. Every record, besides
the read-only Item record, has a warehouse id (w_id) of
the warehouse it belongs to in its primary key. By assign-
ing a warehouse to every node, the transaction manager
can easily determine where a record is stored by looking at
the requested primary key. A full implementation of the
TPC-C benchmark tests a wide breadth of functionality
around the database, including column storage and disk
1/0. Not all of these features are applicable in this study,
and as such only a small part of TPC-C is implemented.

5. TWO PHASE LOCKING

To test 2PL, an implementation needs to be created capa-
ble of running on the distributed environment laid out in
section 4. Deadlock detection and resolution, features in-
herent to 2PL, become more complex when no single node
has the full picture. In our 2PL implementation, every
node has its own set of channels to other nodes called probe
channels. These channels are solely used for deadlock de-
tection between the nodes. When a transaction starts,
its accompanying transaction manager obtains a transac-
tion id and an independent set of channels to every other
node. These channels are used for reading and, during
commit, writing to other nodes. The assigned transaction
id consists of a sequential id generated by the originat-
ing node and the node id, ensuring that every transaction
id is globally unique. The channels are not shared with
other transaction managers, such that if another transac-
tion manager’s remote procedure call takes a long time to
process this transaction manager is not blocked by it.

Two-phase locking is implemented by means of a first-in-
first-out lock queue on every records’ primary key. Trans-
actions can request either a read lock or a write lock on
a record. They will be appended to the lock queue. The
algorithm for determining which locks are granted is as
follows (simplification):

val iterator = queue.iterator ()
if (literator.hasNext())
return
val head = iterator.next ()
grant (head)
if (head.type == WRITE)
return

for ((index, request) in iterator) {
if (request.type = WRITE) {
if (index == 0 && request.transactionld ==
head . transactionId) {
grant (request)

} else {
grant (request)

In words: the head of the queue is always granted, regard-
less if it is a read or write. If it is a write, the algorithm

stops there and no other lock requests are granted. If the
head is a read, all consecutive reads are also granted un-
til the first write request is encountered. However, if the
second lock request is a write request from the same trans-
action as the head, it is also granted as it is an upgrade
request (a transaction does not have to wait for its own
lock to be released). A write lock completely supersedes
a read lock - if a write lock is granted on a given value,
a read lock is implicitly also granted. Note that this al-
gorithm assumes no read locks follow write locks from the
same transaction. This is ensured by simply not adding a
read lock request to the queue when a write request from
the same transaction is already present.

The choice to have a first-in-first-out style lock queue has
certain consequences. Take the following queue: @Q =
{r1, 72, ws, 74, ws}. In this case, the above algorithm would
grant r; and r2, but r4 has to wait because there is a
write ahead of it. A read-write lock implementation could
give r4 priority over the write lock ws, but this could lead
to an extended period of waiting and starvation if new
read requests keep on coming in. The other extreme is to
grant write locks priority, moving them together behind
all granted read locks. In that case, ws would be moved
ahead of r4. This change makes sense in a read-heavy
environment, where writes are rare and potentially slow.
However, TPC-C is no such environment where 92%]6] of
all operations are read-write operations. As such, the de-
cision was made for a first-in-first-out queue approach.

5.1 Distributed deadlock detection

As mentioned, 2PL is very susceptible to deadlocks, espe-
cially because it allows “lock upgrading” from a read lock
to a write lock. Deadlock detection is rather simple in a
centralized system, as the complete state information is
present. However, in this implementation of 2PL no node
has the full picture. As such, an adaptation of Chandy et
al.’s [3] distributed deadlock detection algorithm was nec-
essary. The proposed algorithm makes use of independent
channels for deadlock probe messaging. Once it has found
a deadlock, it aborts a transaction. The adaptation for
use with 2PL is illustrated in Figure 1.

In Figure 1 we see one transaction manager TM(A) which
is associated with node A. There is also a node B which
stores the value on which TM(A) wants to obtain a lock.
Note that node A and node B could be the same node
- in that case the latency between TM(A) and node B
would be zero. Actions in white are part of the normal
processing of the request. Actions in gray are part of the
deadlock resolution algorithm, which is only shown par-
tially. Messages passed between nodes in black are over
the Transaction Manager’s own channel, those in blue are
over the deadlock probe channels.

With 2PL, transactions wait for each other’s completion
when they are dependent on each other. A deadlock occurs
when a transaction is effectively waiting for itself. An in-
tuitive formulation of Chandy et al.’s deadlock detection
algorithm is that all deadlocks can be detected by hav-
ing the transaction manager send a probe message when
it starts waiting to all transaction managers it is waiting
for. Those transaction managers determine if they them-
selves are waiting. If they are, they in turn relay it to the
transaction managers they are waiting for. If the message
comes back around to the starting transaction manager,
it knows there is a dependency cycle and can abort.

In the 2PL implementation, transaction managers them-
selves are not responsible for detecting their deadlocks,
but instead their associated node is. Additionally, trans-

Node A TM(A) Node B

Request lock X Enqueue

> lockrequest for
X

yes J< no

has to wait?

|
Mark TM(A) Notify
as locked on X
Send AT
probe(TM(A), Waiting?
B)
yes
Relay probe to
all lock holders
of x
Abort TM(A)
Grant TM(A)
Continue B
Unmark transaction
TM(A) as

waiting on X

Figure 1: The process of acquiring a lock with 2PL. The
process of relaying a probe is not shown.

action managers do not know which transaction managers
are ahead of them in the lock queue - only the node hold-
ing the lock queue knows this. As such, the adaption of
this deadlock detection algorithm has a few extra steps.
A few of these steps can be seen in Figure 1, namely the
marking as locked of TM(A) and the beginning of sending
a probe message. Missing are the steps where probe A
either relays a message from a value an associated trans-
action manager is waiting for, and the step where probe A
aborts a transaction because the probe message went in a
cycle.

5.1.1 Preventing livelocks

It was found during early testing that Chandy et al.’s [3]
algorithm can have multiple transaction managers detect
the same deadlock at the same time. This happens be-
cause a transaction manager sends a probe message when
the deadlock does not yet exist, however due to network
latency the deadlock is formed while the probe is in tran-
sit. This means two probes, one that happened to already
be in transit, and one send out by the lock request that
created the deadlock, manage to complete the cycle. In
turn this causes two transaction managers to detect the
deadlock and restart. After these restarts the transaction
managers potentially end up in exactly the same deadlock
again. This deadlock is once again detected twice, and
the whole cycle repeats. This is a livelock, where both
transaction managers aren’t waiting for each other, but
aren’t progressing either. This problem was found to typ-

ically occur with two transaction managers hosted on two
different nodes with high latency in between. Both trans-
action managers try to lock on a value on their own node
and then a value on the remote node. Since both trans-
action managers can access their own nodes very quickly,
they obtain a lock on the value on their own node before
the other transaction.

Livelocks are fragile - after a while they are resolved due
to random interleavings in the execution of the transac-
tion. However, it was found that when this happend dur-
ing a benchmark it would seriously degrade the perfor-
mance of 2PL and could take a very long time to resolve.
As such a solution was required. Livelocks can be pre-
vented by making sure only one transaction manager in
any given cycle can determine the deadlock. This is done
by probe upgrading. When a transaction manager starts,
it obtains an assigned transaction id. These transaction
ids have a meaningless but consistent order based on the
sequenceld and nodeld - a combination which is guaran-
teed to be unique. When a transaction manager encoun-
ters a deadlock probe from a transaction manager which
is ordered “lower” than itself, it will not relay it but in-
stead replace (“upgrade”) it with its own deadlock probe.
When every transaction manager follows this procedure,
only the transaction manager with the highest transac-
tion id will detect the deadlock and restart, preventing a
livelock. This does incur a minor performance penalty.
The time complexity increases from O(n) of the algorithm
without probe upgrading to O(2n), where n is the num-
ber of nodes. The worst case doubles because the probe
may have to go around the deadlocked dependency graph
twice when the highest-ordered transaction manager is de-
pendent on the transaction manager that sends the final
deadlock probe.

6. OPTIMISTIC CONCURRENCY

CONTROL

Where 2PL does not replicate the data across the net-
work, our OCC implementation does. With 2PL, repli-
cation provides no benefits as the communication about
who owns the lock takes just as long as transferring data
guarded by it across the network, so they might as well
be bundled. Any value read via the 2PL implementation
would be an actual, committed, consistent value. Our
OCC implementation on the other hand can let transac-
tions read partial commits or otherwise inconsistent val-
ues, and as long as it does not allow such a transaction to
actually commit, it does not violate isolation. It does not
show uncommitted values, which is where it differs from
the work of Chiu et al. [4]. Additionally, Chiu et al. do
not choose for replication.

Besides holding a copy of the whole database, every node
takes authority over a certain partition of data, and only
that node is allowed to publish changes to the data. This
retains the benefit that 2PL had: transactions which ex-
clusively need data hosted on their associated node do not
need to wait for the network. What is different is that ev-
ery node additionally has this potentially-outdated copy
of the rest of the database. These copies may be inconsis-
tent - if we imagine a transaction which increments every
record in the database, it could be that this change is not
visible yet in every partition of the dataset on a particular
node. The optimistic transaction manager is allowed to
offer this potentially inconsistent data to the transaction.
When the transaction manager has offered this data to
the transaction, the transaction manager needs to contact
the other node in the commit phase to check for consis-

3

@2
/e
/@%

Figure 2: Messages sent during a multi-node commit
originating from node 1

tency. All the nodes involved in the transaction need to
agree that the data is fine, that no dirty reads occurred be-
fore the data may actually commit. This costs (measured
in time) at most (O(t) = max(RTTiransaction)), Where
(RTT}ransaction) is the set of all round trip times to nodes
involved in the transaction. During the transaction itself,
the transaction manager performs no writes to any node,
and only reads from its associated node.

6.1 Commits

OCC has most of the complexity in the commit phase. No
messages are exchanged between the nodes about transac-
tions prior to the commit phase. The recipe to a successful
commit is rather simple:

1. Partition all the reads and writes done by a transac-
tion into RequestToCommit messages

2. Send these RequestToCommit messages to all nodes
involved, including the originating node even if no
reads or writes occurred there

3. Then, on every node involved

(a) Obtain locks to all the values either read or
written to in the RequestToCommit

(b) Validate the RequestToCommit and send a clear
to commit signal to every other node involved
in the commit

(c) Wait for a clear to commit signal from every
other involved node

(d) Apply the commit to the database
(e) Release all locks

Steps ¢ and d are skipped in case any node reports a val-
idation failure. In that case, the node executing the origi-
nal transaction will create a new TransactionManager and
run the transaction again.

To facilitate the processing of a transaction on a receiv-
ing node, the node will instantiate a CommitMananager,
which is responsible for handling the RequestToCommit on
the node that received it. This means that in the case of
a multi-node transaction, there will be multiple Commit-
Managers active on different nodes, processing the same
transaction.

In Figure 2 it is shown how the commit’s message pass-
ing plays out of a transaction that modifies data on mul-
tiple nodes. The reads and writes are split up by the
originating node (node 1) and sent to the target nodes
at once, including a list of other nodes involved (black ar-
rows). If the transaction was found to be valid, every node
sends a message to every other node that the transaction
is “clear to commit” (blue arrows). All nodes enter the
WAITING_FOR_CTC mode, where they wait for the clear to
commit (ctc) signal. In this mode, a commit lock has been

DEADLOCKED

STARTING D1

WAITING_FOR_LOCK

1
%

WAITING_FOR_CTC —

I
2

v/

CTC_RECEIVED 4

|
v

COMITTED| | REJECTED

6 &

Figure 3: The states of the CommitManager

obtained on all the values read and written by the trans-
action. The nodes confirm that the transaction was valid.
When a node concerned in the transaction has received
this message from every other node, it commits the data
and releases the commit locks. The data is now commit-
ted. Finally, every node sends the newly committed data
to the other nodes to complete their view of the entire
database. Although locks are used for atomicity, the locks
are not held during the transaction. A slow transaction
cannot starve the database, which can happen with 2PL.

6.2 Detecting deadlocks during commit

Commit locks are at risk of deadlocking - when one trans-
action commit acquires commit locks on node N; and
waits for N2, but a competing transaction holds a lock
on Ny and waits for N1, the system is deadlocked. This is
a typical example of left-right deadlocking.

To detect and abort this type of deadlocking, Chandy et
al.’s [3] distributed deadlock detection algorithm is used
once again.

The addition of deadlock detection and resolution leads to
the CommitManager states shown in Figure 3. On transi-
tion 1, validation occurs. When the transaction is valid,
the CommitManager moves to the WAITING_FOR_CTC state,
where it waits for a clear to commit signal from all nodes
as previously discussed. When it has received clearance
from all nodes involved it moves to state CTC_RECEIVED
where the transaction is applied to the database. The
transaction is now comitted. In case a reject to commit is
received from any of the nodes, the CommitManager imme-
diately jumps to the REJECTED state.

There are two paths via which a CommitManager can be
aborted due to a deadlock, which are labeled D1 and D2
in Figure 3. When the CommitManager itself is directly
part of a deadlock cycle, it will be notified in state WAIT-
ING_FOR_LOCK (D1). Once all the locks are acquired, this
CommitManager cannot directly cause a deadlock anymore,

but one of its companion CommitManangers running on an-
other node can still be part of a deadlock. When that is
the case, this other CommitManager cannot have performed
validation yet, so all other CommitManagers are still wait-
ing for the clear to commit signal. As such, we find them
in the WAITING_FOR_CTC state, where they will be notified
of the deadlock (D2).

When a CommitManager is notified of a deadlock, it does
not abort. Instead, it simply releases any locks that it
had already acquired and repositions itself in the START-
ING state, which is illustrated by the transition after DEAD-
LOCKED.

Deadlocks are much rarer with OCC than with 2PL. With
2PL, a deadlock can occur on different values on the same
node. This is not possible with OCC, as all reads on a
given node are handled by the same CommitManager. This
CommitManager requests all the locks atomically. As such,
deadlocks only emerge when two or more multi-node trans-
actions have read or written to the same values. Addition-
ally, 2PL suffers greatly from upgrade deadlocks, where
two transactions have a read lock and both want to ob-
tain a write lock. Because OCC only obtains locks during
the commit phase, where it already has the full picture,
it never needs to upgrade. Finally, deadlocks are often
cheaper to deal with in the case of OCC. Instead of restart-
ing the transaction, only the associated CommitManagers
have to be restarted.

7. MICROBENCHMARKS

7.1 Measurements

First, a simple microbenchmark called transfer test is pre-
sented which attempts to be somewhat representative of
what the TPC-C benchmark would do. This microbench-
mark is used to determine what aspects of TPC-C are
interesting to look at, as TPC-C is complex and takes a
long time to benchmark.

The transfer test microbenchmark is inspired by TPC-
B, a now discontinued performance benchmark. The mi-
crobenchmark conducts money transfers between bank ac-
counts. It consists of one table with a fixed number of bank
accounts initialized before the benchmark starts. During
the benchmark, it repeatedly picks two accounts from this
table and an amount. If the amount is available in ac-
count 1, it will then deduct it from account 1 and add
it to account 2. Finally, it stores these accounts again
and repeats. The account selection is completely uniform,
and during the benchmark no new accounts are created or
deleted. Because the account selection is uniform, most
transactions will involve more than one node, and often
not even the home node from which the transaction orig-
inates.

The transfer test microbenchmark is tested with three pa-
rameters:

Round-Trip Latency

Global with < 300 ms latency

Continental with < 50 ms latency (18% of Global)

Regional with < 10 ms latency (18% of Continen-
tal)

Datacenter with no channel-induced latency

Number of nodes € {5,25}

Number of accounts € {100, 200, 300, 400, 600, 800, 1000}

There are 56 unique combinations for these parameters.

7.1.1 Round-Trip Latency

Round-trip latency is set in a way that is modeled after
real world Internet latency. The 25 largest metro areas
were selected, whose latitude and longitude have been used
to compute latency using Vincenty distance. After mea-
suring internet latency to various servers around the globe,
a message speed of s = 1.40-10%m/s was established. This
speed, in combination with the Vincenty distance between
any two cities, is used to create the final latency. The Con-
tinental and Regional tiers are created by simply scaling
the global tier latencies by 18% and 3.24% (18% of 18%)
respectively, in order to not change the shape of the graph
and by extend introduce other factors that can affect the
outcome of the tests. The tests with 5 nodes are the 5
largest cities from the test with 25 nodes.

Java Microbenchmark Harness was used for this test, with
10 warmup iterations and 10 test iterations, both taking 1
second per iteration. The JVM was given 4GB of memory.

7.1.2 Deadlocks

Unfortunately, it was found that both implementations
would occasionally still get in a proper deadlock, where
deadlock detection and resolution failed. A cause of these
deadlocks could not be determined, but it is assumed to be
a simple programming oversight somewhere in the imple-
mentations, and not a theoretical problem. As such, the
tests where this occurred where rerun until results could
be obtained with a deadlock. These deadlocks occurred
primarily in the high contention tests with low latencies.

7.2 Results

See Figure 4 and Figure 5 for the number of operations
per second compared to varying levels of contention. Ad-
ditionally, see Figure 6 for the number of deadlocks and
restarts for the global tier.

7.3 Discussion

The datacenter scale tells an interesting story. 2PL is
fastest, however its performance does depend on the num-
ber of nodes. Both OCC and 2PL appear to perform bet-
ter in a datacenter on more nodes instead of less. This
is probably due the overhead of internal locks used inside
each node. Actions on a table segment are guarded by
a single lock. This pattern is used both in the GDOCC
implementation and in the 2PL implementation. Because
the throughput here is very high, the effects of contention
on a table segment increase as these segments contain a
larger portion of the data.

There’s a striking similarity between the other graphs. Be-
sides the y-axis, all three graphs are practically identical.
This means that both GDOCC and 2PL scale similarly
over the latency size, at least in the interval tested. This
makes sense - the amount of round trips doesn’t dramat-
ically change by increasing the size of the network. The
transactions in the test are really short, as such a restart is
very cheap. This means that OCC does not suffer greatly
from increased contention, and that restarts are less likely
because the time between a read and a commit is short.

A similar effect is observed with the number of nodes. In-
creasing the number of nodes decreases performance ap-
proximately linearly. This can be best explained by the
uniform random nature of the benchmark. With 5 nodes
there’s a 20% chance an account is stored on the originat-
ing node, whereas with 25 nodes this drops to just 4%.

If we look at Figure 6 we see that OCC takes the crown
with the number of restarts. OCC however rarely dead-
locks, which was expected. With 2PL, a restart and a

—e— 2PL (25 nodes)
—m— OCC (25 nodes)
Transfer benchmark, —e— 2PL (5 nodes)
datacentie(1)'4latency scale —+«— OCC (5 nodes)
8 — T —
<
n
g
e 6 1
Q
g
=
g
= 4 .
8
S
5 W
g
g 2 1
g
[al
0

| | |
100 500 1,000
Number of accounts in database (log scale)

Transfer benchmark,
regional latency scale

1,500

1,000 |-

500 |-

././'/'\-/.—_.
— e e
./k/""———'—'—_.
¢ — ——8® ©—8& —©® g —8

Performance in transactions/s

| | |
100 500 1,000
Number of accounts in database (log scale)

Transfer benchmark,
continental latency scale

300 |- ./'/././.‘H B

Performance in transactions/s

200 I
**W
ool k/./o—k/’\H |
@— ® o ——© 9
0 L L L
100 500 1,000

Number of accounts in database (log scale)

Figure 4: Results of the transfer test with datacenter,
regional and continental latency scales.

—e— 2PL (25 nodes)
—m— OCC (25 nodes)
—eo— 2PL (5 nodes)
—+«— OCC (5 nodes)

60 - ./4/—'\!/- .

40 n

Transfer benchmark,
global latency scale

W0 oS —o—9—_ o ° |

Performance in transactions/s

! ! !
100 500 1,000

Number of accounts in database (log scale)

Figure 5: Results of the transfer test with global latency
scale.

—e— 2PL (deadlocks)
Deadlocks and restarts, ®— OCC (deadlocks)
Global latency scale —o— OCC (restarts)
37 —
Z
o
o 2 -
g
g
=
3
:
NS
5 1 |
¥
0—= - -8
100 500 1,000

Number of accounts in database (log scale)

Figure 6: Restarts and deadlocks during the transfer
test at global latency scale. With 2PL, a deadlock always
causes a restart, which is why 2PL restarts aren’t shown.

deadlock always go hand in hand, as the deadlocks hap-
pen during the transaction instead of after it as is the case
with OCC.

As a result of these findings, the final TPC-C benchmark
will be conducted with a fixed number of nodes. 10 laten-
cies will be tested, each in steps of 80% of the latency of
the previous step.

8. TPC-C BENCHMARK
8.1 Adaptation

TPC-C is a benchmark testing all aspects of a database
system. However, our implementation of 2PL and GDOCC
is not a full database system implementation. They pro-
vide only a few data access operations, namely the set,
get and insert operations. Some of the transactions done
by TPC-C were adapted so that they could be executed
using just those operations. TPC-C uses sometimes sec-
ondary keys in two of the five transactions, and always a
secondary key in one transaction. Secondary keys however
are not supported by the testing framework. Addition-
ally, the minimal runtime for a proper TPC-C benchmark
is 8 hours, of which at minimum 2 hours must be spend
benchmarking. Because neither database implementations
support storing data to disk, and all TPC-C transactions
create more records than they delete, this would prevent
such a long test from being executed.

As such, the five TPC-C transactions have been adapted
to be able to work on the implemented databases. Special
attention has been put into making sure the data access
patterns were left as much unchanged as possible. TPC-C
measures it performance in tpcC, which is the throughput
of the five transactions measured in how many orders -
a business-level concept inside TPC-C - were completely
processed, from start to end. Some of the adaptations
necessary however make it impossible to completely pro-
cess each order. As such, the results of this benchmark
are instead reported in operations per second, where an
operation is any successfully completed transaction. The
transactions are selected at random with a probability are
listed in Table 7.

Figure 7: Rates of the five TPC-C transactions

Transaction Probability
New Order 45%
Payment 43%
Order Status 4%
Delivery 4%
Stock level 4%

These values are also an adaption from the TPC-C bench-
mark. The TPC-C benchmark specification only provides
minimum rates for each of the transactions, besides New
Order. The rate of New Order is used to compute the
systems score in tpcC, which is not possible in this bench-
mark.

The ITEM table in TPC-C is read-only, and both the New
Order and Payment use this table. Our benchmark frame-
work has no concept of a read-only table, and as such these
records would need to be stored on one node with all the
locking and communication overhead it incurs either dur-
ing a read/write or during commit for 2PL and GDOCC
respectively. To spare this overhead, the ITEM table has
been amended with a new column - w_id, the warehouse
id. A full copy of the 100,000 items are stored on every
node, just with a different w_id.

8.2 Parameters

With data obtained from the transfer test, parameters
were devised for the final TPC-C-based benchmark. More
granularity in the levels of latency is needed. 10 levels of
latency have been selected, ranging from the Global la-
tency tier as it appeared in the transfer test down to ap-
proximately 13% of the global latency, in decrements of
80%. During early testing it was found that TPC-C’s ini-
tialized database with more than 10 nodes is too large to

TPC-C benchmark

T T T T
—e— 2PL
2,000 | oce N
Z
g 1,500 | -
R=
3]
g 1,000
g - | 7
-
L
5}
oW
500 - *
0 ! L 1 ! !
0.159 0.251 0.398 0.631 1
Latency as a multiple of the global latency scale (log)
Figure 8: Performance of TPC-C vs latency
Deadlocks and restarts during the TPC-C benchmark
T T w I I
600 |- —e— OCC restarts ||
—m— 2PL deadlocks
—e— OCC deadlocks
Z
=y
o
= 400 1
8
g
3
g
—
RS
3 200 |
oW

o o o o o o
0.159 0.251 0.398 0.631 1

Latency as a multiple of the global latency scale (log)

Figure 9: Deadlocks during TPC-C vs latency. Note that
with 2PL a deadlock always causes a restart, which is why
2PL restarts aren’t shown.

fit into the 8GB of memory allocated for it. As such, all
tests have been done with 10 nodes.

Java Microbenchmark Harness was configured with 8 bench-
mark threads, 10 warmup iterations each taking one sec-
onds and 10 measurement iterations of 10 seconds each.
Iteration synchronization was once again disabled. The
JVM was given 8GB of memory, 4GB more than in the
previous test, with -XX:+AlwaysPreTouch enabled. +Al-
waysPreTouch makes sure the memory pages given to the
JVM at startup are “touched”, which forces the operating
system to clear them ahead of time which would otherwise
happen on demand.

No unrecoverable deadlocks like those occuring during the
transfer test occurred during the TPC-C test.

8.3 Results

Results from the TPC-C benchmark can be seen in Figure
8 and Figure 9. GDOCC clearly performs better in dis-
tributed transactions than 2PL, especially under extreme

latencies. Even with the much more involved transactions
of the TPC-C benchmark, GDOCC still pulls ahead.

9. CONCLUSION

This paper has introduced a new way of leveraging Opti-
mistic Concurrency Control features in a distributed envi-
ronment, and shows its effectiveness against 2PL. It shows
that it outperforms 2PL over all tested latencies, but the
differences become more pronounced as network latencies
increase. Even with the more involved TPC-C transac-
tions the costs of a restart is still lower than the costs
associated with the long waits of 2PL.

There are also downsides to using GDOCC over 2PL. Trans-
actions need to be programmed defensively - even if for in-
stance every transaction always inserts both a PhoneNum-
ber and an associated Employee record, with GDOCC
it can happen that a transaction reads the PhoneNumber
from its associated node, but the Employee from an out-
dated copy of another node which does not yet contain
this record. GDOCC is ACID compliant, but it is a bit of
a stretch in the definition of ACID. The transaction de-
scribed above would never commit - it would be rejected
during the validation phase. However, the transaction it-
self must be written in a way capable of safely reading
these erroneous values.

9.1 Future work

Various features and solutions have been worked out for
the GDOCC method, but could not be implemented due
to time constraints and scope set for this study.

9.1.1 Abnormal commits and foreign keys

Our GDOCC implementation does not support foreign
keys. Foreign keys are a type of constraint where one
record has to refer to another record. This record must
exist at all times. Taking the PhoneNumber and Employee
problem from the previous paragraph - if these are in-
serted by two transactions, and there is a foreign key from
the PhoneNumber record to the Employee record, how does
the transaction creating the PhoneNumber know if the Em-
ployee exists? When it does not exist in the copy that
it has of the node that should store the Employee, can it
safely raise an exception? No, because its copy might be
outdated. As such, it would need to perform an abnor-
mal commit. The transaction manager initiates a commit,
but instead of sending RequestToCommit messages with
the work done by the transaction, it uses the commit mech-
anism to validate if the constraint really is violated. If this
commits, it knows that yes, the constraint was violated so
it can safely raise an exception aborting the transaction.
If it does not commit, it restarts the transaction as usual.

9.1.2 Secondary keys and iterators

As mentioned, secondary keys are currently not supported.
Secondary keys are a nuisance - in 2PL they cannot sim-
ply be implemented by obtaining a lock on all values that
map to the key. Another transaction might add a new
value matching the same secondary key, which should have
been seen by the transaction manager. This same prob-
lem also exists for GDOCC, during the validation phase
it is not enough to simply check if the records retrieved
are unchanged, but after the use of a secondary key the
CommitManager must also check if there aren’t any un-
seen records matching the secondary key. For TPC-C this
would be enough - all secondary keys still contain the w_id
- the warehouse id, via which the hosting node can be de-
termined. However, for more sophisticated benchmarks
like TPC-E, this is not enough. Records do not have a

10

“home” node and the place where they are used the most
can change during the TPC-E benchmark. As such, either
every node needs to be asked to validate a certain query,
or a special shared “index” must be maintained, much like
ordinary records are maintained now. During the commit
phase, the CommitManager must also ask the node storing
the index if that bit of the index was unchanged.

9.1.3 Select and fetch

TPC-C often speaks in terms of select and fetch, which
are two distinct phases in retrieving a value. The first
indicates intention to read something, but does not yet
request the actual value. The second is actually used to
retrieve the value. In case of 2PL, supporting these as
separate operations would speed up certain transactions.
When a 2PL transaction wants to obtain two values from
far-off nodes, it could do a select on both of them so that
the transaction manager can provision the required locks
concurrently.

9.1.4 Concurrent validation

GDOCC can be further optimized by utilizing concurrent
validation. When an OCC transaction reads a value that
is not owned by the node, the node may see an update
for this value come in before the transaction tries to com-
mit. At that point, the node can restart the transaction
without incurring any overhead on the network. Our im-
plementation does not do this, and instead will still send
a RequestToCommit to the node owning the value, which
will then be rejected forcing a restart.

10. REFERENCES

(1] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM
Comput. Surv., 13(2):185-221, June 1981.

H. Boral, W. Alexander, L. Clay, G. Copeland,

S. Danforth, M. Franklin, B. Hart, M. Smith, and
P. Valduriez. Prototyping Bubba, a highly parallel
database system. IEEE Transactions on Knowledge
and Data Engineering, 2(1):4-24, Mar 1990.

K. M. Chandy, J. Misra, and L. M. Haas. Distributed
deadlock detection. ACM Trans. Comput. Syst.,
1(2):144-156, May 1983.

L. Chiu and M. T. Liu. An optimistic concurrency
control mechanism without freezing for distributed
database systems. In Data Engineering, 1987 IEEE
Third International Conference on, pages 322—-329.
IEEE, 1987.

T. Haerder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Comput. Surv., 15(4):287-317, Dec. 1983.

P. Toziin, 1. Pandis, C. Kaynak, D. Jevdjic, and

A. Ailamaki. From A to E: analyzing TPC’s OLTP
benchmarks: the obsolete, the ubiquitous, the
unexplored. In Proceedings of the 16th International
Conference on Extending Database Technology, pages
17-28. ACM, 2013.

L. Wevers, M. Huisman, and M. van Keulen. Lazy
evaluation for concurrent OLTP and bulk
transactions. In Proceedings of the 20th International
Database Engineering € Applications Symposium,
IDEAS ’16, pages 115-124, New York, NY, USA,
2016. ACM.

