
University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science

P.O. Box 217, 7500 AE Enschede
The Netherlands

Nested Quantification in Graph
Transformation Rules

Master’s Thesis for

Computer Science

by

J.H. Kuperus

submitted on June 25th, 2007

Exam Committee

dr. ir. A. Rensink ir. H. Kastenberg dr. ir. J. Kuper



“Life is really simple, but we in-
sist on making it complicated”
–Confucius



Preface

The document before you contains the resulting documentation of my Master’s Thesis.
In the period from September 1st, 2006 to June 28th, 2007 I worked on this project
to finalize my study in Computer Science.

I would like to thank the members of my graduation committee for their support
during this project. A few words for each, in alphabetic order:

• Harmen Kastenberg, for pointing me in the right direction when I got stuck
during implementation

• Jan Kuper, for warning me about Category Theory and helping me understand
it and wield its power

• Arend Rensink, for supplying the project idea and asking the questions I tried
to avoid

This version of the document was built on Monday, June 25, 2007 at 10:09, and has
version number 10.

Master’s Thesis, J.H. Kuperus, v10 i



ii Master’s Thesis, J.H. Kuperus, v10



Abstract

By tradition, researchers working on model checking tools continuously try to make
their tools faster and allow them to handle larger models. GROOVE is a model check-
ing tool which uses the mathematical formalism of graphs and graph transformations
to specify models and system behavior. Graph transformation systems allow complex
models to be visualized and are a natural way of modeling object oriented systems.

Graph transformation systems only allow their rules to be matched existentially, which
poses a serious limitation. Complex constructions with so-called helper edges are
often created to perform a task more than once. This causes the model to be more
complicated than it should be, for both the user and the tool.

This thesis defines an extension of the use of the single pushout approach which allows
nesting of alternated quantifiers to an arbitrary depth. This means entire subgraphs
may now be matched without first knowing exactly how many nodes it will contain.
The formalism has also been implemented in the GROOVE graph transformation tool
and shows drastic decreases of required statespace and computing time for several
well-known models.

Master’s Thesis, J.H. Kuperus, v10 iii



iv Master’s Thesis, J.H. Kuperus, v10



CONTENTS

Contents

Notations ix

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Graphs and Transformations 5
2.1 Basics and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Graph Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Single Pushout approach . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Double Pushout approach . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Application Conditions . . . . . . . . . . . . . . . . . . . . . . 13

3 Nesting Transformation Rules 15
3.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Nesting Application Conditions . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Graph Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Rule trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Matching Nested Rules . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Applying Nested Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Rule by Rule Application . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Amalgamation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Equivalence of Approaches . . . . . . . . . . . . . . . . . . . . 30

4 Implementation 35
4.1 Related Applications of Graph Transformations . . . . . . . . . . . . . 35

4.1.1 PROGRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 GREAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 AGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Methods of Quantification . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Cloning and Expanding . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Implementation in GROOVE . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 GROOVE rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Nesting GROOVE rules . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Implementation specifics . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Results of using nested rules . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 Gossiping Girls . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Master’s Thesis, J.H. Kuperus, v10 v



CONTENTS

5 Conclusions 45
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi Master’s Thesis, J.H. Kuperus, v10



LIST OF FIGURES

List of Figures

1.1 Sample process and statespace . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Two different graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Graph morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 A representation of the category Pre5 . . . . . . . . . . . . . . . . . . 8
2.4 Sample tree-shaped diagram . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Single Pushout diagram and a sample rule . . . . . . . . . . . . . . . . 11
2.6 Double Pushout diagram and a sample rule . . . . . . . . . . . . . . . 12
2.7 Application conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Sample Petri Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Sample Petri net from figure 3.1 as a simple graph in GROOVE . . . 17
3.3 Petri net predicate graphs . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Petri net graph predicate . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Rule morphisms commutativity . . . . . . . . . . . . . . . . . . . . . . 22
3.6 A sample rule tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Petri net graph predicate . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Petri net rules for the rule tree . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Petri net rule tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 Nested rule instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.11 Petri Net host graph G . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12 Petri net rule instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.13 Intermediate results and final result construction . . . . . . . . . . . . 26
3.14 Final graph construction for four instance . . . . . . . . . . . . . . . . 27
3.15 Rule matching decomposition . . . . . . . . . . . . . . . . . . . . . . . 28
3.16 Rule amalgamation, part 1 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17 Rule amalgamation, part 2 . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18 Rule amalgamation, conclusion . . . . . . . . . . . . . . . . . . . . . . 29
3.19 Applying the amalgamated rule . . . . . . . . . . . . . . . . . . . . . . 30
3.20 Abstracted view of both approaches . . . . . . . . . . . . . . . . . . . 32
3.21 Petri Net host graph G . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.22 Petri net intermediate graphs merging . . . . . . . . . . . . . . . . . . 33
3.23 Petri net rule final result . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Rules in the GROOVE editor . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Petri net rule in GROOVE . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Gossiping girls example, start state . . . . . . . . . . . . . . . . . . . . 40
4.4 Gossiping girls example, final state . . . . . . . . . . . . . . . . . . . . 41
4.5 Normal SPO rule for gossiping girls . . . . . . . . . . . . . . . . . . . . 41
4.6 Gossiping girls, nested copy rule . . . . . . . . . . . . . . . . . . . . . 42
4.7 Petri net, start graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Petri net, SPO rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Master’s Thesis, J.H. Kuperus, v10 vii



LIST OF FIGURES

viii Master’s Thesis, J.H. Kuperus, v10



NOTATIONS

Notations

(The number after the item indicates the page where the notation is defined.)

Symbols

G,H, . . . Labeled directed graphs in the category Graph, 5
L Set of labels, 5
f, g, f0, f1, . . . Graph morphisms in the category Graph, 6
m,m0,m1, . . . Matchings of a rule into a host graph, 10, 12
p, q, p0, p1, . . . Graph predicates, 18
r, s, r0, r1, . . . Transformation rules, 10, 12
t, t0, t1, . . . Rule trees, 22
T ∃p Set of existential subtrees of the predicate p, 20
Li Left-hand side graph of a rule ri, 10, 12
Ri Right-hand side graph of a rule ri, 10, 12
Rn

i Right hand side intermediate graph, obtained from sub-
rule ri with matching mn, 29

En Intermediate graph result, obtained from the rule in-
stance with matching mn, 26

ρ A morphism in the category Rule, 22

Definitions

DPO Double Pushout rewriting, 11
NAC Negative Application Condition, 10
SPO Single Pushout rewriting, 10
Graph Category of simple graphs and partial morphisms, 10
Rule Category of rules and rule morphisms, 17
Instance Category or rule instances and rule morphisms, 24

rootd Initial object of the diagram d, 9
subd(K) Reachable sub-diagram starting at object K in the di-

agram d, 9
outd(K) Arrows in the diagram d originating in the object K, 9
initd Arrows in the diagram d originating in the object rootd,

i.e. initd = outd(rootd), 9
exsubd(K) Existential subtree of the diagram d starting at the ob-

ject K, 20

Master’s Thesis, J.H. Kuperus, v10 ix



NOTATIONS

x Master’s Thesis, J.H. Kuperus, v10



1 Introduction

1.1 Context

”Errare humanum est“ 1. Seneca the Younger already stated in the first century after
Christ that humans make mistakes. Sadly, people still make mistakes today, computer
programmers are no exception to this rule. In an ongoing effort to reduce the number
of mistakes that will end up in any released software product, engineers employ tools
to attempt to detect errors as early as possible.

One of these methods is verification and in this thesis, the focus lies on verifi-
cation by model checking. In model checking, the engineer makes a model of the
application, either concrete or on a certain level of abstraction. These models rely on
two important notions: the state a program is in and what kind of actions may be
taken in any particular state. In a formal specification of an application, a designer
usually records several properties the system must have. Such properties may include
invariants, liveness properties, timing constraints, etc.

Given a model and one or more properties, a model checker can be used to evaluate
the model and check whether the chosen properties hold in all those states. In case
a property does not hold in the model, a model checker generally identifies how the
error was produced. This allows the designer to see the flaws in the model and adjust
them even before implementation has begun.

When a model checker is exploring all the possible states or executions of a model,
it keeps track of the states it has already visited. Eventually, when all states have
been visited, the entire statespace of the model will have been computed. A common
problem among model checkers is the fact that such a space tends to become very
large. For example, a single process such as shown in figure 1.1a has a statespace
of exactly four states. However, when two of these processes are run in parallel, the
combined statespace contains contains sixteen (4 ∗ 4) states. Figure 1.1b shows the
statespace of the combined processes.
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(b) Statespace of two combined processes

Figure 1.1: Sample process and statespace

1To err is human

Master’s Thesis, J.H. Kuperus, v10 1



CHAPTER 1. INTRODUCTION

Adding another instance of the same process to the model causes the space to
grow to 64 = 43 states. This phenomenon is called statespace explosion and is a
major problem among model checkers. A lot of research focuses on reducing either
the statespace, or the number of states that require checking. Examples of such
techniques are partial order reduction, abstraction, bit-state hashing, etc.

In this thesis, a method is developed to help reduce the statespace by means of
grouping many small steps into one single step. This is not done generally for any type
of model checker, but specifically for the GROOVE(Rensink, Kastenberg, & Staijen,
2004) model checker. GROOVE (GRaphs for Object Oriented VErification) is being
developed by the Formal Methods and Tools chair at the University of Twente.

The GROOVE project focuses on the use of model checking techniques for object-
oriented systems (Kastenberg & Rensink, 2006). Since object-oriented systems consist
more of reference structures than a collection of primitive values, graphs are used as
the means to represent states. Graphs are a more natural way to model these dynamic
structures than bit vectors used by classical model checkers. This approach is expected
to open up new opportunities to specify and verify highly dynamic structures.

In order to specify behavior of a model, GROOVE uses graph transformation
rules. These rules form a so called graph grammar, which can be executed by the
GROOVE Simulator to form a graph transition system (GTS). This GTS can then
be used to check the model against CTL formulas.

The project aims at creating a solid tool to promote model checking within the
industry, but also allows for excellent use in education due to the inherent visual
orientation of the model. Graphs show what happens and where it happens.

1.2 Goal

Reducing the statespace of models without losing the ability to decide whether or not
a property holds is a continuous effort of the model checking community. Currently,
GROOVE only supports one existential level of quantification. This means that a
single rule will be applied to exactly one instance of it in the model. There is currently
no way to express that all such instances should be transformed at once.

The goal for this research is to provide theory and an implementation to support
such universally quantified rules. The central question on which the research focuses
is “How can universal quantification help to reduce the statespace?”. The answer shall
be provided by the answers to the following questions:

1. What methods of quantification are being considered in the field?

2. What would be a useful notation for nested predicates / production rules?

3. How can universal quantification be defined in a formal way?

4. How should GROOVE be extended to support nested Application Conditions /
predicates?

5. What is the impact on the statespace and computing time?

Each question will be analyzed and answered in turn. The next section shows the
general outline of this thesis and gives an indication of which question is answered in
which chapter. For readers who are only interested in the answers, there is a brief
discussion in chapter 5 where the answer to each question is summarized.

2 Master’s Thesis, J.H. Kuperus, v10



CHAPTER 1. INTRODUCTION

1.3 Thesis Outline

Chapter 2 of this document is the result of a literature study on Graph Transforma-
tions. It describes in short what they are and introduces a few theoretic definitions
as a basis for chapter 3. This part is particularly useful for people unfamiliar with
this concept of graph transformations. This chapter provides a partial answer to the
first research question.

Chapter 3 introduces the central problem for this Master’s Thesis, the nested
quantification. This part defines the operation in terms of existing graph theory and
showcases several examples to illustrate the theoretical process. The third research
question is answered in this chapter. It will interest people who are working with
graph transformations or who want to know exactly what it is the author did during
his Master’s Thesis project. The chapter requires quite some background knowledge
on category theory, of which chapter 2 only gives a small introduction.

Chapter 4 focuses on the fourth and fifth research questions, but also briefly dis-
cusses several other graph transformation tools in the field, answering question one.
It describes some of the key choices in the implementation of the universal quantifica-
tion in GROOVE. Secondly, this chapter takes a few well known examples and shows
how the use of universal quantification reduces the statespace and computing time.

Last, but not least, chapter 5 provides a discussion on the work performed in this
thesis, recapping on the research questions and identifying future work.

Master’s Thesis, J.H. Kuperus, v10 3
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2
Graphs and

Transformations

This chapter provides a walkthrough of the required theory for this thesis. It lays out
the basic definitions on which the research relies and discusses related work in the
field. The material presented in this chapter is quite technical and mostly theoretical.
However, some examples are included to make it more accessible to people unfamiliar
with this kind of graph theory.

2.1 Basics and Definitions

Graphs are used to represent and reason about a wide variety of problems, from traffic
models to social networks. In order to be able to work on any form of graph, a formal
definition of what a graph is is required. Although there are many ways to define a
graph and there are many types of graphs, the focus in this thesis will be on labeled
directed graphs, since GROOVE operates on these graphs.

The exact specification of the representation of a label is irrelevant, it is simply
required that a set of labels, or alphabet, L exists. The examples in this thesis will
use labels consisting of numbers and words, e.g. list, append, cell, next, 1, 2, 3, 4.
With such a set of labels, definition 2.1 specifies what a graph is.

Definition 2.1 (simple graphs)
A labeled graph G with labels from the alphabet L is a tuple (NG, EG), where NG is
the set of nodes and EG is the set of edges, defined as EG ⊆ (NG × L × NG). One
tuple in EG consists of a source node, a label and a target node, respectively.

In addition three functions are given: srcG : EG → NG maps an edge to its source
node, tgtG : EG → NG maps an edge to its target node and lbl : EG → L maps an
edge to its label.

The graphs that adhere to this defintion are often called simple graphs. A graph
is called simple if its edges have exactly one source and one target node. Other types
of graphs loosen this restriction, like hypergraphs or multigraphs. GROOVE currently
only supports simple graphs and this thesis is also restricted to the use of simple
graphs. If there is no confusion to which graph the sets or functions from definition
2.1 belong, the subscript G will be omitted.

• •head // cell
zz

list
$$

(a) Correct

• •
head

((

head

66

(b) Incorrect

Figure 2.1: Two different graphs
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CHAPTER 2. GRAPHS AND TRANSFORMATIONS

Figure 2.1 shows two sample graphs, one is correct with respect to definition 2.1
(figure 2.1a). The other is not (figure 2.1b), because it has two edges with the same
source, destination and label.

Graphs can be related to each other, one may be embedded in another, or two
graphs may be structurally equal. Such relations are encoded in graph morphisms.
These morphisms form the foundation of graph transformations and are heavily used
in this thesis.

Definition 2.2 (graph morphism)
A graph morphism f : G → H is a pair of partial functions f = (fN , fE) with
fN : NG → NH and fE : EG → EH , such that fN ◦ srcG = srcH ◦ fE and fN ◦
tgtG = tgtH ◦ fE holds for all mapped edges, i.e. if an edge is mapped, its source and
target nodes must also be mapped. Labels on mapped edges are explicitly preserved, so
lblG = lblH ◦ fE.

Definition 2.2 is a very generic way to define a morphism. It defines an important
property for use with graph transformations: morphisms preserve labels. In the figures
in this document, a morphism will be depicted by dotted arrows between nodes of
different graphs. There will not be any arrows between edges, because they are
implicitly defined by the mapping of their source and target nodes. If the mapping
of an edge is not implicit, this will be noted in the describing text. An example of a
non-implicit mapping for an edge is when it has to be removed and a new one with
the same label is created.

If a figure depicts more than one graph, each one is encircled by a dotted ellipse.
Figure 2.2 shows two different morphisms, figure 2.2a shows a correct graph morphism
f : G→ H, whereas figure 2.2b shows an incorrect morphism g : G→ H with respect
to definition 2.2. Below is a brief examination of the two morphisms f, g which reveals
why they are correct or incorrect.

•a1

•a2

b

²²

•a3 •b2

•b1

•a4

a

OO a

®®

b

¶¶

++
::

""

(a) Correct morphism (f)

•a1

•a2

b

²²

•a3 •b2

•b1

•a4

a

OO b

²²

++
::

""

(b) Incorrect morphism (g)

Figure 2.2: Graph morphisms

The graphs G and H are defined as follows:

G = (NG, EG) H = (NH , EH)
NG = {a1, a2, a3, a4} NH = {b1, b2}
EG = {e1 = (a1, b, a2), e2 = (a3, a, a2)} EH = {e10 = (b1, a, b2), e20 = (b1, b, b2)}

According to the definition, the morphism f : G → H, shown in figure 2.2a,
defines the mappings fN and fE . The functions fN and fE map the elements of G in
the following way:

fN (a1) = b1 fN (a2) = b2 fN (a3) = b1

fE(e1) = e20 = (b1, b, b2) fE(e2) = e10 = (b1, a, b2)

6 Master’s Thesis, J.H. Kuperus, v10



CHAPTER 2. GRAPHS AND TRANSFORMATIONS

It should now be obvious that the second morphism (g) is not label preserving
and therefore not a morphism with respect to the definition. The label of edge e2 =
(a3, a, a2) is not preserved, it should map to an edge gE(e2) = (gN (a3), a, gN (a2)) =
(b1, a, b2) 6= (b1, b, b2). However, since the morphisms are partial, it is possible not to
map e2 onto anything in H, which would make the morphism g valid again.

The fact that node a4 is not mapped by the fN function does not invalidate the
morphism. Neither does the fact that two nodes are projected onto the same node.
However, in some cases it is desirable to have such restrictions on a morphism. This
leads to the following definitions. Since a graph morphism consists of two functions,
fN and fG, definition 2.3 will first define the different types of functions.

Definition 2.3 (function types)
i) A function f : G → H is said to be injective if ∀a, b ∈ G, f(a) = f(b) implies
a = b (or a 6= b implies f(a) 6= f(b))

ii) A function f : G→ H is said to be surjective if ∀y ∈ H, there exists an x ∈ G
such that f(x) = y

iii) A function f : G→ H is said to be bijective if it is both injective and surjective,
i.e. ∀y ∈ H there exists exactly one x ∈ G such that f(x) = y

iv) A partial function f : G→ H assigns values only to some subset G0 ⊆ G
v) A total function f : G → H is a partial function that assigns values to all

elements in G

The same properties hold for morphisms, defined as follows:

Definition 2.4 (morphism types)
i) A morphism f : (fN , fE) is injective if both fN and fE are injective functions

ii) A morphism f : (fN , fE) is surjective if both fN and fE are surjective functions

iii) A morphism f : (fN , fE) is bijective if both fN and fE are bijective functions

iv) A morphism f : (fN , fE) is partial if either fN or fE is a partial function

v) A morphism f : (fN , fE) is total if both fN and fE are total functions

With these new definitions in mind, the example graph morphisms f, g from figure
2.2 can be called partial surjective morphisms. In section 2.2 these different types of
morphisms will be used in the definition of graph transformation rules.

2.1.1 Category Theory

Before moving on to graph transformations, it is imperative to include some basic
Category Theory, since the approaches are defined in terms of category operations.
The definition of a category looks fairly simple, but this is due to a high level of
abstraction which makes it a very powerful construction which can create extremely
complicated scenarios. These definitions are derived from those in Barr and Wells
(1990).

Definition 2.5 (category)
A category C is a tuple (objC, arrC), where objC is a set of objects and arrC is a set
of arrows. Furthermore, the following properties must hold:

i) Each arrow or morphism f ∈ arrC has a domain and codomain in objC. If the
domain of f is A and the codomain is B, we write f : A→ B
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ii) For each pair of morphisms f : A → B and g : B → C, there is a composite
morphism g ◦ f : A→ C

iii) For every object A ∈ objC there is an identity morphism 1A : A→ A

iv) For every morphism f : A → B the following should hold: 1B ◦ f = f and
f ◦ 1A = f (identity property)

v) For morphisms f : A → B, g : B → C and h : C → D the following should
hold: (h ◦ (g ◦ f)) = ((h ◦ g) ◦ f) (associativity)

As with graphs, if it does not lead to confusion, the subscript of objC and arrC
will be omitted. A few examples will follow to give the reader a feeling for categories.

Example 2.6
The category Pren contains the integer numbers 0..n(⊆ N) as objects and the relation
≤ provides the arrows. Figure 2.3 shows the category Pren. The looping arrows are
the identities, e.g. 1 ≤ 1. Composition of arrows is the transitivity of the ≤ relation:
a ≤ b ∧ b ≤ c⇒ a ≤ c

0
¼¼

1//
¼¼

2//
¼¼

3//
¼¼

4//
¼¼

5//
¼¼

Figure 2.3: A representation of the category Pre5

An attentive reader will notice that the above figure is not a complete represen-
tation of the category Pre5. The composite arrows have been omitted. Composite
arrows often clutter figures and since the definition of a category requires them to
exist they are usually omitted in figures and diagrams. The same goes for identity
arrows, which figure 2.3 does show, but the diagrams in the rest of this thesis will
also not show identity arrows.

Category theory also allows for operations on objects within a category. This
thesis relies heavily on one operation, being the pushout. A pushout is an operation
on two arrows (or morphisms) which share the same domain, say f : Z → X and
g : Z → Y . The pushout of these morphisms consists of an object P and two
morphisms i1 : X → P and i2 : Y → P such that the diagram in figure 2.4a commutes.

Definition 2.7 (Pushout)
Let f : Z → X and f : Z → Y be morphisms, the pushout of f and g is an object
P and morphisms i1 : X → P and i2 : Y → P such that the diagram in figure
2.4a commutes. Additionally, if there is an object Q and morphisms j1 : X → Q
and j2 : Y → Q, due to the universal property of pushouts there must be a unique
morphism u : P → Q so that figure 2.4b commutes.

Z

X

f

²²

Y
g //

P

i2

²²

i1
//

(a) Pushout diagram

Z

X

f

²²

Y
g //

P

i2

²²i1 //

Q

u

ÂÂj1
''OOOOOOOOOOOOO j2

ºº/
//

//
//

//
//

//
/

(b) Universal property

The universal property of pushouts is a property that is very important in the next
chapter of this thesis. It is a property that makes it posible to prove the propositions
later in this thesis.
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As an example, consider the category of sets, with X and Y sets. If we write the
object Z as the intersection of these sets, with inclusion morphisms f and g, then the
pushout of f and g is the union of X and Y and the morphisms i1 and i2 are the
inclusion morphisms from X and Y into P respectively.

This thesis uses several categories in its definitions, some of which will be intro-
duced later on in chapter 3. One thing all these categories have in common is that
they are based on a common category. The category of simple graphs and partial
morphisms is the category in which the graph transformations operate and on which
all theory in chapter 3 is based.

Definition 2.8 (Graph category)
The category Graph has simple graphs as objects and partial graph morphisms as
arrows.

The category Graph has all pushouts as proven in Ehrig et al. (1997), which
enables the use of pushouts for graph transformations. The specifics of this approach
in graph transformations will be explained in section 2.2, but a small preview may
make it easier to understand.

A pushout on a graph requires at least two morphisms, with a shared domain. Take
a look back at figure 2.4a and say Z, X, Y and P are graphs. In graph transformations,
the graph X is usually the graph on which a transformation is executed, Z and Y
are part of the transformation rule and P is the result. The morpshism g : Z → Y
specifies what has to be changed in the graph, i.e. what must be deleted is not mapped
by the morphism and the new elements only exist in Y . The morphism f : Z → X is
usually called the matching of the rule into the host graph.

Chapter 3 relies heavily on the use of diagrams, since they are the primary formal-
ism for reasoning with categorical structures. Diagrams show objects and arrows and
are required to commute. Meaning that if two there are two paths from one object
to another, the two paths have to yield the same result. Figures 2.4a and 2.4b are
examples of diagrams.

G

K
²²

L
ÂÂ?

??
??

??

M
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

N
²²

Figure 2.4: Sample tree-shaped diagram

A specific type of diagram is a tree-shaped diagram (see figure 2.4. Such a diagram
displays a tree of objects, meaning that there are no cycles and from the root to each
element in the tree, there is exactly one path. In this thesis, the arrows originating
from an object X in a diagram d will be called outd(X). The following definition will
introduce a few notations used in conjunction with tree-shaped diagrams.

Definition 2.9 (properties of tree-shaped diagrams)
A tree-shaped diagram d in a category C is denoted as a tuple (G, outd(G)) and has
the following properties:

• the root a of tree-shaped diagram d is denoted rootd(= G)
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• for each arrow f : G → K ∈ outd(G), subd(K) is the sub-diagram starting at
root K and is also a tree-shaped diagram

• the set of arrows originating from the root of a diagram is initd(= outd(rootd))

2.2 Graph Transformations

The use of graph transformations is one of many applications of the generic field of
rewriting logic. Rewriting logic acknowledges the relation between logical formulae
and computations. This chapter will introduce several approaches to rewriting graphs,
but for a more complete overview of different rewrite logic formalisms, the reader is
recommended to consider Mesegue (1998). In graph transformations, the rewriting
occurs on the structure of a graph. A part of the graph is essentially replaced by
another graph.

Algebraic graph rewriting relies on the notion of rules and categorical structures
to represent the operation. Rules are built up from morphisms, operating from a left
hand side, which is to be matched to the host graph, or a part of the host graph.
Once such a match is found, the rule morphism specifies how the matched part in the
graph will change.

There are several approaches to algebraic graph rewriting. Each of them specifies
a rule and its application differently. The Single (SPO) and Double Pushout (DPO)
methods have been used the most and they have extensive theory on their different
uses and different tools have been developed using these methods. A good overview
of these two approaches and their uses can be found in Ehrig et al. (1997); Corradini
et al. (1997). This thesis gives a small introduction to these two approaches.

A more recent approach is the so-called Sesqui approach, which combines the
advantages of the SPO and DPO approaches. Although the Sesqui approach is very
interesting, a complete explanation lies beyond the scope of this thesis, since it requires
a lot of extra base theory to be explained that is of no further use in this thesis. For
more information on the Sesqui approach the reader is directed towards Corradini,
Gadducci, and Montanari (1995); Stell (1994); Corradini, Heindel, Hermann, and
König (2006).

There has also been some research on account of a pullback approach, but it seems
this method has lost interest since there are hardly any recent publications on the
topic.

2.2.1 Single Pushout approach

The Single Pushout (SPO) approach is at first sight a fairly intuitive method. The
SPO approach operates on the category of simple graphs and partial morphisms
Graph as defined in definition 2.8. Rules for the SPO approach look for one particular
subgraph in the hostgraph, which must match the left side L, and replace this part
with the graph R on the right side as specified by the morphism. A single partial
morphism r : L → R (sometimes written as L r→ R) between the left side graph L
and the right side graph R specifies exactly what happens in a graph transformation.
Applying such a rule means that a matching, or embedding of L in the host graph
G has to be found. This matching must be a total morphism m : L → G, i.e. all
elements of the graph L have to be mapped onto an element in G, but it does not
have to be an injective morphism, i.e. two elements from L may be mapped onto the
same element in G.
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CHAPTER 2. GRAPHS AND TRANSFORMATIONS
Definition 2.10 (SPO rule)
An SPO rule r is a morphism r : L → R in the category Graph. The left and right
side graphs are written as Lr and Rr. A matching of a rule r is a total morphism
m : L → G. Applying an SPO rule is done by computing the pushout of r and m to
yield a target graph H (see figure 2.5a)

Once a matching is found, the application leaves the part in G that is not matched
untouched with the exception of dangling edges (see below). The matched elements
are either preserved or deleted, depending on whether they have an image in the rule
morphism or not. Finally, elements that exist in Rr, but have no preimage in the
morphism are newly created in the target graph H. The application of the rule then
boils down to H = (G\Lr) ∪ Rr, which essentially says remove the matched part of
Lr, replace it with a copy of the right side Rr. Figure 2.5a displays a diagram in Graph
in which an application is depicted, an application is valid if this diagram commutes.
It also shows how the SPO approach got its name: the application is exactly a single
pushout operation.

L R
r //

H
²²

G

m

²²
//

(a) Single Pushout Diagram

•

•
a

²²

Lr

•))

•
a

²²
•

b

77oooooo

Rr

))

(b) Sample Rule

Figure 2.5: Single Pushout diagram and a sample rule

The SPO has a loose application condition. If a rule application would delete nodes
in such a manner that one or more edges no longer have a source or target node, so
called dangling edges, these edges will be deleted as well to obtain a new valid graph
according to defintion 2.1. If two nodes from the left hand side are mapped onto
the same node in the host graph and one is deleted in the rule and the other is not,
deletion wins. Deletion of nodes always has priority in the SPO approach. This
priority of deletion is where some of the less intuitive situations may occur, i.e. one
might create a rule that searches for three nodes, places an edge between two of them
and deletes the third. It would then seem logical to expect that there would be an
extra edge in the target graph, but it is possible to find that only a deletion occurred.
This will happen if the node that should be deleted is matched to the same node that
gets an extra edge, since deletion takes priority.

Figure 2.5b displays a sample SPO rule. This particular rule will look for two
nodes with an edge between them which has the label a, this is shown by the graph
L. If such a pair of nodes is found, the rule’s morphism specifies that these elements
should be preserved in the graph and that a new node and a new edge should be
created. This is because node at the end of the b-edge and the b-edge itself do not
have a preimage in the morphism, but only exist in the right side R. So the node in
the target graph that was matched to the node at the end of the a-edge receives a
new edge with a new node at the end.

2.2.2 Double Pushout approach

The Double Pushout approach (DPO) is also based on the categorical pushout con-
struction. As the name suggest, this approach uses two pushouts instead of one. A
rule for this approach is built from three graphs, related through two total morphisms.
The need for two pushouts comes from the fact that all morphisms have to be total.
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This means deletion can not be specified as with the SPO rule, by simply not mapping
an element from Lr to Rr, because then the morphism would be partial. To deal with
this, the DPO approach uses an interface graph Kr which is a common subgraph of
both Lr and Rr, which contains elements that remain unchanged during application.
The rule itself now consists of two total morphisms s : Kr → Lr and t : Kr → Rr,
where deletion is specified by elements that exist in Lr, but do not exist in Kr. New
elements are similarly introduced, because they exist in Rr and not in Kr. In short,
the application of a DPO rule can be written as H = (G\(Lr\Kr)) ∪ (Rr\Kr), i.e.
the matched part of Lr that is not also part of Kr is deleted, and the part of Rr that
is not part of Kr is added to the graph. A complete DPO rule is usually written as
r = (L s← K

t→ R).

Figure 2.6a shows the diagram that has to commute when applying the DPO
approach. The D object shown here is called a pushout complement object, which is
actually the intermediate result, constructed from the first pushout. For a DPO rule to
work in a certain category, this pushout complement object must be uniquely defined
within the category. The requirement of the uniqueness of the pushout complement
object is the only requirement the DPO approach imposes on a category.

Definition 2.11 (DPO rule)
A DPO rule r consists of two total morphisms s : K → L and t : K → R. The left
and right side graphs are again written Lr and Rr. Additionally, the interface graph
is written as Kr. A matching of a rule r is a total morphism m : Lr → G. Applying
a DPO rule is done by first computing the pushout complement object D and then
computing the pushout of t and m′ to yield the target graph H (see figure 2.6a)

KL
soo

G

m

²²
D

m′

²²
oo

R
t //

H
²²

//

(a) Double Pushout Diagram

•
•

d 77oooooo

•
a

²²

Lr

•

•
a

²²

Kr

•))

•
a

²²
•

b

77oooooo

Rr

))uu

uu

(b) Sample Rule

Figure 2.6: Double Pushout diagram and a sample rule

Just like the application of an SPO rule, a matching has to be found in the host
graph G. The rest of the rule application now comes down to H = (G\(Lr\Kr)) ∪
Rr\Kr). The computation of a matching for the DPO approach is the same as for
the SPO approach, both take any application conditions into account and try to find
a matching of Lr in G.

As opposed to the SPO approach, the DPO approach has a strict application
condition. The so called gluing condition consists of a dangling condition and an
identification condition. The dangling condition says that no dangling edges may
be left by the rule, as opposed to the SPO approach, which simply deletes dangling
edges. The identification condition states that any element that is to be deleted may
not be identified with another element that remains constant, i.e. an element that
exists only in Lr may not be mapped to an element that also exists in Kr. Situations
such as unexpected deletion can not occur due to this restriction.

Figure 2.6b displays a sample DPO rule. This example will search for three nodes,
with edges between them as depicted in the Lr graph. When this rule is applied to
a hostgraph, the node at the start of the d-edge and the d-edge are deleted, because
they exist in Lr, but not in Kr. The nodes connected to the a-edge remain unaltered
and finally, a new node is added and connected to the graph by the new b-edge.
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2.2.3 Application Conditions

Both the SPO and DPO method support the use of application conditions. An ap-
plication condition K is a graph of which the left side of the rule is a subgraph, i.e.
L ⊂ K. When a matching for L in G is being computed, such a matching must not
be expandable to one of the application conditions. Intuitively, application conditions
specify what is not to be matched, i.e. what kind of structures the matched part may
not contain. For example, a rule may state “Find a seat” and an application condi-
tion may say “The seat may not be occupied”, if a matching of this rule is computed,
every seat will be examined and if it is not occupied, it is a valid matching, if it is
occupied, the matching is not valid.

K0

K1

. . .

Kn

L G
m //$$

JJJJJJJJJJJJJJJJJJJJJJ

**TTTTTTTTTTTTTTTTTTTT

44jjjjjjjjjjjjjjjjjjjj

WW//////////////

__???????

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

Figure 2.7: Application conditions

Formally, a rule may have any number of application conditions Ki with L ⊂ Ki

for each i. A matching m : L → G is valid if there are no total morphisms from
any Ki to G such that diagram 2.7 commutes. Due to the negative nature of these
conditions, they are generally referred to as negative application conditions (NAC).
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3
Nesting Transformation

Rules

3.1 Research Motivation

Behind any research project lies a desire, it is wat sets a researcher in motion. Within
a tool-building project it should either fix problems that keep users from effectively
using the tool, or they should improve the functionality and usability of it. The work
done within this thesis project does a little of both.

Allowing nested quantification within graph transformation rules allows the user
to specify actions for groups of elements. It offers the possibility of specifying that
several steps should be done at once. Not only does this strengthen the specification
language of GROOVE, it makes it possible to solve certain problems in a more intu-
itive way. This is because it makes more sense to say “Throw away all newspapers in
the bin”, than to say something like “Put up a sign to indicate that I am throwing my
newspapers away. As long as there is a newspaper in the bin, throw it away. If there
are no more newspapers in the bin, remove the sign”. The sign used in this example
is to indicate to other rules that a series of actions of a certain rule is taking place.
In order to keep other rules from interfering, each rule that may interfere with this
rule needs to make sure the sign is not there. If there are multiple rules that use such
signs to indicate work-in-progress, just imagine how many other rules may need to
look out for all of these signs. It makes a set of rules unnecessarily complicated.

Nesting levels of quantification as described in this thesis allows for the creation of
more expressive rules, i.e. things that had to be specified in multiple rules may now
be captured in a single rule. GROOVE was until recently only able to handle rules
that were matched existentially, but it is now also possible to alternate universal
and existential matching to an arbitrary depth. Not only does this allow users to
implement their rules more intuitively by specifying actions for groups of elements, it
dramatically speeds up model evaluations by reducing the number of states created.
With the sign-method described above, a large amount of states would be created
while the sign was present. There was no way of telling GROOVE that the order in
which transformations occurred in such a part did not matter, i.e. GROOVE would
unnecessarily explore all possible orders.

A limitation of the current implementation of GROOVE was that NACs were
implicitly created for every connected part that contained a NAC edge or node. This
means that rule developers had to be careful with specifying NACs correctly. The use
of nested quantification would require a mechanism to specify which elements are part
of which NAC. This thesis project offered a good opportunity to fix this limitation.

This chapter defines new theory to support the notion of nested quantifaction
in graph transformation rules. In order to keep the material readable and make the
explanations of the new theory as intuitive as possible, a series of examples will appear
throughout this chapter. The examples will aplly the theory that was introduced
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before it and eventually define a quantified rule for Petri net execution. The next
section introduces the concept of Petri net theory and shows how Petri nets may be
modelled by a graph.

An example: Petri nets

Graph transformation systems can model virtually any problem, but require a trans-
lation into the graph formalism at hand, i.e. simple graphs in the case of GROOVE.
Since Petri nets are already graph-like structures, there is no need for a complicated
translation into simple graphs. It allows the reader to focus on the creation and appli-
cation of nested rules. Instead of formally defining Petri nets and forcing the reader
to read about two formalisms, a definition in natural language will be used.

In computer science Petri nets are used for things like workflow management, data
analysis, concurrent programming, etc. When a set of processes have to be modeled
that can execute tasks on their own, but have to wait for each other at some point,
Petri nets can be used.

In short a Petri net consists of places, transitions and arrows. Transitions may
be seen as synchronization points. They have input places, which are connected to
it by arrows pointing from the place to the transition. They also have output places,
which are connected to the transition by arrows pointing to the place. Transitions
never have arrows to other transitions and places never have arrows to other places.
A transition may have any number of input and output places.

Transitions can be either enabled or disabled. This depends on whether its input
places have tokens or not. A token on a place indicates that the transition that has
the place as an output place was fired some time ago. The transition that has this
place as an input place must wait until all its input places have tokens, i.e. all other
processes that synchronize here have completed their tasks. In Petri nets, a place
may contain one or more tokens. Tokens have no value and no extra meaning, they
are only needed for transitions to fire. A transition which has at least one token on
every input place is called enabled. A transition which has at least one input place
without any tokens is called disabled.

'&%$Ã!"#•

'&%$Ã!"#•

'&%$Ã!"#•

//
ÂÂ?

??
??

??
?

??ÄÄÄÄÄÄÄÄ

'&%$Ã!"#77oooooo

'&%$Ã!"#''OOOOOO

(a) Before transition

'&%$Ã!"#

'&%$Ã!"#

'&%$Ã!"#

//
ÂÂ?

??
??

??
?

??ÄÄÄÄÄÄÄÄ

'&%$Ã!"#•77oooooo

'&%$Ã!"#•''OOOOOO

(b) After transition

Figure 3.1: Sample Petri Net

Whenever a transition becomes enabled, due to the firing of other transitions, it
may fire itself. A transition that fires consumes one token from each input place and
produces one new token on each output place. Figure 3.1a illustrates a sample Petri
net with one transition. The transition in this figure is enabled, since there are tokens
on each input place, represented by the dots. When this transition fires, the situation
illustrated in figure 3.1b is created. In figure 3.1b, the transition is disabled.

Now it becomes clear why transitions can be seen as synchronization points.
Whenever a token is created on an input place of a transition, that token has to
wait until all other input places also have a token, after which the process may con-
tinue past the synchronization point, or transition.
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place

place

place

trans
in //

in

''OOOOOOOOOOO

in

77ooooooooooo

place
out 33ggggggggg

place

out
++WWWWWWWWW

token
markoo

token
markoo

token
markoo

Figure 3.2: Sample Petri net from figure 3.1 as a simple graph in GROOVE

In Petri net theory, a transition shown in figure 3.1 is a single atomic step, i.e. it
can not be interrupted by other transitions. When modeling Petri nets in a graph
transformation system, it is desirable to capture this behavior in a single transfor-
mation rule. A naive solution would be to take the two graphs from the example in
figure 3.1 and define a rule which says “find the (sub)graph of figure 3.1a and replace
it with figure 3.1b” . However, such a rule will only match this particular (sub)graph,
or worse, it will match any transition with at least three input places with tokens and
at least two output tokens, whether there are any input places without tokens or not.
This approach would require a rule for every possible transition in your model and
every rule must check that it is not being matched with a transition it should not
handle. A better rule would be “find a transition which has tokens on all its input
places, remove those tokens and add tokens to all output places”.

This chapter will introduce the theory required to create such a general rule for
Petri net transitions and will also gradually create that rule in the example sections.

3.2 Nesting Application Conditions

Negative application conditions (NACs) as proposed in (Ehrig, Ehrig, Habel, & Pen-
nemann, 2004; Rensink, 2004) and briefly described in section 2.2.3 have been in use
for quite some time now. A more recent proposal in (Rensink, 2006) loosely shows
how NACs can be used to extend graph transformations with universal quantification.
This chapter redefines several terms from that paper as well as introduce several new
definitions to streamline the nesting of NACs.

The entire idea is built around two important notions: a graph predicate and a
rule tree. A graph predicate combines levels of nesting to yield multiple levels of
quantification, whereas the rule tree allows for the application of nested rules. In
section 3.2.1 the graph predicate and several related definitions will be introduced,
after which the notion of a rule tree will be defined in section 3.2.2 and section 3.3
defines how the two should be combined to perform graph transformations.

3.2.1 Graph Predicates

The creation of a nested rule requires two components: a graph predicate for com-
puting the matchings of the rule and a rule-tree to perform the application. The
construction used for matching is called a graph predicate, because a graph that con-
tains a subgraph that has a structure as defind in the predicate is said to satisfy this
predicate. Whenever a graph satisfies a predicate, a matching can be found. This
section defines the theory required to create graph predicates and to compute the
resulting matchings accordingly.

A graph predicate p consists of several graphs and connecting morphims and is
a tree-shaped diagram in Graph. Together they represent a piece of first order logic
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(Rensink, 2004). A graph H has a matching of a predicate p if there is a morphism f
from the root of the predicate to the graph H that satisfies the predicate p. Definition
3.1 defines a graph predicate as well as the satisfaction relation.

Definition 3.1 (graph predicate)
A graph predicate p over G ∈ Graph is a tree-shaped diagram in Graph rooted in
G(= rootp). The diagram p is called ground if G is the empty graph, written as
G = ∅.

Let H ∈ Graph be an arbitrary graph and f : rootp → H a morphism. Predicate
satisfaction is a binary relation |= between predicates and morphisms: p |= f expresses
that the morphism f satisfies p. The |= relation is defined as the smallest relation
such that p |= f if the following condition holds:

• There is at least one g : G → K ∈ initp and h : K → H, such that f = h ◦ g
and subp(K) 6|= h

A host graph H is said to satisfy p, denoted p |= H, if p |= f and f : ∅ → G. Note
that p has to be ground.

Just like a first order logic formula can have free variables, graph predicates can
have free variables. These should be defined in the root of a predicate, which is
why the root of a predicate is also called the context graph. This context graph
always resides on depth 0 (or level 0) in the predicate. However, this thesis uses only
ground predicates, i.e. the context graph will always be the empty graph. Future
implementations may extend this behavior and allow the use of free variables, but for
now free variables in a predicate are not used.

Taking a closer look at the definition reveals that the graphs at depths or levels
1, 3, 5, ... (i.e. odd levels) in the predicate should be existentially matched, much like
a normal SPO rule. A normal rule can also be captured in a graph predicate. It
would be a predicate with the left graph on the first level and any potential negative
application conditions on the second level.

The graphs at the levels 2, 4, 6, ... (i.e. even levels) constitute either a negative
application condition or a graph that should be universally matched. For a graph
K at a universal level the difference between being a NAC or a universal condition
is whether outd(K) is empty or not. If outd(K) is empty for a graph at a universal
level, the graph K is a negative application condition. If outd(K) is non-empty, it is
a universal condition and it should be matched accordingly.

Given this distinction in levels, the satisfaction relation may be more intuitively
described as existential (|=∃) and universal (|=∀) relations.

Definition 3.2 (predicate satisfaction)
• A graph predicate p is existentially satisfied by f : G→ H, p |=∃ f if:

– There is at least one g : G→ K ∈ initp and h : K → H, such that f = h◦g
and it holds that subp(K) |=∀ h.

• A graph predicate p is universally satisfied by f : G→ H, p |=∀ f if:

– For all g : G → K ∈ initp and all h : K → H, such that f = h ◦ g and it
holds that subp(K) |=∃ h.

In words the above definition states that for existential satisfaction, a (sub)predicate
p is satisfied by the morphism f if there is at least one arrow from rootp to an ex-
istential condition K and also a morphism from K to the host graph G, such that
the morphism f can be decomposed into the arrow from rootp to K (∈ initp) and

18 Master’s Thesis, J.H. Kuperus, v10



CHAPTER 3. NESTING TRANSFORMATION RULES

the morphism from K to G. This morphism from K to G must then be universally
satisfied by the subpredicate subp(K).

For universal satisfaction, a (sub)predicate p is satisfied by a morphism f if for
each arrow from rootp to a universal condition K there are morphisms from K to
the host graph G, such that f can be decomposed into the arrow from rootp to K
(∈ initp) and the morphism from K to G. For each morphism from K to G that
decomposes f like this, the subpredicate subp(K) must be existentially satisfied by
that morphism. If this condition has no arrows in initp, but there is a morphism
from rootp to G, then the predicate can not be satisfied and this condition counts as
a NAC.

In order to use these more intuitive notations, it is imperative to prove they
are equivalent to the earlier definition of predicate satisfaction. Luckily they are
equivalent as proposition 3.3 and proof 3.4 will show.

Proposition 3.3
Let p be a graph predicate and f : rootp → G a morphism from rootp to some arbitrary
host graph G ∈ Graph. Then, p |=∃ f iff p |= f and p |=∀ f iff p 6|= f .

This proposition relies on the size of the predicate tree. The following proof
inductively proves proposition 3.3.

Proof 3.4
• Size 0: subp(K) is a leaf, outp(K) is empty

– p |=∃ f = p |= f , since subp(K) 6|= f vacuously (outp(K) is empty)

– p |=∀ f = p 6|= f , since subp(K) 6|= f vacuously (outp(K) is empty)

• Size n: the hypothesis holds for subp(K)

– p |=∃ f ⇒ p |= f : there is a g : G→ K ∈ initp and a h : K → H, f = h◦g
and subp(K) |=∀ h. Rewriting the universal satisfaction to an existential
yields that subp(K) 6|=∃ h which holds due to the induction hypothesis.

– p |=∃ f ⇐ p |= f : there is a g : G → K ∈ initp and a h : K → H, such
that f = h ◦ g and subp(K) 6|= h, which is equivalent to subp(K) |=∀ f due
to the induction hypothesis.

– p |=∀ f ⇒ p 6|= f : for all g : G → K ∈ initp and all h : K → H it holds
that f = h ◦ g and subp(K) |=∃ f . Rewriting the universal satisfaction as
an existential one yields: p 6|=∃ f : there is no g : G→ K and h : K → H
such that f 6= h ◦ g and subp(K) 6|=∃ h. Removing the negations on both
sides yields the requirement from defintion 3.1.

– p |=∀ f ⇐ p 6|= f : this proof is the same as the previous, only mirrored.

¤

In logic, predicates are valued by a proof of satisfaction, in this case a graph
predicate is valued by a matching. In order to use the satisfaction relation described
above, a proof of satisfaction must be formalized to value the graph predicate and
create a matching. The result of definition 3.5 is a collection of morphisms from
graphs in the predicate to the host graph. These morphisms are related to each other
in the same way their domains are related in the predicate. The important thing
is that for each matched instance of a universal level, there is a morphism on an
underlying existential level that projects the left side of the rule onto the host graph.

Since universally matched parts of the predicate now have morphism both on the
universal level and an underlying existential level, it makes sense to only use one of
these morphisms. Therefore rules may only be defined on existential levels and all
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of the morphisms which originate from an existential level eventually constitute the
matching of the nested rule.

Definition 3.5 (proof of satisfaction)
Let p be a graph predicate over G and let f : G→ H be a graph morphism.

• A proof of existential satisfaction φ : p |=∃ f is a triple (g : G → K,h : K →
H,ψ), where g ∈ initp, f = h ◦ g and ψ : subp(K) |=∀ h is a proof of universal
satisfaction

• A proof of universal satisfaction ψ : p |=∀ f is a partial function ψ such that for
all decompositions f = h ◦ g with g : G→ K ∈ initp and h : K → H, the image
ψ(g, h) : subp(K) |=∃ h is a proof of existential satisfaction

Before this theory is put into practice in the next example section, one last prop-
erty of a predicate is required. Every graph predicate has existential subtrees, which
are important when a nested rule is to be applied. Essentially, it takes a predicate
and filters out all the universal levels. This is formalized in definition 3.6.

Definition 3.6 (existential subtree)
Let p be a graph predicate, the set of existential subtrees of p is defined as T ∃p =
{exsubp(H)|G → H ∈ initp}, where exsubp(H) is the existential subtree in p origi-
nating in H, defined as exsubp(H) = {(g ◦ f, exsubp(L)|f : H → K, g : K → L ∈ p}

Since a graph predicate starts with a context graph and the first level below the
context graph contains existential conditions, this definition yields a set of existential
subtrees. In a give graph predicate p, there is exactly one existential subtree rooted
in K for each arrow f : rootp → K ∈ initp.

Petri net Graph Predicate

In the process of creating a nested rule, the first step would be to create a predicate.
It will specify in one diagram what should be matched. Building a predicate can start
with writing in words what should be matched. For a Petri net rule this would be:

“Find a transition, then find all input places with a token, then find all output
places. Ensure there are no input places without a token.”

This statement can be easily written in first order logic. The following formula
specifies exactly what the above statement says:

∃x ∈ T : ∀y ∈ P : (in(x, y) ∧mark(y)) ∨ out(x, y)∧ 6 ∃z ∈ P : in(z, y) ∧ ¬mark(z)

In this formula, the set T represents all transition nodes and P all place nodes.
The relation in(x, y) says that y is an input place of x and out(x, z) says that z is an
output place of x. The last part of this formula is actually superfluous, by requiring
all incoming places to have a token, requiring that there should not be an input place
without a token is redundant. This reduces the formula to the following:

∃x ∈ T : ∀y ∈ P : (in(x, y) ∧mark(y)) ∨ out(x, y)

Translating this to a graph predicate starts at the left of the formula. The first
thing that needs to be translated is ∃x ∈ T , an existentially matched transition (see
figure 3.3a).

The next part that will be translated is universally matched and the or in this
part of the formula causes there to be two seperate levels of universal matching. The
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easy part is matching all output places (∀z ∈ P : out(x, z)), seen in figure 3.3b. The
universal condition and the existential condition for this part are the same.

The part that will have to match all input places (∀y ∈ P : in(x, y)) with a
token (∧mark(y)) is slightly more complicated. To correctly enforce the existence
of a token, this part will be broken up into two steps. The first step is to match
all incoming places (see figure 3.3c), which will be done at a universal level. The
next step is to enforce enforces each matched input place to have a token (see figure
3.3d), which is done at the existential level beneath figure 3.3c. If one of the input
places matched by figure 3.3c does not match figure 3.3d, the entire matching will be
invalidated due to definition 3.2.

Trans

(a) ∃x ∈ T

Trans place
out //

(b) ∀z ∈ P : out(x, z)

Transplace
in //

(c) ∀y ∈ P : in(x, y) ∧
mark(y)

Transplace
in //

token

mark

OO

(d) in(x, y) ∧mark(y)

Figure 3.3: Petri net predicate graphs

All these graphs have to be combined into a graph predicate to perform the overall
task of matching. Figure 3.4 roughly shows the structure required. The morphisms
from 3.3a to its 3.3b and 3.3c project the transition, so all matches will use the same
transition as the base for matching the places. The morphism between 3.3c and 3.3d
is a total morphism, i.e. all elements are projected. The morphism between 3.3b on
level 2 and on level 3 is actually the identity. The numbers on the left of the diagram
represent the predicate level on which the graphs reside, these are for illustrative
purposes only.

∅0

3.3a
²²

1

3.3c
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

3.3d
²²

3

2 3.3b
ÂÂ?

??
??

??

3.3b
²²

Figure 3.4: Petri net graph predicate

The reason that the subgraph in figure 3.3b appears twice in the diagram is that
it has to be matched both universally and existentially. The appearance on level 2
makes sure all matching places are matched and the appearance on level 3 allows
the transformation of each matched instance. Without an appearance on level 3, the
graph on level 2 would be interpreted as a negative application condition. In the
next section, rule trees will specify how elements matched by a predicate should be
transformed.
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3.2.2 Rule trees

With predicates defined as the mechanism to match quantified graph structures, it
is time to define transformations on such structures. Since the process of matching
has already caused there to be a tree-like structure between the morphisms, it is only
logical to define the transformations in a similar fashion. A rule tree is therefore a set
of normal SPO graph transformation rules which are nested. More formally, a rule
tree is a tree-shaped diagram in the category Rule.

Definition 3.7 (Rule category)
The category Rule has graph morphisms (rules) from Graph as objects and rule mor-
phisms as arrows. A rule morphism ρ : r → s between rules r and s is a tuple of total
graph morphisms (ρL, ρR), where ρL : Lr → Ls and ρR : Rr → Rs such that in Graph
the diagram shown in figure 3.5 commutes.

Lr Rr
r //

Ls

ρL

²²
Rss

//

ρR

²²

Figure 3.5: Rule morphisms commutativity

Note that the rule morphisms mentioned in the definition of Rule are morphisms
between rules. They are not the morphism of a rule, which are graph morphisms in
Graph. This distinction is required to create a nested structure of rules, where rules
are connected to each other by a rule morphism. The following definition of a rule
tree shows this.

Definition 3.8 (rule tree)
A rule tree t is a tree-shaped diagram in Rule rooted in r0(= roott). Figure 3.6 displays
a sample rule tree. Each rule r ∈ t is called a subrule of t.

The left subtree of a rule tree (tL) is exactly the tree of Lri graphs and ρL
j mor-

phisms. The right subtree of a rule tree (tR) is exactly the tree of Rri graphs and ρR
j

morphisms.

(r0 : Lr0 → Rr0)

(r1 : Lr1 → Rr1)

ρ1

²²

(r2 : Lr2 → Rr2)

ρ2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

(r3 : Lr3 → Rr3)

ρ3

ÂÂ?
??

??
??

??
??

Figure 3.6: A sample rule tree

Definition 3.8 defines a left and right subtree of a rule tree. These subtrees are
actually tree-shaped diagrams in Graph, since they have graphs as objects and graph
morpshisms as arrows. Since definition 3.6 showed that a graph predicate can have
a set of existential subtrees, it is necessary to select a left subtree of a rule tree to
compare it with. This is because a rule tree can only work with a predicate if one the
predicate’s existential subtrees is exactly the same as the rule tree’s left subtree.
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All the definitions up to this point have been laying the foundation for the defi-
nition of a nested rule. A nested rule combines a graph predicate with a set of rule
trees, which can then be used to match and apply complicated transformation rules.

Definition 3.9 (nested rule)
A nested rule is a tuple (p, T ), where p is a graph predicate and T is a set of rule
trees. Additionally the following has to be true: {tL|t ∈ T} = T ∃p , i.e. the set of left
subtrees must be equal to the set of existential subtrees of the predicate p.

Petri Net Rule Tree

The Petri net predicate created in section 3.2.1 will need to have a rule tree associated
with it to be useful. This section describes the creation of the rule tree. Figure 3.7
recalls the predicate created in the previous example section. Each graph on an
existential level gives rise to a transformation rule. In this example, there will be
three rules, since there are three graphs on existential levels, being 3.3a, 3.3b and
3.3d.

∅0

3.3a
²²

1

3.3c
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

3.3d
²²

3

2 3.3b
ÂÂ?

??
??

??

3.3b
²²

Figure 3.7: Petri net graph predicate

Figure 3.8 shows the individual rules used in the Petri net rule tree. The dotted
lines between elements show the morphism projections from left to right. The top
rule is simple, the transition does not change, this rule is represented in figure 3.8a,
it merely projects the transition upon itself. The rule in figure 3.8b removes exactly
one token from each input place, since it only projects the transition and the input
place and it does not project the token. Finally, the rule in figure 3.8c places exactly
one new token on each output place, since there is a new token element in the right
graph.

Trans Trans//

(a) Transition rule

Trans Trans//

place

in

OO

place

in

OO

//token
markoo

(b) Input place rule

Trans Trans//

place

out
²²

place

out
²²

// token
mark //

(c) Output place rule

Figure 3.8: Petri net rules for the rule tree
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Note how the left side of each rule is exactly the same as the corresponding graph
in the graph predicate. The reason that there is no rule with the graph from figure 3.3c
on the left side, is because this is a graph on a universal level. As noted earlier, changes
on any universally matched element have to be done on an underlying existential level.

3.8a

3.8b

ρ0

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

3.8c

ρ1

ÂÂ?
??

??
??

Figure 3.9: Petri net rule tree

The three subrules created so far are yet to be combined into a single rule tree.
This requires the creation of two rule morphisms, one from rule 3.8a to 3.8b and one
from 3.8a to 3.8c. Doing so results in a rule tree as depicted by figure 3.9. Both
rule morphisms ρ0 and ρ1 merely project the transition from graph 3.8a onto the
transition of graphs 3.8b and 3.8c respectively. The next section will describe how a
matching is obtained from a nested rule.

3.2.3 Matching Nested Rules

Where normal rule applications are always associated with a single matching of the
left side of the rule, nested rules may increase the number of matchings on each
universal level (2, 4, 6, ...) as long as there is another existential level beneath it. The
new term rule instance will help to keep track of these matchings and their associated
subrules.

Definition 3.10 (simple rule instance)
A simple rule instance is a tuple (r,m), where r : L → R is a simple SPO rule and
m : L→ G is a matching of the rule into the host graph G.

Extrapolating the previous definition to include instances of nested rules is slightly
more complicated. Such a definition has to preserve the treelike structure of the nested
rule, as well as capture the structure inherent to the matchings. For example, if a
universal level gives rise to several matchings and there exists another universal level
beneath it, the deepest level needs to be related to the correct parent-matching. This
is done by defining another category Instance which has rule instances as objects and
rule morphisms as arrows. The rule morphisms will ensure the correct nesting of the
instances.

Definition 3.11 (nested rule instance)
A nested rule instance is a tree-shaped diagram in the category Instance, which has
tuples of a subrule and a matching (ri,mij) as objects and rule morphisms as arrows.
Additionally, for any rule instance (ri,mij) and it’s direct parent (ri−1,mi−1j) the
diagram in Graph shown in 3.10a has to commute.

An instance of a nested rule is derived from a proof of existential satisfaction of
the associated predicate p |= f . Simply said, all the morphisms from graphs on an
existential level to the host graph are placed in tuples, along with the subrule that is
associated with that level, i.e. the domain of the matching must be the same as the
domain of the subrule. Definition 3.12 formalizes this description.

Definition 3.12 (nested rule instance derivation)
A nested rule instance (R,M) is associated with rule R and M is a collection of
rule instances. M is constructed from a proof of satisfaction φ : p |= f from the
corresponding nested rule R as follows:
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For each proof of existential satisfaction (g : H → Li, hi : Li → G,ψ) in φ, there
is a subrule ri : Li → Ri of R. The tuple (ri, hi) is added to the rule instance M .

L0 R0
r0 //

L1

ρL

²²
R1r1

//

ρR

²²
G

m0j

ttjjjjjjjjj

m1i

jjTTTTTTTTT

(a) Instances in Graph

(r0,m0,0)

(r1,m1,0)
ÄÄÄÄ

ÄÄ
ÄÄ

(r1,m1,1)
ÂÂ?

??
??

?

(r2,m2,1)
ÄÄÄÄ

ÄÄ
ÄÄ

(r2,m2,2)
ÂÂ?

??
??

?

(r2,m2,0)
ÄÄÄÄ

ÄÄ
ÄÄ

(b) Diagram in Instance

Figure 3.10: Nested rule instance

Now that rule instance have also been defined, it is time to show how these are
obtained. The following section shows the derivation of instances for the Petri net
example.

Petri Net Rule Matching

In order to demonstrate the matching of the Petri net predicate, recall the sample
petri net from section 3.1 shown in figure 3.11. This figure shows indexes at the
place-nodes to keep the construction of rule instances clear.

place1

place2

place3

trans
in //

in

''OOOOOOOOOOO

in

77oooooooooo

place4out 33ggggggggg

place5
out

++WWWWWWWWW

token
markoo

token
markoo

token
markoo

Figure 3.11: Petri Net host graph G

Now recall the rules created in section 3.2.2 and the predicate created in section
3.2.1. The predicate will match one transition, three incoming places with a token
and two outgoing places in the host graph G. This means the example yields six rule
instances. For illustrative purposes, the instances will first be created per rule.

Rule 3.8a gives rise to a single instance, it matches only a single transition in this
graph and therefore also only a single rule instance. If the matching of 3.8a into G is
called mTrans, the rule instance becomes (3.8a,mTrans).

Rule 3.8b can match exactly three input places, being place1, place2 and place3.
The predicate also matches the associated tokens and eventually yields the rule in-
stances (3.8b,mplace1), (3.8b,mplace2) and (3.8b,mplace3).

Rule 3.8c matches the two output places place4 and place5 and creates the rule
instances (3.8c,mplace4) and (3.8c,mplace5).

The total nested instance is now created by combining the seperate instances into
a single tree. Figure 3.12 shows the nested instance of the rule. In the next section,
rule instances will be used to perform the actual rule application.
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(3.8a,mTrans)

(3.8b,mplace1)
wwooooooooo

(3.8b,mplace2)
¥¥





(3.8b,mplace3)
²²
(3.8c,mplace4)

½½4
44

44
44

44
4

(3.8c,mplace5)
''OOOOOOOOO

Figure 3.12: Petri net rule instance

3.3 Applying Nested Rules

Application of a nested rule may be done in one of two ways. One is to perform a
series of independent transformations, after which the resulting graphs have to be
merged. The other is to amalgamate the rules into one large rule and execute the
new rule. Before even considering to choose one over the other, a proof of equivalence
of these two methods is required.

Section 3.3.1 will define and explain the method of applying each rule separately,
followed by the amalgamation method in section 3.3.2. Section 3.3.3 will then prove
the two methods to be equivalent.

3.3.1 Rule by Rule Application

The first method requires no additional work on the rules themselves before it can
be applied. Given an instance of a nested rule (R,M), it simply applies all the rule
instances in M separately.

Definition 3.13 (individual application)
Given a rule instance (R,M), I is a set of intermediate graphs created by applying
the rules individually. In other words, I contains the pushout results Ej from all the
(ri,mj) tuples in M .

L0 R0
//

G

m0

²²
E0

//
²²

L1?? R1
//

G

m1

²²
E1

//
²²

L1

ÂÂ
R1

//

G

m2

²²
E2

//
²²

??

ÂÂ

??ÄÄÄÄÄÄÄÄÄÄÄÄ

ÂÂ?
??

??
??

??
??

?

(a) Three instances applied

G

E0

²²

E1

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

Ef

ÂÂ?
??

??
? E2

ÂÂ?
??

??
??

ÄÄÄÄ
ÄÄ

ÄÄ

²²

¨¨²²
²²
²²
²²
²²
²²
²²

ºº/
//

//
//

//
//

//
/

(b) Final graph construction

Figure 3.13: Intermediate results and final result construction

In order to compute the final product of the application, all intermediate graphs
have to be combined into one final graphH. Due to the universal property of pushouts
and the morphisms between rules, there exist morphisms between the intermediate
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results which preserve the structure of the rule tree. Figure 3.13a depicts the appli-
cation of a nested rule with two subrules r0 : L0 → R0, which is matched once, and
r1 : L1 → R1, which is matched twice. Now, because E0 is the result of a pushout and
there are morphisms (G → E1) and (R0 → R1 → E1), there is a unique morphism
(E0 → E1) such that the diagram commutes. Similarly, the morphism (E0 → E2)
exists uniquely.

The morpshisms (R0 → R1 → E1) and (R0 → R1 → E2) exist because there are
morphisms between the right sides of the rules. This follows from the definition of a
rule tree (see definition 3.8). The morphisms (G → Ei) are the immediate result of
definition 3.13.

The construction of the final graph now boils down to placing all the intermediate
graphs Ei and the morphisms that connect them together in a diagram and compute
the co-limit Ef of this diagram. Figure 3.13b displays this for the current example.
Additionally, figure 3.3.1 displays the same process in the case r1 would have matched
three times. This is to show what happens if there are more intermediate results.

G

E0

²²

E1

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

Ei0

ÂÂ?
??

??
??

E2

ÂÂ?
??

??
??

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

²²

E3
**TTTTTTTTTTTTTTTTTTTT

Ef

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

¨¨²²
²²
²²
²²
²²
²²
²²

ºº/
//

//
//

//
//

//
/

$$JJJJJJJJJJJJJJJJJJJJJJJ

ÂÂ?
??

??
?

Figure 3.14: Final graph construction for four instance

Here Ei0 is constructed in exactly the same way as Ef was in figure 3.13b. How-
ever, another pushout is required before the result is final. This last pushout is
(E0 → Ei0, E0 → E3) and yields the final graph Ef . This process may be extended
for any arbitrary number of intermediate results. It is essentially the creation of the
co-limit of the diagram.

3.3.2 Amalgamation

Rule amalgamation is a technique to combine multiple rules into a single rule (Taentzer,
n.d., 1996). It is used to execute rules that occur in parallel with each other. Cur-
rently, rule amalgamation has only been specified in conjunction with the DPO ap-
proach, however this section uses the same idea of combining rules into one large rule
to perform quantified rule applications in the SPO approach.

The first problem that needs to be tackled for this approach to work is the fact that
there are probably more rule instances than rules when applying a nested rule. This
means it is insufficient to simply flatten the tree structure of the rule. The solution
to this problem is to use the matchings of each rule instance to essentially create
multiple copies of a rule. A property of the Graph category is that any morphism
can be split into two morphisms with one new intermediate object. This is called
epi-mono decomposition, because the morphism is decomposed into an epimorphism
and a monomorphism. The newly created object is exactly the matched part of the
host graph G, or the domain of the matching.

Master’s Thesis, J.H. Kuperus, v10 27



CHAPTER 3. NESTING TRANSFORMATION RULES
Definition 3.14 (matching decomposition)
Each matching mi : L → G in the instance of the rule is decomposed into two mor-
phisms mia : L → dom(mi) and mib : dom(mi) → G, such that mi = mib ◦mia and
dom(mi) is the domain of mi in G.

After the matchings have been decomposed in this fashion, a large rule can be
constructed by first computing the co-limit of the left subtree of the rule and all
decomposed matchings. The right side of the rule will be constructed in a similar
fashion later on.

L0

dom(m0)
''OOOOOOOOOOO G

⊆

77ooooooooooo

m0

--

Figure 3.15: Rule matching decomposition

Definition 3.15 (rule amalgamation)
Given a nested rule instance, split all matching morphisms as in definition 3.14.
Compute the colimit of the diagram with the left subtree of the rule and all created
matching codomains by computing pushouts of all decomposed rule instances.

Figure 3.16 shows a small example of this approach. It consists of one nested
rule with two subrules rules, of which only the left hand sides L0, L1 are shown, and
three matches. The matches have already been decomposed and the amalgamated
left hand side LB has been constructed. The B subscript is to indicate this is a big
rule. First the pushout of (L0 → L1 → dom(m1), L0 → L1 → dom(m2)) has been
computed, which yielded the intermediate graph I0. The large left hand side LB was
then constructed by computing the pushout of (L0 → I0, L0 → dom(m0)).

L0

L1

zzttttttttt

dom(m1)

m1

ÄÄÄÄ
ÄÄ

ÄÄ

dom(m2)

m2

ÂÂ?
??

??
? dom(m0)

m0

$$JJJJJJJJ

I0
ÂÂ?

??
??

?

ÄÄÄÄ
ÄÄ

ÄÄ

LB
//

²²

G
$$JJJJJJJJJJ

33 ss¶¶'
''
''
''
''
''
'

zzttttttttt

Figure 3.16: Rule amalgamation, part 1

The matchings remained consistent here due to the universal property of the
pushout. The intermediate graph I0 is the result of a pushout and there exist mor-
phisms from dom(m1) and dom(m2) to G and therefore there is also a unique mor-
phism from I0 to G. The same holds for LB , which has a morphism to G based on
the arrows from I0 to G and from dom(m0) to G. This morphism from LB to G is
the matching of the amalgamated rule in G.

In order to construct the amalgamated right hand side RB of the rule, a pushout
has to be computed for each decomposed matching, to yield the specific right hand
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side. In figure 3.17 this pushout is shown for the subrule r0 as the pushout (L0 →
dom(m0), L0 → R0).

L0

dom(m0)

m0

²²
R0

0
//

R0
//

²²

G

⊆
²²

Figure 3.17: Rule amalgamation, part 2

The graph R0
0 is a small part of the eventual right hand side graph RB . This is

done for all decomposed matchings and yields a series of copies of the right hand sides
of all subrules. Together, these graphs and morphisms are put in a diagram similar
to the building of the amalgamated left hand side.

Definition 3.16 (rule amalgamation, part 2)
Given the same nested rule instance with splitted matching morphisms, compute new
intermediate right hand sides by computing the pushout of (Li → dom(mn), Li →
Ri) = Rn

i for each rule instance (ri,mn). Construct the large right hand side by
computing the co-limit of all Rn

i graphs.

R0

R1

zzttttttttt

R1
1

ÄÄÄÄ
ÄÄ

ÄÄ

R2
1

ÂÂ?
??

??
? R0

0

$$JJJJJJJJJ

J0

ÂÂ?
??

??
?

ÄÄÄÄ
ÄÄ

ÄÄ

RB
//

²²

Eb

$$
33 ss¶¶ zz

Figure 3.18: Rule amalgamation, conclusion

Figure 3.18 shows the construction of the right hand side RB for the same example
as figure 3.16. The dotted lines in this figure show the morphisms that will exist
between these graphs and the final result EB which will be constructed below.

Due to the universal property of pushouts, there exists a unique arrow between LB

and RB , because LB is the result of a pushout and there are arrows from dom(m0)
to RB (e.g. dom(m0) → R0

0 → RB) and therefore there is a unique arrow between
LB and RB . This unique arrow will be the new morphism for the amalgamated
rule. In fact, there are many more arrows between the objects from figure 3.16 to the
objects in 3.18, but showing them all in a single figure would cause the figure to be
unreadable. All other arrows that exist can be derived in the same way as the arrow
between LB and RB was derived.

Creating an amalgamated rule is not the end of this approach. The amalgamated
rule has yet to be applied to the host graph G. As seen above, the amalgamated rule
maintains a consistent matching in G and therefore can be applied. This application
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LB RB
//

EB

²²
G
²²

//

Figure 3.19: Applying the amalgamated rule

is shown in figure 3.19 and is actually little more than a single SPO application. It
yields the result graph EB .

3.3.3 Equivalence of Approaches

Coming up with two different approaches of solving the same problem requires one to
wonder if these methods do the same or not. If they do not do the same, then where
are the differences? In this section it is proposed that the two methods are equivalent
and yield the same result. This proposition will also be proven.

Proposition 3.17
Applying the method defined in section 3.3.1 yields a graph EF and the method defined
in section 3.3.2 yields a graph EB. The graphs EF and EB are isomorphic.

Proving that these two methods are the same is not as easy as it may look. How-
ever, both approaches compute a lot of pushouts. Thanks to the universal property
of a pushout, this causes many unique arrows between objects to be created as seen
in the previous sections. In order to prove the proposition, some clever bookkeeping
is required to see if eventually there are unique arrows between the results of both
approaches.

Proof 3.18
To prove: Ef

∼= EB

Bookkeeping:

• amalgamated approach: EB is the pushout of (LB → G,LB → RB)

• individual approach:

– En (n = 0..k is the number of rule instances) are the pushouts of (Li
mn→

G,Li → Ri) (i is the corresponding subrule of the rule instance)

– EF is the co-limit of the graphs E0, . . . , Ek

• the graphs LB and RB are pushouts objects, there exist morphisms:

– Li → Ri – trivial

– Li → Rn
i – composed from Li → Ri and Ri → Rn

i (n = 0..k)

– Li → RB – composed from Li → Rn
i and Rn

i → RB (n = 0..k)

• the graphs Rn
i are pushouts of (Li → dom(mn), Li → Ri), there exist morphisms

from dom(mn) to EF and from Ri to Ef : Li

dom(mn)

mn

²²
Rn

i
//

Ri
//

²²

G

⊆
²²

En
// Ef//

}}"" ''

Therefore, there exist unique morphisms from each Rn
i to EF
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Proof:

• existence of morphism e0 : EB → EF :

The graph EB is a pushout of (LB → G,LB → RB) and there exist morphisms
f : G→ EF and g : RB → EF . The existence of f is trivial, since it is a direct
result of definition 3.13 and can be obtained through any intermediate result.
The morphism g exists because the graph RB is also the result of a pushout and
there exist morphisms from the graphs that result in this pushout (Rn

i ) to EF

(see above). According to the universal property of pushouts, there also is a
unique morphism e0 : EB → EF .

G

EF

''OOOOOOOOOOOOO

LB

²²

RB
//

EB

²²
//

e0

²² }}

• existence of morphism e1 : EF → EB:

the graph EF is a pushout of all G→ En morpshism and there exist morphisms
h : G→ EB and kn : En → EB. The existence of h is trivial, since it is a direct
result of applying the large rule LB → RB. The morphisms kn exist because the
graphs En are the pushouts of (Li

mn→ G,Li → Ri) and there exist morphisms
l : G → EB and m : Ri → EB, again l is trivial and m is the composite arrow
of Ri → RB → EB. According to the universal property of pushouts, there also
exists a unique morphism e1 : EF → EB.

G

. . .

Ef

E0
wwooooooooooooo

E12

ºº/
//

//
E1

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

¨¨²²
²²
²

En

ÂÂ?
??

??
??

¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²

EB
**TTTTTTTTTTTTTTTTTTTT

33 3333

. . .¨¨²
²²
²²
²²
²²
²²
²²
²²

ºº/
//

//
/

ºº/
//

//
/ e1

EE

• Finally, since the arrows e1 : EF → EB and e0 : EB → EF are unique and
EF

e1→ e0→ EF and EB
e0→ e1→ EB, the two results are the same.

¤

Figure 3.20 shows both approaches in one abstracted diagram. Many intermediate
objects and arrows have been left out, but both the use of the amalgamated rule
LB → RB is shown, as well as the individual application intermediate results. Now
that both approaches have been proven to yield the same result, the next section will
show the last part of the example where the rules will be applied.
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G

E1
wwooooooooooooo

. . .ÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

Ek

²²

EF

²²''OOOOOOOOOOOO

ÂÂ?
??

??
??

?

LB

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

RB

''OOOOOOOOOOOO

EB

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

''OOOOOOOOOOOOO

||

<<

Figure 3.20: Abstracted view of both approaches

Petri net rules applied

The last step in the running example is to apply the rules and fire the transition.
The approach shown here will be the individual approach. Each rule instance will be
applied separately and then the results will be merged.

place1

place2

place3

trans
in //

in

''OOOOOOOOOOO

in

77oooooooooo

place4out 33ggggggggg

place5
out

++WWWWWWWWWtoken
markoo

token
markoo

(a) Intermediate result from rule 3.8b

place1

place2

place3

trans
in //

in

''OOOOOOOOOOO

in

77oooooooooo

place4out 33ggggggggg

place5
out

++WWWWWWWWW

token
markoo

token
markoo

token
markoo

token
mark //

(b) Intermediate result from rule 3.8c

Figure 3.21: Petri Net host graph G

Recall that there were six rule instances in section 3.2.3, shown in figure 3.12.
When these instances are applied, six intermediate result graphs are created, two of
which are shown in figure 3.21. The other four are not shown, because one of them
is exactly the same as the host graph G since the top rule does not change anything.
Two of them are isomorphic with 3.21a and the other is isomorphic with 3.21b.

These six graphs are then combined again by computing the co-limit of the inter-
mediate graphs. This process is illustrated in figure 3.22, where the six rule instances
are shown. Note however that the rule instances are not used to compute a co-limit
in Instance, but actually the co-limit of the intermediate graphs E0..E5 is computed
in Graph. For the sake of the example however it is easier to show the rule instances
again, since each one of them gives rise to one of the intermediate graphs.

The result of this application is shown in figure 3.23. Note how all the tokens
from the input places have been removed and that the output places now each have a
new token. This rule can now be used to simulate any Petri net model in GROOVE.
Chapter 4 will even show how this rule should be built within GROOVE to yield the
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(3.8a,mTrans)

(3.8b,mplace1)
ssfff

(3.8b,mplace2)
ÄÄÄÄ

ÄÄ
ÄÄ

(3.8b,mplace3)
²²
(3.8c,mplace4)

ÂÂ?
??

??
?

(3.8c,mplace5)
++XXX

H
²²

22.. ppll

Figure 3.22: Petri net intermediate graphs merging

same result as shown in these example sections.

place1

place2

place3

trans
in //

in

))SSSSSSSSS

in
55kkkkkkkkk

place4out 33ggggggggg

place5
out

++WWWWWWWWW

token
mark //

token
mark //

Figure 3.23: Petri net rule final result
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4 Implementation

The theory of the previous chapter described precisely how nested quantification
can be yielded in graph transformations. The goal of all this however is to extend
GROOVE with such functionality. This chapter first describes a few graph transfor-
mation tools as related work before diving into the GROOVE tool and the implemen-
tation of nested graph transformations.

4.1 Related Applications of Graph Transformations

Unlike traditional string or term rewriting systems, until a few years back there were
never a lot of graph rewriting implementations. Mainly because the research into
graph rewriting systems was primarily focused on yielding theoretic results. The fo-
cus gradually shifted towards more practical use of graph rewriting systems since the
appearance of the first graph grammar implementations, such as GraphEd(Himsolt,
1988). Nowadays there are several different implementations, all with their own spe-
cific properties, underlying formalisms, aims and features. This section will briefly
look at a few of the implementations out there.

4.1.1 PROGRES

PROGRES (PROgrammed Graph REwriting System) (Zündorf, n.d.; Schürr, 2000)
is a visual specification language for software engineering. It combines traditional
textual specification with graphical data modeling. It is capable of interpreting its
own models as well as generate Tcl/Tk and C(++) code for the systems defined. This
makes it an ideal tool for fast prototyping.

Like GROOVE, PROGRES also uses the SPO approach, only with a powerful
control language for queries and transactions. These transactions support a looping
mechanism which effectively allows the user to universally quantify a rule, although
it does not arise from a categorical construction.

4.1.2 GREAT

GREAT (Graph Rewriting and Transformation) is a tool for UML modeling. It aims
at allowing users to specify platform independent designs. The choice for an imple-
mentation platform can then be delayed because GREAT allows for the automatic
refactoring of a design to a specific implementation platform.

GREAT is build around the graph rewriting system Optimix, developed as a sys-
tem for compiler optimizers. Optimix is not bound by a certain graph structure,
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instead it can work on any graph, given a proper graph description. Graph transfor-
mations are done in a programmatic way, GREAT accepts a set of rewriting modules,
which use the Optimix API to perform graph transformations.

4.1.3 AGG

AGG is a rule based visual language (Taentzer & Runge, 2005). It aims at the
specification and prototypical implementation of applications with graph-structured
data. AGG is also the research project within which the method of rule amalgamation
was developed. The AGG environment provides a rule and graph editor and can
analyze graph grammars and models.

The tool may also be used within a Java application to perform graph transfor-
mations on internal graph structures. This allows the tool to be used for more than
model checking. For example, uses in artificial intelligence could be suggested to
model and transform knowledge networks.

4.2 Methods of Quantification

Besides the concept of nested rules which this thesis introduces, other researches are
trying to do similar things in different ways. This section briefly describes a few of
these other methods.

4.2.1 Cloning and Expanding

In Hoffman, Janssens, and Eetvelde (2005), graph transformations are used to do
refactoring in UML models. They describe how a generic push-down operation may
be created by means of two techniques: cloning and variable expansion.

They show how ordinary rules are limited in their applications because they usually
describe a specific instance of a problem. In order to let rules be applicable to more
generic scenarios, they introduce graph variables. During the matching phase, these
graph variables are expanded to a concrete subgraph based on the surrounding pattern.
Since cloning requires a correct connection with the original hostgraph, they assign
cardinalities to certain nodes, which are traversed when the subgraph is being copied.

Although it is a very powerful concept to use wildcards in a graph transformation
system, the matching of such a rule becomes quite complex. However, interested
minds should certainly keep an eye out for new publications from the University of
Antwerp.

4.2.2 Transactions

Transactions can be used to perform a set of complex rules as one single atomic
action (Baldan, Corradini, Foss, & Gadducci, 2006). However, transactions are not
a native feature of graph transformations. They usually arise as a control language
construction, much like the one in the PROGRES tool. While extremely useful, they
require an amount of overhead, whereas rules that support quantification natively will
be more natural.
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4.3 Implementation in GROOVE

From the very beginning, the design of the GROOVE tool has been focused on flex-
ibility. This is demonstrated by the extensive use of generic interfaces allowing for
implementations ranging from simple graphs and very simple rules to hypergraphs
and extremely complex rule systems and even control languages and graph abstrac-
tions. Although not all of these features are in the currently available version, most
of them are being researched while this thesis is written.

4.3.1 GROOVE rules

The formalism on which the current implementation of GROOVE is based is the SPO
approach. GROOVE is set up to handle complete graph grammars, which consist of
a set of graph transformation rules and one or more start graphs. The amount of
control the user has over the execution of the rules is currently limited to a priority
system. Rules with a higher priority disable those with lower priorities if they have
a matching in the current graph. The use of a control language on top of a rule
system is currently being researched and implemented. When the GROOVE release
is extended with both nested rules and a control language, GROOVE will be a very
powerful and flexible graph transformation system.

Within GROOVE, rules are created with the internal editor. This editor allows
the user to set certain properties of an element by means of an aspect. An aspect is
created and stored as part of an element’s label. For example, figure 4.1a shows four
nodes, each of a different type. The node with label a is an ordinary node. This node
is not deleted, it is not created, it remains constant during transformation. The node
with label b has a self-edge with label new:. The colon behind the word new indicates
that this was an aspect value. The node (and all incident edges) should be created
during transformation. The aspect values del: and not: specify a node that will be
deleted and a node that may not be present respectively.

(a) A rule in the editor (b) A rule in the viewer

Figure 4.1: Rules in the GROOVE editor

Once a rule is parsed, these properties are stored and visually translated into a
style for the node. The rule in figure 4.1b is exactly the same as the one in figure
4.1a, only now it has been parsed. New nodes and edges are shown in bold green,
deleter nodes and edges are blue and dashed and NAC nodes and edges are bold, red
and dashed.

4.3.2 Nesting GROOVE rules

One of the goals for this project was to come up with a notation for nested rules.
Several attempts were made at graphical representations that captured the nesting of
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rules, but none were deemed good enough to pursue. Therefore, the notation with the
least impact on the code was chosen and nesting has been implemented as an aspect.
Levels of nesting have to be explicitly defined and connected. See for example figure
4.2, which depicts the nested rule for a Petri net transition in the GROOVE editor.
This is exactly the rule defined in section 3.2.2.

Figure 4.2: Petri net rule in GROOVE

The structure of the rule is represented by the meta nodes which are labeled
exists=: and forall=: and also nac=: that is not in this example. These meta nodes
are purely for the structure of the rule and will not be in the actual rule. During the
parsing of this rule graph, GROOVE also automatically creates the graph predicate
which will then be used for matching. The structure of the meta nodes defines how
this predicate is formed.

A few simple rules dictate the overall way of defining a nested rule (see figure 4.2):

• At the top there should be exactly one meta node of type exists=:. Theoreti-
cally, a predicate can have any number of first level existential graphs, but the
implementation only takes one. This is because such graphs constitute a logical
or, which is already available by creating multiple rules.

• Meta nodes should be connected to their parent by means of a parent=:: edge.
Note the double colon in this label, this is required for all meta edges.

• Normal rule nodes should be connected to the level at which they are introduced
in the predicate by means of a level=:: edge to one of the meta nodes.

• The meta elements exists=: and forall=: should alternate each other in the
structure.

• Edges between nodes are introduced on the level of the deepest node they are
connected to (e.g. the mark edges are introduced on the level of the token node)

Looking at the definitions of predicates and rule trees, it seems changes to elements
may only be placed on an existential level. However, when the implementation finds
such behavior on a universal level, it is automatically pushed down to an existential
level. In fact, when a forall=: meta node is the deepest in a structure, an implicit
exists=: is created with exactly the same graph as the above universal level. This is
to prevent the predicate from interpreting it as a negative application condition.

GROOVE supported negative application conditions by adding the aspect not: to
an element. However, this created a negative application condition for each element
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with such an aspect value. The user is now able to influence this behavior by declaring
explicit nac=: meta nodes. A nac=: meta node should be beneath an existential meta
node and creates exactly one NAC graph. All elements connected to the nac=: node
are considered to be in one graph.

Because GROOVE does not allow edges from an edge to a node, it seems im-
possible to place an edge on an explicit level of nesting. However, the aspects allow
the user to name the levels. For example, if an edge is supposed to be part of a
certain negative application condition, one can change the label of the nac=: node
to nac=myFirstNAC:. This associates the name myFirstNAC with that particular
level in the predicate. If an edge now has the same aspect value (and a normal label),
e.g. nac=myFirstNAC:someEdgeLabel, then this edge is not put into the predicate
in the default way, but it is added explicitly to the referenced NAC. This also works
for the exists=: and forall=: meta nodes. The labels on meta edges are not required
to have the = after the type of the meta element, but the editor in GROOVE will
automatically insert the = when the rule is parsed. It indicates that the meta element
may have a name, but does not have one.

One last important note is that in the absence of any meta nodes, GROOVE
parses the rule as a normal SPO rule. This also means that rules that were created
before nested rules were introduced will still work within GROOVE.

4.3.3 Implementation specifics

This small subsection will describe briefly which elements within GROOVE have been
altered to make the use of nested rules possible. This is mainly to help other people
working on the project understand what changed within the tool. Readers that have
no idea of the internal architecture of GROOVE may skip this section.

As was stated above, the implementation of nested rules should have as little
impact on the tool as possible. Therefore the primary design was to try and extend
the current implementation of rules. The current implementation uses three basic
classes to perform SPO transformations: SPORule, SPOEvent and SPOApplication. A
rule is captured in the class SPORule, which in combination with a matching can form
an SPOEvent, which has some idea of what has to be changed, but does not have
access to a specific host graph. This is where SPOApplication takes over, it uses
the information stored in the SPOEvent and the given host graph to complete the
transformation.

The idea to create classes NestedRule, NestedEvent and NestedApplication as spe-
cializations of their SPO counterparts proved to create more problems than it was
thought to prevent. In the case of NestedRule there were no problems, a NestedRule is
now a specialization of SPORule and maintains the rule tree and the predicate in one
single tree structure. The NestedEvent and NestedApplication could not be used as
specializations of their SPO counterparts, mostly because these two classes required
extensive rewriting to take the nesting of rules in account. That is why these two
classes are fresh implementations of the RuleEvent and RuleApplication interfaces.

The nested rules are edited without changes to the Editor, as the Editor used
the class AspectualRuleView to convert a rule back into a simple graph and vice
versa. This method was kept the same for nested rules, but instead there is now
a NestedAspectualRuleView which can parse a nested graph with meta elements and
will create a NestedRule.

To store the nested structure of a rule in a basic graph it was necessary to create
a new Aspect, begin NestingAspect with its corresponding class NestingAspectValue

which also defines several helper functions for dealing with AspectGraphs that contain
elements with a NestingAspect.
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In addition to these major changes, several smaller changes were made. For ex-
ample, an interface VarNodeEdgeMultiMap and a corresponding implementation of said
interface VarNodeEdgeMultiHashMap were created to capture the fact that certain rule
elements may now be matched multiple times, so instead of mapping one element to
one other element, an element can now be mapped to a Set of elements. Another
small addition was the class SPORuleMorphism to create morphisms between rules.

Last but not least, the occurrences of AspectualRuleView within GROOVE were
replaced with NestedAspectualRuleView. The same goes for the SPORule, SPOEvent,
SPOApplication and VarNodeEdgeMap references.

When a nested rule is applied in GROOVE, several smaller applications occur
under the hood. In fact, GROOVE collects all changes from the rule instances and
applies the changes to the host graph. To the outside world, e.g. the transition system,
this is just a single transition. Seeing a nested rule applied as a single transition helps
again with the intuitiveness of these rules. If something happens in one step, it is
shown and done in one step.

4.4 Results of using nested rules

The theory has been defined, the implementation described, but how do the new rules
perform? This section shows a few sample models which have been created to test
the impact of nested rules on statespace and computing time. The two models have
been implemented twice in a GROOVE grammar, once with normal SPO rules and
once with nested rules.

4.4.1 Gossiping Girls

In the gossiping girls problem, there are a number of girls who all know one secret
each. The girls may randomly call each other and exchange secrets after which both
girls know all the secrets either one of them knew. Figure 4.3 shows this model with
four girls in the start state.

girl

secret

knows

OO

girlsecret
knowsoo girl secret

knows
//

girl

secret

knows

²²

Figure 4.3: Gossiping girls example, start state

The girls will now randomly start calling each other, which is described by a
rule that creates an edge with label calling between two girls. This rule has the
restriction that there may only be one pair of girls calling each other on a given
moment. After they have established a connection, the girls exchange secrets. In
the old SPO approach, this had to be solved by two rules with a high priority that
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transfer the secrets between the girls. In the new newsted approach, this is done in a
single rule.

girl

secret

knows ÂÂ?
??

??
??

girl
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knows ÂÂ?
??
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Figure 4.4: Gossiping girls example, final state

Figure 4.5 shows the rules used to simulate this problem. There is a small priority
hierarchie between these rules to ensure correct execution. The rule that initiates a
call (figure 4.5a) has priority 0, meaning that if no other rule is applicable, a call is
initiated between two girls where one of them knows a secret the other does not know.
The rule that stops a call has priority 1, meaning that is no secrets are left to copy,
the call is ended (figure 4.5b). The two rules that copy secrets (figures 4.5c and 4.5d)
have priority 2, which causes the secrets to be exchanged as soon as a call has been
established.

(a) Rule to establish call (b) Rule to end call

(c) Rule to copy secrets (1) (d) Rule to copy secrets (2)

Figure 4.5: Normal SPO rule for gossiping girls

Running these rules with the start graph from figure 4.3 yields the final graph
shown in figure 4.4 after 334 milliseconds. During this computation, it created 115
states and 300 transitions.

By using nested rules, the two rules that copy secrets can be combined into a
single rule. This rule is shown in figure 4.6 and copies all secrets known by either girl
to the other girl. Running the model with this rule instead of the two separate copy
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rules causes the computation time to be reduced to 221 milliseconds. The number of
states is reduced to 36 states and there are only 136 transitions.

Figure 4.6: Gossiping girls, nested copy rule

The real increase is found when the number of girls and secrets are increased. The
model was also run with five and six girls, at seven it could no longer be done within
the maximum JVM memory. Table 4.1 shows the computation time, number of states
and number of transitions for each model with both rule sets. It is obvious that the
use of nested rules severely decreases the computation time and the statespace. The
number of states is decreased by 62% for 3 girls, 69% for 4 girls, 74% for 5 girls and
78% for 6 girls. The same holds for the number of transitions: 55% less transitions
for 3 and 4 girls, 62% less for 5 girls and 66% less for 6 girls. The increase from 3 to
6 girls is very interesting, since it gives an indication of what happens to a model if
the size is doubled. The old rules create more than 550% more states and roughly a
1000% more transitions, whereas the new rules only cause a gain of 330% states and
750% transitions. It is safe to say that nested rules constitute more than a linear gain
in efficiency.

Model SPO Rules Nested Rules
Time States Transitions Time States Transitions

3 girls 108ms 21 40 76ms 8 18
4 girls 334ms 115 300 221ms 36 136
5 girls 1445ms 930 2825 1000ms 243 1087
6 girls 15286ms 11684 40139 5231ms 2657 13478

Table 4.1: Gossiping girls, results on a MacBook with 2G RAM

The results speak for themselves. Using nested rules reduces computing time and
statespace significantly. Models with more than six girls failed to compute on the test
machine due to a lack of memory, but on a newer JVM with a higher memory limit
the nested rules will definitely still perform better than the old rules.

4.4.2 Petri nets

The running example from chapter 3 will demonstrate the enormous gain in power
that the new rules yield. While creating the old rules for simulating a petri net, it
became painfully obvious why nested rules are much easier for users. To correctly
simulate a Petri net without nested rules, the firing of a transition has to be split up
in several phases. First, each token connected to a transition must be marked until
there is no input place left without a token. Then the transition will enter the firing
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phase, indicated by a firing label on the transition. During firing, tokens are deleted
from the input places and tokens are created on the output places. To ensure output
places only get one new token each, they again have to be marked when they get a
token. When this is done, the marks on the places have to be cleaned up and the
extra edges have to be deleted. The rules used for this are shown in figure 4.8. To
correctly simulate Petri nets with these rules, the mark and unmark rules need to
have a higher priority than the other rules.

Figure 4.7: Petri net, start graph

Figure 4.7 shows the host graph on which the rules were tested. It is a circular
Petri net which is free of deadlocks, i.e. it will never end. The graph transformation
system will execute one full circle of transitions before ending up in the same state
again, which will be the final state.

Petri nets can be simulated with only one single nested rule. The rule used for this
is the one created in the example sections of chapter 3. This rule is also depicted in
figure 4.2. To conclude this chapter, table 4.2 shows the running time and statespace
for simulating the Petri net from figure 4.7.

Model SPO Rules Nested Rules
Time States Transitions Time States Transitions

3 girls 350ms 116 154 105ms 6 9

Table 4.2: Results for simulating Petri nets

Again the number of states and transitions are drastically reduced.
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(a) mark rule (b) unmark rule (c) cleaning rule (d) cleaning-in
rule

(e) cleaning-
out rule

(f) creating rule (g) deleting rule

(h) finishing rule (i) firing rule

Figure 4.8: Petri net, SPO rules
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5 Conclusions

This chapter turns around and looks back upon the work done in this project. It will
briefly discuss the result of each research question, conclude whether the project was
a success or not and point out some future work.

5.1 Summary

This thesis started with introducing a graph formalism and some required definitions
from category theory. In chapter 3, the notions of graph predicate, rule instance and
nested rule were introduced. The examples throughout the chapter showed how the
nested structure within graph predicates may be used to match quantified subgraphs
within a host graph. It was then shown how a graph predicate gives rise to rule
instances, which are a subrule together with its individual matching. These rule
instances could then be applied to a host graph to obtain the desired result. Two
methods for applying nested rules were introduced and proven to be equal.

The examples and results from chapter 4 showed how nested rules help to reduce
the statespace of models. The number of states that were necessary to fully explore
a model were drastically reduced when operations could be specified for groups of
elements. The results were offset against the same models with older rules.

5.2 Discussion

Each research project is initiated by research questions. These questions sometimes
change along the way, new ones may be added and some may even be left out. During
this project most of the research questions were answered. One however failed to yield
any real results. The question of what would be a useful notation for nested rules gave
rise to a number of ideas, but none were even remotely feasible within the allotted
time. The answer to this question thus remains elusive for now and GROOVE has
been extended with a rather simple representation.

What methods of quantification are being considered in the field? Several
methods were described as allowing for more than just existential matching. Cloning
and expanding (Hoffman et al., 2005) showed some promise in matching subgraphs
of unknown sizes, but currently lack a working implementation. The notion remains
interesting however, since graph wildcards create powerful opportunities.

The notion of transactions as used by PROGRES (Zündorf, n.d.; Schürr, 2000)
could also apply certain rules more than once in a single transaction. However, this
technique is not a pure universal quantification, since any loops in the control language
may be terminated prematurely.
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How can universal quantification be defined in a formal way? Chapter 3
showed that using graph predicates to match graphs allows for universal and existen-
tial matchings to an arbitrary depth. Combining this with the power of a rule tree,
many subgraphs can be transformed in just a single step. This chapter also showed
two approaches to applying the nested rules, both of which were proven to yield the
same result.

How should GROOVE be extended to support nested Application Condi-
tions / predicates? Chosing to implement the nested rules with as little impact
on the rest of the tool proved to be an effective approach. All of the features of the
GROOVE generator and simulator can now work with both ordinary rules and nested
rules. Chapter 4 described in a general outline how the implementation was done and
what choices were made.

What is the impact on the statespace and computing time? Using nested
rules showed dramatic decreases in statespace and computing time. The decrease of
number of states and transitions required by the test model started at about 65% and
grew towards 80%. The total gain in efficiency is estimated on an order of magnitude,
if not more. However, there is a small tradeoff to be noted here. The computation of a
nested rule takes slightly more time than a single SPO rule, but the use of nested rules
reduces the number of applications significantly enough to gain dramatic efficiency
increases.

During the process of composing the theory and implementing it, one always runs
into problems. The first mistake made was coming up with two different approaches
to apply the nested rules as it was now obviously necessary to prove if the two methods
were the same or not. However, having to come up with an original proof proved to
be a fun and educational journey.

The first idea for an implementation was shot down fast when the data generated
by a nested rule superseded the capabilities of the original implemenation. This posed
a problem as the new implementation would no longer be flawlessly integrated into
the system. All in all, the final result is satisfying in its own sense.

5.3 Future Work

As was already described in chapter 4, GROOVE is an active research project and a lot
of interesting ideas are currently being researched. Techniques like graph abstraction
will allow for faster approximations, whereas a control language will increase the
explicit specification power of the user. During the work done in this thesis project, a
few ideas for improvement came up but were deemed beyond the scope of the project.

First of all, the current editor is not equipped to handle nested rules very well.
The current solution with meta nodes specifying the nesting does what it should do,
but it is far from beautiful and it clutters the rule graph. A new editor with support
for nesting might be able to hilight certain parts of the graph if they are on the
selected level. Alternatively, more colors could be used to distinguish between normal
elements and universal elements. This is however not limited to the editor, the rule
viewer currently loses all information about nesting and displays a nested rule as if it
were a single SPO rule.

One of the mayor problems when using large graph transition systems is memory.
GROOVE had a few optimizations for simple SPO rules, most of which were turned
off to allow nested rules to work. Some research into these optimizations might yield
versions which are compatible with the notion of nested rules and allow GROOVE to
maintain a smaller memory footprint.
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Besides all that, the work done in this thesis project allows users of the GROOVE
tool to more effectively simulate their models. Operational semantics for Petri nets,
UML activivty diagrams and similar models are now well within reach. It would even
be possible to simulate pacman games or even complete rail networks in GROOVE
now. Given the right model, GROOVE might now be able to find optimal train
schedules for railway companies. All in all, this new addition of nested rules, together
with the upcoming control language make GROOVE a tool that may very well be
interesting to even commercial users.
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Taentzer, G. (n.d.). Parallel high-level replacement systems.
Taentzer, G. (1996). Parallel and distributed graph transformation: Formal descrip-

tion and application to communication-based systems.
Taentzer, G., & Beyer, M. (n.d.). Amalgamated graph transformations and their use

for specifying AGG - an algebraic graph grammar system.
Taentzer, G., & Runge, O. (2005). Agg documentation. http://tfs.cs.tu-

berlin.de/agg/docu.html.
Walters, R. (1991). Categories and computer science. Carslaw Publications.
Wiemann, H. (2005). Theory of graph transformations.
Zündorf, A. (n.d.). Graph pattern matching in PROGRES.

50 Master’s Thesis, J.H. Kuperus, v10


