
CheckMerge: A System for Risk
Assessment of Code Merges

Jan-Jelle Kester

Master Thesis
Master of Computer Science

Software Technology specialization

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science

Formal Methods and Tools research group

April 26, 2018

Supervisors
prof.dr. M. Huisman
dr. A. Fehnker
ir. R. van Paasen (ALTEN Netherlands)

Abstract

When working on large software projects using version control sys-
tems, merges are not always trivial to execute. Even when a merge
can be resolved without manual intervention, the resulting program is
not necessarily correct. In this study a number of categories of changes
that may cause issues during merges are identified. This report intro-
duces two new language-independent algorithms that detect changes
from three of these categories. These algorithms work based on the ab-
stract syntax trees (ASTs) of compared program versions and require
the differences between these versions to be calculated beforehand. A
prototype system has been designed and implemented for the C pro-
gramming language. The newly developed algorithms perform well in
detecting the problematic changes, in the case of one algorithm at the
cost of false positives. The prototype system shows the feasibility of
such a system, but is not yet suitable for production use. All in all the
analysis of source code merges is a promising area of research and with
some effort a tool for practical code merge analysis could be produced,
helping developers be more productive when carrying out merges with
less errors.

Acknowledgements

I would like to thank ALTEN Netherlands, and especially Rob Essink, for
providing this project. I have found it an interesting challenge to work
on. As a developer I have faced merge problems myself many times, albeit
on a relatively small scale. It is satisfying to work on a solution for these
problems.

Furthermore I would like to thank my supervisors for the excellent feed-
back and, at times, tough questions. On many occasions this has forced
me to think a bit more about certain problems and their possible solutions,
resulting in either a better choice or a better understanding of the reason
for a certain choice.

I also would like to thank Robin Hoogervorst for letting me use code we
developed together for an assignment of the Software Security course. This
code was turned into a test case for the system.

Finally I would like to thank everyone else who has listened to any prob-
lems I have had and everyone who has helped to steer me in some direction,
even though this sometimes led me on interesting detours. Either way, your
comments have helped progress a lot. This includes friends, colleagues at
ALTEN Netherlands and FMT staff.

5

Table of contents

Acknowledgements 5

1 Introduction 9
1.1 Motivation . 9
1.2 Goals . 11
1.3 Approach . 11
1.4 Structure of the report . 12
1.5 Contributions . 12

2 Background 15
2.1 Version control systems . 15

2.1.1 Concepts . 15
2.1.2 Merges . 16
2.1.3 Merge techniques . 16

2.2 The impact of code changes 18
2.3 Abstract syntax trees and control flow graphs 19
2.4 Tree differencing . 19
2.5 Source code analysis tools . 20

3 Problematic changes in merges 23
3.1 Problematic changes . 23
3.2 Detection strategies . 26

3.2.1 Changes at the same point in a program (PC1) 26
3.2.2 Changes modifying the same value in a scope (PC2) . 26
3.2.3 Refactorings (PC3) . 30

4 Code analysis tools 33
4.1 Tools under consideration . 33
4.2 Evaluation steps and criteria 34
4.3 Results . 35

4.3.1 C Intermediate Language 35
4.3.2 Clang . 36
4.3.3 Rascal . 37

4.4 Conclusions . 38

7

5 System architecture 39
5.1 Requirements and considerations 39
5.2 Architecture decomposition 40

5.2.1 High level architecture 40
5.2.2 System components 40

6 Implementation 43
6.1 Framework . 43

6.1.1 Internal data representation 43
6.1.2 Plugin system . 44

6.2 Tree differencing . 44
6.2.1 Considered diff algorithms 45
6.2.2 Tree differencing implementation 46

6.3 Static analysis . 46
6.4 Interfacing with the system 47

6.4.1 Declarative API . 47
6.4.2 Command line interface 48

6.5 C support with Clang and LLVM 48
6.5.1 Custom LLVM pass 48
6.5.2 Clang parser . 49

7 Results 51
7.1 Evaluation . 51

7.1.1 Test plan . 51
7.1.2 Test cases . 52
7.1.3 Results . 53

7.2 Known limitations . 57

8 Related work 59
8.1 Generic abstract syntax trees 59
8.2 Source code differencing . 60
8.3 Static analysis of source code changes 61

9 Conclusions and recommendations 63
9.1 Conclusions . 63
9.2 Future work . 64

References 67

A Requirements for the proposed tool 71

B GumTree algorithm 73

8

Chapter 1

Introduction

For many software developers merging changes in a version control system
is a common task. However, this task is error-prone due to the fact that the
merging algorithms commonly used by version control systems do not take
the semantics and structure of a programming language into account [19].
Merging is especially risky when versions have diverged significantly, either
over time or by very involved changes like refactorings. Some combination of
changes in two versions may cause the result of a merge to be different from
the expected or wanted result, either because of incorrect computations or
syntactical or structural errors [2].

To aid developers with the task of merging software versions ALTEN

Netherlands (in this report also referred to as ‘the client’), a technical con-
sulting firm, has proposed to develop a software tool for analyzing the risk of
code merges by identifying changes that can lead to unwanted results after
merging.

1.1 Motivation

Code merges are a common task in large software projects with many con-
tributors. Some of these merges are considered trivial and do not require
review. When changes are more involved there is a chance that the code re-
sulting from the merge will not work or will not behave as expected. Merges
can accidentally undo earlier fixes or improvements and in some cases in-
troduce new bugs which were not present in any of the versions of the code
which were merged together. Manually reviewing code merges takes a lot of
time, while possible errors might still not be identified by the reviewer(s).

To overcome this, a software tool is proposed which will analyze code
merges and present a risk assessment to the user. This tool should be able
to express the risk involved with a particular merge and be able to identify
specific parts of the code which are likely to fail after the merge.

9

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

Listing 1.1: Code fragment illustrating the ‘goto fail’ vulnerability

The problems with code merges as described above were noticed in some
C/C++ projects at a large technology firm where software engineering con-
sultants of ALTEN Netherlands work on embedded software. These prob-
lems especially arise when two versions of a program have been developed
in parallel for a while. When these versions are merged many duplicate or
conflicting improvements may exist. When the implementation of duplicate
improvements is not exactly identical, or if improvements in different ver-
sions are not compatible with each other, merging them can be troublesome.
Industry standard merge tooling, like those found in common version con-
trol systems, does not detect these problems making manual inspection of
changes necessary.

A well-known example of a (possible) merge error is the ‘goto fail’ vul-
nerability in the Apple TLS implementation [33]. In the function containing
the bug, error codes were checked with bracketless if statements, so only
the line immediately following the if statement is skipped if the condition
does not hold. In this example the conditions check for error codes and if
one was present the statement goto fail; was executed. Because at some
point in the code this statement appeared twice, the second occurrence was
always executed, resulting in the function returning no error code while not
all checks were performed. It is likely that this bug was introduced by a
merge gone wrong, although Apple has not released these specifics. Nev-
ertheless it is a real-world security issue which, if caused by a merge error,
might have been prevented by a merge analysis tool, as noted by Wheeler
[33]. The offending code is shown in listing 1.1.

10

1.2 Goals

The focus of this project is to find out whether it is feasible to implement
a system to check for code merge problems as illustrated in the previous
section. This leads to the following goal:

To design and implement a prototype of a system for assessing
the risk of side effects of code merges.

To reach this goal a number of research questions have been formulated.
These questions are addressed in the upcoming chapters and the outcomes
were used in the development of the prototype. The research questions are
as follows:

Q1 Which kind of changes are likely to cause problems in code merges?

Q2 Which algorithms are best suited to compare code versions to find
changes?

Q3 Which techniques exist to detect these merge problems from the changes
between versions?

1.3 Approach

In order to gain a better understanding of the problem domain, existing
literature has been studied on the subjects of source code merging, source
code analysis and tree differencing. Together with the client a number of
requirements was agreed upon, which were taken into account during the
rest of the project. A number of categories of relevant changes were spec-
ified based on interviews with developers, experience of the client and the
personal experience of the author. Algorithms for the detection of some of
the categories have been developed.

In order to make algorithm development easier, a supporting prototype
system was developed. First, different tools for parsing C code were eval-
uated of which one was chosen (see chapter 4 for evaluation criteria and
methods). Subsequently a high-level system architecture was designed and a
prototype of this system was implemented. A tree differencing algorithm for
comparing abstract syntax trees and finding the changes between them was
chosen (see section 6.2 for details). Based on the chosen C parser and tree
differencing algorithm a simple internal representation of an AST was cre-
ated and a transformation from the output of the C parser and the internal
representation was developed. This allowed the tree differencing algorithm
to be implemented and tested.

With the data input handling and tree differencing in place the first ideas
for the algorithms were implemented. The algorithms were partially tested

11

with unit tests and partially with manually evaluated test cases that use
the whole system. The results of these tests were used to improve the al-
gorithms. For the final evaluation the precision and recall of the algorithms
was calculated to determine the qualitative performance. A number of per-
formance metrics were collected to determine the runtime performance.

1.4 Structure of the report

This report is structured as follows. Chapter 2 contains background informa-
tion on the problem domain. In chapter 3 changes that are of interest when
detecting merge problems are defined in categories, and newly developed
algorithms for detecting some of these problems are presented. Chapter 4
lists a number of C code parsers and analysis tools that can provide the
necessary information for the algorithms. A high level architecture of the
system is given in chapter 5 and implementation details of the prototype can
be found in chapter 6. Chapter 7 shows the evaluation strategy and results
for the new algorithms. Other works related to this research are discussed
in chapter 8. Finally, the conclusions and recommendations for future work
are given in chapter 9.

1.5 Contributions

The contributions presented in this report are threefold.

Definition of problematic changes First of all, this report defines the
term problematic change in the context of code merges. A number of cat-
egories of these problematic changes are listed. This is done with the goal
of developing algorithms for identifying these changes and reporting these
problems to the user that wants to merge two versions of a program.

Detection algorithms Secondly, two new algorithms for the detection of
a subset of these changes have been created. These algorithms are able to
detect certain problems in code merges that were previously not detected
by existing merge tooling.

Analysis system prototype Finally, a system design and a prototype
implementation of this design, incorporating the aforementioned algorithms,
has been created for the C programming language. This prototype is used to
evaluate the algorithms. These contributions show that risk analysis on code
merges is worth looking into further as practical applications are feasible and
likely to improve the quality of code merges while reducing the work load of
developers carrying out these merges.

12

The source code of the prototype, including test cases, has been pub-
lished on GitHub. The code is split up over two repositories, one for the
analysis system written in Python and one for the custom LLVM analysis
pass to support the C parser. The base analysis system is located at https:
//github.com/jjkester/checkmerge. The LLVM analysis pass repository
is located at https://github.com/jjkester/checkmerge-llvm.

13

https://github.com/jjkester/checkmerge
https://github.com/jjkester/checkmerge
https://github.com/jjkester/checkmerge-llvm

Chapter 2

Background

2.1 Version control systems

During the development of software the program evolves rather than being
constructed correctly in a single go. Requirements and library dependencies
change, new insights come along and different developers work on the pro-
gram. Version control systems help in the software development process by
allowing multiple versions of a program to be worked on at the same time.
These systems also keep a history of the evolution of the software so that it
is possible to revert to an earlier version of a program at any time.

2.1.1 Concepts

The data structure in which the files and their history is stored is called a
repository. This repository can be stored centralized or decentralized (also
called distributed) [24]. When using a centralized version control system
developers must check-in individual changes into a central repository on a
server. Well-known centralized version control systems are CVS and SVN.
With decentralized version control systems each developer has a copy of the
repository on their system. He or she synchronizes the repository with copies
on different machines. Usually a central repository is chosen to synchronize
with, although it is possible to synchronize with each copy individually.
Examples of decentralized version control systems are Git and Mercurial.

Changes are saved to the repository as commits. A commit describes one
or more changes to one or more files in the repository. Many version control
systems only save the differences since the previous commit. The commits
are linked together to form a consistent history. If a branch, which is a
separate version, is created a commit might have more than one successor,
as shown in figure 2.1a. Branches can be merged to bring the changes from
one branch to another, as shown in figure 2.1b.

15

0

1

2 3

4

5

A,C

B

(a) A commit graph showing two
branches A and B.

0

1

2 3

4

5A

B

C

(b) A merge of branch B onto A.

Figure 2.1: Commit graphs showing the merge of diverged branches A and
B. A third branch C is not affected.

2.1.2 Merges

In the context of a merge, a branch can be seen as a collection of changes
since t a specific point in time. Given two branches, the changes each branch
represents are the changes that were committed since the common ancestor
commit of the two branches.

In some cases it is trivial to merge changes to source code. If two changes
are merged, and both changes only affect independent parts of a program
which are in separate files, the merge can be completed by just combining
the changes. If changes affect the same file a new version of the file has to
be saved that incorporates both changes, which can be done automatically
by many version control systems. However, version control systems and
other merge tooling might raise a merge conflict if it is not able to compute
the result with confidence. An example of this situation is two changes to
the same line. The absence of a merge conflict does not imply that the
result is as expected, as noted by Aziz, Lee and Prakash in their book about
typical problems software engineers run into [2]. This is explored further in
chapter 3.

2.1.3 Merge techniques

There are different techniques and algorithms for merging different versions
of a program. Mens provides a comprehensive survey of code merging tech-
niques [19]. These techniques can be categorized with respect to a number
of properties.

First of all a distinction is made between two-way merging, where only
two versions of a program are considered, and three-way merging where the

16

0

1

2

3

4

5C

BA

(a) A two-way merge of branches A and
B into a new branch C.

0

1

2

3

4

5

A′′

BA′

A

(b) A three-way merge of branch B
onto A, moving the branch pointer to
the merge result.

Figure 2.2: A comparison between two-way merges and three-way merges.
The inspected versions are denoted by a bold line.

changes in two versions since a common ancestor version are used. With two-
way merging all the files in the branches are compared and combined where
possible. For large repositories this can become quite resource intensive.
Three-way merging helps with merge decisions, especially when some code
is removed in one of the versions. It is a performance optimization as well,
as only the changes since the common ancestor of the branches are being
merged. For example, given the merge in figure 2.1b only the combination
of the changes in {2, 3, 4} is computed when using three-way merging while
for two-way merging also the changes made in {0, 1} and all ancestors of 0
that are not shown are taken into account.

Figure 2.2 contains a comparison between two-way merging and three-
way merging. Two-way merging takes only the merged versions A and B into
account, creating a completely new version C containing the union of the
source versions. Three-way merging takes only the changes since a common
ancestor version into account, replaying the changes of the merged version
B onto the program version A′, resulting in A.

Another distinction is made between textual, syntactic, semantic and
structural merging. Textual merging looks at lines of files and is very com-
mon and relatively fast to compute, however, there are many situations in
which manual merging is still required as the algorithm can only check for
similarities before and after a change. Syntactic, semantic and structural
merging take the meaning of the text into account and therefore need to
be adapted for specific situations (e.g. specific programming languages) but
can yield more precise results.

17

2.2 The impact of code changes

Changes to source code can introduce bugs immediately or pose problems
when merged with other changes. There might be a relation between certain
kinds of changes and the risk of introducing problems. In software evolution
the impact of changes is analyzed to find relations between kinds of changes
and the risk they have to introduce bugs.

The impact of source code changes is a typical software evolution prob-
lem. This problem can be approached on a high level where one tries to es-
timate the amount of time and/or the risk involved with a proposed change,
for example a new feature. On a lower level one looks at transformations
of source code and the risk of introducing defects. The latter is relevant for
this project.

The claim that changes to relatively complex code are more likely to
cause issues than changes to relatively simple code seems self-evident. This
claim is supported by Munson and Elbaum [20]. In their research they tried
to find a metric that could serve as a surrogate for the risk of introducing
a fault. They found that a high rate of change in the relative complexity
could serve as an indicator for higher risk changes. They do note that there
are multiple ways of calculating complexity, which influences the metric.
However, the relative complexity of a change is a good indicator of the risk
associated to it.

Besides complexity, the size of a change is also a factor. Small code
changes are less likely to cause issues than large code changes. Purushota-
man and Perry studied small code changes and tried to differentiate between
multiple kinds of changes [26]. In their research they categorized changes as
corrective (repairing faults), adaptive (introducing new features) or perfec-
tive (nonfunctional improvements). They categorized the changes based on
keywords in the commit messages. The software of a central (provider level)
telephone switch was analyzed and they found that nearly 40% of changes
intended to fix a bug introduced a new bug. They also found that less
than 4% of one-line changes resulted in a bug, while nearly 50% of changes
involving 500 lines of code or more introduced one or more bugs, thereby
supporting the claim that small changes are less likely to introduce bugs
than large ones.

Bavota et al. looked at refactorings, which typically have a lot of depen-
dent changes. They found that certain refactorings are more likely to cause
bugs than others [5]. Refactorings changing the class hierarchy were very
likely to cause errors because these changes have impact on many references,
and therefore many lines of code. The errors might be due to lack of tool
support for this kind of refactorings.

18

Function F

Block

Return

Binary operator +

Reference bReference a

Parameter bParameter a

Figure 2.3: Example of an abstract syntax tree of a function performing
binary addition.

2.3 Abstract syntax trees and control flow graphs

The source code of computer programs is mostly represented as text. How-
ever, there exist other representations for programs, like abstract syntax
trees and control flow graphs.

An abstract syntax tree is a tree representation of source code. Each
node in the tree represents a construct used in the program. The kinds
of nodes that are used depend on the specific programming language, more
specifically, it depends on the constructs that a programming language offers.
Abstract syntax trees differ from concrete syntax trees in the level of detail
they provide. While concrete syntax trees include syntactically relevant
characters like parentheses these are omitted in abstract syntax trees. An
example of an abstract syntax tree for a very simple program can be found
in figure 2.3.

From an abstract syntax tree a control flow graph can be built. A con-
trol flow graph shows the possible execution paths in (part of) a program.
From this graph information about the relation of parts of the code can be
obtained. As a control flow graph is based on statements it can be embedded
into an abstract syntax tree. Control flow graphs are typically collapsed by
leaving out the nodes that have only one entry and one exit point. When
embedded into an abstract syntax tree this is less practical. When evaluat-
ing the tree it is more convenient to have control flow information at every
node.

2.4 Tree differencing

Tree differencing is the process of finding the differences between two trees.
In the context of this project this technique can be used to find subtrees in
an abstract syntax tree (AST) that have been changed when compared to

19

another version. From this information not only regular merge conflicts can
be found, but these changes can also be further analyzed.

Definition 2.1 (Bille [7]). An edit script is a sequence of operations OT→T ′

that, when applied, transform a tree T into another tree T ′.

From this definition follows that the difference between two trees can be
expressed as an edit script.

Edit scripts can grow large and have no theoretical maximum size, how-
ever, algorithms that calculate these edit scripts often try to find the smallest
and most logical (from a developer’s point of view) number of changes. This
is achieved by assigning a cost to every edit operation. The sum of the costs
determines the quality of the edit script. The cost of a type of operation is
often not fixed and can be used to tweak these algorithms.

Definition 2.2 (Bille [7]). The tree edit distance of two trees T and T ′ is
defined as the length of the minimum cost edit script for these trees.

The tree edit distance is a measure for the similarity of trees. Two trees
with a short edit distance have little operations in their edit script and are
therefore relatively similar. Trees with a large edit distance have a large edit
script and are therefore relatively dissimilar. The cost of each edit operation
is often assumed to be 1, however, in some uses cases other constants or cost
functions are used. The cost of an edit script is the sum of the cost of the
edit operations.

2.5 Source code analysis tools

Besides the specific techniques listed above there are some more generic
ways of getting certain information from source code. The code analysis
tools listed here are primarily focused on the C programming language (in
accordance with the requirements listed in appendix A).

A large number of studies use CIL for C code analysis. CIL a C interme-
diate language designed for analysis of C programs. It was first described
by Necula, McPeak, Rahul and Weimer [22]. CIL is designed to support
compiler specific extensions and contains both an abstract syntax tree and
a control flow graph. On GitHub1 the authors describe the tool as follows:
“CIL is a front-end for the C programming language that facilitates program
analysis and transformation. CIL will parse and typecheck a program, and
compile it into a simplified subset of C.” CIL is written in OCaml [23] and
this is the language that needs to be used to use the tools to analyze the
code.

Just like dedicated analysis tools, C compilers have a lot of useful infor-
mation internally. Clang is a front-end compiler for C and C-like languages

1The CIL GitHub repository is located at https://github.com/cil-project/cil.

20

https://github.com/cil-project/cil

which uses the LLVM back-end [8, 16]. Clang is designed with tool support
in mind, meaning that it can provide a lot of information about code to an
external program. This makes it suitable for C code analysis. Clang offers
a C API that can be used by other programs. It is able to export abstract
syntax trees of parsed code which can be used by a number of the described
algorithms.

A more generic approach is taken by Rascal. Rascal is a domain specific
language for source code analysis and manipulation. It can support many
languages, allowing for the reuse of analysis code between different parsers.
By default the language supports many programming language concepts,
including grammars, data types, parsers and syntax trees. Rascal is being
developed at CWI (Centrum Wiskunde & Informatica) [15, 27]. At the
moment Rascal only has alpha releases so it might not be stable (enough)
for use yet.

21

Chapter 3

Problematic changes in
merges

This chapter describes categories of changes that can cause issues during
or after code merges. Following this definition, two new algorithms for
detecting some of these categories of changes are developed.

3.1 Problematic changes

A number of kinds of changes can cause issues when combined (for example
with a merge) with certain other changes in another version of the software.
In the context of this paper these changes will be referred to as problematic
changes. In order to formally define a problematic change, first a distinction
needs to be made between a text-based merge, which is common, and the
ideal world situation in which the intentions behind the code are taken into
account.

Definition 3.1. Given the versions of the same (partial) program A and B,
the textual merge of these programs is the program resulting from combining
A and B using a textual merge strategy. A textual merge is represented as
A ∪t B.

Definition 3.2. Given the versions of the same (partial) program A and B,
the (hypothetical) functional merge of these programs is the program resulting
from combining the functionality encoded in A and B and is represented as
A ∪f B.

As stated before, many merge algorithms in use today perform textual
merges. This does not always result in the best possible merge, as a func-
tional merge would. Because functional merging is hard, if not impossible
since the intentions of the code need to be known, no algorithms for this have
been developed to date. Therefore, the process of merging often includes

23

manually checking if the result of the automated merge was as intended,
and if not, correcting the errors. A problematic change is a change that,
when merged, does not result in the intended functionality. This can be
formalized as follows.

Definition 3.3. Given a program P and modifications of that program
c1, . . . , cn, the subsequent version P ′ resulting from applying these changes
is represented as P ′ = P ⊕ c1, . . . , cn.

Definition 3.4. Given a program P with subsequent versions Px, Cx is the
set of changes such that Px ≡ P ⊕ Cx.

Definition 3.5. Given a program P with subsequent versions P1 = P ⊕C1

and P2 = P ⊕ C2, a problematic change is a change c ∈ C1 for which a
change c′ ∈ C2 exists such that P ⊕ c ∪t P ⊕ c′ /∈ P1 ∪f P2.

According to this definition a change is only problematic in the context
of this report if it is combined with other changes in another version of the
program. Whether a change is problematic therefore depends on the context
of the merge.

From examples in the literature described in chapter 2 and talks with a
number of software developers the following practical problematic changes
have been identified:

PC1 Both versions introduce a change at the same point in a program.

PC2 Both versions introduce a change modifying the same value in a scope.

PC3 A version contains a refactoring while the other version added refer-
ences to the refactored statement(s).

PC3a An identifier was renamed.

PC3b An identifier was removed.

PC3c The type signature of a declared entity changed.

PC3d A declared entity was split up or merged.

Changes like PC1 are generally not a problem since these are covered
by most, if not all, version control systems. Merge algorithms typically are
line-based and since these changes occur at the same line (or nearly the
same line) a line-based tool will detect a possible problem. A well-known
algorithm that does this is the algorithm powering Diff [14]. These detected
problems are referred to as merge conflicts [2, 19]. Merge conflicts will
prevent merging until they are manually resolved.

An example of PC2 is shown in listing 3.1. This example shows two ver-
sions of the calc function fixing the same bug (the result is 1 too high) that
was present in the original version. Listing 3.1d shows the result of merging

24

int calc(int a, int b) {

int c = a + b;

printf("c=%d\n", c);

return c;

}

(a) Original version of the program.

int calc(int a, int b) {

int c = a + b;

printf("c=%d\n", c);

return c - 1;

}

(b) Branch A of the program with a
bug fixed by changing the return value.

int calc(int a, int b) {

int c = a + b - 1;

printf("c=%d\n", c);

return c;

}

(c) Branch B of the program with a
bug fixed by changing the intermediate
variable c.

int calc(int a, int b) {

int c = a + b - 1;

printf("c=%d\n", c);

return c - 1;

}

(d) Result of naively merging A and B,
which consistently returns a value that
is 1 lower than expected.

Listing 3.1: Trivial example of a merge of two correct versions of a program
resulting in an incorrect program (PC2).

the two branches with a textual merge algorithm. Only when inspecting the
result it becomes clear that it is not as intended as the result is now 1 too
low because of the ‘double’ fix.

The example given in section 1.1, the ‘goto fail’ vulnerability in the
Apple TLS implementation, might be an example of PC2. While with this
example it is not publicly known whether this was caused by an incorrect
merge, it might be possible. If it were caused by an incorrect merge, an
implementation checking for PC2 should be able to detect it.

Another example, shown in listing 3.2, illustrates problem PC3a. In this
example two arguments are renamed in one version (a → x and b → y),
while the other version introduces a new occurrence of the variable a. Both
versions work as expected (for that version). The result of a textual or line-
based merge in listing 3.2d shows the result, which is not a valid program
due to the broken reference to variable a.

According to the literature discussed in chapter 2 there is great risk in
refactorings (PC3) [5, 31], while small changes are generally less risky [26].
However, many bugfixes are small changes. As shown in the examples in
listings 3.1 and 3.2 bugs do not necessarily have only one way to fix them.
Therefore it is not feasible to rule out changes based on their (relative) size.

25

int calc(int a, int b) {

int c = a + b;

printf("c=%d\n", c);

return c;

}

(a) Original version of the program.

int calc(int a, int b) {

int c = a + b;

printf("c=%d\n", c);

return c + a;

}

(b) Branch A of the program, with an
algorithmic change.

int calc(int x, int y) {

int c = x + y;

printf("c=%d\n", c);

return c;

}

(c) Branch B of the program, with a
refactoring (renamed a → x and b →
y).

int calc(int x, int y) {

int c = x + y;

printf("c=%d\n", c);

return c + a;

}

(d) Result of merging A and B with a
line-based algorithm, which contains a
reference to an undefined variable.

Listing 3.2: Trivial example of a merge where a renamed parameter in one
version causes a broken reference after merging (PC3a).

3.2 Detection strategies

For each problematic change at least one strategy for detecting the possible
problem is discussed below.

3.2.1 Changes at the same point in a program (PC1)

These kinds of changes are already detected by existing merge algorithms
as these algorithms are unable to merge these kinds of changes. Therefore a
detection algorithm for these kinds of changes is not included in the system.
Some of these changes might be picked up by other detection algorithms if
the change also satisfies the criteria of another group of changes.

3.2.2 Changes modifying the same value in a scope (PC2)

A change might conflict with another change if both changes affect the same
value. Given a single program, dependence analysis produces the set of state-
ments that may directly affect the result of a statement. This information
can be used to find the dependencies of a changed instruction and see if a
change in one version of a program may affect a change in another version
of the same program.

26

Dependence analysis

In dependence analysis a distinction is made between several kinds of de-
pendencies. First of all there are control dependencies, which encode that
the execution of a specific instruction is conditionally guarded by another
instruction. Secondly there are data dependencies or memory dependencies
which encode dependencies between instructions that read or write the same
memory.

Definition 3.6 (Banerjee [4]). A statement S2 has a memory dependency
on a statement S1 if a memory location M exists such that:

1. Both S1 and S2 read or write M ;
2. S1 is executed before S2 in the sequential execution of the program;
3. In the sequential execution M is not written between the executions of

S1 and S2.

For detecting changes like PC2 memory dependencies are very useful.
When a changed statement in one version of the program has a dependency
on a statement that is changed in a second version of the same program
the merge result might not be as expected. The control dependencies are
less useful as changing the condition of a conditionally evaluated block does
usually not change the intention of that block.

Given the fact that a statement that accesses a memory location is ei-
ther a read or a write, four distinct kinds of memory dependence can be
distinguished.

Definition 3.7 (Banerjee [4]). Given statements S1, S2 where S2 has a
memory dependency on a statement S1 with memory location M .

1. S2 is flow dependent on S1 if S1 writes M and S2 reads M (read after
write);

2. S2 is anti-dependent on S1 if S1 reads M and S2 writes M (write
after read);

3. S2 is output dependent on S1 if S1 and S2 both write M (write after
write);

4. S2 is input dependent on S1 if S1 and S2 both read M (read after
read).

Conflict detection algorithm

A new, naive algorithm has been designed to detect changes based on mem-
ory dependencies. This algorithm (algorithm 3.1) takes two abstract syntax
trees as input and returns a set containing sets of nodes that form a conflict.

The algorithm uses a number of functions that are defined as follows.
The functions deps() and rdeps() return the recursive memory dependen-
cies and recursive reverse memory dependencies respectively. Descendants

27

function MemDepConflicts(T1, T2)
R := {∅}
N := {n | n ∈ T1 ∪ T2 ∧ |deps(n) ∪ rdeps(n)| > 0}
for n ∈ N do

M := {mapping(d) | d ∈ deps(n) ∪ rdeps(n)}
A := {d | d ∈ deps(m) ∪ rdeps(m) ∧m ∈ M}
C := {c | (c ∈ M ∪A ∨ c = n) ∧ changed(c)}
if (∃c1, c2 ∈ C | c1 ∈ T1 ∧ c2 ∈ T2) then

R := R ∪ {C}
end if

end for
return OptimizeNodeSets(R)

end function

Algorithm 3.1: Memory dependence conflict detection.

function OptimizeNodeSets(I)
R := ∅
M := Map {n → n | n ∈ I}
for (S1, S2) ∈ I × I do ▷ (S1, S2) ≡ (S2, S1)

for (n1, n2) ∈ S1 × S2 do
if n1 ∈ descendants(n2) then

put(M,n1 → n2)
else if n2 ∈ descendants(n1) then

put(M,n2 → n1)
end if

end for
end for
I := {{get(M,n) | n ∈ S} | S ∈ I}
for n ∈ I do

if {i | i ∈ I ∧ n ⊂ i} = ∅ then
R := R ∪ {n}

end if
end for
return R

end function

Algorithm 3.2: Merge algorithm for overlapping sets of AST nodes.

28

FA

a b

c ret

+ c c

a −

b 1

FB

a b

c ret

+ c −

a b c 1

(a) First step of algorithm 3.1. The
black node is the inspected node n,
the red arrows are dependencies be-
tween nodes. Thick-edged nodes are
currently inspected. The shaded nodes
are in the dependence graph of n.

FA

a b

c ret

+ c c

a −

b 1

FB

a b

c ret

+ c −

a b c 1

(b) Second step of algorithm 3.1. The
blue arrows are mappings between
nodes. The shaded nodes are the
mapped counterparts of the previously
selected nodes, stored in M .

FA

a b

c ret

+ c c

a −

b 1

FB

a b

c ret

+ c −

a b c 1

(c) Third step of algorithm 3.1. The
shaded nodes are in the dependence
graph of the added nodes of the pre-
vious step, stored in A.

FA

a b

c ret

+ c c

a −

b 1

FB

a b

c ret

+ c −

a b c 1

(d) Fourth step of algorithm 3.1. All
unchanged nodes are removed to re-
veal a conflict, consisting of the shaded
nodes. These nodes are stored in C.

Figure 3.1: Illustrations of the steps taken by algorithm 3.1.

of memory operations (nodes with memory dependencies) are considered
as well as it is assumed that these descendants influence their parent. A
memory operation with children is typical for value assignments. Therefore
the set deps(n) ∪ rdeps(n) contains all nodes influencing and influenced by
a node n. The function descendants(n) returns the nodes in the tree below
the given node. The function mapping(n) returns the counterpart of the
given node in the other version, if any exists, and the function changed(n)
returns whether the given node is changed.

The algorithm works by iterating over all nodes with memory dependen-
cies either to or from it, which are stored in N . This is to ensure that all
possible memory dependence paths are inspected. It then finds all nodes in
the dependence graph of the inspected node n, shown in figure 3.1a. For
these nodes, if a counterpart exists in the other version, these counterparts

29

are selected and stored in M (figure 3.1b). For each of the selected counter-
parts the dependence graph is built again and the resulting nodes are stored
in A (figure 3.1c). The nodes in M and A are the nodes that are possibly
affected by a change of the inspected node n. The conflicting nodes C are
the changed nodes from the set of affected nodes M ∪ A and the inspected
node n. This result is shown in figure 3.1d. If the set of changed nodes
contains at least one element in each tree, the set is added to the result set.

The results are compressed by merging sets of nodes that overlap to-
gether. For this purpose algorithm 3.2 has been developed. This algorithm
first replaces nodes that are a descendant of another node in the set with
the ancestor. This can be done since the ancestor node, given it is a memory
operation, covers its descendants. Secondly any set of nodes that is a subset
of a larger set is removed to avoid duplicates.

3.2.3 Refactorings (PC3)

Different kinds of refactorings exist. Earlier in this chapter a distinction
was made between renamed identifiers, deleted identifiers, changed types of
declared identifiers, and split or merged entities (like functions or classes
in an object-oriented language). Below these kinds are discussed in more
detail, and a new algorithm for detecting renamed and deleted identifiers is
given.

Renamed and deleted identifiers (PC3a, PC3b)

Renamed and deleted identifiers can be detected with the same strategy. A
new, naive algorithm for this detection is shown in algorithm 3.3.

First, the algorithm iterates over the declarations in the common ances-
tor D. For each declaration d0, the mapped nodes d1 and d2 in both other
versions T1 and T2 are looked up. The next part of the algorithm is executed
for each version separately.

If a declaration in a version of a program is changed from its counterpart
in the common ancestor, there may exist some conflict. The nodes that
cause the conflict are the newly added uses of the refactored declaration in
the other version. These are determined by looking at the nodes referencing
the refactored node in the version without the refactored declaration and
discarding the nodes with a mapping.

This process is visualized in figure 3.2.

Changed types of identifiers (PC3c)

Type information is at the moment not present in the intermediate rep-
resentation, besides from the labels of declarations. Also, given the way
C works, it is hard to correctly determine type (in)compatibility in static
analysis for some statements. An example of such a statement is accessing

30

function ReferenceConflicts(T0, T1, T2)
R := ∅
D := {d | d ∈ subtree(T0) ∧ is declaration(d)}
for d0 ∈ D do

d1 := mapping(d0, T1)
d2 := mapping(d0, T2)
U0 := {u | u ∈ subtree(T0) ∧ reference(u) = d0}
if changed(d1) ∧ d2 ̸= ∅ then

U2 := {u | u ∈ subtree(T2) ∧ reference(u) = d2}
R := R ∪ {u | u ∈ U2 ∧ ¬∃mapping(u, T0)}

end if
if changed(d2) ∧ d1 ̸= ∅ then

U1 := {u | u ∈ subtree(T1) ∧ reference(u) = d1}
R := R ∪ {u | u ∈ U1 ∧ ¬∃mapping(u, T0)}

end if
end for
return R

end function

Algorithm 3.3: Detection algorithm for broken identifiers after merging a
refactoring.

data in memory through a pointer. Due to the complexity this problem is
not addressed in this research.

Split or merged entities (PC3d)

Declared entities containing program logic (like classes or functions) can be
split up into two or more different entities, requiring two calls instead of one,
and two functions can be merged into one. This means that the statements
referencing these entities need to be changed as well. Godfrey and Zou
describe a method for identifying the splitting and merging of entities [12].
Their method requires user interaction as fully automatic detection is not
precise enough. The tool they developed shows the user a list of possibilities,
of which the user can choose one. The fact that this technique requires user
input makes this method not suitable for this tool.

Some of the problems concerning split and merged entities might be de-
tected by the algorithm for renamed and deleted identifiers. As the original
function will no longer exist, the change is picked up as a removed function.
Any existing references should be changed to the new function(s) as part of
the merge, any new references to the original function will be marked as a
conflict. This does not hold when the original function that is split or merged
still exists in the code base. While this might not be problematic right away
if the implementation of the new function(s) is equal to the orignal one(s),

31

FA

a b

c ret

+ c +

a b c a

F0

a b

c ret

+ c c

a b

FB

x y

c ret

+ c c

x y

(a) Process of algorithm 3.3. The black node is the inspected node d0. The red
arrows are declaration references, the blue arrows mappings between nodes from
the common ancestor (middle) to the compared versions. The dashed blue arrows
are rename mappings. The shaded nodes are the uses that are inspected due to the
changed mapping. These are (from left to right) stored in U1 and U0 respectively.

FA

a b

c ret

+ c +

a b c a

F0

a b

c ret

+ c c

a b

FB

x y

c ret

+ c c

x y

(b) Result of algorithm 3.3. The shaded nodes form a detected conflict consisting
of a changed declaration in one version and new uses in the other version.

Figure 3.2: Illustrations of the steps taken by algorithm 3.3.

future changes to the implementation might cause strange behavior if part
of the code is still using the old functions as the new functionality will not
be used in all places it is expected to.

32

Chapter 4

Code analysis tools

In order to find problematic changes the code that will be merged needs to
be analyzed. For every category of changes described in chapter 3, except
for item PC1, not only the textual representation of the code, but also its
meaning needs to be looked at. A good representation of source code that is
often used for code analysis is an abstract syntax tree (AST). Additionally,
many algorithms discussed in chapter 2 depend on the AST. The prototype
will support the C programming language as this is a specific requirement
as listed in appendix A.

In this chapter a number tools are be discussed. The tools under con-
sideration are all able to parse C code and produce an AST. Some of the
tools have additional functionality, which is discussed in the next section.
The tools have been evaluated on certain criteria to assess their usefulness
in the context of this project. One tool was chosen that will be used as a
basis for the rest of the project.

4.1 Tools under consideration

For the system under development three tools were considered:

– C Intermediate Language (CIL) [22]

– Clang [8] + LLVM [29]

– Rascal [27]

CIL is used in a number of studies discussed in chapter 2. It is able to
compile C programs into an intermediate language which is close to plain C,
while keeping references to the original code. This allows for easy analysis
since some features of the C language and especially GCC extensions do not
have to be taken into account when analyzing the code. CIL can optionally
add control flow information to the nodes in the AST. CIL is written in

33

OCaml, and provides libraries for that language. It also comes with a script
that allows it to function as a drop-in replacement for GCC that applies
transformations before passing the code on to GCC.

Clang is a front end compiler for the LLVM compiler framework. Besides
C it supports a number of C-like languages, including C++ and Objective
C. Like CIL, it supports GCC extensions and should therefore be able to
compile most C programs. Clang and LLVM were developed with tooling
in mind and therefore a number of different APIs for tooling are available.
Clang and LLVM libraries are only available for C, however, these ship with
Python bindings. Additionally some support for dynamically extending the
compiler is available.

Rascal is a metaprogramming environment designed for analyzing, trans-
forming and generating source code. It is designed to support many lan-
guages. Rascal comes with its own DSL focused on code analysis and trans-
formation. Rascal has extensions for C code analysis, however, these are
still in development. At the time of writing only the support for Java is
mature.

4.2 Evaluation steps and criteria

The goal of the tool evaluation process is to make an informed decision on
the tool to further use in the project. Each tool is evaluated according to
the evaluation process which is defined below. The tools are scored on a
number of aspects related to the process steps.

The evaluation process is as follows:

1. Install the tool.

2. Using the tool, build an AST of a minimal example and a larger ex-
ample.

3. Analyze the AST produced by the tool for completeness and detail.

4. Interface with the tool programmatically to build and output and AST.

There are a number of factors on which the tools are scored. For each
score an explanation will be given.

– Installation and configuration: are there any installation or configura-
tion issues?

– Performance: how much time is needed to parse the examples?

– Data quality: how useful and precise is the AST?

– API quality: is it easy to interface with the tool?

34

– Language support: which variants of C are supported, and are other
languages supported as well?

The relative performance of the tools under evaluation is measured by
compiling a small benchmark program consisting of a main file, a library
and a header file for the library. The benchmark program is a command
line program for interacting with a doubly linked list that was used for a
Software Security course at the University of Twente. This small bench-
mark should give an approximation of the performance since building an
AST is an integral part of compiling a program. Since not all three tools
support dumping an AST from the command line benchmarking the whole
compilation process gives the most comparable results.

The performance benchmark is executed with a Python script running
on Python 3.5. For each of the tools under evaluation, the script compiled
the benchmark program exactly 10 times, measuring the total execution
time. The subprocess module was used to call the executables of the tools.
The system used to run the benchmark on is a relatively modern dual-core
laptop computer running Linux.

The program used for the performance benchmark is also used for eval-
uating the data and API quality, together with a trivial program consisting
of only a main function and a return statement.

4.3 Results

The characteristics of each individual tool with respect to the evaluation
criteria are discussed below.

4.3.1 C Intermediate Language

For CIL there are clear instructions for installation. First of all OCaml
and OPAM, the OCaml package manager, need to be installed. This is
fairly straightforward as these are available as packages on the test system.
The installation of these dependencies is painless and no configuration is
necessary. An OPAL package for CIL exists to make installing it a matter of
running a couple of commands.

The script provided by CIL to function as a drop-in replacement for
GCC first calls GCC to precompile the code. After CIL processed it, it is
then again compiled by GCC. Therefore it is reasonable to assume that this
approach will be slower than directly using GCC. In the performance test
CIL consistently took just over 1.7 seconds. The test case was also compiled
with just GCC, which took around 0.9 seconds. This makes CIL almost a
factor two slower than regular GCC.

35

The data structures provided by CIL are detailed. It provides a number
of extensions to a plain AST, including data structures for control flow and
data flow analysis. The data structures are documented relatively well.

CIL libraries are available for the OCaml functional language. The API

has been documented and some additional instructions are available. Sadly,
all I got from CIL was a syntax error on the input file, even when trying to
parse the trivial program. This is unexpected given that other researches
have had success with CIL and that the command line compiler using CIL

is able to produce a working program.
CIL only supports the C programming language. For this language it

supports most GCC extensions, according to the authors. The authors claim
to have compiled the Linux kernel with CIL, which is usually a good indicator
that the compiler can handle most other projects as well.

4.3.2 Clang

Clang was very easy to install. Version 4.0 was present in the package repos-
itories of the test system, so a single command installed Clang successfully.
Due to issues with the Python bindings as described below under ‘API qual-
ity’ I opted for Clang 6.0 which is available from the official LLVM package
repository, which I added to the software sources of the test system. This
was therefore very easy as well.

Clang is a compiler front end and uses the AST for compiling the code
to the intermediate representation of the LLVM compiler. Therefore it can
be expected that the AST building is optimized for performance. For these
small programs it seemed that writing the output to the terminal took more
time than actually building the AST. Clang took just under 1.5 seconds in
the performance test, which makes it quicker than CIL, but considerably
slower than GCC. The relatively large difference is worth mentioning since
the speed of a compiler is of importance for larger software projects.

The AST provided by Clang is very extensive and low-level. Data quality
is therefore very good. However, some flattening of the tree might be needed
in order to more easily compare nodes with each other. A downside of this
level of detail is that knowledge of C specifics is required to properly process
them.

Clang has an extensive API for which C libraries are provided. For the de-
fault libclang library there are also Python bindings available. The Python
bindings were used since ‘playing’ with the data structure in a Python shell
is much easier than writing C code for the same purpose. It turns out that
Clang and the Python bindings don’t play well together if they are not
the exact same version. Also, the Python 3 compatible bindings are only
available with later versions of Clang. The Python bindings in the package
repository are for Python 2 only, therefore the Python source code from

36

the GitHub repository1 was used. This worked well together with Clang
6.0. It was very easy to access the AST as documented in the C library
documentation.

Clang has support for a number of languages in the extended C family,
including C++, Objective C and OpenCL C. There is, as expected, no sup-
port for other languages. The C language support is good and many GCC

extensions are supported by Clang.

LLVM

The LLVM intermediate representation can contain metadata about the orig-
inal program. This intermediate representation (IR) is much simpler than
C code. It is therefore easier to perform analysis on this code after the
complexity has been taken care of by the front end compiler, which is Clang
in for the C language. The LLVM optimizer already contains a number of
analysis algorithms, including control flow graphs and memory dependence
analysis. Many parts of the IR can be traced back to a specific location in
the original code, making the analysis useful for our purpose. By default
LLVM does not output sufficient data for the purposes of this project, but
the optimizer can be extended with additional passes to get the data out of
the system.

4.3.3 Rascal

Rascal can either be used as a standalone JAR or with an Eclipse plugin.
It is noteworthy that Rascal requires a JDK to run, only a Java runtime
environment is not sufficient. A separate plugin provides C analysis capa-
bilities. Eclipse update repositories are available for both plugins, making
installation very easy. There is no manual configuration required.

I was not able to accurately measure the time taken by Rascal to parse
the example code into an AST. This is due to the fact that this can only
(easily) be done from their own console, there is no single command line
program that can be run and timed. The command to parse the code in the
Rascal console returns reasonably quick, however, it is impossible to rank
this in comparison to CIL and Clang.

Rascal’s tree representation is equally detailed as the representation of
the other two tools. It does not add control flow information to the tree
by default. Rascal provides a domain-specific language (DSL) to work with
the AST. Because of its limited purpose this language is very suited to the
task of analyzing source code. The data structures Rascal provides for ASTs
are very generic and are designed to be extended by specific language im-
plementations. The C implementation seems to provide the necessary data
structures for the supported C90 grammar. However, because of a lack of

1The Clang GitHub repository is located at https://github.com/llvm-mirror/clang.

37

https://github.com/llvm-mirror/clang

CIL Clang Rascal

Installation and configuration − + +

Performance = =

Data quality + = −

API quality = + −

C language support = + −

Other language support − = +

Overall − + −

Table 4.1: Scoring table of the tools under evaluation. A score is either
positive (+), neutral (=) or negative (−).

documentation and the fact that both Rascal and the extension for C sup-
port are still in development, I was not able to get any practical use out of
this tool. Data and API quality are therefore considered to be poor, with the
side node that this might improve over time as the code repository seems to
be active.

I have not found any claims regarding the level of support for the C pro-
gramming language. Rascal includes by default a C90 parser which would
not be sufficient for modern software. Rascal is extensible to support mul-
tiple languages, however, currently only Java is relatively well supported.

4.4 Conclusions

The relative score resulting from the evaluations as described above is shown
in table 4.1. Each tool has been scored on each factor. No score is given if
it was not possible to evaluate that part of the tool.

At first the ‘overall’ score in the table was indented to represent a score
for the tool considering the evaluated factors. Because only one evaluated
tool actually works as expected it is unfair to give a positive rating to an
tool that has not been observed in a usable state.

Besides the fact that Clang turned out to be the only properly working
tool, it has scored well on the criteria that were defined beforehand. This
might be due to the relatively large user base of the tool. Of the evaluated
tools Clang seems to be the only one being used (at least with C code)
outside of a research context.

Given that Clang scored well on the evaluation criteria and works as ex-
pected it will be the tool of choice for this project. Of course the algorithms
do not depend on any specific tool.

38

Chapter 5

System architecture

5.1 Requirements and considerations

For this project a number of requirements have been given by the client,
ALTEN Netherlands. These requirements are listed in appendix A. Besides
these requirements certain aspects of the chosen code analysis tool (see chap-
ter 4) and algorithms (see section 3.2) need to be taken into account.

The abstract syntax tree (AST) produced by Clang is very detailed and,
as one would expect, tied to C structure and context. Some data that is
required for the analysis algorithms, which are discussed in section 3.2, is not
encoded in the AST, so additional analysis has to be done beforehand. Due
to the complexity of some parts of the C language this is relatively hard. The
Clang compiler compiles C code to the LLVM intermediate representation
(IR) which is easier to analyze. It also allows tracing back instructions from
the IR to the original C source code. Therefore it makes sense to do parts
of the analysis with LLVM and annotate the Clang AST with information
obtained from LLVM.

Because the C parsing and preprocessing will be performed by differ-
ent programs, it makes sense to have an analysis program that can receive
data from any source. This combined with having a programming language
independent representation of the program as input format results in the
possibility of supporting multiple programming languages.

The algorithms for extracting the changes from the source code all work
in a similar way, taking two labeled trees as input and producing an edit
script for these trees. This edit script can be used to tag modified nodes
to limit the analysis to. The analysis algorithms require both annotated
abstract syntax trees and the edit script as input.

39

5.2 Architecture decomposition

5.2.1 High level architecture

On the highest level, three distinct components can be identified from the
requirements. The first component, Parse, is responsible for parsing the
source code into an internal representation of the AST. This component is
also responsible for adding some analysis data specific to the programming
language. Because two versions of a program need to be compared there are
two independent Parse components. Secondly, the differences between the
two versions need to be calculated. The Diff component serves this purpose
and takes the ASTs produced by the Parse components as input. Given the
ASTs and the calculated changes, the actual analysis can be performed by
the Analyze component. Finally the results need to be reported to the user,
for which a Report component exists. The composition of these components
is shown in figure 5.1.

Of course a system for configuring and controlling these components
needs to be in place, however, these have been omitted from the architecture
as these are not considered a core part of the system.

Parse Diff Analyze Report

Figure 5.1: Composition of the high-level subsystems.

5.2.2 System components

Parse

The Parse component consists of a number of parsers, each with a different
implementation. A parser is implemented for a specific programming lan-
guage or a specific toolset for parsing code. The parser parses two programs
for two-way analysis and three programs for three-way analysis. Both ver-
sions that will be merged need to be parsed, and in the case of three-way
analysis their common ancestor needs to be parsed as well.

Parser

Parse

Figure 5.2: Contents of the Parse component for a single run.

The Parser component accepts a program as input and is responsible
for generating and parsing an intermediate analysis representation of the
program. It also adds additional analysis information to the intermediate

40

representation. While the exact implementation of this component might
differ greatly for different programming languages some detail is given about
the design of our C parser.

The C parser requires the path to the file containing the root of the
program as input, just as a C compiler would. It then uses the Clang
Python bindings to compile the source code into an AST. It also requires
analysis performed by LLVM. This analysis is exported to a file using an
extension module for the LLVM compiler. This file is then parsed by the
parser after which the data is combined with the Clang AST and put into
an internal data structure.

The architecture of the C/Clang version of the Parse component, de-
noted by Parser:Clang, is shown in figure 5.2. In this diagram the Compile
AST component represents libclang, the interface with the Clang compiler.
The Compile LLVM component represents the regular Clang compiler which
compiles the C program into LLVM byte code. The LLVM analysis compo-
nent represents the LLVM optimizer with the analysis extension library that
brings some static analysis results from the LLVM compiler to the Parser
component.

Compile AST Transform

LLVM analysisCompile LLVM

Parser:Clang

Figure 5.3: Composition of the Clang specific Parser component and sup-
porting programs.

Diff

The Diff component calculates the difference between the parsed abstract
syntax trees. The diff compontent takes the ASTs as input and returns
the mapping between corresponding nodes in the trees and the changes
that can be derived from this mapping. The algorithm that is used in the
implementation is described in section 6.2. Pseudocode of the algorithm
implementation can be found in appendix B.

Analyze

The Analyze component contains algorithms for identifying changes and com-
paring the ASTs in order to check the input for possible problems after
merging. The analysis component consists of a number of distinct analysis
algorithms, which are described in section 3.2. These take the ASTs and the

41

results from the Diff component as input and produce detected conflicts.
Each detected conflict consists of a number of conflicting changes and infor-
mation on the details of the conflict. Each conflict is assigned a score based
on the severity of the conflict. The composition is shown in figure 5.4.

The Analysis components, containing the analysis algorithms, are de-
signed to work independent of each other. Therefore the execution order
is not important. Since the algorithms do not modify existing data these
could also be executed in parallel.

Analysis 1

...

Analysis n

Dispatch

Analyze

Figure 5.4: Composition of the Analyze component.

Report

The Report component takes the output of the analysis and aggregates
scores. It also reports the specific detected problems to the user. The
detected problems have scores and the problems are sorted based on this
score. A total and average score of the analysis is given to provide insight
into the ‘danger’ of performing the merge.

The developed proof of concept does not support configuring the sever-
ity of each kind of conflict to suit specific project needs. Also, no dynamic
severities are implemented. Instead, each type of conflict is assigned a con-
stant score to make a distinction between the types of conflicts. An example
of a dynamic severity of a conflict would be to have the severity depend on
the number of changes in the conflict.

42

Chapter 6

Implementation

A prototype of the system has been implemented in the Python program-
ming language. The system architecture as described in the previous chapter
is used as structure for the subsystems and interfaces. The system uses a
plugin system allowing for easy integration of extensions to the functionality.

6.1 Framework

A small framework has been created from the architecture description. The
framework additionally includes an intermediate data representation and a
plugin system for extensibility.

6.1.1 Internal data representation

The abstract syntax trees are internally represented by a more generic tree
structure. The internal data representation has been designed to have a
small memory footprint. It therefore does not hold all data that a proper
abstract syntax tree would. Instead, the tree nodes contain only the essen-
tial information that is required by the algorithms. For extensibility each
node can hold additional, unspecified metadata. At this moment the data
in the intermediate representation has been selected based on the require-
ments of the analysis, and the parser is responsible for providing that data.
When the system is developed further it might be a good idea to spend time
investigating a different data representation that provides more flexibility.
One possible solution is discussed in chapter 8.

Dependencies and references

Both dependencies and references are a unidirectional relation between two
nodes. For the purpose of the internal representation both are seen as a
dependency on another node. A dependency has a type, which is either a
control dependency, a kind of memory dependency or a kind of reference.

43

RegistryRun configuration

PluginPlugin

Analysis classAnalysis class

Parser classParser class

registers at

contains

contains

queries

uses

uses

Figure 6.1: Abstract diagram of the plugin system.

Changes

A change is represented as a combination of two nodes, each from a different
AST, and a change operation. At this moment three change operations are
supported: an insert, a delete, and a rename. Changes are modeled as a 3-
tuple containing the node in the first version, the node in the second version,
and the change operation. Either one of the nodes might be absent in case
of an insert or delete operation. A different diff algorithm might support
more change operations in the future, for example, moved subtrees.

6.1.2 Plugin system

For extensibility purposes the system has been designed to be plugin-based.
There is a very small base system that consists of code for running the
analysis, the intermediate representation and abstract classes that can be
implemented by plugins. The default plugin adds implementations for a
diff algorithm and some analysis algorithms. The C parser has been imple-
mented in a separate plugin.

Plugins are loaded dynamically by looking for certain files on the Python
path. Each plugin can define different implementations that it provides.
These implementations are registered in a central registry and can be used
when running the system. Figure 6.1 shows an abstract view of the compo-
nents and their interactions.

6.2 Tree differencing

Tree differencing is used to compute the changes between the abstract syntax
trees of two versions of a program. Typical algorithms take two labeled trees

44

as input, and yield a one-to-one mapping of the nodes in the trees that are
considered equal. Non-mapped nodes are either inserted or deleted, mapped
nodes with different labels are renamed.

In this section a number of algorithms are presented and the chosen
algorithm and its implementation are discussed in more detail.

6.2.1 Considered diff algorithms

The ChangeDistiller algorithm combines comparing the structure of a sub-
tree and the string labels of nodes for mapping nodes of two trees [11]. Leaf
nodes in the tree are mapped if their labels (AST node types) match and the
string similarity of the values (concrete syntax) is above a certain thresh-
old. For subtrees the same comparisons are used, with the addition that the
number of matched leafs compared to the maximum number of leafs in one
of the subtrees must exceed a certain threshold.

By default, ChangeDistiller works with coarse-grained AST nodes, re-
sulting in small edit scripts but relatively large changes. This is not ideal
for our purpose as detailed changes will result in detailed and specific prob-
lematic changes that can be detected. If the extracted changes are relatively
large the risk exists that a large number of these changes will be marked
as problematic, while making it unclear in which part of the change the
problem exists.

The RTED algorithm (Robust Tree Edit Distance) is presented as an ef-
ficient way of calculating the tree edit distance independent of the shape of
the trees [25]. The authors claim that their algorithm computes at most the
same number of subproblems that the competitors need to compute, while
being more efficient when the competing algorithms run into the worst case
scenarios. RTED computes the optimal edit script by performing an exhaus-
tive search on all possible strategies for calculating the tree edit distance
and only doing the actual calculation on the optimal strategy.

RTED does not consider move operations, only insert, delete and re-
name. This limitation allows the algorithm to be a lot faster compared to
algorithms that do consider move operations. Also, computing moves can-
not always be done properly as some parts of code tend to repeat many
times, for example a variable. However, this approach may lead to a large
edit script when existing code is wrapped in another statement, for example
when code is wrapped in a conditional statement.

The GumTree toolkit has been developed by researchers at the univer-
sities of Bordeaux and Lille and is designed to find edit scripts of abstract
syntax trees that are short and close to the developers intent [10]. Gumtree
works in three phases. First the tree is iterated top down mapping nodes
with the same hash. The hash that is used for this comparison contains
a nodes label and value and those of the descendants. Therefore this first
phase will only match exactly matching subtrees. Secondly the tree is it-

45

erated bottom up to map nodes with a lot of matching children, signifying
renames. Finally an edit script is computed for the remaining nodes, for
which the RTED algorithm is used.

Dotzler and Philippsen proposed a number of optimizations for shorten-
ing the computed edit scripts to the aforementioned algorithms [9]. They
describe five different optimizations that are applicable to all considered
algorithms. The optimizations show improvements on the quality of the
mappings as in all cases the optimizations resulted in less than 1.2% of the
tests in worse results. The run time of the algorithms does seem to suffer in
the case of RTED and GumTree, while the optimizations shorten the average
run time for ChangeDistiller.

In conclusion, the more recent algorithm, GumTree, promises the best
performance, both in edit script size and time. ChangeDistiller performs
not as good and is less suitable for the level of detail that we like to have.
Since RTED is used on the subtrees that were not matched by GumTree in
the first phase, GumTree could be seen as an optimization for RTED.

6.2.2 Tree differencing implementation

The tree differencing algorithm that is used is an implementation of the
GumTree algorithm as described in [10]. Several tweaks to the pseudocode
have been made in order to make it more suitable for implementation in
Python.

A relatively simple implementation of the opt() function in the algorithm
has been used. This part of the algorithm matches subtrees if their similarity
is above a certain threshold. The similarity is computed based on the shape
of the tree and the similarity of the node types and labels. The specific
algorithm that is chosen for computing the similarity is the Zhang-Sasha
algorithm [34]. This algorithm is chosen in favor of the RTED algorithm
that is described above as a working library for the Zhang-Sasha algorithm
was available [13], while a working version of RTED was not. The similarity
of the nodes based on their type and labels is determined by the Levenshtein
distance, which denotes the similarity of two strings. The specific algorithm
that is used is the Wagner-Fischer algorithm [30].

The optimizations described by Dotzler and Philippsen [9] were not im-
plemented due to time constraints.

The implementation specifics of the tree differencing algorithm can be
found in appendix B.

6.3 Static analysis

The changes that are found in two versions need to be analyzed to find prob-
lematic changes as discussed in chapter 3. For this purpose the detection

46

from checkmerge import CheckMerge, RunConfig

from checkmerge.analysis.dependence import DependenceAnalysis

from checkmerge.analysis.reference import ReferenceAnalysis

from checkmerge.diff import GumTreeDiff

from checkmerge_clang.parse import ClangParser

Make sure CheckMerge is setup properly

if not CheckMerge.ready():

CheckMerge.setup()

Create a new run configuration

run = RunConfig(parse_cls=ClangParser, diff_cls=GumTreeDiff)

Create a run with a tree-way diff and two analysis algorithms

analysis_run = run.parse(’a/program.c’, ’b/program.c’, ’0/program.c’

).diff().analyze(DependenceAnalysis).analyze(ReferenceAnalysis)

Get the analysis results

conflicts = analysis_run.analysis()

Listing 6.1: Usage example of the declarative API. This example is without
using the plugin system.

algorithms listed there have been implemented. As the pseudocode in chap-
ter 3 has been written based on the prototype implementation in Python
there are no significant differences between the pseudocode and actual im-
plementation.

6.4 Interfacing with the system

The system provides two ways to interface with it. There is a command line
interface for direct use, and a declarative API for integrating the system into
another program or to turn it into a web service.

6.4.1 Declarative API

A single class, RunConfig, contains all logic to set up an analysis run. When
it is initialized with a valid parser and diff algorithm, methods can be chained
to form an analysis chain. Afterwards, or mid-way, result data can be ex-
tracted. An example is shown in listing 6.1.

For each chained method a copy of the run configuration object is made,
which is returned. Intermediate results are cached. This allows for easy
construction of analysis pipelines.

47

python -m checkmerge.cli analyze -p clang -a dependence -a reference

a/program.c b/program.c 0/program.c

Listing 6.2: Usage example of the command line interface.

6.4.2 Command line interface

The command line interface can be accessed by running the checkmerge.

cli Python module. Via the command line it is possible to diff and to
analyze programs, as well as to view the installed plugins and the parsers
and analysis these provide. When diffing or analyzing two programs one of
the installed parsers must be specified. When analyzing two programs, one
or more analysis algorithms must be specified as well. Instructions for using
the command line interface can be obtained by running it with the --help

flag. An example of a command line invocation is shown in listing 6.2,
performing the same task as the AST example above.

6.5 C support with Clang and LLVM

The C support plugin uses the Clang Python bindings to derive the AST

from a program. A custom LLVM analysis pass is provided to use the LLVM

optimizer to get dependency data to enrich the AST with.

6.5.1 Custom LLVM pass

LLVM, being a compiler back-end, can perform a lot of different analysis
on transformed C code already. However, this data is mostly kept internal
and is not exposed via a command line interface or library. Some analysis
functions in LLVM do have output, but this output is mostly aggregates and
no raw data.

With an analysis pass custom code can be dynamically loaded into LLVM

and executed on parsed code. The custom pass declares its dependence on
the memory dependence pass, making sure it is executed. Then the memory
dependence information is queried and formatted into a YAML file, which is
written to the file system to be read later on by the analysis system.

Because the analysis of LLVM works with the LLVM IR instead of the
C code directly, the IR code is compiled with debug information, allowing
instructions to be traced back to the original C code. The memory depen-
dence information that is saved is combined with file names and line and
column numbers for that purpose. The matching of the memory dependence
information with the C code is done in the parser of the analysis system.

48

6.5.2 Clang parser

The C code is parsed using the Clang compiler front-end. The AST is ex-
tracted from the compiler using the public C API, libclang, for which Python
bindings are available. The parser traverses the AST, creating the nodes of
the internal representation of the tool. Pointers to other nodes in the AST,
for example to nodes defining a used function, are kept in dictionaries until
the whole AST has been built in the internal representation. This way every
pointer can also be made in the internal representation.

Most AST nodes can be parsed in a generic way without considering the
specific kind of node. However, due to limitations of libclang, some types
of nodes need a special treatment. An API is provided to easily add more
special cases in the future when needed.

49

Chapter 7

Results

7.1 Evaluation

To make sure the prototype behaves as expected, several unit tests are added
to the source code. Also some small code examples were created to do
preliminary testing of the algorithms. The prototype is also tested using a
larger test suite consisting of example programs.

7.1.1 Test plan

The prototype is tested and evaluated using a custom test suite containing
programs that were manually created or altered for the purpose of the tests.
Each test in the test suite consists of:

– An ‘ancestor’ version of a program as a single file of C code.

– Two distinct versions of the same program, each as a single file of C
code.

– A summary of the changes in both versions, and a list of the expected
problems when merging the two versions.

A test is executed by getting a three-way diff of the programs and running
both analysis algorithms. The results from the algorithms are compared
to the list of expected problems. Problems that are detected but not on
the list are further inspected to check if they are a false positive or an
actual problem that was not caught by manually inspecting the code. If the
detected problem is in fact a valid problem, this change is added to the list
for that test case. From these results the following metrics are obtained:

– Precision: fraction of correctly identified problems (true positives) in
relation to all detected problems (true positives and false positives).

|{true positives}|
|{true positives} ∪ {false positives}|

51

– Recall: fraction of correctly identified problems in relation to the ex-
pected problems.

|{true positives}|
|{true positives} ∪ {false negatives}|

Additionally, the following metrics are recorded:

– Total lines of code (SLOC) in the three versions.

– Run time for calculating the differences.

– Run time for each analysis algorithm.

These metrics should give an insight into the quality of the results as
well as the time performance of the algorithms.

7.1.2 Test cases

Ideally the evaluation should be done on real-world projects, either by ex-
amining existing merges (where not a lot of problems are expected) or by
creating new merges of versions that were not intended to be merged (where
more problems are expected). This would require manually examining the
merge to determine any false positives or false negatives, so a lot of automa-
tion cannot be achieved. Also, the performance is not yet good enough to
use large examples. This makes using real-world tests not feasible.

A number of test cases have been prepared, and each is described below.
The test cases are either created specifically for this purpose, or adapted
from real-world code.

calc function test cases

A number of small and simple test cases based on the previously used calc

function have been created, each representing a category of changes as listed
in chapter 3.

The calc 1.c test case has a change in the same position in each version.
Since these kinds of problems are not explicitly detected by the tool, no
conflicts are expected.

The calc 2.c test case is illustrating a double bug fix. This test case is
the example from listing 3.1. A single conflict highlighting the two changes
is expected.

The calc 3a.c test case is illustrating an incomplete refactoring. This
test case is the example from listing 3.2. A single conflict highlighting the
changed definitions and added variable reference is expected.

The calc 3b.c test case has one parameter removed and replaced with
the remaining parameter in the first version, and a reference added to the
removed parameter in the second version. A reference conflict with the
removed parameter and added parameter reference is expected.

52

math.c test case

A file with some math-related functions was written to test a number of
change patterns. Most of the changes are not problematic, but some prob-
lematic refactorings are present. There is one group of changes that alters
the behavior of a for-loop. While this is not explicitly tested, the problem
occurs in the assignment of the variables in the conditions of two nested
for-loops. A single merge conflict is present in the file.

dll test cases

The dll program source code is taken from a course on software security.
The base version is the code as provided for the students to work on, one of
the versions is the code as submitted for an assignment, the other version
is the same code with some alterations. The differences of the two versions
in comparison with the ancestor are large, the differences between the two
versions are not.

The test cases contain a number of changes, most of which are prob-
lematic. Most changes fall solely in category PC1. The dll.c file has 6
merge conflicts based on the Unix diff program, but no conflicts for the new
algorithms are expected. The main.c file has 5 merge conflicts based on
the Unix diff program, and has a reference conflict as well, which should be
detected by the reference analysis algorithm.

sds test case

The sds (Simple Dynamic Strings) library is a C library that implements
dynamic strings. The test case consists of three versions of the code taken
from the GitHub repository1. The base version is a relatively old version of
the code, the two compared versions are a bit newer. The newest version
is a continuation on the older version, so there is technically no merge,
but there are enough changes to make the results interesting. Some merge
conflicts (category PC1) exist. There are a lot of type refactorings, for
which no algorithm is available. One detected memory dependence conflict
is expected.

7.1.3 Results

The test cases have been evaluated on a modern laptop computer (Intel Core
i5-7300U, 16GB RAM) running Linux. The total lines of code is the sum
of the lines of code for each of the three source code files in the test case.
The run times have been measured by storing time stamps when specific
parts of the code are reached. The measurements have been taken multiple
times, the best performing result has been taken to account for background

1The sds GitHub repository is located at https://github.com/antirez/sds.

53

https://github.com/antirez/sds

processes and other external influences. The command line interface was
used for running the tests. The lines of code (SLOC) was measured using
sloccount [32], the elapsed time was measured by comparing timestamps
taken by the system while executing the analysis.

Table 7.1 contains the characteristics of each test case, including the lines
of code and run times of the test case. There is no direct relation between
the number of AST nodes and the lines of code as the nodes from included
files are also parsed. This explains the small test cases having a large number
of AST nodes. Also, some of these included nodes are not matched by the
algorithm. This is due to the height and location of the subtrees, if a subtree
is too small it is not matched by the algorithm. Examples of these nodes
are constants.

It is notable that the diff step takes the most time and scales exponen-
tially with the size of the program, which is expected based on the char-
acteristics of the algorithm. To match the most similar subtrees iterations
over the cartesian product of subtrees are necessary (see appendix B). While
the dll/main.c test case is, in total, smaller than the dll/dll.c test case
it takes more time to calculate the differences. This can be explained by the
fact that the amount of code in the three versions of the dll/main.c test
case is roughly equal, while the base version of dll/dll.c contains only
function definitions without any implementation. This greatly speeds up
two of the three diffs that are calculated.

The results for each test case are shown in table 7.2. The first four tests
with a single problematic change give a positive result as the problematic
changes are identified. In case of the refactorings also a memory dependence
conflict was found, which are false positives. For the precision two numbers
are given. The precision ‘with PC1’ assumes that detected problematic
changes are true positives if the detected changes include a merge conflict.
The precision ‘without PC1’ is the precision without this assumption.

It is notable that in all test cases except one the recall was 1.00, meaning
that the algorithms were able to identify the problems in almost all of the
test cases. One problem of category PC2 was not detected. This was pin-
pointed to the fact that the conflicting changes are located in different basic
blocks. The current implementation of the LLVM bindings limit memory de-
pendencies to within a basic block. Therefore the node relations necessary
to detect this change are simply not present in the data.

All identified false positives were of category PC2. It is clear that algo-
rithm 3.1 yields a relatively large number of false positives. The algorithm
was designed to sacrifice precision for recall, and is therefore expected to
yield a relatively large number of false positives. The algorithm performs
best when there are not many changes in a piece of code, for example in the
calc 2.c test case. When a lot of changes are made, the algorithm starts to
detect a large number of possible conflicts, most of which are a false positive.

54

N
u
m
b
er

o
f
S
L
O
C
a

N
u
m
b
er

of
A
S
T
n
o
d
es

b
N
u
m
b
er

of
A
S
T
ch
an

ge
s

P
a
rs
e
ti
m
e
(s
)

D
iff

ti
m
e
(s
)

c
a
l
c
1
.
c

1
8

2
00

8
13

7
0.
5

4.
5

c
a
l
c
2
.
c

1
8

2
00

8
13

8
0.
5

4.
4

c
a
l
c
3
a
.
c

1
8

2
00

7
14

8
0.
5

3.
9

c
a
l
c
3
b
.
c

1
8

2
00

6
14

3
0.
5

3.
8

m
a
t
h
.
c

18
1

2
81

1
31

1
1
.0

2
07

.5

d
l
l
/
m
a
i
n
.
c

26
7

6
78

3
20

7
1
.9

3
41

.3
d
l
l
/
d
l
l
.
c

37
2

8
06

2
22

4
2
.4

5
0.
8

d
l
l
/
d
l
l
.
h

7
2

22
2

9
0.
7

6.
4

s
d
s
/
s
d
s
.
c

1
68

1
18

09
3

54
4

13
.2

6
76

2.
7

T
ab

le
7.
1:

T
es
t
ca
se

ch
ar
ac
te
ri
st
ic
s.

a
A
ll
p
a
rs
ed

co
d
e
o
f
a
ll
v
er
si
o
n
s,

n
o
t
in
cl
u
d
in
g
d
ep

en
d
en

ci
es
.

b
A
ll
p
a
rs
ed

n
o
d
es

o
f
a
ll
v
er
si
o
n
s,

in
cl
u
d
in
g
d
ep

en
d
en

ci
es
.

55

P
recision

A
n
aly

sis
tim

e
(s)

N
u
m
b
er

of
d
etected

con
fl
icts

W
ith

P
C
1

W
ith

ou
t
P
C
1

R
ecall

D
ep

en
d
en

ce
R
eferen

ce

c
a
l
c
1
.
c

0
–

–
–

0.01
0.01

c
a
l
c
2
.
c

1
1.00

1.00
1.00

0.01
0.01

c
a
l
c
3
a
.
c

2
0.50

0.50
1.00

0.01
0.01

c
a
l
c
3
b
.
c

2
0.50

0.50
1.00

0.01
0.01

m
a
t
h
.
c

10
0.20

0.20
0.67

1.97

d
l
l
/
m
a
i
n
.
c

12
0.75

0.08
1.00

2.19
0.03

d
l
l
/
d
l
l
.
c

7
0.00

0.00
–

1.95
0.04

d
l
l
/
d
l
l
.
h

0
–

–
–

0.00
0.00

s
d
s
/
s
d
s
.
c

10
0.50

0.10
1.00

473.7

T
ab

le
7
.2
:
Q
u
alitative

a
n
d
q
u
a
n
tita

tive
p
erform

an
ce

of
th
e
algorith

m
s
in

th
e
p
rototy

p
e.

M
issin

g
valu

es
cou

ld
n
ot

b
e
calcu

lated
d
u
e
to

a
d
iv
isio

n
b
y
zero.

56

This also impacts the run time of the algorithm negatively as can be seen
from the sds/sds.c test case.

There is a lot of similarity between distinct problems identified by algo-
rithm 3.1. This suggests that the ‘largest superset’ approach taken by algo-
rithm 3.2 might not be sufficiently optimizing the results. If many changes
exist within a basic block many combinations of these changes are identified
as distinct conflicts.

Merge conflicts tend to result in one or more conflicts detected by algo-
rithm 3.1. Due to the greediness of this algorithm a large part of a basic
block is covered from one node. This results in the detection of almost any
change within a single basic block. Combined with the duplicates in the
results, due to different start nodes, this results in many false positives.

7.2 Known limitations

The prototype currently has a number of limitations. For a number of
limitations possible solutions are proposed. Some of these limitations are
due to issues that are out of the scope of the project. Others could not
be implemented due to time constraints. A list of the limitations is given
below.

– Single files are evaluated, changes in dependent implementation files
are not taken into account. Changes in included header files are taken
into account.

– For many AST node types custom parse rules are needed to properly
parse them due to limitations of libclang.

– The current internal representation is somewhat limited, it might re-
quire changes when new algorithms are added.

– Not all identified problematic changes are currently detected.

– The programs run quite slow, the algorithms or algorithm implemen-
tations need performance optimizations.

57

Chapter 8

Related work

Little research has been done on static analysis of code merges specifically.
The subject of software evolution is closely related though, as this also in-
volves changes between two versions of a program. Therefore the research
discussed here is not directly comparable to this study. A number of relevant
papers has already been discussed in chapter 2.

8.1 Generic abstract syntax trees

The internal representation used by the prototype does not support all fea-
tures that nodes in an AST might have. To be fully extensible, and to be
able to support more different languages, this representation has to be ex-
tended. Meanwhile, other researchers are working on a more generic AST

that is designed to support many programming languages without informa-
tion loss. Babelfish (bblfsh) is a relatively new framework for code parsing,
described by the authors as a “universal code parser” [3]. The purpose of
the project is to provide language independent parsing for any programming
language. The AST representation used by Babelfish holds all features that
a language-specific AST would, making code analysis of different languages
easier.

While the UAST (universal abstract syntax tree) format that Babelfish
uses should encode a full AST, any additional information provided by the
native parser (e.g. Clang for C or JavaParser for Java) is most likely to
be lost. An example of this is direct pointers from the usage of a named
entity to its declaration. This analysis should be done (again) with the
UAST as input, trading flexibility and a simpler native parser for the work
of re-implementing certain analysis steps.

When starting this Babelfish was in early development and therefore not
considered. Since then a lot of progress has been made, making it seem like
a more viable choice to use for a project like this one. The C language is at
the time of writing not (yet) supported.

59

8.2 Source code differencing

Considerable effort has been put in source code differencing as textual source
code differencing has been known to perform worse than methods taking the
syntax of the code into account. Fluri, Würsch, Pinzger and Gall describe
an abstract syntax tree based source code diff algorithm [11]. This algorithm
finds the differences between two versions of a code base on a syntactic level.
The research is based on an earlier tree differencing algorithm which was
intended for LATEX documents. This algorithm was not directly applicable
to source code since in most (if not all) common programming languages
non-leaf nodes also include relevant information, resulting in suboptimally
large change sets. An example is the condition of a loop. Fluri et al.
proposed and benchmarked adaptations to make the algorithm viable to
use for source code. The benchmark results suggest that the algorithm is
promising, however, a comparison with another similar algorithm is missing,
therefore the only conclusion is that the changes to the earlier algorithm
helped in correctly identifying changes in source code.

Another abstract syntax tree approach is described by Neamtiu, Foster
and Hicks [21], which predates the research of Fluri et al. This approach
assumes that function names remain constant. This is necessary to be able
to base the detection of changes within functions on these function names.
The matching of two ASTs is performed with common graph techniques like
finding bijections mapping parts of the code in one version to the other ver-
sion. This approach, including the described algorithm, is relatively simple
but may not work in more challenging situations. The algorithm is clearly
geared towards smaller changes within single functions but is not useful at
all when looking at (larger) refactorings.

The GumTree algorithm by Falleri et al. is more recent than the methods
described above. This algorithm has been compared with other, at that
moment state-of-art, algorithms, showing a performance increase both in
quality of the result and in average run times [10]. This algorithm has been
used in this project, and is described in greater detail in section 6.2. At the
time of writing there is no publication describing a new, better algorithm,
although some optimizations exist [9].

Maletic and Collard propose an XML-based differencing approach of
source code with respect to its syntax [18]. This approach requires that
versions of a program are converted to the XML representation srcML. Next,
the differences can be calculated which are, together with both versions,
stored in another XML format srcDiff. This XML can then be queried
using XQuery for further analysis. This approach combines an intermediate
representation, which still contains programming language specifics, and a
differencing algorithm. Due to the level of detail of the XML reprensentation
a translation has to be written from the raw compiler AST to srcML.

60

Asenov et al. describe a merge algorithm for existing version control
systems that takes tree structures, like source code, into account [1]. The
output of a textual difference algorithm is used to build a tree representation
of only the changes. This tree representation is then formatted in a way
that a standard textual difference algorithm can compute the changes more
precisely than without this additional step. The algorithm can be modified
for specific application domains which makes it very versatile. This research
focuses primarily on improving merges and reducing the number of merge
conflicts rather than just calculating the difference between programs.

8.3 Static analysis of source code changes

Most research into the analysis of changes in source code seems to be fo-
cused on software evolution, comparing a version of a program with an older
version. Typical goals are gaining insight into the development of a software
program and helping developers write maintainable code.

Baxter et al. use abstract syntax trees to detect clones in source code
[6]. The research is focused on the traditional antipattern of copying and
pasting larger fragments of code instead of writing a proper function to
handle generic cases. For this reason small, trivial duplicates, like simple
mathematical computations, are excluded from the results.

Refactorings are generally larger, more involved changes. They are usu-
ally changes that require modifications at multiple points in the source code.
Also, code is refactored often. This combination presents a large risk of
breaking code while refactoring. Weissgerber and Diehl show a method
for finding refactorings in source code [31]. The method presented in their
paper uses signature-based analysis together with clone detection to iden-
tify refactoring candidates. When computed for two subsequent versions
a refactoring can be identified and the candidates can be compared to find
incomplete refactorings. For the Tomcat project this method is able to iden-
tify 77% of the refactorings that were documented. Additionally 73% of the
identified refactorings were actual refactorings based on inspection of the
source code. These numbers increased to 80% and 92% when only looking
at structural refactorings (moving classes, interfaces, fields and methods and
renaming classes).

Some refactorings are not identified by Weissgerber and Diehl. Godfrey
and Zou describe a method for identifying the splitting and merging of source
code entities like classes and functions [12]. These are refactorings that are
common but relatively hard to identify. They describe understanding the
evolution of a code base as a primary goal. Due to the fact that manual input
from the user is required, especially when the analysis should be performed
in reasonable time, this method might not be suitable for programmatic use.

61

Silva and Valente created a program for finding refactorings in Java pro-
grams called RefDiff [28]. The authors claim that the program can detect
many kinds of refactorings, including the ones covered by the previously dis-
cussed approaches. According to the verification carried out by the authors
RefDiff performs very well with an accuracy of 100% and a recall of 88%.

62

Chapter 9

Conclusions and
recommendations

9.1 Conclusions

The goal of this research was to design and implement a prototype of a
system for assessing the risk of side effects of code merges. To achieve this
goal, a number of categories of changes that can cause issues with merges
were specified. Algorithms to detect some of these changes were developed
and implemented in a prototype system. The changes were extracted from
calculating the differences between abstract syntax trees (ASTs). The algo-
rithms were evaluated by analyzing a number of artificially created merges
as real-world test data is not readily available.

Different categories of changes were identified (Q1). A method for finding
the semantic changes in the code was described and implemented (Q2).
Two new algorithms were developed and implemented to detect problematic
changes for three of the identified categories (Q3).

The results presented in chapter 7 clearly show that the two new algo-
rithms are able to identify the problematic changes. These also show that
the results also include a large number of false positives, which was expected
given the nature of algorithm 3.1.

All in all, the primary conclusion is that a risk analysis system for code
merges is feasible. The presented algorithms can identify the problems, but
lack some precision as a large number of false positives are given. While the
prototype produces good results, its time performance is not at a level that
makes it practical to use in production. In order to have a production-ready
tool some improvements, which are discussed in the next section, need to
be made.

The client is satisfied with the results, as these show that it is possible to
find problematic changes in merges. The current results of the algorithms,
even with the false positives, can help developers with merging code by giv-

63

ing some pointers to possible problems. The results presented in this report
give the client confidence that, with the right investment, a production-
ready tool can be produced to help developers perform merges. This tool
would be used by developers performing merges, possibly running as part of
a continuous integration (CI) pipeline.

9.2 Future work

This section contains a number of recommendations that future work can
focus on within the context of source code merge analysis. Three topics are
discussed below. The first two topics include research challenges, the last
two topics include engineering challenges.

Analysis algorithms First of all, the analysis itself can be improved. The
algorithms for detecting problematic changes presented in this study do not
cover all identified problems. Future research can focus on detecting more
changes or identifying other problematic changes that could be detected.
Furthermore, improvements could be made to the algorithms introduced in
this report.

For example, algorithm 3.1 currently produces a lot of false positives.
This algorithm currently takes too many nodes into account for determining
whether a conflict exists. Finding filters or other patterns in the tree to look
at might reduce the number of false positives greatly.

Risk assessment Secondly, at this point in time the risk assessment is
purely based on the presence of certain problematic changes. Future research
could investigate the risk involved with certain types of conflicts by looking
at the probability of a conflict resulting in a defect, and the severity of this
defect.

Additionally it can be interesting to look at detected problematic changes
in their context. A risk assessment could be based on the probability of
the change breaking the merge or the impact of the remaining defect after
merging. It is easy to imagine that different programming languages require
different scoring mechanisms as well. For example, in C one could have
created a memory leak with a double malloc(), which is not (easily) possible
in Java. A survey could reveal common defects and detection for these
defects could be included.

Practical applications Finally, the practical usability of the tool can be
improved, for example by supporting more programming languages and im-
proving the C parser. These improvements primarily require an engineering
effort. A framework like Babelfish [3] can be used for this by using it as
internal representation of an AST. This would mean that some data, like

64

memory dependence, would need to be gathered based on this representa-
tion. With Babelfish in place it would be relatively easy to support a large
number of programming languages.

For practical use the runtime of the system needs to be improved as well.
This can be achieved by improving the current implementation or leveraging
parallelism where appropriate, for example with tree differencing or running
the analysis algorithms.

65

References

[1] Dimitar Asenov, Balz Guenat, Peter Müller, and Martin Otth. “Pre-
cise Version Control of Trees with Line-Based Version Control Sys-
tems”. In: International Conference on Fundamental Approaches to
Software Engineering. Springer, 2017, pp. 152–169.

[2] Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash. Elements of Pro-
gramming Interviews in Java: The Insiders’ Guide. CreateSpace In-
dependent Publishing Platform, 2015. isbn: 9781517435806.

[3] Babelfish - universal code parser. source{d}. url: https://bblf.sh
(visited on Jan. 19, 2018).

[4] Utpal Banerjee. Dependence analysis. Vol. 3. Loop Transformation for
Restructuring Compilers. Springer, 1997. isbn: 9780792398097.

[5] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massi-
miliano Di Penta, Rocco Oliveto, and Orazio Strollo. “When Does a
Refactoring Induce Bugs? An Empirical Study”. In: 2012 IEEE 12th
International Working Conference on Source Code Analysis and Ma-
nipulation. IEEE, Sept. 2012, pp. 104–113.

[6] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,
and Lorraine Bier. “Clone detection using abstract syntax trees”. In:
Proceedings. International Conference on Software Maintenance, 1998.
IEEE, 1998, pp. 368–377.

[7] Philip Bille. “A survey on tree edit distance and related problems”.
In: Theoretical Computer Science 337.1-3 (June 2005), pp. 217–239.

[8] clang: a C language family frontend for LLVM. LLVM. url: https:
//clang.llvm.org/ (visited on Sept. 14, 2017).

[9] Georg Dotzler and Michael Philippsen. “Move-optimized source code
tree differencing”. In: Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering - ASE 2016.
ACM, 2016, pp. 660–671.

67

https://bblf.sh
https://clang.llvm.org/
https://clang.llvm.org/

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Montperrus. “Fine-grained and accurate source code dif-
ferencing”. In: Proceedings of the 29th ACM/IEEE international con-
ference on Automated software engineering - ASE ’14. ACM, 2014,
pp. 313–324.

[11] Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. “Change
Distilling: Tree Differencing for Fine-Grained Source Code Change Ex-
traction”. In: IEEE Transactions on Software Engineering 33.11 (Nov.
2007).

[12] Michael W. Godfrey and Lijie Zou. “Using origin analysis to detect
merging and splitting of source code entities”. In: IEEE Transactions
on Software Engineering 31.2 (Feb. 2005), pp. 166–181.

[13] Tim Henderson and Steve Johnson. Zhang-Sasha: Tree edit distance
in Python. url: https://pythonhosted.org/zss/ (visited on Jan.
10, 2018).

[14] James Wayne Hunt and Malcolm Douglas MacIlroy. “An Algorithm
for Differential File Comparison”. In: Computing Science Technical
Report No. 41. Bell Laboratories, June 1976.

[15] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “RASCAL: A Do-
main Specific Language for Source Code Analysis and Manipulation”.
In: 2009 Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation. IEEE, 2009, pp. 168–177.

[16] Chris Lattner. “LLVM and Clang: Next generation compiler technol-
ogy”. In: BSDCan - The BSD Conference. 2008.

[17] Vladimir I. Levenshtein. “Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals”. In: Soviet Physics Doklady 10.8 (Feb.
1966), pp. 707–710.

[18] Jonathan I. Maletic and Michael L. Collard. “Supporting source code
difference analysis”. In: 20th IEEE International Conference on Soft-
ware Maintenance, 2004. Proceedings. IEEE, 2004, pp. 210–219.

[19] Tom Mens. “A state-of-the-art survey on software merging”. In: IEEE
Transactions on Software Engineering 28.5 (May 2002), pp. 449–462.

[20] John C. Munson and Sebastian G. Elbaum. “Code churn: A mea-
sure for estimating the impact of code change”. In: Proceedings. In-
ternational Conference on Software Maintenance, 1998. IEEE, 1998,
pp. 24–31.

[21] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. “Understanding
source code evolution using abstract syntax tree matching”. In: ACM
SIGSOFT Software Engineering Notes 30.4 (July 2005), pp. 1–5.

68

https://pythonhosted.org/zss/

[22] George C. Necula, Scott McPeak, Shree P. Rahul, andWestleyWeimer.
“CIL: Intermediate Language and Tools for Analysis and Transforma-
tion of C Programs”. In: Lecture Notes in Computer Science. Springer.
2002, pp. 213–228.

[23] OCaml. OCaml. url: https://ocaml.org (visited on Oct. 3, 2017).

[24] Stefan Otte. “Version control systems”. In: (2009).

[25] Mateusz Pawlik and Nikolaus Augsten. “RTED: a robust algorithm
for the tree edit distance”. In: Proceedings of the VLDB Endowment
5.4 (Dec. 2011), pp. 334–345.

[26] Ranjith Purushothaman and Dewayne E. Perry. “Toward understand-
ing the rhetoric of small source code changes”. In: IEEE Transactions
on Software Engineering 31.6 (June 2005), pp. 511–526.

[27] Rascal Metaprogramming Language. Centrum Wiskunde & Informat-
ica (CWI). url: http://www.rascal-mpl.org/ (visited on Sept. 13,
2017).

[28] Danilo Silva and Marco Tulio Valente. “RefDiff: Detecting Refactor-
ings in Version Histories”. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, May 2017,
pp. 269–279.

[29] The LLVM Compiler Infrastructure. LLVM. url: https://llvm.org/
(visited on Sept. 14, 2017).

[30] Robert A. Wagner and Michael J. Fischer. “The String-to-String Cor-
rection Problem”. In: Journal of the ACM (JACM) 21.1 (Jan. 1974),
pp. 168–173.

[31] Peter Weissgerber and Stephan Diehl. “Identifying Refactorings from
Source-Code Changes”. In: 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06). IEEE, 2006, pp. 231–
240.

[32] David A. Wheeler. SLOCCount. url: https://www.dwheeler.com/
sloccount/ (visited on Mar. 5, 2018).

[33] David A. Wheeler. The Apple goto fail vulnerability: lessons learned.
Nov. 23, 2014. url: https://www.dwheeler.com/essays/apple-
goto-fail.html.

[34] Kaizhong Zhang and Dennis Shasha. “Simple Fast Algorithms for the
Editing Distance between Trees and Related Problems”. In: SIAM
Journal on Computing 18.6 (Dec. 1989), pp. 1245–1262.

69

https://ocaml.org
http://www.rascal-mpl.org/
https://llvm.org/
https://www.dwheeler.com/sloccount/
https://www.dwheeler.com/sloccount/
https://www.dwheeler.com/essays/apple-goto-fail.html
https://www.dwheeler.com/essays/apple-goto-fail.html

Appendix A

Requirements for the
proposed tool

The requirements for the proposed software tool are outlined here. These
requirements have been partially imposed by ALTEN Netherlands and par-
tially derived from the literature discussed in chapter 2.

The key words must, should and may in the list below are to be inter-
preted as defined in RFC 2119.

R1 The program must identify problematic changes as described in chap-
ter 3.

R2 The program should assign a score to changes based on the type of
problem that might arise.

R3 The program should calculate a total score for a merge based on the
changes in it.

R4 The program must present the problematic changes and should present
the scores to the user.

R5 The program must support at least the C programming language.

R6 The program may be extensible to use with some other programming
languages.

71

Appendix B

GumTree algorithm

Listed below is the GumTree algorithm [10] in pseudocode for reference.
The algorithm listed here is derived from the new Python implementation
of the algorithm as used in the prototype.

The algorithm consists of two phases, a top-down phase (algorithm B.1)
and a bottom-up phase (algorithm B.2). These phases reference other al-
gorithms that can have different implementations. The algorithm used for
calculating the edit distance between two subtrees (i.e. the similarity of two
subtrees) is the dice algorithm (algorithm B.3). To find the string similarity
of a label, the Zhang-Shasha algorithm [34] is used (algorithm B.4).

73

function TopDown(T1, T2, minHeight)
L1 := PriorityList(height)[T1]
L2 := PriorityList(height)[T2]
A := []
M := {}
while min(max (L1),max (L2)) ≥ minHeight do

if max (L1) > max (L2) then
for all n ∈ L1 | height(n) = max (L1) do

L1 := L1 ∪ children(n)
end for

else if max (L1) < max (L2) then
for all n ∈ L2 | height(n) = max (L2) do

L2 := L2 ∪ children(n)
end for

else
H1 := {n ∈ L1 | height(n) = max (L1)}
H2 := {n ∈ L1 | height(n) = max (L1)}
for all (t1, t2) ∈ H1 ×H2 | t1 ∼= t2 do

if (∃tx ∈ T2 | t1 ∼= tx ∧ tx ̸= t2) ∨ (∃tx ∈ T1 | tx ∼= t2 ∧ tx ̸= t1) then
A := A+ (t1, t2)

else
for all n1, n2 ∈ subtree(t1)× subtree(t2)|n1

∼= n2 do
M := M + (n1, n2)

end for
end if

end for
for all t1 ∈ H1 | (t1, tx) /∈ A ∪M do

L1 := L1 ∪ children(t1)
end for
for all t2 ∈ H2 | (tx, t2) /∈ A ∪M do

L2 := L2 ∪ children(t2)
end for

end if
end while
A := sort(A, (t1, t2) → Dice(parent(t1), parent(t2), M))
for all (t1, t2) ∈ A do

if (t1, tx) /∈ M ∧ (tx, t2) /∈ M then
for all (n1, n2) ∈ subtree(t1)× subtree(t2) do

M := M + (n1, n2)
end for

end if
end for
return M

end function

Algorithm B.1: Top-down phase of the GumTree algorithm. The ∼= symbol
denotes isomorphism.

74

function BottomUp(T1, T2, M , minDice, maxSize)
for all t1 ∈ T1 | (∀tx ∈ T2 | (t1, tx) /∈ M) do ▷ In post-order

if ∃tx ∈ children(t1) ∃ty ∈ T2 | (tx, ty) ∈ M then
Ct2 := tx ∈ T2 | type(t1) = type(tx) ∧ (∀ty ∈ T1 | (ty, tx) /∈ M)
if |Ct2 | > 0 ∧max (Dice(t1, tx, M) | tx ∈ Ct2) > minDice then

t2 := tx ∈ Ct2 | Dice(t1, tx, M) = max (Dice(t1, ty, M) | ty ∈ Ct2)
M := M + (t1, t2)
if max (|subtree(t1)|, |subtree(t2)|) < maxSize then

R := Opt(t1, t2)
for all (ta, tb) ∈ R do

if
(∀tx ∈ T1 | (tx, tb) /∈ M) ∧ (∀ty ∈ T2 | (ta, ty) /∈ M) ∧ type(ta) = type(tb) then

M := M + (ta, tb)
end if

end for
end if

end if
end if

end for
return M

end function

Algorithm B.2: Bottom-up phase of the GumTree algorithm.

function Dice(T1, T2, M)
D1 := subtree(T1)− T1

D2 := subtree(T2)− T2

S := {d1 ∈ D1 | (∃d2 ∈ D2 | (d1, d2) ∈ M)}

return
2 |S|

|D1|+ |D2|
end function

Algorithm B.3: Dice algorithm which calculates the ratio of common de-
scendants of nodes.

function Opt(T1, T2)
C := {}
for all (t1, t2) ∈ T1 × T2 do

if ¬(∃tx ∈ T2 | (t1, tx) ∈ C ∧ zss(t1, tx) > zss(t1, t2)) then
C := C + (t1, t2)

end if
end for
return C

end function

Algorithm B.4: Algorithm for finding additional mappings. zss is the
Zhang-Shasha algorithm that calculates the similarity of subtrees, using the
Wagner-Fischer algorithm to compute the Levenshtein distance for deter-
mining the similarity between node labels [17, 30, 34].

75

	Acknowledgements
	Introduction
	Motivation
	Goals
	Approach
	Structure of the report
	Contributions

	Background
	Version control systems
	Concepts
	Merges
	Merge techniques

	The impact of code changes
	Abstract syntax trees and control flow graphs
	Tree differencing
	Source code analysis tools

	Problematic changes in merges
	Problematic changes
	Detection strategies
	Changes at the same point in a program (PC1)
	Changes modifying the same value in a scope (PC2)
	Refactorings (PC3)

	Code analysis tools
	Tools under consideration
	Evaluation steps and criteria
	Results
	C Intermediate Language
	Clang
	Rascal

	Conclusions

	System architecture
	Requirements and considerations
	Architecture decomposition
	High level architecture
	System components

	Implementation
	Framework
	Internal data representation
	Plugin system

	Tree differencing
	Considered diff algorithms
	Tree differencing implementation

	Static analysis
	Interfacing with the system
	Declarative API
	Command line interface

	C support with Clang and LLVM
	Custom LLVM pass
	Clang parser

	Results
	Evaluation
	Test plan
	Test cases
	Results

	Known limitations

	Related work
	Generic abstract syntax trees
	Source code differencing
	Static analysis of source code changes

	Conclusions and recommendations
	Conclusions
	Future work

	References
	Requirements for the proposed tool
	GumTree algorithm

