
Combining usage and profile data
for retrospectively analyzing

usability of applications
with funnels

Thijs Wiefferink
thijs@wiefferink.me, s1366564

Master Thesis

Master Computer Science (Software Technology
specialization)

University of Twente

May 2017 - March 2018

Supervisors from the University of Twente
Marten van Sinderen (m.j.vansinderen@utwente.nl)
Arend Rensink (arend.rensink@utwente.nl)

Supervisors from Staying, located in Amsterdam
Emiel Mols (emiel.mols@staying.nl)
Geert-Jan Bruinsma (geertjan.bruinsma@staying.nl)

https://staying.nl

Abstract

This research project shows how usage data gathered using analytics tools from
apps and websites can be stored in a structured and scalable way, so that it can
be combined with profile data (from the application itself) when the company
has questions about their users. Building on this setup this project shows how
common application processes, like user sign up, can be tracked and visualized
in funnels. A funnels shows how many users successfully made it to each step
of a process, giving insight into their behavior. Next to that funnels can show
context information to help companies determine why certain users continued
or not. These funnels help companies to correctly track usage of their product,
so that they know which parts to improve, and if their changes are actually an
improvement.

After a system to store and combine usage data with profile data has been
created it has been used at the company Staying. This has lead to improvements
of the system based on their feedback and validated its usefulness in practice.
Four funnels have been made that are now used by Staying, covering their most
important processes. These funnels are accommodation sign up, guest sign up,
email delivery and text message delivery. Throughout the research project care
has been taken to provide alternative options and notes about implementing
the system at other companies, which makes it interesting for companies that
search for an analytics solution.

1

Keywords

Analytics, funnels, databases, aggregation, tracking, apps, websites, Post-
greSQL, CitusData

2

Preface

This is the Final Project thesis for the Master Computer Science at the Univer-
sity of Twente, specialization Software Technology. It started with a Research
Topics project of 10 ECTS credits to do domain research and come up with a
research plan, continuing with this Final Project of 30 ECTS credits to execute
this plan. During the project Marten van Sinderen is the main supervisor and
Arend Rensink the second supervisor from the University of Twente. Emiel Mols
and Geert-Jan Bruinsma are the founders of Staying, and are the supervisors
from the company side.

3

Contents

1 Introduction 7
1.1 Research domain . 7
1.2 Analytics question example . 8
1.3 What is a funnel? . 9
1.4 Problem statement . 10
1.5 Goals . 10
1.6 Research questions . 11
1.7 Relevance . 11
1.8 Case study at ’Staying’ . 11
1.9 Structure of the Staying application 12
1.10 Approach . 13
1.11 Report structure . 13

2 Existing research and solutions 15
2.1 Analytics systems . 15
2.2 Usage (analytics) data storage . 15
2.3 Profile (application) data storage 16
2.4 Existing funnel visualizations . 16
2.5 Challenges to be solved . 17

3 System requirements 19
3.1 Answer analytics questions . 19

3.1.1 Generic questions . 19
3.1.2 Questions by Staying . 19
3.1.3 Charts . 20

3.2 Build funnels: tracking of business processes 21
3.2.1 Funnel features . 21
3.2.2 Funnel challenges . 21

3.3 Non-functional: scalability and interface 22

4 System architecture 24
4.1 Structure . 24
4.2 Multi-server storage . 25
4.3 Database technology: PostgreSQL+CitusData 25
4.4 Profile data storage . 26
4.5 Analytics events storage . 26
4.6 Answering analytics questions . 28
4.7 Building funnels . 29

4.7.1 Required funnel data . 29
4.7.2 Funnel data format . 32
4.7.3 Multi-identifier tracking 34

4.8 Visualizing funnels . 35

5 System implementation 37
5.1 System environment . 37
5.2 Database: PostgreSQL and CitusData 37
5.3 Profile data storage . 38
5.4 Analytics storage . 40

4

5.5 Funnels . 41
5.5.1 Funnel display . 41
5.5.2 Funnel structure . 43
5.5.3 PostgreSQL jsonb syntax 45
5.5.4 Step-by-step funnel implementation 45
5.5.5 In-database funnel implementation 51
5.5.6 Real-time funnels . 54

6 System validation 55
6.1 Fitness for purpose of the database 55

6.1.1 PostgreSQL limitations 55
6.1.2 CitusData limitations . 55
6.1.3 Retrieving events from the system 56
6.1.4 Using the system to answer questions 57

6.2 Defining funnels using the system 61
6.2.1 Defining the funnel: builder pattern 61
6.2.2 Flexibility and modularity 62
6.2.3 Context information: notes 62
6.2.4 Funnels created for Staying 63

6.3 Funnel display evaluation . 70
6.3.1 Testing in practice at Staying 70
6.3.2 Basic statistics display . 71
6.3.3 Splits and merges display 72
6.3.4 Notes display . 72

6.4 Performance and scalability . 73
6.4.1 Scaling . 73
6.4.2 Query performance . 73
6.4.3 Funnel performance . 74

7 Discussion 75
7.1 Results . 75
7.2 Related work . 75

8 Conclusion 76
8.1 Answers of the research questions 76
8.2 Limitations of the solution . 76
8.3 Research value and practical value 77
8.4 Future work . 79

9 Acknowledgments 80

10 References 81

Appendices 83

A Analytics tools features 83
A.1 Analytics tools selection . 83
A.2 Investigated analytics tools . 83
A.3 Analytics tools concepts and features 84

B Analytics system internals 86

5

B.1 Requirements . 86
B.2 System architecture . 86

B.2.1 Input . 87
B.2.2 Storage . 88
B.2.3 Analysis . 88

C Staying analytics solution 90
C.1 Architecture . 90
C.2 Content . 90

6

1 Introduction

This chapter describes the research domain, illustrates the question that sparked
this project and provides information about the environment in which the
project has been executed.

1.1 Research domain

In this digital age we all use a lot of apps and websites [9], which we would like
to be as easy to use as possible. To build applications that fulfill this wish, the
companies working on them gather an increasing amount of data [23]. This data
could contain information about the pages users visit, the features they use, and
any other relevant actions. Together this data is called usage data, or in a more
generic way; analytics data. In this project all usage data of customers using
a product of a company is meant. Next to this usage data company also has
application data, such as user profile data containing name, email, date of birth,
anything else the company stores. The other types of application data that a
company has for a product depend on the product itself. For a chat service it
would be chat groups and messages, and for a file storage service it would be
files and folders.

By analyzing usage and profile data the company can make changes to improve
their Key Performance Indicators (KPI’s). The most important KPI of a com-
pany is usually revenue, since that is the end goal of a company. Other secondary
KPI’s of a company could be the number of daily active users, purchases per
week, etcetera. Even though companies gather more and more data, collecting
the right data that is required to extract relevant statistics is still a challenge.
Often the company comes up with a new question about the usage of their soft-
ware product, and find out that they did not collect the necessary usage data
to answer this new question. Section 1.2 illustrates the process of coming up
with a new analytics question, gathering the required data and answering the
question.

Even if all required data has been collected and can be extracted from an an-
alytics system of a company, displaying and interpreting the data is still vital
for it to become helpful. For simple questions a single number or yes/no an-
swer is most likely enough, for example ”How many chat messages are sent?”
could be answered by ”5048”. This can be extended to graphs when the com-
pany wants to know how the answer of a question has changed over time. The
question about the number of chat messages would in this case be displayed as
a graph, showing the number of chat messages per hour/day/week/month. A
next question of a company might be ”At which step of the sign-up process of
our website do most users stop?”. This question could be answered by a simple
”step X”, but what a company really wants to know is how many users stop in
each step, so that it can improve the sign-up process at the steps that perform
the worst. A good way to answer this question is by creating a funnel, which
is a visualization that shows how many users completed each step of a process.
More details and an example funnel are described in Section 1.3.

7

Figure 1: Answering an analytics question: approach options

1.2 Analytics question example

For tracking users on a website and/or app there are numerous products avail-
able, each with their strong and weak points. Setting up one or more of these
products is easy and can quickly give the company basic statistics about their
product. However, after the basic questions (like how many users visited page
X last week?) there will probably be more detailed questions these analytics
solutions do not answer. To illustrate the process of answering an analytics
question a basic flowchart has been created, shown in Figure 1.

There are three possibilities, the first is that all required information is already
available in the usage data, which means that with a query of some sort (SQL
or some visual tool) the question can be answered. This option is quick and can
provide the answer almost immediately. For example, a company wants to know
when an user was active for the last time, which could be answered immediately
by finding the last activity of the user in the usage data. This option assumes
that the company has full access to the usage data, which is the case with most,
but not all, analytics tools.

Another possibility is that the required information is not available in the usage
data, for example when a company wants to know if the selected language by
users would affect how often they open the app. For example, consider an
app to let guests communicate with hotels and a guest selects a language in
which the hotel did not provide information, it might affect the usage of the
app. Since the language of the user is not available in the usage data, it needs
to be added before the question can be answered. After adding the language
information to analytics events of app usage, the company needs to wait a week
or two to collect new analytics with this addition, after which the question can
be answered. The delay between coming up with a new question and being able

8

to answer it is slowing down the improvement of the product, which is not good
for the company.

For the above question there is another option that is in between the two given
options, which is to immediately combine the usage and profile data. This means
combining the usage data from the analytics tool and the profile data from the
application at query time, which allows answering the questions immediately.
In this case it would mean combining the data of a user with the app usage
events of that user, so that usage events can be grouped or filtered by language.
To be able to use this possibility, there are requirements for the storage of the
two data sources and the format the data is stored in. These requirements
are described in Chapter 3. The option of combining usage and profile data
immediately is what this project researches, which leads to the requirements for
this option, its effectiveness, limitations and performance. To demonstrate that
the combination of usage and profile data works correctly a prototype system
to answer analytics questions and build funnels (overview of analytics about a
step-by-step process performed by a user) has been created.

1.3 What is a funnel?

A funnel is a visualization of a sequential business process of multiple steps,
showing how many users completed each step. This definition is hard to under-
stand, so let’s start from the beginning, with a business process. Such a process
could be sending a newsletter, a new user signing up, a purchase in a web shop,
or anything else. Each of these processes consist of multiple steps, where each
step is an action performed by a user that brings him closer to the end goal of
the process. Let’s walk through sending a newsletter as example, this process
has the following steps:

1. The company sends a newsletter

2. Users open and read the newsletter

3. Users click a link in the newsletter, visiting the website

These three steps are the key steps of sending a newsletter. For each of these
steps the company would like to have statistics. The company could have ques-
tions like ”To how many people have we sent a newsletter last week?”, ”How
many people opened/read the newsletter?”, ”How many people visited the web-
site because of the newsletter?”. To answer all questions about a process with
multiple steps, like this one, a ’funnel’ can be created to show all relevant
statistics. A funnel shows the steps of a process, each with statistics about the
number of people that made it to the step. Funnels are used to show how many
of the users that started the process, make it to the end, while showing where
in the process users drop out if that is the case. For individual steps in a funnel
additional context information could be shown, for example the percentage of
users that visited the website using a mobile device for the third step of the
newsletter funnel.

Funnels visualize the processes users go through to perform actions in the prod-
uct of the company. In this visualization they show key statistics to understand
how far users get, and give the company insights about process. A huge stream
of usage data is interesting, but hard to extract useful information from, that is

9

why funnels are so valuable. Funnels condense the information to the statistics
that are most valuable for the company, while hiding the raw data. Funnels are
important for companies to measure how effective each step of their process is,
so that more effort can be put into improving the weakest steps. For example
if a high percentage drops out of the funnel after reading the email, it could
mean that the email is not convincing enough, or that it gets caught by spam
filters. So when the company knows the email is not effective it can redesign
the email, improve spam scores or something else. To show that the systems
works as expected funnels of the most important processes of a company could
be created.

1.4 Problem statement

Collecting and visualizing analytics is easy for tracking simple statistics like
page visits. However, customizing the collection and visualization is not as
easy. Challenges that appear are scalability, flexibility, processing, reporting
and missing data. Most of these challenges can be solved using existing tools,
but combining them to get a system that works is not straightforward. The two
key points of this research are solving the missing data problem and visualization
using funnels.

The missing data problem occurs because companies don’t know which questions
they will have in the future, and therefore it is unknown which data needs to
be collected. When information missing to calculate the desired statistic, it
can be added to the collection software. The problem is that this new data is
only collected from the point in time that the collection software is updated.
This causes a delay because now the company needs to wait for more data to
come in before the desired statistic can be calculated. To prevent this problem,
profile and usage data could be combined to fill in the missing data immediately.
The problem with combining usage and profile data is that these sources have
different storage types (an event stream versus a relational database), are stored
in different systems and might not have a common field that allows combining
them (like a user id).

Funnels are used to visualize statistics about processes in products of companies.
The first part of building funnels is collecting the required statistics, which
can be done by querying the combined usage and profile data. The solution
of the missing data problem provides a way to do that. The second part of
creating funnels is displaying the results in a way that is easy to understand
(also for non-technical employees of the company). For designing this interface
different solutions by analytics providers could be compared, adding features
where necessary. User testing with people of a company also can be done to
improve the visualization step-by-step.

These problems are analyzed, solved and presented in this Master Thesis.

1.5 Goals

The first goal is to improve the chance that analytics questions about software
products usage can be answered immediately by combining usage and profile
data with a scalable setup. The second goal is to visualize processes with a

10

funnel, answering more complex questions about the behavior of users of a
software product.

A challenge of implementing funnels is tracking users through all steps, possibly
connecting different identification methods (email, session id, user id, etcetera).
Another challenge is building a clear visual representation, making it easy to
understand for everyone in the company.

1.6 Research questions

The following questions are answered in this project:

1. How can usage and profile data of a software product be used more effec-
tively for improving usability?

(a) How effective is retrospectively combining usage and profile data to
answer analytics questions?

(b) How can business processes be tracked and visualized in a funnel?

1.7 Relevance

The problem that is investigated is relevant for most companies that develop an
application where usage and profile data is involved. The application could be
an app, web app (website with some state saved server-side) or general computer
application. Companies that have a mature analytics solution probably already
dealt with this problem in some way or form, most likely by adding (a part
of) the profile data in the usage data. For example adding the language of a
user to all his actions that are collected as usage data. This project wants to
prevent duplication of the profile data and will combine data from both sources
at query time. This would make it easier for, especially fast moving startups,
to get the information they need from the analytics so that they can improve
their product by focusing on the most important aspects of it.

Visualization of the analytics results makes the results accessible for all people
in the company, instead of only the technical guys that know how to write SQL
queries. This research helps the adoption of funnels, and in particular funnels
for complexer process with additional context information.

1.8 Case study at ’Staying’

In order to validate the solutions proposed in the project, a case study at the
company Staying 1 has been performed. This way the ideas and plans are
tested in practice, which will reveal the practical challenges and provides data
to evaluate and benchmark the solution. Each step of the research project
will take into account how the presented solutions would work for companies
in general, ensuring the end result is applicable for any company that faces
the same problem. The visualization of funnels can also be tested this way, to
improve it further. Staying is a startup company located in Amsterdam that
creates an app for hotels to chat with their guests. Next to chatting, the app

1https://staying.nl

11

https://staying.nl

provides information like nearby tourist attractions, restaurant menu, wifi code
and anything else the hotel wants to show. In addition to this app used by
guests there is a web app, called the portal, where accommodations upload the
information they want to show and answer the chat messages of the guests.
Staying is trying to find the right market fit, and is working to optimize two
main processes: property signup and guest invites. For both of these processes
it is important to be able to measure the results correctly and quickly, so that
changes can be made to improve them. Especially in the starting phases of a
company it is important to be able to make and measure changes quickly, so
that the turnover time is low.

More details about what Staying does and how it is technically organized follows
in the next section.

1.9 Structure of the Staying application

Figure 2: Staying application structure

To get a better idea about the application of Staying, which will be referenced
throughout this thesis, the structure is described in this section. The important
entities in the product of Staying are users, stays, venues, their content and chats
with their messages, the relations can be seen in Figure 2. A venue represents
a property like a hotel, apartment complex, etcetera. This venue is managed

12

by one or more users, which are the owners (as a specialized type of user). A
venue invites guests when they make a booking, this booking is represented as
a stay. A stay has the arrival and departure date and is connected to a user
representing the guest. Venues have content items linked to it, these content
items are pieces of information like the wifi code, metro map, restaurant menu,
etcetera. Content items can be created for different languages, so that the guest
sees the content for his language in the app. Owners of a venue manage the
content items and other venue settings in the web portal. Each Stay is linked
to a Chat, in which the owners of the venue and the guests of the stay can
chat. The Chat contains of a list of messages. Messages have a sender, time
and platform (they could be send from the portal, venue app, guest app or by
SMS message).

1.10 Approach

To solve the missing data problem the profile and usage data have been brought
together into a single system. A common solution used in practice at companies
is to add profile data to usage events when these events are inserted into the
database, this means that the combination of data happens at write time. The
approach in this research is different, it brings together the data at read time.
Adding data to the analytics when writing it into the database can inflate the
analytics storage a lot, that is why usually only a subset of the data is inserted
into the analytics. Only adding a subset of the data leads to the exact missing
data problem this research tries to solve. Instead only adding the required links
between data to allow combining it at read time solves the problem, which has
been researched, implemented and tested in this project.

When the solution for combining profile and usage data works a funnel visu-
alization will be made. This implementation will track users even if they are
identified by multiple different tokens. The visualization will support merge/s-
plit, so that processes that have multiple paths towards an end goal can be
shown correctly. The main processes of Staying (property sign-up and guest
invites) will be used as test cases. Together with Staying the test cases will
be reviewed and the interface of the funnels will be improved upon using the
feedback.

1.11 Report structure

First the status of the research field is described in Chapter 2, to understand
what has been accomplished and where the challenges are. Chapter 3 describes
the requirements of an analytics system that can combine profile and usage data.
Chapter 4 describes the architecture of the system for combining analytics and
applications data, and use it to answer questions and build funnels. Chapter
5 describes the implementation of the system as described in the architecture.
After the system is build Chapter 6 describes how it is validated for answering
analytics questions, Chapter 6.2 describes how it is validated for building funnels
and Chapter 6.4 validates the performance of the system. The results of the
project are described in Chapter 7.1. Related work about database solutions,
analytics tools and immutable databases can be found in Chapter 7.2. Future
work that can be done to improve the solution is described in Chapter 8.4.

13

Appendices can be found after these chapters with additional information, used
as context for defining requirements and making architecture and implementa-
tion decisions.

14

2 Existing research and solutions

This chapter analyzes existing work in the field and the current analytics solu-
tions used by companies.

2.1 Analytics systems

There are a lot of analytics systems available for companies to use, with varying
features, price and possible uses. In Appendix A the most used tools can be
found, with descriptions of their features. The features of these tools, from
showing simple statistics to showing exactly how many users followed a certain
process, are used for the requirements set for the system that will be build in this
project. After the common features of these systems have been determined, the
system architecture of analytics systems has also been identified. In Appendix B
the requirements and architecture for a generics analytics system are described.
This has been done to know the current possibilities of analytics and to gather
information to create a system that can combine usage and profile data. The
first feature that has been identified is answering simple analytics questions (like
the number of visits of a web page, how many times a certain action happened,
etcetera). Build on the concept of answering questions there are more advanced
features, like funnels and charts. Funnels combine simple questions in a step-
by-step process to get information about for example sign up of a user on a
website. Charts are a logical extension of simple questions, because companies
often also need to see the result over time.

There is already a lot of research about usage of analytics systems for tracking
websites and apps, for example using Google Analytics in the food industry
[25], tourism industry [26] or measuring and improving a library website [21].
These studies are relevant for knowing how companies and researchers use an-
alytics tools, so that the system build in this project can also support these
activities. There are also different tracking approaches like click heatmaps [19],
which are used to track mouse movement of users. More tracking options are
available, but after capture of everything that happens on a page almost any
visual representation can be created using the available data.

Currently there are so many analytics tools used that people start using browser
extensions like Ghostery [8] to block all trackers on visited websites. Often is not
necessarily data collection itself that is the problem (at least if it is anonymous),
but the bandwidth used by loading the trackers and the slow page load caused
by them. This is especially the case on websites with advertisements, since each
advertisement comes with a couple of trackers to measure their effectiveness.

2.2 Usage (analytics) data storage

For storing usage data a lot of different databases types and implementations
are available. Single server options are available, but also multi-server options
like Hadoop [27]. There are different database types in use: relational, key-value
stores, document databases, wide column stores and graph databases. Each of
these has numerous implementations that can be used of which the most used
ones are listed in Appendix B. This appendix also describes requirements of
databases used for analytics storage and their architecture. Multi-server file

15

systems like Hadoop are intended for file storage, and are not suitable for a
relational database. Key-value stores are used to map keys to values, which is
really efficient for certain usage patterns, but storing all profile data in it will
likely not work. They are also not meant for storing usage events, since they
have no concept of time and order, therefore cannot take advantage of usage
events that are sorted by time. Since especially for combining profile and usage
data joining tables is important, document databases are also not ideal. Multi-
server scaling is important for analytics storage, since the data will always keep
increasing. Efficient time filtering is also important, since often getting result
will be limited to a certain day/week/month, which should limit the search to
only a small part of the collected analytics.

2.3 Profile (application) data storage

Storing profile data has different requirements as storing usage data. It de-
pends a lot on the particular application that the company has, but generally
speaking relational databases are used often. Different implementations exist,
like MySQL, PostgreSQL and Oracle. The requirements for profile data will
be discussed in Chapter 3, which are based on experience working at compa-
nies and the public data available for companies. There are plenty of research
projects that design and implement new databases, but this is not relevant for
this project. This is because to make the solution available for as much compa-
nies as possible it should work with the most commonly used database types,
and not necessarily experimental or new databases.

2.4 Existing funnel visualizations

There are existing funnel visualizations available, which solve certain use cases
already, but not all of them. Google Analytics offers some tools for this space,
it allows defining a goal, which could be creating an account, visiting a certain
page or something else. After creating this goal a path of actions can be defined
that users are expected to take. After defining these the ”Goal Flow” page shows
the statistics for the defined funnel. An example can be seen in Figure 3. This
example shows users going to the home page of the site, and after that going to
the vote page, which is a common path for this data source. Google analytics
shows the drop off per step, including which page the users dropped off to.
This example also shows that a funnel is not necessarily without loops. Google
Analytics draws a line from the vote step back to the home step, indicating that
some users went back to home. This shows that funnels are actually graphs,
and showing them as a sequential list of steps is a simplified representation.
Google Analytics does show loops, but does not offer merge/split mechanics, so
it is unable to draw the guest invite process of Staying. Another problem to
get funnel in Google Analytics is that all events need to be sent there, and the
missing data problem would occur again. Funnels can be made retroactively,
but the events already need to exist, which makes it likely that there is an event
missing.

Another product that has been looked at is HeapAnalytics, which also offers
funnel visualizations. This product has some advantages and disadvantages.
First of all HeapAnalytics collects every user interaction on the websites/apps

16

Figure 3: Google Analytics Goal Flow diagram

their software is added to. So because all data is captured, Heap allows defining
events retroactively. This solves a part of the missing data problem, because
events do not need to be sent explicitly as with Google Analytics. The funnel
visualization of Heap, as seen in Figure 4, is however more simplistic. Context
information is available for the users in a step, but will simply show a list of
actions for each user. Heap still does not solve combining profile and usage
data, since the only available option is to add all profile data to the events.

2.5 Challenges to be solved

Even though most areas of analytics usage and storage have been researched,
combining them with profile data to get useful results is not clearly described
and documented. The challenge in this field is to ensure combining these data
sources is possible, is correct and is quick. Visualization using funnels is another
challenge. Current solutions exist, covering basic use cases, but for slightly more
complex scenario’s they are not suitable. They also have no good solution for
combining usage and profile data, except simply sending all user data along with
each event (which is not guaranteed to be enough, and causes a lot of extra data
traffic). Next to that current funnel visualizations do not support parallel paths,
so if there are two ways to sign-up, they would need to be created and viewed
separately. To get a solution that solves these challenges this research project
implements a prototype system and evaluates it. Next chapters gather the
requirements for such a system, create an architecture for the system, describe
how it is build up and evaluate the performance.

17

Figure 4: HeapAnalytics funnel visualization

18

3 System requirements

This chapter outlines the requirements that companies have for an analytics
system that can answer questions, and can be used to create funnels with. First
the type of questions a company would likely want to answer are detailed, which
are used as a requirement for the system. Secondly funnels and the requirements
for building a funnel are explained. Lastly the scalability and non-functional
requirements are detailed.

3.1 Answer analytics questions

For the setup of the system that combines the profile and usage data trade-offs
need to be made in terms of scalability (how much data can the system store,
does it support multiple servers and multiple data centers), speed (how much
events per second can it take in, how quick can the system combine and export
data, how quick do SQL queries run), ease of use (setup time and complexity,
can it be applied to existing systems, maintenance time), etc. To support these
decisions it is important to know what kind of questions need to be answered
by the system. These questions will be based on the needs of companies that
build (web) apps, like Staying does. The identified questions will be used as
a demonstration and benchmark for the system in the evaluation phase. The
questions will be described for companies in general and for Staying specifically.
This ensures the solution keeps in mind other companies and does not only work
for the specific situation of Staying.

3.1.1 Generic questions

Below a number of questions are listed that could be asked by companies. These
questions can either be answered using the usage data, the profile data or both.
The base questions are as generic as possible, but can be extended by the ad-
ditions listed below. The additions limit the scope of the question, making it
more specific.

Base questions:

1. When did any action <last/first> happen?

2. How often did any action happen?

3. How long did an action last?

4. What is the distribution of property A? (like device size, android/ios,
etcetera)

Additions:

• Specific action(s): limit to one ore more actions

• For entity: limit to an application specific entity (user, company, etcetera)

• In time period: limit to a specified time

3.1.2 Questions by Staying

In case of Staying the generic questions identified above materialize in the fol-
lowing questions:

19

1. When was the last activity from a venue on the portal?
Indicates if the venue is still active, if not the venue could be approached
to see why they did not continue to use the platform
> derived from base question 1

2. When was the last activity of a user on the app and/or portal?
For providing support and approaching inactive users.
> derived from base question 1

3. How many times has each content item been viewed?
To show on the portal, indicates which items are most important for the
venue. For example it might be a good idea to hightlight the most visited
items.
> derived from base question 2

4. How long has each content item been viewed?
Gives more information about the popularity of content items, could indi-
cate if a guest actually reads the information in the item or immediately
closes it again.
> derived from base question 3

5. When did action X happen last in the app/portal for user/venue Y?
Analytics events contain user actions, which have a type like ’login success’
or ’switched venue’, Staying often like to see when an action happened last
to assist better when providing support or approaching a venue owner.
> derived from base question 1

6. How often did action X happen in the app/portal for user/venue Y in time
period Z?
For example how often did a venue edit content items, how many times
it visited the portal, etcetera. This can be used to focus the development
on the most used parts, or focus marketing on features that are not much
used.
> derived from base question 1

7. Which device types are used per venue type?
Find the percentage of mobile, tablet and desktop/laptop users per venue
type (lodges, apartments, hotel). This information can influence the de-
velopment of the portal to focus more or less on compatibility with mobile
devices with a small screen.
> derived from base question 4

3.1.3 Charts

While answers to the mentioned questions provides basic information about the
state of the application and its users, a business often wants to know answers
to these questions over time. Charts can be made using the question to show
the answers for each day/week/month, whichever makes the most sense for the
type of data. The effect of this addition to the demands of a business for the
analytics system is that it needs to handle time based filtering and grouping
efficiently.

To display charts of historic data a ’rollup’ is often created, which means calcu-
lating results for completed time periods once and storing them for reuse. This
rollup process can be used to store results per hour when an hour is over, after

20

which the rollup of the current day can be either updated with partial results
(if there are more hours to come in this day), or finished (if this was the last
hour). This solution is well known and used to keep charts of historic data quick
to calculate.

3.2 Build funnels: tracking of business processes

Besides questions as described above, most companies also want to track their
important business processes. To track these processes a funnel can be created,
as described earlier. The following sections explain which features/statistics
are expected to be in funnels, and the challenges that need to be solved to
implement these features in a funnel.

3.2.1 Funnel features

For a funnel to properly support the company in making decisions there are
a number of important features that need to be available. Below is a list of
features that, in this case Staying, needs:

1. Selection of the entities that should be tracked.

2. Tracking of single entities through the funnel.

3. Per step information:

(a) Number of entities that made it.

(b) Percentage of entities compared to the initial step.

(c) Number of entities that stopped (possibly splitting into groups that
have different causes).

(d) Number of entities that continued.

(e) Number of entities that rejoined (skipped the last step(s), but still
did this one).

4. Custom statistics at steps (optional):

(a) Distribution graph or table for a certain property of the tracked entity
(for example user language).

(b) Subsets of entities that performed a certain action (for example select
’remember me’ checkbox)

3.2.2 Funnel challenges

The features that are expected of a funnel create a couple of challenges. The
first challenge is to track entities through the complete funnel. In some cases
there is already a unique way to identify an entity through a funnel, for example
for existing users this might be their email or user id. However for the example
funnel at the start of this section it is harder, their email could be used for
tracking, but that would not work for sending a follow up email, since there
is no way to distinguish the funnel of each email individually. To solve this
challenge there needs to be a unique identifier for an entity that follows the
funnel. This unique identifier might also be merged with other identifiers while
going through the funnel. For example if the user signs up the created user

21

could be linked to the identifier for further tracking. This allows for easier
tracking since analytics after sign up could use the user information instead of
the identifier from the first marketing email. A system for creating funnel needs
to support multiple identifiers for each entity, allowing for better tracking.

A second challenge comes when a funnel splits or merges. Following a process
could be drawn as a directed cyclic graph. It would mean the user can follow
certain steps, in any order and repeat some steps when they want to. Tracking
such activity and displaying it is really hard, so that is why funnels are often
simplified. The most basic way would be a sequential list of steps, showing how
many users made it to each step. This simplification already allows companies
to track most processes. To support situations where a user can choose from
multiple paths to get to the next step funnels need to be a bit smarter. This
could mean introducing split and merge steps, to allow for multiple paths.

A funnel could split if two possible paths can be followed, meaning both need
to be tracked and showed correctly. This complicates the result calculation of
funnels and makes them harder to display. Care should also be taken to keep
the implementation maintainable.

3.3 Non-functional: scalability and interface

For the system build in this research project there are a couple scalability re-
quirements to ensure that the system can handle large data sets for big or quickly
growing companies. The scalability requirements are as follows:

1. Multi-server support: spread data among servers, with a redundancy
factor

2. Redundancy support: multiple physical locations.

3. High throughput: up to Booking.com scale (2 billion events per day,
which is 83.3 million per hour, 23148 per second, where the average event
is around 10kb in size).

4. Low latency: simple queries should be completed in 100ms or less.

5. Good interface: the interface showing the result of funnels should be
clear and easy to use.

6. Flexible: the system should be flexible so that it can be adjusted to the
situation of the majority of companies.

7. Maintainable, secure: changing and updating the system should be
easy and taken into account with the design.

Multi-server support is a requirement because storing and using huge data sets
on a single server is not possible. Spreading data among multiple servers spread
the CPU load and scale the system horizontally (adding more servers) instead
of vertically (using a single more powerful server).

Redundancy support is required because the data should be stored in multiple
locations (data centers) too prevent data loss when one location is lost (due to
fire, a storm, etcetera). Redundancy at the same location is also necessary, so
that when losing a single drive or server does not stop the system from working.
Therefore it should be possible to store data on multiple servers at the same
time.

22

High throughput is the next requirement, which ensures that the system can
scale with the company using it to handle large customer groups. High through-
put is defined as the scale that Booking.com operates on, which is known from
one of their blog posts 2 with some extrapolation. If the scale of Booking.com
usage and profile data works with the system, it will be suitable for the majority
of companies.

Low latency is another requirement for the system. This means for example a
query getting data about a user should not take more than 100ms, but preferable
a lot less. Since the acceptable response time depends a lot on the type of query
that is tested, the validation chapter of this project will test a list of them to
make clear that this requirement has been met.

The interface of the results that get out of the system needs to be clear. The
interface showing the funnel should be easy to understand and read, following
standard design principles.

The system should be flexible so that it can be adjusted to other companies
than Staying, so that the solution is not too domain specific.

The last requirement is about the standard software principles, that a system
should be secure and maintainable. For security some measurements can be
taken to prevent problems in the future, so that the system will not cause harm
to the company. Keeping the implementation clean and well designed will make
maintenance easier, so that the system can be maintained by other people in
the company without too much effort.

2https://blog.booking.com/using-riak-as-events-storage-part1.html

23

https://blog.booking.com/using-riak-as-events-storage-part1.html

4 System architecture

This chapter describes the system architecture that will be used to store usage
and profile data.

4.1 Structure

Figure 5 shows the architecture created for the system that will store usage and
profile data, and can combine it to generate the desired statistics. At the top
there is an ’Applications’ block, these are the systems that will read/write the
database. For example apps and website will get the data from the system for
displaying to the user. Getting this data might go through a backend, which in
turn connects to the storage system. The applications also generate usage data,
for example the app sends which screens are visited.

Figure 5: Usage and profile data storage architecture

The storage block of the figure shows the database servers, which hold the usage
and profile data. The ’Database Master’ is the server that applications talk to,
while ’Server 1’, ’Server 2’, etcetera are hidden storage nodes. This multi-server
setup uses the PostgreSQL relational database system software in combination
with CitusData that allows it to scale to these servers. Section 4.2 explains this
in detail.

The lowest block in the figure shows information retrieval from the storage
system, used to generate reports. This operation combines information from
the usage and profile data to generate statistics. Section 4.6 describes how
analytics questions can be answered using the system, and Section 4.7 describes
how to build a funnel.

24

4.2 Multi-server storage

The storage in Figure 5 is based on PostgreSQL. This is a commonly used
relational database system that uses SQL for CRUD (create, read, update,
delete) operations on the data. PostgreSQL on its own is meant to be used on
a single server (with exception of replication servers for having a live backup).
This means that the data size is limited to that of one server and the performance
is also limited to one server. Nowadays quite powerful servers can be rented or
bought, but this still imposes a hard limit on performance. In this case the
most relevant performance aspects are CPU speed, RAM size, network speed
and disk speed and size. At the time of writing Amazons EC2 Virtual Private
Server (VPS) hosting offers a server type with 128 cores, 1952GB of memory
and a 25 Gigabit network connection (called ’X1 Extra High-Memory 32xlarge’,
with internal name ’x1.32xlarge’), which would keep a database running for
quite some time. However, vertical scaling is only a solution for companies
that have a limited data set, that is growing slower than the technology of one
machine improves. Therefore horizontal scaling is necessary for a lot of larger
and data-heavy companies.

4.3 Database technology: PostgreSQL+CitusData

There are a lot of multi-server database solutions, of which the most popu-
lar ones are described in Appendix B. For this system PostgreSQL with the
CitusData extension has been chosen. The first reason of this choice is that
this solution supports almost the full SQL language, which is widely used and
known, making it easy to adapt. The second reason is that importing data
from any relational database is easy, with most likely only minor SQL schema
changes. This means that if a company currently has their data in a relational
database, it is an easy migration path to this solution. A third reason is that a
PostgreSQL and CitusData combination can be setup on any server, making it
easy to create a prototype for this research project. Even though the prototype
created in this project uses PostgreSQL and CitusData, the architecture and
solutions of this project can also be used with other technologies.

CitusData is an extension for PostgreSQL that introduces sharding, a way to
spread data across multiple servers. It starts with the ’Database Master’, this
is a server used as entry point for the database, which is what all applications
talk to. This master does however not store any actual data itself, it only
knows where the data is located. The actual data lives on the worker servers,
which are connected to the master and handle the commands (SQL statements)
passed to them. Data in this database is organized into tables just like a regular
PostgreSQL instance. Now these tables are distributed, using a certain value
as distribution key. This means that for example the events table will have a
column with data that is used as distribution key. The value of that column will
determine which of the worker servers will store the data. A simple example
would be that all even-numbered users are stored on server 1, and all odd-
numbered users are stored on server 2. In practice it is a bit more complicated,
it starts with computing a hash of the distribution key. The result of the hash
operation determines which server it should be stored on, each server stores a
part of the hash space.

25

4.4 Profile data storage

The database as described previously can easily store the profile data of compa-
nies. This database works for storing users, messages, chats and a lot of other
data. Since the database setup supports all regular PostgreSQL data types (and
anything provided by extensions), storing the profile data is easy.

An important aspect of profile data storage is that it can be distributed among
multiple servers with a distribution key. A common way to distribute profile
data is to group data per customer, CitusData calls this a ’multi-tenant’ appli-
cation. Staying provides its application to multiple ’venues’ (hotels, apartment
complexes, etcetera), so that is what the ’tenant’ is for Staying. This means
that data can easily be split per venue, so that is used as distribution key for
most data tables in the application.

Most applications have such an entity that can be used to split all data, if not
the performance of the application could degrade depending on the queries sent
to the system. Performance of queries that only use one tenant is as good as
with a single PostgreSQL database since the query can be sent to the server
that has all data for that particular tenant. If a query use data of multiple (or
all) tenants it can either let each server calculate results for its own tenants and
combine the results in the database master

With this setup the profile data can be stored and queried, fulfilling this re-
quirement.

4.5 Analytics events storage

Analytics storage will, just like the profile data storage be in a simple table.
To keep analytics storage flexible, but at the same time have structured data
that can be used for answering questions and building funnels a storage for-
mat has been designed. Analytics normally consists of simple events, each time
something happens an event is put into the system, describing what happened
(including relevant context information). A simple schema can be used, with
just an id, distribution column and data column. The data column is a jsonb

column, which can hold any JSON data. There are a few reasons for using
a single data column, the first is to prevent a table with 100+ mostly empty
columns. A second is that inserting a single JSON document into the database
is a lot easier and quicker than putting everything into the right column. Since
PostgreSQL has good support for JSON columns, with indexes and a bunch
of JSON functions it does not hard usability. The flexibility this storage for-
mat offers is welcome, it allows for storing events with the complexity and size
companies need.

To get consistent data in the data column a schema has been defined to structure
it, this schema can be found in Listing 1. First there is an at key, which stores
the timestamp of the event. This timestamp is the number of seconds since
1970, with decimals if needed. This timestamp should reflect when the event
happened, and not when the event was collected or put into the database. So
this could for example be the exact time that a user clicked a button. Next
there is a type key, which is a simple string to indicate the type of event. To
provide more information about the event an object can be added using the type

as key. Other keys in the top-level can be used to note down globally relevant

26

information, like the system that generated the event, the user that the event
is about and other references to application tables.

Listing 1: Schema for data of analytics events

1 # Event generated at (seconds since 1970)

2 at: number

3 # Top-level type of the event

4 type: string

5 # Object with more information about this type of event

6 <type>: object

7 # User that this event is about, reference to an application table

8 user?: number

To structure events further, the information object located under the key with
the name of the type can again contain a type key and more information. Listing
2 describes the structure of this information object, which can recursively be
used again. This organization allows placing information at the level where it
is relevant, without polluting other levels.

Listing 2: Sub-schema for type-specific data

1 # Sub-type of this events

2 type: string

3 # Object with more information about this type of event (same schema as

this listing)

4 <type>?: object

5 # Any other key can be used to store information that is relevant for

all events with the same parent type

To make it more clear, see the example in Listing 3. This example shows an
event for an email that has been sent. At the top level it indicates which user
and venue this is for, which are profile data tables. The top-level type is "email",
indicating that it has something to do with an email. In the email key more
details are given, the provider that handled this email is "mailgun" and the id
of the email is "abcdef", this is information relevant for all email event types
(for example sending, receiving, reading, etcetera). A sub type "sent" is in the
event to indicate that this email has been sent. The sent key indicates more
details about where the email is sent to and from, and what the subject is, this
is specific information only relevant for sending email.

27

Listing 3: Example of using the event schema

1 {

2 "at": 1498780800,

3 "user": 123,

4 "venue": 45,

5

6 "type": "email",

7 "email": {

8 "provider": "mailgun",

9 "id": "abcdef",

10

11 "type": "sent",

12 "sent": {

13 "to": "Thijs",

14 "from" : "University of Twente",

15 "subject": "abc"

16 }

17 }

18 }

Usage of the event data schema as described above is up to the company im-
plementing it, but this structure helps with the combination of application and
event data in a couple of ways. Firstly, all references to profile data are consis-
tently at the top-level of the structure, making it easy to join with entries in
those tables. Secondly, events are structured and can easily be filtered by type,
making aggregating results easy.

The described architecture of analytics storage can easily store a lot of events
and introduces structure to the events to be able to combine them with profile
data and clearly type the events with a recursive type structure. This setup pro-
vides flexibility while keeping data structured, this is a middle ground between
fully ’schema-less’ event storage and completely typed event storage.

4.6 Answering analytics questions

With the architecture and data storage figured out, it is time to use the data for
answering analytics questions. The type of questions that the system should be
able to answer have been determined in Section 3.1. To answer these questions
SQL queries can be used. Some of the questions are simple to answer, because
they use only a single table and use the distribution key to group the result.
Other queries however are combining multiple tables, which is the interesting
case this project is geared towards. A common combination of tables is to
combine the usage data with profile data. To combine these data sources there
needs to be a common field, in this case the ids used in the application database
end up in the data of the event. The previous section showed that for example
the user id and venue id are added as top-level keys in the event data. This
means that combining usage data with venue data is a simple join on the id of
the venues table, and the venue key of the data in the events table. The same
applies for all other profile data tables, the only thing that needs to be added
to events about them is the id, all other data can be combined when reading

28

the data to answer a question.

Because of the architecture of the combined database for usage and profile
data answering questions is now reduced to simply performing queries in the
database. This completes the required architecture for answering the defined
analytics questions.

4.7 Building funnels

For building the funnels as described in the requirements of Section 3.2 there
needs to be a way to get, store and display the required information. Below the
general structure of funnels and how they are calculated is explained.

4.7.1 Required funnel data

To explain which data is required for calculating and displaying a funnel with
the features as described in Section 3.2 the following example funnel will be
walked through step-by-step.

1. A company sends a newsletter email to subscribers.

2. The subscriber opens and reads the newsletter email.

3. The subscriber clicks on a link to the website.

This funnel will measure how often newsletters sent by the company are opened,
and how often this results in visiting the website. Since a funnel always tracks
a certain entities through all steps, the first step is to determine which type
of entities the funnel will track. In this case the funnel needs to users, these
users will receive a newsletter, might open/read it, and could visit the website
by clicking a link. In this case a user is identified by its email address, this is
however not specific enough to gather data for the funnel. Because the company
sends a newsletter each month, the email address alone is not a good way to
identify users through the funnel. To properly track users through the funnel
a combination of the email address and email itself is required, this could be a
unique number attached to each email.

Step 1: Which emails have been sent?
Now that it is clear which entity is tracked in the funnel, a couple of funnel
principles need to be explained before carrying on with the architecture variants.
First the set of users to track in the funnel is selected, this could for example be
based on the time the email is sent, for example to see how the November 2017
newsletter did. For each email that is sent to customers the company puts an
event into the database as shown in Listing 4. Important is that it has a unique
email id and contains the email template and the newsletter year and month
(for filtering).

To start the funnel, a selection of entities (in this example, emails to users) can
be made using these email events. Data from the event and combined profile
data of the user can be used for filtering. When the emails that will be tracked
in the funnel are selected, the starting count of the funnel is known (for example
100 emails). These same email+user combinations will be followed through all
steps of the funnel. So in each next step of the funnel the system needs to find
out which of the original email+user entities have completed that particular

29

step. So the result of tracking the first step is a list of email identifiers have
started this first step.

Listing 4: Example of an event for sending an email

1 {

2 "at": 1498780800,

3 "user" 123,

4

5 "type": "email",

6 "email": {

7 "id": "2017-11-123456",

8

9 "type": "sent",

10 "sent": {

11 "template": "newsletter",

12 "year": 2017,

13 "month": 11,

14

15 "subject": "Newsletter November 2017"

16 }

17 }

18 }

Step 2: Which emails have been read?
The next step of our example funnel is reading the email, to track this the
company collects events like the one in Listing 5. For tracking email reading it
is possible to add an image to the email, that will be downloaded when the user
opens it. When the server detects that the image is downloaded it creates the
event. The event contains the same id field inside the email object, which can
be used to see which email has been read.

Now a list of email identifiers needs to be selected from the database using this
email read event. It is important that only email identifiers are selected that
have joined this funnel in the first step, otherwise results will be wrong. Note
that the initial step of the funnel might be limited to a certain day/week/month,
but following steps are generally speaking not limited, unless the company only
wants to count reading the newsletter if it is within a week. Care also has to be
taken that opening the same email twice only counts once, the funnel is about
how many users go through, not how often they complete certain parts.

30

Listing 5: Event for reading an email

1 {

2 "at": 1498780801,

3 "user" 123,

4

5 "type": "email",

6 "email": {

7 "id": "2017-11-123456",

8

9 "type": "read"

10 }

11 }

Step 3: Which emails lead to website visits?
The last event of the funnel looks like in Listing 6. It contains the url that has
been visited, and the parameters of the visited page. In this case the parameters
contain the email id so that this visit can be linked to the link that has been
clicked in the email. Getting results for this step again needs to take into account
which email identifiers have started the funnel, just like the previous step.

Listing 6: Event for visiting the website

1 {

2 "at": 1498780802,

3 "user" 123,

4

5 "type": "website",

6 "website": {

7 "url": "https://company.com/article",

8 "params" {

9 "email_id": "2017-11-123456"

10 },

11

12 "type": "visit"

13 "visit": {

14 "session": "abcdefghijklmnopq"

15 }

16 }

17 }

Calculating results
With the email identifiers of each step the results can be calculated. The fol-
lowing calculations can be done to gather the results for displaying the funnel:

1. Users that made the step: Count the number of email identifiers.

2. Users that stopped between two steps: Identifiers that are in the first step,
but are missing in the second step.

3. Users that rejoined in a step: Identifiers that are in the current step, but
are missing in the previous step.

The information above can be used to display how many users made it to each

31

step. The percentage of users that made it to a step can also easily be calculated
by comparing it to the users that joined the first step.

4.7.2 Funnel data format

To separate the calculation of the required data from the visualization, an inter-
mediate data format is used. This ensures that the software to get the results
from the data source is decoupled from the visualization. This allows to easily
swap the interface with different visualizations, making it more modular. It also
supports swapping out the calculation of results so that for example, support
for a different database product can be implemented.

Theoretically funnels could be graphs, but a simplification is applied to create
a readable result. Other analytics tools simplify to a sequential list of steps,
but this project has a more advanced structure. It allows a step to have par-
allel tracks, and these tracks again have steps. The structure of this format is
shown in 7, the definition is given in TypeScript types 3, since these are clearly
documented, modular and could be used when building a visualization.

It starts with the Funnel at top level. This defines the start and end time of
the funnel, and a list of options. These options are fields that can be filled in
by users, to be displayed in the visualization. Track contains a title and a list
of steps. The steps are a mix of type SingleStep or ParallelStep.

SingleStep contains absolute and relative numbers for identifiers that made this
step, how many came from the previous step, how many continued to the next
step, how many stopped, and how many rejoined. It also contains exit data,
which can split the people of the stopped key into sub groups.

It also contains an array of Notes, which provide context about the step. A Note

can be of different sub types, which each have their own data. StatisticNote

contains one simple number and title. SubsetNote contains a number and per-
centage, it could be used to indicate that a certain percentage of users in this
step have completed a certain action or meet a particular criteria. TableNote

contains data for a table, the data array maps column names to values (which
are any string). GraphNote contain data for a simple bar graph and defines the
x-axis name, y-axis name, maximum axis values, and has a data array. This
could be expanded with different graph types in the future, like pie charts, line
graphs, etcetera.

ParallelStep defines a step that has multiple parallel tracks. Each track again
has a title and a list of steps, as described earlier.

Listing 7: Structure of funnel data (TypeScript data format)

1 interface Funnel {

2 start: number

3 end: number

4 track: Track

5 options: Option[]

6 }

7

8 type Option = NumberOption | SelectOption

3https://www.typescriptlang.org/docs/handbook/basic-types.html

32

https://www.typescriptlang.org/docs/handbook/basic-types.html

9 interface NumberOption {

10 type: "number"

11 label: string

12 }

13 interface SelectOption {

14 type: "select"

15 label: string

16 options: string[]

17 }

18

19 interface Track {

20 title: string

21 steps: Step[]

22 }

23

24 type Step = SingleStep | ParallelStep

25 interface SingleStep {

26 type: "step"

27 title: string

28 subTtile?: string

29 result: number

30 totalPercent: number

31 fromPrev?: number

32 fromPrevPercent?: number

33 toNext?: number

34 toNextPercent?: number

35 stopped: number

36 stoppedPercent: number

37 rejoined: number

38 notes: Note[]

39 exit: ExitData[]

40 }

41 interface ExitData {

42 title: string

43 result: number

44 }

45 interface ParallelStep {

46 type: "parallel"

47 tracks: Track[]

48 }

49

50 type Note = TableNote | GraphNote | StatisticNote | SubsetNote

51 interface StandardNote {

52 title: string

53 }

54 interface StatisticNote extends StandardNote {

55 type: "statistic"

56 result: number

57 }

58 interface TableNote extends StandardNote {

59 type: "table"

60 data: Array<{[key: string]: string}>

61 }

62 interface SubsetNote extends StandardNote {

33

63 type: "subset"

64 subset: number

65 subsetPercent: number

66 }

67 interface GraphNote extends StandardNote {

68 type: "graph"

69 graph: {

70 x: string

71 y: string

72 xMax: number

73 yMax: number

74 data: Array<{

75 x: number

76 y: number

77 }>

78 xMap: {[key: number]: number}

79 }

80 }

In this project the data for the funnel is generated using PHP code that connects
to the database. The implementation of this PHP code and how to define funnels
with it will be explained in the System implementation chapter. Instead of PHP
code to build the structure and data of a funnel, a GUI could be created. In
this project the goal is to make a flexible tool, that is used by people that know
how to program. Since programming a funnel in a programming language offers
a lot of flexibility this is suitable in this case. For other companies it might
make sense to let marketing or sales employees build funnels, in which case
PHP would not be suitable. My recommendation for those companies would
be to either create a DSL (Domain Specific Language) to create funnels, which
is at a higher level than raw PHP code. You could also go a step further and
build a graphical user interface on top of the DSL or other implementation, so
that not code needs to be typed to create funnels. I think this would reduce
flexibility though, and make the solution more limited.

Another interesting idea is to use an existing business process modeling lan-
guage, like BPMN (Business Process Model and Notation), to generate the
basics of the funnel. This might give a good starting point for defining the
funnel, but you would still need to map events in the usage data to the steps of
the funnel. So this will not fully replace a programmatic or visual user interface
for defining funnels.

4.7.3 Multi-identifier tracking

In the example used above there is a single identifier for each user in the funnel,
the number that assigned to the newsletter email. This identifier is used in
each step to check which users made it. In more complex funnels there is often
not a single identifier, or it is hard to make sure the identifier is carried all the
way through the funnel. To make it easier to track these long funnels, multiple
identifiers could be used per user.

Using multiple identifiers per user works as follows, first there is a ’base’ iden-
tifier, which all tracked users start with (for example the number of an email).

34

After following the funnel for a couple of steps with this identifier (for example
email delivered and email read) there is a step where another identifier is in-
troduced. In that step the first, and a new second identifier is known, so they
can be linked to together (for example user creates an account on the website).
After the second identifier is linked to the first one, all following steps can use
the second identifier to indicate which users made it. The system will translate
the second identifier to the first one, and can calculate and show the results as
usual.

This concept will be implemented into the funnel to make them suitable for
complex and longer funnels.

4.8 Visualizing funnels

This section will discuss how the interface of the funnel visualization has been
designed.

The funnels of Google Analytics and HeapAnalytics have the time axis of the
funnel horizontally, where the first step is on the left and further steps are right
of that. This has as downside that horizontal scrolling is needed if the funnel
is more than about four steps. Because my implementation will include notes
for each step, and merge/split mechanics this would not be good to display
horizontally. Therefore the time axis is displayed vertically for this project.
Meaning that first there is a horizontal bar for the first step, with title and
description. Attached to this bar there could be notes of different types. These
notes should not be bigger or more prominent than the steps themselves, because
that could confuse the user about them. Therefore larger notes like tables and
graphs will be collapsed by default, only showing their title, and will open when
clicked.

Figure 6: Funnel arrow usage

To show how a user goes through steps arrows will be used. From one step
to the next there is a green arrow pointing down towards the next step. This
arrow will have the absolute number of users and how much percent of all users

35

of the previous step next to it. Next to this green arrow there will be a red
arrow pointing to the right, indicating how many users stopped, again with an
absolute number and percentage. If more is known about why a user stopped,
these groups of users could be displayed with smaller red arrows below the large
red arrow, to indicate the large arrow splits into several subgroups. Red arrows
could be made orange if the number is zero, giving a hint that nobody stopped.
As last there could be rejoining users from previous steps, this is visible by an
orange arrow at the left of a step, pointing to the right towards the step title.
Figure 6 shows the usage of all these arrows. Together these arrows show all
paths users can take, and indicate if the path is good or bad. Google Analytics
also displays the bad paths as red.

Merge and splits of funnels will be displayed by first showing a split bar, to in-
dicate something special happens in the funnel. After that two or more parallel
funnels will be displayed next to each other horizontally. This works nicely for
2-3 parallel paths, but requires horizontal scrolling when using more of them.
Having more than three parallel paths is however a much more uncommon sce-
nario than having a funnel with more than three steps, as would cause horizontal
scrolling for existing products. After the parallel paths a merge bar is displayed,
indicating that the funnel is back to a single track.

36

5 System implementation

This chapter describes the implementation decisions and details of the system
that has been created to test the architecture of the previous chapter. First the
required existing systems are described, after that the application and analytics
storage is set up. Next the implementation of funnels is described in detail.

5.1 System environment

Before the implementation starts it needs to be clear in which environment the
system will be integrated. The assumption is that there is an existing (single-
server) relational database for the profile data, or that the used database can be
migrated to a relational database. There could be one or more application (like
websites, mobile apps, backend services) that use this profile data. Next to that
there is the need for an event based analytics system that tracks certain actions.
There could be existing analytics solutions, in-house or by an external company,
but that should not interfere with implementing the system as described in this
thesis.

The following assumptions are made about existing systems:

1. Profile data can be migrated to a relational PostgreSQL database (either
because it is already stored in a relational database or because a migration
path is possible).

2. Profile data has unique identifiers for all important data types (like users,
chats, messages, etcetera).

3. There is a clear ’tenant’ in the profile data, which can be used to split the
data among multiple servers.

4. Applications that use the database can connect to a PostgreSQL database.

Note that assumptions about compatibility with PostgreSQL are specific for this
implementation, in general the solutions in this thesis can also be implemented
using a different database technology.

5.2 Database: PostgreSQL and CitusData

First of all the servers that run the database need to be set up. There are a
couple of options available to do this with CitusData, which will be explained
briefly below.

Managed Citus Cloud Deployment
The easiest deployment is to order a Citus Cloud deployment, which is simply
selecting the size and storage capacity of the cluster, and it is ready to go. With
Citus Cloud there are options to select the amount of RAM and CPU speed of
the database servers, and the available storage size. Up to 20 servers can be
ordered in the cluster, with servers up to 32 CPU cores and 244GB of RAM.
The storage capacity per server can be selected from 512GB to 2TB. Next to
this a ’High Availability’ option can be selected, which duplicates a set of server
to another datacenter.

The setup of Citus Cloud is easy, but there are limited options and the price is
higher than a manual setup.

37

Amazon CloudFormation Deployment
A more customizable option is to use the CloudFormation template that Citus
provides to setup a database cluster using Amazon. CloudFormation works
with a JSON template, which specifies the servers to start, which software to
run on them, files to put on them and network and organization connections
that should be made. The template sets up a cluster using an automatic scaling
group of Amazon, which makes it easy to scale up the cluster. Downsides of
this setup is that upscaling does not automatically add the new servers to the
database, and that the company itself is responsible for the instances of the
database, instead of a database service provider.

This setup is more customizable, but also introduces more responsibility for the
user of the database to maintain and monitor it correctly.

Custom Deployment
The most flexible option is installing it on servers bought/rented by the com-
pany. In this case the type of hosting, servers and software can be chosen freely.
The downside is that linking the servers together and maintaining the cluster
is all up to the company. A company would probably need to create some tools
to manage a custom cluster like this, so that they can scale it up or down, run
updates and do other required changes.

For the tests in this project the CloudFormation template deployment has been
used. Instructions to use each of the options described above can be found on
the documentation page4 of CitusData.

5.3 Profile data storage

After installation of CitusData on the master and worker servers following
the documentation, the tables need to be created. The first step of creating
a distributed table is to create a normal SQL table, as shown in Listing 8.

Listing 8: Create venues table

1 create table venues(

2 id bigint primary key not null,

3 name text,

4 city text

5);

Now that the table is created it is still a regular table, living on the master node.
To change this the create distributed table command provided by CitusData
is used as shown in Listing 9. The first argument of the command is the table
name, the second column to be used as distribution key. Upgrading a table
to a distributed table will move all existing data (if any) to the worker nodes,
according to the distribution key.

It looks a bit odd to use a select to perform this operation, but that is an easy
way for an extension to let users execute custom commands.

4https://docs.citusdata.com/en/latest/installation/production.html

38

https://docs.citusdata.com/en/latest/installation/production.html

Listing 9: Promote venues table to a distributed table

1 select create_distributed_table(’venues’, ’id’);

After the distribution as done in the last step, running a query that uses this
table will get send to worker nodes. Listing 10 shows the execution plan of
select count(*) from venues;. Line 3 shows that the aggregate count will be
calculated. Line 4 shows that it will do a custom scan using the ”Citus Real-
Time” executor. This executor divides the query among the workers, in this case
it simply passes the query to the workers and adds the result of each worker
together. It shows that there are 32 tasks, meaning that there are 32 shards,
which is a fancy way of saying that the venue ids have been divided into 32
buckets. And each buckets gets assigned to one of the servers. On line 7 and
further it shows one of the 32 tasks (since the plan will normally be the same for
all tasks). Line 8 shows which node (database server) this specific plan comes
from. Line 9 and 10 show that that is will do a scan on the venues table and
count the rows, which is exactly the plan that shows up if this would be a regular
table.

Listing 10: Running explain select count(*) from venues;

1 QUERY PLAN

2 ----------------------

3 Aggregate (cost=0.00..0.00 rows=0 width=0)

4 -> Custom Scan (Citus Real-Time) (cost=0.00..0.00 rows=0 width=0)

5 Task Count: 32

6 Tasks Shown: One of 32

7 -> Task

8 Node: host=<hostname of worker node> port=5432 dbname=postgres

9 -> Aggregate (cost=355.30..355.31 rows=1 width=8)

10 -> Seq Scan on venues_102818 venues (cost=0.00..314.64

rows=16264 width=0)

The process above for the venues table can be repeated for more profile data
tables, in case of Staying the ’stays’, ’users’, ’chats’, ’message’ and ’content’
tables can be added. A table like the users table cannot be distributed by the
venue, since a user can be the owner of multiple venues. So this table can
be made a reference table, which means it will get stored completely on each
database worker. Listing 11 shows the query to create the users table (simplified
users with only an id and a name).

Listing 11: Create the users table

1 create table users(

2 id bigint primary key not null,

3 name text

4);

To upgrade the users table to a reference table the query shown in Listing 12 is
used.

39

Listing 12: Promote the users table to a reference table

1 select create_reference_table(’users’);

5.4 Analytics storage

Now that the venues table is created, an events table can be added. This table
will also use the venue id as distribution key, will have its own id and have a
data column. The SQL statement for creating this table can be found in Listing
13. Note that the primary key consists of the id column and the venue column,
having the venue column in this primary key is required to use it as distribution
key.

Listing 13: Create venues table

1 create table events(

2 id bigint,

3 venue bigint,

4 data jsonb,

5

6 primary key (venue, id),

7 foreign key (venue) references venues(id)

8);

Just like the venues table, the events table is promoted to a distributed table,
see Listing 14.

Listing 14: Promote events table to a distributed table

1 select create_distributed_table(’events’, ’venue’);

Now both tables are distributed by venue id, meaning that the venue data and
events of that venue will be on the same worker node. To show that this setup
works, lets follow a simple example. The company wants an overview of the
number of events per venue, lets get that from the database. The query as
shown in Listing 15 is used to get the result. This query is correctly distributed,
meaning that each worker calculates the result for the venues it stores, and the
master only combines the results of all the workers.

Listing 15: Get the events per venue

1 select

2 venues.name as venue,

3 count(*) as events

4 from events, venues

5 where

6 events.venue = venues.id

7 group by venues.id;

40

5.5 Funnels

Two different implementations have been made to get the funnel data. The first
implementation is simple and easy to build, but does not scale well to a large
number of events. This implementation is described first to show how results
of a funnel are gathered and calculated. The second implementation is a more
scalable implementation, built to solve the scalability issues found in the first
implementation. Both implementations use PHP for application code, connect-
ing to the PostgreSQL database to gather data and using Smarty (simple HTML
template engine) to display the results. Both implementations follow the struc-
ture as defined Figure 8 of the architecture chapter. First the implementation
of the funnel display is explained, since that gives a good idea about the results
the implementations need to provide. Afterwards the implementations used to
gather these results are explained in detail.

5.5.1 Funnel display

To display the results of either of the funnel implementations described above
there are plenty of options. A native interface, an image or a web interface are
main options of displaying the funnel results. To let it work on any device with a
web browser the display for the funnel of this research project is a web interface.
A web interface is also practical because user input is easy with forms, which
allows for filtering the funnel to a certain time period (or another criteria). This
project uses PHP with the Smarty template engine to create a simple web page
that displays the results. Any other backend that produces the funnel data or
frontend that displays the data and gathers user input could be used, below the
implementation used for this research is discussed.

Steps
Figure 7 shows the result of a funnel. This steps of this funnel are sending an
email, delivering the email, reading the email and finally visiting the website
using a link in the email. These steps are displayed in blue on the web page.
The funnel starts at the top of the page, and following steps are displayed below.
Each step shows how many users made it to the step, and which percentage of
users this is compared to the users in the first step. This percentage is important
because it is what companies look for. In the example of the image the company
is interested in how many people visit their website, while an absolute number
shows how many visit the website, the percentage can be used to compare the
funnel. For example this can be compared to a previous or future newsletter,
another audience or something else.

Continued and Stopped
Besides the number shown inside each step, there are numbers that connect the
steps. The ”continued” number shows how many users did next step after the
previous one. It also shows a percentage, because that indicates how good the
conversion from one to the following step is. For example if only 5% continues
to the website after reading the email, the email is not interesting enough for
the audience. But if for another step 95% continues, that indicates that almost
anyone will do the next step, which could either be because it is an easy or
trivial step, or because the user is invested and wants to continue. The users
that do not continue, have stopped following the steps in the funnel, these are
shown in the ”stopped” statistic between steps.

41

Figure 7: Results and display of an email delivery funnel

Stop groups
In some cases there is a clear reason for why a user stopped, for example when
sending an email there might be feedback about why the email has not been
delivered. This could for example be because the email address does not exist,
the inbox is full or because it is rejected by a spam filter. If this kind of detailed
information is available it can be displayed as a stopping group. Stopping groups
are displayed below the ”stopped” statistic, to split the people that stopped into
multiple groups. Figure 7 shows these stopping groups between ”emails sent”
and ”emails delivered”. This kind of information helps to find out why a user
stopped, in this case it is clear that some email never reached the users inbox,
and therefore the user did not read it or visit the website.

Filters
At the top of funnel there are some form fields to limit the funnel results. The

42

first filter is the time period, in this case filtering emails by the time they are
sent. Other filters are also possible, in this case filtering for a Venue and a User
are possible, limiting the emails to a hotel or user. Another filter shown in the
example is the email template, so that the funnel can be shown for emails of a
certain type (newsletter, password reset, invite, etcetera). These filters can be
added easily to filter data of the first step of the funnel. Because following steps
of the funnel will only show results for users that are included in the first step
this will effectively filter results for the complete funnel.

Rejoined
Since gathering analytics is not always possible or reliable (could also call it
best-effort collection) some users could skip steps in the funnel. This happens
in this funnel example because the ”emails read” step cannot 100% reliably
detect when an email is read. Reading an email in this case is detected by
including an image in the email, which will be downloaded by the users when
opening the email. There are however email clients that do not download images
at all or require clicking a button, so some users that read the email are not
actually marked. These users could still visit the website though, which is the
next step of the funnel. Because these users did not come from the ”emails
read” step, they are not included in the ”continued” statistic, but instead are
shown in the ”rejoined” statistic at the left of the ”clicked on a link step”. So
the ”rejoined” statistic means that those users ended up at a step, without doing
the step before it.

Step notes Each step in the funnel display page can show additional notes,
displayed with a yellow background. These notes provide context information
to inform about the step. For example the ”Emails per template” note shows
how many emails of each type have been sent. In this case this helps to use
these types as filter for the funnel. At the ”emails read” step there is a note that
contains a graph of the time it took the people in the funnel to read an email
after it has been sent (grouped by hour). This information could for example
be used by a company to decide the best time to send a reminder to users about
the message in the email.

5.5.2 Funnel structure

Figure 8 shows the class structure used for building the funnel and their re-
lations. This structure will be used for both implementations, which will be
discussed in following sections

First all components shown in Figure 8 need to be explained. Each class in the
figure is a class in the PHP code that is used to create funnels. The main object
is Funnel, which represents the process that is getting tracked. The Funnel for
example has a title, description and filters to describe what the funnel is about
and what it should track. A Funnel has one Track, which is what contains all
the steps of the process that the funnel tracks. A Track has a name, and a list
of steps. Steps can be of different concrete types, but share a common interface
iStep. This common iStep has a name and can tell which identifiers started
and finished this step.

Normally steps are of the type SingleStep, which represents a single action,
like reading an email as in the newsletter example. For a single step the
getStartIDs() and getEndIDs() have the same return value, because an email

43

Figure 8: Funnel implementation structure

cannot be half-read. SingleStep has a title, description, and zero or more Notes.
The title and description are to display along with the result, the notes are for
providing context information. The content of the note is determined by the
result of a SQL query placed in the funnel PHP file. Notes can be of different
types, a simple Statistic that shows a certain number, a Table that shows a
list of results in columns and rows, or a Graph which can for example show the
distribution of a certain value or the change over time. Other note types can
be added easily with this abstraction, to show the context information suitable
for the company.

Next to the SimpleStep there is a ParallelStep, this step represents a split and

44

merge, which is used when a user can take two or more possible paths. For
example a website might have two possible ways to sign up, one where an email
is filled in, email is read, and finally a link is clicked in the email, and another
where a ’Facebook login’ button is clicked, and clicking the confirm button to
let the website log in. This means that for tracking the funnel it needs to split
into two paths, with a certain number of steps per path, and merge afterwards.
That is what the ParallelStep is for, it allows to split into multiple tracks, each
with their own iSteps (which can also be parallel again), and merge back into
the main funnel. This allows to define more complex funnels, improving the
flexibility of the funnel system.

The getResult() methods in Track and iStep are to recursively build the result
of the funnel, used to display a web page. It has two arguments, an argument for
the previous iStep and one for the next iStep. These can be used to calculate
results between steps, like how many users continued to the next step. How
results are calculated and the result is displayed will be discussed in Section 5.5.

5.5.3 PostgreSQL jsonb syntax

The following steps will show how the implementation of the funnel works, which
uses SQL queries in PostgreSQL. The SQL syntax is standard, and is assumed
to be known by you, if not, it is easy to find an introduction online. The jsonb

syntax is specific to PostgreSQL, so that is briefly explained below.

The events table has a data column that is of the jsonb type. This column
stores a JSON document in a structured way, to make data storage flexible. To
get specific information from the data column there is special syntax. To get
a value of a key at the top level data->>’<name>’ can be used, which retrieves
the value of the key using the specified <name> as text. If instead of the double
arrow (->>) the single arrow (->) is used, the type of the returned value will
be as it is in JSON. So that could return a number, array, or jsonb for nested
structures.

To get a value of a nested key the data#>>’{<firstLevel>,<secondLevel>}’ is
used. So the minus sign is changed to a pound sign (hashtag), and the name
of the column is replaced by a list of strings. This list of strings indicates the
levels it needs to follow to get the value. As with the top-level syntax, a single
arrow returns as the type as encoded in JSON and a double arrow returns a
text value.

More details of the jsonb syntax can be found in the PostgreSQL documentation,
which can be found on their website5.

5.5.4 Step-by-step funnel implementation

This first implementation is a straightforward version, doing all calculations in
PHP while the database provides the identifiers of the users that made certain
steps. To describe the implementation details of the funnel the results of the
example presented in Section 4.7.1 will be calculated.

Data structure In each step of the funnel a query will be used to get a list of
identifiers of the emails that made it to that particular step. This means that

5https://www.postgresql.org/docs/current/static/functions-json.html

45

https://www.postgresql.org/docs/current/static/functions-json.html

the query returns one row for each user that made a particular step, which is
saved to a variable in PHP. To support multiple identifiers the name given to
column as result of the query, will be the name of the identifier. The name base

is special, this is where all other identifiers should map to, and is the identifier
that is known in the first step for all users. In this example the id of the email is
the base, and no other identifiers are used. If multiple columns are returned in
a step, the PHP code will map all identifiers given in a row to the same base. So
if a column called base and a column called userID are in the result, all userID
values are mapped to the base value. After this mapping has been done, all
following steps can simple return a single column with userID to indicate which
users made it, and the system will figure out which base id this belongs to.
Secondary identifiers (any identifier that is not base) do not need to exist for
each user, for example the userID is only available if the user has an account,
so it might be missing for some.

Step 1: Which emails have been sent?
Listing 16 shows the query that is used to get the result of step 1. It queries
the events table, with a couple of conditions. The first condition is that type is
set to email, which means the event is about email. To narrow it to emails that
have been sent a condition with email,type that is set to sent is added. Finally
the at field of the event is used to only return emails from a certain time period.
In this case a column with email,id is returned as result, with the name base

to use those as identifier for this funnel.

Listing 16: Query to get the sent email events

1 select

2 data#>>’{email,id}’ as base

3 from events

4 where

5 data->>’type’ = ’email’

6 and data#>>’{email,type}’ = ’sent’

7 and data->>’at’ > ’$funnel->start’ and data->>’at’ < ’$funnel->end’

Step 2: Which emails have been read?
In this step the funnel will show the emails that got read, which can be found
using the query in Listing 17. This query again uses the events table and checks
for email events. Now the sub-type to check for is read.

This time the result is not filtered by time, since if the email is read any time
after it has been sent, it has been read. This could be within the time period of
the first step, or after it. Companies using funnels need to be aware about when
the funnel is viewed, if a funnel of yesterday is viewed, a lot of emails might not
be read yet. If however a funnel is viewed for a day that is twee weeks ago, a
lot more emails might be read. It is important to be aware of this fact, so that
results are not looked at prematurely. A company could for example decide that
if an email is not read after 2 weeks, it does not have much chance anymore to
get read at all, therefore viewing funnels from time periods at least 2 weeks ago
is correct. This is a decision the company has to make, depending on the data
in the funnel.

The email read events still need to be filtered though, since they should only

46

count if an email that is also in the first step, and not for other emails. This
is why the last filter in the query is added, which tests if the id of the email is
in the set of identifiers of the first step. The set of identifiers can be retrieved
from the funnel class, with the inIds(<name>) method. In this case base is
used as name, since that is what the first step saved the email ids with. The
result of this method will for example be (’2017-11-123456’, ’2017-11-789’,

’2017-11-08747’). Using the in operator of PostgreSQL the query checks that
the id of the email the read event is for is in this set.

The query for this second step again returns the email,id rows, which the
application stores. For calculating the results for the continued, stopped and
rejoined statistics the application compares the ids of this step to the previous
one.

Listing 17: Query to get the read email events

1 select

2 data#>>’{email,id}’ as base

3 from events

4 where

5 data->>’type’ = ’email’

6 and data#>>’{email,type}’ = ’read’

7 and data#>>’{email,id}’ in $funnel->inIds(’base’)

Step 3: Which emails lead to website visits
The last step of the funnel is to check how many users click a link in
the email to visit the website. Listing 18 shows the query. It queries for
website events, with sub-type visit. The links in the email contain a pa-
rameter with the email id, so the link to the website would for example be
http://company.com/product?email id=abcdefghijklmnopq. The server of the
website creates an event for visits, putting the url parameters in the params

part of the event. So to filter these website visits for the emails of the funnel
the website,params,email id is used. This email id is, as in previous steps,
returned as base.

Next to the usual column called base there is an additional column website session.
This column contains the identifier of the website session, this session identifier
is consistent through a series of page visits of this user. The system maps this
website session to the base identifier that is present in the same row of the
result set. This example funnel does not have any more steps after the first
website visit, but it would make sense to have additional steps with for example
creating an account on the website or ordering a product.

47

Listing 18: Query to get website visit events

1 select

2 data#>>’{website,params,email_id}’ as base,

3 data#>>’{website,session}’ as website_session

4 from events

5 where

6 data->>’type’ = ’website’

7 and data#>>’{website,type}’ = ’visit’

8 and data#>>’{website,params,email_id}’ in $funnel->inIds(’base’)

Pros and cons

1. Pro: Relatively simple queries, simply return the identifiers that made it
as rows.

2. Pro: Step-by-step queries, making the funnel modular (easy to reuse steps
for other funnels).

3. Con: Identifiers of all users in the first step are inserted into the query
(sending it from PHP to PostgreSQL and parsing it will take longer), this
causes poor scalability.

PHP funnel builder
To build the funnel as described in the above steps in PHP the classes from
Figure 8 have been created. For constructing the funnel a builder pattern is
used. The funnel as explained above, with additionally some parallel steps, can
be found in Listing 19.

Listing 19: Usage of the builder pattern to define a funnel

1 $funnel = new Funnel("Newsletter effectiveness");

2 $track = $funnel->getTrack();

3

4 $track->step("Newsletter emails sent", "<query>")

5 ->note("Emails per country")

6 ->table("<query>");

7 $track->step("Newsletter emails read", "<query>");

8 $track->step("Visited the website", "<query>");

9 $track->step("Clicked ’signup’", "<query>");

10

11 $signupTracks = $track->parallel();

12 $emailSignup = $signupTracks->track("Email signup");

13 $emailSignup->step("Filled in their email", "<query>");

14 $emailSignup->step("Submitted the signup form", "<query>");

15 $emailSignup->step("Confirmed their email", "<query>");

16

17 $facebookSignup = $signupTracks->track("Facebook signup");

18 $facebookSignup->step("Clicked Facebook button", "<query>");

19 $facebookSignup->step("Confirmed Facebook login, "<query>");

20

21 $track->step("Ordered product", "<query>");

First a Funnel object is constructed with a title, after which the main track

48

of the funnel is retrieved with $funnel->getTrack() and stored in a variable.
This track will be used to add all steps to. Next a step is added by calling
$track->note(), providing a title and a SQL query to get the identifiers for that
step. For this first step a note is added with information in a table. As designed,
more notes can be added by calling note() again.

After the first three steps the funnel is splitting into two different tracks. First
$track->parallel() is called to introduce a parallel step. On this parallel step
an email signup track is created with $signupTracks->track(). On this email
signup track three steps are added. Another track for a Facebook signup is
added, with two steps. After these parallel signup tracks an order product step
is added, which can be done after either of the signup options.

Figure 9 shows how this funnel shows when executed. The split is clearly in-
dicated with a grey horizontal bar, with names above each track. After the
parallel steps another grey bar is shown to indicate the tracks have merged
again.

49

Figure 9: Parallel funnel display

50

5.5.5 In-database funnel implementation

The second implementation focuses on reducing the traffic between the database
and application by keeping intermediary results in the database. This way
queries don’t need to return huge lists of identifiers back to the application, but
only the final numbers required to display the funnel. This implementation has
been made to combat the weak points of the first implementation, which is the
scalability.

Data structure
Instead of storing lists of identifiers for each step in PHP as done in the first
implementation, this implementation keeps the identifiers in PostgreSQL. The
identifier mappings are stored in a temporary table. Listing 20 shows the query
to create this temporary table. The temporary table will have a column for the
base identifier, and each secondary identifier. For the base identifier a constraint
is added to make sure it is never NULL, so that mistakes while creating the funnel
are noticed. Secondary identifiers can be null, because not every user in the
funnel might reach the step where a second identifier is introduced.

The create table query has a special clause at the end ON COMMIT DROP which
deletes the temporary table when the transaction end. This requires that at the
start of the funnel the BEGIN TRANSACTION command is used, and at the end the
COMMMIT command. Using this structure it is ensured that the temporary table
is deleted when the funnel results are calculated.

Listing 20: Query for creating the mapping table

1 CREATE TEMP TABLE map (

2 base TEXT NOT NULL,

3 user TEXT DEFAULT NULL

4) ON COMMIT DROP;

Two more temporary tables are used, one to store the identifiers of the current
step, and one for the identifiers of the previous step. Listing 21 shows the query
used for creating both of these tables (where the table of the previous step used
the name previous, and the current one uses current). Usage of these tables
will be made clear while going through the funnel steps.

Listing 21: Query for creating the table for the current step

1 CREATE TEMP TABLE current (

2 base TEXT NOT NULL

3) ON COMMIT DROP;

Step 1: Which emails have been sent?
Listing 22 shows the query used to get the first results. The select query is
exactly the same as in the first implementation, but instead of returning the
results to PHP it inserts them in the temporary table.

51

Listing 22: Query to get the sent email events and put them into the temporary
table

1 insert into current (

2 select

3 data#>>’{email,id}’ as base

4 from events

5 where

6 data->>’type’ = ’email’

7 and data#>>’{email,type}’ = ’sent’

8 and data->>’at’ > ’$funnel->start’ and data->>’at’ <

’$funnel->end’

9);

Because this is the first step, the map table also needs to be updated, this is
shown in Listing 23. Now the map contains all the base identifiers that will be
followed during this funnel.

Listing 23: Copy the result of the first step into the map table

1 insert into map

2 select *

3 from current;

The resulting value for the current step can be retrieved using a simple query
that counts the number of rows in the current table, like shown in Listing 24.

Listing 24: Get the result count for a step

1 select count(*)

2 from current;

Since this is the first step, it does not need to be compared to a previous step
to get the continued/stopped/rejoined numbers. Before moving on to the next
step the result of this step needs to move to the previous table, for which two
queries are listed in Listing 25

Listing 25: Move results of the current step to the previous table

1 insert into previous

2 select * from current;

3

4 truncate current;

Step 2: Which emails have been read?
The query to get the results of the second step has some changes compared to
the one of the first implementation. Listing 26 shows the resulting query. It
selects the email read events from the table, and joins them with the map table
to limit the results to only the identifiers that are present in that table. The
resulting identifiers are again inserted into the current table.

52

Listing 26: Query to get the results for the emails read step

1 insert into current (

2 select

3 events.data#>>’{email,id}’ as base

4 from events

5 inner join map on

6 events.data#>>’{email,id}’ = map.base

7 where

8 events.data->>’type’ = ’email’

9 and events.data#>>’{email,type}’ = ’read’

10);

Getting the count for the second step is the same as the first step, simply
counting the number of rows in the current table. For getting the number of
people that continued from the first to the second step the query in Listing 27
is used. This selects the rows from the current step, that directly came from
the previous step (to ensure rejoined people are excluded). With this continued
number the stopped number of the previous step is simply subtracting it from
the result of the previous step.

Listing 27: Get the number of people that continued from the previous step to
this one

1 select count(*)

2 from current

3 left join previous on previous.base = current.base;

One result is still missing, the number of people that did not do the previous
step, but did do the current one, which is the rejoined statistic. Listing 28 shows
the query used to calculate it. It counts the number of identifiers in current

that do not appear in previous.

Listing 28: Get the number of people that rejoind

1 select count(*)

2 from current

3 left join previous on previous.base = current.base

4 where previous.base = null;

Again the data for this step is moved to the previous one, and the current table
is cleared, as shown in Listing 25.

Step 3: Which emails lead to website visits?
This step looks like the previous one, the only difference is the query that gets
the results, which is shown below in Listing 29.

53

Listing 29: Get the results for website visits

1 insert into current (

2 select

3 events.data#>>’{website,params,email_id}’ as base

4 from events

5 inner join map on

6 events.data#>>’{website,params,email_id}’ = map.base

7 where

8 events.data->>’type’ = ’website’

9 and events.data#>>’{website,type}’ = ’visit’

10);

Pros and Cons
This system solves some of the problems in the first implementation, but also
has some negative sides of its own. Below the positive and negative points of
this implementation are listed.

1. Con: The query used to select the identifiers for each step needs to be
wrapped with an insert query, adding complexity (this can however auto-
matically be added by the application).

2. Con: Temporary tables need to be created and managed, adding complex-
ity.

3. Pro: Small query size, it is not necessary to insert all identifiers into the
query, reducing query parsing time.

4. Pro: Improved performance, since indexes could be added to the tempo-
rary table and speed up usage.

5.5.6 Real-time funnels

This project does not focus on showing funnels real-time, but for some companies
this might be useful. A way to create a real-time system would be to match
each incoming analytics event for matching funnel steps. If a matching step
is found the tracked user in that funnel could be updated to store that he has
made it to that particular step. This could be combined with sending an update
to the people that are watching the funnel result, so that the interface can show
updated numbers. This could be a future work project to investigate.

54

6 System validation

For validation of the system a combination of techniques is used. The positive
and negative aspects of the system are discussed, with possible alternatives. A
couple of benchmarks are used to test the claims of the system. Also validation
while implementing it for Staying is used, to indicate how it works for a company.

6.1 Fitness for purpose of the database

This section will validate the database setup created for this research using
PostgreSQL and the CitusData extension. First the technical possibilities and
limitations of the combination of PostgreSQL and CitusData are evaluated, after
which the usage of the database is analyzed.

6.1.1 PostgreSQL limitations

PostgreSQL works quite well for this project. It offers all regular SQL features
useful for relational data storage, with some advanced additions. One such
addition is the jsonb column type, which has become critical to this project.
It offer the flexibility that is required, while still allowing good performance
because particular fields inside a JSON column can still be used with indexes.
Already on its own PostgreSQL can handle quite big data sizes, up to 32TB per
table, as found on their about page6. Table 1 shows the other limits PostgreSQL
defines.

Table 1: PostgreSQL theoretical limits

Limit Value
Maximum Database Size Unlimited
Maximum Table Size 32 TB
Maximum Row Size 1.6 TB
Maximum Field Size 1 GB
Maximum Rows per Table Unlimited
Maximum Columns per Table 250-1600 depending on

column types
Maximum Indexes per Table Unlimited

Overall PostgreSQL has proven to be a good choice, that worked out to do the
job. Because of the extensibility of PostgreSQL it could be scaled to multiple
servers with CitusData, which is discussed below.

6.1.2 CitusData limitations

Setting up CitusData was quite easy and using it in a basic way was also straight-
forward. CitusData however does have some limitations, as documented on their
documentation pages. It does not support all features of SQL, like subqueries
in the where condition. Often this can easily be worked around, but this does
mean migration to a database that uses CitusData from a regular SQL database
gets harder. The exact limitations can be found in their documentation7. One
limitation to consider is that certain commands

6https://www.postgresql.org/about/
7https://docs.citusdata.com/en/latest/

55

https://www.postgresql.org/about/
https://docs.citusdata.com/en/latest/

When using CitusData there is also a dependency on this extension, which
brings certain risks. Luckily CitusData is open-source and can be found on
Github8, which at least provides a way to continue using it when Citus would
disappear. It also has a substantial user base, considering the activity and stars
on the Github repository, which helps to ensure continuity.

The performance of Citus has already been proven by benchmarking of their own
as shown in their documentation9, which has been verified. Similar number have
been reached when testing this myself, with slight difference since the benchmark
of the documentation uses Citus Cloud and my own was on a CloudFormation
cluster on Amazon (with similar, but possibly different EC2 instances). Because
my number were close, I believe that the benchmarks done by Citus themselves
are accurate. This means that scaling the Citus cluster to a level that is suitable
for the desired throughput. After scaling redistribution of the data among the
worker notes is required, this operation can be done with a single command.
This however does require a subscription to Citus Enterprise, which provides
24/7 support and other enterprise features.

6.1.3 Retrieving events from the system

For Staying the events about the usage of its products by guests and property
owners is stored in the analytics database. Staying is interested in interested in
lists of events on a number of levels:

1. Global: all events of all products

2. Venue: events of a venue

3. User: events of a guest or property owner

4. Custom: specific filters for checking other cases

To show event lists for these levels a simple interface with a couple of filters
has been created, as shown in Figure 10. With these filters it is easy to filter
by venue, user, or other actors. Next to that filters on the top-level types and
certain sub types have also been added. As escape hatch, custom filters can be
used, where comma-separated paths can be filled in and matched to a certain
value.

The structure that has been defined for events has helped to effectively display
these events. Events are simply displayed one per row, where the event is
displayed with some simple styling. For each event type a Smarty template can
be defined to render the event, which can show the details in the event that are
the most useful. If a template for a top-level type does not exist, but the event
has a sub-type, it will try to render the template defined for that sub-type.
Templates are simply placed into a directory structure that follows the types
and sub-types of the events.

This system serves Staying well, because it is easy to investigate usage of fea-
tures, to see if they are used effectively.

8https://github.com/citusdata/citus
9https://docs.citusdata.com/en/v7.1/performance/scaling_data_ingestion.html

56

https://github.com/citusdata/citus
https://docs.citusdata.com/en/v7.1/performance/scaling_data_ingestion.html

Figure 10: Options for filtering events

6.1.4 Using the system to answer questions

To show that the questions that have been defined in Section 3.1 (analytics
questions requirements) work in the system, they are shown below. The seven
domain-specific questions asked by Staying will be answered below using SQL
statements.

Question 1: What was the last activity from a venue on the portal?
Query found in Listing 30. It simply selects the highest timestamp from the
events table for selected venue. This assumes there is an ordered index on the
epoch key in the data column, which is also useful for a lot of other queries.
Since this query uses a single venue, Citus will send this query to the worker
that holds the data of this venue directly, and it will execute it.

Listing 30: Question 1

1 select max((data->>’epoch’)::float)

2 from events

3 where venue = 123;

The result has been checked by manually causing new events to come in for a
certain venue, to see if the result of the query reflects this new time, while other
venues are unaffected.

Question 2: When was the last activity of a user on the app?
This question can be answered with almost the same query as question 1, see
Listing 31. For important columns like the user it is also good practice to add
an index. This would let this query do an index scan on the user index, which
limits the results quickly and makes this query efficient enough. Since data one
a user can be on multiple server this query will run on all workers and the results
will get combined.

Listing 31: Question 2

1 select max((data->>’epoch’)::float)

2 from events

3 where data->>’user’ = ’123’;

57

The result has been checked by causing events as a certain user and checking if
the result has updated as well, without affecting results of other users.

Question 3: How many times each content item has been viewed?
The query for this question can be found in Listing 32. This one is more
complicated, it starts by selecting from the content table, which has content
items for each venue. The content items are joined with their venue, which is
required later. Then the events table is joined with the content+venue rows.
Events are filtered to the action that represents viewing a content item (which of
course might be different to monitor other activity). At the end the results are
grouped by the content it, so that the select can count the number of events for
each content item. The results rows are ordered by the number of views. The
select adds the title of the content item, which can be found in its data under
the title key, with the language appended. To append a valid language of a
venue the first language is used which is found in venues.langs[0]. Since the
venue is specified in the query, it will be pushed to a single worker and execute
nicely.

Listing 32: Question 3

1 select

2 content.data->>(’title_’ || (venues.langs->>0)::text) as title,

3 count(events.id) as visits,

4 content.id as id

5 from content

6 inner join venues on

7 content.venue_id = venues.id

8 and venues.id = 4

9 left join events on

10 content.venue_id = events.venue

11 and events.venue = 4

12 where

13 events.data->>’content’ = content.id::text

14 and events.data->>’type’ = ’action’

15 and events.data#>>’{action,type}’ = ’navigate’

16 and events.data#>>’{action,navigate,to,name}’ = ’ContentX’

17 group by content.id, content.data->>’title_en’, venues.langs

18 order by count(events.id) desc;

The result has been checked by creating a new venue and doing visits to content
items while constantly checking the result of the query.

Question 4: How long has each content item been viewed?
This query is harder to create, since it needs to calculate the time between
opening the content item and closing it. The result is shown in Listing 33. The
way to get to a content item is by navigating to it, so first the navigate event
is selected that goes to a content item. To get the closing event an inner join
on the events table is used, selecting events that indicate leaving the content
item. For example this could be navigating to something else, or closing the
app. It could be hard to determine all leave event types here, so this could lead
to inconsistencies. Finally the results are grouped by the start event, and the
first end event is selected to make sure the closest one is used.

58

It would be wise to limit the time difference to a certain number of seconds,
because it is not realistic that someone is actively viewing a content item for
longer than an hour, so higher than that is likely a measurement error.

Listing 33: Question 4

1 select

2 start.data->>’epoch’ as start_time,

3 min(e.data->>’epoch’) as end_time,

4 min((e.data->>’epoch’)::float) - (start.data->>’epoch’)::float as

diff

5 from events as start

6 inner join events as e on

7 e.venue = start.venue

8 and e.data->>’type’ = ’action’

9 and e.data#>>’{action,type}’ in (’navigate’, ’close_app’)

10 and e.data->>’user’ = start.data->>’user’

11 and (e.data->>’epoch’)::float > (start.data->>’epoch’)::float

12 where

13 start.venue = 1

14 and start.data->>’type’ = ’action’

15 and start.data#>>’{action,type}’ = ’navigate’

16 and start.data#>>’{action,navigate,to,name}’ = ’ContentX’

17 group by start.id

18 order by diff desc;

The result has been checked by starting with a new venue and doing visits of a
certain time of certain items.

Question 5: When did action X happen last in the app/portal for
user/venue Y?
The resulting query for this question is found in 34. This query is straight for-
warded, simply selecting the maximum time from the events table with certain
conditions. This scenario would often be useful for a list of venues/users, in
which case showing metadata of these users/venues would be relevant. To do
that a join could be done on the users or venues table, so that this data can be
used. This is a typical combination of usage and profile data.

Listing 34: Question 5

1 select

2 max((data->>’epoch’)::float) as last

3 from events

4 where

5 data->>’type’ = ’website’

6 and data#>>’{website,type}’ = ’visit’

7 and venue = 123

8 and data->>’user’ = ’456’

9 and data#>>’{system,type}’ = ’app’

The result has been checked by causing events for certain venue/user combina-
tions, checking if the time updates while not affecting other event types/user/v-

59

enues.

Question 6: How often did action X happen in the app/portal for
user/venue Y in time period Z?
This question can be answered much like question 5, with a few small differ-
ences, see Listing 35. Instead of using a max(...) as result, count(*) is used.
Filtering for time period are two simple where conditions, already used earlier:
(data->>’epoch’)::float < 456 and (data->>’epoch’)::float > 123.

When answering this question for a list of different event types, the result could
be grouped by event type to generate a list of types with how often they hap-
pened. This could give a good idea about the most common actions a venue
performs.

Listing 35: Question 6

1 select

2 count(*) as times

3 from events

4 where

5 data->>’type’ = ’website’

6 and data#>>’{website,type}’ = ’visit’

7 and venue = 123

8 and data->>’user’ = ’456’

9 and data#>>’{system,type}’ = ’app’

10 and (data->>’epoch’)::float < 456 and (data->>’epoch’)::float > 123

The result has been checked by setting up certain events at consistent intervals,
and testing if the result of the query matches the expectation.

Question 7: Which device types are used per venue type?
This question is answered with the query from Listing 36. The query detects the
device type (ios, android, desktop in this case) from the agent of the client that
produced the event. Next the events are grouped by venue type and platform,
and ordered by venue type, platform and usage. This generates a list of how
many events each venue type has on each device type. Of course these results
could be visualized using a pie chart to make them easy to read.

Currently the events are not filtered on their type, but normally it might make
sense to for example filter on app events.

60

Listing 36: Question 7

1 select

2 case

3 when data#>>’{system,user_agent}’ like ’%iPhone%’ then ’ios’

4 when data#>>’{system,user_agent}’ like ’%Android%’ then ’android’

5 else ’desktop’

6 end as platform,

7 venues.type as venue_type,

8 count(*) as usage

9 from events

10 inner join venues on events.venue = venues.id

11 group by platform, venue_type

12 order by venue_type, platform, usage

To check the result a sample set of real data has been used, manually counted
and compared to the query result, which matched.

Conclusion
Answering the questions above has shown that it is possible, and in most cases
easy to answer these types of questions using the system. Since the usage and
profile data is in the same system joining them is easy and works quickly.

6.2 Defining funnels using the system

A system has been made to build funnels, using the database setup of this
project. The choices made while implementing the systems of Section 5.5 have
an effect on the easy of use, scalability and maintainability of the system. This
section describes the trade-offs that have been made for the system to define
funnels.

6.2.1 Defining the funnel: builder pattern

A positive side of the implementations is the builder pattern of the PHP ap-
plication. This makes it easy to add steps, notes and other options. It helps
to make the system flexible, since adding a new function option to a step or
note is simply adding an extra method on them. Instead of a builder pattern a
different approach could be used, like a domain specific language (DSL). This
would mean defining a structure of a text file to describe a funnel and all its
options. Using a DSL to define funnels would limit the people using the system
to create funnels to the features of the DSL, which could quickly become a prob-
lem. Of course the DSL could be expanded with a new feature, but that can
easily bloat the DSL, making it hard to understand, use and maintain. Instead
using a programming language like PHP allows to do basically any processing
required, while still allowing for a simple funnel definition if additional process-
ing is not needed. Another options would be to create a visual interface to build
the funnel. It would make creating simple funnels easier, but would again limit
the funnel to what the interface can do. These are however trade-offs that need
to be made with the target audience in mind. If the intent is to let anyone in
the company create funnels, an interface might be the best choice, however if
only people with a Computer Science (or related) background need to be able

61

to create them a programming language might be more suitable.

6.2.2 Flexibility and modularity

For both implementations the steps of the funnels are independent from the pre-
vious steps. What is meant with this is that the implementation itself will do the
comparison with the previous step, calculating the continued/stopped/rejoined
statistics, so the step itself only needs to worry about its own result set. This
means that funnels can easily be adapted, like adding or removing a step. It also
means that certain steps or sequences of steps can be reused, which improves
modularity. For example when sending an email to a user there is usually a need
to track of ”emails delivered”, ”emails read” and ”clicked link in email” steps,
which could be split into a separate file to reuse where useful. This concept has
already been used for Staying, splitting the email steps including all notes into a
separate file to reuse in multiple funnels. This also keeps the code in the funnel
definitions DRY (don’t repeat yourself), which makes maintenance easier.

Flexibility of the funnel implementation is an important aspect, since it is in-
tended for as much companies as possible. Implementing it specifically for
Staying could lock it too much into a domain-specific feature set, which harms
the possibility to use it for other companies. Flexibility also comes back in the
following paragraphs.

6.2.3 Context information: notes

Even though the numbers in the funnel itself say a lot about the process it tracks,
context information is important to get more insight. Often certain aspects of
the users entering the funnel are important to know, like the language of the
email they received. This is often in conjunction with filters, to be able to show
the funnel for emails of a certain language. Since these kind of aspects of the
users starting the funnel could have different results, it is important that the
person using the funnel can show them.

Another aspect that could be important in the example funnel is the type of
device used to visit the website (laptop, tablet, smartphone, etcetera). If a lot
of the users that visit the website on a smartphone stop, it could mean that
the mobile version of the website does not work good enough. To provide this
information notes are critical, in this case a table with the number of users per
device type would help a lot.

Charts could also be used, for example for the distribution of the number of
hours between sending and reading the email. This gives insight in what a
usual time period is before the majority has read an email, which means that
viewing the funnel results before this time period is over would show incomplete
results.

Finally, other note types can easily be added and displayed, contributing to
the flexibility of the funnel building application to show any information the
company requires.

62

Figure 11: Collapsed and expanded note

6.2.4 Funnels created for Staying

The funnel system has already been used by Staying for a few months. It is
however used with a regular PosgreSQL database, without the CitusData exten-
sion, since that is not yet required for the scale Staying operates at currently. A
couple of funnels have been created like venue signup, guest invites, email deliv-
ery and sms delivery to get insight into these topics. While creating funnels for
these topics the need for more advanced features became apparent, with one of
the first being the notes with context information. Later filters have been added
to show results of certain sub groups. The interface also developed over time,
for example when realizing the ’rejoined’ statistic was necessary when ’email
read’ tracking was proven to be inaccurate. When expanding the funnels the
multi-identifier tracking was required at some point, and added for it.

Currently there are 4 distinct funnels in use at Staying, each showing a different
process. Below each of these funnels is shown, and how it tests the funnel system
is explained.

Property marketing funnel
For Staying it all starts with inviting properties to use the product. This process
consists of the following main steps:

1. Invite a property by email

2. Visit the Staying website

3. Start and go through the sign-up wizard (3 steps)

4. Visit their own guest invite page (called the trampoline)

5. Install their app, as a guest would after a booking

6. Visit the admin portal using a link of the sign-up email

7. Click through the admin portal welcome wizard (4 steps)

8. Use the product: invite guest, add content, etcetera

Figure 12 shows the complete funnel as used by Staying.

One of the first challenges for this funnel was tracking the user from the start

63

to the end. At the start the user is identified by their email address. After that
the sign-up is started, which uses a random id assigned to the current session.
When the sign-up is done a user and venue number will be known, these can be
used for further tracking. All of these different identifications of the same user
that is going through the signup of a property for Staying need to be linked
together. The task of Staying is that when switching to another identifier it
needs to be logged at least once with the previous identifier, which allows for
combining them. The funnel system handles tracking the different identifiers
through the funnel together, effectively combining their paths.

This funnel helps Staying to track the effectiveness of the marketing emails to
properties. The goal of Staying is to get active properties on the platform to
get feedback on the product. To reach this goal all the steps of this funnel need
to be completed by properties. Writing down the complete process as a funnel
helped Staying to improve the process. Even though the funnel is still really
long, a couple of steps have been scrapped or made a lot easier after Staying
saw that a log of people were lost at that step.

Context information as notes in the funnel have been helpful, Staying for ex-
ample saw that which link people clicked in the email did not matter for the
percentage that actually signs up. Another thing Staying found out is that a
surprisingly high percentage uses a mobile device to start the signup, which
encouraged Staying to improve the mobile signup.

The funnel has a couple of filters. First there are options to filter by email
language and country of the property. These allow Staying to compare results
between target countries, since properties of certain countries will react in a
different way to marketing. Staying also tried different email content, which
can be filtered on. After the first marketing email Staying will send follow up
emails, which can also be filtered on.

Staying has used this funnel to improve the sign up process of new properties.
When the designer Agustina wrote down the complete process on post-its on
a wall, it became clear that there were a lot of steps. After implementing the
funnel into the system, the numbers showed the most critical steps of the pro-
cess. Staying has shortened the process, eliminating as much steps as possible.
Another improvement they made is automatically filling in forms, so that the
new potential user only needs to click continue. After this improvement, users
will continue around 98% of the time in these steps.

64

Figure 12: Property invite funnel as used by Staying

65

Guest invite funnel
The second main funnel for Staying is inviting guests for installing the app of a
property. This process contains the following steps:

1. Booking added by a property owner

2. Invites sent out by email and/or sms (with delivery tracking)

3. Guest visits the trampoline (showcase of the app, with install links)

4. Guest installs the app

5. Guest views content, uses the chat, etcetera

Figure 13 shows the complete funnel as used by Staying.

Tracking is easier for this funnel, since right at the start a stay identifier is cre-
ated, which is used through the complete funnel. It does contain a split/merge
for inviting the guest, after creating a ’stay’ the guest invited by email and sms
(if both filled in by the property). These invites are both tracked for delivery,
and are displayed next to each other.

After the invite the guest will visit the website and possibly install the app. In
the app the guest can do multiple things, currently viewing content and using
the chat are displayed in the funnel, which are the most important actions.

Staying used this funnel to improve the app install rates. Problems with email
and SMS invite delivery were found and fixed. Also improvements were made
to automatically add the stay of the user to the app, instead of letting them
enter a code, to prevent them stopping at that stage (users would need to go
back to the invite to find the code).

66

Figure 13: Guest invite funnel as used by Staying

67

Email delivery funnel
A more generic funnel is the one for email delivery. This funnel contains the
following steps:

1. Email sent

2. Email delivered (confirmed by the provider)

3. Email read

4. Clicked a link in the email

Figure 14 shows the complete funnel as used by Staying.

This funnel was created after Staying discovered a part of the emails they are
sending are ending up in spam folders. Because the email provider used by
Staying (mailgun10) gives feedback about undelivered emails, it is possible to
track if emails are getting lost. After some improvements to the emails Staying
is sending, and using a separate domain for marketing email, the percentage of
delivered emails is around 98%.

With this funnel Staying also found out that a percentage of users click on links
in emails, while the email has not been marked as read yet. This means that
sometimes read tracking does not work, for example if images in emails are not
displayed to the user.

The funnel has a filter for a venue, a user and the email template. The email
template allows you to select an email from a list of options, like guest invite,
unread messages etcetera.

10https://mailgun.com/

68

https://mailgun.com/

Figure 14: Email delivery funnel as used by Staying

SMS delivery funnel
This funnel tracks if SMS messages are delivered correctly, this funnel contains
the following steps:

1. SMS sent

2. Message confirmed by the provider (Twilio11)

3. Delivery confirmed by the provider

Figure 15 shows the complete funnel as used by Staying.

This funnel gives insight into how many messages are sent are properly deliv-
ered. It is often the case that phone number are entered wrongly, causing the
message to get lost. With this funnel a couple of improvements to phone number
handling have been made, for example stripping all non-number characters, so
that entering spaces/dashes/braces does not cause the message to get lost. Even
with these changes a percentage of the message still gets lost because of phones
that are off, or providers that fail to deliver the message for other reasons.

11https://twilio.com

69

https://twilio.com

Staying also found out because of this funnel that sending messages to certain
countries only works if a number from that same country is used, which helped
to improve the delivery percentages.

Figure 15: SMS delivery funnel as used by Staying

6.3 Funnel display evaluation

As with the implementation of funnels, displaying them also has some trade-
offs. As explained previously, funnels could in theory be full graphs. Although
there are enough algorithms to layout and display graphs, it is not user friendly
for a company that wants to read statistics about how many users read their
newsletter. For the implementation splits and merges have been implemented,
but not a full graph.

6.3.1 Testing in practice at Staying

As soon as a first version of the funnel display was working, it was shown on the
admin dashboard Staying uses for statistics and support information. This has
been done to immediately start testing how the employees of Staying use the

70

funnel interface. Staying has four employees, with different levels of technical
knowledge, as described below:

• Geert-Jan:

– Developer and business, has knowledge about databases, PHP pro-
grams, frontends and event systems in particular

– Uses the funnels for evaluating how the company is doing and to steer
development

• Emiel:

– Developer, has knowledge about databases, back-end and front-end
development, and user experience

– Uses the funnels to identify the steps to improve and spot problems
in the product

• Agustina:

– Designer, has knowledge about designing and user experience, has no
technical knowledge about funnels

– Uses the funnels for determining problems in the process the property
owners and hotel guests go through

• Hugo:

– Marketing and support, has knowledge about approaching new cus-
tomers, dealing with feedback and identifying (user-experience) issues
in the product

– Uses the funnels to determine how well the invites of a property are
going, giving feedback to them and identifying problems in the user
experience

These employees of Staying all gave feedback about the interface and function-
ality of the funnels during the project. They have shown which information in
the funnel is the most important, which in turn has been made more prominent
in the interface. The notes functionality, and its different types are directly
because of their feedback. For example, the effectiveness of SMS messages was
low, leading to the demand of a graph displaying delivery times (number of
seconds on the x-axis, number of messages that took that long to deliver on the
y-axis). This graph in turn lead to adding some extra local phone numbers to
send SMS messages from, which lowered the delivery time.

Currently the employees of Staying are happy with the funnels and the infor-
mation they provide. The funnels have been crucial to determine the course of
the company.

6.3.2 Basic statistics display

The most important statistics of a funnel are how many users made it to each
step, which are displayed prominently in the implemented display. The next
important thing is how many users continued, stopped and rejoined in each step
(with percentages). This is displayed clearly using green arrows for continued,
red for stopped and orange arrows for rejoined. Such a visual display is a

71

good choice, and except for the ”rejoined” statistic users seem to understand it
immediately. The rejoined statistic is harder to explain, and there is no good
way to visually display it to be clear. So it seems like the current display is as
good as it can get.

6.3.3 Splits and merges display

Displaying splits and merges clearly is important because if read incorrectly the
user might overlook an alternative path and think that not much users make it,
while in fact they just took an alternative path. Currently if the funnel splits it
simply displays multiple funnels next to each other, which makes it clear they
happen at once. Another option would be to display only one of the paths, and
offer some kind of selection box to display the others. This would complicate
the interface though and I expect that the other tracks would most likely be
missed completely by the user reading the results in that case (considering that
horizontal scrollbars on the web are not common). That is is why displaying the
next to each other (possibly with a horizontal scroll bar, depending on screen
size and the number of tracks) has been chosen. Displaying the merge clearly is
also important, because it shows that the users got together in this step, so the
statistics are again for the complete user group.

The split funnel display is not perfect, if the parallel tracks have a different
length the shorter path does not reach until the merge bar. This might be
solved with some long-stretched arrows that connect the two, so that it clearly
displays the flow of users.

The merge/split mechanics have been implemented when at Staying I found out
that funnels with a single path are not enough anymore. At some point I started
making separate funnels for different invite flows, which all have the same first
and last steps, which inspired the merge/split mechanics. This expands the
simplified sequential funnels and gives more options to track users, which has
proven to be useful at Staying. For example when inviting guests to install
the app they are invited by email and sms, which is a perfect use case for this
feature.

6.3.4 Notes display

Notes are displayed as one normal size text, a bit smaller than the results of
the step itself, with optionally a secondary small text line (used for details
about the statistic, like how it is calculated or since when it is valid). The
fact that the notes are smaller than the step they belong to makes them less
visually important, which is the desired effect. This does however mean that
notes with bigger pieces of information like tables and charts do not fit. To
solve this collapsible notes are used, which show one line by default to indicate
what they contain, and expand when clicked. Figure 11 shows a step in blue,
a collapsed note below it, and an expanded note at the bottom. Not all users
initially found out that notes could be expanded, so this could be improved with
arrows to indicate they can be expanded. Notes do however already change the
cursor to a hand, indicating they can be clicked, which provides a good hint
that something will happen when clicked.

72

6.4 Performance and scalability

This section describes the expected and realistic performance and scalability
that the system has, and discusses ways to improve in the future.

6.4.1 Scaling

The intent of the project was to create the system while ensuring it can scale to
a huge (Booking.com-scale) size. A couple of aspects of scaling will be discussed
below to show how the system handles them, and what limits can be expected.
It is however impossible to know for sure that the system can actually scale to
a huge scale, because there will always be unforeseen issues when putting a way
higher load onto a system. Even the government systems in The Netherlands
often have trouble handling a high load, which shows that scaling is not a
completely solved problem, and will always play a role when upgrading and
maintaining systems.

Scaling in terms of processing power and storage can be done by adding more
worker servers to the database. Depending on the way the database has
been created the time this takes to do differs. For a Citus Cloud database
it is a couple of clicks in a web interface to add servers. For a CloudForma-
tion setup the ’AutoScaling’ group can be changed to spin up extra servers,
which still need to be manually added to the master with an SQL command
(this could be automated with a small effort though). For a manual installa-
tion it depends on how the setup works, it could be simply running another
machine and placing a certain image on it with all required software, or a
server might need to be installed from scratch. After new servers have been
added, they still do not contain any data. To change that the shards of the
database need to be rebalanced, for that there is an automatic command
SELECT rebalance table shards(’distributed table name’);. This command
redistributes the shards, so that each server has a similar load.

A typical scaling problem is that certain tenants are a lot larger than the others,
for example a large customer with a lot more traffic. This could cause certain
workers be overloaded, while others are mostly idle. To solve this problem Citus
allows to isolate a tenant to its own server, which solves this problem. The
procedure to do this isolation is documented in the documentation of Citus12.

6.4.2 Query performance

Query performance of a database is always an interesting measurement, but
doing a raw performance benchmark of a database does not suite this research
project. The performance of PostgreSQL has been benchmarked countless of
times, for a lot of different use cases, so I don’t think doing a benchmark would
contribute much in that regard. There is however enough to be said about the
expected performance of queries.

A couple of scenario’s can happen with a CitusData setup. The first is that a
query hits a single tenant, which results in execution on a single server, resulting
in a speed like in PostgreSQL (with exception of the added latency by the
master → worker → master communication). A second scenario is that the

12https://docs.citusdata.com/en/v7.1/admin_guide/cluster_management.html#

tenant-isolation

73

https://docs.citusdata.com/en/v7.1/admin_guide/cluster_management.html#tenant-isolation
https://docs.citusdata.com/en/v7.1/admin_guide/cluster_management.html#tenant-isolation

query hits multiple workers, but the query is grouped by the tenant. This would
hit all servers, which calculate a result, which is then combined at the master.
This scenario scales the query nicely, since adding more tenants and servers
would lead roughly the same performance since the query scales correctly. A
last scenario is when a query does not scale nicely among tenants, which will
cause high network load to calculate the results, this scenario is expected to be
a lot slower. For the questions defined in the requirements the third scenario
has not been hit, so that is at least an indication that often a good scaling query
can be used to get the results.

6.4.3 Funnel performance

For the funnels there are two implementations. First the performance of the
funnels in general are discussed, after which the good and bad performance of
the two implementations will be discussed. Generally speaking the performance
of calculating the funnel depends a lot of the first couple of steps. It is often the
case that each step reduces the results a lot, sometimes even by 80%. Also the
filters applied to the first step of the funnel influence the performance a lot. If
the time period looked at by the funnel is small, only a small slice of the data
needs to queried. It is especially important to have a good index on the time
of analytics events, since that will make filtering data in a time restricted query
quick. Following steps are mainly limited by the identifiers that resulted from
the first step, which can greatly benefit from an index on the field that holds
the identifier. For example when querying email identifiers, an index on that
can make filtering following steps a significantly better.

Now on to the first implementation, which was proves to have trouble with
scaling. This implementation normally worked within a second with thousand
or less identifiers in the first step. However when moving to 10000 or more
identifiers in the first step the performance got worse linearly. This is caused
by the insertion of all identifiers into the query itself, which is unable to use
indexes defined for that identifier on the table. This leads to sequential scans
through the data, which will scale badly when the time period or number of
events in the usage data increases.

The second implementation solves the problems of the first implementation by
putting the identifiers into a (temporary) table instead of inserting them back
into the query for the next step. This ensures indexes can be used correctly and
prevents transferring the identifiers back and forth between the database and
application. Creating temporary tables with a lot of rows could get problematic
at some point, but generally speaking these can easily expand to millions of
entries. The important factor for these tables are to keep them in RAM, be-
cause disk performance is a lot worse. So if the system has sufficient ram these
temporary tables will not cause problems for a long time.

While the second implementation improves the scalability of the funnels by a
lot, it does not makes them ’infinitely’ scalable. To achieve better scalability
a streaming solution could be implemented, which could even be made real-
time. This is however outside of the scope of this research project and could be
investigated in a future project.

74

7 Discussion

In this chapter the results of this project are presented and related work is
highlighted.

7.1 Results

With this research project a solution is presented to combine usage and profile
data to analyze applications of companies. The solution contains a database
setup guide to bring the usage and profile data into a single system, a structured
format for analytics events to make them suitable for analyzing, and a funnel
implementation to show how to use this setup. For each of these aspects the
design decisions have been documented with possible alternatives, so that they
can be made suitable for a lot of companies. Next to designing and describing
this system it has been tested with the company Staying to find out how it
performs and which aspects can be improved. A list of improvements has already
been made during the project, and the list of features and improvements that
can still be done are documented below in the future work section.

7.2 Related work

[22] describes how data could be made immutable to keep history of all data
and be able to recover values for any point in time. This principle will be
required for profile data storage to combine it with usage data retrospectively
without introducing errors. The paper [20] describes immutability in a more
practical sense and provides ideas for implementing it into a database system.
This principle can for example be used in HBase, which can store historic copies
of column values (Google uses for webpage indexing and Maps).

The paper ”Models and issues in data stream systems” [17] explains the fun-
damental problems for processing stream data and proposes query languages to
process stream data and produce results on the fly. These kind of techniques
are relevant for real-time processing that analytics systems do.

75

8 Conclusion

In this chapter the research questions will be answered, the limitations of the
solution will be shown, the research domain and practical value outlined and
the improvements that can be made in the future are listed.

8.1 Answers of the research questions

Now that the system is implemented and evaluated the research questions can
be answered.

The main question asks how usage and profile data of a software product can be
used more effectively for improving the usability of the product. The direction
this research chose is to combine usage and profile data on-the-fly, so that a
larger portion of the possible questions a company has about their product can
be answered immediately. Retrospectively combining usage and profile data has
been solved quite easily, using existing database techniques. To answer the first
sub question about how effective combining the usage and profile data is for
answering analytics questions, this has proven to help a lot for Staying. It has
enabled the company to answer more advanced questions without additional
waiting time caused by the need to change the usage data collection software.
Other companies will most likely have similar types of questions that can be
solved with this combination of both data sources.

The most important improvement for using tracking and profile data more ef-
fectively is building and visualizing funnels. The second sub question asks how
business processes can be tracked and visualized in a funnel. For building a fun-
nel first all steps of the business process need need to be written down. After
that for each step the company needs to determine what counts as completing
the step. Next to that the company can write down the important context infor-
mation it would like to have for each step, to further determine which user types
have continued or stopped there. After that a funnel needs to be defined with
code, translating the process description into SQL queries that get the required
data from the database (combining usage and profile data where necessary).
After that the system visualizes the results of the funnel with a clear interface,
showing the flow of users through the process, indicating where they stopped
and continued.

8.2 Limitations of the solution

As with any system, there are some limitations that come with this solution.
Below a couple of the most important limitations are shown.

The extension CitusData allows the database to scale to multiple servers, but
also has its limitations. Citus cannot use the full SQL language, since some
concepts do not work correctly when the data is divided among multiple servers.
One limitation is that a Cartesian product is not supported, so joining the events
table with itself without grouping or limiting it to the tenant column is not
allowed. Since most of the time the tenant column will be used, this limitation
does not often impact the usage of the system. There are also some workarounds
listed in the Citus documentation, which helps to work around it. Sharding in

76

Citus also has some consequences, for example if certain events do not have the
tenant column they cannot be placed anywhere, therefore it is hard to store and
use.

There are also scaling limitations in the system. Generally speaking this
database system needs a master node that is more powerful than an individual
worker (about 3-4 times as shown in the insert benchmarks of Citus). This
causes that the master node is the first to be problematic in terms of scaling.
However as shown in the system validation chapter the system can support
high loads already with some simple servers. The master node also takes in all
traffic, routing it to the workers, so this means the network link of the master
determines the maximum throughput. When using (multiple) fiber connections
this does not need to be a bottleneck for most companies, assuming the Citus
database is used for relational data and not for image or video storage (for
which far better solutions exist). Another scaling limitation is that a single
tenant cannot be split into multiple parts. This means that if one customer
is a lot bigger than others, the best the company can do is isolate it to its
own server. This separate server could however be made more powerful than a
standard worker to handle the load, so that is a nice option Citus offers.

To apply this solution to existing companies there are a couple of steps to
take, which influences how easily this solution can be retrofitted. The analytics
database could simply be next to their current solution, and applications that
generate events could be update to use the new analytics one by one. This
could be a big operation depending on the number of applications and how they
are deployed, but generally this should be possible. An option here is to parse
the old analytics generation by an application and transform it to a new style
event to insert it. The profile data is harder to import, since the requirement
that it needs to be relational (or something that can be mapped to that). This
solution also assumes there is a clear tenant in the application that it is applied
to, which might not always exist.

The current system does not implement a history for profile data. This means
that combining usage data with profile data will use the latest version this data,
instead of the data that was there when the usage event was generated. This
could lead to a skew in the results, but in practice this aspect turned out to
be insignificant. In some cases combining the usage event with an up-to-date
version of the profile data even works out better. For example when grouping
results about users by their language, it is better to combine it with the users
record where the language has been filled in later, than with the initial one that
has no or the default language. This is however a concern that the company
should take into account. It can be solved by storing old versions of the profile
data and combining with the correct version. This does however complicate the
system and increase profile data storage demands.

8.3 Research value and practical value

The research value of this research is in the experience with combining two data
sources and making sure there is a good connection. There is also value in the
analytics domain about structuring data, while making sure the structure does
not limit the options of a company to collect anything they need. In the field of
extracting statistics from a system and displaying them a lot has been learned.

77

One lesson learned is that usage data will always change and expand. This
means that the storage solution for usage data needs to have flexible data format,
that allows to add extra fields into the usage data. Another lesson learned
is that classifying usage data is very useful for answering analytics questions
and building funnels. Without classification of usage events, it is not possible
to effectively filter and group the data, meaning certain questions cannot be
answered.

During the case study at Staying it became even more clear that analytics
questions companies have about their products are unpredictable. This fact
needs to be taken into account during the design of the usage data storage. This
is another reason for proper structure and classification of usage data events,
which helps a lot when a new question by a company is about a data type that
has not been used before. There is still a chance that the already stored usage
data is not sufficient, but the chance will be lowered significantly.

A lot has been learned about funnels, in the area of collecting the required data
and in the visualization domain. For collecting the right data it became clear
that for properly tracking users through funnels, it is first required to be able
to uniquely identify users. For simple funnels this was not a big issue, often
there was a clear way to identify users through the complete funnel (such as an
email address for simple email tracking). However for more complicated funnels,
like the ones created for Staying, it was required to identify users with multiple
identifiers at once. For example, for the long property sign up funnel of Staying,
it is required to switch identifier a couple of times during the funnel. First they
are identified by the marketing email number, after that a session number on the
website, and at the end by the accommodation they created during the sign up.
Next to this issue, splitting and merging funnels was a problem that appeared
in practice. This has also been solved in this project, making the funnels more
versatile.

For funnel display there are a couple of interesting insights. While funnels of
other analytics tools display the steps horizontally, displaying them vertically
does not degrade readability. The vertical layout also offers better options
for displaying context information, which has proven to be quite important for
Staying. For example, the guest invite funnel of Staying became a lot more useful
for them when they could see the difference between mobile and desktop/laptop
users. It became clear that a higher percentage of mobile users stopped, which
lead to more testing of the invite flow on mobile. The result is that now the
mobile invite flow works a lot better, improving the install rate of the app (which
is an important KPI of Staying). Another lesson has been about displaying large
context information blocks. If a viewer of the funnel cannot see at least two steps
at once, it becomes a lot harder to see where users have stopped in the funnel.
So it is important that big context information blocks are collapsed by default,
so that they do not take up too much room. As last point, color and font size
has proven to be important. The size of text indicates how important it is,
together with the thickness and contrast compared to the background. This
has been used to highlight the most important numbers in the funnel, while
making context information more dim. Colors are used to indicate stopped and
continued, which helps to immediately identify ’good’ and ’bad’ paths that users
can take.

78

These insight can help future funnel building and visualization tools, ultimately
helping companies to get a better view of the processes in their product.

Staying has used the funnels build during this project a lot. The first version
were with live data directly, integrated into the admin dashboard. The results
were immediately used to steer development, streamline marketing and improve
support to users. The guest invite funnel and property invite funnel where used
to improve both of these processes. For example, reducing the number of steps
and making steps easier to understand. The guest invite funnel has been used
by support to contact properties where conversion was low. For example, some
properties had little to no content added to their app, causing guests to install
the app, but rarely use it after the first install. Next to that the email funnel
has been used to identify email delivery problems, leading to improvements to
the emails so that they have a lower chance of ending up in the spam folder.
The SMS delivery funnel showed that messages to the US and Canada were
consistently failing, which identified a crucial issue: a phone number from The
Netherlands cannot send message to these countries. This issue has been fixed
by using an additional US phone number, improving the conversion of guests in
the US and Canada.

8.4 Future work

To improve the presented solution there could be further research and develop-
ment, the directions that I deem most interesting are described below.

The current solution can only provide results for a certain time period, and
generates these results on each request. It would be interesting to investigate
the possibility to build a real-time funnel. This would mean that an addition
needs to be made to process incoming events directly, and that the interface
needs to be adapted so that it can be updated immediately. Emiel from Staying
already experimented with some techniques in PostgreSQL that could form the
basis for a real-time system. He proposed to define aggregate functions on the
events table that return which steps a certain user (or other identifier) has
made, which could be reprocessed when a new event comes in that matches this
identifier. For updating the interface in real-time there are plenty of options,
for example a backend that accepts a websocket, with a reactive front-end that
connects to that backend.

Instead of the current funnels that are sequential with the addition of split/merge
semantics a full graph solution could also be implemented. This would give
some challenges in tracking all paths and displaying them properly (maybe
smartly hiding paths that are not useful).

Another possibility is to do more performance testing and benchmarking with
the system to see how it performs under different circumstances. This could
mean applying it to another company to find out how the system would work
there and to see which adaptations need to be made to build the system to the
companies needs.

79

9 Acknowledgments

I want to thank Marten van Sinderen from the University of Twente for the
feedback, support and critical questions during the complete project. Thank
you Arend Rensink from the University of Twente for providing your viewpoint
of my project and learning me to clearly explain the project. Next I want to
thank Staying for the great opportunity to do this project with them, in the
center of Amsterdam. Thanks Emiel Mols and Geert-Jan Bruinsma of Staying
for the technical advice, feedback and support during the project. Also thanks to
Hugo and Agustina for their use of the funnels and feedback about them. Lastly,
thanks to all other people that helped me shape this project and influenced my
view during the architecture and implementation phases.

80

10 References

[1] Alexa. http://www.alexa.com/. Accessed: 6 April 2017.

[2] Amazon redshift. https://aws.amazon.com/redshift/. Accessed: 29
March 2017.

[3] Bigtable. https://en.wikipedia.org/wiki/Bigtable. Accessed: 29
March 2017.

[4] Citus (multi-server postgresql). https://github.com/citusdata/citus.
Accessed: 31 March 2017.

[5] Cloudflare scaling postgresql with citusdb. https://blog.cloudflare.

com/scaling-out-postgresql-for-cloudflare-analytics-using-

citusdb/. Accessed: 31 March 2017.

[6] Db-engines. http://db-engines.com/en/ranking. Accessed: 31 March
2017.

[7] Document-oriented database. https://en.wikipedia.org/wiki/

Document-oriented_database. Accessed: 31 March 2017.

[8] Ghostery, tracker blocking extension. https://www.ghostery.com/. Ac-
cessed: 9 October 2017.

[9] Global internet usage. https://en.wikipedia.org/wiki/Global_

Internet_usage. Accessed: 29 March 2017.

[10] Google file system. https://en.wikipedia.org/wiki/Google_File_

System. Accessed: 29 March 2017.

[11] Graph database. https://en.wikipedia.org/wiki/Graph_database.
Accessed: 31 March 2017.

[12] Key-value database. https://en.wikipedia.org/wiki/Key-value_

database. Accessed: 31 March 2017.

[13] Mysql cluster cge. https://www.mysql.com/products/cluster/. Ac-
cessed: 31 March 2017.

[14] Relational database management system. https://en.wikipedia.org/

wiki/Relational_database_management_system. Accessed: 31 March
2017.

[15] Usage of traffic analysis tools for websites. https://w3techs.com/

technologies/overview/traffic_analysis/all. Accessed: 6 April
2017.

[16] Wide column store. https://en.wikipedia.org/wiki/Wide_column_

store. Accessed: 31 March 2017.

[17] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 1–16. ACM, 2002.

81

http://www.alexa.com/
https://aws.amazon.com/redshift/
https://en.wikipedia.org/wiki/Bigtable
https://github.com/citusdata/citus
https://blog.cloudflare.com/scaling-out-postgresql-for-cloudflare-analytics-using-citusdb/
https://blog.cloudflare.com/scaling-out-postgresql-for-cloudflare-analytics-using-citusdb/
https://blog.cloudflare.com/scaling-out-postgresql-for-cloudflare-analytics-using-citusdb/
http://db-engines.com/en/ranking
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
https://www.ghostery.com/
https://en.wikipedia.org/wiki/Global_Internet_usage
https://en.wikipedia.org/wiki/Global_Internet_usage
https://en.wikipedia.org/wiki/Google_File_System
https://en.wikipedia.org/wiki/Google_File_System
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Key-value_database
https://www.mysql.com/products/cluster/
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://w3techs.com/technologies/overview/traffic_analysis/all
https://w3techs.com/technologies/overview/traffic_analysis/all
https://en.wikipedia.org/wiki/Wide_column_store
https://en.wikipedia.org/wiki/Wide_column_store

[18] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre. User tracking on the
web via cross-browser fingerprinting. In Nordic Conference on Secure IT
Systems, pages 31–46. Springer, 2011.

[19] K. Choroś. Further tests with click, block, and heat maps applied to web-
site evaluations. Computational Collective Intelligence. Technologies and
Applications, pages 415–424, 2011.

[20] P. Dadam, V. Y. Lum, and H. Werner. Integration of time versions into a
relational database system. In VLDB, volume 84, page 509522, 1984.

[21] W. Fang. Using google analytics for improving library website content and
design: A case study. 2007.

[22] P. Helland. Immutability changes everything. Queue, 13(9):40, 2015.

[23] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. Internet jones and the
raiders of the lost trackers: An archaeological study of web tracking from
1996 to 2016. In 25th USENIX Security Symposium (USENIX Security
16). USENIX Association, 2016.

[24] A. Moniruzzaman and S. A. Hossain. Nosql database: New era of databases
for big data analytics-classification, characteristics and comparison. arXiv
preprint arXiv:1307.0191, 2013.

[25] H. Pakkala, K. Presser, and T. Christensen. Using google analytics to mea-
sure visitor statistics: The case of food composition websites. International
Journal of Information Management, 32(6):504–512, 2012.

[26] B. Plaza. Google analytics for measuring website performance. Tourism
Management, 32(3):477–481, 2011.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed
file system. In Mass storage systems and technologies (MSST), 2010 IEEE
26th symposium on, pages 1–10. IEEE, 2010.

[28] R. Upathilake, Y. Li, and A. Matrawy. A classification of web browser
fingerprinting techniques. In New Technologies, Mobility and Security
(NTMS), 2015 7th International Conference on, pages 1–5. IEEE, 2015.

82

Appendices

A Analytics tools features

This chapter which types of analytics tools are available, which features they
offer and how they are organized technically.

A.1 Analytics tools selection

To find out the software architecture of commonly used analytics tools, it is
important to first know which analytics tools are used most. Based on the
market share calculated by W3Techs [15] (which is based on the trackers used
by the top 10 million websites determined by Alex [1]) the tools below have
been selected. Next to that some tools I encountered in practice have been
added (like Amplitude used by Happening13 and Heap suggested by Emiel Mols
from Staying). The list of tools is by no means exhaustive, but does represent a
significant market share of used analytics tools and should give a good picture
about common features.

A.2 Investigated analytics tools

Table 2 shows the analytics tools that have been investigated, with their most
relevant properties. The application and app types the tool can track are listed
to ensure compatibility with Staying. The used database implementation is
shown (when known) to use for the architecture.

Table 2: Analytics Tools

Name Platforms Storage Remarks
Google
Analytics

Tracking of websites, iOS
apps, Android apps and
custom applications.

Stored in
BigTable [3]
on Google File
System [10].

Yandex
Metrica

Tracking of websites and
iOS, Android, Windows
and Unity apps.

Unknown Compatible with
Google Analytics
clients.

Amplitude Tracking of websites, iOS
apps and Android apps.

Stored on
Amazon
RedShift [2].

MixPanel Tracking of websites, iOS
apps, Android apps and
custom applications.

Unknown

Heap Tracking of websites and
iOS apps.

Stored on
Amazon
RedShift [2].

Collects all
user interaction,
define events.
retroactively.

The following sections will look at the features these tools offer, the data they
store and the software architecture. These aspects are most important since

13https://happening.im

83

https://analytics.google.com/
https://analytics.google.com/
https://metrica.yandex.com
https://metrica.yandex.com
https://amplitude.com
https://mixpanel.com
https://heapanalytics.com
https://happening.im

combining the usage and profile data requires us to know what will be combined
and how this could be achieved technically.

A.3 Analytics tools concepts and features

In this section relevant analytics definitions are explained, which are related to
the features offered by the investigated tools.

Events, sessions and users: On a low level events are collected, which rep-
resent a single action performed by the user on the website or app. These
events identify what happened and provide context information to give more
detail about the why, where, when and how. Events are grouped into sessions,
which are collections of events that happened short by each other by a certain
user/device. Other actions like killing an app or leaving a website can also close
sessions.

• Event: opening a page (also called pageview or hit), clicking a button, etc.

• Session: aggregation of all events by a certain user that happened close to
each other in time.

• User: individual person recognized by a login (unique identifier for a user,
like a user id, username or email) or device (if the website does not use
logins or the user did not create an account yet).

Figure 16: Users, sessions and pageviews

These events, sessions and users are to provide charts with the number of events
per time period, number of users visiting per time period and statistics like
returning versus new users.

User data: Details about a user to user for filtering of results.

• Age (approximated or indicated)

• Gender (guessed or indicated)

• Location (based on ip address)

• Language

• Device information:

– Device type: desktop/laptop/mobile/tablet

– Screen resolution

– Screen size

– Operating system (including version)

– Browser

Segments: Subsets of the user data. Segments are defined using the informa-
tion available about users, sessions and events. For example a segment could

84

be created for users with a paid subscription. For these users different statistics
might need to be tracked than for free users and they probably have different
behavior (accessing paid-only features on the website/app).

Analytic tools offer extensive segmenting options for all graphs and statistics, to
allow companies to view this information for a certain audience. This audience
segmentation could for example be based on the purchases the user made in the
application, subscription they have or location.

Funnels: Flows defined by the user of the analytics tool to analyze a certain
row of actions in the website/app. For example a flow to track the signup
process consisting of entering email/password, adding an avatar and start using
o. After this flow it could continue by checking how many of these people
perform another action based on if they uploaded an avatar.

All of the listed tools offer functionality that allows tracking funnels. This means
defining the steps of the funnel, after which the number of users entering the
funnel, users completing the funnel and users that stopped can be seen.

A/B testing: Tracking the reaction to two or more different versions of a
website, to find which version works better. For example letting the user enter
the password once or twice during signup, to see in which situation more people
continue.

The analytics tools can show statistics based on segments as described above,
which can also be used to show statistics for users that are in a certain A/B
testing group, so that a comparison between the versions can be made.

User tracking: To track users the analytics system needs to know their iden-
tity. This is often achieved by sending a user id of some sort along with the
usage data. This does not cover all cases though, for example during the signup
process the user id is not yet known, since it is not yet created. Therefore an-
alytics tools often use other heuristics to combine data for a user. This could
be using ip address, device details (brand, model, supported technologies) or
other information. In this area there a lot of research, on the fingerprinting
side and also on the prevention side. Paper [28] classifies different techniques
to fingerprint users and [18] describes how users can be tracked even when they
use different browsers. Using these techniques users could be tracked from the
initial visit of the website of the company, through the sign up form to the
analytics produced after they have a user id.

85

B Analytics system internals

B.1 Requirements

Now that the data analytics tools collect and store is known, the software ar-
chitecture of these tools is investigated. The main requirements for an analytics
system are based on the important features and technical details of existing
systems. These requirements will stay relevant when designing the system that
will combine the usage and profile data. The requirements are listed below,
along with the reasons they are relevant.

R1: Technology independent event source: support websites, apps and
if possibly anything else that can send data using HTTP (for example
backend servers that run the application and report status information
and errors/warnings).
Required because companies want to track all facets of the application,
therefore it should be possible to collect information from all sources. Now
could the company use multiple analytics solutions, but generally having a
single one is preferred (less dependencies, can combine data from different
sources, less maintenance and education cost).

R2: Scalable event intake: Should be able to handle a big number of events
to support tracking big websites and apps.
Required to make the tool usable with a large number of clients, supporting
big apps and websites.

R3: Scalable storage: Store a huge amount of data (multiple servers and
data centers).
Ensures that storage is ’infinitely’ scalable and all events from the past can
be kept for later analysis.

R4: Real time filtering and analysis: Process incoming events directly, for
example monitoring errors.
Facilitates real-time results from the incoming events, for example notifi-
cation when errors occur.

R5: Historic data analysis: Process a subset of events, selected by time
and/or contents.
Ensures that there is an efficient way to analyze saved events, for example
to generate usage charts for the last month or year.

R6: Result export: Exporting and saving the results of real-time and historic
processing.
Required to be able to use the results in a meaningfull way, like showing
them on a website.

Now that the most important requirements are known an abstract system ar-
chitecture of an analytics tool will be created in the next section.

B.2 System architecture

Keeping in mind the requirements of the previous section an abstract system
architecture has been created, visualized in Figure 17. This architecture shows
what kind of system most companies that use analytics have, either as in-house

86

solution or provided by one of the companies investigated in Chapter A.2. Hav-
ing a clear idea how an analytics tool is organized technically is critical for
developing a solution that can combine the usage and profile data, because now
I can ensure the requirements of an analytics tool are still met in the final sys-
tem. The architecture starts at the top where the events are generated, after
which they are stored, processed by a real-time filter or historic scanner, and in
the end results (reports, charts, etc.) are stored. Below these components are
explained in detail.

Figure 17: Event collection and processing system

B.2.1 Input

At the top Figure 17 starts with the input. These are the applications like
websites, apps and servers that generate events. Apps can send data about
its usage (startup, screen views, encountered problems), a web server can send
data about its operation (response time, uptime, encountered problems) and a
notification server can track notification usage (sent, read, discarded, unable to
send). Data from these different sources should have some common properties,
like the source and time of the event. But all other data depends on the context
and should be flexible. For example a web server should report its name, ip

87

address and data center, while apps should report the logged in user, device
type (brand, model, size, etc.) and currently visible screen. This part fulfills
R1.

B.2.2 Storage

After events are generated by a server or client, they need to be stored. The
pictured load balancer is there to spread the intake on these servers and data
centers, fulfilling R2. After the load balancer a database needs to store the
events, for this there are many options. Below are the most used database
implementations listed per type, based on current popularity of them calculated
by DB-engines [6] and a comparison of NoSQL databases [24].

Relational [14]: Oracle, MySQL, Microsoft SQL Server, PostgreSQL, DB2,
Microsoft Access, SQLite, RedShift (Amazon), MariaDB, Teradata.

Key-value stores [12]: Redis, Memcached, Riak, Voldemort (LinkedIn),
BerkeleyDB (Oracle).

Document databases [7]: MongoDB (BSON), Dynamo (Amazon), Couch-
base, CouchDB (JSON).

Wide column stores [16]: Bigtable (Google), Hypertable, Cassandra (Face-
book; used by Digg, Twitter); SimpleDB (Amazon), DynamoDB (Amazon),
HBase (by Apache).

Graph databases [11]: Neo4j, InfoGrid, Sones GraphDB, AllegroGraph,
InfiniteGraph.

Not all of these databases are suitable for analytics evens storage. For ex-
ample Memcached and Redis only store data in-memory, which will not work
because of the required persistence and capacity. Graph databases also seem
unsuitable, since event storage has no strong need for relationships and therefore
does not fit the purpose of these databases. Some databases do not scale to mul-
tiple servers and/or data centers (as required by R3). Examples are MySQL
(needs MySQL Cluster [13]), SQLite (limited to a single file), PostgreSQL
(needs something like CitusDB [4], as used by CloudFlare [5]).

B.2.3 Analysis

Now that events are stored they can be analyzed. There are two main aspects
in event processing, doing it real-time as the events come in, and processing
historic data. For real-time processing it makes sense to put a filter at the event
storage intake, which forwards relevant events to an application that processes
them. This could for example be used for monitoring the number of errors that
come from the web server, to send email notifications if there are more than X
per hour. This system implements R4.

Historic processing could be monthly app usage reports, long-term usage statis-
tics or results of A/B testing. This can be organized by searching through all
events within a certain time period (assuming events can easily be filtered by
time, which makes sense for analytics systems). This processing does not need
to be very quick, but does need to be scalable to for example be able to generate
yearly reports. R5 is implemented with this system.

88

In this project the focus will be on historic data processing to limit the scope
of the project. Real-time is kept in mind as future feature in the design of the
system, but will not be tested and benchmarked.

89

C Staying analytics solution

In this appendix the analytics solution Staying currenlty uses is described, to
get an idea what the starting situation of Staying is.

C.1 Architecture

Figure 18: Staying analytics overview

First an event is generated in one of the applications, as seen at the top of
Figure 18, an event is a piece of JSON data containing information about what
happened. The website backend events are generated by the web server when the
web page is requested, the website frontend events are generated in JavaScript
at the device of the visitor. The portal events are generated in JavaScript and
bundled together before sending them to the backend, which will unpack them
and send them to the event collection server. There are two apps, one used
by guests to see their stays and use the chat, and one for the venue owners to
answer the chat messages. These apps are deployed on Android and iOS, and
both send bundles of events to the backend, like the portal does. The events are
send to events.staying.nl where they are collected and stored in a database.

C.2 Content

Events have a defined structure as shown in Listing 37. This structure is defined
to organize the different event types and the information they hold. The event
is a JSON object, in which at top-level there is an epoch key indicating the time
of the event.

Next there is system top-level key in the event. Inside this key there is once
again a type, which in this case indicates the application that has generated the

90

event (portal, app, backend, website, etc.). Generally each of these have an ip,
which is why the ip is stored immediately under the system key, but all other
details are in an object placed at a key which has the name of the type.

Because events will often get filtered by user and/or venue these have a place
at the top-level of the event structure. The user and venue fields contain an id
that links the event to the user and/or venue in the application database. Both
of these fields are optional, since both of them could be unknown or irrelevant.
For example events that report performance statistics of a server don’t have
either of these.

The above explained the basic event metadata, but the main content is stored
as follows. The top-level type key contains a string value indicating the type of
event. In a top-level key with the same name as the set type there is an object
with more information it. The structure of this type-specific data is also defined,
for example a request has a method and url to indicate which resource has been
retrieved or updated. Another example are the action events the portal and
apps send which have information about the user action that happened. The
action top-level key takes the same approach as the top-level, it has a type, and
a details object that uses the given type as key. This details object for example
contains the title of the button in case of of a button click and a modal title in
case of a modal open.

Listing 37: Analytics event structure rules

Rules

- ’type’ indicates that an object with that key can exist with more

information

- keys are lower case, with underscores

- derived data has a trailing underscore, all derived data can be

regenerated from non-derived data

Generic information

epoch: number # Event time (seconds since 1970)

system:

type: string # portal|app|backend|website|..., each running

application

ip: string # ip of the event sender

agent: string #

app:

agent: string

bundle_id: string

Other device information...

website:

user?: number # user id

venue?: number # venue id

stay?: number # stay id

guest?: number # guest id

Type and information for that type

type: string # action|request|email|..., object with type as key should

exist (or save as generic ’data’ key?)

91

action?:

url: string # url the portal/app is showing

type: string

client: token[0:4]

image:

url:

context...

request?:

method: string

url: string

took: number # milliseconds

status: number # HTTP status code

length: number # bytes written

cookie?: object

user_agent: "Mozilla 123"

user_agent_info_: # user agent information lookup

ua_type:

ua_name:

...more

ip: string

ip_info_: # Ip information lookup

city:

region:

isp:

referrer?: string # referrer string

email_send?:

id: string # Identifier to track this email

from:

to:

content:

email_delivered:

id: string # Same identifier as ’email_send’

email_dropped:

id: string # Same identifier as ’email_send’

email_bounced:

id: string # Same identifier as ’email_send’

email_read:

id: string # Same identifier as ’email_send’

92

	Introduction
	Research domain
	Analytics question example
	What is a funnel?
	Problem statement
	Goals
	Research questions
	Relevance
	Case study at 'Staying'
	Structure of the Staying application
	Approach
	Report structure

	Existing research and solutions
	Analytics systems
	Usage (analytics) data storage
	Profile (application) data storage
	Existing funnel visualizations
	Challenges to be solved

	System requirements
	Answer analytics questions
	Generic questions
	Questions by Staying
	Charts

	Build funnels: tracking of business processes
	Funnel features
	Funnel challenges

	Non-functional: scalability and interface

	System architecture
	Structure
	Multi-server storage
	Database technology: PostgreSQL+CitusData
	Profile data storage
	Analytics events storage
	Answering analytics questions
	Building funnels
	Required funnel data
	Funnel data format
	Multi-identifier tracking

	Visualizing funnels

	System implementation
	System environment
	Database: PostgreSQL and CitusData
	Profile data storage
	Analytics storage
	Funnels
	Funnel display
	Funnel structure
	PostgreSQL jsonb syntax
	Step-by-step funnel implementation
	In-database funnel implementation
	Real-time funnels

	System validation
	Fitness for purpose of the database
	PostgreSQL limitations
	CitusData limitations
	Retrieving events from the system
	Using the system to answer questions

	Defining funnels using the system
	Defining the funnel: builder pattern
	Flexibility and modularity
	Context information: notes
	Funnels created for Staying

	Funnel display evaluation
	Testing in practice at Staying
	Basic statistics display
	Splits and merges display
	Notes display

	Performance and scalability
	Scaling
	Query performance
	Funnel performance

	Discussion
	Results
	Related work

	Conclusion
	Answers of the research questions
	Limitations of the solution
	Research value and practical value
	Future work

	Acknowledgments
	References
	Appendices
	Analytics tools features
	Analytics tools selection
	Investigated analytics tools
	Analytics tools concepts and features

	Analytics system internals
	Requirements
	System architecture
	Input
	Storage
	Analysis

	Staying analytics solution
	Architecture
	Content

