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Abstract

Model checking is a model-based, automatic technique for the verification of finite state concurrent
systems, which systematically checks all the reachable states of a model. An prominent example
of model checking tool is Spin.

This thesis introduces the systematic state exploration tool MAJoR, which explores all reach-
able states of a model and checks them for errors, similar to Spin. Unlike Spin, MAJoR uses
a virtual machine, implemented by an interpreter. The code of the high-level language is first
translated to code of the intermediate language. This intermediate code is then executed using
the interpreter. This thesis discusses the design and implementation of the virtual machine, the
interpreter, the high-level language and the intermediate language.

Spin uses Promela as its high-level source language. The source language designed for MA-

JoR is very close to Promela. Two additional features, not present in Promela, are added
though: handshake communication with more than two processes, and pre- and post-conditions.
Both are described in detail in this thesis.
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Samenvatting

Model checking is een model-gebaseerde, automatische techniek voor de verificatie van parallelle
systemen met een eindig aantal toestanden, die systematisch alle bereikbare toestanden van een
model controlleerd op fouten. Een voorbeeld van een vooraanstaand model checking tool is Spin.

Deze thesis introduceert de systematic state exploration tool MAJoR, dat all bereikbare toes-
tanden van een model bekijkt en controleert op fouten, zoals Spin. Anders dan bij Spin, gebruikt
MAJoR een virtuele machine, die geimplementeerd is met behulp van een interpreter. De code
van de high-level taal wordt eerst vertaald naar code van een tussentaal. Deze tussentaal code
wordt dan uitgevoerd door de interpreter. Deze thesis beschouwt het ontwerp en de implementatie
van de virtuele machine, de interpreter, de high-level taal en de tussentaal.

Spin gebruikt Promela als high-level taal voor de code van een model. The high-level taal
ontworpen voor MAJoR ligt qua syntax erg dicht bij de syntax van Promela. Twee nieuwe mo-
gelijkheden, die niet mogelijk zijn in Promela, zijn echter toegevoegd: handshake communicatie
met meer dan twee processen, en pre- en post-condities. Beide worden uitvoerig behandeld in deze
thesis.
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Chapter 1

Introduction

We are getting more and more dependant on embedded systems. Hand computers, mobile phones
and high-end television sets are appearing in our everyday life in large numbers. Services such
as telebanking and teleshopping have become reality. The development of modern means of
transportation uses up 20 percent of the budget, caused by the introduction of ICT-systems. ICT-
systems have become a very important aspect of our everyday life. Because we are so dependant
on these systems, it is of great importance to the society that they are reliable and function
correctly. Apart from good performance in terms of response time and throughput, the most
important measure of quality is the absence of troublesome errors. Errors cost money, and may
even cost lives. Programming errors in the software of a television are not life threatening but
they do have considerable financial consequences for the producer. The error in the pentium chip,
in the early 90’s, caused the chip manufacturer, Intel, 475 million dollar. Not to mention a lot
of embarrassment. More troublesome is when bugs in software cause disasters where human life
may be at stake. The fatal blunders in the control software of the Ariane V, aircraft, chemical
processes or nuclear power plants are notorious. It was a software error in the computer-controlled
cancer therapy machine, Therac-25, that caused patient injury and death, due to severe radiation
overdoses.

It is of great importance to find errors in embedded software and hardware. The earlier,
the better. The cost to repair a software error in the operational phase is approximately 500
times the cost when the error is found in an earlier development phase. This has lead to the
development of improved specification methods for structured design, for example UML and the
increased use of version- and configuration-management tools. With complex systems or critical
applications, software engineers use so-called formal methods more often. Formal methods can be
thought of as the ”applied mathematics used to model and analyze ICT systems”. International
research in this area has lead to the development of promising validation techniques and accessory
software tools to detect design- and programming errors in an early stage of development. The
approaches can be split up into two categories: the deductive and model-based methods. The
first category reduces the correctness of systems to properties of a formal mathematical theory.
Tools such as a ”theorem prover” or ”proof assistants” are then used to attempt to prove these
properties. Example of leading tools in this area are PVS, Coq, HOL en Isabelle. Although
deductive methods have their successes, for example with smart-card software, the model-based
methods have generally more success. The last category will be described in more detail.

As the name suggests, model-based methods use models which describe the possible system be-
havior with mathematical precision and unambiguity. The models are accompanied by algorithms.
These algorithms systematically explore all possible states of the system behavior, using the model.
A multitude of validation techniques can be based on this model-based approach. These include a
complete exploration of the state space (model checking), experimenting with limited scenarios of
the model (simulation) or in reality (testing). Because of continuing improvements of underlying
algorithms and data structures, and the increasingly faster and cheaper computers and memory,
validation techniques that, 10 years ago, worked on simple examples, can now be run on models

10
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within reach.

1.1 Simulation

One of the most well known and most used validation technique is simulation. The tool, the
simulator, allows the user to study the system behavior. This is done by calculating, using the
model, how the system will respond to specific scenarios (stimuli). Such scenarios, which are used
as input to the simulator, can be generated by the user or by tools (such as a random scenario
generator). Simulations are often appropriate to get a first impression of the quality of the design
(prototype), but are less suited to find subtle errors, because it is impossible to simulate, or even
determine, all representative scenarios.

The number of scenarios increases very rapidly. With a mobile phone or remote-control with
only a limited number of choices for each step, say five, the number of scenarios with 20 steps is
already 5 raised to the power of 20 (approximately 100.000.000.000.000). A lot of time and money
is needed to generate and simulate all possible scenarios. That’s why, in practice, only a subset
of all possible scenarios are tested. However, this introduces the significant risk of leaving very
subtle bugs in the system. When only a limited number of scenarios are tested, the reliability of
the system is hard to quantify.

1.2 Model checking

Model checking ([17, 8, 9, 15]) is a validation method which tries to systematically find all relevant
system states, and with that all possible scenarios, with brute force. This can be used to prove
that a given system model satisfies a specific property. The challenge is, by using all means
possible, to explore an as large as possible state space. State-of-the-art model checkers, such as
spin [13, 14], manage state spaces of as much as a billion states. Using smart algorithms, an
even larger state space can be reached for specific problems. A problem with 10476 states has
been reported in literature. Typical properties which are proved using model checking are of
a functional, qualitative nature. Is the computed result correct? Can the system end up in a
deadlock (for example when two programs wait for each other and freeze the system because of
that)? Furthermore, a lot of work has been done to allow the verification of realtime properties. Is
the result result available in 20 seconds? Can a deadlock occur within one hour after a reset? Model
checking requires that the desired properties are describe precisely and unambiguous. Similarly to
the process of creating an accurate system model, this often leads to the detection of all kinds of
inconsistencies and errors in the informal documentation. It has been determined that for a part of
the ISDN user part protocol, a staggering amount of 55 percent of the original system requirements
were inconsistent. With model checking, a model specification is used, for example written in an
appropriate dialect of the programming language C or VHDL, from which all possible system states
can automatically be derived. The model checker (the tool) systematically checks every states for
the desired property. If a state has been found that which does not satisfies the desired property,
an counterexample, which contains this state can be generated which shows how an undesired
state can be reached. A simulator can then be used to simulate that scenario. The model can
then be adjusted accordingly. Model checkers have been successfully applied to a multitude of
ICT systems and applications. Deadlocks have been detected in flight-ticket-reservation systems
using the internet, problems have been found in e-commerce protocols and a number of studies of
international IEEE-standards have lead to significant modifications to the specifications.

1.3 Testing

A model specification is the first thing validation techniques such as simulation and model checking
need. This model specification is used to generate all possible system states. However, a well known
technique such as testing is also usable in situations where it is hard or even impossible to create
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a system model. Testing is the process of using a specific behavioral scenario as input for the
simulator and to check whether the system behaves accurately. An important distinction can be
made about how accessible the internal information of the system that is being tested is. Full
access (white box testing), partial access (grey box testing) or no access at all (black box testing).
The advantage of testing is that it can almost always be used. Especially on end products rather
than models. The disadvantage of testing is almost the same as with simulation. Exhaustive tests
are not possible. Similar to simulation, testing can detect the presence of errors, not the absence
of errors. Another disadvantage is that it can only be used ”late” in the development trajectory.

A disadvantage of many of the current test methods is that they are often ad-hoc and not
systematic. This make the testing process an time consuming, uncontrollable task. Especially
the manual generation and maintenance of test cases is a bottleneck. A much more systematic
approach is made possible by model based testing. Generation and execution of tests can be done
automatically. Test cases are generated from an unambiguous specification similar to the input
used for model checking. This form of systematical testing has proved itself in practical situations.
Errors have been found in software for information transfer between a TV and an VCR which could
not be found using conventional testing methods.

1.4 Goal of the project

Parser

Intermediate
Code

Input Language

Output Files

Abstract
Machine

State Explorer

Figure 1.1: MAJoR, The systematic state explorer, Components

SPIN, [13, 14, 2] is a state of the art model checking tool. The PROMELA [3] language is used
to write the models which are checked by SPIN.

The goal of the project is to design and implement a working prototype, called MAJoR, of
a systematic state explorer which can explore all states of a program and check those states for
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errors, similar to SPIN. In addition, an input language, which had to be as close to PROMELA
as possible, in which the models have to be written had to be designed, and a parser for that
language had to be implemented. The input language provides some additional features which are
not provided by PROMELA: Handshake communication using multiple (more than 2) processes
and pre- and post-conditions. Both features are described in chapter 2.

Unlike SPIN, MAJoR uses an intermediate language, which had to be designed in the project,
which is interpreted and executed by an abstract machine. The input language is first translated
to this intermediate language. This approach is based on earlier work on a model checker [12],
which also used an intermediate language and an abstract machine.

A visual explanation about how MAJoR works is depicted in figure 1.1. The input file, which
contains a model written in the input language, is parsed by the parser module. The output of
the parser module, the intermediate code is then used as input for the actual tool. The abstract
machine interprets the code and generates states. The state explorer uses the states generated
by the abstract machine to explore the complete state space, run a random simulation or run an
interactive simulation. The state explorer then returns the result in some output files. The output
files are a .cod file, which contains the code of the intermediate language and a .trc file which
contains possible errors and traces.

1.5 Layout of the report

• Chapter 2 describes the design of the source language and its additional features.

• Chapter 3 describes the abstract machine and the instructions it supports.

• Chapter 4 describes the translation of the source language to the intermediate language.

• Chapter 5 describes how the abstract machine is implemented.

• Chapter 6 describes the design and implementation of the systematic state explorer.

• Chapter 7 describes the tool MAJoR. In addition a number of detailed examples of models
are presented which are then checked by MAJoR.

• Chapter 8 presents the conclusions and recommendations, the errors which are still in MA-
JoR and possible improvement and additions.



Chapter 2

The source language

The source language is the high-level modelling language, in which the models which are to be
checked have to be written. It was decided that the language should be close to the PROMELA
(see [3]) language. The following PROMELA features are included in the language:

• The basic language structure.

– expressions & operators.

– local & global variables & assignment.

– the skip & goto commands.

– an assert statement.

• Non-determinism.

– if statements (including else).

– do statements (including else and break).

• Asynchronous communication using channels.

• Multiple processes running in parallel.

– proctypes

– Multiple instances of the same process definition

– Interleaving of processes, according to the semantics of SPIN. (proctype)

• An ”init” section where all the processes are ”started”.

• The possibility of using expressions as statements.

The following additional, non PROMELA, features are added to the source language.

• Handshakes (synchronous communication) with more than two participants

• Pre & Post conditions (Extending statements with ”before” and ”after” conditions)

• ”Real” Atomicity (The final implementation just implements PROMELA’s d step con-
struct).

14
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2.1 Basic language structure

The source language supports the use of variables. Global variables, which are accessible by all
processes, and local variables, which are only accessible by the process in which they were declared.
Variables can be assigned to, using the assignment operator (”=”).

Like PROMELA, the source language includes expressions and operators. Most C operators
are included. Expressions can also be used as statements, in which case the value of the evaluated
expression indicates whether that statement is executable(see section 2.8).

The operators that are included are:.

• arithmetic operators: addition(+), subtraction(-), multiplication(*), division(/), remain-
der(%)

• shift operators: left shift(<<), right shift(>>)

• relational operators: equal to(==), not equal to(!=), less than(<), greater than(>), greater
than or equal to(>=), less than or equal to(<=)

• logical operators: logical and(&&), logical or(||)

• bitwise operators: bitwise and(&), bitwise or(|)

To support communication, two additional operators, namely the send(!) and receive(?) operators
are included.

The source language also includes 3 simple statements, these are:

• The skip statement, which does simply nothing.

• The goto statement, which jumps to a specific location in the code.

• The assert statement, which is used to test specific conditions at runtime.

2.2 Non-determinism

Like PROMELA, the source language supports non-determinism. This is done exactly the same
as in PROMELA, using the so called if statements and do statements. See ”Dijkstra’s guarded
command language”, a language invented by Edsger Dijkstra ca. 1974. It introduced the concept
of guards and committed choice nondeterminism (don’t care nondeterminism). Described and
used in [11]

At any time, a process can have the option of ”choosing” which statement to execute next. A
choice between three statements is written as seen in figure 2.1. The IF and FI keywords can be

if

:: statement 1

:: statement 2

:: statement 3

fi

Figure 2.1: Non-determinism

replaced by DO and OD. When this is done, the statement is not only a non-deterministic choice,
but also a loop. After a choice is executed, an IF statement will resume execution at the point
after the FI, while a DO statement will resume execution just before the IF.

Non-determinism introduces two new keywords, namely else and break. The break command
can only be used inside a DO statement, and will transfer execution to the point just after the OD1.

1Together with a ’goto’, this is the only way to exit a DO statement
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The else statement is a convenient shortcut for a statement that is executable(see section 2.8)
if and only if all other choices are not executable. The else may only be used inside an IF or
DO. Note that unlike PROMELA, there are no restrictions when using the else statement. In
PROMELA, else may not be used when a communication statement is used as a possible choice.

2.3 Interleaving

It is possible to run more than one process in parallel, even to run more than one instance of the
same process in parallel. To simulate parallelism, processes will interleave. The smallest step a
process can take is to execute a single statement2. Interleaving means that when a process has
executed a statement, any available process may then execute the next statement3.

For example when process 1 can execute the series of instructions: 1, 2, 3, 4 and process 2
can execute the series: A, B, C, D, the following statement sequence could be the result: 1, A,
B, 2, C, D, 3. In general, the resulting sequence is any combination of statements as long as the
statement order per process does not change.

Definition 2.1 (Interleaving) The sequence of statements that are executed is a random com-
bination off all the statements of all processes, as long as the ordering of statements from a single
process does not change.

2.4 The Init section

Just like PROMELA, the source language has an init section where processes are instantiated
and started. But the possibilities of this init section are limited compared to PROMELA. While
PROMELA allows other statements and variable declarations inside the init section, the source
language allows only one, the run statement, which instantiates and starts a process.

Also, unlike PROMELA, the statements in the init section are treated as one big atomic
section. This implies that before other processes can start executing, the init section has finished
completely.

The reason the init section has this constraints is that it will guarantee a fixed size state
vector because the size of the state vector will be known at compile time and cannot change
during execution of the program. Would the init section not be atomic, it could be possible that
processes are started when other processes are already running. Since new processes take up space
in the state vector, the state vector would dynamically grow. This was found to be too hard to
implement, and not really necessary. Dynamic process creation is thus not allowed.

2.5 Communication

Processes need to be able to communicate with each other. Typically this is achieved by us-
ing messages which can be send and/or received by processes. Another form of communication
is process synchronization, for example one process can not continue until another process has
reached a certain point in its code. When processes are synchronizing, they in fact execute the
synchronizing statements ate the same time. These two types of communication, message passing
and synchronization, can be combined so that processes can synchronize while passing messages
to each other.

This section describes the various techniques that can be used to model this kind of commu-
nication between processes.

2What this means is that a statement will not be divided into its smaller instructions of the abstract machine.
Interleaving takes place on statement level, not on instruction level.

3Note that this also means that the last process can execute a statement again.
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2.5.1 Description

What follows is an informal description of the various communication methods. A more precise
and formal description is presented later in this chapter.

Communication using global variables

The easiest form of communication is the use of global variables. A process that wishes to send
a certain message to another process will store this message in a global variable (global variables
are accessible by all processes) and the receiving process then reads this variable.

One might argue that this is not communication between processes. This is true, but the effect
is, usually, the same and, for completeness sake, it is included here. However, care has to be taken
when using global variables especially when more than one process can write to this variable, since
another process might modify the contents of the global variable before the receiving process has
had a chance to read the global variable.

Asynchronous Communication

The second form of communication is asynchronous communication. When processes use this
communication scheme, there is always a sender process and a receiver process. The sender process
will send a message to the receiver process. What makes this communication asynchronous is the
fact that the sender will not wait until the receiver gets the message. In other words, processes
will not synchronize on this communication. It is important to note that the sending process does
not know which process will receive the message. The first process that is willing and able to
receive the message will do so. It might be the case that the message is never received.

Synchronous Communication

Synchronous communication, also called a handshake or rendez-vous, can only take place when
all participants of the communication are ready and willing to communicate. In other words, all
participants synchronize on this communication. Thus, unlike asynchronous communication, the
sending process will have to wait for the receiver. This communication scheme ensures that the
message, eventually, arrives at a receiver. If there is never a process willing to receive the message,
the sending process will wait forever (the sending process is in a deadlock4 ). Note that, also in
this type of communication, the sending process does not know beforehand which process will be
the receiver of the message if more than one process is able to communicate with the sender.

Multiway Synchronous Communication

Until now it was assumed that exactly two processes would participate in a communication, a
sending process and a receiving process. But what if multiple, i.e. more than two, processes have
to synchronize with each other?. Or a process wishes to broadcast, i.e. send a message to all other
processes?

To facilitate more than two participants in a communication a technique called multiway com-
munication is introduced, see also: [6]. Multiway communication allows an arbitrary, but fixed,
number of processes to participate in a communication.

Multiway communication can be applied to synchronous communication. However multiway
communication can get very complicated, especially multiway synchronous communication. So
very precise semantics are needed to describe multiway communication. These semantics will be
presented later in this chapter.

4Unless the process has another choice.
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2.5.2 Communication features

The following is a list of all the communication features the language supports.

1. Multiway synchronous communication (handshake) has to be supported.

2. Conditional communication has to be supported. (A communication statement can be ex-
tended with an additional boolean expression indicating whether a communication can suc-
ceed or not.) In the final implementation this is called the pre and post conditions, as
described in section 2.7.

3. The semantics of communication should be as close as possible to the semantics of commu-
nication in PROMELA.

All these features will be described in the following sections.

2.5.3 Handshake support in the source language (Design issues)

The high level language provides for specific language constructs that will allow the programmer
to use handshakes. There are two parameters that the user needs to supply. The type of the
message which will be sent/received and the number of processes participating in the handshake.

It was decided to introduce specific handshake channels to the high level language, much
like the channels used in the PROMELA language. In fact, handshake channels are almost the
same as PROMELA’s channels of length zero (which is the PROMELA way of implementing
synchronous communication between two processes). However there is one crucial difference,
handshake channels allow more than 2 processes to participate in the communication. The syntax
of a handshake declaration is given below.

HS identifier = [expression] OF {type, type, ...}

Note that this definition is identical to the normal channel definition of PROMELA (apart from
the keyword HS of course). The difference is that the value of the evaluated expression does not
denote the length of the channel but the number of processes participating in the handshake. 1

Processes that wish to communicate using the handshake method must do so using operations
on a handshake channel. There are two operators which operate on a handshake channel, a send
and a receive operator. Just as in PROMELA the notation for these operators is ’ !’ and ’?’.
Hence the syntax of a handshake communication is of the form:

identifier!expr, expr, ...

or

identifier?expr, expr, ...

where identifier is the name of the corresponding handshake channel and the various expressions
denote the message data (expressions that evaluate to a constant, or a variable reference). For
now let’s assume that the semantics of these operators are the same as the semantics of these
operators in PROMELA. Later in this chapter the exact semantics are given.

To allow conditional communication, this notation has to be extended. One could for example
use the notation:

identifier?1expr, expr, ... & bexpr

where bexpr evaluates to false(zero) or true(non-zero). This boolean then indicates whether or not
the communication can succeed.

However, a couple of problems arise when using this approach. For example consider the
following communication statement:

1An array of handshake channels can be created as well, using the same syntax as PROMELA.
1The ’?’ here is just an example, the same notation is valid for the ’ !’ operator.
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aChannel?X & X ≥ 3

The process executing this statement wants to receive a value2 and store that value in variable
X. But this communication can only succeed if X ≥ 3. Which value does the second X refer to?
There are two possibilities: it refers to the value of X before or after the communication has taken
place. The latter choice seems the most useful because one can then put additional restrictions
on the value that can be received in the communication. In this case this would mean: Only
communicate when the value that can be received is greater or equal than three.

So this problem can be solved by letting all variables in the conditional expression refer to
values of the variables after the communication has taken place. But this still doesn’t solve all the
problems, consider another, more complicated, example.

Suppose we have a global variable X with the current value 2. And, in addition, we have
three processes that wish to perform a handshake, and that those processes execute the following
communication statements.

1. aChannel ! 5

2. aChannel ? Y & X ≤ 3

3. aChannel ? X & X ≥ 4

The question is: can these processes communicate with each other using these communication
statements?. At first glance one might say yes, since statement 2 can execute because the X
variable in the conditional part evaluates to 2, which is less than or equal to 3. And statement 3
can execute because X evaluates to the value received, in this case 5 which is greater or equal to
4. The result of this communication would be that the variables X and Y both contain the value
5.

But, this is not how it works, since it was decided that variables in the conditional part of the
communication refer to the values after the communication. Thus, statement 2 will not be able
to communicate since the value of X refers to the value after the communication, which is in this
case 5. And 5 ≤ 3 is false.

So, the problem in this case is that the second statement refers to the value of X before the
communication, and the third statement refers to the value of X after the communication.

One could argue that this problem can simply be solved by redefining the semantics. For
example: a variable in the conditional part of the communication refers to the value before the
communication unless the same variable occurs as parameter in the communication. Note that
this problem occurs only in receive statements, since send statements do not modify the contents
of a variable.

Implementing these semantics introduces some runtime overhead. Because before a conditional
expression can be evaluated, it has to be checked whether a variable in the conditional expression
also occurs in the parameter list of the communication. Since an expression can contain more than
one variable, this has to be done for each variable in the expression. For every communication we
obtain the following, pseudo code.

for every communication statement c do
for every variable i in the conditional expression of statement c do

for every variable j in the parameter list of statement c do
if i = j then

variable i refers to the value after the communication.
else

variable i refers to the value before the communication.

Luckily, the number of variables in a communication statement is usually not very large. So
the runtime overhead of this solution shouldn’t pose to great a problem.

2The type of the variable and the type of data received have to match of course.
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But, there is another, more flexible, solution to this problem. A solution which does not
introduce additional runtime overhead but does provide the language with more expressiveness.

The idea is to strictly separate both types of variables, i.e. variables evaluated before or after
the communication. Consider the following modification to the communication syntax:
Instead of

identifier ? expr, expr, ... & bexpr

the following syntax is used1:

{bexpr1} identifier ? expr, expr, ... {bexpr2}

In the above syntax bexpr1 is evaluated before the communication takes place and bexpr2 is
evaluated after the communication takes place. Thus variables occurring in bexpr1 refer to the
before values, and variables occurring in bexpr2 refer to the after values. Note that both conditional
expression can just be true. When a conditional expression is always true, the appropriate {bexpr}
can just be omitted.

This new communication syntax solves the problem as described above, since the programmer
can exactly specify what he means, or wishes to accomplish. For example the intended effect of
the following statements:

1. aChannel ! 5

2. aChannel ? Y & X ≤ 3

3. aChannel ? X & X ≥ 4

is instead typed as follows:

1. aChannel ! 5

2. [X ≤ 3] aChannel ? Y

3. aChannel ? X [X ≥ 4]

A disadvantage is that the programmer is given additional responsibility in the sense that he
has to recognize the fact that the first three statements do not produce the intended effect. The
first three statements will not be able to communicate since X ≤ 3 and X ≥ 4 can not be true at
the same time.

As said before, this solution gives additional expressiveness to the language. Consider the
following example:

[X ≤ 3] aChannel ? X [X ≥ 5]

Informaly this means: ”Only communicate when the current value of X is less than or equal to 3
and only if the value of X after the communication is greater or equal to 5.”

This kind of expressiveness was not possible in the other solutions. This new syntax is chosen
to be the syntax of communication in the high level language.

However, there are still some cases, with global variables, which might cause problems. Con-
sider the following two communication statements:

1. aChannel ! 5, 6

2. aChannel ? X, X

1The brackets, ’{’ and ’}’ are part of the syntax, they do not mean the code in between is optional.
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What is this suppose to mean? After the communication variable X is assigned the values 5 and
6? Obviously, this is not possible. One could say the value of X after communication is the last
value received. In this case 6. This could easily be implemented (And this is how it is currently
implemented). However, it is probably better to produce a runtime error because this kind of
communication makes no sense at all. Note that it is not possible to check for these conditions
at compile time because at compile time it is not yet known which processes communicate with
eachother. The same applies for communications of the form, when X is a global variable:

1. aChannel ! 5, 6

2. aChannel ? X, 6

3. aChannel ? 5, X

So, whenever a variable can be assigned two (or more) different values after the communication,
a runtime error should be produced. This also applies when a variable is assigned the same value
more than once. If, for example the 6 in the above example is replaced by a 5 then the variable
X will be assigned the value 5 two times. This is not allowed either. Except when the statements
have a form similar to this:

1. aChannel ! 5, 6

2. aChannel ? X, 6

3. aChannel ? X, 6

Here the variable x is assigned to twice. But it is the same value and the positions of the
variable X in the parameter list is the same. In this case it is allowed and the variable X is
assigned the value 5.

1. aChannel ! 5, 6

2. aChannel ? X, 6

3. aChannel ? 5, X

The reason for this is that is is often the case than one instantiates multiple instances of the same
process to be run in parallel. In this case it is very difficult to avoid this problem. So it was
decided to allow it only in this case.

There is one thing that has not been considered yet. What happens if there are processes
willing to communicate, but not a single process does so using the ’ !’ operator. For example:

1. aChannel ? X

2. aChannel ? Y

3. aChannel ? Z

In this case all processes want to communicate, they all want to receive a value and put that
value in a variable. Even if all variables are of the same type, it is not defined what the value of
the variables after the communication is. One could say that, in this case, communication can
continue (if all variables are of the same type) but no data transfer takes place. In other words:
they only synchronize and do not communicate any values. But this makes no sense because this
effect can easily be obtained by only using ’ !’ operators.

It is clear that when some process wants to receive a value, there should be at least one process
that sends that value. This implies the following rule:

In any handshake, there should be at least one process executing a send (’!’) statement.

If this condition is not met, it is not a valid handshake, and will not be executable.
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2.5.4 Formal definition of handshake communication

This section will formally describe how a handshake is performed. First a number of definitions
will be presented.

Definition 2.2 A constant value or an expression that evaluates to a constant value will be re-
ferred to as: cexpr. Note that an expression may also contain variables.

Definition 2.3 A variable reference, i.e. an identifier which denotes a variable, will be referred
to as: var.

Definition 2.4 A message component is either a cexpr or a var and is referred to as: mcomp.

Definition 2.5 A message consists of an arbitrary but fixed number of message components. A
message consisting of N message components is, thus, of the form:

{mcomp1,mcomp2, ...,mcompn}

A message will be referred to as M.

Definition 2.6 The function TYPEOF identifier returns the type of the identifier. Where iden-
tifier can be one out of the following list.

• TYPEOF cexpr returns the type of the value of the cexpr.

• TYPEOF var returns the type of the variable var.

• TYPEOF mcomp returns TYPEOF cexpr if mcomp is a cexpr or returns TYPEOF var if
mcomp is a var.

• TYPEOF M returns the type of the message M. This type is of the form:

{TYPEOF mcomp1, TYPEOF mcomp2, ... , TYPEOF mcompn}

This type will be referred to as mtype.

Handshake channel declaration

A handshake channel is declared as follows:

HS identifier = [expr] OF mtype

Where identifier is the name of the channel, expr evaluates to a constant value and denotes the
number of participants. And mtype is the type of the messages to be transferred over this channel.

The number of participants on this channel is referred to as: identifier.count. The type of the
messages that can be transferred using this channel is referred to as: identifier.mtype.

Handshake channel communication

Communication over a handshake channel HS is of the form:

{bexprpre} HS ! M {bexprpost}

or

{bexprpre} HS ? M {bexprpost}
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Executability of handshake communication

A communication statement will either succeed or fail. When a communication statement fails,
the system can not execute this statement. When the system can not find another statement
that it can execute instead, the process blocks on the communication i.e. it will wait until the
communication can succeed. A communication statement that can succeed is also called: enabled.

A communication statement is enabled if and only if the following conditions are true.

• The bexprpre condition must hold, before anything can be done.

• TYPEOF M must be equal to HS.mtype. Note that this can be checked at compile time.

• The process must find exactly HS.count− 1 processes that have the possibility to execute a
communication statement as well. The communication statements of the other HS.count−1
processes have to be enabled as well. Enabledness of these other statements depends on the
enabledness of this statement.

• All HS.count communication statements have to communicate over the same channel HS.

• All HS.count communication statements have to be compatible. (a precise description of
’compatible’ is given below)

• After the communication the bexprpost condition must hold. Note that the ’effects’ of the
communication i.e. the transfer of values has already taken place at this time. If after the
communication bexprpost does not hold, the system should return to the state it was in
before the communication.

Compatibility of messages

Recall that a message M was of the form:

{mcomp1,mcomp2, ...,mcompn}

The following communication statement:

{bexprpre} HS ! M {bexprpost}

can also be thought of as:

{bexprpre} HS M’ {bexprpost}

Where M’ is of the form:
{!mcomp1, !mcomp2, ..., !mcompn}

Now, let !mcomp be replaced with mcomp′ then a message M’ can be written in the form:

{mcomp′1,mcomp′2, ...,mcomp′n}

Of course the same holds for the ’?’ operator.

Definition 2.7 The ith mcomp’ of message M’ is referred to as M’[i].

Definition 2.8 Two messages M ′

1 and M ′

2 are compatible if and only if:

∀i, j ∈ 1..N • (i = j)⇒M ′[i] is compatible with M ′[j]

Where N is the number of message components in a message.

Definition 2.9 mcomp’ compatibility.

• ! cexpr is compatible with:
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– ! cexpr, if and only if both cexpr evaluate to the same value.

– ! var, if and only if cexpr and var evaluate to the same value.

– ? cexpr, if and only if both cexpr evaluate to the same value.

– ? var, if and only if TYPEOF var equals TYPEOF cexpr.

• ! var is compatible with:

– ! var, if and only if both var evaluate to the same value.

– ? cexpr, if and only if var and cexpr evaluate to the same value.

– ? var, if and only if both TYPEOF var are the same.

• ? cexpr is compatible with:

– ? cexpr, if and only if both cexpr evaluate to the same value.

– ? var, if and only if TYPEOF cexpr equals TYPEOF var.

• ? var is compatible with:

– ? var, if and only if both TYPEOF var are the same.

Definition 2.10

mcomp′1 is compatible with mcomp′2 ⇐⇒ mcomp′2 is compatible with mcomp′1.

Definition 2.11 The messages: M ′

1,M
′

2, ...,M
′

N are compatible if and only if:

∀i, j ∈ 1..N • (i 6= j)⇒M ′

i is compatible with M ′

j

∧

∀j ∈ 1..P • (∃i ∈ 1..N •M ′

i [j] is of the form: !mcomp)

Where N is the number of processes participating in the communication and P the number of
mcomp in a message.

Informally this means: All communication statements should be compatible with each other
and there should at least be one message containing only send components. In other words: There
should always be one process executing a handshake send statement.

Data transfer in communication

Definition 2.12 The boolean expression: mcomp′ = ! is true if and only if mcomp′ is of the
form: !mcomp. The same definition holds were both ’!’ are replaced by ’?’.

Definition 2.13 The boolean expression: mcomp′ = var is true if the mcomp′ is a var.

Definition 2.14 mcomp′1 À mcomp′2 means: The evaluated value of mcomp′1 is copied to the
variable mcomp′2.

Definition 2.15 Communication is performed as follows:

∀k ∈ 1..P • (∀i, j ∈ 1..N•

(M ′

i [k] = ! ∧M ′

j [k] = ? ∧M ′

j [k] = var )⇒M ′

i [k]ÀM ′

j [k])

Where N is the number of processes participating in the communication and P the number of
mcomp in a message.
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2.5.5 Asynchronous communication support in the source language

Asynchronous communication is included in the source language. The language provides mech-
anisms to send and receive from channels. The semantics are kept as close as possible to the
semantics of PROMELA’s asynchronous communication. A channel for this kind of communica-
tion is declared as follows:

CHAN identifier = [expression] OF {type, type, ...}

The identifier is the name of the channel, the expression is the capacity of the channel, i.e how
many elements can be stored in the channel. Finally the types between the braces denote the type
of the elements in the channel. See also definition 2.5.

Definition 2.16 The capacity of a channel is the amount of elements that can be stored in the
channel.

The communication syntax for sending to, and receiving from such a channel is exactly the
same as for handshake channels. See section: 2.5.3.

The ! operator is used to put a value into the channel, while the ? operator is used to remove
a value from the channel. A value that is removed from a channel may then be stored in a variable.
See the following examples.

1. chan id!2, x

2. chan id?3, y

The first example sends the value 2 and the value of x to the channel chan id. The second example
removes the value 3 from that channel and another value which is then stored in the variable y.

Sending to a channel is only allowed when that channel is not full. Receiving from a channel
is only allowed when that channel is not empty.

Definition 2.17 An asynchronous channel is full when the number of elements in the channel
equals the channel’s capacity.

Definition 2.18 An asynchronous channel is empty when the number of elements in the channel
equals 0.

The channel behaves like a FIFO queue. The first value inserted, is also the first value to be
removed. If a process sends to a non-empty channel, the newly inserted element is queued. When
a process receives from a non-empty channel, it receives the oldest element from the channel.

When an asynchronous communication attempt fails, i.e. sending to a full channel or receiving
from an empty channel, the communication is blocked, or, not enabled. The communication is
also blocked when the parameters are incompatible.

2.6 Atomicity

Sometimes it is desirable that certain groups of statements will be executed atomic. This means
that it is guaranteed that these statements will be executed before an other process can execute a
statement.

Definition 2.19 Groups of statements that are executed atomic, will be executed before other
processes can execute a statement. If an atomic statement has started, it has to finish before any
other process can continue.
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atomic {
statement1
statement2
statementn

}

Figure 2.2: Example of an atomic statement.

The source language supports this. Groups of statements can be made atomic by enclosing
them in an atomic statement, as show in figure 2.2. Because all statements in an atomic statement
are treated as one statement, it has to be defined when an atomic statement is executable. One
could argue that an atomic statement is always executable, and it simply always starts executing
the first statement. But what if there is a statement inside the atomic that is not executable?
Since no other process can execute a statement before the atomic statement has finished, and the
atomic statement can never finish, a deadlock has occurred.

The system cannot detect whether a statement in the middle of an atomic is executable or
not, since that statement hasn’t been tried yet. But it can try the first statement of the atomic
statement. This yields the following definition:

Definition 2.20 An atomic statement is executable if and only if the first statement of that atomic
statement is executable. If any other statement than the first is not executable, an atomic deadlock
occurs.

2.7 Pre and Post conditions

In section 2.5.3, it was discussed how a handshake statement could be surrounded by two con-
ditional statements. One statement that has to be true before the handshake executes, and one
that has to be true after the handshake has executed. If one of these conditional statements is
false, the whole handshake is enabled. These two conditional statements are called the pre and
post conditions.

This idea of pre and post conditions can be extended to not only allow them with handshakes,
but with an arbitrary statement. This leads to the following definition.

Definition 2.21 Any statement in the source language can have a pre- and/or post-condition.
When a statement has a pre- and/or post-condition, both conditions have to be true before that
statement is executable.

The syntax for a statement becomes:

[{pre condition}] statement [{post condition}]

Where the brackets mean that the conditions are optional.
The most obvious use for the pre and post conditions is with communication (Handshake

and Asynchronous). One could program statements like: ”Only receive this value if that value is
greater than 3”. This cannot, or not as easily, be programmed without the use of a post-condition.

Another, less obvious, use, is to make it easy to program the if statement as known in other
program languages. The statement:

if expression then statement else block

Can be programmed as:

{pre condition} statement

Programming an if -like statement like this will not increase the amount of statements in the
code and thus the number of states will also not increase, since a pre-condition is part of the
statement. The standard PROMELA solution, as shown below, however will always introduce
new states and thus a bigger state space.
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pre condition ; statement

or

pre condition -> statement

The two solutions both need two states, one after the condition and one after the statement. The
pre-condition solution only needs 1 state.

2.8 Executability

Sometimes, a certain statement can not be executed. Such a statement is called: blocked or not
enabled or not executable. The opposite is called: enabled or executable5. When a statement is
blocked, the process trying to execute the statement is blocked too, unless the process has other
enabled choices available (see section 2.2). When there are other choices, but those are all blocked,
the process will block also.

When a process is blocked, it is blocked until a statement becomes executable again. Note
that this is only possible when another process can make the blocking statement executable again.
When another process never unblocks a blocking statement, that statement will block forever.
Thus making it impossible for that process to finish it’s code. This is an error, an undesirable
situation.

When not a single process can execute a statement, in other words all statements in all pro-
cesses are blocked, a deadlock has occurred. This is an undesirable situation also.

What determines whether a statement is executable? This is explained below.

Skip A skip statement always executable.

Goto A goto statement is always executable.

Assert An assert statement is always executable.

If An if statement is executable, if and only if, there is at least on choice in the if statement that
is executable.

Do A do statement is executable, if and only if. there is at least on choice in the do statement
that is executable.

Atomic See definition 2.20.

Handshake communication See section 2.5.4.

Asynchronous communication An asynchronous communication statement is blocked when
trying to send to a full channel, or receive from an empty channel, or when the communication
parameters are incompatible. See also section2.5.5.

An expression used as statement Such an expression is enabled when the expression evalu-
ates to a non-zero value i.e. true.

Run A run statement is always executable.

5All of these terms will be used throughout the report.



Chapter 3

The abstract machine

The abstract machine is the heart of the system. Its purpose is to interpret the instructions of the
intermediate language and to generate (new) states. In fact, the abstract machine does only one
thing, it generates the first possible state (see section 3.1 for a definition of state) to which the
system can go, starting from the current state. This state is also called the next state. Later on,
the next state will be used by the model-checker.

A change from one state to another state is called a transition (see section 3.2). There is often
more than one possible transition and not all of these transitions are always enabled. That is why
the abstract machine will take the first possible transition.

Definition 3.1 (Purpose of the abstract machine) The abstract machine generates the first
possible next state and the transition it took to get there.

3.1 State representation

The state of the system is the information needed to uniquely determine in what situation the
system currently is. This information, when stored in memory, is also called the state vector .

What information should be in the state vector? It’s obvious, that the contents of the memory
should be in it. In other words the values of all global variables and the values of all local
variables of all processes. In addition, the state vector should contain the instruction pointers of
each process.

Definition 3.2 (State vector) The state vector contains the following elements:

• The values of all global variables (including channels).

• For each process, the values of all local variables.

• The instruction pointers of all processes.

The memory representation of the state vector is shown in figure 3.1. This figure shows the state
vector representation for n processes. The total size of the state vector is m bytes.

Globals IP 0 IP 1 IP n-1....Locals 0 Locals 1 ...... Locals n-1

0 m-1

Figure 3.1: State vector representation.

28
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proctype p1() { proctype p2() {

if a = 1;

:: skip; };

:: a = 2;

fi;

};

Figure 3.2: Example of a non-deterministic transition

proctype p1() {

if

:: skip;

:: if

:: a = 1;

:: a = 2;

fi;

fi;

};

Figure 3.3: Example of a nested if transition

3.2 Transition representation

A transition is a change from one state to another state, which occurs when a statement in
the source language is executed. When a transition occurs, the information that defines that
transition has to be stored so that the system knows exactly which transition has taken place.
This information is later used, amongst other things, to determine which transition should be tried
next.

Definition 3.3 (Transition) From the current state, the next state can be calculated using only
the information stored in the transition.

What information is needed to be able to calculate the next state? Since the source language
allows multiple processes to execute in parallel, the process id should be included to know which
process was executing a statement. The process id alone is not enough because it is possible that
one process can randomly choose which statement it will execute, i.e. non-determinism. Thus,
the choice the process took has to be included as well. Consider figure 3.2; In this situation,
process p1 could execute the statement a = 2. This means that from the current state, process
p1 executes choice 2. The transition is the tuple: (1, 2). When process p2 executes the statement
a = 1 however, the transition is: (2), since process p2 did not have a choice.

However, this transition storage scheme is not sufficient to cover all possibilities. There are
two features of the source language that require additional attention, namely: nested - if clauses
and handshake communication. Figure 3.3 is an example of a nested if clause. When this process
executes the statement a = 1, what will the transition information be? It cannot be (1, 2), since
the second choice is the if statement, not the statement a = 1. To cover this, the transition
information will be: (1, [2, 1]). This indicates that process p1 chooses the second choice and then
the first choice.

To facilitate handshake communication, one has to note that when a handshake takes place,
more than one process will execute a statement. Consider figure 3.4; In this example, a is a
handshake channel. At this moment process p1 and p2 can execute a handshake, namely: a!2
and a?2. Since more than one process takes a transition here, and the syntax of one transition is
already defined, it makes sense to store this handshake transition as follows: [(1, [2]), (2, [2, 2])].

Definition 3.4 (Transition format) A transition is defined by [(process id, [choice id])]
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proctype p1() { proctype p2() {

if if

:: skip; :: skip;

:: a!2; :: if

fi; :: skip;

}; :: a?2;

fi;

fi;

};

Figure 3.4: Example of a handshake transition

Note that when a process can not make a non-deterministic choice, the choice list is simply an
empty list. Also, when no handshake communication takes place, the transition list has only one
element. Figure 3.5 shows a representation of how a transition can be stored in memory.

ProcessId 1 Choice 1 Choice 2 ...... Choice i

ProcessId 2 Choice 1 Choice 2 ...... Choice j

ProcessId p Choice 1 Choice 2 ...... Choice k

Figure 3.5: Transition representation.
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3.3 Components of the abstract machine

This section will describe the components of the abstract machine in detail. Figure 3.6 shows
a simplified representation of the abstract machine. One can identify two main modules, the
interpreter (described in subsection 3.3.3) and the next state generator(described in subsection
3.3.4). These two modules interact with each other and the system data structures (described in
section 3.3.1).

Code Vector

0

Memory Vector

0 m  - 1

n  - 1

Flags Register

Stack

0

top

Interpreter

Process Instance Table

Process Definition Table

Channel Definition Table

Variable Definition Table

Next State
Generator

Input/Output

Source

Interpret Instructions
Generate State Vector

success fail choice else hs

Atomic PrePost

Figure 3.6: Overview of the abstract machine.

3.3.1 System data structures

The abstract machine needs the following data structures to be able to interpret instructions:

• The main memory, or the memory vector

• A place to store the instructions, or the code vector

• A stack to evaluate expressions and to store intermediate data

• A flags register

This section will explain these data structures in more detail.

The code vector

The code vector is the place where all the instructions are stored1. There are two possible
implementations of the code vector:

1Also, some instructions have additional source code information as explained in section 3.3.3.
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1. One code vector for each process instantiation.

2. One code vector for all processes.

Both implementations work, but the first implementation has a drawback. Since it is possible
that a process is instantiated more than once, in other words, two or more copies of a process are
running, the first option will use more memory. The reason for this is that, in case of the first
option, two identical pieces of code have to be kept in memory. The second option does not have
this problem because process instantiations can share each others code. Thus the code vector

of the second option will require less memory. This is the reason why the second option is chosen.

The memory vector

The memory vector holds the main system memory. The only information stored in it, is the
contents of variables2. One can identify two kinds of variables, global variables and local variables.
Currently, only integer variables (int) are implemented. Obviously, separate instantiations of
processes can not share their local variables as they could with their code. So the local variables
of each instantiation have to be stored seperately.

Definition 3.5 (Contents of the memory vector) The memory vector stores all global vari-
ables and all local variables of each process instantiation.

The flags register

The flags register stores all the system flags. One can identify two different kinds of flags, flags
that can only be on or off and flags that have a count associated with them.

On/Off flags

Success flag The interpreter sets this flag when an instruction is encountered which signals the
end of a statement. In other words, the success flag is set when a complete statement from
the input language is successfully interpreted.

Fail flag The interpreter sets this flag when it has decided that the current statement is not
executable. Certain instructions always block while others block on a certain condition.

Choice flag The interpreter sets this flag when it detects that a choice between different state-
ments can be made 3. This flag is of importance for the executable function. See section
5.1.2.

Else flag When the interpreter detects that the choice it is about to make is an else choice, it
sets this flag4. The executable function can then take special action to deal with the else.
Special action is needed because an else choice is only executable when all the other choices
are not.

Hs flag This flag is set by the interpreter when the system is ready to handshake. This means
that a possible handshake has been found i.e. compatible channels and enough partners.
The executable function can then try to execute the handshake to check whether it is
executable or not.

2Channels are variables too. Handshake channels are variables too, but they are 0 bytes in size so they are not
stored.

3There is only one instruction which sets this flag, the CHOICES instruction.
4Only the ELSE instruction sets this flag.
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Count flags

Atomic flag The interpreter increases the value of the atomic flag when the interpreter goes in
atomic mode. When it leaves atomic mode, the value of the atomic flag is decreased.

PrePost flag This flag functions the same as the atomic flag. But this flag is modified when the
system enters or leaves prepost mode.

The stack

The stack is used to store intermediate results from expressions, and to store other intermediate
data. Most instructions that transfer data, do this via the stack. As with the code vector, two
approaches concerning the stack can be identified.

1. One stack for each process instantiation.

2. One stack for all processes.

Again, both solutions probably work but in this implementation the second alternative is chosen.
The reasoning behind this is, that instructions are grouped together to form a statement from the
input language. Since these statements are atomic i.e. the instructions of different statements can
not interleave, it follows that the stack before and after the execution of a statement is the same.
Thus there is no need for a separate stack for each process.

.

3.3.2 System tables

The abstract machine uses a number of tables to keep important information in memory (see
figure 3.6). This section will describe each table in more detail.

Process definition table

A process definition contains the following information (see figure 3.7):

• A unique identifier of the process definition, id.

• The size of the memory for the local variables of this process (MemSize).

• The address in the code vector that indicates the first instruction to be executed by the
process (Start IP)

• The name of the process, as used in the input language.

• A variable definition for all variables of the process(see section 3.3.2).

Id MemSize NameStart IP Var Defs

Figure 3.7: Information contained in a process definition
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Process instance table

As more than one instance can be created from a specific process definition, additional information
is needed to distinguish the process instances. Also, the process instance stores the information
that belongs to a specific instance. The following information is included in a process instance

record (see figure 3.8):

• a unique process instance identifier, an id.

• The current position in the code vector, the instruction pointer or IP

• The address of the first local variable, to access its local variables in the memory vector.
(memory start).

• A field containing status information, for example whether the process instance is halted or
running.

• A pointer to the process definition, for example, to determine the name or required memory
size.

Id IP StatusMem Start Proc Def

Figure 3.8: Information kept for a process instance

Channel definition table

Channels are an extended kind of variables in the sense that they need additional information to
describe them. This additional information is stored in a channel definition:

• The address in the memory vector the channel information starts and ends, the start addr

and stop addr (points just after the last memory address belonging to this channel).

• The size of one element in the channel, the element size.

• The maximum number of elements that the channel can handle. The element count.

• The channel type, indicating whether the channel is asynchronous or a handshake.

• The name of the channel.

Start Addr Element CountElement Size Type Name Stop Addr

Figure 3.9: Channel definition

Variable definition table

Variable definitions have been included to allow the system to make a mapping from memory
addresses to variables used in the input language. A variable is a simple record containing the
following elements:

• The memory address of the start of the variable
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• The memory address of the end of the variable5

• The name of the variable.

Start Addr Stop Addr Name

Figure 3.10: Variable definition

3.3.3 The interpreter

The interpreter module interprets an instruction stored in the code vector and update the memory
vector and stack accordingly6. See section 3.6 for a definition of the instructions. In addition,
certain flags in the flags register can be set or cleared7.

The interpreter module is, very often, invoked by the next state generator module in order
to generate the next state. Since it is desirable that it is also known which statement in the
input language caused the transition to the next state, the interpreter will also send source code
information to the next state generator. That information can then be returned to the model
checker for further use.

Source code information

To be able to send the source code information to the next state generator, instructions in the
code vector can have additional data. This data stores the source code information. Because the
next state generator is only interested in complete statements from the input language, and such
a statement typically consists of more than one instruction in the intermediate language, it has
to be decided what source code information to be stored in which instruction. The easiest way
to do this is to store the complete statement in the last instruction from that statement. So,
for example, the instruction a = 2 + 4; in the source language is translated to the code shown
in figure 3.11. In this example only the STORE instruction, which is the last instruction of the

LDGADDR 0 ; Push the address of variable ’a’ on the stack

PUSH 2

PUSH 4

ADD

STORE ; Write to variable ’a’

Figure 3.11: Possible translation of a = 2 + 4

statement, will have source code information.
What information should be in the source code information? Of course the exact statement

should be included. Since there is more than one process, it is desirable to include the exact name
of the process. Finally, to make it easier to find the statement in the original source code the line
number and column number are included.

Definition 3.6 (Source code information) Source code information consists of the following
elements:

• The statement from the source code.

• The name of the process executing a statement.

• The line number and column number of the statement.

5Only differs from the start address in case of a channel.
6Only if the instruction modifies these ofcourse.
7Incremented or decremented in case of the atomic/prepost flags.
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3.3.4 The next state generator

Generating the first possible next state from the current state is the only function of the abstract
machine. This function is realized by the next state generator (In the future, the next state
generator will be referred to as the next function). In order to generate the next state, the next
function needs two input values, which it normally receives from the model checker. These two
values are the current state8, for which the next function needs to generate the next state, and
the last transition.

Definition 3.7 (Last transition) The last transition is the previous successful transition from
the current state. 9

The last transition is used to determine which transitions the next function should skip i.e. not
generate.

Definition 3.8 (Next state) The next function will generate the first possible next transition
after the last transition.

When the next state is successfully generated, the next function will return three output values
to the ’caller’, the model checker. These output values are the following:

• The next state.

• The transition to get to this state, the next transition

• The source code of the high-level language statement that caused this transition.

The functioning of the next function is described in detail in chapter 5

3.4 Asynchronous communication channels

Asynchronous communication channels are implemented using a queue, which is mapped onto the
main memory vector. The information stored in this queue consists of the values of all elements
in the channel plus a count which denotes the number of elements in the queue. An element
consists of the number of parameters used in the communication. See figure 3.12. Empty places

Count

element element element

Start Addr Stop Addr

Figure 3.12: Channel queue for elements with two components with capacity three.

in the queue are filled with zeros. When an element is added to the queue it is added to the
right of existing elements. When an element is removed, the left most element is removed and the
remaining elements are shifted to the left. Note that it is not possible to use a cyclic queue to
optimize speed. When using a cyclic queue, it is possible that two queues with the same contents
will generate a different state vector. This is not allowed.

8When the current state is not supplied, the next function uses the state it is in now.
9Note that the last transition is not defined in the initial state of the system.
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3.5 Global variables of the abstract machine

The abstract machine uses the following global variables:

• current channel, the id of the communication channel that is selected for communication.

• current process, the id of the process that is currently executing instructions.

• handshake initiator, the id of the processes that initiates a handshake.

• handshake buffer, a buffer used to temporarily store data, transferred during a handshake.

• current selected choice, when non-determinism is possible, the variable denotes which
choice the interpreter is currently trying. This variable equals 1 when no non-determinism
is possible.

• choice count, When non-determinism is possible, the variable denotes the maximum num-
ber of choices are available. This variable equals 1 when no non-determinism is possible.

3.6 Instruction set

Before the instructions, supported by the interpreter, can be explained, a couple of definitions will
be introduced.

Definition 3.9 (push x) The term ”push x” will be used to describe the effect of putting the
value x on top of the stack.

Definition 3.10 (pop x) The term ”pop x” will be used to describe the effect of removing the
top value x from the stack. That value will be stored in variable x.

Definition 3.11 The term ”mem[ n]” will be used to denote the value stored at memory address
n.

3.6.1 Jump instructions

JMP

Syntax: JMP address
Description: Jumps current process to address address. Internal jump.

Effect: current process.IP = address

Flags affected: None

GOTO

Syntax: GOTO address
Description: The current process jumps to address address and sets the SUCCESS flag.

Effect: current process.IP = address
set SUCCESS flag

Flags affected: SUCCESS flag is set

3.6.2 Stack instructions

PUSH

Syntax: PUSH x
Description: Push the value x on top of the stack.
Effect: push x
Flags affected: none.
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LDGADDR

Syntax: LDGADDR x
Description: Push the value x on top of the stack. x is an address of a global variable.
Effect: push x
Flags affected: none.

LDGVAR

Syntax: LDGVAR x

Description:
Push the value at memory address x, on top of the stack. x is an address of a
global variable.

Effect: push mem[x ]
Flags affected: none.

LDLADDR

Syntax: LDLADDR x

Description:
Converts the local address x to a global address in memory and puts the con-
verted value on top of the stack. x is an address of a local variable.

Effect: push (x + current process.MemStart)
Flags affected: none.

LDLVAR

Syntax: LDLVAR x

Description:
Converts the local address x to a global address in memory and puts the value
at that memory address on top of the stack. x is an address of a local variable.

Effect: push mem[(x + current process.MemStart)]
Flags affected: none.

XCHG

Syntax: XCHG
Description: Exchanges the top two values on the stack
Effect: pop b; pop a; push b; push a
Flags affected: none.

STORE

Syntax: STORE
Description: Move data from stack in memory
Effect: pop b; pop a; mem[a] = b
Flags affected: SUCCESS flag is set.

EVAL

Syntax: EVAL

Description:
Removes the top value from the stack. Sets the SUCCESS flag if this value is
non-zero. Sets the FAIL flag otherwise.

Effect: pop a;

Flags affected: SUCCESS flag is set if a! = 0. FAIL flag is set if a == 0.
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3.6.3 Flag instructions

CLRA

Syntax: CLRA
Description: Decreases atomic flag.

Effect: ATOMIC flag is decreased
Flags affected: ATOMIC flag is decreased

SETA

Syntax: SETA
Description: Increases atomic flag.

Effect: ATOMIC flag is increased
Flags affected: ATOMIC flag is increased

CLRPP

Syntax: CLRPP
Description: Decreases pre-post flag.

Effect: PREPOST flag is decreased
Flags affected: PREPOST flag is decreased

SETPP

Syntax: SETPP
Description: Increases pre-post flag.

Effect: PREPOST flag is increased
Flags affected: PREPOST flag is increased

3.6.4 Non-determinism instructions

CHOICES

Syntax: CHOICES count
Description: Initiate non-determinism with count choices. Jumps to the address of the

currently selected choice.

Effect: let choice count = count
current process.IP = current process.IP + current selected choice

Flags affected: None

CHOICE

Syntax: CHOICE address
Description: Signals the interpreter that the address of this choice is at address address

and transfers control to that address.

Effect: current process.IP = address
set CHOICE flag

Flags affected: CHOICE is set
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ELSE

Syntax: ELSE address
Description: Signals the interpreter that the address of this choice is at address address and

transfers control to that address. Also indicates that this is an else choice.

Effect: current process.IP = address
set CHOICE flag
set ELSE flag

Flag affected: CHOICE and ELSE flags are set

3.6.5 Communication instructions

HS

Syntax: HS action, memory mode, channel
Parameters: action: RECV or SEND

memory mode: LOC or GLOB
channel : channel Id

Description: Try to initiate handshake communication. Fails if handshake communication
is not possible.

Effect: if action == RECV then
set FAIL flag

else begin
if memory mode == LOC then

let current channel = mem[(channel + current process.MemStart)]
else

let current channel = channel
let partners = number of processes that are able to execute a HS.
if not partners = channel.ElementCount then

set FAIL flag
else

let handshake initiator = current process
end

Flags affected: See: Effect

CHAN

Syntax: CHAN action, memory mode, channel
Parameters: See HS
Description: Try to initiate asynchronous communication. Fails if that is not possible.

Effect: if memory mode == LOC then
let current channel = mem[(channel + current process.MemStart)]

else
let current channel = channel

if action == SEND and channel.full() then
set FAIL flag

if action == RECV and channel.empty() then
set FAIL flag

Flags affected: See: Effect
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RECEIVE

Syntax: RECEIVE
Description: Pushes the values which are going to be received on the stack.

Effect: if current channel.type == CHAN then
begin

remove element e from current channel.
for all values v in element e do push v

end
if current channel.type == HS then

for all values v in handshake buffer do push v

Flags affected: None.

SEND

Syntax: SEND
Description: Removes the values which are about to be send from the stack. Fails if

incompatible communication parameters are detected.

Effect: if current channel.Type == CHAN then
begin

for i = 1 to current channel.ElementSize do pop vi

Add element consisting of values v1 through vcurrent channel.ElementSize to
current channel

set SUCCESS flag
end
if current channel.Type == HS then

if current process == handshake initiator then begin
for i = 1 to current channel.ElementSize do begin

pop vi

store vi in handshake buffer
end
set HS flag

end
else

for i = 1 to current channel.ElementSize do begin
pop vi

compare popped vi with vi in handshake buffer
end
if ∀i ∈ {1. . .current channel.ElementSize}•

popped vi == vi in handshake buffer then
set SUCCESS flag

else
set FAIL flag

Flags affected: See: Effect
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3.6.6 Mathematical instructions

Name Description Effect

ADD Addition POP B; POP A; PUSH A + B
SUB Subtraction POP B; POP A; PUSH A - B
MUL Multiplication POP B; POP A; PUSH A * B
DIV Division POP B; POP A; PUSH A / B
MOD Remainder POP B; POP A; PUSH A % B
INC Increment POP A; PUSH A + 1
DEC Decrement POP A; PUSH A - 1
NEG Negate POP A; PUSH -A

BAND Bitwise AND POP B; POP A; PUSH A & B
BNOT Bitwise NOT POP A; PUSH ~A
BOR Bitwise OR POP B; POP A; PUSH A | B
BXOR Bitwise XOR POP B; POP A; PUSH A ^ B

LAND Logical AND POP B; POP A; PUSH A && B
LOR Logical OR POP B; POP A; PUSH A || B
LNOT Logical NOT POP A; PUSH !A

SHR Shift right POP B; POP A; PUSH A >> B
SHL Shift left POP B; POP A; PUSH A << B

3.6.7 Relational instructions

Name Description Effect

EQ Equal POP B; POP A; PUSH A == B
NE Not equal POP B; POP A; PUSH A != B
GT Greater than POP B; POP A; PUSH A > B
GE Greater than or equal POP B; POP A; PUSH A >= B
LT Less than POP B; POP A; PUSH A < B
LE Less than or equal POP B; POP A; PUSH A <= B

3.6.8 Miscellaneous instructions

ASRT

Syntax: ASRT
Description: Remove value from the stack and throws an assertion failed exception if that

value is zero

Effect: pop x
if x == 0 then assertion failed

Flags affected: SUCCESS is set
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NOOP

Syntax: NOOP
Description: Does nothing

Effect: None
Flags affected: SUCCESS is set

HALT

Syntax: HALT
Description: Stops the current process

Effect: current process.Status = HALTED
current process.IP = −1

Flags affected: SUCCESS is set

RUN

Syntax: RUN process id
Description: Creates and starts a new process instance from process definition process id.

The parameters for this process are on the stack. Control is transferred to the
beginning of the new process.

Effect: current process = new process instance created from process definition pro-
cess id
current process.IP = start of new process.

Flags affected: None

IRET

Syntax: IRET
Description: Transfers control back to the init section.

Effect: current process = 0 (the init section)
Flags affected: SUCCESS flag is set



Chapter 4

Translation

The source language is translated to intermediate code before it is interpreted by the interpreter
of the abstract machine. This chapter describes how the source language is translated into the
intermediate language. (For more details, see also: Appendix B and C)

4.1 Expressions

Expressions consist of data (constant numbers or variables), and operators that perform certain
computations on that data and return some result.

Operators

All operators in the intermediate language take zero parameters. Instead, they get(pop) their
parameters from the stack. The result of the computation of that specific operator is put(pushed)
on the stack, where it can processed further.

For example, the ADD instruction removes 2 values from the stack, adds them, and puts the
result of the addition back on the stack. Figure 4.1 shows how this is done for the expression 3 +
5. First 3 and 5 are pushed on the stack, then the ADD instruction is executed and the result,

3

5

Stack

8
ADD

Stack

Figure 4.1: ADD instruction example, 3 + 5

8, is pushed on the stack.

Because the result of this expression is put on the stack, it can easily be reused as subexpression
for another expression. For example 2 * (3 + 5). (See figure 4.2)

Note that 3 + 5 is enclosed in parentheses to indicate that this subexpression should be
evaluated before it is multiplied with 2. Would the parentheses be omitted, the result would
be 2 * 3 + 5 = 6 + 5 = 11, since multiplication has a higher precedence than addition. This
example requires that an intermediate result (2 * 3) is evaluated before all the data (2,3,5) is on
the stack. This is shown in figure 4.3. For a description of all operators, refer to appendix B.1 for
the mathematical operators and appendix B.2 for relational operators.

44
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3

5

Stack

8
ADD

Stack

2 2 16

MUL

Stack

Figure 4.2: ADD instruction example, 2 * (3 + 5)

3

Stack

MUL

Stack

2 6 6

PUSH 5

Stack

5
ADD

11

Stack

Figure 4.3: ADD instruction example, 2 * 3 + 5

Data

There are two kinds of data to be used in expressions, constants and variables. Operators expect
this data to be on the stack. To put a constant value on the stack, the PUSH instruction is used.
This instruction needs one parameter and simply pushes the value of this parameter on the stack.

Variables are different. Sometimes the value of the variable is needed, to be used in an expres-
sion. And sometimes the address of the variable is needed, when a value has to be assigned to a
variable for example.

There are two types of variables, global variables and local variables. When the address of a
local variable is needed, the local variable address has to be converted to a global address before it
is pushed on the stack. This is needed because there may be more than one variable with the same
local address. For example, when one process with a single local variable i is instantiated twice,
both instance variables have the same local address. But of course these are separate variables
and are stored at different physical addresses in memory (the global address). Thus, when an
instruction wants to assign a value to a local variable, the global address of that variable has to
be computed first.

There are four possible cases with variables. For each case a specialized instruction exists.
These are shown in figure 4.4.

Push(Load) the address addr of a global variable LDGADDR addr
Push the value of a global variable LDGVAR addr
Push the address of a local variable LDLADDR addr
Push the value of a local variable LDLVAR addr

Figure 4.4: Variable / Stack instructions

The conversion of the address of a local variable to its global address is done automatically by
the LDLADDR and LDLVAR instructions.

4.2 Assignment & Evaluation (STORE & EVAL)

There are two typical uses of an expression. It can be assigned to a variable, for example a = 2∗ b.
Or it can be used as a condition. The latter is the case, for example, when expressions are used
as statements or as part of pre- and post-conditions.
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Assignment

Assignment amounts to simply evaluating an expression and storing its value in a variable. The
instruction used for assignment is the STORE instruction. This instruction pops two values from
the stack, the data to be stored and the address where this data has to be stored. Also, this
instruction sets the SUCCESS flag, indicating the successfull end of a statement, an assignment.
The code for an assignment of the form:

<variable> = <expression>

is shown in figure 4.5.

LDGADDR or LDLADDR address ; Push address of variable
<expression> ; Evaluate the expression
STORE ; Perform the assignment

Figure 4.5: Translation of an assignment

For example the assignment: a = 4 * b + 5, where a and b are global variables, is shown in
figure 4.6.

LDGADDR 0 ; Push address of a
PUSH 4
LDGVAR 1 ; Push value of b
MUL ; Evaluate 4 * b
PUSH 5
ADD ; Evaluate 4 * b + 5
STORE ; Perform the assignment

Figure 4.6: Translation of assignment: a = 4 * b + 5

There is one additional instruction which is very convenient when dealing with assignments,
the XCHG instruction. This instruction swaps the top two values of the stack. This is needed
when the top two values of the stack are in the wrong order for a correct assignment.

Evaluation

Sometimes an expression has to be evaluated, but the result of the expression does not have to
be stored somewhere. For example when an expression is used as a statement, or in a pre- or
post-condition. The instruction responsible for this is the EVAL instruction. This instruction
removes one value from the stack and sets the SUCCES or FAIL flag according to this value. If the
value is 0, the FAIL flag is set, otherwise the SUCCESS flag is set. The translation of an evaluation
is simply: evaluate the expression, then EVAL.

4.3 Atomicity (SETA & CLRA)

The translation of an atomic statement is simple. The instructions that have to be executed
atomically are enclosed by the SETA and CLRA instructions. SETA increases the atomic
counter and signals the interpreter that from now on all instructions are atomic. In other words,
the interpreter is now in atomic mode. The interpreter stays in atomic mode until the atomic
counter is 0. The atomic counter can be decreased with the CLRA instruction.

The reason that it is an atomic counter instead of a flag is that it is possible that multiple
SETA instructions are encountered before a CLRA instruction is encountered, i.e. by nesting of
atomic statements.
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4.4 Pre & Post conditions (SETPP & CLRPP)

A statement that has a pre- and/or post condition is only executable when both the pre and post
conditions evaluate to a non-negative value. In other words, the SUCCESS flag(the flag indicating
a statement is enabled) can only be set when:

• The pre-condition is true.

• The statement is executable.

• The post condition is true.

The instructions for a pre-condition are interpreted before the instructions of the statement, while
the instructions for a post-condition are interpreted after the instructions of the statement.

The interpreter must somehow know that certain instructions belong to a pre- or post-condition.
When a pre-condition is interpreted, the SUCCESS flag may not be set since the statement hasn’t
been interpreted yet. When the statement is interpreted, the SUCCESS flag may also not be set
since there might be a post-condition which has to be interpreted too.

This problem is solved as follows. When a statement has a pre- and/or post-condition, the
complete statement, including the pre and post is enclosed by the SETPP and CLRPP instruc-
tions. Both instructions function the same as the atomic instructions SETA and CLRA in the
sense that the prepost flag is also a counter instead of a flag. The SETPP instruction signals the
interpreter that it is entering pre and post mode. This means that the following statement has at
least a pre- or a post-condition. The SUCCESS flag will only be set when the interpreter is not in
pre and post mode. The CLRPP instruction is used to ”leave” pre and post mode.

The translation of the following pre- and post-statement, assuming a, is the only global vari-
able(at global address 0), is shown in figure 4.7. Note that EVAL is used to evaluate the pre-
and post-conditions.

{a > 4} a = a + 1 {a < 6}

SETPP ; enter pre-post mode
LDGVAR 0
PUSH 4
GT
EVAL ; evaluate a > 4
LDGADDR 0
LDGVAR 0
PUSH 1
ADD ; evaluate a + 1
STORE ; a = a + 1
LDGVAR 0
PUSH 6
LT
EVAL ; evaluate a < 6
CLRPP ; leave pre-post mode

Figure 4.7: Translation of {a > 4} a = a + 1 {a < 6}

4.5 Non-determinism

Non-determinism in the intermediate language is realized by the CHOICES, CHOICE and
ELSE instructions.
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4.5.1 The CHOICES instruction

The CHOICES instruction signals the interpreter that it can randomly choose which instructions
to interpret next. In other words, using the CHOICES instruction, non-determinism can be
realized. This instruction has one parameter, the number of choices the interpreter can take. This
instruction has to be followed by this number of CHOICE instructions, where the last CHOICE
instruction could also be an ELSE instruction. The CHOICES instruction determines which
CHOICE to execute. For example, when the interpreter wants to execute the second choice,
the CHOICES instruction immediately jumps to the second CHOICE instruction, skipping the
first one.

4.5.2 The CHOICE and ELSE instructions

The CHOICE and ELSE instructions both have one parameter, the address of the first instruc-
tion belonging to the code of this particular choice. When executed, these instructions simply
jump to this address and execution is resumed at this address. The difference between CHOICE
and ELSE is which flags are set when they are interpreted. Both instructions set the CHOICE flag,
indicating that a non-deterministic choice is in progress. The ELSE instruction also sets the ELSE
flag, indicating that this particular choice is an else choice, which has a different interpretation.

4.5.3 Translation

This section describes how non-determinism in the source language is translated into instructions in
the intermediate language (see also: Appendix C). Two sources of non-determinism in the source
language can be identified, if statements and do statements. Translation of both statements is
basically the same, except the action that is taken after a choice has been executed.

An if statement will jump to the location after the code for the last choice for that if

statement. A do statement will jump back to the start of the statement. A break statement
inside a do statement is translated as a jump to location after the code for the do statement (as
the jump with an if statement). The general translation of non-determinism is depicted in figure
4.8.

Start: CHOICES Choice Count
CHOICE Address 1
CHOICE Address 2
...
CHOICE/ELSE Address n

1: <Code for choice>
JMP Start(do) or End(if)

2: <Code for choice>
JMP Start(do) or End(if)
...

n: <Code for choice>
JMP Start(do) or End(if)

End: ...

Figure 4.8: Translation of non-determinism

An example of the translation of a typical if statement is shown in figure 4.9. The JMP
instructions that jump to the end of the if can be replaced by jumps to theCHOICES instruction
(the start of the if statement) , in case this was a do statement instead of an if statement.
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if
:: a = a + 1;
:: skip;
:: a = 5 * 6;
fi;

(a is the only,
global, variable)

is translated to:

0 CHOICES 3 ; 3 alternatives
1 CHOICE 4
2 CHOICE 10
3 CHOICE 12
4 LDGADDR 0 ; start first alternative
5 LDGVAR 0
6 PUSH 1
7 ADD ; evaluate a + 1
8 STORE ; a = a + 1
9 JMP 18 ; jump to end of if
10 NOOP ; skip (second alternative)
11 JMP 18 ; jump to end of if
12 LDGADDR 0 ; start third alternative
13 PUSH 5
14 PUSH 6
15 MUL ; evaluate 5 * 6
16 STORE
17 JMP 18 ; jump to end of if
18 ...

Figure 4.9: Translation of an example if statement

4.6 Communication

Communication in the intermediate language is realized by the HS (HandShake) and CHAN
(CHANnel, asynchronous) instructions, in combination with the SEND and RECEIVE instruc-
tions.

4.6.1 The HS and CHAN instructions

HS and CHAN are used to initialize the communication. In addition they offer the opportunity
to abort a communication attempt as soon as possible, without the need to evaluate possible
communication parameters and compare them afterwards.

Both instructions need three parameters:

1. The Communication Type. This can be SEND, or RECV (receive).

2. The Channel Type. This can be LOC (local) or GLOB(global). This parameter is needed
because local channel variables are treated differently than global channel variables.

3. The Channel Id, to identify the channel which is to be used in the communication.

HS

When the interpreter encounters an HS instruction, the following actions take place:

1. If the first parameter is RECV, the instruction immediately fails and the FAIL flag is set.
Handshake receive statements are always not executable, they can only be executed in
combination with a handshake send. If the first parameter is SEND, the interpreter proceeds
to step 2.

2. Determine the communication channel. If the second parameter is GLOB, the communica-
tion channel is simply the value of the third parameter. If the second parameter is LOC, the
value of the third parameter indicates the local address of the local channel variable. The
value of this variable is a pointer to a global channel Id. Local communication channels are
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not allowed, because local communication makes no sense. The whole purpose of communi-
cation is to send information from one process to another. A process cannot communicate
with itself. When a communication channel is declared as a local variable, it is in fact a
pointer to an existing channel, which can be assigned to if needed.

This allows communication channels to be passed to processes as arguments, since arguments
are simply local variables. Also, using local channel variables, a process can change its
communication channel at runtime by simply assigning another value to this variable.

3. Determine whether enough partners are available for the handshake. When the interpreter
cannot find enough potential partners for this handshake, the HS instruction fails and the
FAIL flag is set.

When all these steps have been executed successfully, the interpreter continues interpreting.
It does not set the SUCCESS flag.

CHAN

When the interpreter encounters a CHAN instruction, the following actions take place:

1. First, the communication channel is determined in exactly the same way as explained in step
2 from the HS section.

2. If the first parameter is SEND, the interpreter checks whether the communication channel is
full. The CHAN instruction fails if this is the case.

3. If the first parameter is RECV, the interpreter checks whether the communication channel is
empty. The CHAN instruction fails if this is the case.

4.6.2 The SEND and RECEIVE instructions

SEND and RECEIVE are used to perform the actual communication and data transfer, after
the initial communication stage is complete(HS and CHAN didn’t fail).

SEND

When the interpreter encounters an SEND instruction, the following actions take place:

1. Determine the type of the current communication channel (HS or CHAN).

2. Step 2 depends on the type of the current communication:

HS: Depends on whether this instruction is the handshake initiator or not.

Initiator: n values are expected on the stack, where n is the number of components
in the message that is being sent. Those values are removed from the stack and
stored in an internal handshake buffer, where they can be accessed by the handshake
partners. The HS flag is set.

Non-Initiator: n values are expected on the stack, where n is the number of compo-
nents in the message that is being sent. Those values are removed from the stack
and compared to all the values in the internal handshake buffer (value 1 is compared
to the first value in the buffer, value 2 is compared to the second value in the buffer,
etc). If all the values equal the values in the handshake buffer, this communication
is successful and the SUCCESS flag is set, otherwise the communication parameters
were not compatible and the FAIL flag is set.

CHAN: The SEND instruction expects n values on the stack, where n is the number
of components in the message that is being sent. Those values are removed from the
stack and stored at the appropriate place in the main memory (the channel queue).
Communication is complete and the SUCCESS flag is set.
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RECEIVE

When the interpreter encounters a RECEIVE instruction, the following actions take place:

1. Determine the type of the current communication channel (HS or CHAN).

2. Step 2 depends on the type of the current communication:

HS: All values in the handshake buffer are pushed on the stack. The SUCCESS or FLAG

are not set. These flags are set later, when the values have been successfully compared
and/or assigned to variables.

CHAN: n values from the channel queue in main memory are pushed on the stack, where
n is the number of components in the message that is being received. The SUCCESS or
FAIL flags are not set. These flags are set later, when the values have been successfully
compared and/or assigned to variables.

4.6.3 Translation

This section describes how communication in the source language is translated into instructions in
the intermediate language (see also: Appendix C). The translation for handshake communication
and asynchronous communication is the same, except for the HS and CHAN instructions of
course. Sending and receiving are translated differently however. The translations in this section
assume a handshake(HS) instruction. When an asynchronous communication is needed, simply
replace all HS instructions with CHAN instructions.

Sending

A send statement in the source language is typically of the form:

<variable> ! <expression>, <expression>, ...

For example:

A ! 2, 5 + B

This example is translated as depicted in figure 4.10 (assuming B is the only global variable and
channel A is the only global channel):

HS SEND GLOB 0 ; Initiate the communication, channel id 0
PUSH 2 ; First component on the stack
PUSH 5
LDGVAR 0 ; Push variable B, global address 0
ADD ; Second component on the stack
SEND ; Send!

Figure 4.10: Translation of the send statement: A ! 2, 5 + B

This translation scheme is simple: initiate, push components on the stack, send.

Receiving

A receive statement in the source language is typically of the form:

<variable> ? <expression>, <expression>, ...

for example:

A ? 5 + B, C
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HS RECV GLOB 0 ; Initiate the communication, channel id 0
RECEIVE ; Receiving...
SETPP
PUSH 5 ; Pushing expression 5 + B
LDGVAR 0
ADD ; Evaluate 5 + B.
EQ ; Compare
EVAL ; Equal? Fail or Success for this component
LDGADDR 1 ; Pushing variable
XCHG
STORE ; Store the communication data. Success for this component
CLRPP

Figure 4.11: Translation of a typical receive statement: A ? 5 + B, C

This is translated as depicted in figure 4.11 (assuming B and C are the only global variables and
channel A is the only channel): As seen in figure 4.11, the RECEIVE instruction expects addi-
tional instructions to compare and/or store the communication data. These additional instructions
determine whether a receive is successful. When data is compared, the EVAL instruction deter-
mines the outcome. When data is stored in a variable the outcome is always a success, which is
indicated by the STORE instruction that always sets the SUCCESS flag.

Since all these different components can set the SUCCESS flag, the interpreter might think that
the statement has successfully ended after it has compared the first component. To ensure all
components are compared and/or stored, the instructions responsible for that are enclosed in a
SETPP and CLRPP pair.

The general translation for a receive statement is thus of the form: Initiate, Receive, SETPP,
compare and/or store data, CLRPP.

4.7 Process creation (RUN and IRET instructions)

The source language has an init section where all the processes are instantiated and started. The
intermediate language has a special instruction to start processes. This is the RUN instruction.
The RUN instruction takes a process definition ID as its only parameter and creates and starts
a new process instance of that definition.

A problem with process creation is how process parameters are handled. Parameters to pro-
cesses should be passed to the processes using the stack. It makes sense to push the parameters
onto the stack before theRUN instruction is executed. Since process parameters are nothing more
than local variables for that process, which are initialized upon process creation, the parameters
have to be stored in the local variable space somehow.

It was decided that the code responsible for the storage of process parameters, should be a part
of the process code, not of the init section code. A problem that arises when using this approach
is that the execution needs to switch from the init section to the process and back, because the
init section has to be completed before the ”normal” process code may start.

The solution is to have the parameter storage code at the beginning of each process’ code. The
parameter storage code is then ended with a special instruction which transfers control back to
the init section. This special instruction is the IRET instruction. To ensure that the init section
is completed before another process starts executing, the init section is enclosed in SETA and
CLRA instructions.

For example consider the process definition and instantiation as shown in figure 4.12.

Here, a process is declared that takes two integers as parameters. The translation of the process
code and init section code is shown in figures 4.13 and 4.14. Note that the order in which the
parameters are pushed on the stack in the init section is reversed.
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proctype aProcess(int a; int b) {
a = b + 5;

};

init {
run aProcess(2, 8);

}

Figure 4.12: Process creation/instantiation

LDLADDR 0
XCHG
STORE ; Store first parameter in local variable
LDLADDR 1
XCHG
STORE ; Store second parameter in local variable
IRET ; Return to the init section
LDLADDR 0 ; Start body code
LDLVAR 1
PUSH 5
ADD
STORE ; a = b + 5
HALT

Figure 4.13: Translation of a process with parameters

The general translation of the process creation/instantiation is as follows. First, all parameters
for the process are pushed onto the stack. Then theRUN instruction is executed, which temporar-
ily transfers control to the process code. The first instructions of the process code then remove
the parameters from the stack and store them in local variables. Finally, the IRET instruction is
executed which transfers control back to the init section.

SETA
PUSH 8
PUSH 2
RUN 1 ; process with id 1 (0 = init section)
CLRA
HALT

Figure 4.14: Translation of the init section for a process with parameters

4.8 Miscelaneous instructions

A couple of instructions do not fit into any sections above, these are:

• ASRT, used to translate an assert statement. ASRT removes a value from the stack.
And signals an assertion failed when this value is zero. Always sets the SUCCESS flag.

• GOTO, goto is used to translate a goto statement. It takes one parameter, the address to
jump to. It always sets the SUCCESS flag1.

• NOOP, does nothing. Is used to translate the skip statement.

• HALT, signals the interpreter that the current process has reached the end of its code and
should be stopped.

1unlike the JMP instruction which never sets the SUCCESS flag
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5.1 The NEXT function

The next function simply iterates over all processes, starting with the process that is instantiated
first, until it finds a process that is executable. How to determine whether a process is executable?
This is is realized by the program block process executable? as indicated in figure 5.1. This is a
very complex procedure that is described in more detail below.

5.1.1 Determining whether a process is executable

The executable function, called by the next function, is responsible for deciding whether a process
is executable or not. To explain how to determine whether a process is executable it is necessary
to define when a process is considered to be executable. Since a process can be non-deterministic,
i.e. it is possible for a process to randomly choose which statement to execute next, we let a
process be executable when at least one of the possible choices in the process is executable.

Definition 5.1 (Executable) A process is executable when at least one of the statements the
process could execute is executable.

The next function, the caller of the executable function, is only interested in the first possible next
state. Hence the executable function only searches for the first executable statement too. An
overview of the executable function is shown in figure 5.2.
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Figure 5.2: Overview of the executable subroutine.
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The executable function first backs up the current state1 after which it repeatedly calls the
interpreter until one of the flags in the flags register is set. (see section 3.3.1 for a definition of the
system flags) When a flag is set the following situations can occur:

Fail Flag After the fail flag is set, the system checks whether the atomic flag is also set2. And
if this is not the first statement in the atomic. If both of these conditions are true, an atomic
deadlock is detected. Recall that the decision whether an atomic statement is executable,
only depends on the first statement in the atomic clause. Any other statement that blocks
in the atomic will cause an atomic deadlock. If one of the conditions is false the system will
simply detect a blocked statement and will try to find another choice.

Success Flag When the success flag is set, the system has found an executable choice. After
this has been detected, it has to be determined whether this is a next transition or not. This
is done in the Check Success program block. This will be explained in more detail later on.

Choice Flag The choice flag indicates that the interpreter is at a point where it can make a
choice between different statements. In case of an else, which is also a choice, it has to
be determined whether the else is executable. This is only the case if and only if all the
previous choices were unsuccessful. The executable function will then call itself recursively.
This will be explained in more detail later.

Handshake Flag (Hs) The Hs flag indicates that a handshake is in progress. Executing a hand-
shake is a very complicated procedure and is explained in detail in section 5.2

Trying another choice

In

out

Restore

Choice
Exists?

step  = 1

Select Next Choice

out

Figure 5.3: Next Choice in more detail.

Trying another choice is straightforward (see figure 5.3). First, the exact state before the
last choice was tried is restored. Then the next choice is selected. If no such choice exist, the
executable function returns false, indicating that no successful choice was found, hence the
process is not executable. Otherwise the next executable statement is returned.
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Atomic? PrePost?

step  = step  + 1

Post Interpret

out

out

In

Figure 5.4: Check Success in more detail.

Determining whether a successful transition has been found

After the interpreter has set the success flag, the conclusion that a statement is executable can
not yet be made. The system can still be in an atomic state or in a prepost state. The executable
function takes the actions as shown in figure 5.4. If the system is still in one of the aforementioned
states, the system continues interpreting, else the current statement is considered executable.
After the post instructions have been interpreted the executable function stops and returns the
executable transition. The process is executable.

Post instructions Sometimes, after a successful transition has been found, the interpreter needs
to interpret some additional instructions which do not belong to any statement in the source
code. These instructions are for example the HALT instruction and the JMP instruction. The JMP

instruction is, amongst other things, found at the end of an if statement to jump over the other
choices. This instruction does not belong to any statement, but has to be executed.

Definition 5.2 (Post instruction) A post instruction is an instruction that does not belong to
any statement, but has to be executed when it is encountered.

5.1.2 Handling non-determinism

Non-determinism, or choice, is implemented using a recursive call of the executable function
when the choice flag is set. The reason why recursion is used for non-determinism is the recursive
definition of an if statement3.

An if statement is executable if and only if at least one of its choices is executable.

Also, since the source language allows nesting of if statements to an arbitrary level (see figure
5.5), the recursive structure becomes obvious. Consider figure 5.5, it is one if statement but
to determine whether this statement is executable the system has to determine for each sub-if
statement whether it is executable. In other words, executable calls itself, thus the most elegant
way to handle non-determinism is by using recursion.

Before the recursive call can be made, it is necessary to backup certain (global) information
since the recursive call can modify this. Examples of such values are as the current active choice
and the current number of choices. Figure 5.6 shows how the recursive call takes place.

1Including the flags register and the process halted bit
2In case of the atomic flag set means: > 0
3The same holds of course for a do statement
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if

:: if

:: if

:: etc, etc..

:: ...

fi;

:: ...

fi;

:: ...

fi;

Figure 5.5: Nesting of if statements

Backup choice data

Recursive  Call

Restore choice data

Restore choice data

In

out

out

Figure 5.6: Executable Recurse in more detail.

5.2 Handshake implementation

A handshake is a complex operation, many conditions have to be met before a handshake can
even start. And even when a handshake is in progress, it is not sure whether it will be successful.
This section will describe how a handshake works, in detail.

The first step in determining whether a handshake can start is to determine which process
initiates the handshake, in other words what process is the handshake initiator. Note that only
processes that want to send can initiate a handshake4.

When a suitable handshake initiator is found, the system locates the potential handshake
partners for the initiator i.e. which processes are willing to communicate with the initiator5. All
potential partners that are found are stored in a potential partner list. What is the format of a
potential partner? To be able to describe a potential partner the following information is needed:
(See also: 3.2)

• The process ID

• The choice in the process ID that contains the handshake instruction

• A status field that denotes whether this particular partner has

1. not yet been tried.

2. been successfully tried.

4This implies that processes that want to handshake receive, always block
5Note that processes that want handshake receive will be included



60 CHAPTER 5. IMPLEMENTATION OF THE ABSTRACT MACHINE

3. been unsuccessfully tried.

The last item is included for optimization and will be discussed in more detail later.

Definition 5.3 (Potential partner format) The format of a potential partner is (status, processID, [choice]).

This definition automatically yields the next definition.

Definition 5.4 (Potential partner list format) The format of the list of potential partners is
[potentialpartner] or [(status, processID, [choice])].

When all potential partners are found, the system checks whether there are enough partners
for the handshake. In other words, if the handshake initiator needs 2 partners, the handshake can
continue if the length of the partner list is greater or equal to 2. Note that when there are more
potential partners than needed, every combination of partners has to be tried. This is described
in more detail later.

5.2.1 Determining the potential partners

To find all partners for a specific process the system has to iterate through all processes and
all choices in those processes (recursive) to find a choice that would like to communicate and is
compatible with the handshake initiator.

Compatible partners

A potential partner is compatible with the handshake initiator if the following conditions are met:

1. The channels over which to communicate are the same.

2. The process ID of a partner process that wishes to handshake send has to be greater than
the process ID of the initiator.

The first condition is obvious, but the second needs further explanation. Suppose process 6 is
the handshake initiator and a possible partner is a handshake send statement in process 2. This
case has already been examined because all handshake combinations with process 2 as initiator
have already been tried. Thus process 6 has already been found to be a partner of process 2 at
an earlier stage. In other words, when the combination 2 handshakes with 6 has already been
tried, the combination 6 handshakes with 2 may be tried again. Otherwise two distinct handshake
combinations will be found which are actually the same.

Note that this is not the case with handshake receive statements because they can never initiate
a handshake.

5.2.2 Starting the handshake

When enough potential partners are found, the hs flag is set(see section 3.3.1) and the handshake
can continue. The handshake algorithm will proceed as shown in figure 5.8.

The first step in the handshake procedure is to set the previous handshake state. This is needed
when there were more partners than needed in the previous handshake, as described earlier in this
section, so that the handshake function can try the next possible handshake combination.

When the previous handshake is identified, the handshake function selects the next possible
handshake combination.
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Selecting the next handshake combination

Two data structures are used when calculating the next possible handshake combination. These
are depicted in figure 5.7.

Potential Partners

Partner Index

Figure 5.7: Data structures used when calculating the next handshake combination

In this figure, potential partners is the potential partner list, and partner index is a list con-
taining the actual partners used in the handshake combination. This setup is used for the previous
handshake and for the next handshake. When this is the first handshake that is being attempted,
the values in the partner index list are empty i.e. they do not point to a potential partner.

Selecting a next handshake combination is the process of modifying the partner index so that
the new partner index values point to the partners used in the next handshake combination.

The actual process of selecting the next possible handshake is a complicated algorithm. The
complete algorithm in pseudo code is depicted in figure 5.9.

When a valid handshake combination has been found, the handshake function tries to exe-
cute the handshake to see whether the selected handshake can execute. In other words, are the
parameters used in the handshake, the values to be send/received, compatible?
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Figure 5.8: Overview of handshake.

5.2.3 Trying a handshake combination

The process of trying a handshake is simply to interpret all instructions belonging to the hand-
shake6 and to check whether it is enabled. The handshake is enabled when the parameters of the
handshake, the variables and constants to be communicated, are compatible.

If a handshake is found to be not enabled, the handshake function will try the next possible
handshake. When there is no possible handshake, the handshake attempt has failed and the
handshake is not executable. (see figure 5.8)

6A specialized function is created for this, this isnot done by the executable function
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for i = 0 to sizeof(index)− 1 do
if i == 0 then

if not partners[index[i]] exists then
index[i] = 0

else
if not partners[index[i]] has been successfully tried then
begin

j = index[i] + 1
repeat

if not partners[j] exists then
return no next combination possible

else if not partners[j] has been unsuccessfully tried then
break = true

else
j = j + 1

until break
index[i] = j

end
else

if not partners[index[i]] exists then
if not partners[index[i− 1] + 1] exists then

return no next combination possible
else begin

index[i] = index[i− 1] + 1
while process id of partners[index[i]] and partners[index[i− 1]] are equal do
begin

index[i] = index[i] + 1
if not partners[index[i]] exists then return no next combination possible

end
end

else
if index[i] ≤ index[i− 1] or not partners[index[i]] has been successfully tried then
begin

j = index[i− 1] + 1
repeat

if not partners[j] exists then
return no next combination possible

else
if not partners[j] has been unsuccessfully tried and j > index[i− 1] then

if process id of partners[j] and partners[j − 1] are equal and
partners[j] has been successfully tried then
j = j + 1

else break = true
else j = j + 1

until break
index[i] = j

end

Figure 5.9: The Next Handshake Combination algorithm
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The Systematic State Explorer

The systematic state explorer uses the next state generator (see chapter 3) to generate all possible
states of a program, written in the source language. During the exploration, the following errors
can be detected:

• Deadlock (as described in section 2.8).

• Atomic Deadlock (as described in section 2.6).

• Assertion failed.

• Division by zero.

The systematic state explorer has three modes of operation:

• An exploration mode, in which every reachable state is visited and checked for errors.

• A simulation mode, in which a ”random run” is performed. This means that whenever there
is more than one possible next state, the actual next state is a random choice out of all
possible next states. Note that this can lead to a simulation that will run forever, since
the simulation may end up in a loop. Also it is not guaranteed that all reachable states
are actually reached. However, simulation mode may detect an error faster than exploration
mode.

• An interactive simulation. This is the same as simulation mode, with the important excep-
tion that whenever there is more that on possible next state, the user selects the actual next
state.

6.1 Exploration mode

Exploration mode systematically generates every possible state that can be reached, and checks
them, on-the-fly, for errors. It performs a depth-first search to visit the states. When a state is
found that has already been visited, that state is ignored. This ensures that eventually all possible
states will be checked, since it is not possible that the state explorer enters an infinite loop. The
process of generating all possible states, i.e. the depth first search is:

64
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procedure dfs(s : state)
if error(s) then report error fi
add s to Statespace
foreach successor t of s do

if t not in Statespace then dfs(t) fi
od

end dfs

Figure 6.1: The depth first search algorithm

An example of this process is depicted in figure 6.2. The search starts in the init state (the
state just after the init section has been executed). From this state, the first unexplored next state
is state 1 and after that, state 2. When state 2 is the current state, no new states can be found
so the state explorer backtracks to to the last successful state, state 1.

This time, the first unexplored next state is state 3 and after that state 4. In state 4, the state
explorer could go to state 2, but this is not an unexplored state and is ignored. Here, the next
unexplored state is state 5. State 5 is again a dead-end and the state explorer backtracks all the
way back to the init state. From here state 6 and 7 are generated in the same way as the other
states.
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Figure 6.2: An Example: generating all possible states

When the state explorer, again, arrives in the init state, and there are no next unexplored
states left, and backtrack is not possible, then all states have been explored (the OK state in the
picture).

To make this algorithm work, all states that have been found have to be stored somewhere, so
that duplicate states can be detected (for every potential new state is checked whether this state
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is in the list of ”known” states). In addition, the path up to the current state has to be stored, to
allow backtracking to the last successful state. Consider the following example: Suppose, in figure
6.2, the current state is state 5. The path which has to be stored is: ”init” -> ”1” -> ”3” -> ”4”.

Also, the state explorer has to remember which transition it took to get in a particular state.
This allows the state explorer to skip transitions it already took, during backtracking. Finally, the
high level statement responsible for a transition has to be stored to be able to generate a trace
(the sequence of statements leading to the error) when an error is detected. The previous example
would be stored as: (”init”, ”init”, ”init”) -> (”1”,first, code) -> (”3”,second, code) ->(”4”,first,
code) This ”path” information is stored in a stack. When a new state is found, this state and
the other necessary information is pushed on the stack. When backtracking, this information is
popped. Figure 6.3 shows what is in the stack and store(hash table).

State Transition Source State

Stack Entry Store Entry

Figure 6.3: Data structures used in the exploration.

6.1.1 The state hash table

For each potential new state that is found, it has to be checked whether this state is already been
visited earlier, i.e. is a duplicate state. Since this operation has to be performed so many times it
is crucial that the check whether a state is a duplicate state is done very efficient.

An efficient way to store and access the visited states is by using a hash table. What is stored
in the hash table are the states that have already been found. After experimenting with different
hash functions, the hash function that turned out to be the best (see also: [5], [16]) is shown in
figure 6.4:

result = state[0]
for i = 1 to sizeof(state)− 1 do

result = (result << 3) + state[i]
return result

Figure 6.4: The hash function

The complete exploration algorithm is shown in figure 6.5. The NEXT sub-block in this figure
is the next function as described in chapter 3.

6.1.2 Additional validation features

By default, the state explorer searches all states, until an error is found. A number features are
implemented to change this behavior:

1. The ability to ignore errors and always check all states, counting the number of errors found.

2. The ability to ignore a specific number of errors.

3. The ability to limit the search to a specific depth.

4. The option to detect loops.

5. The option to not detect duplicate states.

6. The ability to find the shortest path to an error.
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Figure 6.5: The validate/check algorithm

Loops

A loop occurs when the current state is already on the state stack. This means there is a loop in
the program. By default, loops are not detected because this is very slow. This is because a linear
search over the stack has to be performed.

Duplicate states

A duplicate state is a state that has already been visited once, but is not necessarily a loop. In
other words, when the current state is already in the state store (the hash table) a duplicate state
has been detected.

The shortest path algorithm

The algorithm to find the shortest path is as follows: The search is started as usual, with duplicate
state detection on, and loop detection off. When the first error is detected, the depth at which
it is found (and the trace) is remembered. This depth is called the last error depth. The search
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will continue, but will not go beyond depth last error depth - 1. After the first error is found, the
”known” duplicate states in the hash table are deleted. Also, duplicate state detection is disabled,
to ensure that every possible path is tried. And cycle detection is enabled, to ensure the search
will not go into an infinite loop.

When another error is found (at a lower depth) the last error depth is set to this value. But
duplicate state detection and cycle detection remain unchanged. The search will continue in this
fashion until all paths have been tried. The length of the shortest path is the last error depth.
The trace to this error is returned.
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6.2 Simulation mode

Simulation mode performs a simulation of the execution of the model. Whenever a non-deterministic
choice can be made, a random choice will be made. No tests for duplicate states are made, so
the simulation can enter an infinite loop. There is no guarantee that every possible state will
eventually be reached.

There are two simulation modes:

Random simulation This mode will take a random choice when a choice can be made.

Interactive simulation This mode will allow the user to select a choice when a choice can be
made.

The simulation algorithm is roughly as follows: In the current state, generate all possible next
states. Select a state from all those states (random or interactive) and let the current state be
that state. Repeat this process until an error is found or the program has successfully ended.

6.2.1 Generating all possible next states

The process of generating all possible next states is shown in figure 6.6. The next function is

NEXT

Output add (State_Out,
Trans_Out, Source_Out)

Clear: State_Out

Clear: Source_Out

Clear:Trans_In

Clear:Trans_Out

Done

Trans_In

Trans_Out Source_Out State_Out

Input for NEXT

No Next State

Trans_In = Trans_Out

Clear: Trans_Out

Clear: Source_Out

State_In = constant

Out
[(State_Out, Trans_Out, Source_Out)]

Figure 6.6: Generating all possible transitions

simply called while keeping the input state constant and assigning the output transition to the
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input transition after each successful next state. This way a list of all possible next states is
generated.



Chapter 7

The tool

This chapter describes MAJoR, the systematic state explorer tool that was implemented 1. The
tool will be illustrated by examples of models which it can check and statistics about the speed,
states visited etc.

7.1 Invoking MAJoR

MAJoR is a command line utility. If no parameters are given, the following output, showing all
possible command line options, is given.

Syntax: MAJoR <input file> [<option> ...]

Options:

-M<mode> : 0 = Run a complete model check. (default)

1 = Run an interactive simulation.

2 = Run a random simulation.

-i : (Use with -M0) Ignore errors.

-s : (Use with -M0) Save the shortest path found.

-q : (Use with -M2) Performs simulation without outputting

every step to the screen.

-t : (Use with -M2) Don’t write trace info to trace file.

-S<rseed> : (Use with -M2) Set the random seed value.

-H<errornr> : (Use with -M0) Hold at error <errornr>.

-B<bucketsize> : (Use with -M0) Set the initial bucketsize of the hashtable.

(default = 100000)

-U<update> : Set the update value for screen output.

Lower is faster update. (default = 1009)

-C<cls> : Set the clear screen command for the console (-Cclear)

-D<depth> : (Use with -M0) Set the maximum search depth.

-c : (Use with -M0) Detect cycles (very slow).

-d : (Use with -M0) Revisit known states.

(do not detect duplicate states).

-L : (Use with -M0) Limit search depth to depth last error.

-P : (Use with -M0) Find the shortest path.

Figure 7.1: Command-line options of MAJoR

1The current name for the tool is MAJoR, after the author of the tool. But this name is a working name only
and may be subject to change.
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The only mandatory parameter is the input file. This file contains the model which has to be
checked for errors. All other parameters are optional and are described in the next section.

7.1.1 Command line options

-M<mode> Specifies in what mode the systematic state explorer will run. Use -M0 to start a
complete check (or validate mode), -M1 to start an interactive simulation and -M2 to start a
random simulation.

-i The systematic state explorer will not stop when an error is found. The errors will be counted.

-s The systematic state explorer will remember the trace of the shortest path to an error. This
trace is saved to the output file.

q Normally, when running a random simulation, every step that is executed is printed to the
screen. This option will not show every step. Instead, a status line is displayed showing the
number of seconds the simulation is running, the number of transitions taken and the speed
in transitions/second.

t Using this option, no trace information is written to the trace file. This can be convenient when
running simulations of very large models. The trace files of such models can be very large
(Gigabytes).

-S<rseed> Use the rseed value, for example -S1234, to manually initialize the random number
generator used by the random simulation mode. When this option is not used, the value is
”randomly” chosen. The rseed value can be used to perform the same ”random” simulation
twice. The rseed value that was used in the last simulation can be found in the trace file.

-H<errornr> When using this option, for example -H3, the systematic state explorer will count
and ignore the errors it detects, until the number of errors equals errornr. This last error
will be reported.

-B<bucketsize> Use this option to manually initialize the number of buckets in the hash table,
used by the systematic state explorer to store already visited states. Experiment with this
value for possible speed optimization. Example: -B100000.

-U<update> The update value means how often status information is written to the screen. New
status information is written to the screen every update transitions. Use lower values for
more accurate status information. Lower values mean faster update but slower performance.
Example: -B1000.

-C<cls> Since clearing the screen is not a standard ANSI C command, the console ”clear
screen” command can be set using this option. For example -Cclear for UNIX and -Ccls for
DOS/WINDOWS.

-D<depth> The search is limited to a depth of depth. When this depth is reached, the search
will continue, but not beyond this depth.

-c The systematic state explorer will detect cycles.

-d The systematic state explorer will revisit known states. Except states that cause a cycle (if
the detect cycles option is enabled).

-L When an error is found, the search depth will be limited to the depth of that error.

-P Start the shortest path algorithm as describe in section 6.1.2.
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7.1.2 The output files

MAJoR automatically creates two output files, a .cod file (code) and a .trc file (trace). The
name of these files is the name of the input file from which any extensions are removed, plus the
new extension (.cod or .trc). For example an input file named test.mjr generates text.cod and
text.trc.

The code file (.cod)

The code file contains the intermediate code which was generated from the source language. The
code is commented to show which instructions belong to which statement in the source language.
An example of a .cod file, taken from the example from section 7.3, is presented in appendix F.

The trace file (.trc)

When an error has been found during a complete check, the complete path to the error, called the
trace is written to this file. In addition the values of all variables when the error occurred, and
what kind of error occurred.

When running a simulation, random or interactive, the current and/or last trace is always
written to the file. In addition the last random seed will be written to the trace file in case of a
random simulation. An example .trc file is shown in figure 7.7, in section 7.3.

7.2 The status line

When running MAJoR in exploration mode, a status line will be displayed which shows statistics
about the current search. Figure 7.2 shows an example of the status line.

State vector: 30 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

2, 5993, 1458, 11987, 4604, 4236, 3146, 0, 1, 1459

Figure 7.2: The status line

Secs How long the validation has been running, in seconds.

Speed The average speed of the validation, States/Secs. The average number of visited states
per second.

Depth The current stack depth. Or the length of the current path.

States The number of states tried. This equals New + Dup + End + Cycle + Err

New The number of new/unique states that have been found.

Dup The number of duplicate states found.

End The number of end states found.

Cycle The number of cycles/loops that have been detected. (This requires the -c option).

Err The number of errors that have been found.

Short The length of the shortest path to an error.
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7.3 EXAMPLE: Unreliable communication

The code in figure 7.3 shows a model of unreliable communication. Two processes communicate
with each other, a sender and a receiver. The sender sends integer values of increasing value
(modulo MAX). The receiver receives those values. The assert statement in the receiver process
checks whether the value that is sent, is received in the correct order. However, a daemon process
is also running. The daemon process can receive the value that is sent by the sender at any time,
so the receiver will not receive the correct value.

int MAX = 16; chan c = [1] of {byte};

proctype Sender (chan out) {

byte i; i = 0;

do

:: out!i; i = (i+1) % MAX;

od;

};

proctype Receiver (chan in) {

byte j; byte k;

do

:: in?j; assert(j == k); k = (k+1) % MAX;

od;

};

proctype Daemon (chan in) {

byte k;

do :: in?k; od;

};

init {

run Sender (c);

run Receiver (c);

run Daemon (c);

}

Figure 7.3: Source code for unreliable communication example.

7.3.1 Running in validate mode

First the daemon process is not started i.e. the ”run Daemon (c)” statement in the init section is
commented out. MAJoR is invoked like this, assuming the source file is called communication.mjr :

MAJoR communication.mjr

The output is shown in figure 7.4.
As expected, no errors are found. All values send, are received at the correct time. Now the

daemon function is started and the validation is started again. The output is shown in figure 7.5.
Again, as expected, an error is found. As seen in the output:

Assertion failed: Process: Receiver(2), Statement: assert (j == k)

This is the first error the systematic state explorer has detected, and since no other options have
been specified the validation is stopped after finding this error. The length of the path is 90, as
seen in the output under Short. The trace to this error has been written to ’communication.trc’.
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Parsing...

Warning(Line: 27, Pos: 2) : Identifier ’Daemon’ declared at: (Line: 18, Pos: 16)

, but not used.

Done.

State vector: 11 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

0, 505, -1, 505, 195, 114, 196, 0, 0, n/a

No errors found.

Closing files...

Freeing memory...

Figure 7.4: Unreliable communication example without daemon

Parsing...Done.

State vector: 14 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

0, 91, 89, 91, 89, 1, 0, 0, 1, 90

Assertion failed: Process: Receiver(2), Statement: assert (j == k)

Writing trace to file ’communication.trc’...Done.

Closing files...

Freeing memory...

Figure 7.5: Unreliable communication example with daemon

The length of the path to the error is 90 steps. This is a bit long. There is of course a shorter
path to an error. The shortest path to an error can be found by using the -P command line option.
The output after running MAJoR :

MAJoR communication.mjr -P

is shown in figure 7.6.

Parsing...Done.

State vector: 14 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

1, 8664, -1, 8664, 5874, 1, 5875, 8, 68, 7

Assertion failed:

Writing trace to file ’communication.trc’...Done.

Closing files...

Freeing memory...

Figure 7.6: Unreliable communication example with daemon, shortest path

The shortest path to an error is now 7 steps. The trace to this error is written to the file
’communication.trc’ and is shown in figure 7.7. The trace shows the contents of all variables and
the steps the state explorer took to get to the error. The global variable c is a channel variable
this particular channel has a capacity of one. The reason that two values are displayed is that
the first value always denotes the number of elements in the channel. As seen in the trace, the
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Assertion failed:

Global Variables:

MAX:16

c:[0, 0]

Process: Sender(1):

out:0

i:1

Process: Receiver(2):

in:0

j:1

k:0

Process: Daemon(3):

in:0

k:0

1: Process: Sender(1), Statement: i = 0

2: Process: Sender(1), Statement: out!i

3: Process: Sender(1), Statement: i = (i + 1) % MAX

4: Process: Daemon(3), Statement: in?k

5: Process: Sender(1), Statement: out!i

6: Process: Receiver(2), Statement: in?j

Figure 7.7: Trace of unreliable communication example 3

daemon process receives the first value that is send. And thus the assertion will fail the first time
the receiver receives something.

7.3.2 Running a random simulation

A random simulation is started by invoking MAJoR using the -M2 option. This will write the
resulting trace into the trace file unless the -t option is used.

MAJoR communication.mjr -M2

An example of a possible random trace(taken from the trace file) is shown in figure 7.8. Notice

Random seed value: 983796021

1: Process: Sender(1), Statement: i = 0

2: Process: Sender(1), Statement: out!i

3: Process: Receiver(2), Statement: in?j

4: Process: Sender(1), Statement: i = (i + 1) % MAX

5: Process: Sender(1), Statement: out!i

6: Process: Receiver(2), Statement: assert (j == k)

7: Process: Daemon(3), Statement: in?k

8: Process: Sender(1), Statement: i = (i + 1) % MAX

9: Process: Sender(1), Statement: out!i

10: Process: Receiver(2), Statement: k = (k + 1) % MAX

11: Process: Receiver(2), Statement: in?j

Assertion failed:

Figure 7.8: Possible random trace of communication.mjr

that the random seed value is included in the trace file so that this exact same random run can
be recreated using the -S<seed> option.
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7.3.3 Running an interactive simulation

The interactive simulation mode (-M1) allows the user to step through the program. Possible
non-deterministic choices can be made by the user.

MAJoR communication.mjr -M1

will present the user with the screen as shown in figure 7.9. The user can see the contents of all

Global Variables:

MAX:16

c:[0, 0]

Process: Sender(1):

out:0

i:0

Process: Receiver(2):

in:0

j:0

k:0

Process: Daemon(3):

in:0

k:0

--------------------------

-- Possible Transitions --

--------------------------

1: Process: Sender(1), Statement: i = 0

2: [Quit]

--------------------------

Select next transition (1 - 2):

Figure 7.9: Interactive simulation, first step

the variables and is able to select the next step from the list of possible transitions. There is only
one possible transition in figure 7.9 namely: 1: Process: Sender(1), Statement: i = 0.
The second option, [Quit], quits the interactive simulation.

After selecting the first possible transition twice, the list of possible transitions will be of length
3. This is shown in figure 7.10. Note that the option to backtrack, [Backtrack], has appeared.
This allows the user to return to a previous state and select another transition.
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Global Variables:

MAX:16

c:[1, 0]

Process: Sender(1):

out:0

i:0

Process: Receiver(2):

in:0

j:0

k:0

Process: Daemon(3):

in:0

k:0

--------------------------

-- Possible Transitions --

--------------------------

1: Process: Sender(1), Statement: i = (i + 1) % MAX

2: Process: Receiver(2), Statement: in?j

3: Process: Daemon(3), Statement: in?k

4: [Backtrack]

5: [Quit]

--------------------------

Select next transition (1 - 5):

Figure 7.10: Interactive simulation, third step

7.4 EXAMPLE: The towers of Hanoi

This example shows how MAJoR can be used to solve a puzzle or problem. In this case the puzzle
is to solve the ”towers of Hanoi” problem. It also demonstrates the use of pre-post conditions
and atomic statements. This puzzle is solved by letting MAJoR explore all possible transitions
(moving a disc from one tower to another) until an ”error” is detected (an error is generated on
purpose in the desired end state. i.e. when all the discs have been moved to the last tower). The
source code for this example is shown in figure 7.11. In this example, three discs are used. The
source code for examples with 5 and 7 discs can be found in appendix E.

7.4.1 Source code explanation

There is one process, called tower, which is instantiated three times. One process for each tower.
The tower process takes four parameters: Id to identify the tower and s1 to s3 which are the
three discs that can be on the tower. s1 is the bottom disc and s3 is the top disc. ”Discs” are
integer values from 1 to 3, where large numbers mean a larger disc. A disc can only be placed on
a tower when it is empty or the disc below is larger than the disc to be placed.

A communication channel, called Hand declared. Towers can send discs to the hand and receive
discs from the hand. This is the process of moving a disc from tower to tower. When the desired
end state is reached, an assertion it thrown.

7.4.2 Results

When running MAJoR to solve this problem, the output as shown in fugure 7.12 is produced. The
first error is found at depth 19.

When the shortest path has to be found the results are as shown in figure 7.13. The shortest
path is of length 15. The trace to this error is shown in figure 7.14(taken from the trace file).
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chan Hand = [1] of {int};

proctype Tower(int Id; int s1; int s2; int s3) {

do

:: {((s3 != 0) && (Id == 3))} assert 0;

:: {((s3 != 0) && (Id != 3))} atomic{Hand!s3; s3 = 0;};

:: {((s3 == 0) && (s2 != 0))} Hand?s3 {s3 < s2};

:: {((s3 == 0) && (s2 != 0))} atomic{Hand!s2; s2 = 0;};

:: {((s3 == 0) && (s2 == 0) && (s1 != 0))} Hand?s2 {s2 < s1};

:: {((s3 == 0) && (s2 == 0) && (s1 != 0))} atomic{Hand!s1; s1 = 0;};

:: {((s3 == 0) && (s2 == 0) && (s1 == 0))} Hand?s1;

od;

};

init {

run Tower(1,3,2,1);

run Tower(2,0,0,0);

run Tower(3,0,0,0);

}

Figure 7.11: ”The towers of Hanoi” source code, three discs

Parsing...Done.

State vector: 18 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

0, 121, 18, 121, 48, 42, 30, 0, 1, 19

Assertion failed: Process: Tower(3), Statement: assert 0

Writing trace to file ’Hanoi2.trc’...Done.

Closing files...

Freeing memory...

Figure 7.12: Towers of Hanoi result, three discs, first error

One can verify that this is indeed the shortest solution to the Towers of Hanoi problem with three
discs.
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Parsing...Done.

State vector: 18 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

0, 411, -1, 411, 146, 42, 147, 92, 2, 15

Assertion failed:

Writing trace to file ’Hanoi2.trc’...Done.

Closing files...

Freeing memory...

Figure 7.13: Towers of Hanoi result, three discs, shortest path

1 : Process: Tower(1), Statement: atomic {Hand!s3;s3 = 0;}

2 : Process: Tower(3), Statement: Hand?s1

3 : Process: Tower(1), Statement: atomic {Hand!s2;s2 = 0;}

4 : Process: Tower(2), Statement: Hand?s1

5 : Process: Tower(3), Statement: atomic {Hand!s1;s1 = 0;}

6 : Process: Tower(2), Statement: Hand?s2

7 : Process: Tower(1), Statement: atomic {Hand!s1;s1 = 0;}

8 : Process: Tower(3), Statement: Hand?s1

9 : Process: Tower(2), Statement: atomic {Hand!s2;s2 = 0;}

10: Process: Tower(1), Statement: Hand?s1

11: Process: Tower(2), Statement: atomic {Hand!s1;s1 = 0;}

12: Process: Tower(3), Statement: Hand?s2

13: Process: Tower(1), Statement: atomic {Hand!s1;s1 = 0;}

14: Process: Tower(3), Statement: Hand?s3

Figure 7.14: Shortest path to the Towers of Hanoi problem

7.5 EXAMPLE: Bounded retransmission protocol

In this example the Bounded Retransmission Protocol, which is used in one of the Philips’ products
(see: [10, 7]) is verified. The source code for this model is found in appendix D. The results are
shown in figure 7.15.

Parsing...Done.

State vector: 41 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

779, 19164, -1,14928780, 3868079, 7192621, 3868080, 0, 0, n/a

No errors found.

Closing files...

Freeing memory...

Figure 7.15: Bounded retransmission protocol check results
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7.6 EXAMPLE: The dining philosophers problem

The dining philosophers problem is the classic problem of five philosophers who are trying to
eat spaghetti with two forks. The philosophers sit at a round table, each having a fork between
them. Thus there are five forks. Before a philosopher can eat he needs two forks. Logically it is
not possible that all philosophers eat at the same time. And when all philosophers take a fork
a deadlock occurs because nobody can take his second fork. The source code for this problem is
depicted in figure 7.16.

chan chan1 = [1] of {int};

chan chan2 = [1] of {int};

chan chan3 = [1] of {int};

chan chan4 = [1] of {int};

chan chan5 = [1] of {int};

int FORK = 1;

proctype place_forks() {

atomic {

chan1!FORK;

chan2!FORK;

chan3!FORK;

chan4!FORK;

chan5!FORK;

};

};

proctype philosopher(int left_hand; int right_hand; chan

left_fork; chan right_fork) {

if /* Take forks */

::left_fork?left_hand; right_fork?right_hand;

::right_fork?right_hand; left_fork?left_hand;

fi;

skip; /* Eat */

if /* Drop forks */

:: left_fork!left_hand; right_fork!right_hand;

:: right_fork!right_hand; left_fork!left_hand;

fi;

};

init {

run place_forks();

run philosopher(0, 0, chan1, chan2);

run philosopher(0, 0, chan2, chan3);

run philosopher(0, 0, chan3, chan4);

run philosopher(0, 0, chan4, chan5);

run philosopher(0, 0, chan5, chan1);

}

Figure 7.16: Source code for the Dining Philosophers problem



82 CHAPTER 7. THE TOOL

When running MAJoR on this problem, a deadlock is indeed detected. MAJoR is run with
the shortest path search option enabled. The output of this run is shown in figure 7.17. The
corresponding trace file for the shortest path is shown in figure 7.18. As expected a deadlock
occurs when all processes take, for example, their left fork, which is shown in the trace.

Parsing...Done.

State vector: 38 bytes.

Checking...

Secs Speed Depth States New Dup End Cycle Err Short

1, 19910, -1, 19910, 6464, 9117, 6465, 0, 1, 6

Deadlock detected.

Writing trace to file ’philo.trc’...Done.

Closing files...

Freeing memory...

Figure 7.17: MAJoR output for the Dining Philosophers problem



7.6. EXAMPLE: THE DINING PHILOSOPHERS PROBLEM 83

.

Deadlock detected.

Global Variables:

chan1:[0, 0]

chan2:[0, 0]

chan3:[0, 0]

chan4:[0, 0]

chan5:[0, 0]

FORK:1

Process: philosopher(2):

left_hand:1

right_hand:0

left_fork:0

right_fork:1

Process: philosopher(3):

left_hand:1

right_hand:0

left_fork:1

right_fork:2

Process: philosopher(4):

left_hand:1

right_hand:0

left_fork:2

right_fork:3

Process: philosopher(5):

left_hand:1

right_hand:0

left_fork:3

right_fork:4

Process: philosopher(6):

left_hand:1

right_hand:0

left_fork:4

right_fork:0

1: Process: place_forks(1), Statement: atomic {chan1!FORK;chan2!FORK;chan3!FORK;

chan4!FORK;chan5!FORK;}

2: Process: philosopher(2), Statement: left_fork?left_hand

3: Process: philosopher(3), Statement: left_fork?left_hand

4: Process: philosopher(4), Statement: left_fork?left_hand

5: Process: philosopher(5), Statement: left_fork?left_hand

6: Process: philosopher(6), Statement: left_fork?left_hand

Figure 7.18: Trace file of the shortest path for the Dining Philosophers problem
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7.7 Comparison to Spin

Some of the examples presented in the previous sections have also been run using Spin. Only the
examples which could be translated from MAJoR to Spin without to much hassle are included.
These are: the unreliable communication example, the bounded retransmission protocol and the
Dining philosophers problem. To make the test more fair, the following Spin features are disabled:

• Partial Order reduction.

• Dataflow analysis.

• Dead variable elimination.

• Statement merging.

The following changes are also made to the Spin model code, in order to make the Spin model
as close as possible to the MAJoR model:

• run statements in the init section are made atomic to emulate the way MAJoR handles
process creation.

• The order of process creation in Spin is reversed. Again, to emulate the behavior of MAJoR.

The source code and output for the Spin examples can be found in the following appendices:

• Unreliable communication: Appendix G

• Bounded retransmission protocol (output only): Appendix H

• Dining philosophers: Appendix I

7.7.1 Comparison results

The unreliable communication example

Spin MAJoR
Size State Vector 40 Bytes 14 Bytes
first error
Number of states 92 91
Stored states 91 89
Matched states 1 1
End states n/a 0(1 error)
First error depth 93 90
Runtime of verification(sec) real:0.2 user:0.0 sys:0.0 real:0.37 user:0.10 sys:0.04
shortest path
Number of states 1064 8664
Stored states 505 5874
Matched states 559 1
End states n/a 5875(+8 cycles, 68 errors)
Length of shortest path 9 7
Runtime of verification(sec) real:14.3 user:0.0 sys:0.0 real:13.69 user:13.07 sys:0.04
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The bounded retransmission protocol example

Spin MAJoR
Size State Vector 92 Bytes 41 Bytes
Number of states 1.8214 ∗ 107 1.4929 * 107

Stored states 7.4001 ∗ 106 3.8681 * 106

Matched states 1.08139 ∗ 107 7.19262 * 106

End states n/a 3.8681 * 106

Runtime of verification(sec) real:418.9 user:399.3 sys:18.1 real:792.29 user:761.83 sys:27.11
Number of errors found 0 0

The dining philosophers example

Spin MAJoR
Size State Vector 128 Bytes 38 Bytes
Shortest path
Number of states 23580 19910
Stored states 6216 6464
Matched states 17364 9117
End states n/a 6465 (1 error)
Length of shortest path 17 6
Runtime of verification(sec) real:4.7 user:1.8 sys:2.3 real:1.22 user:0.89 sys:0.04

7.7.2 Conclusions

Speed

As seen in the results, Spin outperforms MAJoR in terms of speed. But the current version of
MAJoR is only a prototype, it has not yet been optimized in any way. Spin, on the other hand,
is the results of years of research an improvements. The difference in speed is of course most
noticeable in the larger example, the bounded retransmission protocol.

State vector size

In all examples, the state vector size of MAJoR is significantly smaller than the state vector in
Spin. And the current state vector of MAJoR is un-optimized for size. This is very strange. Spin

seems to store more information in the state vector than needed. The only information needed for
the state vector(in MAJoR) is all the local and global variables and all the instruction pointers.
One explanation for the large state vector size of Spin is that maybe Spin needs more information
in the state vector for its various optimizations.

Number of states

The number of states in MAJoR has a different meaning than the number of states in Spin. In
Spin, the number of states equals the number of stored states plus the number of matched states.
In MAJoR the number of states is actually the number of times the next function is called. This
equals: stored states + matched states + end states + errors. To get MAJoR’s total states,
add stored states(new) and matched states(dup). MAJoR’s end states are in fact points in the
traversal of the search tree where the state explorer decides that it has to backtrack.

Comparison of the number of states when using the shortest path algorithm is hard. This
is because MAJoR implements the shortest path algorithm in a way which makes it hard to
determine the total new states visited. The comparison can be made when not using the shortest
path algorithm though. The examples which do not use the shortest path algorithm are: the
unreliable communication example and the bounded retransmission protocol example. The number
of states in the former is about equal for Spin and MAJoR. However when validating the bounded
retransmission protocol, Spin generates significantly more states than MAJoR. This can not be
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caused by the fact that Spin handles the init section differently since the Spin code was changed
to emulate MAJoR’s behavior by making the init section atomic.

The source code for this protocol is quite different for Spin and MAJoR. This may cause the
difference in the amount of states. MAJoR does not support arrays, while Spin does not support
handshake channels.

Another, very simple, model has been verified by MAJoR and Spin. When verifying this model

proctype p1() {

int i = 0;

do

:: i < 10000; i=i+1;

:: i >= 10000; break;

od;

(1 > 2);

};

init {

run p1();

}

Figure 7.19: Small example to test state generation.

in Spin and MAJoR, both generate the same amount of states, namely 20003. MAJoR generates
one more because the statement int i = 0 is a state in MAJoR. When optimizations are enabled
in Spin, Spin only needs approximately 10000 states because it can merge the statements in the
loop. Both verifiers conclude that a deadlock has been detected of course.
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Conclusions

We presented the design and implementation of MAJoR, a tool that can systematically explore
all states of a model and check them for errors as described in chapter 6. However, it is not yet
a real model checker; it is not possible to perform the range of checks as supported by the CTL
and/or LTL languages (see [15]). Also, MAJoR does not optimize things to the same extent as
Spin does. Spin uses optimization techniques, such as partial order reduction, to reduce the size
of the state space. State vector compression and bitstate hashing are used to allow even more
states to be explored.

The work shares similarities to the work done by Jaco Geldenhuys [12]. Apart from the addition
of multiway handshake communication and pre- and post-conditions, there are a number of other
differences. Unlike Jaco’s work, MAJoR’s implementation of non-determinism does not put any
restrictions on the kind of statements that can be run non-deterministically. MAJoR allows every
statement to be a part of the non-deterministic if statement, even other if statements. This
can lead to nested if-statements which greatly increases the complexity of transitions and the
implementation of non-determinism. However, the general approach of MAJoR can also lead to
very annoying bugs and problems (see section 8.3) and slower performance.

8.1 Future work

Logically, the first step from here is to add CTL and/or LTL support to MAJoR. Implementing a
model checker for CTL and/or LTL can be done without altering the underlying state generation
structure of MAJoR. No changes to the next function are necessary.

Optimization techniques such as bitstate hashing and state compression can easily be im-
plemented since these techniques do not require the other parts of the program to be intensely
modified. Partial order reduction however, is not so easily implemented. It will probably require
serious modifications in the state generator.

8.2 Suggestions for improvement

The following is a list of suggestions, improvements, or features that have not yet been imple-
mented.

8.2.1 Re-design of the intermediate language

Currently, the instructions of the intermediate language are too much specifically designed for the
input language. The intermediate language should be made more general to be able to design
other high level languages for it more easily.

87
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8.2.2 Minor improvements on the input language

Arrays Currently, arrays are not yet supported. The grammar of the input language can parse
them but no code can be generated to allow arrays yet. The lack of arrays severely limits the ease
of writing complex models, and they should be added as soon as possible.

Data types Currently, only one data type is supported, the integer. The grammar can parse
other data types, but they are still mapped onto an integer. To reduce the size of the state vector,
smaller data types such as byte and bit should be added.

Ranged types The input language grammar already recognizes ranged types. But they are not
yet implemented. Ranged types can be used to declare a type of a specific range of numbers, for
example [1..15]. This can be used to reduce the size of the state vector.

Type checking The type checking in the parser module is far from completed.

Re-design of the input language grammar The current input language grammar is much
like the general available C++ grammar [1]. The current grammar is however too complicated and
too ambitious because it allows too many language features that are not supported by MAJoR.
It should be rewritten to make it simpler to add rules. This will make the addition of arrays, for
example much easier. Also it will improve readability and maintainability of the parser module.

8.2.3 Implementation improvements and additions

Re-design of the parser The current implementation of the parser module, using a class for
each grammar rule is not practical and unmaintainable. The parser module should be rewritten.

Optimize cycle detection Currently the cycle detection algorithm uses an extremely slow
linear search through the stack. This can be optimized using an additional bit in the hash table
for each visited state, which indicates whether that state is in the stack or not.

Addition of breadth first search As an experiment, breadth first search of the state space
could be added. This may speed up the shortest path algorithm.

8.2.4 C++ and the STL library

The entire tool has been written in strict ANSI C++ [1] using the STL library [4]. Although the
STL library provides a lot of functionality, it may be better to write some parts yourself.

Instead of using the C++ STL hash table, an new specialized hash table could be written. One
advantage of this is that with a different hash table, collisions can be detected which is valuable
information. The STL hash table does not allow this.

Instead of relying on the default STL memory allocation, it may be better to manage memory
allocation yourself. For some reason the standard STL implementation seems to use too much
memory. When doing it yourself it is possible to have a more precise idea of how much memory
is actually used. Luckily, all the STL data structures allow it to create custom memory allocators
for them.

8.3 Known problems

The following is a list of problems or bugs which have not been solved yet.
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A do statement inside an atomic statement. A do statement inside an atomic statement
will cause problems when the conditions to enable the choices in the do statement are not distinct.
This is because an atomic do statement may generate an infinite long transition. The result is a
stack overflow.

Handshake communication inside an atomic statement. Using a handshake statement
inside an atomic statement causes undesired results, unexpected atomic deadlocks or otherwise
erratic behavior.
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Grammar of the source language

<specification> : <global declaration list> <initialize>
<initialize> : init { <run process list> }
<run process list> : <run process>

: <run process> <run process list>
<run process> : run <identifier> ();

: run <identifier> ( <parameter list> );
<global declaration list> : <global declaration>

: <global declaration> <global declaration list>
<global declaration> : <process definition> ;

: <declaration> ;
<process definition> : proctype <identifier> ( <declaration list> ) { <statement list> }

: proctype <identifier> () { <statement list> }
<declaration> : <type specifier> <variable list>
<declaration list> : <declaration>

: <declaration> ; <declaration list>
<statement list> : <statement>

: <statement> <statement list>
<statement> : <identifier> : <guarded statement> ;

: <guarded statement> ;
<guarded statement> : <guardable statement>

: <pre guard> <guardable statement>
: <guardable statement> <post guard>
: <pre guard> <guardable statement> <post guard>

<guardable statement> : <complex statement>
: <simple statement>
: <assignment statement>

<complex statement> : <if statement>
: <do statement>
: <expression>
: <communication statement>

<simple statement> : <compound statement>
: <atomic statement>
: <goto statement>
: <skip statement>
: <assert statement>
: <declaration>
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<assignment statement> : <unary expression> = <expression>
<atomic statement> : atomic { <statement list> }
<goto statement> : goto <identifier>
<skip statement> : skip
<assert statement> : assert <expression>
<compound statement> : { <statement list> }
<if statement> : if <if choice list> fi
<do statement> : do <do choice list> od
<communication statement> : <send statement>

: <receive statement>
<send statement> : <postfix expression> ! <parameter list>
<receive statement> : <postfix expression> ? <parameter list>
<parameter list> : <expression>

: <expression> , <parameter list>
<variable list> : <init variable>

: <init variable> , <variable list>
<init variable> : <variable>

: <variable> = <expression>
: <variable> = <channel init>

<pre guard> : { <expression> }
<post guard> : { <expression> }
<channel init> : [ <expression> ] of { <type list> }
<variable> : <postfix expression>
<type list> : <type specifier>

: <type specifier> , <type list>
<type specifier> : bit

: byte
: int
: chan
: hs
: char
: int <ranged type>
: byte <ranged type>
: char <ranged type>

<ranged type> : [ <literal> .. <literal> ]
<if choice list> : <if choice>

: <if choice> <if choice list>
: <if choice> <if choice else>

<do choice list> : <do choice>
: <do choice> <do choice list>
: <do choice> <do choice else>

<do statement list> : <in do statement>
: <in do statement> <do statement list>

<if choice> : :: <statement list>
<if choice else> : :: else ; <statement list>
<do choice> : :: <do statement list>
<do choice else> : :: else ; <do statement list>
<in do statement> : <statement>

: <break statement>
<break statement> : break;
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<expression> : <logical and expression>
: <expression> || <logical and expression>

<logical and expression> : <inclusive or expression>
: <logical and expression> && <inclusive or expression>

<inclusive or expression> : <exclusive or expression>
: <inclusive or expression> | <exclusive or expression>

<exclusive or expression> : <and expression>
: <exclusive or expression> ˆ <and expression>

<and expression> : <equality expression>
: <and expression> & <equality expression>

<equality expression> : <relational expression>
: <equality expression> <equality operator> <relational expression>

<relational expression> : <shift expression>
: <relational expression> <relational operator> <shift expression>

<shift expression> : <additive expression>
: <shift expression> <shift operator> <additive expression>

<additive expression> : <multiplicative expression>
: <additive expression> <additive operator> <multiplicative expression>

<multiplicative expression> : <unary expression>
: <multiplicative expression> <multiplicative operator> <unary expression>

<unary expression> : <postfix expression>
: <unary operator> <unary expression>

<postfix expression> : <primary expression>
: <postfix expression> [ <number> ]
: <postfix expression> <postfix operator>

<primary expression> : <literal>
: <identifier>
: <array init>
: ( <expression> )

<literal> : NUMBER
: CHARACTER

<array init> : { <parameter list> }
<identifier> : IDENTIFIER
<equality operator> : ==

: !=
<relational operator> : <

: >
: <=
: >=

<shift operator> : <<
: >>

<additiv operator> : +
: −

<multiplicative operator> : ∗
: /
: %

<unary operator> : ++
: −−
: +
: −
: !
: ˜

<postfix operator> : ++
: −−
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The instruction set

B.1 Mathematical instructions

Name Description Effect

ADD Addition POP B; POP A; PUSH A + B
SUB Subtraction POP B; POP A; PUSH A - B
MUL Multiplication POP B; POP A; PUSH A * B
DIV Division POP B; POP A; PUSH A / B
MOD Remainder POP B; POP A; PUSH A % B
INC Increment POP A; PUSH A + 1
DEC Decrement POP A; PUSH A - 1
NEG Negate POP A; PUSH -A

BAND Bitwise AND POP B; POP A; PUSH A & B
BNOT Bitwise NOT POP A; PUSH ~A
BOR Bitwise OR POP B; POP A; PUSH A | B
BXOR Bitwise XOR POP B; POP A; PUSH A ^ B

LAND Logical AND POP B; POP A; PUSH A && B
LOR Logical OR POP B; POP A; PUSH A || B
LNOT Logical NOT POP A; PUSH !A

SHR Shift right POP B; POP A; PUSH A >> B
SHL Shift left POP B; POP A; PUSH A << B

B.2 Relational instructions

Name Description Effect

EQ Equal POP B; POP A; PUSH A == B
NE Not equal POP B; POP A; PUSH A != B
GT Greater than POP B; POP A; PUSH A > B
GE Greater than or equal POP B; POP A; PUSH A >= B
LT Less than POP B; POP A; PUSH A < B
LE Less than or equal POP B; POP A; PUSH A <= B

B.3 Jump instructions

Name Description Flags

JMP x Jump to code address x
GOTO x Jump to code address x Success
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B.4 Stack modifying instructions

Name Description Effect Flags

STORE Store data from stack in memory POP B; POP A; MEM[A] = B Success
EVAL Evaluate expressions POP A; if A = 0 Fail else Success Success or Fail

LDGADDR x Push address of global variable PUSH x
LDGVAR x Push value of global variable PUSH MEM[x ]
LDLADDR x Push address of local variable PUSH local2global(x )
LDLVAR x Push value of local variable PUSH MEM[local2global(x )]
PUSH x Push constant value PUSH x
XCHG Exchange two values on the stack POP B; POP A; PUSH B; PUSH A

B.5 Non-determinism instructions

Name Description & Effect Flags

CHOICES x Initiate non-determinism, x choices. Followed
by x CHOICE instructions

CHOICE x Code for a choice is located at address x Choice
ELSE x Same as CHOICE, but this is an else choice Choice & Else

B.6 Communication instructions

Name Description & Effect Flags

CHAN (send/receive) (local/global) channel Initiate asynchronous communi-
cation. Can fail if communica-
tion is not possible

Fail

HS (send/receive) (local/global) channel Initiate handshake communica-
tion. Can fail if communication
not possible

Fail

RECEIVE Executes & Verifies the actual re-
ceive operation

SEND Executes & Verifies the actual
send operation

Fail or Success

B.7 Flags instructions

Name Description & Effect Flags

CLRA Decrements the atomic flag Atomic
CLRPP Decrements the prepost flag PrePost
SETA Increments the atomic flag Atomic
SETPP Increments the prepost flag PrePost

B.8 Miscellaneous instructions

Name Description Effect Flags

ASRT Assert POP A; ASSERT A Success
HALT Halts the current process Success
IRET Returns control to the init sec-

tion after parameters for a proc-
type have been assigned

Success

NOOP Does nothing Success
RUN x Starts process with ID x Success
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Translation of the source language

<specification> : <global declaration list>
<initialize>

<initialize> : SETA
<run process list>
CLRA
HALT

<run process list> : <run process>
[<run process list>]

<run process> : <identifier(+function context)>
[<parameter list>]
RUN process id

<global declaration list> : <global declaration>
[<global declaration list>]

<global declaration> : <process definition>
: <declaration(+global context)>

<process definition> : <identifier(+function context)>
[<declaration list(+param decl context)>]
IRET
<statement list>
HALT

<declaration> : if type == communication then (+chan id context)
<type specifier(+declare context)>
<variable list(+declare context)>

<declaration list> : <declaration>
[<declaration list>]

<statement list> : <statement>
[<statement list>]

<statement> : [<identifier(+label context)>]
<guarded statement>

<guarded statement> : if communication then CHAN params or HS params
SETPP
[<pre guard>]
<guardable statement>
[<post guard>]
CLRPP

<guardable statement> : <complex statement>
: <simple statement>
: <assignment statement>
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<complex statement> : <if statement>
: <do statement>
: <expression>

EVAL
: <communication statement>

<simple statement> : <compound statement>
: <atomic statement>
: <goto statement>
: <skip statement>
: <assert statement>
: <declaration>

<assignment statement> : <unary expression(+assign context)>
<expression>
STORE

<atomic statement> : SETA
<statement list>
CLRA

<goto statement> : <identifier(+label context)>
GOTO label adress

<skip statement> : NOOP
<assert statement> : <expression> ASRT
<compound statement> : <statement list>
<if statement> : CHOICES choice count

for i = 1 to choice count - 1 do
CHOICE choice addr

if lastchoice = else then
ELSE choice addr

else
CHOICE choice addr

<if choice list>

<do statement> : CHOICES choice count
for i = 1 to choice count - 1 do

CHOICE choice addr
if lastchoice = else then

ELSE choice addr
else

CHOICE choice addr
<do choice list>

<communication statement> : <send statement>
: <receive statement>

<send statement> : <postfix expression(+chan id context)>
<parameter list(+chan send context)>
SEND

<receive statement> : RECEIVE
SETPP
<postfix expression(+chan id context)>
<parameter list(+chan receive context)>
CLRPP
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<parameter list(chan receive context)> : if expression = variable then
<expression(+chan receive variable context)>

else
<expression>
EQ
EVAL

[<parameter list>]
<parameter list> : <expression>

[<parameter list>]
<variable list> : <init variable>

[<variable list>]
<init variable> : <variable>

: <variable(+assign context, +init var context)>
<expression(-declare context, +init var context)>
STORE

: <variable(+init var context, +chan declare context)>
<channel init(+init var context)>

<pre guard> : <expression>
EVAL

<post guard> : <expression>
EVAL

<channel init> : <expression(+chan id context)>
<type list>

<variable> : <postfix expression>
<type list> : <type specififier>

[<type list>]
<type specifier> : no code
<ranged type> : no code
<if choice list> : <if choice>

[<if choice list>]
: <if choice>

<if choice else>
<do choice list> : <do choice>

[<do choice list>]
: <do choice>

<do choice else>
<do statement list> : <in do statement>

[<do statement list>]
<if choice> : <statement list>

JMP end of if
<if choice else> : <statement list>

JMP end of if
<do choice> : <statement list>

JMP start of do
<do choice else> : <statement list>

JMP start of if
<in do statement> : <statement>

: <break statement>
<break statement> : JMP out of do
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<expression> : <logical and expression>
: <expression>

<logical and expression>
LOR

<logical and expression> : <inclusive or expression>
: <logical and expression>

<inclusive or expression>
LAND

<inclusive or expression> : <exclusive or expression>
: <inclusive or expression>

<exclusive or expression>
BOR

<exclusive or expression> : <and expression>
: <exclusive or expression>

<and expression>
BXOR

<and expression> : <equality expression>
: <and expression>

<equality expression>
BAND

<equality expression> : <relational expression>
: <equality expression>

<relational expression>
EQ|NE

<relational expression> : <shift expression>
: <relational expression>

<shift expression>
LT|GT|LEQ|GEQ

<shift expression> : <additive expression>
: <shift expression>

<additive expression>
SHR|SHL

<additive expression> : <multiplicative expression>
: <additive expression>

<multiplicative expression>
ADD|SUB

<multiplicative expression> : <unary expression>
: <mulitplicative expression>

<unary expression>
MUL|DIV|MOD

<unary expression> : <postfix expression>
: <unary expression>

INC|DEC|NEG|LNOT|BNOT
<postfix expression> : <primary expression>

: <postfix expression>
<number>

: <postfix expression>
<postfix operator> (not yet implemented)

<primary expression> : <literal>
: <identifier>
: <array init>
: <expression>

<array init> : <parameter list> (not yet implemented)
<literal> : PUSH literal
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<identifier(chan id context)> : no code
<identifier(label context)> : no code
<identifier(param decl context)> : LDLADDR identifier

XCHG
STORE

<identifier(assign context)> : if identifier = local then
LDLADDR identifier

else
LDGADDR identifier

<identifier(chan receive variable context)> : if identifier = local then
LDLADDR identifier

else
LDGADDR identifier

XCHG
STORE

<identifier(declare context)> : no code
<identifier(function context)> : no code
<identifier> : if identifier = local then

LDLVAR identifier
else

if identifier = communication then
PUSH channel id

else
LDGVAR identifier
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Bounded retransmission protocol
source code

hs Sin = [2] of {bit} ;
hs Sout = [2] of {byte } ;
hs Rout = [2] of {byte , byte} ;
hs ChunkTimeout = [2] of {bit} ;
hs SyncWait = [2] of {bit} ;

chan K = [1] of {bit, bit, bit, byte} ;
chan L = [1] of {bit} ;

byte n ;

byte d1 ;
byte d2 ;
byte d3 ;
byte sInd ;
byte k ;

byte e1_ind ;
byte e2_ind ;
byte e3_ind ;
byte e1_val ;
byte e2_val ;
byte e3_val ;

bit checknow ;

proctype Environment()
{

byte i ;
byte v ;

do
:: Sin! 1 ;

if :: (n>0) -> checknow = 1 ;
checknow = 0 ;

:: else -> skip ; fi ;
atomic { d1=0 ; d2=0 ; d3=0 ; } ;
if
:: n = 1 ;
:: n = 2 ;
:: n = 3 ;
fi ;

atomic{
if
:: n==1 -> if

:: d1 = 1 ;
fi ;

:: n==2 -> if
:: d1 = 1 ;
:: d2 = 1 ;
fi ;

:: n==3 -> if
:: d1 = 1 ;
:: d2 = 1 ;
:: d3 = 1 ;

100
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fi ;
fi ;

};
k = 0 ;
Sin! 1 ;

:: Sout?sInd ;

:: Rout?i,v -> atomic {
k=k+1;
if
:: k==1 -> e1_ind = i ;

e1_val = v ;
:: k==2 -> e2_ind = i ;

e2_val = v ;
:: k==3 -> e3_ind = i ;

e3_val = v ;
:: else -> assert(0) ;
fi ;
i=0 ;
v=0 ;

} ;
od ;

} ;

proctype Sender()
{

bit ab ;
byte rc ;
byte i ;

ab = 5 ;
goto idle ;

idle:
Sin?1 ;
Sin?1 ;
i = 1 ;
goto next_frame ;

next_frame:
atomic {

skip ;
if
:: i==1 -> K!(i==1),(i==n),ab,d1 ;
:: i==2 -> K!(i==1),(i==n),ab,d2 ;
:: i==3 -> K!(i==1),(i==n),ab,d3 ;
:: else -> assert(0) ;
fi ;

} ;
rc = 0 ;
goto wait_ack ;

wait_ack:
if
:: L?1 ->

ab = 1-ab ;
goto success ;

:: ChunkTimeout?1 ->
if
:: (rc < 2 ) -> rc=rc+1;

atomic {
if
:: i==1 -> K!(i==1),(i==n),ab,d1 ;
:: i==2 -> K!(i==1),(i==n),ab,d2 ;
:: i==3 -> K!(i==1),(i==n),ab,d3 ;
:: else -> assert(0) ;
fi ;

} ;
goto wait_ack ;

:: (rc >= 2 ) -> goto error ;
fi ;

fi ;

success:
if
:: (i == n) -> Sout! 3 ;

goto idle ;
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:: (i < n) -> i=i+1;
goto next_frame ;

fi ;

error:
if
:: (i == n) -> Sout! 4 ;
:: (i != n) -> Sout! 5 ;
fi ;
SyncWait! 1 ;
SyncWait?1 ;
ab = 0 ;
goto idle ;

} ;

proctype Receiver()
{

bit b1 ;
bit bN ;
bit ab ;
byte v ;
bit exp_ab ;

new_file:
if
:: K?b1,bN,ab,v ->

goto first_safe_frame ;
:: SyncWait?1 ;

SyncWait! 1 -> goto new_file ;
fi ;

first_safe_frame:
exp_ab = ab ;
goto frame_received ;

frame_received:
if
:: (ab != exp_ab) ->

L! 1 ;
goto idle ;

:: (ab == exp_ab) ->
if
:: ( b1 && !bN) -> Rout! 1 ,v ;
:: (!b1 && !bN) -> Rout! 2 ,v ;
:: ( bN) -> Rout! 3 ,v ;
fi ;
goto frame_reported ;

fi ;

frame_reported:
L! 1 ;
exp_ab = 1-exp_ab ;
goto idle ;

idle:
if
:: K?b1,bN,ab,v ->

goto frame_received ;

:: SyncWait?1 ->
if
:: bN -> skip ;
:: !bN -> Rout! 5,0 ;
fi ;
SyncWait! 1 ;
goto new_file ;

fi ;
} ;

proctype Daemon()
{

bit b ;
bit b1 ;
bit bN ;
bit ab ;
byte v ;

do
:: K?b1,bN,ab,v -> ChunkTimeout! 1 ;



103

:: L?b -> ChunkTimeout! 1 ;
od ;

} ;

proctype Invariant()
{

assert(((! checknow )||( (((! (k>0) )||( (((! (k>=1) )||( ((! (e1_ind != 5 ) )||
( (e1_val == d1) )) )) && ((! (k>=2) )||( ((! (e2_ind != 5 ) )
||( (e2_val == d2) )) )) && ((! (k>=3) )|| ( ((! (e3_ind != 5 ) )||
( (e3_val == d3) )) )) && ((! (n>1) )||( (e1_ind == 1 ) )) && ((! (k>2) )||
( (e2_ind == 2 ) )) && (( ( (k == 1) && ((e1_ind == 3 ) || (e1_ind == 5 )) ) ||
( (k == 2) && ((e2_ind == 3 ) || (e2_ind == 5 )) ) || ( (k == 3) && ((e3_ind == 3 ) ||
(e3_ind == 5 )) ) ) && ( ( (k == 1) && ((! (e1_ind == 3 ) )|| ( (1==n) )) ) ||
( (k == 2) && ((! (e2_ind == 3 ) )||( (2==n) )) ) || ( (k == 3) && ((! (e3_ind == 3 ) )||
( (3==n) )) ) ) && ( ( (k == 1) && ((! (e1_ind == 5 ) )||( (1>1) )) ) ||
( (k == 2) && ((! (e2_ind == 5 ) )||( (2>1) )) ) || ( (k == 3) && ((! (e3_ind == 5 ) )||
( (3>1) )) ) ) ) && ( ( (k == 1) && ((! (sInd == 3 ) )|| ( (e1_ind == 3 ) )) ) ||
( (k == 2) && ((! (sInd == 3 ) )||( (e2_ind == 3 ) )) ) || ( (k == 3) &&
((! (sInd == 3 ) )||( (e3_ind == 3 ) )) ) ) && ( ( (k == 1) && ((! (sInd == 5 ) )||
( (e1_ind == 5 ) )) ) || ( (k == 2) && ((! (sInd == 5 ) )||( (e2_ind == 5 ) )) ) ||
( (k == 3) && ((! (sInd == 5 ) )|| ( (e3_ind == 5 ) )) ) ) && ((! (sInd == 4 ) )||
( (k==n) )) ) )) && ((! (k==0) )|| ( (( ((sInd == 4 ) && (n == 1)) ||
((sInd != 4 ) && (n != 1)) ) && ( ((sInd == 5 ) && (n > 1)) ||
((sInd != 5 ) && (n <= 1)) ) ) )) ) )) ) ;

} ;

init {
run Environment() ;
run Sender() ;
run Receiver() ;
run Daemon() ;
run Invariant() ;

}
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Towers of Hanoi source code

E.1 Three discs

chan Hand = [1] of {int};

proctype Tower(int Id; int s1; int s2; int s3) {

do

:: {((s3 != 0) && (Id == 3))} assert 0;

:: {((s3 != 0) && (Id != 3))} atomic{Hand!s3; s3 = 0;};

:: {((s3 == 0) && (s2 != 0))} Hand?s3 {s3 < s2};

:: {((s3 == 0) && (s2 != 0))} atomic{Hand!s2; s2 = 0;};

:: {((s3 == 0) && (s2 == 0) && (s1 != 0))} Hand?s2 {s2 < s1};

:: {((s3 == 0) && (s2 == 0) && (s1 != 0))} atomic{Hand!s1; s1 = 0;};

:: {((s3 == 0) && (s2 == 0) && (s1 == 0))} Hand?s1;

od;

};

init {

run Tower(1,3,2,1);

run Tower(2,0,0,0);

run Tower(3,0,0,0);

}

E.2 Five discs

chan Hand = [1] of {int};

proctype Tower(int Id; int s1; int s2; int s3; int s4; int s5) {

do

:: {((s5 != 0) && (Id == 3))} assert 0;

:: {((s5 != 0) && (Id != 3))} atomic{Hand!s5; s5 = 0;};

:: {((s5 == 0) && (s4 != 0))} Hand?s5 {s5 < s4};

:: {((s5 == 0) && (s4 != 0))} atomic{Hand!s4; s4 = 0;};

:: {((s5 == 0) && (s4 == 0) && (s3 != 0))} Hand?s4 {s4 < s3};

:: {((s5 == 0) && (s4 == 0) && (s3 != 0))} atomic{Hand!s3; s3 = 0;};

:: {((s5 == 0) && (s4 == 0) && (s3 == 0) && (s2 != 0))} Hand?s3 {s3 < s2};

:: {((s5 == 0) && (s4 == 0) && (s3 == 0) && (s2 != 0))} atomic{Hand!s2; s2 = 0;};

:: {((s5 == 0) && (s4 == 0) && (s3 == 0) && (s2 == 0) && (s1 != 0))} Hand?s2 {s2 < s1};

:: {((s5 == 0) && (s4 == 0) && (s3 == 0) &&
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(s2 == 0) && (s1 != 0))} atomic{Hand!s1; s1 = 0;};

:: {((s5 == 0) && (s4 == 0) && (s3 == 0) && (s2 == 0) && (s1 == 0))} Hand?s1;

od;

};

init {

run Tower(1,5,4,3,2,1);

run Tower(2,0,0,0,0,0);

run Tower(3,0,0,0,0,0);

}

E.3 Seven discs

chan Hand = [1] of {int};

proctype Tower(int Id; int s1; int s2; int s3; int s4; int s5; int

s6; int s7) {

do

:: {((s7 != 0) && (Id == 3))} assert 0;

:: {((s7 != 0) && (Id != 3))} atomic{Hand!s7; s7 = 0;};

:: {((s7 == 0) && (s6 != 0))} Hand?s7 {s7 < s6};

:: {((s7 == 0) && (s6 != 0))} atomic{Hand!s6; s6 = 0;};

:: {((s7 == 0) && (s6 == 0) && (s5 != 0))} Hand?s6 {s6 < s5};

:: {((s7 == 0) && (s6 == 0) && (s5 != 0))} atomic{Hand!s5; s5 = 0;};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 != 0))} Hand?s5 {s5 < s4};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 != 0))} atomic{Hand!s4; s4 = 0;};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 == 0) && (s3 != 0))} Hand?s4 {s4 < s3};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 == 0) &&

(s3 != 0))} atomic{Hand!s3; s3 = 0;};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 == 0) && (s3 == 0) &&

(s2 != 0))} Hand?s3 {s3 < s2};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 == 0) && (s3 == 0) &&

(s2 != 0))} atomic{Hand!s2; s2 = 0;};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 == 0) && (s3 == 0) && (s2 == 0) &&

(s1 != 0))} Hand?s2 {s2 < s1};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 == 0) && (s3 == 0) && (s2 == 0) &&

(s1 != 0))} atomic{Hand!s1; s1 = 0;};

:: {((s7 == 0) && (s6 == 0) && (s5 == 0) && (s4 == 0) && (s3 == 0) && (s2 == 0) &&

(s1 == 0))} Hand?s1;

od;

};

init {

run Tower(1,7,6,5,4,3,2,1);

run Tower(2,0,0,0,0,0,0,0);

run Tower(3,0,0,0,0,0,0,0);

}



Appendix F

Example .cod file of the unreliable
communication example

0 LDLADDR 0 ; Start of proctype: Sender

1 XCHG

2 STORE

3 IRET ; Parameter init done

4 LDLADDR 1 ; Start of assignment to: ’i’

5 PUSH 0

6 STORE ; End of assignment to: ’i’

7 CHOICES 1 ; Start of DO statement

8 CHOICE 9

9 CHAN SEND LOC 0 ; Start CHOICE (do)

10 LDLVAR 1 ; Start of channel send (out)

11 SEND ; End of channel send (out)

12 LDLADDR 1 ; Start of assignment to: ’i’

13 LDLVAR 1

14 PUSH 1

15 ADD

16 LDGVAR 0

17 MOD

18 STORE ; End of assignment to: ’i’

19 JMP 7 ; Repeat (jump to start of do); End of DO statement

20 HALT ; End of proctype: Sender

21 LDLADDR 0 ; Start of proctype: Receiver

22 XCHG

23 STORE

24 IRET ; Parameter init done

25 CHOICES 1 ; Start of DO statement

26 CHOICE 27

27 CHAN RECV LOC 0 ; Start CHOICE (do)

28 RECEIVE ; Start of channel receive (in)

29 SETPP

30 LDLADDR 1

31 XCHG

32 STORE ; Communication to variable: ’j’

33 CLRPP ; End of channel receive (in)

34 LDLVAR 1 ; Start of assert statement

35 LDLVAR 2
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36 EQ

37 ASRT ; End of assert statement

38 LDLADDR 2 ; Start of assignment to: ’k’

39 LDLVAR 2

40 PUSH 1

41 ADD

42 LDGVAR 0

43 MOD

44 STORE ; End of assignment to: ’k’

45 JMP 25 ; Repeat (jump to start of do); End of DO statement

46 HALT ; End of proctype: Receiver

47 LDLADDR 0 ; Start of proctype: Daemon

48 XCHG

49 STORE

50 IRET ; Parameter init done

51 CHOICES 1 ; Start of DO statement

52 CHOICE 53

53 CHAN RECV LOC 0 ; Start CHOICE (do)

54 RECEIVE ; Start of channel receive (in)

55 SETPP

56 LDLADDR 1

57 XCHG

58 STORE ; Communication to variable: ’k’

59 CLRPP ; End of channel receive (in)

60 JMP 51 ; Repeat (jump to start of do); End of DO statement

61 HALT ; End of proctype: Daemon

62 SETA ; Start of @Init

63 LDGADDR 0 ; Start of global variable init

64 PUSH 16

65 STORE

66 PUSH 0 ; End of global variable init; Push channel ID of GLOBAL channel : ’c’

67 RUN 1

68 PUSH 0 ; Push channel ID of GLOBAL channel : ’c’

69 RUN 2

70 PUSH 0 ; Push channel ID of GLOBAL channel : ’c’

71 RUN 3

72 CLRA

73 HALT ; End of @Init



Appendix G

Unreliable communication: Spin
output

G.1 Code

int MAX = 16;

chan c = [1] of {byte};

proctype Daemon (chan in) {

byte k;

do :: in?k; od;

};

proctype Receiver (chan in) {

byte j; byte k;

do

:: in?j; assert(j == k); k = (k+1) % MAX;

od;

};

proctype Sender (chan out) {

byte i; i = 0;

do

:: out!i; i = (i+1) % MAX;

od;

};

init {

atomic {

run Daemon (c);

run Receiver (c);

run Sender (c);

}

}

G.2 Result: First error

pan: assertion violated (j==k) (at depth 93)
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G.3. RESULT: SHORTEST PATH 109

pan: wrote pan_in.trail

(Spin Version 3.4.2 -- 28 October 2000)

Warning: Search not completed

Full statespace search for:

never-claim - (not selected)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 92, errors: 1

91 states, stored

1 states, matched

92 transitions (= stored+matched)

2 atomic steps

hash conflicts: 0 (resolved)

(max size 2^19 states)

4.302 memory usage (Mbyte)

real 0.2

user 0.0

sys 0.0

G.3 Result: Shortest path

pan: assertion violated (j==k) (at depth 93)

pan: wrote pan_in.trail

pan: reducing search depth to 92

.

.

pan: wrote pan_in.trail

pan: reducing search depth to 10

pan: wrote pan_in.trail

pan: reducing search depth to 9

(Spin Version 3.4.2 -- 28 October 2000)

Full statespace search for:

never-claim - (not selected)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 40 byte, depth reached 92, errors: 68

505 states, stored

559 states, matched

1064 transitions (= stored+matched)

2 atomic steps

hash conflicts: 3 (resolved)

(max size 2^19 states)

4.302 memory usage (Mbyte)
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real 14.3

user 0.0

sys 0.0

G.3.1 Shortest path trace

preparing trail, please wait...done

spin: dataflow optimizations turned off

spin: dead variable elimination turned off

spin: statement merging turned off

spin: warning -o[123] option ignored in simulations

1: proc 0 (:init:) line 25 "pan_in" (state 1) [(run Daemon(c))]

2: proc 0 (:init:) line 26 "pan_in" (state 2) [(run Receiver(c))]

3: proc 0 (:init:) line 27 "pan_in" (state 3) [(run Sender(c))]

4: proc 3 (Sender) line 17 "pan_in" (state 1) [i = 0]

5: proc 3 (Sender) line 19 "pan_in" (state -) [values: 1!0]

5: proc 3 (Sender) line 19 "pan_in" (state 2) [out!i]

6: proc 3 (Sender) line 19 "pan_in" (state 3) [i = ((i+1)%MAX)]

7: proc 1 (Daemon) line 6 "pan_in" (state -) [values: 1?0]

7: proc 1 (Daemon) line 6 "pan_in" (state 1) [in?k]

8: proc 3 (Sender) line 19 "pan_in" (state -) [values: 1!1]

8: proc 3 (Sender) line 19 "pan_in" (state 2) [out!i]

9: proc 2 (Receiver) line 12 "pan_in" (state -) [values: 1?1]

9: proc 2 (Receiver) line 12 "pan_in" (state 1) [in?j]

spin: line 12 "pan_in", Error: assertion violated

spin: text of failed assertion: assert((j==k))

#processes: 4

10: proc 3 (Sender) line 19 "pan_in" (state 3)

10: proc 2 (Receiver) line 12 "pan_in" (state 2)

10: proc 1 (Daemon) line 6 "pan_in" (state 2)

10: proc 0 (:init:) line 29 "pan_in" (state 5)

4 processes created

Exit-Status 0



Appendix H

Bounded retransmission protocol:
Spin output

H.1 Results

Depth= 213260 States= 1e+06 Transitions= 2.03187e+06 Memory= 344.860

Depth= 213260 States= 2e+06 Transitions= 4.1921e+06 Memory= 400.875

Depth= 213260 States= 3e+06 Transitions= 6.26591e+06 Memory= 459.041

Depth= 213260 States= 4e+06 Transitions= 8.48133e+06 Memory= 519.049

Depth= 213260 States= 5e+06 Transitions= 1.06532e+07 Memory= 579.160

Depth= 213260 States= 6e+06 Transitions= 1.36607e+07 Memory= 639.169

Depth= 213260 States= 7e+06 Transitions= 1.68512e+07 Memory= 699.178

(Spin Version 3.4.2 -- 28 October 2000)

Full statespace search for:

never-claim - (not selected)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 92 byte, depth reached 213260, errors: 0

7.4001e+06 states, stored

1.08139e+07 states, matched

1.8214e+07 transitions (= stored+matched)

2.18253e+07 atomic steps

hash conflicts: 1.19363e+07 (resolved)

(max size 2^26 states)

Stats on memory usage (in Megabytes):

710.410 equivalent memory usage for states (stored*(State-vector + overhead))

434.603 actual memory usage for states (compression: 61.18%)

State-vector as stored = 55 byte + 4 byte overhead

268.435 memory used for hash-table (-w26)

20.000 memory used for DFS stack (-m1000000)

723.141 total actual memory usage

real 6:58.9

user 6:39.3

sys 18.1
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Appendix I

Dining philosophers: Spin output

I.1 Code

/* Dining Philosophers Problem (MAJoR & PROMELA Compatible) */

/* Michel Rosien */

chan chan1 = [1] of {int};

chan chan2 = [1] of {int};

chan chan3 = [1] of {int};

chan chan4 = [1] of {int};

chan chan5 = [1] of {int};

int FORK = 1;

proctype place_forks() {

atomic {

chan1!FORK;

chan2!FORK;

chan3!FORK;

chan4!FORK;

chan5!FORK;

};

};

proctype philosopher(int left_hand; int right_hand; chan left_fork; chan right_fork) {

if /* Take forks */

::left_fork?left_hand; right_fork?right_hand;

::right_fork?right_hand; left_fork?left_hand;

fi;

skip; /* Eat */

if /* Drop forks */

:: left_fork!left_hand; right_fork!right_hand;

:: right_fork!right_hand; left_fork!left_hand;

fi;

};

init {
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I.2. OUTPUT 113

atomic{

run philosopher(0, 0, chan5, chan1);

run philosopher(0, 0, chan4, chan5);

run philosopher(0, 0, chan3, chan4);

run philosopher(0, 0, chan2, chan3);

run philosopher(0, 0, chan1, chan2);

run place_forks();

}

}

I.2 Output

pan: invalid endstate (at depth 17)

pan: wrote pan_in.trail

pan: reducing search depth to 16

(Spin Version 3.4.2 -- 28 October 2000)

Full statespace search for:

never-claim - (not selected)

assertion violations +

cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 128 byte, depth reached 43, errors: 1

6216 states, stored

17364 states, matched

23580 transitions (= stored+matched)

9 atomic steps

hash conflicts: 0 (resolved)

(max size 2^26 states)

289.357 memory usage (Mbyte)

real 4.7

user 1.8

sys 2.3

I.3 Trace of shortest path

preparing trail, please wait...done

spin: dataflow optimizations turned off

spin: dead variable elimination turned off

spin: statement merging turned off

spin: warning -o[123] option ignored in simulations

1: proc 0 (:init:) line 38 "pan_in" (state 1) [(run philosopher(0,0,chan5,chan1))]

2: proc 0 (:init:) line 39 "pan_in" (state 2) [(run philosopher(0,0,chan4,chan5))]

3: proc 0 (:init:) line 40 "pan_in" (state 3) [(run philosopher(0,0,chan3,chan4))]

4: proc 0 (:init:) line 41 "pan_in" (state 4) [(run philosopher(0,0,chan2,chan3))]

5: proc 0 (:init:) line 42 "pan_in" (state 5) [(run philosopher(0,0,chan1,chan2))]

6: proc 0 (:init:) line 43 "pan_in" (state 6) [(run place_forks())]

7: proc 6 (place_forks) line 14 "pan_in" (state -) [values: 2!1]
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7: proc 6 (place_forks) line 14 "pan_in" (state 1) [chan1!FORK]

8: proc 6 (place_forks) line 15 "pan_in" (state -) [values: 5!1]

8: proc 6 (place_forks) line 15 "pan_in" (state 2) [chan2!FORK]

9: proc 6 (place_forks) line 16 "pan_in" (state -) [values: 4!1]

9: proc 6 (place_forks) line 16 "pan_in" (state 3) [chan3!FORK]

10: proc 6 (place_forks) line 17 "pan_in" (state -) [values: 3!1]

10: proc 6 (place_forks) line 17 "pan_in" (state 4) [chan4!FORK]

11: proc 6 (place_forks) line 18 "pan_in" (state -) [values: 1!1]

11: proc 6 (place_forks) line 18 "pan_in" (state 5) [chan5!FORK]

12: proc 6 terminates

13: proc 5 (philosopher) line 24 "pan_in" (state -) [values: 2?1]

13: proc 5 (philosopher) line 24 "pan_in" (state 1) [left_fork?left_hand]

14: proc 4 (philosopher) line 24 "pan_in" (state -) [values: 5?1]

14: proc 4 (philosopher) line 24 "pan_in" (state 1) [left_fork?left_hand]

15: proc 3 (philosopher) line 24 "pan_in" (state -) [values: 4?1]

15: proc 3 (philosopher) line 24 "pan_in" (state 1) [left_fork?left_hand]

16: proc 2 (philosopher) line 24 "pan_in" (state -) [values: 3?1]

16: proc 2 (philosopher) line 24 "pan_in" (state 1) [left_fork?left_hand]

17: proc 1 (philosopher) line 24 "pan_in" (state -) [values: 1?1]

17: proc 1 (philosopher) line 24 "pan_in" (state 1) [left_fork?left_hand]

spin: trail ends after 17 steps

#processes: 6

17: proc 5 (philosopher) line 24 "pan_in" (state 2)

17: proc 4 (philosopher) line 24 "pan_in" (state 2)

17: proc 3 (philosopher) line 24 "pan_in" (state 2)

17: proc 2 (philosopher) line 24 "pan_in" (state 2)

17: proc 1 (philosopher) line 24 "pan_in" (state 2)

17: proc 0 (:init:) line 45 "pan_in" (state 8)

7 processes created

Exit-Status 0



Appendix J

Statistics

Total nr or files: 30
Total lines of code: 10770
Total bytes of code: 313089
Size of executable: 1166390

J.1 Software

Compiler: GNU G++ version 2.95.3
Make: GNU Make version 3.76.1
Text Editor: GNU Emacs 20.4.1
Operating system: SunOS Release 5.6 Version Generic 105181-16 [UNIX(R) System V Release 4.0]

J.2 Hardware

Manufacturer: Sun (Sun Microsystems)
System Model: Enterprise E3500
Main Memory: 4.0 GB
ROM Version: OBP 3.2.21 1999/02/19 14:33
Number of CPUs: 6
CPU Type: sparc

J.2.1 Files

-rw-r--r-- 1 rosien stud 8022 Jan 26 13:47 code_vector.hpp

-rw-r--r-- 1 rosien stud 629 Jan 26 11:18 defines.hpp

-rw-r--r-- 1 rosien stud 27635 Mar 4 21:23 emit_code.cpp

-rw-r--r-- 1 rosien stud 164 Jan 26 11:19 emit_code.hpp

-rw-r--r-- 1 rosien stud 3506 Mar 1 10:47 grammar.h

-rw-r--r-- 1 rosien stud 19979 Jan 26 11:18 grammar.y

-rw-r--r-- 1 rosien stud 6221 Jan 26 11:19 instructions.cpp

-rw-r--r-- 1 rosien stud 18585 Jan 26 11:18 instructions.hpp

-rw-r--r-- 1 rosien stud 329 Jan 26 11:17 lexer.h

-rw-r--r-- 1 rosien stud 4368 Jan 26 11:18 lexer.y

-rw-r--r-- 1 rosien stud 14922 Mar 4 21:23 main.cpp

-rw-r--r-- 1 rosien stud 206 Jan 26 11:19 mem_debug.hpp

-rw-r--r-- 1 rosien stud 23659 Mar 6 09:35 model_check.cpp

-rw-r--r-- 1 rosien stud 1689 Mar 4 21:23 model_check.hpp

-rw-r--r-- 1 rosien stud 186 Jan 26 11:16 parser.h

-rw-r--r-- 1 rosien stud 5075 Jan 26 11:19 parsetree.cpp
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-rw-r--r-- 1 rosien stud 55402 Jan 26 11:17 parsetree.hpp

-rw-r--r-- 1 rosien stud 1648 Jan 26 11:17 symbol.hpp

-rw-r--r-- 1 rosien stud 3160 Jan 26 11:17 symtable.hpp

-rw-r--r-- 1 rosien stud 45651 Mar 1 16:32 system.cpp

-rw-r--r-- 1 rosien stud 7596 Jan 29 17:02 system.hpp

-rw-r--r-- 1 rosien stud 1554 Jan 30 13:59 temp.cpp

-rw-r--r-- 1 rosien stud 2644 Jan 26 11:19 tree_check_declare.cpp

-rw-r--r-- 1 rosien stud 1724 Jan 26 11:19 tree_check_label.cpp

-rw-r--r-- 1 rosien stud 1832 Jan 26 11:19 tree_check_use.cpp

-rw-r--r-- 1 rosien stud 19276 Jan 26 13:02 tree_execute.cpp

-rw-r--r-- 1 rosien stud 9717 Jan 26 11:19 tree_size.cpp

-rw-r--r-- 1 rosien stud 7176 Jan 26 11:19 tree_type_check.cpp

-rw-r--r-- 1 rosien stud 14171 Jan 26 11:19 types.cpp

-rw-r--r-- 1 rosien stud 6363 Jan 26 11:17 types.hpp
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