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ABSTRACT
In the sport of climbing and bouldering, difficulty grades
are important for skill assessment, enjoyment and safety.
Although there are standardized scales to minimize incon-
sistency, the difficulty assessment is performed by humans
and sensitive to subjectivity. Therefore, we have devel-
oped a tool that predicts the difficulty grades of climbing
routes using machine-learning. The routes are described
in a semi-natural Domain-Specific Language, which can be
parsed into symbol sequences. Here, a symbol represents
a climbing move. The symbol sequences are then used as
inputs to a variable-order Markov models (VOMMs) based
classifier. With the VOMM prediction algorithm Decom-
posed Context Tree Weighting (DE-CTW), we trained one
VOMM on Easy climbing routes and one on Hard climb-
ing routes. By calculating a test route’s likelihood for
both VOMMs, the average log-loss, we predict if a route
is Easy or Hard. We have implemented six predictor vari-
ations to vary with interpretation detail in the symboliza-
tion process. After using 50-fold cross validation on 146
climbing routes, our best performing variation performed
roughly as well as a trivial classifier. Still we believe this
research’s foundations are of interest for future research.
We conclude with detailed explanations and proposed im-
provements.
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1. INTRODUCTION
The difficulty grades of climbing routes are subject to hu-
man evaluation and the accompanied subjectivity. In or-
der to truly standardize these grades, we built a tool that
attempts to predict difficulty grades.

1.1 Problem statement
The importance of a climbing route’s difficulty grade is not
to be overlooked. There are several different grade systems
that help standardize grades. This not only helps climbers
assess their skill level, it provides safety as well. Climbing
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routes outside one’s comfortable grade range could cause
severe injuries. In outdoor situations, injury even poses
additional risks as less resources are available.

Route-setters assess the difficulty of the routes they cre-
ate. A route-setter’s level of strength or technique leads to
personal bias however, meaning grades are subjective. A
means of checking the actual consistency of these grades
would be the first step towards true standardization. This
helps one compare between different route-setters, climb-
ing halls or even grading systems. With grade inconsis-
tencies out of the way climbers will have a more accurate
expectation of the route, which will naturally lead to a
safer and more enjoyable experience.

The aim of this research, therefore, is to develop a tool
that assesses the difficulty grade of a route.

1.2 Research questions
To check or achieve grade consistency, one would first need
to investigate to what extent a climbing route grade can be
assessed objectively. Therefore we drew up the following
research question.

How can the difficulty of a climbing route be assessed by a
computer?

This main research question is answered by means of three
sub questions.

1. How can a climbing route be characterized in a machine-
interpretable language suitable for difficulty assess-
ment?

2. What machine learning techniques are suitable for
assessing the difficulty of a route specified in such a
way?

3. How does the correctness of a difficulty grade classi-
fied by machine learning compare to the correctness
of human-determined difficulties?

1.3 Method and results
Section 3 describes literature research, based on which we
decided to use the Decomposed Context Tree Weighting
(DE-CTW) prediction algorithm. Section 4 explains how
a tool was developed to convert relatively free-form input
routes to a formal sequence of symbols and apply classi-
fication. Section 5 shows that the tool achieved an accu-
racy of 64.38% (95% confidence interval of [0.57, 0.72]),
and thus barely outperforms a trivial classifier.

1.4 Implications
In section 6, we conclude that the question whether a com-
puter can assess climbing route difficulty without sensors1

is left unproven. Even though our tool was unable to
correctly predict difficulty, we believe its foundations are
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still of important interest for future research. In section
7, we describe in great detail a multitude of factors that
are believed to have negatively influenced the predictor’s
performance: the data quantity, the data quality and cer-
tain aspects of the formalization process (the conversion of
climbing routes to a machine-interpretable form). We con-
clude that the concepts of formalizing climbing routes with
a Domain-Specific Language, symbolizing them, and using
Markov models-based machine learning are still promising.

2. BACKGROUND
2.1 Bouldering & climbing
Bouldering is a branch of climbing that is performed on
relatively short and low routes, compared to regular climb-
ing. It does not require belaying of the climber. Boulder-
ing routes are known for having a puzzle-like nature. They
are set with an intended strategy in mind, and figuring out
this route information – called the beta – is deemed inte-
gral to the sport. Different difficulty grade systems are
used for bouldering than for regular climbing. The pop-
ular American grade scale for bouldering is Hueco, and
Yosemite Decimal Scale (YDS) for regular climbing. The
first column in Table 2 shows what the grades on these
scales look like.

Regular climbing and bouldering will be used interchangably
during this research, but it is important to keep in mind
these can be considered as different sports. The same holds
for indoor and outdoor climbing – or bouldering, for that
matter. Our research’s methods concern indoor situations,
but they are also applicable to outdoor contexts.

As explained, there are specific strategies to climbing routes.
They depend heavily on the hand and foot holds, and
the slope of the wall. Holds come in different types that
require different approaches and they can be assembled
in various positions and rotations. Besides, holds from
the same type can differ considerably in facilitating the
climber. All these factors influence a route’s difficulty,
which makes modelling a climbing route not a straight-
forward task. In this proposal, it is assumed the easiest
strategy for a combination of holds (i.e. a climbing route)
determines the difficulty grade.

2.2 Variable-order Markov models
Our tool makes use of Decomposed Context Tree Weight-
ing (DE-CTW). DE-CTW is a general-purpose prediction
algorithm that makes use of variable-order Markov models
(VOMMs) [1]. A Markov model can be seen as a state-
machine that has probabilistic transitions from one symbol
to another. For a VOMM, the transition probability does
not only rely on the new symbol and just one previous
symbol, but the D previous symbols – called the context.
D is the depth. There is no universally ideal value of D;
it must be selected based on the purposes for which one’s
using the VOMM.

Markov models are widely used, as they can model any se-
quential concept and useful calculations can be made with
them. Examples are sequence prediction and sequence
classification [1].

2.3 Decomposed Context Tree Weighting
The DE-CTW algorithm can essentially predict VOMMs;
it can assess the probability of a symbol succeeding a cer-
tain context, and it can assess the probability of a com-
plete sequence by repeatedly using the prior calculation.

1[3] was able to successfully predict climbing route diffi-
culty in a limited context, using sensors.

The average log-loss is a measure of a sequence’s likeli-
hood. The lower it is, the more probable the test se-
quence is. The average log-loss `(P̂ , xT

1 ) for a test sequence

xT
1 = x1x2 · · ·xT and (the trained) model P̂ is calculated

as follows [1].

`(P̂ , xT
1 ) = − 1

T

T∑
i=1

logP̂ (xi|x1 · · ·xi−1)

Here, P̂ (xi|x1 · · ·xi−1) is the probability that the symbol
xi would succeed the context x1 · · ·xi−1, according to the
Markov model P̂ . DE-CTW learns these probabilities for
its Markov model from training sequences.

The DE-CTW algorithm has a depth parameter. When
learning with a depth of 5, the algorithm would ignore
the first five symbols of the training route. DE-CTW will
update the probabilities by looking at the remaining sym-
bols, while taking the previous five symbols as context into
account every time.

3. RELATED WORK
3.1 Other predictors
Ebert et al. made a very successful attempt at difficulty
calculation in [3]. 98% of the tested routes were classi-
fied correctly through sensor data and machine learning.
From sensors placed on the climber’s limbs, they extracted
information that modelled the features control, stability,
speed, and economical use of strength. There are two crit-
ical remarks to be made on the applicability of the results
however. The input data only contained routes of diffi-
culty level 1 through 4 on the Fontainebleau scale2. These
easiest levels might not be representative for the major-
ity of the bouldering problems - bouldering halls might
even lack the first two levels. Moreover, eleven of the
eighteen climbers in the experiment have never climbed
before, which results in a sheer lack of technique. We
believe that makes them considerably less representative
for the vast majority of climbers. The noticed data bias
still leaves the prediction problem in a broader difficulty
context open. Besides, the necessity of specific sensors
complicates an approachable and wide-spread adaptation
of the grade prediction tool, as is required for enabling
overall grade consistency.

By contrast, [2] details a machine learning approach with-
out sensors. They collected routes that have been set for
the Moonboard, a standardized bouldering wall. This wall
has instances across the world, all having an identical hold
layout. In the software implementation holds could be
recognized as being the same one, allowing the algorithm
to match parts of routes. However, it still meant that a
hold’s type and rotation were completely neglected, while
those properties are significant for climbing difficulty. This
might have been the determining factor for the tool’s clas-
sification accuracy of roughly 35%.

3.2 Rich climbing toolset
In [4], Philips et al. showcase a climbing route genera-
tor called Strange Beta. The outputted routes were de-
termined as good or even better than human-built. Here,
routes were expressed in the domain-specific language CRDL
(Climbing Route Description Language). CRDL has been
created for the purpose of generating routes. Herein, routes
are ordered lists of moves, a move being a hold type and a
suggestion to use one’s left or right hand. Foot holds were

2The Fontainebleau grade system ranks climbing routes
on a scale from 1 to 9, where 1 is considered easiest.

2



neglected with the consideration that these only exist to
enable the moves a climber’s hands make. In order to re-
duce complexity, hold positioning was neglected as well.
Through the later publicly available Strange Beta imple-
mentation, user-entered routes were gathered. These did
not strictly comply to the CRDL syntax. Philips et al.
used a self-built domain-specific parser to extract route
information from these routes. This allowed extra infor-
mation to be included, such as the quality of a hold and
the size of a move. Though not fully formally tested, they
have trained a Variable-Order Markov Model (VOMM)
using DE-CTW [1] on these user-entered routes, of which
the preliminary results are said to look promising. The
VOMM was used for interpolation in the generated climb-
ing routes, by adding moves to smooth over seemingly less
natural transitions.

3.3 Conclusion
We have chosen to expand our research on [4]. As the
authors suggested, we used a VOMM in combination with
the richer CRDL notation for climbing route recognition.
This way, we could calculate the likelihood of a route hav-
ing been created by a certain VOMM. We simply com-
pared these likelihoods (the log-loss scores) of VOMMs
that have been trained on subsets of varying difficulty
grades. This way, we could predict a route’s grade. This
implementation is usable without special sensor equip-
ment, while trying to limit the loss of important domain-
specific data. That is, features that directly influence a
route’s difficulty should still be included in the prediction,
as opposed to [2].

4. METHODOLOGY
We have implemented a difficulty predictor in hopes of
proving that a machine can assess a route’s difficulty. This
predictor will base its decisions on existing climbing routes
and their human-determined grades by trying to find pat-
terns in that knowledge base.

4.1 Data collection
As mentioned in section 3.3, we have determined an ap-
propriate data format for capturing climbing routes and
their relevant characteristics: Climbing Route Description
Language (CRDL) [4]. In CRDL, one describes climbing
routes as sequences of moves. A move is specified as a
certain type of climbing hold being grabbed by a left or
right hand. In special cases, a move refers to a different
type of event, such as a ‘match’ – joining hands on one
grip – or a ‘toehook’3.

Fortunately, we have been provided with user-supplied
data that is collected within the Strange Beta applica-
tion [4] as well as its source code. Of the climbing routes,
after filtering those that did not include a difficulty grade
or proper descriptions, 146 are useful for the classifier.
The routes are of mixed disciplines; we used 74 boulder-
ing routes and 72 regular climbing routes. This has two
implications: the context of the routes are different, and
the assigned grades are from two different grading scales.
Section 4.3.3 describes how the classifier handles this sep-
aration in data.

4.2 Data processing
3The consideration of a climb being a simple sequence of
hand movements neglects foot coordination. Even though
CRDL usually assumes feet are not a distinctive factor, it
still includes extraordinary feet strategies. For example, a
route might require the climber to hook their toe behind
a grip or other surface to exert additional force.

4.2.1 Symbolization
While all moves in the route transcriptions were sequential
and included a left or right tag, their descriptions did not
adhere to a strict formal form. An example is given in
Listing 1, showing inconsistent syntax and various types
of detail.

The provided Phoenix [5] parser is however able to extract
the relevant information from the natural language snip-
pets. Listing 2 shows a general idea of what is recognized
within such a move description. The full grammar speci-
fication can be found in appendix A. Based on the parse
tree, every move is assigned a symbol. For example, the
programme would determine the fourth and fifth move in
Listing 1 as semantically equal and thus the moves will
lead to the same symbol.

1 R Jug
2 L reach to jug
3 R match
4 R to good s i d e p u l l
5 L good s i d e p u l l
6 R to f i n g e r pocket
7 L go to f l a t edge crimp
8 R big c r o s s through to jug
9 L moves upr ight to angled gaston crimp
10 R toe hook

Listing 1. Example of a parsable user-transcribed
climbing route (fabricated). A line describes one
move by its sequence number, a left or right hand
tag, and a free-form description.

[ Move ]
( [ Action ] [ Hold ] )
( [ Hold ] [ Action ] )
( [ Hold ] )
( [ Match ] )

Listing 2. Top node in context-free grammar spec-
ification for a climbing move, as implemented in
Philips et al.’s parser. [4]

4.2.2 Symbol sets
The set of all symbols used is called the symbol set. An
important question is which details should be incorporated
in a symbol. Descriptions can have a varying level and
type of detail. Inclusion of detail is a trade-off with direct
consequences for a classifier’s performance.

For example, if only hold types are considered in the case
of Listing 1, the same symbol would be assigned to moves
1, 2 and 8. This would neglect the move difficulty that
is implied by the texts “reach to” and “big cross”. On the
other hand, if different symbols are assigned to moves 1, 2
and 8, it is no longer retraceable that they all refer to the
same type of hold: a jug. A jug is characterized as easy
and sturdy to grab. Such a hold would not only facilitate
the current move, but the next one as well. Having one
hand on a jug, the climber benefits from high stability. In
the context of predicting routes this would mean difficult
moves are likely to be preceded by a jug. It is however
harder to recognize such patterns when jugs are split into
different symbols. For every jug variation, the programme
would need enough data to effectively learn this pattern.

The consequences of the detail trade-off heavily depends
on the available data. We have not been able to concretely
research this relation, but we believe there are several fac-
tors: the data quantity, consistency of detail and the type
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Table 1. Comparison of the six symbol sets.∑
Description |

∑
| Example symbol

1 Hold types 97 sidepull

2
Hold types with
precise descriptors

244 sidepull deep angled

3
Hold types with
quality booleans

163
sidepull
(big move) (good hold)

4
Hold types with
precise descriptors
and quality booleans

301
sidepull deep angled
(big move) (good hold)

2*
Hold types with
generic descriptors

171 sidepull big good

4*
Hold types with
generic descriptors
and quality booleans

229
sidepull big good
(big move) (good hold)

of routes described. Our approach to this issue is simple;
the application builds multiple symbol sets that represent
different types of detail [4]. Table 1 shows an overview
of six symbol sets, which are an expansion from Philips
et al.’s implementation. We denote a symbol set by

∑
,

and its size with |
∑
|. The example symbols show how

the input “throw to a deep angled sidepull” is symbolized
differently for every set.

Symbol set 1 through 4 are taken from [4], with a slight
modification in implementation4. Sets 2* and 4* are our
modifications from sets 2 and 4 respectively. In these six
symbol sets, we apply more detail with the following prop-
erties.

• The descriptor refers to the shape and size of a hold.
The precise descriptor specifies between kinds of shapes
and sizes.

• The generic descriptor aggregates these kinds of shapes
and sizes. The hold shape is incorporated by append-
ing bad, good or nothing to the hold type. The same
goes for the hold size, resulting in a big, a small or
no postfix.

• A set of quality booleans is determined per move.
For every quality found to be true, its shorthand is
appended.

– big move – Set to true if either the action verb
or action size in the description points to a stren-
uous move. Not all move descriptions mention
actions, as they may only describe the climb-
ing holds. Examples of action verbs and action
sizes can be found in our grammar specification
(appendix A).

– hold goodness – Set to true if there are more
positive hold shape and hold size descriptors
than negative ones.

– cross – Set to true if the action mentions a
cross: the act of crossing one’s limbs.

4.3 Classification
4.3.1 Models in the process

Our predictor is a classifier; it predicts the class of the
input, in this case the difficulty class of a climbing route.
Notably, the classifier uses variable-order Markov models

4Even though the original parser of [4] recognizes action
verbs as well as action sizes, their implementation of ‘big
move’ did not involve the action size.

under the hood. For making a prediction the program
goes through the following steps. Note that this procedure
is undertaken for every symbol set, meaning we have six
predictions: one for every symbol set.

1. Train the models which represent different classes.

2. Test the input on every model. For each one, this
yields a log-loss score.

3. Choose the model with the smallest log-loss. This is
the predicted class.

Every difficulty class is represented by one Markov model.
This is achieved by training the model on only that class’
data.

In our classifier, testing a route means that we calcu-
late the probability the route would exist given a certain
model, i.e. knowledge base. The result is a log-loss score.
A lower log-loss score indicates a higher probability of the
model generating the input entry.

This is why we choose the model that returns the lowest
log-loss score. This model is the most likely to generate
the input. The difficulty class associated with the model
is then the predicted class.

4.3.2 Model implementation
For the model training and testing we use the DE-CTW
implementation from [1]. This was already included in the
delivered code of [4] for climbing route interpolation pur-
poses. As for training, we feed the DE-CTW algorithm
symbol sequences that result from the parser. This de-
termines the transition probabilities within the variable-
order Markov model. With a built model, the DE-CTW
implementation can calculate the average log-loss for a
given test sequence. By trial and error, we have found
that there is not a preferred value for DE-CTW’s depth
parameter for this project. The predictions and log-loss
scores were barely different when varying with the depth
value. Having to choose any value for depth, we picked
five, as [1] showed seven served as a good value for other
applications while a value of seven slowed our process sig-
nificantly down.

4.3.3 Choosing classes
As can be derived from section 4.3.1, models play a crucial
role in the classifier. An important choice is which classes
these models should represent.

The grade scales used in the data set are Hueco (boul-
dering) and Yosemite Decimal Scale (regular climbing).
Ideally, the grade predictor would be able to determine an
exact grade, such as ‘V4’ or ‘5.11’. A considerable num-
ber of Markov models would need to be trained; one for
every possible grade. We do not possess sufficient data
entries per grade in order to do this, as can be seen in
Table 2. Models based on just several routes would not
be representative. They would be overfitted to the un-
varied training data. Therefore, the classifier predicts a
grade range instead. This reduces the number of classes
and thus increases the amount of data per class.

Further reduction in classes can be achieved by merging
the grade scales, but this comes at a cost. Bouldering
and regular climbing are considered different disciplines,
which means conversion is neither straightforward or with-
out loss of quality. For example, endurance plays a sig-
nificantly larger role in regular climbing than bouldering.
YDS grades might reflect that factor while Hueco grades
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Table 2. Grade distribution of the data set.
Grade Count

Hueco
V0 5
V1 2
V2 7
V3 13
V4 23
V5 10
V6 3
V7 5
V8 4
V9 1
V10 1
Total 74

YDS
5.7 2
5.8 5
5.9 0
5.10 44
5.11 12
5.12 9
Total 72

might not. As no conversion could be found in climbing
documentation, we built one based on closely similar de-
scriptions provided by several individuals5.

The first two columns of Table 3 presents the result. This
is by no means a strict or official conversion, but that
is not considered an issue for this project. The data is
split in just two classes, Easy and Hard, minimizing the
number of ‘edge cases’, i.e. grades of which the class is
debatable. The rightmost column shows the Easy class
has considerably more entries than the Hard class. A more
even class assignment was however not feasible with the
given data set and conversion chart.

4.4 Analysis
4.4.1 Cross validation

The predictor’s performance is evaluated by k-fold cross
validation. This means we split our data into k groups.
For k rounds, we select one group as test set while the
remaining groups serve as training set. A k of 50 yields 50
groups of three or two climbing routes. That means the
training set size will be 143 or 144 during every round. By
evaluating every climbing route on almost the whole data
set, we estimate as accurately as nearly possible how well
our predictor performs. It’s important to note our form
of cross validation is not stratified. In other words, the
groups do not have a fixed ratio of Easy and Hard routes.

The result of the cross validation is a confusion matrix
that contains every tested route. To compare varying lev-
els of detail, we do the prediction process for every one

5For the sources, we used charts of the following authors:
the bouldering and climbing gym Planet Granite in San
Francisco (https://www.do-not-panic.com/2012/03/
v-scale-and-yds-conversion-chart.html); Jon Mc-
Cartie (https://gist.github.com/jmccartie/891748);
Reddit forum user DCBarefootRun (https:
//www.reddit.com/r/climbing/comments/3vun4x/);
and Mountain Equipment Co-op (https://www.mec.ca/
en/explore/climbing-grade-conversion). All informa-
tion was retrieved from the links on the 21st of February,
2019.
6A minus or plus suffix for a grade indicates that a route
is on the respectively easier or harder side of the grade.

Table 3. Class distribution of the data set.6

Grade Class
Hueco YDS Name Size
V0- 5.7, 5.8
V0 5.9
V0+ 5.10
V1
V2
V3

5.11

Easy 90

V4
V5
V6

5.12

V7
V8
V9

5.13

V10
V11
V12
V13

5.14

V14 5.15

Hard 56

of our symbol sets. This yields six complete confusion
matrices, each showing predictions done with a different
symbolization approach.

4.4.2 Matthews correlation coefficient
We evaluate the predictor performance with the Matthews
correlation coefficient (MCC), calculated from the confu-
sion matrix. The MCC ranges between -1 (completely
wrong) and 1 (completely right). A random classifier would
on average score 0. As opposed to the more common clas-
sification measure accuracy, the MCC is resistant to sig-
nificantly unequal class sizes.

In binary classification, the accuracy and the MCC are
calculated as follows.

accuracy =
TP + TN

TP + TN + FP + FN

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Here, TP is the number of true positives, or correctly clas-
sified Easy routes; TN the number of true negatives, or
correctly classified Hard routes; FP the number of false
positives, or incorrectly classified Hard routes; and FN
the number of false negatives, or incorrectly classified Easy
routes.

The Easy class counts 90 instances and the Hard class
56. As you can see, a totally uninformed classifier would
still reach an accuracy of around 62% by always classi-
fying Easy, whereas the MCC would not even be com-
putable due to division by zero. The nearly identical case
of TP = 89, TN = 1, FP = 55 and FN = 1 yields
an accuracy of around 62% and a MCC of around 0.03.
While the accuracy seems optimistic, the MCC shows this
hypothetical classifier barely outperforms random classifi-
cation.

We quantify the predictor’s performance as the highest
MCC of the six predictor variations.

4.4.3 Confidence interval
We also evaluate the predictor performance with a 95%
confidence interval on its accuracy, by considering our pre-
dictor as a binomial distribution. We calculate this as

5
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Table 4. Predictor results for varying levels of in-
terpretation detail.

Predicted Predicted∑
1 Easy Hard

∑
2 Easy Hard

Easy 76 14 Easy 81 9

A
ct

.

Hard 47 9 A
ct

.

Hard 45 11

Predicted Predicted∑
3 Easy Hard

∑
4 Easy Hard

Easy 66 24 Easy 76 14

A
ct

.

Hard 35 21 A
ct

.

Hard 38 18

Predicted Predicted∑
2∗ Easy Hard

∑
4∗ Easy Hard

Easy 80 10 Easy 75 15

A
ct

.

Hard 47 9 A
ct

.

Hard 40 16

Table 5. Predictor performance for varying levels
of interpretation detail.∑

Accuracy CI-95% MCC
1 58.22% [0.50, 0.66] 0.01
2 63.01% [0.55, 0.71] 0.14
3 59.59% [0.52, 0.68] 0.11
4 64.38% [0.57, 0.72] 0.19
2* 60.96% [0.53, 0.69] 0.07
4* 62.33% [0.54, 0.70] 0.14

follows, with the normal approximation interval.

CI = [p̂− z

√
p̂(1− p̂)

n
, p̂ + z

√
p̂(1− p̂)

n
]

In our situation, n = TP + TN + FP + FN and p̂ =
TP+TN

n
. With a confidence of 95%, we use z = 1.96.

We also quantify the predictor’s performance as the high-
est confidence interval of the six predictor variations.

5. RESULTS
Table 4 shows our predictor’s results. Every confusion
matrix summarizes the prediction outcomes of one 50-fold
cross validation experiment. The six experiments only dif-
fer in which symbol set has been used, allowing the tool
to evaluate climbing moves in varying levels of detail. The
accuracy and Matthew correlation coefficient that accom-
pany these confusion matrices are given in Table 5.

A complete random classifier would have an average accu-
racy of 50%, and a simple classifier that always determines
the largest class (Easy) would be right around 62% of the
time. Looking at the confidence intervals, we see that with
95% confidence every predictor variation outperforms a
random classifier, except for the predictor using symbol
set 1 where there is a chance of performing equally well.
However, we are not able to state with 95% confidence
that any of our predictors outperforms the aforementioned
simple classifier.

The Matthews Correlation Coefficient points towards a
similar verdict. All values are considered close to 0, which
is the average MCC for a random classifier. The scores are
however above 0. This is, although small, still a positive
indicator that some correlation is possibly found, i.e. the
classifier might have made slightly informed decisions.

6. CONCLUSION
In this section, we draw conclusions and summarize the

research by answering the research questions as stated in
section 1.2.

6.1 Formalization
How can a climbing route be characterized in a machine-
interpretable language suitable for difficulty assessment?

We were able to formalize climbing routes with CRDL [4]
and symbolize them for varying interpretation levels of
detail. This formalization was applied to 146 user-entered
climbing routes [4], using a Phoenix [5] parser to handle
the not strictly formal nature of the data. The gram-
mar specification (see appendix A) highlights the relevant
climbing aspects, which allows for easy symbolization of
every climbing move.

6.2 Machine learning
What machine learning techniques are suitable for assess-
ing the difficulty of a route specified in such a way?

We have found that, when its moves are symbolized, climb-
ing routes can be used for machine learning. In this case
they were fed to the general-purpose prediction algorithm
DE-CTW [1]. DE-CTW uses variable-order Markov mod-
els (VOMMs), which can be considered as probabilistic
state machines. We used DE-CTW to train an Easy VOMM
and a Hard VOMM. The VOMM with the lowest log-loss
score for the test route was the predicted grade class.

6.3 Correctness
How does the correctness of a difficulty grade classified by
machine learning compare to the correctness of human-
determined difficulties?

We made six predictor variations by using six different
symbolization methods, each distinguishing climbing moves
with another level of detail. We used 50-fold cross valida-
tion and the measures of the Matthew Correlation Co-
efficient and the binomial proportion 95% confidence in-
terval to evaluate the predictor performance. Although
our methods seemed adequate beforehand and deliberate
thought has been put into correctly modelling the domain
of climbing, the predictor disappointed. The best pre-
dictor variation had an accuracy of 64.38%, a CI-95% of
[0.57, 0.72] and a MCC of 0.19. With 95% confidence,
we can state our classifier outperforms a random classifier
(accuracy = 50%), but not a simple classifier that always
predicts the Easy class (accuracy ≈ 62% – the classes
are uneven). The MCC shows the classifier barely outper-
forms a random classifier.

6.4 Main question
How can the difficulty of a climbing route be assessed by a
computer?

The question whether a computer can assess climbing route
difficulty without sensors7 is left unproven, as our tool
was unable to correctly predict difficulty. The predictor’s
performance is not sufficient for setting new consistency
standards. We however believe its foundations are still
of important interest for future research. A multitude of
factors (mentioned in section 7) are believed to have neg-
atively influenced the predictor’s performance: the data
quantity, the data quality and certain aspects of the for-
malization process. Crucial aspects of this research such as
the formalization or machine learning approach could still
be useful for future work with only minor adjustments.
The CRDL notation and symbolization, for example, is
a good starting point for further research in formalizing
climbing routes. It raises the question what exactly is im-
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portant within a route.

7. DISCUSSION
In this section, we try to critically explain the results
found. The following factors are thought to have nega-
tively influenced the predictor’s performance.

7.1 Data quantity
The size of the data set, 146 climbing routes, is decidedly
small. Admittedly, the DE-CTW algorithm significantly
increases the number of data points. Using a depth of
five, it considers every symbol after the first five in a se-
quence as a data point. Still, the limited data does not
help recognizing patterns. As an example we take the
very common hold type sidepull. In the data set there
are 147 sidepulls. 74 of them are however joined with an-
other hold type, yielding another symbol, such as pocket

sidepull. Thus we have 73 sidepull symbols. These are
then split over the two classes, roughly halving the avail-
able data for both models. As you can see in Table 1, we
have 97 hold types. This means a lot of combinations of a
sidepull with a few preceding hold type symbols are pos-
sible. We believe many patterns that may occur naturally
are most probably underrepresented, because of this sym-
bol set size. Additionally, 61 of the hold types are in fact
‘composite’, such as pocket sidepull. This has two con-
sequences: these composite types have a considerably low
occurrence making it hard to recognize patterns, and it
takes away data from its more popular components, such
as sidepull.

Another consequence of the small data set is that we needed
to merge two not officially compatible grading scales. As
Hueco and YDS are for different disciplines, no official con-
version chart could be found. We made our own, which is
prone to errors. To add, any inter-discipline grade conver-
sion is thought to have (inherently) brought about noise
to the data anyway.

7.2 Data quality
Several aspects might negatively affect the data set’s qual-
ity. The climbing routes have been transcribed by multi-
tude of users on [4]’s website. This means there is no en-
forced consistency in the determined difficulty grade, the
style of the climbing routes and in the notation style.

Firstly, as difficulty grades are inconsistent, it is in fact not
ideal to compare our classifier’s predictions with the grades
determined by humans. The ‘true grades’ in our data sets
are not guaranteed consistent with each other. It might
be the case that our classifier has actually predicted every
grade in a consistent manner, which satisfies the eventual
goal, but the results do not match the inconsistent ‘true
grades’.

Secondly, the style of climbing routes poses a problem
when there’s an imbalance of styles; the training data
might lack routes of an underrepresented style in order
to correctly classify certain routes.

Thirdly, notation style plays a huge role in building a use-
ful knowledge base. The freedom of the CRDL notation
allows the same route to be transcribed in various ways.
One could leave out details about the hold size or shape,
or what kind of action is performed in order to grab the
hold (e.g. “toe hook to jug”). Holds come in many unla-
beled forms, and it is up to the transcriber’s beliefs what
aspect of a hold is relevant, e.g. what hold type it is in

7[3] was able to successfully predict climbing route diffi-
culty in a limited context, using sensors.

the route’s context. Moreover, one could mention multi-
ple hold types for one move; this yields a composite hold
type symbol. A climber may find a certain hold good or
a certain action strenuous while another doesn’t, purely
based on their individual experiences and climbing quali-
ties. Ironically, the bias problem that raised our research
question has appeared in our tool.

Another problem is that the transcriber may note the
wrong approach (beta) for a climbing route. A climbing
grade reflects the best way to pass the route. If the tran-
scriber does not use the same beta as the route-setter did
when grading the route, there’s a high probability their
noted approach is less efficient. As CRDL is actually a
record of a route’s beta, this could result in a CRDL entry
that has been labeled with a too low grade.

7.3 Formalization
The placement of all limbs are relevant during climbing.
The CRDL notation however leaves out foot placement,
while it can make a significant difference. Most climbing
techniques revolve around strategically placing one’s feet
to keep balance or exert power. One cannot note in CRDL
how much and how exactly a climber is relying on their
feet. Taken to the extreme, they might need to campus
(climb without using feet) a part for a certain route. This
is considered very exhausting and advanced. The route’s
transcription would however not mention it, as campusing
is not part of the syntax. We could add ‘campus’ as a
type of action to the vocabulary, but CRDL would still
lack clear space to specify more nuanced feet placement.

Arm placement is less neglected but lacks important de-
tail as well. While CRDL requires every move to be tagged
with a choice of hand, left or right, this is not incorporated
into the symbolization process. This is already a problem
in the following simple example. A sidepull is a hold type
that is best gripped with a specific hand while leaning
into the opposite direction. A climber might need to grab
a left-facing sidepull with their right hand, while the hold
is normally best grabbed with the left one. The second
example shows a more generic issue: it could be that two
routes have the same type of holds in the same order and
the same type of actions required for reaching every hold,
but the routes are still climbed completely different. The
spatial placement of a hold in one route might require a
climber to use a different hand than they would in the
other route. Maybe the climber needs to move the same
hand consecutively before the other one – not a rare occur-
rence in our data set. However, none of this is retraceable
in the formalized climbing routes.

CRDL leaves out a considerable amount of spatial detail.
Firstly, it does not log the amount of overhang a route
has. Overhang is the angle the climbing wall is offset from
a regular vertical wall. More overhang makes a route con-
siderably more difficult, forcing a climber to rely less on
gravity and more on their arm strength. Strategies exist to
mitigate these effects, but the need to apply these is an in-
dicator of a route’s difficulty. Secondly, there is no spatial
information on the climbing holds used. The exact angle
and location of the whole hold, or of a feature on a hold
can be of important difference. The climber might not be
able to grab a hold in an straightforward manner, and they
would need to apply certain techniques, extra strength or
balance. Thirdly, climbing walls are oftentimes not a flat
surface. Outdoor climbers mount rocks that are have arbi-
trary natural forms, and indoor climbers can come across
modules. These are extruding wall parts, attached to the
wall. Holds can be attached to modules as well. Logically,
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the existence of a module can greatly influence a route’s
difficulty. This can however not be noted in CRDL.

The symbolization process does not consider the action
verbs or action sizes in a route on a detail-level. The ac-
tion verbs and action sizes are only incorporated in the
big move quality boolean present in symbol sets 3, 4 and
4*. Although not enough data is currently present to jus-
tify distinguishing between different types of action, the
specific are relevant for a route’s difficulty. One might
have specified a move is a ‘dyno’, which means that the
climber needs to climb dynamically and use momentum.
This technique is considered advanced, but our predictor
wouldn’t be able to pick on that.

7.4 Modeling the crux
We model climbing routes as a sequence for Markov mod-
els, because of their evident sequence structure and their
further workings: for every climbing move, the preceding
ones influence the difficulty. We expect a similar difficulty
when we take the same climbing move with context to an-
other climbing route. There is one inherent problem in
mapping difficulty grades to sequences. Routes can have
a ‘crux’, a part that is particularly hard. The crux would
determine the route’s grade, while the remainder of the
route is below that level. In the training phase, our pre-
dictor would incorrectly learn these simpler moves as more
advanced ones.

8. FUTURE WORK
There are still many questions to investigate in the field
of climbing. We believe the best continuation of our work
requires the disciplines of climbing and computer science
(or mathematics) to join hands.

8.1 Predictor expansion
We see potential in our predictor, but it requires tweaking
in various ways. One can tackle the issues mentioned in
section 7 in the following ways. The tasks deemed most
important are marked with an asterisk.

• (*) More basic validation of the classifier could fur-
ther demonstrate the correctness or potential of the
classifier, e.g. by testing on (fabricated) routes that
are clearly Easy or Hard.

• (*) Increase the amount of CRDL data in general,
and make sure there is sufficient data representing
different climbing styles and difficulty grades.

• (*) Let one route-setter regrade the CRDL climbing
routes, ensuring grade consistency.

• In the same light, further research the issue of routes
possibly having cruxes (a considerably harder part in
the route).

• Approach composite hold types differently. They
could be symbolized differently by ‘downgrading’ to
a single hold type; e.g. jug sidepull could be con-
verted to jug. Alternatively, the VOMM could re-
peat the same operation for every component of a
composite hold type. For example, instead of learn-
ing [crimp, jug, jug sidepull], it would learn both
[crimp, jug, jug] and [crimp, jug, sidepull].

• The symbol sets and grammar can be further tweaked
to improve the formalization process. Currently, it
does not regard the left/right hand tag that every
climbing move has.

• (*) The CRDL notation could be expanded or re-
placed, in order to include relevant information such
as foot placement and spatial information.

• Research machine learning alternatives to DE-CTW.

• Focus on only classifying between lower grades (eas-
ier routes), as the differences between lower grades
are more noticeable than in higher grades. In more
difficult routes, the difference between grades are of-
tentimes more (spatially) nuanced, concerning weird
angles or positioning.

8.2 Formalization of climbing domain
We see this project as a starting point for research in
purely the climbing domain as well. Formalization of climb-
ing routes is interesting for many purposes: the storing and
sharing of climbing routes, structuring climbing-centered
science and finding the essence of climbing.

8.3 Beta calculation & Image recognition
Looking a bit further, there are several related computer
science projects to take on. Our project retrieves the beta
(best approach) of a route by letting the transcriber write
this down in CRDL. This brings some form of subjectivity
in our predictor’s data. An ambitious project would be to
calculate a route’s beta. The input would need to capture
all the available material for a route: every detail of the
wall’s surface and of every climbing hold. Extracting this
information from, for example, several pictures or a video
as well as efficiently storing this (inevitably 3D) informa-
tion would already pose a tremendously difficult task. If
this project would succeed, climbers could share and ana-
lyze climbing routes by the touch of a button. If a success-
ful predictor that works similarly as ours – beta as input,
difficulty grade as output – has been implemented, these
projects could be connected. The user would no longer
need to perform the somewhat subjective and pesky task
of transcribing the test route. Alternatively, the interme-
diate step of finding the beta might not be necessary for
finding a route’s difficulty grade from images. One could
attempt to apply machine learning with graded images as
input.
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APPENDIX
A. GRAMMAR SPECIFICATION
Below is the context-free grammar specification for a climb-
ing move, which we have used to parse CRDL routes. It
is a slight modification from [4]’s grammar.

[ Move ]
( [ Action ] [ Hold ] )
( [ Hold ] [ Action ] )
( [ Hold ] )
( [ Match ] )

;
[ Match ]

( match )
;
[ Hold ]

( [ HoldSize ] [ HoldShape ] [ HoldType ] )
( [ HoldShape ] [ HoldSize ] [ HoldType ] )
( [ HoldShape ] [ HoldType ] )
( [ HoldSize ] [ HoldType ] )
( [ HoldType ] )

;
[ HoldSize ]

( [ HoldSizeBig ] )
( [ HoldSizeSmal l ] )

;
[ HoldSizeBig ]

( [ HoldSizeBigT ] )
( [ Not ] [ HoldSizeBig ] )

;
[ HoldSizeBigT ]

( b ig )
( good )
( manageable )
( managable )
( deep )
( p o s i t i v e )
( goodish )
( okay )
( ok )
( s o l i d )
( decent )

;
[ HoldSizeSmal l ]

( [ HoldSizeSmallT ] )
( [ Not ] [ HoldSizeBig ] )

;
[ HoldSizeSmallT ]

( mini )
( sha l low )
( smal l )
( bad )
( razor )
( s h i t t y )
( t iny )
( micro−dick )
( t r a n s i t i o n )
( nonex i s t ent )

;
[ HoldShape ]

( [ HoldShapeGood ] )
( [ HoldShapeBad ] )

;
[ HoldShapeGood ]

( [ HoldShapeGoodT ] )
( [ Not ] [ HoldShapeBad ] )

;
[ HoldShapeGoodT ]
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( s t a r t i n g )
( v e r t i c a l )
( bulbous )
( ang le )
( s ideways )
( double s ided )
( r i g h t ang le )
( l e f t ang le )

;
[ Not ]

( not )
( no )

;
[ HoldShapeBad ]

( r o o f )
( s l opey )
( s l o p i n g )
( v e r t i c a l )
( f i n g e r )
( d iagona l )
( angled )
( gaston )
( f l a t )
(downward )
(down ward )
( open hand )
( openhand )
( reachy )

;
[ HoldType ]

( [ HoldTypeT ] )
( [ UnderCling ] )
( [ S idePu l l ] )
( [ DownPull ] )
( [ FootHook ] )
( [ GenericHold ] )
( [ Layback ] )
( [ Mantle ] )
( [ J ib ] )

;
[ HoldTypeT ]

( jug )
( pocket )
( crimp )
( edge )
( s l o p e r )
( cobble )
( cr imper )
( crimpbeam )
(beam)
( layback )
( horn )
( b a l l )
( boob ies )
( s l ope )
( pinch )
( bucket )
( r a i l )
( ear )
( cup )
( f l a k e )
( thumb catch )
( s l o t )
( gaston )
( d i sh )
( l edge )
( incut )
( t ee th )

( a r e t e )
( tu fa )
( hand jam )
( f i s t jam )
( f i n g e r jam )
(mono)
( o f fw id th )
( ch icken head )
( knob )
( handle )

;
[ Mantle ]

( topout )
( top out )
( mantle )
( f i n i s h i n g hold )
( top )
( f i n i s h )

;
[ GenericHold ]

( hold )
( hand )
( f e a t u r e )
( g r ip )
( s t a r t )

;
[ Layback ]

( lay back )
( layback )
( l i e back )
( l i e b a c k )

;
[ J ib ]

( j i b )
( g ib )
( churd )

;
[ S idePu l l ]

( s i d e p u l l )
( s i d e p u l l )

;
[ DownPull ]

( downpull )
(down p u l l )

;
[ UnderCling ]

( underc l ing )
( under c l i n g )
( c l i n g )

;
[ FootHook ]

( hee l hook )
( heelhook )
( toe hook )
( toehook )
( b i c y c l e )

;
[ Action ]

( [ Act ionS ize ] [ ActionVerb ] )
( [ ActionVerb ] )

;
[ ActionVerb ]

( [ ActionVerbBig ] )
( [ ActionVerbSmall ] )

;
[ ActionVerbSmall ]

( [ ActionVerbSmallT ] )
( [ FootHook ] )
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( [ Layback ] )
( [ Cross ] )

;
[ ActionVerbSmallT ]

(bump)
( out )
(up)
( l e f t )
( r i g h t )
( f ond l e )
( grab )
( r o l l )
( over )
( d iagona l )
( s l i d e )
( grab )
( go again )
( go )
(move)

;
[ Cross ]

( c r o s s over )
( c r o s s under )
( c r o s s o v e r )
( c ros sunder )
( c r o s s )

;
[ ActionVerbBig ]

( throw )
( dyno )
( dynamic move)
( reach )
( f a l l i n to )
( huck )
( deadpoint )
( rock )
( dead po int )
( drop knee )

;
[ Act ionS ize ]

( [ Act ionSizeBig ] )
( [ Act ionSizeSmal l ] )

;
[ Act ionSizeBig ]

( b ig )
( huge )
( f a r )

;
[ Act ionSizeSmal l ]

( smal l )
;

Listing 3. Context-free grammar specification for
a climbing move
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