
Please note that this document is not entirely up to date
with respect to the conference submission. In particular,
some of the notations have been changed.

1



University Twente,
Faculty EWI,

Computer Science Department,
Formal Methods and Tools Group

C A 
D F T 
I/O I M C

Master’s thesis of Pepijn Crouzen

Supervisors: Dr. Mariëlle Stoelinga
Dr. Hichem Boudali
Dr. ir. Arend Rensink





Abstract

Dynamic fault trees (DFT) are widely used to analyze the fault-tolerance of computer sys-
tems. The syntax and semantics of DFT, however, lack formal definitions which has lead to
vagueness in the interpretation of DFT. Existing analysis techniques also suffer from the state-
space explosion problem.

This thesis describes a compositional approach to formalizing the DFT syntax and seman-
tics. The DFT semantics are formalized by separating a DFT into its elements and formalizing
the behavior of each element using an input/output interactive Markov chain (IOIMC). IOIMC
are a combination of continuous-time Markov chains (CTMC) and input/output automata and
IOIMC models can be combined using parallel composition. The semantics of a DFT are now
defined as the composition of the semantics of its elements.

This compositional approach to formalizing DFT semantics also leads to the compositional
analysis of DFT using compositional aggregation. Compositional aggregation is a well known
technique which combines composition and aggregation to combat the state-space explosion
problem.

In this thesis we give new formal definitions for the syntax and semantics of the DFT
formalism. The IOIMC formalism is also introduced. Compositional analysis for DFT is then
described which is accomplished using a translation tool (used to find IOIMC representations
of DFT elements) and the Tipp tool. Two case studies are giventhat show the applicability of
the new compositional analysis.

3





Contents

1 Introduction 9
1.1 Existing techniques for Fault tolerance analysis. . . . . . . . . . . . . . . . . 9
1.2 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Organization of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Dynamic Fault Trees 13
2.1 Static Fault Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Dynamic Fault Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 DIFTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Input /Output Interactive Markov Chains 19
3.1 Design choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Probabilistic behavior. . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Interactive behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Compositional aggregation. . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Input/Output Interactive Markov Chains. . . . . . . . . . . . . . . . . . . . . 21
3.3 Strong bisimulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Weak bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 DFT syntax and semantics 31
4.1 Formal DFT syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Complex spares and dependencies. . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Activation and Dormancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 IOIMC models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 Basic Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.2 OR gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.3 AND gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.4 K/M-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.5 PAND gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.6 Spare Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.7 FDEP gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5



6 CONTENTS

4.6 Design choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.1 Firing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.2 Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.4 Auxiliary IOIMC models. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.5 Simultaneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Translation of a DFT to an IOIMC community. . . . . . . . . . . . . . . . . . 44

5 Compositional Analysis of DFT 47
5.1 Step 1: Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Step 2: Abstracting composition. . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Step 3: Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Step 4: Repetition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Step 5: CTMC generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Case Studies 51
6.1 The Hypothetical Cascaded P-AND System case study. . . . . . . . . . . . . 51

6.1.1 Compositional analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Cardiac Assist System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.1 Compositional analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Multi-processor distributed computer system. . . . . . . . . . . . . . . . . . 56
6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Tool support 59
7.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4.1 Action signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.4.2 IOIMC definitions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4.3 Process definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.5 TippTool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.5.1 Compositional Aggregation. . . . . . . . . . . . . . . . . . . . . . . 66
7.5.2 Analysis using TippTool. . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusion 75
8.1 Formalizing dynamic fault trees. . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Compositional analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3.1 Equivalences on IOIMC. . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3.2 Ordering Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.3 Advanced DFT analysis. . . . . . . . . . . . . . . . . . . . . . . . . 78



A Proofs 81
A.1 Theorem 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Theorem 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B Complete IOIMC models of DFT elements 87
B.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2 Cold Basic Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.3 Warm Basic Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.4 Hot Basic Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.5 OR-gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.6 AND-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.7 K/M-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.8 PAND-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.9 Spare gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.10 Activation Auxiliary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.11 Firing Auxiliary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93





Chapter 1

Introduction

Computer systems fail. No matter how well designed, carefully implemented and thor-
oughly tested there is always a chance that a computer systemwill fail. For simple applications
an occasional failure does not cause too much trouble. You might lose your last changes or
even the contents of an entire file system, but we can mitigatesuch problems by making regu-
lar back-ups. There are, however, applications that can never really afford to fail like systems
that control airplanes, medical devices or even spacecraft.

One well known strategy to overcome this problem is to build fault-tolerant computer sys-
tems [19]. The essential idea is to build a system that continues to operate even if one or more
of its components fail. Fault tolerance is almost always theresult of using redundant compo-
nents. An everyday example is a car that carries an extra, redundant wheel. When you get a flat
tire the failed component is simply replaced by the spare andthe car can keep operating. Of
course fault tolerance does not mean fault immunity. If you get two flat tires and you only have
one spare your car has officially failed. But using redundant components does greatlydecrease
the chance that a system will fail.

When designing a fault tolerant computer system it is of great interest to quantify how fault
tolerant the system is. It is also very useful to be able to compare the fault tolerance of several
different alternatives. Typical measures of interest include the mean time until a system fails or
the probability that a system will fail in a certain time period. For example: a communication
network may be required to have less than 1% down-time, the chance that the flight system of a
spacecraft fails during its 10 year mission might have to be less than.01% or the most reliable
setup for a parallel processor system may need to be found.

1.1 Existing techniques for Fault tolerance analysis

A widely used mathematical approach to fault-tolerance analysis is using continuous-time
Markov chains (CTMC) [18] [29]. CTMC are a well-defined mathematical formalism that
can be used to describe the probabilistic behavior of a system (usually describing its life-
time from fully operational to system failure). Standard solution techniques, such as forward
Chapman-Kolmogorov differential equations, can then be used to analyze the CTMC further.
Transforming a complex computer system into a CTMC and then analyzing it can be a very
labor-intensive process. The problem is that there are usually a large number of events that

9



10 C 1. I

can happen at any time and a CTMC has to model the consequence of all these events in all its
states. This is a well known problem in CTMC analysis calledstate space explosion. Variations
on CTMC have been proposed to allow multiple CTMC to be combined into one [17]. In this
way a large system can be analyzed by finding CTMC for its components and then combining
these into one large CTMC.

Static fault trees (SFT) [32] [31] are used to model the way different events influence each
other and thus showing when the system failure event occurs.There are very powerful solution
techniques for static fault trees such as binary decision diagram analysis [10] [27] and the
modelling of a system using static fault trees is relativelyeasy. Static fault trees, however,
cannot be used to model dynamic behavior (such as dependencies between events or the use of
spare components) and therefore have limited use.

An extension to static fault trees called dynamic fault trees (DFT) was introduced [11] to
make fault trees more expressive. Although DFT models can beused to describe dynamic be-
havior they do have a number of drawbacks as we will see in the next section. A lot of research
has been done to extend the fault tree formalism in different ways such as by introducing cov-
erage models [12], parametric fault trees [5] and repairable events [26]. A detailed discussion
of static and dynamic fault trees can be found in Section2.

1.2 Motivation

In this section we discuss some of the problems encountered in DFT analysis. These prob-
lems are the motivation for our research. In Section1.3we will show in general terms how we
have sought to solve these problems.

First of all the DFT formalism lacks a formal syntax and a formal semantics, although some
research has been done in this area [9]. This lack of formalization can lead to misunderstand-
ings in the interpretation of DFT, for instance it has long been unclear what exactly happens
when two events occur at exactly the same time (see Section4.6.5).

Secondly the current analysis techniques for DFT (see Section 2.4) are not very composi-
tional (i.e. a large DFT often cannot be split into subtrees for the purpose of analysis). A DFT
is analyzed by generating a CTMC that represents the probabilistic behavior of the DFT. This
CTMC is then analyzed further using CTMC analysis techniques as described in Section1.1.
Because of the state space explosion problem this CTMC can become very large even for small
DFT. In Section2 we will elaborate on this problem.

1.3 Approach

We have formally defined a syntax and a semantics for DFT in this thesis. The seman-
tics of DFT are defined in a compositional way using input/output interactive Markov chains
(IOIMC), a variation on interactive Markov chains (IMC) [15]. This semantics allows the DFT
to be analyzed in a compositional way which mitigates the state space explosion problem.

We have formally defined the syntax of DFT by describing a DFT as a directed acyclic
graph (DAG). On this DAG a number of restrictions are imposedto ensure that the DFT are
valid (see Section4.1). This removes any vagueness about what constitutes a validDFT. The



1.4. R 11

semantics of DFT are formalized by modelling the behavior ofthe different elements (i.e. gates
and basic events) of the DFT formalism using input/output interactive Markov chains (IOIMC).

IOIMC are a variation on IMC [15] which are in turn a combination of CTMC and interac-
tive processes [24] (see Section3). IOIMC allow the modelling of probabilistic behavior while
also allowing communication between different models using discrete actions. These discrete
actions allow the IOIMC to be composed usingparallel composition. Furthermore techniques
such asabstractionandaggregationare available to combat the state space explosion problem.
The IOIMC formalism is discussed in detail in Section3.

The IOIMC model of a DFT is found by first modelling the elements of the DFT as IOIMC
and then usingcompositional aggregationto combine this group of IOIMC into a single IOIMC
which is then analyzed to find the desired fault tolerance measures. Without compositional ag-
gregation a model of the behavior of the DFT could be generated through parallel composition
in a single step. This model would however be very large because of the state space explo-
sion problem. Of course the large model could be aggregated,but this aggregation would be
very labor-intensive because of the size of the model. Compositional aggregation avoids this
state space explosion by performing the composition incrementally (i.e. composing only two
sub-models at a time) and aggregating at every step. This approach to DFT analysis called
compositional analysisis explained in detail in Section5.

1.4 Results

The formalization of both the syntax and semantics of DFT have removed the vagueness
from the DFT formalism and it is now clearly defined what a dynamic fault tree should look
like and what such a DFT means. The syntax given in this thesisalso extends the possibilities of
the DFT formalism somewhat by allowing the modelling of complex spares and dependencies
(see Section4.2).

In this thesis the semantics of DFT are defined in a compositional way. This allows the
analysis of DFT by using compositional aggregation. This compositional analysis mitigates
the state space explosion problem and also allows the modularization of DFT analysis (i.e.
the IOIMC model of a DFT can be reused in the analysis of other DFT). The compositional
approach to defining DFT semantics also allows the DFT formalism to be easily extended. New
DFT elements can simply be added to the formalism with their own IOIMC model describing
their behavior. Such an extension would not influence the semantics of other DFT elements.

To implement the compositional analysis we have developed the DFT2Tipp tool to translate
a DFT into IOIMC models. These IOIMC models are then composedand analyzed using the
Tipp tool [16]. The tool support for this thesis is described in detail in Section7.

The hypothetical cascaded priority-AND system (HCPS) casestudy (see Section6.1) shows
that the compositional analysis of DFT can avoid the creation of very large CTMC as happens
with traditional analysis techniques. The cardiac assist system (CAS) case study (see Sec-
tion 6.2) shows, however, that in some cases traditional analysis techniques are more efficient
than compositional analysis. The case study also shows thatthere are still a lot of possibilities
to increase the efficiency of compositional analysis, for instance the aggregation of IOIMC can
be improved.

There is still a lot of room for further research in this area.Some of the possible avenues



of research are described in Section8.3.

1.5 Organization of the thesis

This thesis consists of 8 chapters:

• This first chapter is the introduction to the rest of the thesis which gives a quick overview
of the research described in detail in the rest of the thesis.

• Chapter2 describes the existing DFT formalism as well as the existinganalysis tech-
niques for DFT.

• Chapter3 describes the IOIMC formalism, its background and its technical details.

• Chapter4 describes the formal syntax and semantics of DFT.

• Chapter5 explains how we analyze DFT using compositional analysis.

• In Chapter7 the tool support for our research is described.

• Finally our conclusions and suggestions for future work arepresented in Chapter8.



Chapter 2

Dynamic Fault Trees

In this section we present the dynamic fault tree formalism.This formalism can be used
to model the failure behavior of computer systems. First we will introduce static fault trees in
Section2.1, which do not take into account the order in which componentsof the system fail.
Then we present the expansion of the formalism to dynamic fault trees in Section2.2 which
can be used to model more complex behavior. DFT models can be analyzed using the DIFtree
methodology [23]. We will explain how SFT and DFT are solved using this methodology in
Section2.4.

2.1 Static Fault Trees

Since as early as 1961 [32] [31] fault trees have been used to visualize the way computer
systems, or systems in general, fail. An overview of the different symbols (basic events and
gates) used in fault trees can be seen in Figure2.1. Basic events generally correspond to a
small component of the system and gates often represent larger components that are made up
of several smaller components. A fault tree has a tree structure with gates as nodes in the tree,
basic events as leaves and a single root-event displayed at the top of the fault tree. This root-
event models the entire system. By using AND, OR and K/M gates (see Figure2.1) we can
show how different component failures (the inputs of the gate) lead to thefailure of a larger
component (the output of the gate). By connecting the inputsand outputs of gates and basic
events the behavior of a large system consisting of many components and subcomponents can
be described.

Figure2.2 shows an example of a fault tree for a road trip. The road trip fails if the car
breaks down (either because we get two flat tires or the enginefails) and we can not call
road services because our mobile phone isn’t working. The event ‘Tires failed’ represents the
possibility that we might get two flat tires, which is problematic since we have only one spare.
This event is modelled using a voting or K/M gate. In this case we use a 2/5 gate which means
that the event occurs when at least 2 of its 5 input events has occurred. The five input events
are four input events, that each model the failure of one tire. The fifth input event models the
failure of the spare tire.

In this simplified example we model the failure of the car withan OR-gate which has as its
two inputs the ‘Tires failed’ event and the ‘Engine’ basic event. This means that the car fails if

13



14 C 2. D F T

Basic event: Corresponds to basic
failure event. Usually named after
the component that fails.

name

name
And-gate: fails if all its inputs have
failed.

name Or-gate: fails if at least one of its
inputs has failed.

name
k/m-gate: fails if at least k of its m
inputs have failed. Also called a
voting gate.

k/m

Figure 2.1: The elements used to create fault trees.

either the tires fail or the engine breaks down. Finally the entire road trip fails if both the car
and the mobile phone fail. If only the car fails we can safely call road services and if only our
mobile phone fails we can still finish our road trip without a problem. The top event of the SFT
‘Road trip failed’ is modelled as an AND-gate which fails when both of its inputs fail.

2/5

Spare
tire

Tire*4

Tires failed
Engine

Car failed

Road trip
failed

Mobile
phone

Figure 2.2: A fault tree for a road trip.

In the literature we see terms like ‘events occurring’, ‘gates firing’ and ‘components fail-
ing’. These all mean exactly the same thing. In this thesis wewill usually use the termfailing
when discussing a particular system and the termfiring when talking about fault trees in gen-
eral.

Static fault trees can be analyzed using binary decision diagrams [10] [27]. A binary deci-
sion diagram (BDD) is a compact representation of a logic formula. Since the top event of a
static fault tree can be interpreted as a logic formula it canbe transformed into a BDD. For our



2.2. D F T 15

example we can thus find a logic formula which describes exactly in what circumstances the
road trip fails.

Every basic event fires after a certain delay. This delay is distributed probabilistically, ie.
there is a probabilityx that a basic event fires within some time periodt. In our road trip
example we will assume that the delays of the basic events areall distributed exponentially.
This means that the probability that the basic event occurs is related exponentially to the time
period:P( f ailure) = e−λt, whereλ is thefailure rateof the event andt is the time period.

If we now assume that the mean time to failure (ie. the averagelifetime) of a regular tire is
10000 hours while a spare tire has an average lifetime of 5000hours. The engine is assumed
to fail on average after 1000 hours and our very unreliable mobile phone fails once every 100
hours. Using BDD analysis we now find that for a 20 hour road trip, the probability that both
the car and the mobile phone fail during the road trip is 0.0000394 or 0.00394 %. This measure
is called theunreliability of the road trip, ie. the probability that a system fails within a certain
time period. Although this result is quite reassuring for anyone who regularly has to make
long trips we will see in the next subsection that this staticfault tree does not really model the
behavior of a road trip very accurately. With the introduction ofdynamic fault treesin the next
section we will be able to properly model the dynamic behavior of the road trip.

2.2 Dynamic Fault Trees

Static fault trees have been used frequently to model critical computer systems and de-
termine their fault-tolerance [32] [31]. They do, however, have the shortcoming, among other
things, that dynamic redundancy management cannot be modelled using fault trees. Figure2.2,
for instance, models the spare tire as just one of five components that may fail at any moment,
but can a spare tire fail when it is in the back of your car? Certainly the probability of a tire
failing dramatically increases when you start actually using it. To model such dynamic redun-
dancy management we use dynamic fault trees [11]. Dynamic fault trees use the same elements
as fault trees with a number of additional gates. These gatesare shown in Figure2.3.

Functional dependenciescan be used to model the fact that one part of a system (the de-
pendent event) is functionally dependent on another part ofthe same system (the trigger). The
functional dependent gate denotes that when the trigger fails the dependent event will also fail.
Functional dependencies are often used to model communication paths. For instance, when a
cluster of computers is connected to a central mainframe viaa bus the individual computers
may be modelled as being functionally dependent on the bus. We can model this by making
the events of the individual computers failing functionally dependent on the event of the bus
failing. Now if the bus fails all the computers also become unavailable (essentially they fail)
instantaneously.

Spare gatesare used to model the use of spares. A spare gate has a primary input and one
or more spare inputs, representing a primary component and spare components. Initially the
spare components liedormant. When the primary component fails the first available spare is
activated. The failure of the first spare leads to the activation of the second available spare until
there are no more spares available in which case the spare gate fails.

Priority-AND gates are used to model situations in which components must fail ina certain
order to cause the failure of the PAND gate. When the inputs ofthe PAND gate have all failed



16 C 2. D F T

Dummy output

Trigger

Dependent events

Output

Primary Spares

Name

Inputs

Output

Functional dependency: When
the trigger event fires, the
dependent events also fire.

Spare gate: When the primary
fires, the leftmost spare becomes
active. The gate fires when there
are no more spares. Spares are
dormant before they are activated

Priority-AND: The Priority-AND or
PAND gate fires if all its inputs
have fired in left-to-right order. If
the inputs fire in any other order
the PAND gate does not fire.

FDEP
Cold basic event: A basic event
that, when active, fires after
some delay. It cannot fire of its
own accord when dormant.

Warm basic event: A basic event
that fires after some delay. It is
more likely to fire when active.

Hot basic event: A basic event
that fires after some delay. Being
dormant or active has no
influence on the likelihood of the
event firing.

Figure 2.3: Dynamic fault tree gates.

in left-to-right order, the PAND gate also fails, but when one of its inputs fails out of order the
PAND gate can never fail.

Basic eventsin dynamic fault trees come in three different temperatures: cold, warm or hot
ones. This temperature refers to the behavior of the basic events when they are dormant. A
basic event is dormant when it is part of a spare which has not yet been activated. Cold events
cannot fire by themselves when dormant, warm events are less likely to fire when dormant and
hot events fire equally quickly when dormant or active.

2.3 Example

Figure2.4 shows a dynamic fault tree that models our road trip using spare gates to accu-
rately show the use of the spare tire. Note that the spare tireis a so calledshared sparein this
DFT because it can be used to replace any of the four tires. Theshared spare can obviously
only be used to replace one tire. It then becomes unavailablefor the other spare gates. We
have chosen to model the tires and engine as cold basic events, which means we assume they
cannot fail when dormant. The mobile phone, however, with its tendency to be dropped, lost
or stolen is modelled as a warm spare, although in this systemit is always active since it is
not used as a spare. In Figure2.4 the top-node is a priority-AND gate. This means that we
only consider the road trip a failure if first our mobile phonefails and then our car. We do not
consider the possibility that we get car trouble, call a repairman, continue our road trip and then
get car trouble again. We could model this behavior by replacing the PAND gate with a spare
gate or by extending the DFT formalism with the notion of repair (see [26] for an example of
such an extension). For our DFT we could say that our road tripsimply ends when we have to
call a repairman. The next subsection explains how Dynamic Fault Trees can be analyzed by
converting them into CTMC.



2.4. DIFT 17

Spare
tire

Tire

Tires failed
Engine

Car failed

Road trip
failed

Mobile
phone

TireTireTire

Figure 2.4: Dynamic fault tree for a road trip.

2.4 DIFTree

The main advantages of fault trees are their intuitiveness and readability. With the inception
of dynamic fault trees this modelling technique has become even more expressive, being able
to properly model dynamic redundancy management, sequential failures and dependencies.
A drawback of dynamic fault trees compared to, for instance,CTMC is that they cannot be
analyzed directly. In this section we will discuss at a widely used methodology to analyze
DFT called DIFtree [14] [23]. Below we show how the unreliability of a system, modelled as
a dynamic fault tree, can be determined using the DIFtree methodology. The unreliability of a
system is the probability that it will fail within a certain time period, known as themission-time.

1. The dynamic fault tree is split into independent sub-trees using a linear-time algorithm [13].
A sub-tree is independent when its gates share no inputs withgates outside the sub-tree.
Dynamic sub-trees are not split into smaller sub-trees as modularization techniques do
not provide an exact solution. This is explained in detail below.

2. For sub-trees that contain no other independent sub-trees the unreliability is calculated
using 3 different techniques:

(a) Static sub-trees, which consist only of static gates andbasic events, are analyzed
using Binary Decision Diagrams [10].

(b) Dynamic sub-trees, which contain at least one dynamic gate, are analyzed using
CTMC [11].

(c) Sub-trees which cannot be analyzed by either of the abovemethods (often because
they are too large) are analyzed using Monte Carlo simulation [7].

3. The solved sub-trees are replaced by basic events with a fixed failure probability in the
DFT. This fixed failure probability is the unreliability of the sub-tree found in step 2.



18 C 2. D F T

4. Steps 2 and 3 are repeated until the DFT is completely replaced by one basic event. The
unreliability of the entire DFT is now equal to the failure probability of this basic event.

The DIFtree methodology allows the time to failure for a basic event to be modelled using
either fixed probabilities or probabilities with exponential, Weibull or Log normal distributions.
In dynamic sub-trees fixed probabilities cannot be used as they are time-independent and the
DFT gates are time-dependent (a basic event with a fixed failure probability has a constant
unreliability, no matter what the mission-time is). The DIFtree methodology has been imple-
mented in theGalileo tool [2], but it should be noted that Galileo does not support Monte Carlo
simulation.

One of the problems of the DIFtree methodology is that large dynamic sub-trees cannot be
solved accurately. Monte Carlo simulation gives inaccurate results for reasonable calculation
times and using CTMC to solve these sub-trees results in hugeCTMC that cannot realistically
be analyzed. This shortcoming is made even more problematicby the fact that dynamic sub-
trees cannot be split into smaller sub-trees. This is causedby the fact that sub-trees are solved
to find their unreliability for a certain time period, in other words the probability that the top-
level node of the sub-tree will fire within a time period. To analyze dynamic fault trees we
however need to know the failure distribution of its subtrees, not just their unreliability.

A

A1 A2

Top Top

B1 B2

B

A* B*

A* B*

Figure 2.5: Example of a dynamic fault tree with two independent sub-trees (left) and the same
DFT with the sub-trees replaced by basic events (right).

Figure2.5 illustrates this problem. In step 2 of the DIFTree methodology the two subtrees
A∗ andB∗ could be analyzed and replaced by basic eventsA∗ andB∗ with fixed probabilities
as shown in the right part of Figure2.5. Using this modified DFT we could easily find the
probability that both eventsA∗ andB∗ fail within a certain mission-time, but because the top
node of the DFT is a PAND gate we must calculate the probability that bothA∗ andB∗ fail
within a certain mission-timeand A∗ fails before B∗. Because we have replaced the two subtrees
by basic events with fixed probabilities this calculation isno longer possible. The consequence
is that the modularization technique of DIFTree cannot be applied to the DFT in Figure2.5and
it must be solved by transforming it in its entirety to a CTMC.

Solving dynamic sub-trees using CTMC in the DIFtree methodology is performed as fol-
lows:

1. The start state of the CTMC is defined as the state in which nobasic event has fired.



2. From any non-system-failure state X, transitions are added to (possibly new) states for
every basic event Y that can fire in state X with as rate the failure rate of the failing
component Y. The new state is defined as the state in which the basic events that had
fired in state X, the basic event Y and its dependent events have fired.

3. Each newly added state is analyzed with regard to the DFT tosee whether it is a system-
failure state (i.e. a state in which the system, representedby the top node of the DFT,
fails). If the DFT contains PAND-gates we can also identify states in which the DFT can
not fail anymore. These states can also be disregarded in step 2.

4. Repeat steps 2 and 3 until no new states are added.

5. Calculate the system unreliability as the state-probability of the system-failure state of
the created CTMC for a certain time period using forward Chapman-Kolmogorov differ-
ential equations.

A DFT with x basic events the corresponding CTMC can require in the orderof x! · 2x

states using this method [6]. This number is reduced by functional dependencies and thefact
that once the system has failed further component-failuresare not considered. It can be further
reduced by merging all the system-failure states into one system-failure state (the states from
which the DFT can not fail anymore, because of a PAND gate, canalso be merged). Even with
these improvements the order of complexity for the transformation of DFT to CTMC remains
high.





Chapter 3

Input /Output Interactive Markov Chains

In this chapter we discuss the formalism of input/output interactive Markov chains (IOIMC).
This formalism is an integration of Input/Output Automata [21] and CTMC [18] [29]. IOIMC
are closely related to Interactive Markov Chains [15] (IMC) which are an integration of inter-
active processes (IP) [24] and CTMC. We will first discuss why we have chosen the IOIMC
formalism to model the semantics of DFT before formally defining IOIMC in Section3.2.
Finally we will define two equivalences on IOIMC in Sections3.3and3.4.

3.1 Design choices

Figure3.1 shows an example of an input/output interactive Markov chain. Circles denote
states in the model and transitions are depicted as arrows. The starting state is identified by
a black dot, in this case the starting state isP1. There are two different kinds of transitions
in an IOIMC model: Markovian transitions, denoted by a smallrectangle on the arrow and
interactive transitions, denoted by a line on the arrow.

P2

P3

P1 P4 P5

a?

a?

b!

a? a?

P

Figure 3.1: Example of an IOIMC:P.

In the following subsections we will explain exactly how theIOIMC P shown in Figure3.1
behaves.

21



22 C 3. I/O I M C

3.1.1 Probabilistic behavior

IOIMC P has a Markovian transition from stateP1 to stateP2. This transition has arateof
λ. Here,λ is a real, positive number which tells us something about when the transition from
P1 toP2 will be taken. To be more specific, the rateλ tells us the probability that the transition
is taken within a time periodt:

P(IOIMC P moves from stateP1 to P2 within time periodt) = 1− e−λt

We also say that the probability thatP moves fromP1 to P2 is exponentially distributed
over the time-periodt. Such an exponential distribution ismemoryless, which means that the
amount of time IOIMCP has already spent in stateP1 has no influence on this distribution.
And because exponential distributions are memoryless theyadhere to theMarkov property[18].

It is important to realize that a Markovian transition does not definewhenan IOIMC moves
from a state to another but only gives us a distribution for this move. For instance, ifλ = 1

2 and
we want to look at IOIMCP after 3 time-units we see that the probability thatP has moved
from P1 to P2 is 1− e−

1
2 ·3 = 0.78 or 78%. Note that, if att = 3 we know thatP is still in state

P1 then the probability that it moves toP2 within 3 time-units is once again 0.78 because of
the memoryless property of exponential distributions.

An IOIMC with only Markovian transitions can be interpretedas a CTMC. The Markovian
transitions in an IOIMC and the transitions in a CTMC behave in exactly the same way.

In this thesis we will use the Markovian transitions of IOIMCto model the firing of basic
events in a DFT. These basic events in turn model the failing of components of a system. The
rateλ of a Markovian transition is then equal to the inverse of the mean-time-to-failure of
the component. This approach to modelling the failure of components using IOIMC assumes
that the time-to-failure of a component is distributed exponentially. This modelling choice is
discussed in more detail in Subsection4.6.3.

3.1.2 Interactive behavior

In Figure3.1 we can see that there is an interactive transition from stateP1 to stateP3
labelleda?. This denotes that the move fromP1 to P3 is aninput actionnameda. This means
that if some other IOIMC performs anoutput actionnameda while IOIMC P is in stateP1
thenP will move to stateP3 immediately. It is important to note that every state of IOIMC
P has an outgoing input-action nameda. This means thatP is always ready to respond to an
output-actiona, even if this does not result in a state-change (whenP is in stateP4 or P5).
We say that IOIMCP is input-enabledwith respect to actiona, becauseP is able to respond
to actiona in every state. Input actions are delayable.They must wait until another IOIMC
performs the corresponding output-action.

A different kind of interactive transition goes from stateP4 to stateP5. This transition is la-
belledb! and is an output action. When IOIMCP performs this output action all IOIMC which
haveb as an input action must perform these input actions. Output actions are immediate.This
means that when IOIMCP moves to stateP4 no timepasses before it moves to stateP5. It is
however possible that another interactive transition is taken immediately. Specifically, if two
or more different output actions are possible in a state, the choice between the transitions is



3.2. I/O I M C 23

non-deterministic. One of the transitions is taken immediately, but it is not known how this
choice is made.

Besides input and output actions there are also internal actions (which are not featured in
the example IOIMCP). Internal actions do not influence other IOIMC and are not influenced
by other IOIMC. Internal actions are immediate.For internal actions we find the same non-
determinism as for output actions.

An IOIMC with only interactive transitions is isomorphic toan input/output automaton.
As explained earlier IOIMC are closely related to IMC. The difference is that in IMC inter-
active transitions are not separated into input, output andinternal actions. An IMC with only
interactive transitions is then isomorphic to an IP [15].

In this thesis we use the interactive transitions of IOIMC tomodel communication between
different gates and basic events in a DFT. When a basic event fires,for instance, it then signals
its firing using an output action. Gates that have to respond to the firing of this basic event
(because it is one of their inputs) then have a correspondinginput action. This modelling choice
is discussed in more detail in Subsection4.6.1. Interactive transitions are also used to activate
spares in a DFT (for a detailed explanation of this modellingchoice see Subsection4.6.2).

3.1.3 Compositional aggregation

The reason it is very interesting to combine Markovian and interactive transitions is that in-
teractive transitions enable the construction of large IOIMC by composition of several smaller
IOIMC. The subject at hand - the analysis of dynamic fault trees - is a good example. In-
stead of transforming the entire DFT into one large CTMC (seeSection2.4) we would like to
transform the components of the DFT first and then create the total IOIMC by combining the
smaller ones. The IOIMC formalism is one such approach to combining Markovian and inter-
active transitions, which is similar to the IMC formalism. Adiscussion of different approaches
to combining Markovian and interactive transitions in one formalism can be found in [15].

An IOIMC can also be transformed into a smalleraggregatedIOIMC that is equivalent with
the original IOIMC (note that there are several different types of equivalences). This ’equiv-
alence preserving state space aggregation’ can very effectively reduce the resources necessary
to create a model of some real-life system [17]. The technique ofcompositional aggregation
consists of composing a large model out of smaller ones and aggregating sub-models after each
compositional step (see Figure3.2). Combining the formalisms of CTMC and input/output au-
tomata allows us to use compositional aggregation to analyze DFT: basic events are modelled
as very simple IOIMC with Markovian transitions to model thedelay before firing and gates
are modelled as IOIMC that respond to signals from their inputs.

3.2 Input/Output Interactive Markov Chains

In this section we give the formal definition of an IOIMC as well as a number of additional
definitions. We have arrived at the definition of IOIMC by applying the input/output notion to
Interactive Markov chains following the application of this notion to IP in [21]. First we define
action signatures.



24 C 3. I/O I M C

Modeling with aggregation

aggregatingmodeling

System A
Aggregated
model AM

Model M

Modeling with compositional aggregation

System A Sub-Models
Aggregated
sub-models

modeling aggregating composing

A4

A2A1

A3

AM1 AM2

AM4AM3M4

M2

M3

M1

AM4AM3

AM1+2
aggregating

AM4AM3

AM1+2

AM4

AM1+2+3
composing aggregating

AM4

AM1+2+3 composingaggregating

Composed
model CM

aggregating

Aggregated
model AM

composing

Figure 3.2: Example of compositional aggregation. Compositional aggregation avoids the
construction and aggregation in one step of the large model Mwhich would require a lot of
resources.

Definition 3.1 An action signature Sig is a partition of a set Act(Sig) of actions into three
disjoint sets in(Sig), out(Sig) and int(Sig) of input, output and internal actions, respectively.

We also define the set of external actions of an action signature: ext(Sig) = in(Sig) ∪
out(Sig). We now use action signatures to define input/output interactive Markov chains.

Definition 3.2 An input/output interactive Markov chain is a quintuple(S,Sig, |−→,
−→� ,P) where

• S is a nonempty set of states,

• Sig is an action signature,

• |−→ ⊂ S × Act(Sig) × S is a set of interactive transitions,

• −→� ⊂ S × R+ × S is a set of Markovian transitions,

• P ∈ S is the initial state, and

• The IOIMC is input-enabled:∀s ∈ S, a ∈ in(Sig) · (∃s′ ∈ S · s
a
|−→ s′)



3.2. I/O I M C 25

Note that any IOIMC can be considered as an IMC (withAct = Act(Sig)) and any continuous-
time Markov chain can be considered as an IOIMC (withAct(Sig) = ∅).

Formally the set of actions for an IOIMCP with action signatureSigP is Act(SigP), but
we will use Act(P) as shorthand for the actions ofP. in(P), out(P), int(P) and ext(P) can
be used as shorthand for the input, output, internal and external actions ofP, respectively.
From now on we always suffix input-actions with a question-mark (a?), output-actions with an
exclamation-mark (a!) and internal actions with a semi-colon (a;). Using this notation input-
actiona? matches output-actiona!. Note that the actual identity of actiona? is still a and
not a?. So actionsa? anda! are actually the same action in a different role. We can use this
notation because an action can not have more than one role in an IOIMC (see Definition3.1).
An example of an IOIMC is shown in Figure3.1.

To enable us to use compositional aggregation (see Subsection3.1.3) we need a method to
combine two IOIMC into one IOIMC. This method is calledparallel compositionand the idea
is to look at the behavior of two IOIMC operating in parallel.Only compatibleIOIMC can be
composed. Two IOIMC are compatible if they do not share output-actions and if their internal
actions are unique. When operating in parallel the IOIMC aresynchronizedon matching input
and output actionsor identical input actions in both IOIMC. Markovian transitions are simply
interleaved.

Definition 3.3 Let P = (SP,SigP, |−→P,−→� P,P) and Q = (SQ,SigQ, |−→Q,−→� Q,Q) be two
IOIMC, with out(P) ∩ out(Q) = ∅, int(P) ∩ act(Q) = ∅ and int(Q) ∩ act(P) = ∅. Parallel
composition of P and Q is an IOIMC(S,Sig, |−→,−→� ,P||Q), where

• S := {P′||Q′ | P′ ∈ SP ∧ Q′ ∈ SQ},

• out(Sig) := out(SigP) ∪ out(SigQ),

• in(Sig) := in(SigP) ∪ in(SigQ) − out(Sig),

• int(Sig) := int(SigP) ∪ int(SigQ),

• |−→ is the least relation satisfying the last five rules in table3.1, and

• −→� is the least relation satisfying the first two rules in table3.1.

Note that Act(Sig) = Act(SigP) ∪ Act(SigQ).

Figure3.3 shows an example of parallel composition. IOIMCP andQ both have three
states. Their parallel compositionP||Q could, at most, have nine states (three times three), but
we can see that it only has six, because three of its possible states are unreachable.

From Definition3.3 we can see that when parallel composing two IOIMC, output actions
will always be immediate. This is caused by the fact that output actions are always synchro-
nized with input actions (otherwise the IOIMC would not be compatible) and since IOIMC are
input-enabled this means that if an output action is available in a state of one of the IOIMC it
will also be available in the composite state.

We useabstractionto make actions in an IOIMC internal. This is useful when an action is
no longer needed to communicate with other IOIMC. When an action is abstracted (orhidden)
in an IOIMC its role is simply changed to internal.



26 C 3. I/O I M C

1 P
λ
−→� P′

P||Q
λ
−→� P′||Q

2 Q
λ
−→� Q′

P||Q
λ
−→� P||Q′

3 P
a
|−→P′

P||Q
a
|−→P′||Q

a ∈ act(P) ∧ a < act(Q)

4 Q
a
|−→Q′

P||Q
a
|−→P||Q′

a < act(P) ∧ a ∈ act(Q)

5 P
a?
|−→P′ Q

a?
|−→Q′

P||Q
a?
|−→P′||Q′

a ∈ in(P) ∧ a ∈ in(Q)

6 P
a?
|−→P′ Q

a!
|−→Q′

P||Q
a!
|−→P′||Q′

a ∈ in(P) ∧ a ∈ out(Q)

7 P
a!
|−→P′ Q

a?
|−→Q′

P||Q
a!
|−→P′||Q′

a ∈ out(P) ∧ a ∈ in(Q)

Table 3.1: Structural rules for parallel composition of IOIMC.

a?

b?

c!
P1

P2 P3

a!
Q1

Q2 Q3

b?

P1||Q1

P2||Q2

P2||Q3

P1||Q2

P3||Q2

P3||Q3

b?

a?

b?

a?

b? b?

b?

b?

a! c!

a!

b?

c!

a!

b?

b? b?

a?,b?
c!
-

b?
a!
-

b?
a!,c!
-

Figure 3.3: Example of parallel composition of IOIMCP andQ. The action signatures of the
IOIMC are given besides their starting state.

Definition 3.4 Let P= (S,Sig, |−→,−→� ,P) be an IOIMC. Abstraction of actions a1...an in P is
an IOIMC (S,Sig′, |−→,−→� , hide a1...an in P), where

• in(Sig′) = in(Sig) − {a1...an},

• out(Sig′) = out(Sig) − {a1...an}, and

• int(Sig′) = int(Sig′) ∪ {a1...an}.

We will model a DFT as a set ofcommunicatingIOIMC. We define such a set as acommu-
nity, based on the notion ofcompatibilityin [21].

Definition 3.5 A communityC of Input/Output Interactive Markov Chains is a set of IOIMC in
which,



3.2. I/O I M C 27

• ∀Ci ,C j ∈ C ∧ Ci , C j : out(Ci) ∩ out(C j) = ∅,

• ∀Ci ,C j ∈ C ∧ Ci , C j : int(Ci) ∩ Act(C j) = ∅

So a set of IOIMC is a community if and only if no two members share an output action
and an internal action of one member is never also an action ofanother member. An example
of an IOIMC community (IOIMCC) is given in Figure3.4.

P

RQ

CA B

q?,r?
p!
-

a?,b?
q!
-

b?,c?
r!
-

-
a!
-

-
b!
-

-
c!
-

b  b

q 

a 

 r

 c

 p

D

Figure 3.4: Example of an IOIMC community. To the right of each member its action signature
is given. Dashed arrows denote communication between members.

So why use IOIMC communities instead of just IOIMC? The reason lies in the fact that
we need to define exactly when certain actions are abstractedin an IOIMC. Let’s consider the
parallel composition of IOIMCQ andA in the IOIMC community shown in Figure3.4. This
parallel composition would result in an IOIMCQ||A with input actionb? and output-actions
a! andq!. To determine which of these actions must be hidden we have to consider the other
IOIMC in the community. For instance in IOIMCQ||A the actionsb? andq! should not be
hidden, since IOIMCB and P use these actions to communicate withQ||A. Action a! can,
however, be hidden safely because no other IOIMC in the community is interested in this
signal. This assessment is based on the assumption that the only signals used to communicate
between the community and the ‘outside world’ are those input and output signals that do not
have corresponding output and input signals within the IOIMC community. For the example
in Figure3.4we find that the IOIMCC only communicates with the ‘outside world’ via output
signalp.

All this means that, for IOIMC communities, we can get a well-defined definition of paral-
lel composition followed by abstraction without having to specify (a) what actions we are syn-
chronizing on and (b) what actions we are hiding, since both can be derived from the IOIMC
community. We call this combination of parallel composition and hidingabstracting composi-
tion or combination. Before giving the definition of the abstracting composition in an IOIMC
community we define action signatures for subsets of an IOIMCcommunity.



28 C 3. I/O I M C

Definition 3.6 For a subset D of an IOIMC communityC we define the following shorthand
notations:

• The union of all the input actions of all the different IOIMC in D is given by: all_in(D) =
⋃Di∈D

Di
in(Di),

• The union of all the output actions of all the different IOIMC in D is given by: all_out(D) =
⋃Di∈D

Di
out(Di), and

• The union of all the internal actions of all the different IOIMC in D is given by: all_int(D) =
⋃Di∈D

Di
int(Di).

We now define the action signature of D within the IOIMC community C as follows:

• The input signature of D consists of all those input actions of elements of D that do not
correspond to any output action in D:

in(D) = all_in(D) \ all_out(D)

• The output signature of D consists of all those output actions of elements of D that do
not correspondonly to input actions within D:

out(D) = all_out(D) \ (all_in(D) \ all_in(C \ D))

• The rest of the actions of D are of course internal:

int(D) =
Di∈D
⋃

Di

act(Di) \ (in(D) ∪ out(D))

Figure3.5shows a schematic of the action signature of a subsetD of an IOIMCCC. We see
three different types of output actions ofD: output actions that do not correspond to any input
action inC (1), output actions that correspond to a number of input actions inC but outsideD
(2) and output actions that correspond to a number of input actions both in- and outsideD (3).
There are also two different types of input actions: input actions that do not correspond to any
input action inC (4) and input actions that correspond to an output action inC but outsideD
(5). Finally internal actions ofD are either internal actions of some IOIMC inD (not shown in
Figure3.5) or output actions inD that correspond to a number of input actions inD but not to
input actions inC (6).

Definition 3.7 LetC = {C1, . . . ,Cn} be an IOIMC community. Let D= {D1, . . . ,Dm} be a set
of IOIMC such that D⊆ C. The abstracting composition of D inC is combineD in C,where:

combineD in C = (C − D) ∪ (hide int(D) in D1|| . . . ||Dm)

Note that the action signature ofhide int(D) in D1|| . . . ||Dm is the same as the action signa-
ture ofD.

Two examples of abstracting composition are given in Figures 3.6 and3.7. IOIMC com-
munityD′ is the abstracting composition of membersA andQ of IOIMCC D in Figure3.4.
D′′ is the abstracting composition of membersP andB inD.



3.3. S  29

C

D

output

input

internal

(1)

(2) (3)

(4)

(5)

(6)

Figure 3.5: Schematic of the action signature of a subset of an IOIMCC

P

RQ||A

CB

q?,r?
p!
-

b?
q!
a;

b?,c?
r!
-

-
b!
-

-
c!
-

b  b

q  r

 c

 p

D’

Figure 3.6: Example of abstracting composition

3.3 Strong bisimulation

Meaningful equivalences for IOIMC should be based on equivalences of both interactive
processes [15, section 2.2] as well as continuous-time Markov chains [15, section 3.5]. In short,
equivalences for interactive processes are based on the idea that equivalent states should have
outgoing transitions with the same labels to equivalent states (so if a stateP has an outgoing
transition labelleda to a stateS than any state equivalent toP should have ana-transition to
a state equivalent toS). Equivalences of CTMC are defined similarly, taking into account the
mathematical principles of exponential distributions.

Additionally, equivalences for IOIMC should address the way interactive and Markovian
transitions behave with respect to each other. Consider, for instance the IOIMC shown in Fig-
ure3.8 In its starting state this IOIMC can perform both an output transition or a Markovian



30 C 3. I/O I M C

P||B

RQ

CA

q?,r?
p!,b!
-

a?,b?
q!
-

b?,c?
r!
-

-
a!
-

-
c!
-

b  b

q 

a 

 r

 c

 p

D’’

Figure 3.7: Example of abstracting composition

transition. The probability that the Markovian transitionis taken immediately is zero. An
output transition can be taken immediately since no outsideinfluence can prevent or delay it
(in contrast with input actions which can be delayed by the environment). Even if we paral-
lel compose this IOIMC with another IOIMC the output transition cannot be delayed, since
IOIMC are input-enabled. We assume that an IOIMC that may perform an output or an inter-
nal transition is not allowed to let time pass and will perform the output or internal transition
immediately. This assumption is called themaximal progress assumption[15, section 4.2].
To define equivalences we must differentiate between stable and unstable states. Stable states,

a!

Figure 3.8: Example of an IMC.

denotedstable(P), are states that have no outgoing internal or output actions. Unstable states,
denotedunstable(P), do have outgoing internal or output actions. The reason these states are
called unstable is that, because of the maximal progress assumption, an IOIMC will always
leave an unstable state immediately via one of its internal or output transitions.

To deal with Markovian transitions we define acumulative ratefunctionγM , which gives
the sum of all rates of Markovian transitions from a state to aset of other states.γM (R,C) =



3.3. S  31

∑

[λ|R
λ
−→� R′ ∧ R′ ∈ C]. It is easy to see thatγM (R,C) equals the rate of the delay for the IMC

moving from state R to a state in C, because the sum of rates equals the rate of the minimum
delay for the relevant transitions. In the followSall stands for the superset of all appearing
states andAct denotes all appearing actions.

We will now give the definition of strong bisimulation for IOIMC. Two IOIMC states are
said to be strongly bisimilar if they have matching outgoingtransitions and the same action
signature. The action signature of a state is the same as the action signature of the IOIMC this
state belongs to.

Definition 3.8 (Strong bisimulation) Let P= (S,Sig, |−→,−→� ,P) be an IOIMC. Let R be
an equivalence relation on S . Then R is astrong bisimulationiff for all (s, t) ∈ R, a∈ Act(P)

1. s
a
|−→ s′ implies that there is a transition t

a
|−→ t′ with (s′, t′) ∈ R.

2. s stable implies t stable andγM(s,C) = γM(t,C), for all equivalence classes C∈ S/R

The states s and t in P arestrongly bisimilar, notation s∼P t, if and only if there exists
a strong bisimulation R with(s, t) ∈ R. Strong bisimilarity for an IOIMC P is defined as the
union of all strong bisimulations on P:

∼P=
⋃

{R | R is a strong bisimulation on P}

We often omit the name of the IOIMC if it is clear from context.

Coinductive definitions such as that of∼ have shown to be very useful for other equivalence
relations. We do have to show however that∼ is indeed a strong bisimulation and also the
largest one.

Theorem 3.1 For relation∼ we find:

1. ∼ is the largest strong bisimulation.

We do not give the proof here, but it follows the lines of the same proof for weak bisimilarity
(see Theorem3.3).

The equivalence relation∼ divides the set of all IOIMC statesSall into equivalence classes.
An equivalence class is a subset ofSall which contains states that are all strongly bisimilar
to each other. One useful aspect of such equivalence classesis that we can now ’loosen’ our
restrictions when analyzing IOIMC. This means that when talking about IOIMC being the
same we could ’loosen’ this concept from ’completely identical’ to ’strongly bisimilar’. The
idea here is that we don’t care if two IOIMC are not completelyidentical as long as they are
strongly bisimilar. For instance instead of analyzing a large IOIMC, which may be very costly,
we could analyze a smaller, strongly bisimilar IOIMC. Let’ssay we want to compose a large
IOIMC X with another IOIMCZ and these IOIMC containn andm states respectively. The
resulting IOIMCX||Z can have as many asm · n states so it is very worthwhile to calculate this
composition using a smaller IOIMCY bisimilar to IOIMC X. Of course we must ensure that
the resulting IOIMCY||Z is not suddenly different (with regard to strong bisimulation!) from
X||Z.



32 C 3. I/O I M C

Theorem 3.2 Strong bisimilarity is substitutive with parallel composition and hiding.

P1 ∼ P2 implies P1||P3 ∼ P2||P3

P1 ∼ P2 implies P3||P1 ∼ P3||P2

P1 ∼ P2 implies hide a1, ..., an in P1 ∼ hide a1, ..., an in P2

We do not give the proofs here, but they follows the lines of the same proofs for weak
bisimilarity (see Theorem3.4).

3.4 Weak bisimulation

Weak bisimulation for input/output interactive Markov chains is defined along the same
lines of weak bisimulation for IMC [15, section 4.4]. Like in strong bisimulation outgoing
input and output transitions have to match in weakly bisimilar states, but now these transitions
may be preceded and followed by a number of internal transitions. Markovian transitions can
also be preceded or followed by a number of internal transitions.

Weak bisimulation equivalences identify states with the same visible behavior while pre-
serving performance measures (e.g. reliability). Basically, two IOIMC statess, t are weakly
bisimilar if whatever steps can be taken froms, can also be taken fromt, and the target states
are again bisimulation equivalent. Weak bisimulation abstracts from internal computation, i.e.
one step in statesmay correspond to the same step in statet preceded and followed by a num-
ber of internal transitions. Internal computation is formalized by the weak transition relation
=⇒.

Definition 3.9 Let P= (S,Sig, |−→,−→� ,P) be an IOIMC. We define the internal transitions
relation |−→int as the relation{(s, t) | (s, a, t) ∈ |−→ ∧ a ∈ in(P)}. We denote by=⇒ the
transitive, reflexive closure of|−→int, i.e. we have s=⇒s′ if and only if s′ can be reached from s
via a sequence of internal transitions. For input and outputactions a we write s

a
=⇒s′ if there

are states t, t′ such that s=⇒t
a
|−→ t′=⇒s′. For an internal action a s

a
=⇒s′ simply means that

s=⇒s′.

Just like strong bisimulation, weak bisimulation abstracts from individual Markovian tran-
sitions and looks instead at cumulative rates, again respecting the maximal progress assump-
tion. One of the differences between strong and weak bisimulation is that in weakbisimulation
Markovian transitions can be preceded and followed by internal steps. To define the restriction
on cumulative rates for weak bisimulation we must introduced the internal backward closure.

Definition 3.10 [15] The internal backward closureCint of a set of states C is defined as
the set of states that may internally move to a state in C, i.e.Cint = {s′ | ∃s ∈ C · s′=⇒s}.

Weak bisimulation also disregardsMarkovian self-loops[8]. This means that Markovian
transitions are considered to be unobservable and Markovian transitions to equivalent states do
not have to be simulated. The reason the restriction on Markovian transitions is weakened is



that, because Markovian transitions are memoryless, moving to an equivalent state does not
affect subsequent behavior. In other words, if we have two weakly bisimilar statesA andB the
behavior of the IOIMC is not affected by the presence or absence of a Markovian transition
from A to B.

Definition 3.11 (Weak bisimulation) Let P= (S,Sig, |−→,−→� ,P) be an IOIMC. Let R be
an equivalence relation on S . Then R is aweak bisimulationiff for all (s, t) ∈ R, a∈ Act(P)

1. s
a
=⇒s′ implies that there is a weak transition t

a
=⇒t′ with (s′, t′) ∈ R.

2. s=⇒s′ and s′ stable imply that there is a t′ such that t=⇒t′ and t′ stable andγM(s′,Cint) =
γM(t′,Cint), for all equivalence classes C∈ (S/R) \ [s′]R

The states s and t in P areweakly bisimilar, notation s≈P t, if and only if there exists a
weak bisimulation R with(s, t) ∈ R. Weak bisimilarity for an IOIMC P is defined as the union
of all weak bisimulations on P:≈P=

⋃

{R | R is a weak bisimulation on P}. We often omit the
name of the IOIMC if it is clear from context.

It is important to note that weak bisimilarity really only differentiates on the (future)output
behavior of a state. The fundamental difference between two states under weak bisimulation
is always that one can perform some output action and the other cannot, even if this output
action moves to a weakly bisimilar state. Since IOIMC are input-enabled we do not see such a
difference for input actions and an internal action to a weakly bisimilar state also does not need
to be simulated. Finally, Markovian transitions to weakly bisimilar states also do not need to
be simulates since the second clause of weak bisimulation does not apply to weakly bisimilar
states. This means that when two states are not weakly bisimilar because of an input, internal
or Markovian transition, this difference is always instigated by another difference in the target
states of the transitions. For an IOIMC has that no output transitions we find that all of its states
must be weakly bisimilar (proof?).

Analogous to strong bisimulation we want to show that≈ is the largest weak bisimulation
and that it is substitutive with parallel composition and abstraction.

Theorem 3.3 For an IOIMC P relation≈P we find:

1. ≈P is the largest weak bisimulation on P.

Theorem 3.4 Weak bisimilarity is substitutive with parallel composition and hiding.

P1 ≈ P2 implies P1||P3 ≈ P2||P3

P1 ≈ P2 implies P3||P1 ≈ P3||P2

P1 ≈ P2 implies hide a1, ..., an in P1 ≈ hide a1, ..., an in P2

The proofs for Theorems3.3and3.4can be found in AppendixA.





Chapter 4

DFT syntax and semantics

In this chapter we will formally define the syntax and semantics of the dynamic fault tree
formalism. In Section4.1the syntax of DFT is formally defined. We then discuss how we have
extended the DFT formalism to make it more modular. In Section 4.3the concept of dormancy
is discussed.

The second part of this chapter concerns the formalization of the semantics of DFT using
IOIMC. We will start by explaining some notations we use in the IOIMC models of DFT
elements in Section4.4. Secondly examples of all the IOIMC models of DFT elements are
given. Afterwards some design choices will be highlighted and explained before a formal
translation of DFT elements into IOIMC models is given.

4.1 Formal DFT syntax

In this subsection we give a formal definition of the structure of dynamic fault trees. First
we give a definition of the DFT elements and then the definitionof a DFT itself.

Definition 4.1 The setELEMENTS is a set of tuples representing DFT elements. There are 7
different types of tuples:

• OR is a two-tuple consisting of the type of the OR-gate and a natural number of inputs:
OR = (OR, n), where n∈ N ∧ n ≥ 1.

• AND is a two-tuple consisting of the type of the AND-gate and a natural number of
inputs:AND = (AND, n), where n∈ N ∧ n ≥ 1.

• VOTING is a three-tuple consisting of the type of the VOTING-gate, anatural number
of inputs and a natural number representing the threshold:VOTING = (VOTING, n, k),
where n, k ∈ N ∧ 1 ≤ k ≤ n.

• PAND is a two-tuple consisting of the type of the PAND-gate and a natural number of
inputs:PAND = (PAND, n), where n∈ N ∧ n ≥ 1.

• SPARE is a two-tuple consisting of the type of the spare gate and a natural number of
inputs:SPARE = (SPARE, n), where n∈ N ∧ n ≥ 1.

35



36 C 4. DFT  

• FDEP is a two-tuple consisting of the type of the FDEP-gate and a natural number of
inputs:FDEP = (FDEP, n), where n∈ N ∧ n ≥ 2.

• BE is a four-tuple consisting of the type of the basic event, thenatural number of inputs
0, the active delay rate and the passive delay rate of the basicevent:BE = (BE, 0, λ, µ),
whereλ, µ ∈ R ∧ λ, µ ≥ 0. For cold basic events we find thatµ = 0, for warm basic
events we find0 ≤ µ ≤ λ and for hot basic eventsµ = λ.

We also define the functions type and inputs which can be used to determine for any DFT
element its type and the number of its inputs:

• type : ELEMENTS → {OR,AND,VOTING,PAND,SPARE,FDEP,BE} is given by the
first member of the DFT element tuple: type(E) = first (E).

• inputs : ELEMENTS → N is given by the second member of the DFT element tuple:
inputs(E) = second(E).

A dynamic fault tree is described as a directed acyclic graph. The elements, basic events as
well as complex gates, will be the vertices of this graph while the connections in the DFT will
be the edges of the graphs. Edges will be directed from outputs (the ‘top’ of a DFT element)
to inputs (the ‘bottom’ of a DFT gate).

Definition 4.2 A dynamic fault tree is a quadruple(V, in, l,T) where:

• V is a set of vertices,

• in : V → V∗ is a function that defines the connections between these vertices, w∈ in(v)
means that there is an edge from vertex w to vertex v,

• l : V → ELEMENTS is a labelling function, and

• T ∈ V is the top vertex which corresponds to the top element of theDFT.

We define the function in′ that defines the non-dummy connections between the vertices(the
outputs of FDEP-gates are dummy connections). We also definea set of edges E based on the
function in and a function infirst which gives the first non-dummy input of a vertice:

• in′ : V → V∗ = {(v,W′) | (v,W) ∈ in ∧ W′ = {w | w ∈W ∧ type(l(w)) , FDEP}},

• E : V × V = {(v,w) | w ∈ in(v)}, and

• infirst : V → V = {(v,w) | in′(v) =W ∧ w is the first element of W}.

The restrictions on DFT are given below, but first a set of independent vertices is defined using
the concept of subtrees:

• For any vertex v in the DFT we define thesubtree below v as the vertex itself and the set of
vertices from which the vertex is reachable: subtree: V → PV, wheresubtree below x =
{x} ∪ {y | y ∈ V ∧ x reachable from y in the directed graph(V,E)}.



4.2. C    37

• A vertex v isindependent when the vertices in thesubtree below v share no inputs with
gates outside the sub-tree. We define the set indep as the subset of V that holds all the
independent vertices: indep⊆ V, where x∈ indep⇔ ∀y ∈ subtree below x · (∃z ∈
V \ subtree below x · y ∈ in(z)→ y = x).

• (V,E) forms a directed acyclic graph,

• All inputs of the elements must be connected:∀v ∈ V · l(v) = G⇔ inputs(G) = |in(v)|,

• The top vertex may not have any connected outputs:@v ∈ V · T ∈ in(v),

• The top vertex may not be an FDEP-gate: type(l(T)) , FDEP,

• Every vertex besides the top vertex must have a connected output: ∀w ∈ V \ {T} · (∃v ∈
V · w ∈ in(v)),

• The first non-dummy input of a spare gate (the primary component) may not be an input
to another spare gate (spare components may be shared between spare gates):∀w ∈
V · (∃v ∈ V · w = infirst(v) ∧ type(l(v)) = SPARE) → (@x ∈ V · x , v ∧ type(l(v)) =
SPARE∧ w ∈ in′(x)), and

• Inputs of spare gates (both primary and spares) must be independent subtrees:∀w ∈
V · (∃v ∈ V · w ∈ in′(v) ∧ type(l(v)) = SPARE)→ w ∈ indep.

4.2 Complex spares and dependencies

Looking at static fault trees (see Section2.1) we can see that they are highly modular, i.e.
we can take any static fault tree and use it as a module in another static fault trees (by attaching
its top-node as an input to some gate). We want to achieve the same level of modularity for
dynamic fault trees, because increased modularity extendsthe modelling capabilities of the
DFT formalism. This does not seem like a big problem, but, forinstance, the tool Galileo
mentioned in Subsection2.4 does not allow fully modular DFT models. In particular the
dependent inputs of FDEP gates must be basic events and the spare-inputs of a spare gate are
also required to be basic events (see [9, Sections 4.2.2 and 4.2.3]). In our approach we allow
these inputs to be complex events (i.e. gates) as well as basic events, although spares are still
required to be independent subtrees, as defined in Definition4.2.

Before tackling the problem of making the DFT formalism moremodular we must ask
ourselves whether this is worthwhile. In particular we mustanswer the question whether is
it useful to use independent sub-trees instead of basic events as spare inputs of a spare gate.
Consider a computer system that simply consists of two processors, one primary processor and
one spare. Because switching between processors must be very quick the spare processor will
be running in a stand-by mode when it is not yet active. Figure4.1shows how we can model
this computer system as a simple DFT. This DFT can be solved using the Galileo tool, because
the spare-input of the spare gate is indeed a basic event. However, what if we want to increase
the fault tolerance of our system by replacing the single processors by two processors running
in parallel. We could model this new computer system using the DFT in Figure4.2. There



38 C 4. DFT  

Primary Spare

System

Figure 4.1: Example of a dynamic fault tree.

System

Primary Spare

P1 P2 S1 S2

Figure 4.2: Example of a modular dynamic fault tree

is no reason why we wouldn’t want to analyze such a DFT, so it isdefinitely worthwhile to
expand the DFT formalism to allow such DFT.

In our approach the inputs of spare gates may be any DFT element. We do, however, restrict
the inputs to spare gates to being independent sub-trees. For instance in Figure4.2the sub-tree
consisting ofPrimary, P1 andP2 is independent since it is only connected to other elements
via its top nodePrimary. The same goes for the sub-tree of elementSpare.

Another way in which DFT are more modular in our approach is that we allow complex
events to be dependent via FDEP gates. This means that the dependent inputs of an FDEP gate
are not restricted to being basic events.

Allowing complex events to be used as spares does cause some problems in the interpre-
tation of DFT models. These problems all revolve around the concept of dormancy. We have
already mentioned that spares can be dormant or active and that they are activated by spare
gates when necessary. For basic events dormancy is simple: the rate at which they fail simply
changes. For complex events activation is more involved, but still manageable. We will discuss
the meaning of dormancy for complex events used as spares in the next section.



4.3. A  D 39

4.3 Activation and Dormancy

The introduction of spare gates to the DFT formalism has alsointroduced the concepts
of activation and dormancy. Recall that when the primary component of a spare gate fails
it activatesits first available spare and before it is activated this spare is dormant. A good
example of this is the spare tire in the example DFT describedin Section2.3. In this case
the concept of dormancy is simple, because the spare tire is modelled as a basic event: the
spare tire simply fails at a lower rate when it is dormant. In the previous section we have seen,
however, that in our approach we also allow independent subtrees to be spares and that means
we must define the concept of dormancy for independent subtrees.

To decide how to model dormancy for independent subtrees we must consider what a DFT
actually models and especially what the difference is between basic events and gates. In DFT
models basic events model the behavior of physical objects.Gates on the other hand model the
consequences of other events happening and never the behavior of physical components. If we,
for instance, look back on the example of a DFT for a road trip (see Section2.3) we can see that
basic events all model the behavior of physical objects (tires, the engine and the mobile phone)
and gates model the consequences of the failures of their inputs. It can be argued that gates
can model somecomplexcomponent (such as the car in our road trip example), but we will
always find that every one of its physical subcomponents is modelled by some basic event in
the subtree under this gate. The only gate that might be considered to model a physical device
is the spare gate, since it must physically detect the failure of its primary component and then
switch operation to one of its spares. If we, however, want toincorporate this physical aspect
of a spare gate in our DFT we must once again use a basic event tomodel its possible failure.

We therefore define the dormancy of an independent subtree asthe dormancy of its basic
events. When an independent subtree, used as a spare, is activated all its basic events are
activated. If we look at the DFT in Figure4.3we see that when component 1 fails component
2 is activated. The activation of component 2 simply means that both basic events (A2 and B2)

System

Component 1

A1 B1 B2A2

Component 2

Figure 4.3: An example of a dynamic fault trees with components.

are activated. The behavior of the AND-gate doesn’t change.Because A2 and B2 are warm
basic events they may fire even when they are dormant. If they both do then component 2 fires
before component 1, but this is proper behavior for warm basic events.



40 C 4. DFT  

Things get interesting when we look at nested spare gates (i.e. spare gates that are part
of a spare of another spare gate). For instance in Figure4.4 the spare component (as well
as the primary component) consists of a spare gate with a primary basic event and a spare.
Should component 1 in Figure4.4 fail then P2 will become active but forS2 nothing will

System

P1 S1 S2P2

Component 1 Component 2

Figure 4.4: An example of a dynamic fault trees with nested spare gates.

change. It stays dormant untilP2 fails as well. ShouldP2 fail before component 1 does
(this is possible since it is a warm basic event) thenS2also stays dormant. This means that
spare gates do behave differently when dormant or active. The difference is that active spare
gates activate their spares, but dormant spare gates don’t.In this approach if an independent
subtree is dormant then everything inside the independent subtree is also dormant and when an
independent subtree becomes active everything inside the independent subtree, except for the
spares, becomes active. The activation of spares is still regulated by the spare gates that share
them.

We have now clearly defined dormancy for independent subtrees. Only basic events and
spare gates have different active and dormant behaviors, other gates have only one behavior.
For subtrees that are not independent dormancy is not well-defined because it becomes unclear
when certain basic events and spare gates activate. Thus we restrict the inputs of spare gates to
being independent subtrees.

4.4 Notation

In this section we discuss the notations used in the rest of this chapter.
In general DFT events (modelled as either gates or basic events) evolve through four stages.

At first the event hasn’t been activated yet. We call this the dormant stage. In the case of
warm or hot events the event may move from its dormant stage toits firing state (see below).
Activation of an event can be seen as the switching on or taking into use of a component. After
activation the event is fully operational. The active stageof a DFT event is usually comprised
of multiple IOIMC states. Eventually the conditions may be right for the event to fire (for
instance, k of the m input-events of a k/m gate may have fired). In this third stage, the firing
stage, the event will fire and so it will get to its last stage inwhich the event has fired. These
four stages are shown in Figure4.5.



4.4. N 41

Firing
Dormant

Active

Fired

Figure 4.5: The life cycle of a DFT event.

We will see that the firing stage of the DFT elements life-cycle always corresponds with
one IOIMC state. This state will be colored gray in the IOIMC models shown in this section
and will be referred to as thefailed state or thefiring state. In the same way the fourth stage
also corresponds with a single IOIMC state. This state will be denoted with a double circle in
the IOIMC models of this section and will be referred to as thefired state. IOIMC states that
correspond with the associated DFT element being operational (in the dormant or active stage)
are simply denoted as white circles. They will be referred toasoperationalstates. The dormant
stage is not depicted in any special way in the IOIMC diagrams. Basic events are only dormant
(first stage) in their starting state (already denoted with adot in the middle). The dormancy of
a gate depends totally on the dormancy of its inputs. Therefore we do not see a dormant stage
in the IOIMC models of gates, except in that of the spare gate.The way activation has been
modelled using IOIMC is described in detail in Subsection4.6.2. Lastly we must note that for
the PAND-gate there is a fifth stage of operation in which the gate can no longer fire, no matter
what happens. This is called the disabled stage and always consists of a single state denoted
with anX. Figure4.6shows the notations described in this section.

Start state

Dormant or active state

Firing state

Fired state

Disabled state

Figure 4.6: Different IOIMC states.

We will also use the following naming convention for interactions in the IOIMC models.
f (A) denotes the action of eventA firing (or the failing of componentA). a(A, B) denotes
the activation of the spareA by spare gateB. a(A) denotes the activation of the independent
subtree with top-node namedA. All IOIMC models given in this thesis are fully input-enabled
as described in subsection3.2. For the sake of simplicity we have sometimes left out those
input-actions which have no effect on the state of the IOIMC (in other words, we have left
out input-actions from a state to itself).



42 C 4. DFT  

4.5 IOIMC models

In this section we will give some examples of IOIMC models of DFT elements, based on
their names, their parents, their inputs and their delay-rates (in the case of basic events). This
information can be directly derived from the formal definition (c.q. Definition4.2) of the DFT
containing the DFT element. The formal translation of the elements in a DFT to a community
of IOIMC is given in Section4.7. The IOIMC models described in this chapter can be found
in full in AppendixB.

4.5.1 Basic Events

There are three different basic events. In their operational stage basic eventsall behave the
same way: after an exponentially distributed delay they fail, signalling this failure to the rest
of the IOIMC community.

Cold basic events cannot fail before activation. The IOIMC model of the cold basic event
is shown in Figure4.7. This particular basic event is namedA and has a delay rate ofλ.

a(A)?

f(A)!

A( )

Figure 4.7: IOIMC model of a cold basic event: (BE, 0, λ, 0)

Warm basic events can fail before activation, but they do so at a different (usually reduced)
rate. The IOIMC model of a warm basic event with nameA, active delay rateλ and dormant
delay rateµ is given in Figure4.8.

Hot basic events can also fail before activation, and they dothis at the same rate as after
activation. The IOIMC model of a hot basic event with nameA and delay rateλ is given in
Figure4.9.

4.5.2 OR gate

An OR gate fires when one of its inputs fires. In Figure4.10we see the IOIMC model of
the OR gate with two inputs. Note that the IOIMC model has no transition labelled with an
activation action. This means that the activation action isnot an input-action for this IOIMC.
This is also the case for AND, K/M and PAND gates. The generalization of the OR, AND,
K/M, PAND and spare gates can be found in AppendixB.



4.5. IOIMC 43

f(A)!

A( , )

a(A)?

Figure 4.8: IOIMC model of a warm basic event: (BE, 0, λ, µ)

a(A)?

f(A)!

A( )

Figure 4.9: IOIMC model of a hot basic event: (BE, 0, λ, λ)

f(A)!

f(I1)?

f(I2)?

A

I1 I2

Figure 4.10: IOIMC model of the OR gate: (OR, 2)

4.5.3 AND gate

Figure4.11 shows the IOIMC model of the AND gate with two inputsI1 and I2. The
AND-gate fires when both its input events have fired.



44 C 4. DFT  

f(A)!

f(I1)?

f(I1)?

f(I2)?

f(I2)?

A

I1 I2

Figure 4.11: IOIMC model of the AND-gate: (AND, 2)

4.5.4 K/M-gate

A 2/3-gate with three inputsI1, I2 andI3 is depicted in Figure4.12. It fires when at least
two of its three inputs have fired.

f(I1)?

f(I1)?

f(I1)?

f(I2)?

f(I2)?

f(I2)?

f(I3)?

f(I3)?

f(I3)?

f(A)!

2/3

A

I1 I2 I3

Figure 4.12: IOIMC model of the voting gate: (VOTING, 3, 2)

4.5.5 PAND gate

The PAND gate fires if all its inputs fire in left to right order.If the inputs fire in the wrong
order, the PAND gate moves to its disabled state and can then never fire. Figure4.13shows the



4.5. IOIMC 45

A

I1 I2

f(I1)? f(I2)?

f(I1)?

f(A)!

Figure 4.13: IOIMC model of the PAND gate: (PAND, 2)

IOIMC model of the PAND gate with two inputs. Note that in our approach inputs cannot fire
at the same time. If the situation occurs that two DFT elements are ready to fire at the same
moment, then the order in which they fire is chosen non-deterministically (see Section4.6.5
for a discussion of this design choice).

4.5.6 Spare Gate

Figure4.14 shows an IOIMC model of a spare gate namedA with primary P and spare
S PP. This spare is shared between spare gateA and spare gateC. This model looks quite
complicated but in fact it isn’t. Note first of all that the spare gates shows dormant and active
behavior in contrast to the other gates. Figure4.15shows a simplified view of the same model,
where the dormant and active behavior of the spare gate have been split. In order to switch
from dormant to active behavior the input action should be added from the dormant states to
the appropriate active states. The dormant and active firingstates can be merged, because when
the spare gate is ready to fire it no longer matters whether it is dormant or active. The same
goes for the fired state.

Looking at the simplified model we can see that, when dormant,a spare gate acts a lot
like an AND-gate. This is no surprise considering a spare gate fails when its primaryand all
of its spares have failed. The difference with an AND-gate is that spares being activated by
another spare gate has the same effect as that spare failing. The active behavior of a spare gate
differs from the dormant behavior in that the spare gate will now try to activate spares when
appropriate. The fact that dormant spare gates never activate their spares is in line with our
interpretation of dormancy discussed in the Section4.3.

In AppendixB the complete IOIMC model of a spare gate is given. Because a spare gate
can have multiple spares and because all of these spares can be shared between any number
of spare gates the behavior of a spare gate seems quite complex. However, the behavior of a



46 C 4. DFT  

CA

P SP_P

f(P)? f(SP_P)?

f(SP_P)? f(P)?

a(SP_P,C)?

f(A)!

f(P)? f(SP_P)?

f(SP_P)? f(P)?

a(SP_P,C)?

a(SP_P,C)?

a(A)?

a(A)?

a(A)?

a(SP_P,C)?
a(SP_P,A)!

f(SP_P)?

Figure 4.14: IOIMC model of the spare gate: (SG, 2)

spare gate can be reduced to four basic states. It can be either dormant or active and it can have
a primary running or not. Figure4.16shows the general behavior of a spare gate. At first the
spare gate is dormant and its primary component is operational. Three things may happen: the
primary component may fail (although it is of course dormant), one of the (dormant) spares
may become unavailable, either because it fails or because it is activated by another spare gate
and finally the spare gate itself may be activated. A spare becoming unavailable doesn’t really
change the situation except of course that there is now one less spare available. When the spare
gate is activated with its primary component still operational its behavior doesn’t really change.
Spares can still become unavailable and the primary can still fail. Notice that the spare gate
does not activate the primary. Primary and spare gate however have the same activation signal
so they will be activated at the same time. The difference between active and dormant behavior
can be seen when the spare gate loses its primary component. When the spare gate is active it
will activate the first of its available spares, but when the spare gate is dormant it won’t. Notice
also that at the moment the spare gate wants to activate its first spare any spare (including
the first) may still become unavailable. This situation may give rise to the non-determinism
discussed in Section4.6.5. Finally a spare gate will fire in one of two situations: either the



4.6. D  47

f(P)? f(SP_P)?

f(SP_P)? f(P)?

a(SP_P,C)?

f(A)!

f(P)? f(SP_P)?

f(SP_P)? f(P)?

f(A)!

a(SP_P,C)?

a(SP_P,C)?

a(SP_P,C)?
a(SP_P,A)!

f(SP_P)?

Dormant

Active

a(A)?

Figure 4.15: Simplified IOIMC model of the spare gate.

primary fails and no more spares are available or the spare gate doesn’t have an operational
primary and the last of its spares becomes unavailable (so the spare gate cannot activate this
spare to become the new primary). Both situations can occur when the spare gate is dormant
or active.

4.5.7 FDEP gate

The proper modelling of functional dependencies is achieved by using firing auxiliaries
(FA). For some dependent DFT element a firing auxiliary governs when its firing action should
be taken, namely when either the DFT element fires normally (i.e. as if it were not dependent)
or when one of its trigger events fires. Figure4.17shows the firing auxiliary of a DFT element
A which is dependent on two other DFT elementsB andC. The actionf ∗(a) corresponds to
the normal firing of eventA while action f (a) models the actual firing of eventA, whether
normally or triggered by some other event.

So an FDEP gate in the DFT is modelled by one firing auxiliary IOIMC for each of its
dependent inputs.

4.6 Design choices

The structure (i.e. syntax) of dynamic fault trees is definedformally in Section4.1. In
this section the behavior (i.e. semantics) of dynamic faulttrees is defined by modelling them
as input/output interactive Markov chains. To model DFT elements as IOIMC a number of



48 C 4. DFT  

Spare gate is dormant and
has an operational primary

Spare gate is dormant and does
 not have an operational primary

Spare gate is active and does
 not have an operational primary

Spare gate is active and
has an operational primary

Primary fails

Spare gate
is activated

Spare gate
is activated

Primary fails

A spare becomes
unavailable

A spare becomes
unavailable

The first spare
is activated

A spare becomes
unavailable

A spare becomes
unavailable

No operational primary
and no more spares

Primary fails

Primary fails

A spare becomes
unavailable

A spare becomes
unavailable

Figure 4.16: Schematic model of a spare gate.

f(A)!

f(B)?

f*(A)?

f(C)?

A

B

C

FDEP

FDEP

Figure 4.17: Firing auxiliary IOIMC model.



4.6. D  49

important design decisions need to be made. In particular wewill look at the way the concepts
of events firing and events being activated are modelled. In general every DFT is modelled as
an independent subtree (which can possibly be used in another DFT), such that every DFT may
be activated, may fire or may be dependent on other events.

4.6.1 Firing

The firing of events is the basis of the DFT formalism and is also the simplest to model
using IOIMC. Every event, whether basic or complex may at some point fire. This is modelled
by an interactive transition with an output actionf (A)! for an event namedA. DFT elements
that have eventA as input respond to it firing by having input-transitions labelled f (A)?. So,
the output actionf (A)! is used to signal the firing of eventA and any interested DFT element
may respond to this firing by having an input transition labelled f (A)?.

4.6.2 Activation

Activation is more complex than firing. Although only basic events and spare gates have
an activation input-action (see Section4.3), all DFT elements are defined to have an activation
signal. Elements other than basic events and spare gates simply do not use this signal (it is not
in the action signature of their IOIMC). For basic events andspare gates that are not used as
spares activation is simple: they are activated when their parents are activated. This means that
they have the same activation-signal as their parents. The top element of a DFT always has its
own activation signal.

For spares activation is more complicated. A shared spare can be activated by several dif-
ferent spare gates. We have chosen the following approach tomodelling spare gate-, primary-,
and spare behavior:

• Primaries, which are unique for each spare gate, are activated together with their spare
gate.

• Spares can be activated by any of their sharing spare gates, each having adifferentspare-
activation signal.

• A spare gate can activate any of its spares. A spare gate also responds to the activation
by other spare gatessharing one or more of its spares.

The way these elements communicate is shown in Figure4.18.
The activation auxiliary (AA) model is used to allow a spare to be activated by several

different spare gates. As inputs the activation auxiliary has the activation signals of the spare
gates and as output it has the activation signal for the DFT element used as a spare. After it
receives one of the activation signals from one of the spare gates the AA activates the spare. In
Figure4.19we see the activation auxiliary for a spare which is shared bytwo spare gates.

The most interesting aspect of this communication is the fact that each spare gate has its
own unique signal to activate the shared spare. A simpler approach is to have a single activation
signal for spare componentS, but apart from the difficulty of having two identical output-
actions (a(S)! for both the spare gates) the two spare gatesmustsignal to each other that they



50 C 4. DFT  

G1 G2

G1 G2

P1 P2S

P1 P2

S

Partial DFT of Component C

Corresponding IOIMC models

f(P1) f(P2)

a(S,G1)

a(S,G2)

a(S,G1) a(S,G2)

f(S)
f(S)

a(C)

a(C) a(C)

a(C)

f(G1) f(G2)

AA(S)

a(S)

Figure 4.18: Communication between spare gates, primariesand spares

a(S)!

a(S,G1)?

a(S,G2)?

Figure 4.19: Activation auxiliary IOIMC model.

have activated the spare. This is of course only possible if these two signals are distinct. We
will also see that the approach we have chosen deals very nicely with the situation when both
primaries fail at the same time (due to a shared functional dependency). In this case one of the
two spare gates will activate the spare, while the other fires. The spare gate that gets the spare
is chosen non-deterministically as intended (see Subsection 4.6.5).

We have seen that DFT elements that are not used as spares get the same activation signal as
their parents. This is of course only possible if each parentof such a DFT element has the same
activation signal. The restriction that spares must be independent subtrees (see Section4.2)
ensures that this is the case. If two parents of a DFT element have different activation signals
then obviously one of them must at least be part of a spare (or they are part of two different
spares), which immediately means that this spare cannot be an independent tree and therefore



4.6. D  51

the DFT is not valid.

4.6.3 Time

In our IOIMC models of DFT elements time is modelled by using Markovian transitions.
The only models containing Markovian transitions are the basic events, because these model
the fact that there is a delay before a basic event happens. These delays are exponentially
distributed to make sure that the models adhere to the Markovproperty. Although it is not
possible to directly use other distributions, they can be approximated using, for instance, phase-
type distributions [28].

4.6.4 Auxiliary IOIMC models

In Section4.5we have seen that every IOIMC model has at least a firing output-action and
some also have an activation input-action. This generic approach also requires to use only very
local information when constructing an IOIMC model of a DFT element. This, however, does
cause a problem when considering shared spares and dependent DFT elements.

A spare that is shared byn spare gates will not have a single activation signal, but rather
n different, dedicated, activation signals. One for each spare gate. To ensure that the spare
activates when one of the spare gates tries to activate it an activation auxiliary (see Subsec-
tion 4.6.2) is added which acts simply as a relay between the spare and its sharing spare gates.
The use of the activation auxiliary is shown in Figure4.20.

A

B C

B C

A

a(A,B) a(A,C)

a(A)

Activation auxiliaryDFT-to-IOIMC

Figure 4.20: Example of how an activation auxiliary IOIMC isused to properly model spare-
activation.

Dependent DFT elements fire in two different ways: either they fire normally by themselves
or they are triggered by some DFT element. The firing auxiliary (see Subsection4.5.7) models
this behavior by outputting the DFT element’s firing signal after it receives either the firing
signal of one of the triggers or the firing signal of the dependent DFT element itself. This of
course does mean that the firing signal of the dependent DFT element needs to be renamed.
After renaming the signal and parallel composing the resulting IOIMC with the firing auxiliary
the renamed firing signal can then be hidden. The use of the firing auxiliary is shown in
Figure4.21. In this figure the firing signal of basic eventA is renamed tof ∗(A).



52 C 4. DFT  

A

B C A

f(B) f*(A)

Firing auxiliaryDFT-to-IOIMCB

C

f(C)

f(A)!

Figure 4.21: Example of how a firing auxiliary IOIMC is used toproperly model dependency.

4.6.5 Simultaneity

When the trigger of an FDEP-gate fires all its dependent inputs also fire. This implies that
both the trigger and the dependent events fire at exactly the same moment. However, the failure
of these events is modelled by the sending of a number of different signals. For instance, in
Figure4.22, eventA triggers eventsB andC. Their failure is modelled by the actionsfA, fB

and fC.

B C

A

System

Figure 4.22: Example of a DFT with a functional dependency.

The fact that eventA immediately triggers eventsB andC is modelled in the following way:

1. No time transpires between the failures of eventsA, B andC.

2. EventA occurs before eventsB andC.

3. EventsB andC occur in a non-deterministic order.

To understand why we have chosen this way to model simultaneity caused by FDEP-gates
we look at what an FDEP-gate models exactly. One of the uses ofFDEP-gates is to model
network elements in a computer system. For instance, in Figure 4.22, eventsB andC might
model the failure of two remote computer systems connected to the main system via a but
whose failure is modelled by eventA. When the bus fails the remote computer systems im-
mediately become unavailable to the main system which explains the first rule. The third rule
may seem strange at first, because it seems logical to model eventsB andC to fail at exactly
the same time. However, in real life systems, events rarely occur at exactly the same time and
more importantly the occurrence of events is usually notnoticedat exactly the same time. So



4.6. D  53

the third rule is based on the assumption that the main systemwill notice the unavailability of
one of the remote computers before the other. Which one it notices first is not specified and
the order is therefore modelled to be non-deterministic. Now the second rule seems debatable:
why should the failure of the network be noticed before the unavailability of the two remote
computers? The reasoning behind this ordering is based on the assumption that the occurrence
of some event in a DFT is "noticed" simultaneously by all other events in the DFT. Whether
this assumption is always correct is open to debate. It should be noted that the second rule also
supports the notion ofcausality: thecause(in this case the trigger) always occurs before the
effect (the dependent event).

f(A)!

f(B)!

f(B)!f(C)!

f(C)!

Figure 4.23: Partial IOIMC behavior of eventsA, B andC.

Figure4.23shows part of an IOIMC representing the eventsA, BandC observed in parallel.
We can see that this IOIMC conforms to the three rules introduced above. When eventA occurs
(after an exponentially distributed delay with rateµ) first signal f (A) is fired and then signals
f (B) and f (C) in a non-deterministic order. This non-determinism has its consequences: in the
running example the eventSystemis modelled by a Priority-AND gate so the order in which
eventsB andC occur determines whether the system fails. This is reflectedin the IOIMC
model of the behavior of this DFT shown in Figure4.24by the internalf (A) transitions.

f(A);

f(System);+

+

Figure 4.24: Simplified IOIMC behavior of the example DFT.

Because of the non-determinism the IOIMC model in Figure4.24 is not isomorphic to a
CTMC, but it can be interpreted as a Markov decision process (MDP) [33], a variation on
CTMC. The MDP can then be analyzed to find upper and lower bounds for, for instance, the
unreliability of the system.



54 C 4. DFT  

4.7 Translation of a DFT to an IOIMC community

Before giving the translation of a DFT to an IOIMC community we give the formal trans-
lation of DFT elements to IOIMC models. The DFT elements are defined by their name,
attributes (e.g. failure rates) and local surroundings in the DFT. In the DFT element descrip-
tions all DFT elements have a name, a set of spare-parentsPS P, a set of regular parentsPR and
a set of triggersT. The parents are the elements that have the element under discussion as an
input. The spare-parents are spare gates that have the element under discussion as spare-input
(so not as primary). All the other parents of an element are contained in the regular parents
set. The triggers are DFT elements that this element is functionally dependent on. Furthermore
basic events have one or two rates which define their probabilistic behavior and gates have a
number of inputs contained in the vectorI . K/M gates also have two parametersk andmwhich
of course denote the threshold and total number of inputs forthe gate.

In the IOIMC descriptionsfM denotes the firing signal of IOIMCM, aM denotes its activa-
tion signal andAM denotes the set of activation signals of the formaM,x for an IOIMC M. For
the spare gatepr denotes the primary input whileS denotes the vector of its spares. The func-
tion Act handles any operations needed to properly handle the activation of an IOIMC model
based on the set of parents of the corresponding DFT element.The functionDephandles the
triggering of a DFT element based on its set of triggers.

~CBE(name, rate,PS P,PR,T)� =

Act(Dep(IOIMCCBE( fM, aM, rate),T),PS P,PR)

~WBE(name, rateA, rateD,PS P,PR,T)� =

Act(Dep(IOIMCWBE( fM, aM, rateA, rateD),T),PS P,PR)

~HBE(name, rate,PS P,PR,T)� =

Act(Dep(IOIMCHBE( fM, aM, rate),T),PS P,PR)

So, basic events all have a firing signal (fM) an activation signal (aM) and one or two rates. Just
like all other IOIMC models activation must be dealt with based on the element’s parents and
dependency must be dealt with based on the element’s triggers.

~OR(name, I ,PS P,PR,T)� =

Act(Dep(IOIMCOR( fM, aM, 〈 fi | i ∈ I〉),T),PS P,PR)

~AND(name, I ,PS P,PR,T)� =

Act(Dep(IOIMCAND( fM, aM, 〈 fi | i ∈ I〉),T),PS P,PR)

~KM(name, k,m, I ,PS P,PR,T)� =

Act(Dep(IOIMCKM( fM, aM, k,m, 〈 fi | i ∈ I〉),T),PS P,PR)

~PAND(name, I ,PS P,PR,T)� =

Act(Dep(IOIMCPAND( fM , aM, 〈 fi | i ∈ I〉),T),PS P,PR)

The logical gates look much the same as basic events except that they also have a list of input
signals. Note that lists are ordered which is important for the Priority-AND gate. As mentioned
before the static gates all have an activation signal although none of them use this signal in their



4.7. T   DFT   IOIMC  55

IOIMC models. Why this is the case will become clear when theAct function is described
below.

~SG(name, pr,S,PS P,PR,T)� =

Act(Dep(IOIMCSG( fM, aM, fpr, 〈(as,M, fs : As \ 〈as,M〉) | s ∈ S〉),T),PS P,PR)

In the above equation ‘:’ is used to prefix a list of actions with a single action. The spare gate
is the most complex of the IOIMC models. Besides a firing and activation signal it also has the
firing signal of its primary component. Furthermore the spare gate has a list of tuples. Each
tuple corresponds to one of the spare gates spares and contains the spare’s activation signal
(as,M) and a list of disabling signals for the spare. The disablingsignals consist of the failure
signal of the spare (fs) and the activation signals of the other spare gates sharingthat spare
(As). The spare gate may use the activation signal for a spare (as,M) to activate the spare.

Act(M,PS P,PR) =






























M , if PS P= 〈〉 ∧ PR = 〈〉

M[aM \ ap] , if PS P= 〈〉 ∧ PR , 〈〉

, wherep ∈ P
hide aM in M‖IOIMCAA(aM , 〈aM,p | p ∈ PS P〉) , if PS P, 〈〉

The handling of activation is based solely on the parents of an element which are split into
two sets: one containing spare gates that use the element as aspare and one containing other
parents. There are three possibilities for activation of a DFT element. First, the element may
be the top element of the DFT having no parents. In this case nothing needs to be done to the
IOIMC model. Secondly, the DFT element may be a primary element of the DFT, that is to say,
not a spare. In this case the IOIMC’s activation signal is renamed to the activation signal of
one of its parents (this is denoted as [aM \ ap]). This is also the reason all IOIMC models need
to have an activation signal defined even if they do not use them. It is easy to see that these first
two clauses will result in all the primary elements of a DFT having the same activation signal
as the top node. This is in correspondence to the way we have chosen to represent activation
(see Subsection4.6.2). The choice of parent for the renaming of the activation signal is not
important as all parents must have the top node as common ancestor. This leaves the activation
of spares which is handled by the third clause. When an element is a spare of one or more
spare gates, then it gets a number of dedicated activation signals from these spare gates. To
cope with these multiple signals the IOIMC model of the DFT element is composed with an
activation auxiliary (as discussed in Subsection4.6.4).

Dep(M,T) =

hide f ′M in M[ fM \ f ′M]‖IOIMCFA( fM , f
′
M : 〈 ft | t ∈ T〉)

Dependent DFT elements are composed with a firing auxiliary to make sure that the element
also fires when one of its triggers fires. First, however, the firing signal of the DFT element must
be renamed. This renamed signal is used as input to the firing auxiliary and after composition
it can be hidden.

Above we have seen how to translate individual DFT elements.We can now translate an
entire DFT to a community of IOIMC by applying this individual translation on each of its
elements (except the FDEP-gates):



Definition 4.3 Let D = (V, in, l,T) be a DFT. TheIOIMCC-translationof D is an IOIMC
communityC where:

C = {~detailsV(v)� | v ∈ V ∧ type(l(v)) , FDEP}

The functiondetailsV is defined below as well as the auxiliary functions PSP, PR and Trig for
DFT D which give the spare parents, regular parents and triggers for a node of D respectively:

detailsV(v) =






































































































CBE(v, λ,PSP(v),PR(v),Trig(v)) , if l(v) = (BE, 0, λ, µ) ∧ µ = 0

WBE(v, λ, µ,PSP(v),PR(v),Trig(v)) , if l(v) = (BE, 0, λ, µ) ∧ µ , λ

HBE(v, λ,PSP(v),PR(v),Trig(v)) , if l(v) = (BE, 0, λ, µ) ∧ µ = λ

OR(v, in′(v),PSP(v),PR(v),Trig(V)) , if type(l(v)) = OR

AND(v, in′(v),PSP(v),PR(v),Trig(V)) , if type(l(v)) = AND

KM(v, k,m, in′(v),PSP(v),PR(v),Trig(V)) , if l(v) = (VOTING,m, k)

PAND(v, in′(v),PSP(v),PR(v),Trig(V)) , if type(l(v)) = PAND

S G(v, head(in′(v)), tail (in′(v)),

PSP(v),PR(v),Trig(V)) , if type(l(v)) = SPARE

PSP(v) = {w | v ∈ in′(w) ∧ v , head(in′(w)) ∧ type(l(w)) = SPARE}

PR(v) = {w | v ∈ in′(w) ∧ w < PSP(v)}

T(v) = {w | ∃x ∈ V · type(l(x)) = FDEP ∧ w = head(in′(x)) ∧ v ∈ tail (in′(x))

In the abovehead(l) gives the first item of a list l andtail (l) gives all the items of a list l except
the first item.



Chapter 5

Compositional Analysis of DFT

In this chapter we will describe an analysis technique for dynamic fault trees based on the
compositional semantics of DFT elements described in Chapter 4. This analysis technique is
called compositional analysis. Compositional analysis isbased on the idea of composing the
IOIMC models of the elements of a DFT into a single IOIMC whichcan then be analyzed
to find fault tolerance measures. Below we describe the four steps needed to find a single
IOIMC representing the behavior of a DFT. This IOIMC can thenbe used to find a CTMC
representing the behavior of this DFT (step 5) and then we cansolve this CTMC to find fault
tolerance measures such as the unreliability of the system described by the DFT.

5.1 Step 1: Translation

First we must convert the building blocks of the given DFT into IOIMC. Figure5.1shows
the conversion of an example DFT to a community of IOIMC. On the right side of the picture
we see the IOIMC corresponding to the DFT elements on the left. The actions used to signal
the firing of events are drawn as arrows. To simplify the figures, the concepts of activation and
triggering have been ignored in this running example.

In Figure5.2 we see the IOIMC models of the PAND-gateD and the basic eventA. The
translation of DFT elements into IOIMC models has already been described in detail in Sec-
tion 4.7

5.2 Step 2: Abstracting composition

In order to calculate fault tolerance measures for our running example we need to transform
the community of IOIMC shown in Figure5.1into a single IOIMC. We do this by using parallel
composition and abstraction. Figure5.3 shows the parallel composition of the IOIMC-model
of PAND-gateD and the IOIMC-model of the basic eventA in which the actionf (A) is hidden.
In other words Figure5.3shows the abstracting composition of the subset{D,A} in the IOIMC
community (see Section3.2). The resulting IOIMC community is shown in Figure5.4.

The order in which the IOIMC are composed has a big impact on the efficiency of compo-
sitional analysis. The composition of IOIMCD andA, for instance, has only eight states which
can be reduced to 7 through aggregation (see step 3). The composition of IOIMC E andA on

57



58 C 5. C A  DFT

D E

System

A B C

f(D) f(E)

f(A) f(B) f(B) f(C)

Convert DFT-elements
to interacting IOIMC

IOIMC
CBE

(f(A), ) IOIMC
CBE

(f(B), ) IOIMC
CBE

(f(C), )

(f(System),
<f(D),f(E)>)

IOIMC
OR

(f(D),<f(A),f(B)>)

IOIMC
PAND

(f(E),<f(B),f(C)>)

IOIMC
AND

f(System)

Figure 5.1: Conversion of a DFT into a community of IOIMC

f(A)? f(B)?

f(B)?

f(D)!

f(A)!

f(A)?,f(B)?
f(D)!
-

-
f(A)!
-

IOIMC
PAND

(f(D),<f(A),f(B)>)

IOIMC
CBE

(f(A), )

Figure 5.2: IOIMC models of two DFT elements. Their descriptions (as in Section4.7) are
given as well as their action signatures.

f(B)?

hide f(A) in D||A

f(A);

f(B)?

f(A); f(B)? f(D)!

f(B)?
f(D)!
f(A);

Figure 5.3: Parallel composition of a PAND-IOIMC and a basicevent-IOIMC



5.3. S 3: A 59

f(D)
Abstracting composition

of IOIMC D and A

System

f(E)

D E

A B C

f(A) f(B) f(B) f(C)

f(D)

System

f(E)

hide f(A) in D||A
E

B C

f(B)
f(B) f(C)

f(System) f(System)

Figure 5.4: Result of the abstracting composition of IOIMCD and IOIMCA

the other hand has 15 states. This is caused by the fact that there is no synchronization in this
composition (i.e. IOIMCE andA have no matching input/output actions). Ordering strategies
for composition are further discussed in Subsection8.3.2.

5.3 Step 3: Aggregation

The purpose of aggregation is to minimize the IOIMC models created by abstracting com-
position in step 2. Aggregating an IOIMC simply means creating a smaller IOIMC that is, in
some way, equivalent with the original IOIMC. The choice of the equivalence used is crucial in
this step. In this thesis we use the weak bisimulation equivalence to aggregate IOIMC models
(see Section3.4for the definition of this equivalence and a discussion on whywe choose it).

f(B)?

hide f(A) in D||A

f(B)?

f(B)? f(D)!f(A);

Figure 5.5: Result of aggregation using weak bisimulation

In Figure 5.5 we see the result of aggregating the IOIMC from Figure5.3 using weak
bisimulation. The only difference between the original IOIMC and the resulting IOIMC isthe
removal of one state in the lower right corner.



60 C 5. C A  DFT

5.4 Step 4: Repetition

As mentioned before we need to have one single IOIMC to be ableto calculate fault tol-
erance measures. In the examples we have seen so far we have transformed a DFT into six
IOIMC models and then composed two of these to get five IOIMC models. By repeating steps
two and three (composition and aggregation) we eventually get one single IOIMC model rep-
resenting the behavior of the DFT. Figure5.6shows this IOIMC model.

f(System)!

-
f(System)!
f(A);,f(B);,f(C);,
  f(D);,f(E);

f(System)!

3

Figure 5.6: IOIMC representation of the running example. The grey states represent states in
which the system has failed.

This IOIMC representation of a DFT can be reused in the compositional analysis of other
DFT that have the example DFT as an independent subtree. An example of this analysis tech-
nique is shown in Section6.1. If we, however, want to calculate fault tolerance measuressuch
as unreliability for this DFT we need to transform the IOIMC into a CTMC.

5.5 Step 5: CTMC generation

The final step of compositional analysis is to find a CTMC representing the behavior of
the DFT. An IOIMC can be interpreted as a CTMC if it has no interactive transitions, but
the IOIMC we found for our running example still has two interactive transitions labelled
f (System)!. But because we are now only interested in this IOIMC itself (and not in how it
interacts with its environment), we can hide this signal andmake the transitions internal. By
then aggregating the IOIMC using weak bisimulation we abstract from these internal transi-
tions and find an IOIMC which can be interpreted as a CTMC representing the behavior of the
example DFT. This CTMC is shown in Figure5.7.

The grey states in this CTMC are those states in the corresponding CTMC which are weakly
bisimilar to the failed states in the IOIMC in Figure5.6 after hiding signalf (S ystem). Note
that when activation is taken into account the activation signal for the system also has to be
hidden in order to find an IOIMC which can be interpreted as a CTMC.

We can now use CTMC analysis techniques to find fault tolerance measures for our example
system. For instance, the unreliability of the example system for a mission-time of 1 equals
0.473 or 47.3%.

For certain DFT non-determinism will arise because of simultaneity. Because of this non-
determinism it will not be possible to find a CTMC representation of these DFT, but this prob-



5.5. S 5: CTMC 61

3

Figure 5.7: CTMC representation of the running example. Thegrey states represent states in
which the system has failed.

lem can be avoided by altering the DFT or by converting the IOIMC to a different formalism
such as MDP. For more information on this phenomenon see Subsection4.6.5.





Chapter 6

Case Studies

In this chapter we will discuss three case studies. These case studies show that the com-
positional approach to analyzing DFT can be much more efficient than the traditional DIFTree
approach. The case studies also give a good indication of when compositional analysis is ex-
pected to outperform DIFTree analysis.

We have analyzed the dynamic fault trees by first translatingthem to a number of Tipp
processes using the DFT2Tipp tool and then using the Tipp tool [16] to perform parallel com-
position, abstraction and, partly, aggregation. This method of analysis is described in detail in
Section7. We have then used the Tipp tool to find the unreliability of the DFT for a certain
mission time. We have compared the performance of this approach with the performance of
the Galileo tool, which implements the DIFTree approach (see Section2.4) by comparing the
size of the generated IOIMC and CTMC respectively.

6.1 The Hypothetical Cascaded P-AND System case study

The first case we look at is a simple case study taken from [6] which is designed to show the
shortcomings of the DIFTree approach to analyzing dynamic fault trees. Figure6.1shows the
Hypothetical Cascaded P-AND System (HCPS). All basic events are cold and have a failure
rate of 1 failure per time unit. Because the DFT has a dynamic top node the order in which
all the basic events fail must be taken into account when transforming the DFT into a CTMC
using the DIFTree approach. The resulting CTMC is thereforequite large (4113 states and
24608 transitions).

6.1.1 Compositional analysis

The HCPS DFT consists of two P-AND gates and three AND gates each with four identical
basic events. In fact the three AND gate modules (consistingeach of an AND gate and four
basic events) are completely identical. We will use this fact to improve the efficiency of our
analysis. To do this, one such module will be translated intoan IOIMC and this IOIMC will be
reused three times. Figure6.2shows the AND-gate module.

Note that the top node is calledT instead ofA, C or D. After transforming the module
into an IOIMC the correct models can simply be found by renaming the IOIMC’s firing and

63



64 C 6. C S

System

A B

C D

Figure 6.1: DFT of the hypothetical cascaded PAND system.

T

A B C D

Figure 6.2: DFT of the component.

activation signal. This is an important advantage of the IOIMC formalism, where the IOIMC
model of a DFT can be reused in the compositional analysis of other DFT. It is not possible to
reuse the CTMC generated by the DIFTree approach.

First the DFT elements in the module are translated into IOIMC models which together
form an IOIMC community (Step 1 of compositional analysis, see Chapter5). This community
is shown in Figure6.3. After this translation compositional aggregation is usedto find a single
IOIMC which represents the behavior of the module.

Figure6.4shows the result of parallel composing IOIMCA andT, hiding actionf (A) and
aggregating the result using weak Markovian bisimulation.This corresponds to steps 2 and 3
described in Chapter5.

We now continue the compositional aggregation until a single IOIMC is found (Step 4 in
Chapter5). Figure6.5shows this IOIMC. When studying this IOIMC in detail we can see that
it correctly models the behavior of the AND-gate module. After activation of the cold basic
events we find that the first failure of a basic event occurs at four times the rate of a single
failure. This models the fact that any of the four basic events may fail first and, in this module,
it is unimportant which one fails first. The second failure then occurs at a three times the rate
of a single event and so on until finally the AND gate itself fails.

We can now translate the entire HCPS DFT by reusing the IOIMC given that some renam-
ing is done. Then compositional analysis (see Chapter5) is used to find a CTMC representing
the behavior of the hypothetical cascaded P-AND system. This CTMC is then analyzed to find



6.1. T H C P-AND S   65

T

f(T)!

f(A)?

f(B)?

f(C)?

f(D)?

f(D)?

f(C)?

f(B)?

f(A)?

a(T)?

f(B)!1

B

a(T)?

f(C)!1

C

a(T)?

f(D)!1

D

f(T)!

a(T)?

f(A); f(B); f(C); f(D);

a(T)?

f(A)!1

A

f(B)? f(C)?

f(C)? f(B)?

a(T)? a(T)? a(T)?

Figure 6.3: IOIMCC of the component.

the unreliability of the whole system.

6.1.2 Results

In table6.1we find the results of the HCPS case study. Note that there is notiming infor-
mation as the compositional analysis was partially performed manually (see Section7).

Approach Maximum number Maximum number Unreliability
of states of transitions (Mission-time= 1)

DIFTree 4113 24608 0.00135
Compositional 156 490 0.00135

Table 6.1: Results for the HCPS case study.

The DIFTree result is the size of the state space of the continuous-time Markov chain gen-
erated directly from the DFT. The result for the compositional approach is the largest appearing
IOIMC during compositional aggregation. We also see that both analysis techniques give us
the same unreliability for a mission-time of 1 time unit. In Figure6.6 we see the sizes of the
IOIMC for different steps in the compositional aggregation process.

We can see that the CTMC generated by the Galileo tool using the DIFTree approach is
more than 25 times as large as the largest IOIMC appearing during compositional analysis.
This large difference will have a serious effect on the performance of the tool in calculating
measures such as unreliability for the DFT. This large difference is caused by the fact that



66 C 6. C S

f(B)?

f(C)?

f(D)?

f(D)?

f(C)?

f(B)?

f(C)?

f(B)?

f(B)?

f(D)?

f(B)?

f(D)?

f(B)?

f(C)?

f(D)?

f(D)?

f(C)?

f(B)?

f(C)?

f(C)?

f(B)?

f(D)?

f(B)?

f(D)?

f(B)?

f(C)?

f(D)?

f(D)?

f(C)?

f(B)?

f(C)?

f(C)?

f(B)?

f(D)?

f(C)?

f(D)?

a(T)?a(T)?

a(T)?

a(T)?

1 1

a(T)?

a(T)?
a(T)?

a(T)?

1

1

1

1

1

1

f(T)!

T

A B C D

Figure 6.4: IOIMC of A||T.

f(T)!a(T)? 4 3 2 1

Figure 6.5: IOIMC representation of the module.

Galileo cannot use any modularization in its analysis. The reason for this is that the top node
‘System’ of the DFT is a PAND gate. Furthermore the DFT only fails when all of its twelve
basic events fail (in the correct order). So to find the CTMC for the HCPS DFT Galileo must
consider all the different orderings of the twelve basic events. In compositional analysis we
make use of two characteristics of this DFT to minimize the appearing IOIMC models: The
four basic events under each AND gate may fail in any order andall basic events have the
same failure rate. This effect can be seen very clearly in the IOIMC representation of the
AND-module shown in Figure6.5which has only 7 states.



6.2. C A S 67

0
20
40
60
80

100
120
140
160
180

M
od

ul
e:

 T
+

A

M
od

ul
e:

 T
+

A
+

B

M
od

ul
e:

 T
+

A
+

B
+

C

M
od

ul
e:

T
+

A
+

B
+

C
+

D

B
+

C

B
+

C
+

D

B
+

C
+

D
+

S
ys

te
m

B
+

C
+

D
+

S
ys

te
m

+
A

IOIMC models

# states

Before aggregation

After aggregation

Figure 6.6: State space chart.

6.2 Cardiac Assist System

The second case study is based on the Cardiac Assist System (CAS) introduced in [30].
Specifically it considers a hypothetical variation on the CAS introduced in [6]. The DFT of the
Cardiac Assist System (CAS) is shown in Figure6.7.

Motor_unit

System

Trigger MP

Pump_unitCPU_fdep CPU_unit

Motors Pump_A Pump_B

CS SS

P B

MS MA MB PA PS PB

Figure 6.7: DFT of CAS.

The CAS consists of three separate modules: the CPU unit, themotor unit and the pump
unit. These correspond to the CPU, motor and pump in the physical cardiac assist system that
is modelled by the DFT. There are two CPU’s: a primary (P) and awarm spare (B). Both are
functionally dependent on a cross switch (CS) and a system supervision (SS), which means that
the failure of either these components will trigger the failure of both CPU’s. There are also two
motors: a primary and a cold spare. The switching component that turns on the spare motor



68 C 6. C S

when the primary fails is also subject to failure, but this failure is only relevant if it occurs
before the failure of the primary motor. Finally, there are three pumps: two primary pumps
running in parallel and a cold shared spare pump. All three pumps must fail for the pump unit
to fail. Table6.2shows the failure rates of the different components:

Component Failure rate

CS 0.2
SS 0.2
P 0.5
B 0.5

MA 1
MB 1
MS 0.01
PA 1
PB 1
PS 1

Table 6.2: Failure rates for the CAS case study

6.2.1 Compositional analysis

Using compositional analysis we found the aggregated IOIMCrepresentations of the CPU,
Motor and Pump unit which had 27, 11 and 6 states respectively. If we now wish to solve
the DFT completely we must use compositional aggregation tocombine the four remaining
IOIMC (three IOIMC representations of the units and one IOIMC representation of the top
OR-node).

The largest IOIMC that appears is the parallel composition of the IOIMC representing the
combined behavior of the top node ‘System’, the CPU unit and the Motor unit and the IOIMC
representing the behavior of the Pump unit. This IOIMC has 808 states and 3660 transitions.
If we compare this with the results of modular analysis usingthe DIFTree approach we see
that the Galileo tool generates three small Markov chains (between 4 and 6 states) and then
uses binary decision diagram techniques (since the top node‘System’ is a static gate) to very
efficiently find the unreliability of the DFT.

To find out why compositional analysis performs so poorly forthis case study, we take a
closer look at the IOIMC representation of the CPU unit whichhas 27 states. The correspond-
ing Markov chain generated by Galileo only has 4 states. Figure 6.8 shows the beginning of
the IOIMC for the CPU unit after compositional aggregation.

The reason that we get such a large IOIMC is that the weak bisimulation used by Tipp tool
to aggregate the IOIMC is not weak enough. For instance, Tipptool does not differentiate be-
tween input and output actions and therefore it does not apply the maximal progress assumption
(see Section3.3) to output actions. If we look at Figure6.8we see that the Markovian transi-
tion from stateA to stateD could simply be ignored under the maximal progress assumption.
Now let’s consider stateB in Figure6.8. Because there is a firing transition from stateA to



6.2. C A S 69

��

���

����

����

��

�

�

���

���

�	


�
���

���

�	


	


�

��

��
���
����������

	


�������������

���

����������
�����
���

Figure 6.8: Partial IOIMC for the CPU unit.

stateB we know that the CPU has failed in stateB. We also see that there is a Markovian
transition from stateB to stateC, but we are not interested in this behavior because the CPU
has already failed. In fact we are not really interested in any behavior that can never lead to
an output transition and we could aggregate such states intoa single ‘uninteresting’ state. This
notion of ‘interesting’ and ‘uninteresting’ behavior could lead to a new, weaker, bisimulation
for IOIMC. More information on this notion can be found in Subsection8.3.1.

To investigate the effect of this weaker bisimulation we have used it to aggregate the IOIMC
models of the three modules of the CAS case study. This aggregation was performed using
the two properties explained above. We found the exact same unreliability using standard
compositional analysis and using the compositional analysis with extra aggregation. However,
further work needs to be done to formally define this weaker equivalence.

Using extra aggregation we reduced the IOIMC models of the CAS modules to three
IOIMC, each with only 6 states. Figure6.9shows these three models.

��

���

����

����

��

��	 
�

��

���

�
�

�
���


� ��

� �� 
�


������� ���������� ���������

Figure 6.9: IOIMC models of the different units.

Compositional aggregation (using the weaker bisimulation) of these three models and the
IOIMC model of the top OR-gate now resulted in a largest IOIMCof only 36 states and 119
transitions. Figure6.10shows a chart of the state space sizes of the IOIMC generated during
compositional aggregation using the weaker equivalence.

6.2.2 Results

Table6.3shows the results of the CAS case study. For each analysis method the number of
states and transitions is given for the largest appearing model (Markov chain or IOIMC).

We can see that the DIFTree approach is the most efficient in terms of state space. In this
approach the three modules of the CAS DFT are translated to Markov chains, the largest (the



70 C 6. C S

0

5

10

15

20

25

30

35

40

45

S
ys

te
m

 +
 C

P
U

S
ys

te
m

 +
 C

P
U

+
 M

ot
or

S
ys

te
m

 +
 C

P
U

+
 M

ot
or

 +
P

um
ps

IOIMC models

# states

Before aggregation

After aggregation

Extra aggregation

Figure 6.10: Chart of the compositional analysis of the CAS using the weaker bisimulation.

Approach Max. StatespaceTransitions Unreliability

Pure MC generation 85 526 0.6579
DIFTree 8 10 0.6579
Compositional 808 3660 0.6579
Extra aggregation 36 119 0.6579

Table 6.3: Results for the CAS case study.

pump module) having 8 states. These Markov chains are then used to find the unreliability of
each module and these figures are then used to calculate the unreliability of the cardiac assist
system using very efficient BDD techniques. See also Section2.4for more information on the
DIFTree approach to analyzing DFT.

If we do not employ the modularizing techniques of the DIFTree approach and simply
generate a Markov chain representing the entire DFT it is more than 10 times as large which
shows the effectiveness of the DIFTree approach. However this Markov chain with 85 states is
still a lot smaller than the largest IOIMC which is generatedduring compositional analysis of
the DFT. The compositional analysis can in turn be improved by using a weaker bisimulation
for the aggregation of IOIMC as explained in the previous subsection.

We can conclude that the modularization technique employedin the DIFTree approach is
very effective for DFT with distinct modules. It should be noted though that this technique is
only available if the top node of the DFT is static. For instance if the top node of the CAS
DFT were a priority-AND gate then the modularization would not be applicable as we have
also seen in the HCPS case study.

We can also conclude that the equivalence relation used to aggregate IOIMC has a huge im-
pact on the efficiency of compositional analysis of DFT. Especially the concept of disregarding
‘uninteresting’ behavior (see Subsection8.3.1) has a major impact on the reduction achieved
by aggregating IOIMC.

Finally the CAS case study shows that compositional analysis does not always perform
better (i.e. generate smaller models) than the traditionalapproach to analyzing DFT. In fact,



6.3. M-    71

further research has shown examples of DFT which can much more efficiently be analyzed
using the DIFTree approach than using compositional analysis. The DIFTree approach is par-
ticularly effective in cases where it can employ its modularization techniques and we have also
seen that compositional analysis performs poorly when dealing with highly interconnected
DFT, although by using a weaker equivalence this problem should be alleviated somewhat.

6.3 Multi-processor distributed computer system

The last case study is based on a multi-processor distributed computer system (MDCS) in-
troduced in [22]. To this real-life fault-tolerant computer system we haveadded some dynamic
elements to make it more realistic and complex in the same vein as in [25]. Figure6.11shows
the DFT of the MDCS.

��

� �

������	��� �	 �	� �		


�� 
�	

�� �	

��
� ��
	����� ����	

Figure 6.11: DFT for the MDCS case study.

The MDCS consists of a bus (N), two processors (P1 andP2), four hard disks (D11, D12,
D21 andD22) and three memories (M1, M2 andM3). The processors, disks and memories are
divided between two computing modules (‘CM1’ and ‘CM2’). The failure rates for the basic
events can be found in table6.4.

This DFT was analyzed using the compositional aggregation approach and the results of
this analysis are given in the following subsection.

6.3.1 Results

For the MDCS case study we only give the results for the compositional analysis with extra
aggregation. Using only Tipp tool’s aggregation leads to state spaces in excess of 1000 states.
Table6.5gives the results for this case study.

For this case study we see that compositional analysis leadsto a smaller largest IOIMC
model than the CTMC obtained with the DIFtree method. This result seems to indicate that for



Component Active failure rate Dormant failure rate

N 2 0
P1,P2 500 0

D11,D21 80000 40000
D12,D22 80000 40000
M1,M2 30 0

M3 30 15

Table 6.4: Failure rates for the MDCS case study in failures per 109 hours

Approach Max. StatespaceTransitions Unreliability

DIFtree 253 1383 2.00025· 10−9

Extra aggregation 157 756 2.00025· 10−9

Table 6.5: Results for the MDCS case study.

many DFT the compositional aggregation approach is more efficient than the DIFtree approach.
The fact that Tipp tool’s weak Markovian bisimulation leadsto relatively large state spaces
underlines the fact that it is highly desirable to implementtools supporting weak bisimulation
for IOIMC.



Chapter 7

Tool support

Tool support for the research described in this thesis is provided by two tools: the DFT2Tipp
tool created specifically for this research and the TippTool[16].

The DFT2Tipp tool translates a DFT specification to a TippTool specification. This trans-
lation is performed in 3 steps:

• Parsing of the DFT specification. See Section7.2.

• Linking of the DFT elements parsed from the DFT specification. See Section7.3.

• Writing the TippTool specification. See Section7.4.

Before describing the process of translation the usage of the DFT2Tipp tool is explained in
Section7.1. Lastly we also describe how DFT2Tipp ties in with TippTool to analyze Dynamic
Fault Trees in Section7.5.

Throughout this section we will use a running example to showthe inner workings of the
DFT2Tipp tool and how it works together with the TippTool. The DFT specification for this
example is shown below:

toplevel "A";

"A" and "B" "C"; "B" lambda=4.00 dorm=0.00; "C" lambda=2.00

dorm=1.00;

This example DFT is shown in Figure7.1.

7.1 Usage

The DFT2Tipp tool must be run using a UNIX operating system. The tool reads from
standard input and writes to standard output. This means that by simply calling dft2tipp you
can type the DFT specification into the console finishing withan EOF character (Ctrl-D on
most UNIX systems). The TippTool specification is then printed to the same console. Of
course it is more common to read the DFT specification from a file and to write the TippTool
specification to a file. This can be accomplished by piping theinput and output. The following
command reads the DFT specification from file spec1.dft and writes the TippTool specification
to spec1.tpp:

73



74 C 7. T 

A

CB

Figure 7.1: Example of a DFT

dft2tipp <spec1.dft >spec1.tpp

The format of the DFT specifications is that of the tool Galileo. The format of the output
is the where-section of a TippTool specification. For more details we refer to the manuals of
Galileo [2] and TippTool [16].

7.2 Parsing

The parsing of the DFT specification is done using the standard UNIX programming tools
lex & yacc [20]. Lex was used to generate a lexical analyzer and yacc was used to generate a
parser for DFT specifications. We refer to the files dft.l and dft.y and the lex&yacc documenta-
tion (available in any Unix operating system’s man pages) for more info. The result of parsing
is a list of unlinked DFT elements. During parsing the following fields are filled in for each
DFT element:

• type: The type of the DFT element. Either gate or basic event.

• name: The name of the DFT element.

• line: The line of the DFT specification on which the DFT element is defined.

• for DFT gates:

1. g_type: The type of the gate.

2. inputs: A list of the names of the inputs of the gate.

3. threshold (for voting gates only): The threshold of the voting gate.

4. n_inputs (for voting gates only): The total number of non-trivial inputs of the voting
gate.

• for basic events:

1. distr: The distribution of the basic event.

2. cov: The coverage attribute of the basic event.



7.3. L 75

3. res: The restoration attribute of the basic event.

4. dorm: The dormancy attribute of the basic event.

5. repl: The replication attribute of the basic event.

6. phase: The phase of the basic event.

After parsing, our running example results in three DFTElements, which are shown in
Figure7.2:

dft_gate

+type: dft_type = T_GATE

+name: char* = A

+line: int = 2

+n_parents: DFTListPtr

+sp_parents: DFTListPtr

+triggers: DFTListPtr

+act: char*

+g_type: gate_type = AND

+inputs: NameListPtr

+threshold: int

+n_inputs: int

+all_inputs: DFTListPtr

+nt_inputs: DFTListPtr

dft_be

+type: dft_type = T_BE

+name: char* = B

+line: int = 3

+n_parents: DFTListPtr

+sp_parents: DFTListPtr

+triggers: DFTListPtr

+act: char*

+distr: DistributionPtr

+cov: double

+res: double

+repl: int

+dorm: double = 0.00

+phase: int

NameList

+name: char* = B

+next: NameListPtr

inputs

NameList

+name: char* = C

+next: NameListPtr

next

d_exp

+d_type: distr_type = EXPONENTIAL

+lambda: double = 4.00

distr

dft_be

+type: dft_type = T_BE

+name: char* = C

+line: int = 4

+n_parents: DFTListPtr

+sp_parents: DFTListPtr

+triggers: DFTListPtr

+act: char*

+distr: DistributionPtr

+cov: double

+res: double

+repl: int

+dorm: double = 1.00

+phase: int

d_exp

+d_type: distr_type = EXPONENTIAL

+lambda: double = 2.00

distr

elements

<<DFTListPtr>>
DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

Figure 7.2: Result of parsing

The other fields of the DFT element are set during linking which is discussed in the next
subsection.

7.3 Linking

During linking the DFT elements are connected in the following ways:

• Gates have a list of pointers to their children. (only for gates)

• Children have a list of pointers to their parents.

• Spares have a list of pointers to their sharing spare gates.

• Dependent elements have a list of pointers to their triggers.



76 C 7. T 

The function check_and_link() also checks the integrity ofthe DFT specification (such as
whether or not the specified inputs of a gate are present in theDFT specification). The function
check_parents() is then called to check that there are no disconnected DFT elements. Finally
the function set_activation() uses the new links to determine for each DFT element what its
activation signal is.

After linking, our running example still consists of three DFTElements, which are now
linked together. These DFTElements can be seen in Figure7.3.

:dft_gate

+type: dft_type = T_GATE

+name: char* = A

+line: int = 2

+n_parents: DFTListPtr

+sp_parents: DFTListPtr

+triggers: DFTListPtr

+act: char* = A

+g_type: gate_type = AND

+inputs: NameListPtr

+threshold: int = 2

+n_inputs: int = 2

+all_inputs: DFTListPtr

+nt_inputs: DFTListPtr

:dft_be

+type: dft_type = T_BE

+name: char* = B

+line: int = 3

+n_parents: DFTListPtr

+sp_parents: DFTListPtr

+triggers: DFTListPtr

+act: char* = A

+distr: DistributionPtr

+cov: double

+res: double

+repl: int

+dorm: double = 0.00

+phase: int

:dft_be

+type: dft_type = T_BE

+name: char* = C

+line: int = 4

+n_parents: DFTListPtr

+sp_parents: DFTListPtr

+triggers: DFTListPtr

+act: char* = A

+distr: DistributionPtr

+cov: double

+res: double

+repl: int

+dorm: double = 1.00

+phase: int

DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

elements

<<DFTListPtr>>
DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

DFTList

+e: DFTElementPtr

+next: DFTListPtr

Figure 7.3: Result of linking

Basic events "B" and "C" are in gate "A"’s list of all inputs and its list of non-trivial inputs.
The other way around "A" is in "B" and "C"’s list of normal parents. We also see that the func-
tion set_activation() has set the DFTElement::act fields for all three DFT elements. Because
there are no spare gates in this DFT all elements have the sameactivation-signal, namely that
of the top element of the DFT.

7.4 Output

The function translate() uses the list of linked DFT elements generated from the DFT spec-
ification to write a partial TippTool specification to standard output. This output describes a
number of Input/Output Interactive Markov Chains, which together describethe behavior of
the DFT. The output is divided into three parts: the action-signatures of the IOIMC, the def-



7.4. O 77

initions of the IOIMC and the definitions of the necessary TippTool processes. The result of
running dft2tipp on our example is given below:

(*%%

A(f_B,f_C)(f_A);

B(a_A)(f_B);

C(a_A)(f_C);

%%*)

process A :=

GATE_2_2_0[f_B,f_C,f_A] endproc

process B :=

BE_PASSIVE_COLD[a_A,f_B](4.000000) endproc

process C :=

BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

(*%%*)

process GATE_2_2_0[input_1,input_2,out] :=

input_1;GATE_2_2_1[input_2,input_1,out] []

input_2;GATE_2_2_1[input_1,input_2,out] endproc

process BE_PASSIVE_COLD[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) endproc

process BE_PASSIVE_HOT[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc

process BE_ACTIVE[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc



78 C 7. T 

process BE_FIRING[act,out] :=

act;BE_FIRING[act,out] []

out;BE_DONE[act] endproc

process GATE_2_2_2[red_1,red_2,out] :=

red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out;GATE_DONE_2[red_1,red_2] endproc

process BE_DONE[act] :=

act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=

red_1;GATE_DONE_2[red_1,red_2] []

red_2;GATE_DONE_2[red_1,red_2] endproc

(*%%*)

The three parts of the output are separated by %%’s (note that(∗ and∗) are used by Tipp-
Tool to denote comments, so the first part of the output is in fact commented as are the sepa-
rating %%’s). The three parts are described individually inthe following subsections.

7.4.1 Action signatures

The function output_sigs() writes the action signatures ofthe IOIMC to the standard output.
These action signatures list the input- and output-actionsfor each IOIMC. The format for an
action signature is:

name(input-actions)(output-actions)

This part of the output of the dft2tipp tool is written as a comment in the TippTool speci-
fication and is included to make it possible to properly analyze the behavior of the entire DFT
using compositional aggregation. In other words, we need toknow the action signatures of
the IOIMC to figure out on which actions we have to synchronizeand when we can hide cer-
tain actions. Note that the compositional Markov chains used by the TippTool do not have
action-signatures themselves.

For our running example we get the following action signatures:

A(f_B,f_C)(f_A);

B(a_A)(f_B);

C(a_A)(f_C);



7.4. O 79

We can see, for instance that the AND-gate "A" has input-actions "f_B" and "f_C", which
correspond to the firing of basic events "B" and "C". Its only output-action is "f_A" which
corresponds with the firing of the AND-gate itself. We can also see from these action signa-
tures that the IOIMC community (representing the behavior of the entire DFT) has one input
signal "a_A" and one output signal "f_A" representing the activation and firing of the DFT
respectively.

7.4.2 IOIMC definitions.

All the IOIMC behave like one of the TippTool processes provided by the DFT2Tipp tool.
These processes are generic and have variable actions and delay-rates. These variables are filled
in for each IOIMC definition. The IOIMC definitions are printed to the standard output by the
function output_defs(). Our running example gives us the following three IOIMC definitions:

process A :=

GATE_2_2_0[f_B,f_C,f_A] endproc

process B :=

BE_PASSIVE_COLD[a_A,f_B](4.000000) endproc

process C :=

BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

We can see in this example that IOIMC A (which corresponds to the AND-gate A in the
DFT) is defined as a TippTool process which behaves exactly like the process GATE_2_2_0
with actions "f_B", "f_C" and "f_A". The process name GATE_2_2_0 should be interpreted
as follows:

• GATE denotes that this is a process that describes a standardgate.

• The first "2" denotes that the gate has 2 input signals.

• The second "2" denotes that the gate has a threshold of 2 (thismeans that the gate fires
when 2 of its inputs have fired).

• The final "0" denotes that so far none of the gate’s inputs havefired.

Of course the three processes used in these IOIMC definitions- GATE_2_2_0, BE_PASSIVE_-
COLD and BE_PASSIVE_HOT - must be defined somewhere. During the printing of the
IOIMC definitions the tool keeps track of the processes that need to be defined in the global
variable procs. At the end of the printing of the IOIMC definitions of our running example
procs contains the three processes, which are shown in Figure7.4.

7.4.3 Process definitions

The function output_procs() passes through all the processes in a process-list printing their
definitions to the standard output. An example of a process definition is given below:



80 C 7. T 

procs

<<ProcListPtr>>

process_gate

+type: process_type = GATE

+total: int = 2

+threshold: int = 2

+fired: int = 0

process

+type: process_type = BE_PASSIVE_COLD

ProcList

+p: ProcessPtr

+next: ProcListPtr

ProcList

+p: ProcessPtr

+next: ProcListPtr

ProcList

+p: ProcessPtr

+next: ProcListPtr

process

+type: process_type = BE_PASSIVE_HOT

Figure 7.4: Process list after writing IOIMC definitions

process GATE_3_2_1[input_1,input_2,red_3,out] :=

input_1;GATE_3_2_2[input_2,red_3,input_1,out] []

input_2;GATE_3_2_2[input_1,red_3,input_2,out] []

red_3;GATE_3_2_1[input_1,input_2,red_3,out] endproc

The left side of the equation tells us that this is the definition of process GATE_3_2_1,
which has four variable actions: "input_1", "input_2", "red_3" and "out". On the right side
of the equation we see a number of possible actions followed by the process these actions
result in. These different possibilities are separated by the choice-operator:"[ ]". A schematic
representation of this process definition is given in Figure7.5.

GATE_3_2_1[input_1,input_2,red_3,out]

GATE_3_2_2[input_2,red_3,input_1,out]

GATE_3_2_2[input_1,red_3,input_2,out]

GATE_3_2_1[input_1,input_2,red_3,out]

input_1

input_2

red_3

Figure 7.5: Schematic of a process definition

Initially only the processes found on the right side of the IOIMC definitions are written by
the function output_procs(). This function, however, alsoadds the processes that appear on the
right side of process definitions to the process-list. To make sure that processes are not defined
twice the function add_Proc() checks whether the process being added is already present in the
process-list. The nature of the processes ensures that the function output_procs() finishes at
some point. Our running example gives us the following process definitions (Note that the first
three processes correspond to the processes found on the right side of the IOIMC definitions):



7.5. TT 81

process GATE_2_2_0[input_1,input_2,out] :=

input_1;GATE_2_2_1[input_2,input_1,out] []

input_2;GATE_2_2_1[input_1,input_2,out] endproc

process BE_PASSIVE_COLD[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) endproc

process BE_PASSIVE_HOT[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc

process BE_ACTIVE[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc

process BE_FIRING[act,out] :=

act;BE_FIRING[act,out] []

out;BE_DONE[act] endproc

process GATE_2_2_2[red_1,red_2,out] :=

red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out;GATE_DONE_2[red_1,red_2] endproc

process BE_DONE[act] :=

act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=

red_1;GATE_DONE_2[red_1,red_2] []

red_2;GATE_DONE_2[red_1,red_2] endproc

7.5 TippTool

The result of the DFT2Tipp tool can be used to analyze the original DFT using TippTool.
In this section we will describe how this analysis can be performed. First we will see how
the IOIMC community generated by DFT2Tipp can be combined toform a single, weakly
bisimilar, IOIMC. Consequently we will look at how we can useTippTool to analyze this
IOIMC to calculate interesting fault tolerance measures for the Dynamic Fault Tree. Lastly we
will look at two possible ways to improve the aggregation of IOIMC.



82 C 7. T 

7.5.1 Compositional Aggregation

A TippTool specification takes on the following form [16]:

specification NAME

behaviour

BEHAVIOUR FORMULA

where

PROCESS DEFINITIONS

endspec

The output of the DFT2Tipp tool are process definitions whichcan be used as such in
a TippTool specification. The name of this specification can be chosen arbitrarily. In this
subsection we describe the process of compositional aggregation that can be used to compose
and aggregate IOIMC models. Before composing two IOIMC models it is recommended that
these models are first aggregated. If we look at IOIMC A in our running example, for instance
we see that before aggregating it the IOIMC has 7 states (see Figure7.6).

GATE_2_2_0[f_B,f_C,f_A]

GATE_2_2_1[f_C,f_B,f_A]

f_B

f_C

GATE_2_2_1[f_B,f_C,f_A]

f_B

f_C f_A

f_A

GATE_2_2_2[f_B,f_C,f_A]

GATE_2_2_2[f_C,f_B,f_A]

GATE_DONE_2[f_B,f_C]

GATE_DONE_2[f_C,f_B]

f_B f_B
f_C

f_B
f_C

f_C f_B
f_C

f_B
f_C

live input signal

redundant input signal

Figure 7.6: Schematic of IOIMC A as interpreted by TippTool

It is obvious that states GATE_DONE_2[f_B,f_C] and GATE_DONE_2[f_C,f_B] are equiv-
alent except for the ordering of their actions. In the same way states GATE_2_2_2[f_B,f_C,f_-
A] and GATE_2_2_2[f_C,f_B,f_A] are equivalent. The reasonTippTool sees these states as



7.5. TT 83

different is that their actions are ordered differently. Below we show how to aggregate a single
process with respect to weak bisimilarity using TippTool.

IOIMC A is defined in the process definitions generated by DFT2Tipp as process A. To
aggregate this process we first specify it as the behavior. The name of the specification is
chosen arbitrarily and the process definitions generated byDFT2Tipp are placed in the where-
section:

specification compaggr

behaviour

A

where

(*%%

A(f_B,f_C)(f_A);

B(a_A)(f_B);

C(a_A)(f_C);

%%*)

process A :=

GATE_2_2_0[f_B,f_C,f_A] endproc

process B :=

BE_PASSIVE_COLD[a_A,f_B](4.000000) endproc

process C :=

BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

(*%%*)

process GATE_2_2_0[input_1,input_2,out] :=

input_1;GATE_2_2_1[input_2,input_1,out] []

input_2;GATE_2_2_1[input_1,input_2,out] endproc

process BE_PASSIVE_COLD[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) endproc



84 C 7. T 

process BE_PASSIVE_HOT[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc

process BE_ACTIVE[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc

process BE_FIRING[act,out] :=

act;BE_FIRING[act,out] []

out;BE_DONE[act] endproc

process GATE_2_2_2[red_1,red_2,out] :=

red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out;GATE_DONE_2[red_1,red_2] endproc

process BE_DONE[act] :=

act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=

red_1;GATE_DONE_2[red_1,red_2] []

red_2;GATE_DONE_2[red_1,red_2] endproc

(*%%*)

endspec

To aggregate this specification with respect to weak bisimilarity we call TippTool as fol-
lows:

tipptool -i compaggr_A

In this example our TippTool specification is saved in the filecompaggr_A.tpp. The flag ’-
i’ denotes that TippTool should aggregate using IM (Interactive Markovian) bisimulation. The
resulting TippTool specification (written to compaggr_Ared.tpp) is given below:

specification compaggr_Ared

behaviour



7.5. TT 85

VQ1

where

process VQ1 := f_C; VQ2 [] f_B; VQ3 endproc

process VQ2 := f_C; VQ2 [] f_B; VQ4 endproc

process VQ3 := f_B; VQ3 [] f_C; VQ4 endproc

process VQ4 := f_B; VQ4 [] f_C; VQ4 [] f_A; VQ5 endproc

process VQ5 := f_B; VQ5 [] f_C; VQ5 endproc

endspec

By adding processes VQ∗ to the original specification and changing the IOIMC definition
of A we can replace IOIMC A’s original behavior with the aggregated behavior:

process A := VQ1 endproc

process VQ1 := f_C; VQ2 [] f_B; VQ3 endproc

process VQ2 := f_C; VQ2 [] f_B; VQ4 endproc

process VQ3 := f_B; VQ3 [] f_C; VQ4 endproc

process VQ4 := f_B; VQ4 [] f_C; VQ4 [] f_A; VQ5 endproc

process VQ5 := f_B; VQ5 [] f_C; VQ5 endproc

After reducing all the IOIMC in this way we can start the compositional aggregation of
the IOIMC community. Compositional aggregation consists of consecutively composing and
aggregating two IOIMC until only one IOIMC is left. To specify that we want to analyze
the composition of two processes the behavior clause of the TippTool specification must be
altered. Below, for instance, we see the behavior clause forthe analysis of the composition of
the IOIMC A and B:

hide f_B in (A |[f_B]| B)

IOIMC A and B are synchronized on action ’f_B’ (the only action the two IOIMC share).
This action is then hidden since no other IOIMC in the community has the action in its action
signature. The resulting aggregated IOIMC is given below:

specification compaggr_ABred

behaviour

YW1

where

process YW1 := f_C; YW5 [] a_A; YW6 endproc

process YW2 := a_A; YW2 [] f_C; YW3 endproc



86 C 7. T 

process YW3 := f_C; YW3 [] a_A; YW3 [] f_A; YW4 endproc

process YW4 := f_C; YW4 [] a_A; YW4 endproc

process YW5 := f_C; YW5 [] a_A; YW7 endproc

process YW6 := (tau, 4.0); YW2 [] a_A; YW6 [] f_C; YW7 endproc

process YW7 := (tau, 4.0); YW3 [] f_C; YW7 [] a_A; YW7 endproc

endspec

We now update the original specification, replacing the IOIMC definitions (and action sig-
natures) of IOIMC A and B with one IOIMC definition (and actionsignature) A_B (note that
the behavior-clause is set to compose and aggregate IOIMC A_B and C):

specification compaggr

behaviour

hide f_C in (A_B |[f_C,a_A]| C)

where

(*%%

A_B(f_C,a_A)(f_A)

C(a_A)(f_C);

%%*)

process A_B :=

YW1 endproc

process C :=

BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

(*%%*)

process GATE_2_2_0[input_1,input_2,out] :=

input_1;GATE_2_2_1[input_2,input_1,out] []

input_2;GATE_2_2_1[input_1,input_2,out] endproc

process BE_PASSIVE_COLD[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) endproc



7.5. TT 87

process BE_PASSIVE_HOT[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc

process BE_ACTIVE[act,out](rate) :=

act;BE_ACTIVE[act,out](rate) []

(tau,rate);BE_FIRING[act,out] endproc

process BE_FIRING[act,out] :=

act;BE_FIRING[act,out] []

out;BE_DONE[act] endproc

process GATE_2_2_2[red_1,red_2,out] :=

red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out;GATE_DONE_2[red_1,red_2] endproc

process BE_DONE[act] :=

act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=

red_1;GATE_DONE_2[red_1,red_2] []

red_2;GATE_DONE_2[red_1,red_2] endproc

(*%%*)

process YW1 := f_C; YW5 [] a_A; YW6 endproc

process YW2 := a_A; YW2 [] f_C; YW3 endproc

process YW3 := f_C; YW3 [] a_A; YW3 [] f_A; YW4 endproc

process YW4 := f_C; YW4 [] a_A; YW4 endproc

process YW5 := f_C; YW5 [] a_A; YW7 endproc

process YW6 := (tau,4.0); YW2 [] a_A; YW6 [] f_C; YW7 endproc

process YW7 := (tau,4.0); YW3 [] f_C; YW7 [] a_A; YW7 endproc

endspec

After the composition and aggregation of IOIMC A_B and C we are left with a single
IOIMC and so compositional aggregation is finished. In the next subsection we will see how
we can analyze this IOIMC to determine the Dynamic Fault Tree’s unreliability.



88 C 7. T 

7.5.2 Analysis using TippTool

In this subsection we explain how the IOIMC representing thebehavior of a DFT can be
analyzed. Let’s take a look at the resulting IOIMC of our running example:

specification compaggr_ABCred

behaviour

TT1

where

process TT1 := (tau, 2.0); TT5 [] a_A; TT6 endproc

process TT2 := a_A; TT2 endproc

process TT3 := f_A; TT2 [] a_A; TT3 endproc

process TT4 := (tau, 4.0); TT3 [] a_A; TT4 endproc

process TT5 := a_A; TT4 endproc

process TT6 := (tau, 2.0); TT4 [] a_A; TT6 [] (tau, 4.0); TT7 endproc

process TT7 := (tau, 2.0); TT3 [] a_A; TT7 endproc

endspec

We can see that this IOIMC has two actions: ’a_A’ and ’f_A’ (see Subsection7.4.1). In
fact when transforming Dynamic Fault Trees into IOIMC usingDFT2Tipp and compositional
aggregation the resulting IOIMC always have two actions: anactivation action and a firing
action. These actions are always named ’a_top’ and ’f_top’ respectively, where ’top’ is the
toplevel element of the DFT. Action ’a_top’ is an input-action which represents the activation
of the DFT and ’f_top’ is an output-action, which representsthe firing of the DFT. In other
words these actions represent the switching on and breakingdown of the system under analysis.

The unreliability of a system is the probability that the system fails within a certain time
period. Looking at our example IOIMC this is the probabilitythat the TippTool process has
executed action ’f_A’ within that time period. For continuous-time Markov chains the proba-
bility that the CTMC is in a certain state after a certain period of time can be calculated using
differential equations. The presence of actions in TippTool processes however makes it unclear
how to calculate such measures. This issue is handled in TippTool by assuming that all ac-
tions take place immediately. This interpretation is very convenient to us as this means that the
IOIMC representing DFT are interpreted to activate immediately and also to fire immediately.
This is exactly the behavior we want for our IOIMC: there should be no dormant period when
the system starts operating and there should be no delay in the failing of the system when the
right conditions are met.

TippTool can compute the probability that a process is in a certain state at a certain time.
In our example we want to know the probability that process TT1 is in state TT2 after a certain
period of time, since TT2 is the state in which the system has failed. To calculate this measure
we must add a measure definitions file in the same directory as the TippTool definition. For
our example this file looks as follows:



7.5. TT 89

STATEMEASURE Failed TT2

The file must have the same name as the TippTool specification only with extension .mdf.
Now we run the following command to calculate the measure with a time period of 4 time
units:

tipp -s jensen -t 4 compaggr_ABCred

The result of this calculation (in this case 0.99966253) is written both to standard output
and to the file compaggr_ABCred.sm.Failed, since we named the measure ’Failed’.

For our example calculating the unreliability was quite easy but for other DFT it will be
more complicated:

• In some cases the IOIMC will still express behavior after thesystem has failed. In this
case we must calculate the probability that the process is ina set of states instead of a
single state. The difficulty will be in determining in which states the system has failed.

• When Priority-AND gates are used the system may enter a statein which it can no
longer fail (it is up to the designer of the DFT to decide whether this is desired behavior).
Unfortunately using DFT2Tipp and TippTool to transform such a DFT into an IOIMC
will result in an IOIMC that doesn’t differentiate between states in which the system has
failed and states in which the system can no longer fail.

• There are Dynamic Fault Trees that express non-deterministic behavior. This is usually
caused by multiple events happening at the same time due to a shared dependency or
shared input. TippTool handles non-determinism by assuming that all possible outcomes
have the same probability of occurring. This is not desired behavior, since the distribution
of a non-deterministic choice is unknown instead of equiprobable.

The first two problems shown above can be solved by parallel composing the IOIMC under
analysis with a so-called Observer IOIMC. This IOIMC activates the DFT and then responds
to the firing of the DFT by moving to a failed state. Below we seethe TippTool definition of
an Observer IOIMC:

process Observer := a_A;Activated [] f_A;Failed endproc

process Activated := f_A; Failed endproc

process Failed := f_A; Failed endproc

We now parallel compose this Observer IOIMC with the IOIMC ofthe DFT under analysis
and hide the activation and firing signal. The resulting TippTool specification for our running
example is given below:

specification compaggr_ABCred

behaviour

hide a_A,f_A in TT1 |[a_A,f_A]| Observer



where

process TT1 := (tau, 2.0); TT5 [] a_A; TT6 endproc

process TT2 := a_A; TT2 endproc

process TT3 := f_A; TT2 [] a_A; TT3 endproc

process TT4 := (tau, 4.0); TT3 [] a_A; TT4 endproc

process TT5 := a_A; TT4 endproc

process TT6 := (tau, 2.0); TT4 [] a_A; TT6 [] (tau, 4.0); TT7 endproc

process TT7 := (tau, 2.0); TT3 [] a_A; TT7 endproc

process Observer := a_A;Activated [] f_A;Failed endproc

process Activated := f_A; Failed endproc

process Failed := f_A; Failed endproc

endspec

The states of the composite IOIMC will look like ’TT1||Observer’ or ’TT2||Failed’. We can
now change our measure definitions file to calculate the probability that the IOIMC is in any
state containing the string ’Failed’:

STATEMEASURE Failed Failed

The unreliability can now be found once again by running ’tipp’. This approach will also
work for IOIMC with more than one failed state or IOIMC which do not differentiate between
failed and non-failed states.



Chapter 8

Conclusion

In this chapter we will draw conclusions from the research wehave done on the compo-
sitional analysis of DFT using IOIMC. We will compare the results of the research with the
goals set out in Section1.2and we will also look forward to possible avenues of researchthat
could be pursued in the future.

8.1 Formalizing dynamic fault trees

A formal syntax for DFT was realized by defining a DFT as a directed acyclic graph and
then by imposing a number of restrictions on this graph (see Subsection4.1). This formaliza-
tion has removed some of the vagueness of the DFT formalism. We can now strictly decide
whether a DFT is valid by checking if the restrictions of Definition 4.2 hold. The formal se-
mantics of DFT was defined by specifying an IOIMC model for each DFT element and by
defining how these IOIMC models could be combined to define thebehavior of an entire DFT
(see Chapter4). This has also helped remove the former vagueness of the DFTformalism.
In particular the problems regarding simultaneity, the occurrence of several events simultane-
ously, where solved by using non-determinism to model the fact that we do not always know
the exact order in which events affect a system.

We can thus conclude that the formalization of the DFT formalism was successful. It should
also be noted that we have extended the DFT formalism by allowing more complex spares and
dependencies (see Section4.2).

Another advantage of the compositional approach to definingDFT semantics it that the
DFT formalism can now be extended or altered more easily. An alteration to one of the DFT
gates can be realized simply by changing that gate’s IOIMC representation and this does not
affect the other DFT elements. Similarly new gates with their own IOIMC representation can
be added to the DFT formalism. Finally it is possible to extend the DFT formalism in total, for
instance by adding a notion of repair [26]. This change could also be implemented by changing
the IOIMC representations of the different DFT elements.

91



92 C 8. C

8.2 Compositional analysis

By finding an IOIMC model of each DFT element it became possible to analyze DFT
in a compositional way. Instead of translating the entire DFT into a large Markov chain the
components (elements) of the DFT are translated into IOIMC models. These IOIMC models
are then composed to find a single IOIMC which represents the behavior of the DFT (see
Chapter5).

The advantage of this method is that compositional aggregation can be employed to avoid
the generation of large IOIMC models. In compositional aggregation the IOIMC models are
aggregated at each step of the composition process using some equivalence. Each time two
IOIMC models are composed the resulting model is first replaced by a smaller, equivalent,
model before composing it with another IOIMC model.

In a number of case studies (see Chapter6) we have compared the results of compositional
analysis with the results of tradition DFT analysis techniques (see Section2.4). First of all we
found that both analysis techniques yielded the same numerical results which suggests that the
results found by using compositional analysis can be trusted. Secondly we found cases in which
compositional analysis greatly outperformed traditionalanalysis. Especially in DFT which
have a simple, dynamic, structure with few connections but many basic events compositional
analysis performs relatively well. We also found cases, however, in which traditional analysis
outperformed the composition method. Especially in DFT with few basic events but many
gates and interconnections traditional analysis performsrelatively well. The modularization
techniques employed in the DIFTree [23] approach to DFT analysis also drastically improve
its performance in analyzing certain DFT. Finally we have seen that the choice of equivalence
used to aggregate IOIMC models is crucial in combatting the state space explosion problem.
A small improvement in aggregation can, because of the repetitive nature of compositional
analysis, yield a huge decrease in state space in the appearing IOIMC models.

8.3 Future Work

In this section we suggest a number of topics for further research. First of all we look into
improving IOIMC aggregation. Secondly we discuss the subject of ordering strategies for the
compositional aggregation of IOIMC communities. Finally we examine the possibilities of
analyzing DFT more thoroughly using advanced logical formulas.

8.3.1 Equivalences on IOIMC

As already noted it is crucial to find a good equivalence on IOIMC models. If the equiva-
lence is too loose than the aggregated IOIMC model no longer adequately models the behavior
of the (partial) DFT. This may lead to the compositional analysis yielding incorrect results.
If the equivalence is too strict, however, the aggregated IOIMC will be larger than necessary.
This problem is compounded by the fact that in compositionalanalysis IOIMC models are com-
posed frequently. We feel that the equivalence used in the compositional analysis described in
this thesis, namely weak bisimulation, is too strict. Belowwe suggest a number of ways to



8.3. FW 93

make this equivalence less strict and we have seen in one casestudy (see Section6.2) that
these improvements can have a huge effect on the state spaces of the generated IOIMC models:

• Output focusing. For any IOIMC model we are really only interested in its external
behavior. An IOIMC model uses this external behavior to communicate with the outside
world. In fact, because IOIMC must be input-enabled, the only interesting behavior
is an IOIMC model’s output behavior. This aspect of IOIMC models is reflected in the
IOIMC model of an entire DFT: we are then interested in when the IOIMC model signals
its failure using its one output action. We can use this notion to split an IOIMC’s state
space into interesting and uninteresting states. Uninteresting states are those states that
can never lead to any output action. We can now make our equivalence looser by simply
not putting any restrictions on uninteresting states. Thiswill result in the aggregation of
all uninteresting states into one single state, potentially reducing the state space of the
IOIMC model greatly.

• Ignoring Markovian self-loops In [4, Definition 13] a weak bisimulation is defined
which does not take into account Markovian transitions fromstates in an equivalence
class to states in the same equivalence class. This makes thebisimulation looser than the
Markovian bisimulation in [15, Definition 3.4]. This concept could also be applied to
our definition of weak bisimulation for IOIMC.

8.3.2 Ordering Strategies

In each step of compositional analysis two IOIMC models froman IOIMC community
are chosen to be composed and then aggregated. In our studieswe have found that the order
in which the IOIMC models are chosen for compositional aggregation has a huge influence
on the state spaces of the generated IOIMC models. In this thesis this choice has been made
by hand in an experimental fashion, but it is highly desirable to be able to choose this order
automatically in the future. It is therefore very useful to further study what is the best, or at
least a good, ordering strategy for the compositional aggregation of an IOIMC community.

A number of factors influence the size of the largest appearing IOIMC during the compo-
sitional aggregation of a community:

• More synchronization means less states.First of all we can predict the size of a com-
posite IOIMC model. In the worst case the state space of the composite IOIMC will
be the cross-product of the state spaces of the two IOIMC being composed. This figure
can be reduced drastically by choosing two IOIMC models which have a lot of match-
ing signals. The more the two IOIMC models have to be synchronized the smaller the
composite IOIMC will be.

• More hiding means better aggregation. We use weak bisimulation to aggregate the
appearing IOIMC models. It is therefore to choose the composition order in such a way
that the appearing IOIMC models can be aggregated significantly. Weak bisimulation
is based primarily on abstracting from internal transitions. It is therefore logical that
models with a lot of internal transitions can be aggregated alot. Internal transitions
appear when actions are hidden and therefore it is useful to choose IOIMC models for



94 C 8. C

composition in such a way that many signals can be hidden. Applying this principal
often means that independent modules within a DFT are composed first since we can
then hide all the internal signals within this module.

• 4x4> 6x2. As noted before the state space of a composite IOIMC model isa subset of
the cross-product of the state spaces of its component IOIMCmodels. This meant that,
in terms of state space size, it is much better to construct one large IOIMC model and
compose it iteratively with small IOIMC models to reach the final IOIMC model than
to construct two medium sized IOIMC models and to compose these two models as the
final step in compositional aggregation.

• Using knowledge of DFT element models.We can use some knowledge of the IOIMC
models of DFT elements to predict the best order of composition. For instance, we know
that composing an IOIMC model of some DFT element with its auxiliary models will
result in an IOIMC model with the same number of states, but more transitions than the
original.

8.3.3 Advanced DFT analysis

In this thesis we have focused mainly on determining the unreliability of systems using
DFT modelling. The unreliability of a system is the probability that it will fail within a certain
time period. This is a much used fault-tolerance measure, but a very simple one. It seems
reasonable to assume that there is also interest in more complex measures, for instance: the
probability that some system componentA fails before system componentB or the probability
that the system will fail while some componentA is still operational.

Such complex properties can be expressed using advanced logics such as continuous stochas-
tic logic (CSL) [1] used widely in model-checking [3]. CSL is applicable tolabelled CTMC[3].
A labelled CTMC is a CTMC with a set of atomic propositions anda labelling function which
assigns to each state the set of atomic propositions that hold true in that state.

So how does this apply to DFT analysis? A DFT is traditionallyand in our approach
analyzed by transforming it into a CTMC (without labelling). But if it were possible to translate
a DFT into a labelled CTMC with an atomic propositionsA f ailed for each DFT eventA and
with its states labelled to reflect the status of all the DFT events then we could check interesting
CSL properties for this labelled CTMC. To transform a DFT into a labelled CTMC we could
apply labels to IOIMC and follow the compositional analysismethod described in this thesis.
This extension of the IOIMC formalism which involves findingappropriate definitions for
parallel composition, abstraction and aggregation lies beyond the scope of this thesis, but below
we will outline some ideas for any future research in this area.

Let’s consider the DFT in Figure8.1. For the sake of simplicity we will ignore the notion
of activation in this example. Basic eventA has a failure rate ofλ and B has a failure rate
of µ. We want to transform this DFT into a labelled CTMC with threeatomic propositions:
Afailed, Bfailed andCfailed. To do this we could transform the DFT into a community of
three labelled IOIMC shown in Figure8.2. We can now transform this labelled IOIMCC into
a labelled CTMC using compositional aggregation. Under parallel composition sets of atomic



A B

C

Figure 8.1: Example DFT.

none

A

{A failed} {A failed}

AP={A failed}

f(A)!

none

B

{B failed} {B failed}

AP={B failed}

f(B)!

none

C
{C failed}

AP={C failed}

none

f(B)?f(A)?

none

f(B)? f(A)?

{C failed}
f(C)!

Figure 8.2: Community of labelled IOIMC which models the DFTin figure8.1.

propositions are simply unified and we must ensure that the equivalence we use for aggregation
preserves the labelling of the states. The resulting labelled CTMC is shown in Figure8.3.

We could now use the labelled CTMC of Figure8.3 to calculate such measures as, for
instance, the probability thatA will fail before B or the probability thatC fails within a certain
time period afterA fails.

Incorporating the concept of dormancy (see Section4.3) into this new approach should be
quite simple. We could, for instance, for a basic event add anatomic propositionAactiveand
assign it to all the active states of the IOIMC model ofA. In that way we could also analyze
properties involving the dormancy of the spares in a DFT.



none

A||B||C

{A failed,
B failed,
C failed}

AP={A failed, 
B failed, C failed}

{A failed}

{B failed}

Figure 8.3: Labelled CTMC which models the DFT in figure8.1.



Appendix A

Proofs

A.1 Theorem3.3

For an IOIMC P relation≈P we find:

1. ≈P is the largest weak bisimulation on P.

Proof. First we prove that for any IOIMCP ≈P is the largest weak bisimulation onP. To do
this we must prove that≈P is an equivalence relation by proving that it is reflexive, symmetric
and transitive. The proofs for reflexivity and symmetry are quite simple, but the proof for
transitivity is somewhat more complex.

For any I/O-IMC P it is trivial that the identity relationIdP is a weak bisimulation. For any
states in SP we find that (s, s) ∈ IdP and thuss ≈ s. In other words≈ is reflexive. If s ≈ t
then there is a weak bisimulationR with (s, t) ∈ R. BecauseR is an equivalence relation we
also find that (t, s) ∈ R and sot ≈ s. We now find thats≈ t impliest ≈ s. This means that≈ is
symmetric.

Let R1 andR2 be two weak bisimulations onP and letR1R2
∗ be defined as theirrecursive

composition:

R1R2
∗ = {(s, t) | ∃n ∈ N, x1, ..., xn ∈ Sall ·

n ≥ 0 ∧ (s, x1) ∈ R1 ∪ R2 ∧ ... ∧ (xn, t) ∈ R1 ∪ R2}

BecauseR1 andR2 are equivalence relations it is trivial thatR1R2
∗ is reflexive and symmetric.

From the definition ofR1R2
∗ we can also immediately deduce that it is a transitive relation.

We will now prove thatR1R2
∗ is a weak bisimulation relation. Recall that if (s, t) is in

R1R2
∗ then there exist a series of statesx1, ..., xn such that they are stepwise related through

eitherR1 or R2: sRi x1Ri x2...xnRit whereRi is R1 or R2. We find that for any actiona ∈ Aall
P

with s
a
=⇒s′ there is anx′1 with x1

a
=⇒x′1 and (s′, x′1) ∈ R1 ∪ R2. This in turn means that there

is anx′2 with x2
a
=⇒x′2 and (s′, x′2) ∈ R1 ∪ R2. So we find a series of statesx′1, ..., x

′
n, t
′ such that

(s′, x′1) ∈ R1 ∪R2 ∧ ... ∧ (x′n, t
′) ∈ R1 ∪R2. Thust

a
=⇒t′ with (s′, t′) ∈ R1R2

∗, which means that
the first clause of Definition3.11holds. To prove that the second clause holds we must first
consider the equivalence classes ofR1R2

∗.
From the definition we know thatR1 ⊆ R1R2

∗ and R2 ⊆ R1R2
∗. This means that any

equivalence class ofR1R2
∗ is exactly the union of one or more equivalence classes ofR1 and

97



98 A A. P

it is also exactly the union of one or more equivalence classes of R2. So for any equivalence
classC of R1R2

∗ we find that there is a setC′1,C
′
2, ...C

′
n of equivalence classes ofR1 and a set

C′′1 ,C
′′
2 , ...C

′′
m of equivalence classes ofR2 with n,m> 0 such that:

C = C′1 ∪C′2 ∪ ... ∪C′n = C′′1 ∪C′′2 ∪ ... ∪C′′m

It is trivial that this also holds for the internal backwardsclosure of an equivalence class of
R1R2

∗:
Cint = C′int

1 ∪C′int
2 ∪ ... ∪C′int

n = C′′int
1 ∪C′′int

2 ∪ ... ∪C′′int
m

For a states we find that it’s equivalence class forR1R2
∗: [s]R1R2

∗ contains all statest such
that (s, t) ∈ R1R2

∗. Because (s, t) ∈ R1 implies (s, t) ∈ R1R2
∗ we find that [s]R1 ⊆ [s]R1R2

∗ and
conversely [s]R2 ⊆ [s]R1R2

∗. Because equivalence classes are disjunct we now find that ifan
equivalence class ofR1R2

∗: C , [s]R1R2
∗ thenC ∩ [s]R1 = ∅ and alsoC ∩ [s]R2 = ∅.

Let (s, t) ∈ R1R2
∗ and let there be as′ such thats=⇒s′ ands′ is stable. If (s, t) ∈ R1 ∪ R2

then the second clause of Definition3.11holds. Otherwise there exists anx1 such that (s, x1) ∈
R1 ∪ R2, so either (s, x1) ∈ R1 or (s, x1) ∈ R2. For the first case we find that there is anx′1 such
that x1=⇒x′1 andx′1 stable andγM(s′,C′int) = γM(x′1,C

′int), for all equivalence classesC′ of R1

except [s′]R1. For the second case we find that there is anx′1 such that:x1=⇒x′1 andx′1 stable
andγM(s′,C′int) = γM(x′1,C

′′int), for all equivalence classesC′′ of R2 except [s′]R2. So we find
that there is always anx′1 such thatx1=⇒x′1 and x′1 stable andγM(s′,Cint) = γM(x′1,C

int), for
all equivalence classesC of R1R2

∗ except [s′]R1R2
∗. Note that the equivalence classes [s′]R1 and

[s′]R2 must be contained in [s′]R1R2
∗ and not in any other equivalence class ofR1R2

∗. The same
holds for the pairs (x1, x2), (x2, x3), ..., (xn, t), so in the end we find that the second clause of
Definition3.11holds forR1R2

∗ soR1R2
∗ is a weak bisimulation.

If we now have thats ≈P x and x ≈P t then there exist two weak bisimulationsR1 and
R2 such that (s, x) ∈ R1 and (x, t) ∈ R2. Then (s, t) ∈ R1R2

∗ and becauseR1R2
∗ is a weak

bisimulation onP we find thats≈P t which means that≈P is an equivalence relation.
Because≈ is the union of all weak bisimulations it is trivial that≈ itself is a weak bisim-

ulation now that we have proven that it is an equivalence relation. That≈ is the largest weak
bisimulation onP follows immediately from its definition.

A.2 Theorem3.4

Weak bisimilarity is substitutive with parallel composition and hiding.

P1 ≈ P2 implies P1||P3 ≈ P2||P3

P1 ≈ P2 implies P3||P1 ≈ P3||P2

P1 ≈ P2 implies hide a1, ..., an in P1 ≈ hide a1, ..., an in P2

Proof. We now prove that weak bisimilarity is substitutive with parallel composition. LetP1

andP2 be IOIMC with identical action signatures, letP be their union and letx ≈P y. This



A.2. T 3.4 99

means that there is a weak bisimulationRon P such that (x, y) ∈ R. We now define the relation
R′ as follows:

R′ = {(x‖z, y‖z) | (x, y) ∈ R ∧ z ∈ SP3}

BecauseR is an equivalence relation onP it is trivial that R′ is also an equivalence relation on
P||P3.

Let (s‖u, t‖u) ∈ R′, then (s, t) is in R. Now let s‖u
a
=⇒s′‖u′ with a ∈ Aall . This means

that there exists′′‖u′′ ands′′′‖u′′′ such thats=⇒s′′, u=⇒u′′, s′′‖u′′
a
|−→ s′′′‖u′′′, s′′′=⇒s′ and

u′′′=⇒u′. From the definition of parallel composition we can deduce that s′′‖u′′
a
|−→ s′′′‖u′′′

implies that one of the following holds:s′′
a
|−→ s′′′ ∧ u′′′ = u′′ ∧ a ∈ Act(P) ∧ a < Act(P3)

or u′′
a
|−→ u′′′ ∧ s′′′ = s′′ ∧ a ∈ Act(P3) ∧ a < Act(P) or s′′

a
|−→ s′′′ ∧ u′′ |−→ u′′′ ∧ a ∈

Act(P) ∧ a ∈ Act(P3). In other words eithers
a
=⇒s′ ∧ u=⇒u′ ∧ a ∈ Act(P) ∧ a < Act(P3) or

u
a
=⇒u′ ∧ s=⇒s′ ∧ a ∈ Act(P3) ∧ a < Act(P) or s

a
=⇒s′ ∧ u=⇒u′ ∧ a ∈ Act(P) ∧ a ∈ Act(P3).

Because (s, t) ∈ R we find that there is at′ with (s′, t′) ∈ R such that:t
a
=⇒t′ ∧ u=⇒u′ ∧ a ∈

Act(P) ∧ a < Act(P3) or u
a
=⇒u′ ∧ t=⇒t′ ∧ a ∈ Act(P3) ∧ a < Act(P) or t

a
=⇒t′ ∧ u=⇒u′ ∧

a ∈ Act(P) ∧ a ∈ Act(P3). From the definition of parallel composition we now know that:
t‖u

a
=⇒t′‖u′ and from the definition ofR′ we know that (s′‖u′, t′‖u′) is in R′. This means that

the first clause of Definition3.11holds forR′.

From the definition ofR′ we can deduce that it has the following equivalence classes:

Sall/R′ = {{x‖y | x ∈ C} | C ∈ SP/R, y ∈ SP3}

Because (s, s′) ∈ R if and only if ∀u ∈ SP3 · (s‖u, s
′‖u) ∈ R′ we find that for an equivalence

class [s‖u]R′: [s‖u]R′ = {s′‖u | s′ ∈ [s]R}.

Now let (s‖u, t‖u) ∈ R′ with s‖u=⇒s′‖u′ ands′‖u′ stable and letC be an equivalence class
of R′ with C , [s′‖u′]R′. From the definition of parallel composition we know that this means
thats=⇒s′ andu=⇒u′ and boths′ andu′ stable. We know that each equivalence class ofR′ is
derived from an equivalence class ofR and a state inSP3. Let D be that equivalence class ofR
and lety be that state. SoC = {s‖y | s ∈ D} andu′ = y→ D , [s′]R. Note that ifu′ , y, s′‖u′

cannot be inC. Now we find the following for the internal backward closure of C:

Cint = {x′‖y′ | ∃x‖y ∈ C · x′‖y′=⇒x‖y}

= {x′‖y′ | ∃x ∈ D · x′=⇒x ∧ y′=⇒y}



100 A A. P

If we now look at the cumulative rate ofs′‖u′ to Cint we find:

γM(s′‖u′,Cint)

=
∑

{|λ | ∃x ∈ D · s′
λ

|−→M x′ ∧ x′=⇒x ∧ u′=⇒y|} +
∑

{|λ | ∃x ∈ D · u′
λ

|−→M y′ ∧ s′=⇒x ∧ y′=⇒y|}

=
∑

{|λ | ∃x ∈ D · s′
λ

|−→M x′ ∧ x′=⇒x ∧ u′ = y|} +
∑

{|λ | ∃x ∈ D · u′
λ

|−→M y′ ∧ s′ = x ∧ y′=⇒y|}

(Becauses′ andu′ are stable)

=







































γM(s′,Dint) + γM(u′, {y}int) , if u′ = y ∧ s′ ∈ D

γM(s′,Dint) , if u′ = y ∧ s′ < D

γM(u′, {y}int) , if u′ , y ∧ s′ ∈ D

0 , if u′ , y ∧ s′ < D

=



























γM(s′,Dint) , if u′ = y ∧ s′ < D

γM(u′, {y}int) , if u′ , y ∧ s′ ∈ D

0 , if u′ , y ∧ s′ < D

(Becauseu′ = y→ D , [s′]R means thatu′ = y ∧ s′ ∈ D is never true.)

Because (s, t) ∈ R we know thats=⇒s′ and s′ stable imply that there is at′ such thatt=⇒t′

andt′ stable with (s′, t′) ∈ R1 andγM(s′,Dint) = γM(t′,Dint) for every equivalence classD of R
except [s′]R. It is furthermore trivial thats′ andt′ are in the same equivalence class ofR. We
now conclude that:

γM(s′‖u′,Cint)

=



























γM(s′,Dint) , if u′ = y ∧ s′ < D

γM(u′, {y}int) , if u′ , y ∧ s′ ∈ D

0 , if u′ , y ∧ s′ < D

=



























γM(t′,Dint) , if u′ = y ∧ t′ < D

γM(u′, {y}int) , if u′ , y ∧ t′ ∈ D

0 , if u′ , y ∧ t′ < D

(γM(t′,Dint) = γM(s′,Dint) becauses′ < D implies thatD , [s′]R.)

= γM(t′‖u′,Cint)

So clause two of Definition3.11holds forR′. For any statez ∈ SP3 we find that if (x, y) ∈ R
then (x‖z, y‖z) ∈ R′ and sinceR′ is a weak bisimulationx‖z ≈ y‖z thus proving that weak
bisimilarity is substitutive with parallel composition.

1Because (s, t) ∈ R ands=⇒s′ there is ay such thatt=⇒y and (s′, y) ∈ R. For this pair clause 1 and 2 of weak
bisimulation must hold once more. Eventually we will findt′ this way.



A.2. T 3.4 101

We now prove that weak bisimilarity is substitutive with hiding. LetP be an IOIMC and
let s ≈P t then there is a weak bisimulationR on P such that (s, t) ∈ R. Let B ⊆ Ext(P) be a
subset of the visual actions ofP and letR′ be a binary relation defined as follows:

R′ = {(hide B in s, hide B in t) | (s, t) ∈ R}

It is trivial that R′ is an equivalence relation onhide B in P. Let hide B in s
a
=⇒hide B in s′.

From the definition of hiding we can immediately deduce that there exists ann ∈ N with n ≥ 0,
a series of statesx1, ..., xn and a series of actionsb1, ..., bn ∈ B such that:

s
b1
=⇒x1

b2
=⇒...xk

a
=⇒xk+1...

bn−1
=⇒xn

bn
=⇒s′

Because (s, t) ∈ Rwe find a series of statesx′1, ..., x
′
n−1 such that:

t
b1
=⇒x′1

b2
=⇒...x′k

a
=⇒x′k+1...

bn−1
=⇒x′n

bn
=⇒t′

It follows thathide B in t
a
=⇒hide B in t′ so the first clause of Definition3.11holds forR′.

Let hide B in s=⇒hide B in s′ andhide B in s′ stable. This means that there is ann ∈ N
with n ≥ 0, a series of actionsb1, ..., bn and a series of statesx1, ..., xn such thats

b1
=⇒x1...xn=⇒s′

with b1, ..., bn ∈ B. For t we then find the same series of actions and a weakly bisimilar set of
states. We particularly find anx′n such that (xn, x′n) ∈ R. Becausexn=⇒s′ ands′ stable we find
a t′ such thatx′n=⇒t′ andt′ stable withγM(s′,D) = γM(t′,D) for all equivalence classesD of
R except for [s′]R and (s′, t′) ∈ R. Becausehide B in s′ is stables′ and t′ have no outgoing
transitions labelled with an action inB.

From the definition ofR′ we see that its equivalence classes can be defined as follows:

{{hide B in x| x ∈ D} | D ∈ Sall/R}

Note that for any statex in S we find that [hide B in x]R′ = {hide B in y| y ∈ [y]R}.
Let C be an equivalence class ofR′ such thatC , [hide B in s′]R′ and letD be the corre-

sponding equivalence class ofR, thusD , [s′]R. We now find the following for the cumulative
rate ofhide B in s′ to Cint:

γM(hide B in s′,Cint)

= {|λ | ∃(hide B in x′) ∈ Sall , (hide B in x) ∈ C ·

hide B in s′
λ

|−→M hide B in x′ ∧ hide B in x′=⇒hide B in x|}

= {|λ | ∃(hide B in x′) ∈ Sall , x ∈ D ·

hide B in s′
λ

|−→M hide B in x′ ∧ hide B in x′=⇒hide B in x|}

= {|λ | ∃x′ ∈ Sall , x ∈ D · s′
λ

|−→M x′ ∧ hide B in x′=⇒hide B in x|}

= γM(s′,Dint+)

HereDint+ = {x′ | ∃x ∈ D · hide B in x′=⇒hide B in x}. Note thatDint+ ⊇ Dint. For somen ∈ N
with n ≥ 0 letE1, ...,En be the equivalence classes ofR that can reachD with a number of weak



transitions labelled with actions inB or with a weak move (note that this means thatD itself is
always inE1, ...,En). In other words we find that:

∀Ex · (∀e ∈ Ex · ∃m ∈ N, f1, ..., fm ∈ Sall , b1, ..., bm ∈ B·

m≥ 0 ∧ e
b1
=⇒ f1... fm−1

bm
=⇒ fm ∧ fm ∈ D)

When we hide the set of actionsB in the states of the equivalence classesEx we find that they
move internally to states in equivalence classC. Note that becausehide B in s′ is stable and
C , [hide B in s′]R′, [s′]R can not be inE (that would either mean thathide B in s′ moves
internally to a state inC making it unstable or thathide B in s′ is in C but this is not possible
becauseC , [hide B in s′]R′). SoDint+ =

⋃

Ei
Eint

i . Now we find thatγM(s′,Dint+) = γM(t′,Dint+)
(Recall that we found earlier thatγM(s′,D) = γM(t′,D) for all equivalence classesD of R
except [s′]R which is not inE). In the same way we showed thatγM(hide B in s′,C) equals
γM(s′,Dint+), we can now show thatγM(t′,Dint+) equalsγM(hide B in t′,Cint). This proves that
the second clause of Definition3.11holds forR′. This means thathide B in s≈ hide B in t
whens≈ t and thus weak bisimilarity is substitutive with hiding.



Appendix B

Complete IOIMC models of DFT elements

In this appendix the complete IOIMC models of DFT elements are given. For each DFT
element we will give the IOIMC action signature and its behavior in both IML and schematic
form based on its actions and delay-rates. TheIML language is given in SectionB.1. Together
the action signature and behavior define the IOIMC as in Definition 3.2. The action signatures
are based on the immediate surroundings of the corresponding DFT element. This translation
can be found in Section4.7. In the schematic representation of the IOIMC behavior dotted
lines between two transitions or states represent a finite number of similar transitions or states.
Both theIML and schematic representations of the behaviors omit input-actions from a state to
itself. All models are input-enabled and the true behaviorscan be found by adding a transition
to itself for any state that is missing an outgoing input action. This transition should of course
be labelled with the missing input action.
The schematic representations of the IOIMC models given in this appendix are often recursive.
In these schematic representations states have names and parameters in the form of actions.
Dotted states represent states that are already present in the diagram only with different pa-
rameters. For instance, in FigureB.2, the transition from stateAND( f (M), a(M), Fi) to dotted
stateAND( f (M), a(M), Fi \ f1) labelled f (i1)? should be read as a transition from the start-
ing state to itself, except with one element of the vectorFi removed. Intuitively this means
that, after one of its inputs fires, an n-input AND-gate behaves the same as an (n-1)-input
AND-gate. Dotted lines between two states, for instance state AND( f (M), a(M), Fi \ f1) and
AND( f (M), a(M), Fi \ fn) in FigureB.2, denote a finite number of states. The same goes for
dotted lines between transitions.

B.1 Notation

To make talking about IOIMC somewhat easier we now define the languageIML [15, section
5.1]. We will use this language to describe IOIMC textually.We assume a countable set of
variablesV that will be used to express repetitive behavior.

Definition B.1 Let λ ∈ R+, a ∈ Act and X∈ V. We define the languageIML as the set of
expressions given by the following grammar.

E ::= 0 | a.E | (λ).E | E + E | X | x:=E | ⊥

103



104 A B. C IOIMC   DFT 

The intuitive meaning of the language constricts is as follows:

• 0 describes a terminated behavior that cannot perform any interactive- or Markovian
transition.

• a.E describes an IOIMC that, after performing interactiona, will behave like the IOIMC
described byE. We say thatE is action prefixedby a.

• (λ).E describes an IOIMC that will behave like IOIMCE after a delay which is expo-
nentially distributed with rateλ. We say thatE is delay prefixedby λ.

• E + F describes two alternatives. The IOIMCE + F may behave like IOIMCE or like
IOIMC F. How this choice is made depends on the IOIMCE andF.

• x:=E describes a recursive behavior.x:=E behaves like IOIMCE, but when the variableX
is encountered it reinitializes tox:=E.

B.2 Cold Basic Event

Action signature

For IOIMC CBE( fM, aM, rate) we find action signatureSigwith:
– in(Sig) = {aM}

– out(Sig) = { fM}

– int(Sig) = ∅

IML definition

CBE( fM , aM, rate) = aM?.CBEactive( fM, rate)

CBEactive( fM, rate) = (rate).CBEfiring( fM)

CBEfiring( fM) = fM!.0

Schematic of behavior

A schematic of the behavior of a cold basic event can be found in figure4.7.

B.3 Warm Basic Event

Action signature

For IOIMC WBE( fM, aM, rateA, rateD) we find action signatureSigwith:
– in(Sig) = {aM}

– out(Sig) = { fM}



B.4. H B E 105

– int(Sig) = ∅

IML definition

WBE( fM, aM, rateA, rateD) = aM?.WBEactive( fM, rateA) + (rateD).WBEfiring( fM)

WBEactive( fM, rateA) = (rateA).WBEfiring( fM)

WBEfiring( fM) = fM!.0

Schematic of behavior

A schematic of the behavior of a cold basic event can be found in Figure4.8.

B.4 Hot Basic Event

Action signature

For IOIMC HBE( fM , aM, rate) we find action signatureSigwith:
– in(Sig) = {aM}

– out(Sig) = { fM}

– int(Sig) = ∅

IML definition

HBE( fM, aM, rate) = aM?.HBEactive( fM, rate) + (rate).HBEfiring( fM)

HBEactive( fM, rate) = (rate).HBEfiring( fM)

HBEfiring( fM) = fM!.0

Schematic of behavior

A schematic of the behavior of a cold basic event can be found in Figure4.9.

B.5 OR-gate

Action signature

For IOIMC OR( fM, aM, Fi) we find action signatureSigwith:
– in(Sig) = { fi | fi ∈ Fi}

– out(Sig) = { fM}



106 A B. C IOIMC   DFT 

– int(Sig) = ∅

IML definition

OR( fM, aM, Fi) =
fi∈Fi
∑

fi

fi?. fM!.0

Schematic of behavior

A schematic representation of the behavior of an OR-gate canbe found in FigureB.1.

f(i_n)?

f(i_1)?

OR(f(M),a(M),F_i)

f(M)!

Figure B.1: Schematic of the behavior of an OR-gate.

B.6 AND-gate

Action signature

For IOIMC AND( fM , aM, Fi) we find action signatureSigwith:
– in(Sig) = { fi | fi ∈ Fi}

– out(Sig) = { fM}

– int(Sig) = ∅

IML definition

AND( fM , aM, Fi) =

{

fM!.0 , if Fi = 〈〉
∑ fi∈Fi

fi
fi?.AND( fM , aM, Fi \ 〈 fi〉) , otherwise

Schematic of behavior

A schematic representation of the behavior of an AND-gate can be found in FigureB.2.



B.7. K/M- 107

f(i_n)?

f(i_1)?
AND(f(M),a(M),F_i)

AND(f(M),a(M),F_i\f_1)

AND(f(M),a(M),F_i\f_n)

AND(f(M),a(M),<>)
f(M)!

Figure B.2: Schematic of the behavior of an AND-gate.

B.7 K/M-gate

Action signature

For IOIMC KM( fM , aM, k,m, Fi) we find action signatureSigwith:
– in(Sig) = { fi | fi ∈ Fi}

– out(Sig) = { fM}

– int(Sig) = ∅

IML definition

KM( fM , aM, k,m, Fi) =
{

fM!.0 , if |Fi | ≤ m− k
∑ fi∈Fi

fi
fi?.KM( fM , aM, k,m, Fi \ 〈 fi〉) , otherwise

Schematic of behavior

A schematic representation of the behavior of a K/M-gate can be found in FigureB.3.

B.8 PAND-gate

Action signature

For IOIMC PAND( fM , aM, Fi) we find action signatureSigwith:
– in(Sig) = { fi | fi ∈ Fi}

– out(Sig) = { fM}



108 A B. C IOIMC   DFT 

f(i_n)?

f(i_1)?
KM(f(M),a(M),k,m,F_i),

if |F_i|>m-k

KM(f(M),a(M),k,m,F_i\f_1)

KM(f(M),a(M),k,m,F_i\f_n)

KM(f(M),a(M),k,m,F_i),
otherwise

f(M)!

Figure B.3: Schematic of the behavior of a K/M-gate.

– int(Sig) = ∅

IML definition

PAND( fM , aM, Fi) =














f (A)!.0 , if Fi = 〈〉

headFi?.PAND( fM , aM, tail Fi) +
∑ fi∈tail Fi

fi
fi?.0 , otherwise

Schematic of behavior

A schematic representation of the behavior of a PAND-gate can be found in FigureB.4.

B.9 Spare gate

Action signature

For IOIMC SG( fM, aM, fpr, ~S) we find action signatureSigwith:

– in(Sig) = {aM} ∪

(

⋃(as,Us)∈~S
Us

⋃us∈Us
us

us

)

– out(Sig) = { fM} ∪

(

⋃(as,Us)∈~S
as

as

)

– int(Sig) = ∅



B.9. S  109

f(i_n)?

f(i_2)?
PAND(f(M),a(M),F_i)

PAND(f(M),a(M),k,m,<>)
f(M)!

f(i_1)?
PAND(f(M),a(M),F_i\f(i_1))

Figure B.4: Schematic of the behavior of an PAND-gate.

IML definition

SG( fM, aM, fpr, ~S) =

SGD,P( fM, aM, fpr, ~S)

SGD,P( fM, aM, fpr, ~S) =

fpr?.SGD,N( fM , aM, ~S) +
(as,Us)∈~S
∑

Us

















us∈Us
∑

us

us?.SGD,P( fM, aM, fpr, ~S \ 〈(as,Us)〉)

















+

aM?.SGA,P( fM, fpr, ~S)

SGD,N(A,S T, ~S) =






















∑(as,Us)∈~S
Us

(

∑us∈Us
us

us?.SGD,N( fM, aM, ~S \ 〈(as,Us)〉)
)

+

aM?.SGA,N( fM , ~S) , if ~S = 〈〉
fM!.0 , otherwise

SGA,P( fM, fpr~S) =

fpr?.SGA,N( fM, ~S) +
(as,Us)∈~S
∑

Us

















us∈Us
∑

us

us?.SGA,P( fM, fpr, ~S \ 〈(as,Us)〉)

















SGA,N(A, ~S) =






















first head ~S!.SGA,P( fM, head second head~S, tail ~S)+
∑(as,Us)∈~S

Us

(

∑us∈Us
us

us?.SGA,N( fM, ~S \ 〈(as,Us)〉)
)

, if |~S| > 0
fM!.0 , otherwise



110 A B. C IOIMC   DFT 

Remember that~S consists of tuples of an activation signal and a vector of disabling signals for
each of the spare gate’s spares. So,first head ~S! denotes the activation signal of the first spare
andhead second head~S denotes the firing signal of this spare since the vector of disabling
signals for each spare always starts with the spare’s firing signal.

Schematic of behavior

A schematic representation of the behavior of a spare gate can be found in FigureB.5.

u(s_n)?

f(pr)?

u(s_1)?

SG_D,P
(f(M),a(M),f(pr),S)

a(M)?

u(s_n)?

u(s_1)?

a(M)?

f(M)!

SG_D,P
(f(M),a(M),f(pr),S\s_1)

SG_D,P
(f(M),a(M),f(pr),S\s_n)

SG_D,N
(f(M),a(M),S)

SG_D,N
(f(M),a(M),S\s_1)

SG_D,N
(f(M),a(M),S\s_n)

SG_D,N
(f(M),a(M),<>)

u(s_n)?

f(pr)?

u(s_1)?

SG_A,P
(f(M),f(pr),S)

u(s_n)?

u(s_1)?

f(M)!

SG_A,P
(f(M),f(pr),S\s_1)

SG_A,P
(f(M),f(pr),S\s_n)

SG_A,N
(f(M),S)

SG_A,N
(f(M),S\s_1)

SG_A,N
(f(M),S\s_n)

SG_A,N
(f(M),<>)

a(s_1)!

SG_A,P
(f(M),f(s_1),S\s_1)

Figure B.5: Schematic of the behavior of a spare gate.

B.10 Activation Auxiliary

Action signature

For IOIMC AA(aM ,AM) we find action signatureSigwith:
– in(Sig) = {ax,M | ax,M ∈ AM}

– out(Sig) = {aM}



– int(Sig) = ∅

IML definition

AA(aM ,AM) =
ax,M∈AM
∑

ax,M

ax,M?.aM!.0

Schematic of behavior

A schematic representation of the behavior of an activationauxiliary can be found in Fig-
ureB.6.

a(M,X_n)?

a(M,X_1)?

AA(a(M),A(M))

a(M)!

Figure B.6: Schematic of the behavior of an activation auxiliary.

B.11 Firing Auxiliary

Action signature

For IOIMC FA( fM , F′M) we find action signatureSigwith:
– in(Sig) = { f ′M | f ′M ∈ F′M}
– out(Sig) = { fM}

– int(Sig) = ∅

IML definition

FA( fM , F
′
M) =

f ′M∈F
′
M

∑

f ′M

f ′M?. fM!.0

Schematic of behavior

A schematic representation of the behavior of a firing auxiliary can be found in FigureB.7.



f*(M)_n?

f*(M)_1?

FA(f(M),F*(M))

f(M)!

Figure B.7: Schematic of the behavior of an activation auxiliary.



Bibliography

[1] A Aziz, K Sanwal, V Singhal, and R K Brayton. Verifying continuous-time markov
chains. InEighth International Conference on Computer Aided Verification, volume
1102, pages 269–276. Springer Verlag, 1996.

[2] Galileo DFT analysis tool. http://www.cs.virginia.edu/˜ftree. Galileo Website.

[3] C Baier, B Haverkort, H Hermanns, and J-P Katoen. Model-checking algorithms for
continuous-time markov chains.IEEE Transactions on Software Engineering, 29(6):524–
541, 2003.

[4] C Baier, H Hermanns, J-P Katoen, and V Wolf. Comparative branching-time semantics.
In CONCUR, pages 492–507, 2003.

[5] A Bobbio, G Franceschinis, R Gaeta, and L Portinale. Parametric fault tree for the de-
pendability analysis of redundant systems and its high-level petri net semantics.IEEE
Transactions on Software Engineering, 29(33):270–287, 2003.

[6] H Boudali.A Temporal Bayesian Network Reliability Modeling and Analysis Framework.
PhD thesis, University of Virginia, 2005.

[7] M A Boyd and S J Bavuso. Simulation modeling for long duration spacecraft control
systems. InProceedings of the Annual Reliability and MaintainabilitySymposium, pages
106–113, 1993.

[8] Mario Bravetti. Revisiting interactive markov chains.Electr. Notes Theor. Comput. Sci.,
68(5), 2002.

[9] D Coppit and K J Sullivan. Formal specification in collaborative design of software tools.
Submitted to High Assurance System Engineering (HASE) Conference, 1999.

[10] O Coudert and J C Madre. Fault tree analysis:1020 prime implicants and beyond. In
Proceedings of the Annual Reliability and MaintainabilitySymposium, 1993.

[11] J B Dugan, S J Bavuso, and M A Boyd. Dynamic fault tree models for fault tolerant
computer systems.IEEE Transactions on Reliability, 41(3):363–377, September 1992.

[12] J B Dugan and K S Trivedi. Coverage modeling for dependability analysis of fault-
tolerant systems.IEEE Transactions on Computers, 38(6):775–787, 1989.

113



114 B

[13] Y Dutuit and A Rauzy. A linear time algorithm to find modules of fault trees.IEEE
Transactions on Reliability, 45(3):422–425, 1996.

[14] R Gulati and J B Dugan. A modular approach for analyzing static and dynamic fault
trees. InProceedings of the Annual Reliability and Maintanability Symposium, pages
69–75, 1998.

[15] H Hermanns. Interactive Markov Chains, volume 2428 ofLecture Notes in Computer
Science. Springer-Verlag, 2002.

[16] H Hermanns, U Herzog, U Klehmet, V Mertsiotakis, and M Siegle. Compositional per-
formance modelling with the tipptool.Performance Evaluation, 39(1-4):5–35, 2000.

[17] H Hermanns and J-P Katoen. Automated compositional Markov chain generation for a
plain-old telephone system.Science of Computer Programming, 36(1):97–127, 2000.

[18] R A Howard. Dynamic probability systems. Volume 1: Markov models. Decision and
Control. John Wiley & Sons, Inc., 1971.

[19] P A Lee and T Anderson.Fault tolerance: Principles and Practice, volume 3 ofDepend-
able Computing and Fault-Tolerant systems. Prentice Hall, 1981.

[20] J Levine, T Mason, and D Brown.Lex& Yacc. O’Reilly, second edition edition, 1992.

[21] N A Lynch and M R Tuttle. An introduction to input/output automata.CWI Quarterly,
2(3):219–246, 1988.

[22] M. Malhotra and K. S. Trivedi. Dependability modeling using petri-nets.IEEE Transac-
tions on Reliability, 44(3):428–440, September 1995.

[23] R Manian, J B Dugan, D Coppit, and K J Sullivan. Combiningvarious solution techniques
for dynamic fault tree analysis of computer systems.IEEE International High-Assurance
Systems Engineering Symposium, 3:21–28, 1998.

[24] R Milner. Communication and Concurrency. Prentice Hall Inc., 1989.

[25] S. Montani, L. Portinale, A. Bobbio, and D. C. Raiteri. Automatically translating dynamic
fault trees into dynamic bayesian networks by means of a software tool. InProceedings
of The First International Conference on Availability, Reliability and Security (ARES),
pages 804–809. IEEE Computer Society, 2006.

[26] D C Raiteri, M Iacono, G Franceschinis, and V Vittorini.Repairable fault tree for the
automatic evaluation of repair policies.International Conference on Dependable Systems
and Networks, pages 659–668, 2004.

[27] A Rauzy. New algorithms for fault tree analysis.Reliability Engineering and System
Safety, 40:203–211, 1993.

[28] W J Stewart. Matrix-Geometric Solutions in Stochastic Models, An Algorithmic Ap-
proach. The John Hopkins University Press, 1981.



B 115

[29] W J Stewart.Introduction to the Numerical Solution of Markov Chains. Princeton Uni-
versity Press, 1994.

[30] K K Vemuri, J B Dugan, and K J Sullivan. Automatic synthesis of fault trees for
computer-based systems.IEEE Transactions on Reliability, 48(4):394–402, 1999.

[31] W E Veseley, F F Goldberg, N H Roberts, and D F Haasl.Fault Tree Handbook, volume
(NUREG-0492). United States Nuclear Regulatory Commision, 1981.

[32] H A Watson and Bell Telephone Laboratories.Launch Control Safety Study. Bell Tele-
phone Laboratories, 1961.

[33] D J White.Markov Decision Processes. John Wiley & Sons Ltd., 1993.


