Please note that this document is not entirely up to date
with respect to the conference submission. In particular,
some of the notations have been changed.



P

Formal kJ

Method . .
Fm & Toots University of Twente
Q =O Enschede - The Netherlands

University Twente,

Faculty EWI,
Computer Science Department,
Formal Methods and Tools Group

CoOMPOSITIONAL ANALYSIS OF
DyNaMic FAULT T REES USING
| NPUT/OUTPUT I NTERACTIVE M ARKOV CHAINS

Master’s thesis of Pepijn Crouzen

Supervisors: Dr. Mariélle Stoelinga
Dr. Hichem Boudali
Dr. ir. Arend Rensink






Abstract

Dynamic fault trees (DFT) are widely used to analyze thetftalerance of computer sys-
tems. The syntax and semantics of DFT, however, lack forrahiions which has lead to
vagueness in the interpretation of DFT. Existing analysthihiques also $ier from the state-
space explosion problem.

This thesis describes a compositional approach to foringlthe DFT syntax and seman-
tics. The DFT semantics are formalized by separating a DEiis elements and formalizing
the behavior of each element using an iriputput interactive Markov chain (I0OIMC). IOIMC
are a combination of continuous-time Markov chains (CTM@J apufoutput automata and
IOIMC models can be combined using parallel compositiore $&mantics of a DFT are now
defined as the composition of the semantics of its elements.

This compositional approach to formalizing DFT semantise &ads to the compositional
analysis of DFT using compositional aggregation. Compwsi aggregation is a well known
technique which combines composition and aggregation tabed the state-space explosion
problem.

In this thesis we give new formal definitions for the syntaxi aemantics of the DFT
formalism. The IOIMC formalism is also introduced. Compiasial analysis for DFT is then
described which is accomplished using a translation tas@dito find IOIMC representations
of DFT elements) and the Tipp tool. Two case studies are givainshow the applicability of
the new compositional analysis.






Contents

1 Introduction 9
1.1 Existing techniques for Fault tolerance analysis . . . . . . ... .. .. .. 9
1.2 Motivation. . . . . . . e e e e e e e e e 10
1.3 Approach. . . . . . . e e e 10
1.4 Results . . . . . . e e 11
1.5 Organizationofthethesis. . . . . . ... .. .. ... .. .. . .. ... 12

2 Dynamic Fault Trees 13
2.1 StaticFaultTrees . . . . . . . 0 o 0 e e 13
2.2 DynamicFaultTrees. . . . . . . . . . . . . e 14
2.3 Example. . . . . e e e 15
2.4 DIFTree. . . . . e e e e e e 16

3 Input/Output Interactive Markov Chains 19
3.1 DesignchoiCces. . . . . . . . . e 19

3.1.1 Probabilisticbehavior. . . . .. ... .. ... .. o 19
3.1.2 Interactive behaviar. . . . . . ... ... . . . . . 20
3.1.3 Compositionalaggregation. . . . . .. ... .. ... ........ 21
3.2 InputOutput Interactive MarkovChains . . . . . . ... ... ... ..... 21
3.3 Strong bisimulation . . . . . ... ... e 26
3.4 Weakbisimulation. . . . . . . . .. .. e e e 28

4 DFT syntax and semantics 31
4.1 FormalDFTsyntax . . . . . . . . . . i it it e et e 31
4.2 Complexsparesanddependencies. . . . . .. .. ... ... ....... 33
4.3 ActivationandDormancy . . . . . . . .0 e e e 34
4.4 NoOtation. . . . . . . e e e e e e e e 35
45 I0IMCmodels . . . . . . . e e e e e e 36

451 BasicEvents. . . . . .. . . .. . e e e e 37
452 ORgate . . .. . . . e e e 37
453 ANDgate. . . . . . . e e 37
454 KM-gate . . . . . . . e e e 38
455 PANDgate. . . . . . . . . e 38
45.6 SpareGate. . . . . ... e e e e 38
457 FDEPgate. . . . . . . . . e e 39



CONTENTS

4.6 Designchoices. . . . . . . . . e 40
4.6.1 Firing . . . . . e e e e e e e e e 40
4.6.2 Activation. . . . . . .. e e 40
46.3 TIME . . . . . e e 41
4.6.4 AuxiliaryIOIMCmodels. . . . . .. ... .. .. .. ... .. ..., 42
4.6.5 Simultaneity . . . . . . . ... e 42

4.7 Translation of a DFT to an IOIMC community. . . . . . .. ... ... ... 44

Compositional Analysis of DFT 47

51 Stepl:Translation. . . . . . . . . . . . . . e e 47

5.2 Step 2: Abstractingcomposition. . . . . .. ... .o 0o 48

5.3 Step3: Aggregation. . . . . . . ... e e 48

54 Step4:Repetition . . . . . . ... e e 48

55 Stepb:CTMCageneration. . . . . . . . . . 0 i v it it e e 49

Case Studies 51

6.1 The Hypothetical Cascaded P-AND System case study. . . . . .. .. .. 51
6.1.1 Compositionalanalysis. . . . .. ... .. .. ... .. ....... 51
6.1.2 Results. . . . . . . . 53

6.2 Cardiac AssistSystem. . . . . . . . ... 53
6.2.1 Compositionalanalysis. . . . .. ... .. ... ... ........ 54
6.2.2 Results. . . . . . . .. 55

6.3 Multi-processor distributed computer system. . . . . ... ... ... ... 56
6.3.1 Results. . . . . . . . 57

Tool support 59

7.1 Usage. . . . . . o e e e e e e e 59

7.2 Parsing . . . . . e e e e 60

7.3 Linking . . . . . . e e e 61

7.4 OUutput. . . . . . e e e e 61
7.4.1 Actionsignatures . . . . . . . .. 63
7.4.2 IOIMCdefinitions.. . . . . . . . . ... 64
7.4.3 Processdefinitions . . . . ... ... .. ... 65

7.5 TippTool. . . . . . e e e e 66
7.5.1 Compositional Aggregation . . . .. .. ... ... ... ...... 66
7.5.2 Analysisusing TippTool . . . ... .. ... ... ... ....... 72

Conclusion 75

8.1 Formalizing dynamic faulttrees . . . . . .. ... ... ... ... .. ... 75

8.2 Compositionalanalysis . . . . . . . . . . e 76

8.3 Future Work. . . . . . . . . 76
8.3.1 EquivalencesonlIOIMC. . . . ... ... ... . .. .. . .. 76
8.3.2 Ordering Strategies. . . . . . . . . . i 77
8.3.3 AdvancedDFTanalysis . . .. ... ... ... ... . ....... 78



A Proofs 81

Al Theorem 3.3 . . . . . . . e e e e e e 81
A2 Theorem 3.4 . . . . . . . . e e e e 82
B Complete IOIMC models of DFT elements 87
B.1 Notation. . . . . . . . . . e e e 87
B.2 ColdBasicEvent. . . . . . . .. . . . ... e 88
B.3 WarmBasicEvent. . . . . . . . . . . . . .. e 88
B.4 HotBasicEvent . . .. .. . .. . . .. .. ... e 89
B.5 OR-gate. . . . . . . e e e 89
B.6 AND-gate. . . . . . . . . e e 90
B.7 K/M-gate . . . . . . . e e e e e 90
B.8 PAND-gate . . . . . . . . . e e e e 91
B.9 Sparegate . . . . . . . e 92
B.10 Activation Auxiliary . . . . . . . . .. e 93

B.11 Firing Auxiliary . . . . . . . . . . e e 93






Chapter 1

Introduction

Computer systems fail. No matter how well designed, casefaiplemented and thor-
oughly tested there is always a chance that a computer sysatkfail. For simple applications
an occasional failure does not cause too much trouble. Yghtnhbse your last changes or
even the contents of an entire file system, but we can mitglatk problems by making regu-
lar back-ups. There are, however, applications that caarmreally dford to fail like systems
that control airplanes, medical devices or even spacecraft

One well known strategy to overcome this problem is to bualaltftolerant computer sys-
tems [L9]. The essential idea is to build a system that continues évatp even if one or more
of its components fail. Fault tolerance is almost alwaysréseilt of using redundant compo-
nents. An everyday example is a car that carries an extrandsoht wheel. When you get a flat
tire the failed component is simply replaced by the sparethadar can keep operating. Of
course fault tolerance does not mean fault immunity. If yetutgo flat tires and you only have
one spare your car haghaially failed. But using redundant components does grehdtrease
the chance that a system will fail.

When designing a fault tolerant computer system it is of igrearest to quantify how fault
tolerant the system is. It is also very useful to be able toame the fault tolerance of several
different alternatives. Typical measures of interest inclbderean time until a system fails or
the probability that a system will fail in a certain time p&ti For example: a communication
network may be required to have less than 1% down-time, theaghthat the flight system of a
spacecratft fails during its 10 year mission might have tcelse than01% or the most reliable
setup for a parallel processor system may need to be found.

1.1 Existing techniques for Fault tolerance analysis

A widely used mathematical approach to fault-tolerancdyaisis using continuous-time
Markov chains (CTMC) 9] [29). CTMC are a well-defined mathematical formalism that
can be used to describe the probabilistic behavior of a sy$tsually describing its life-
time from fully operational to system failure). Standardusion techniques, such as forward
Chapman-Kolmogorov tlierential equations, can then be used to analyze the CTMBefurt
Transforming a complex computer system into a CTMC and tmatyaing it can be a very
labor-intensive process. The problem is that there arellysaidarge number of events that



10 CuAaPTER 1. INTRODUCTION

can happen at any time and a CTMC has to model the consequiesitéhese events in all its
states. This is a well known problem in CTMC analysis cafitade space explosioNariations
on CTMC have been proposed to allow multiple CTMC to be comtbiimto one {7]. In this
way a large system can be analyzed by finding CTMC for its carapts and then combining
these into one large CTMC.

Static fault trees (SFT)3[]] [31] are used to model the wayftkrent events influence each
other and thus showing when the system failure event octhiexe are very powerful solution
techniques for static fault trees such as binary decisiagrdm analysis1[]] [27] and the
modelling of a system using static fault trees is relativedygy. Static fault trees, however,
cannot be used to model dynamic behavior (such as depeeddativeen events or the use of
spare components) and therefore have limited use.

An extension to static fault trees called dynamic fault$ré@FT) was introduced![] to
make fault trees more expressive. Although DFT models carsbd to describe dynamic be-
havior they do have a number of drawbacks as we will see ingkesection. A lot of research
has been done to extend the fault tree formalism fiedg@nt ways such as by introducing cov-
erage modelsl[’], parametric fault treeso] and repairable event&§]. A detailed discussion
of static and dynamic fault trees can be found in Sec#ion

1.2 Motivation

In this section we discuss some of the problems encounte®@8T analysis. These prob-
lems are the motivation for our research. In Seciidgiwe will show in general terms how we
have sought to solve these problems.

First of all the DFT formalism lacks a formal syntax and a fatsemantics, although some
research has been done in this ardaThis lack of formalization can lead to misunderstand-
ings in the interpretation of DFT, for instance it has longenclear what exactly happens
when two events occur at exactly the same time (see Setito5.

Secondly the current analysis techniques for DFT (see @e2ti)) are not very composi-
tional (i.e. a large DFT often cannot be split into subtreedlie purpose of analysis). A DFT
is analyzed by generating a CTMC that represents the pridtabbehavior of the DFT. This
CTMC is then analyzed further using CTMC analysis techrsgaedescribed in Sectidnl
Because of the state space explosion problem this CTMC acamieevery large even for small
DFT. In Section? we will elaborate on this problem.

1.3 Approach

We have formally defined a syntax and a semantics for DFT mttiesis. The seman-
tics of DFT are defined in a compositional way using iriputput interactive Markov chains
(I0IMC), a variation on interactive Markov chains (IMC)4]. This semantics allows the DFT
to be analyzed in a compositional way which mitigates theestpace explosion problem.

We have formally defined the syntax of DFT by describing a DETaalirected acyclic
graph (DAG). On this DAG a number of restrictions are imposednsure that the DFT are
valid (see Sectiod.1l). This removes any vagueness about what constitutes a&lld The



1.4. Resurrs 11

semantics of DFT are formalized by modelling the behavidhefdiferent elements (i.e. gates
and basic events) of the DFT formalism using ifiputput interactive Markov chains (I0IMC).

IOIMC are a variation on IMC15] which are in turn a combination of CTMC and interac-
tive processes] (see Sectior®). IOIMC allow the modelling of probabilistic behavior whil
also allowing communication betweerffégrent models using discrete actions. These discrete
actions allow the IOIMC to be composed usipayallel composition Furthermore techniques
such asbstractionandaggregatiorare available to combat the state space explosion problem.
The IOIMC formalism is discussed in detail in Secti@&n

The IOIMC model of a DFT is found by first modelling the elenwat the DFT as IOIMC
and then usingompositional aggregatioto combine this group of IOIMC into a single IOIMC
which is then analyzed to find the desired fault tolerancesmess. Without compositional ag-
gregation a model of the behavior of the DFT could be gendii®ugh parallel composition
in a single step. This model would however be very large bezaid the state space explo-
sion problem. Of course the large model could be aggreghtedhis aggregation would be
very labor-intensive because of the size of the model. Caitipoal aggregation avoids this
state space explosion by performing the composition inergaily (i.e. composing only two
sub-models at a time) and aggregating at every step. Thioagpto DFT analysis called
compositional analysis explained in detail in Sectioh

1.4 Results

The formalization of both the syntax and semantics of DFTeh@moved the vagueness
from the DFT formalism and it is now clearly defined what a dymafault tree should look
like and what such a DFT means. The syntax given in this tlasisextends the possibilities of
the DFT formalism somewhat by allowing the modelling of cdexpspares and dependencies
(see Sectiod.2).

In this thesis the semantics of DFT are defined in a compaositizvay. This allows the
analysis of DFT by using compositional aggregation. Thisipositional analysis mitigates
the state space explosion problem and also allows the nmuhtian of DFT analysis (i.e.
the IOIMC model of a DFT can be reused in the analysis of otHeéf)DThe compositional
approach to defining DFT semantics also allows the DFT fasmelo be easily extended. New
DFT elements can simply be added to the formalism with thein 6OIMC model describing
their behavior. Such an extension would not influence theas¢ics of other DFT elements.

To implement the compositional analysis we have develdpe®FET2Tipp tool to translate
a DFT into IOIMC models. These IOIMC models are then compa@setianalyzed using the
Tipp tool [16]. The tool support for this thesis is described in detail @ci®n7.

The hypothetical cascaded priority-AND system (HCPS) stasgy (see Sectiof. 1) shows
that the compositional analysis of DFT can avoid the creatiovery large CTMC as happens
with traditional analysis techniques. The cardiac asgistesn (CAS) case study (see Sec-
tion 6.2) shows, however, that in some cases traditional analysisigues are morefecient
than compositional analysis. The case study also showsiiia are still a lot of possibilities
to increase thef@ciency of compositional analysis, for instance the aggregaf IOIMC can
be improved.

There is still a lot of room for further research in this ar&ome of the possible avenues



of research are described in SectiA.

1.5 Organization of the thesis

This thesis consists of 8 chapters:

e This first chapter is the introduction to the rest of the th@giich gives a quick overview
of the research described in detail in the rest of the thesis.

e Chapter2 describes the existing DFT formalism as well as the exiséinglysis tech-
niques for DFT.

e Chapter3 describes the IOIMC formalism, its background and its técdirdetails.
e Chapterd describes the formal syntax and semantics of DFT.

e Chapter5 explains how we analyze DFT using compositional analysis.

¢ In Chapter7 the tool support for our research is described.

¢ Finally our conclusions and suggestions for future workmesented in Chapté



Chapter 2

Dynamic Fault Trees

In this section we present the dynamic fault tree formalidrhis formalism can be used
to model the failure behavior of computer systems. First weintroduce static fault trees in
Section2.1, which do not take into account the order in which componehtke system fail.
Then we present the expansion of the formalism to dynamikt fieaes in Sectior?.2 which
can be used to model more complex behavior. DFT models candigzad using the DIFtree
methodology P3]. We will explain how SFT and DFT are solved using this metblody in
Section2.4,

2.1 Static Fault Trees

Since as early as 196%7] [ 3]] fault trees have been used to visualize the way computer
systems, or systems in general, fail. An overview of thféedent symbols (basic events and
gates) used in fault trees can be seen in Figute Basic events generally correspond to a
small component of the system and gates often represeet leognponents that are made up
of several smaller components. A fault tree has a tree streigtith gates as nodes in the tree,
basic events as leaves and a single root-event displaybe & of the fault tree. This root-
event models the entire system. By using AND, OR arill I§ates (see Figurg.1l) we can
show how diferent component failures (the inputs of the gate) lead tddihere of a larger
component (the output of the gate). By connecting the inpntsoutputs of gates and basic
events the behavior of a large system consisting of many oaemgs and subcomponents can
be described.

Figure 2.2 shows an example of a fault tree for a road trip. The road #ils if the car
breaks down (either because we get two flat tires or the erfgiltg) and we can not call
road services because our mobile phone isn’t working. TleateVires failed’ represents the
possibility that we might get two flat tires, which is problatic since we have only one spare.
This event is modelled using a voting ofM gate. In this case we use gbyate which means
that the event occurs when at least 2 of its 5 input events t@ag@d. The five input events
are four input events, that each model the failure of one Titee fifth input event models the
failure of the spare tire.

In this simplified example we model the failure of the car vathOR-gate which has as its
two inputs the ‘Tires failed’ event and the ‘Engine’ basieert This means that the car fails if

13



14 CHAPTER 2. Dynamic Faurt TREES

Basic event: Corresponds to basic
failure event. Usually named after
the component that fails.

And-gate: fails if all its inputs have
failed.

name Or-gate: fails if at least one of its

inputs has failed.

=
D
3
D

>
]
3
@

k/m-gate: fails if at least k of its m
inputs have failed. Also called a
voting gate.

Figure 2.1: The elements used to create fault trees.

either the tires fail or the engine breaks down. Finally there road trip fails if both the car
and the mobile phone fail. If only the car fails we can safellf mad services and if only our
mobile phone fails we can still finish our road trip withoutralplem. The top event of the SFT
‘Road trip failed’ is modelled as an AND-gate which fails wheoth of its inputs fail.

Road trip
failed

Car failed

Mobile
phone

Figure 2.2: A fault tree for a road trip.

In the literature we see terms like ‘events occurring’, &atiring’ and ‘components fail-
ing’. These all mean exactly the same thing. In this thesiswllaisually use the ternfiailing
when discussing a particular system and the tirimg when talking about fault trees in gen-
eral.

Static fault trees can be analyzed using binary decisiogrdras [L0] [27]. A binary deci-
sion diagram (BDD) is a compact representation of a logimida. Since the top event of a
static fault tree can be interpreted as a logic formula itlmatransformed into a BDD. For our



2.2. Dynamic Faurr TREEs 15

example we can thus find a logic formula which describes é&xatihat circumstances the
road trip fails.

Every basic event fires after a certain delay. This delaysgiduted probabilistically, ie.
there is a probabilityk that a basic event fires within some time periodin our road trip
example we will assume that the delays of the basic eventalladestributed exponentially.
This means that the probability that the basic event ocsurslated exponentially to the time
period: P(failure) = e, whereaA is thefailure rateof the event andis the time period.

If we now assume that the mean time to failure (ie. the aveliteigne) of a regular tire is
10000 hours while a spare tire has an average lifetime of 5000s. The engine is assumed
to fail on average after 1000 hours and our very unreliablbilaghone fails once every 100
hours. Using BDD analysis we now find that for a 20 hour rogal the probability that both
the car and the mobile phone fail during the road trip is or 0.00394 %. This measure
is called theunreliability of the road trip, ie. the probability that a system fails with certain
time period. Although this result is quite reassuring foy@me who regularly has to make
long trips we will see in the next subsection that this stitidt tree does not really model the
behavior of a road trip very accurately. With the introdantof dynamic fault tree@ the next
section we will be able to properly model the dynamic behaofdhe road trip.

2.2 Dynamic Fault Trees

Static fault trees have been used frequently to model atitomputer systems and de-
termine their fault-tolerancesl] [31]. They do, however, have the shortcoming, among other
things, that dynamic redundancy management cannot be feddesing fault trees. Figutz?2,
for instance, models the spare tire as just one of five compsrteat may fail at any moment,
but can a spare tire fail when it is in the back of your car? &ely the probability of a tire
failing dramatically increases when you start actuallyngst. To model such dynamic redun-
dancy management we use dynamic fault trééf [Dynamic fault trees use the same elements
as fault trees with a number of additional gates. These gageshown in Figuré.3.

Functional dependenciexan be used to model the fact that one part of a system (the de-
pendent event) is functionally dependent on another pahe$ame system (the trigger). The
functional dependent gate denotes that when the trigdertfea dependent event will also fail.
Functional dependencies are often used to model commiongaaths. For instance, when a
cluster of computers is connected to a central mainframe\bas the individual computers
may be modelled as being functionally dependent on the buescall model this by making
the events of the individual computers failing functiogalependent on the event of the bus
failing. Now if the bus fails all the computers also becomavailable (essentially they fail)
instantaneously.

Spare gatesare used to model the use of spares. A spare gate has a pritpatyand one
or more spare inputs, representing a primary component @ar@ £omponents. Initially the
spare components lgormant When the primary component fails the first available spsre i
activated. The failure of the first spare leads to the actimaif the second available spare until
there are no more spares available in which case the spa&réagat

Priority-AND gates are used to model situations in which components must faitiertain
order to cause the failure of the PAND gate. When the inputs@PAND gate have all failed



16 CHAPTER 2. Dynamic Faurt TREES

Dummy output

Functional dependency: When Cold basic event: A basic event
FDEP unctional dependency: Whet that, when active, fires after
. the trigger event fires, the
Trigger

some delay. It cannot fire of its

dependent events also fire.
own accord when dormant.

Dependent events

Output

Spare gate: When the primary Warm basic event: A basic event
fires, the leftmost spare becomes

) ) that fires after some delay. Itis
active. The gate fires when there more likely to fire when active.
are no more spares. Spares are
/ / \ dormant before they are activated

Primary Spares

Output

Priority-AND: The Priority-AND or . .
Name Hot basic event: A basic event

PAND gate fires if all its inputs 3 3
have fired in left-to-right order. If that fires after §ome delay. Being
m the inputs fire in any other order dormant or active has no
the PAND gate does not fire. influence on the likelihood of the
event firing.

Figure 2.3: Dynamic fault tree gates.

in left-to-right order, the PAND gate also fails, but whereaf its inputs fails out of order the
PAND gate can never fail.

Basic eventsn dynamic fault trees come in thredi@irent temperatures: cold, warm or hot
ones. This temperature refers to the behavior of the bagictewhen they are dormant. A
basic event is dormant when it is part of a spare which hasetdigen activated. Cold events
cannot fire by themselves when dormant, warm events arelkebsto fire when dormant and
hot events fire equally quickly when dormant or active.

2.3 Example

Figure2.4 shows a dynamic fault tree that models our road trip usingesgates to accu-
rately show the use of the spare tire. Note that the sparestaeso calledhared sparen this
DFT because it can be used to replace any of the four tires.sfiieed spare can obviously
only be used to replace one tire. It then becomes unavaifablie other spare gates. We
have chosen to model the tires and engine as cold basic ewdnth means we assume they
cannot fail when dormant. The mobile phone, however, wighahdency to be dropped, lost
or stolen is modelled as a warm spare, although in this sy#teralways active since it is
not used as a spare. In Figutel the top-node is a priority-AND gate. This means that we
only consider the road trip a failure if first our mobile phda#s and then our car. We do not
consider the possibility that we get car trouble, call a iepan, continue our road trip and then
get car trouble again. We could model this behavior by reptpthe PAND gate with a spare
gate or by extending the DFT formalism with the notion of iegsee 6] for an example of
such an extension). For our DFT we could say that our roacimply ends when we have to
call a repairman. The next subsection explains how DynamidtHrees can be analyzed by
converting them into CTMC.



2.4. DIFTRree 17

Road trip
failed

O
Mobile
phone

Tires failed

Car failed

Figure 2.4: Dynamic fault tree for a road trip.

2.4 DIFTree

The main advantages of fault trees are their intuitiveneds@adability. With the inception
of dynamic fault trees this modelling technique has becovea enore expressive, being able
to properly model dynamic redundancy management, se@ldaiiures and dependencies.
A drawback of dynamic fault trees compared to, for insta@eMC is that they cannot be
analyzed directly. In this section we will discuss at a wydeted methodology to analyze
DFT called DIFtree [4] [23]. Below we show how the unreliability of a system, modelled a
a dynamic fault tree, can be determined using the DIFtredodeiogy. The unreliability of a
system is the probability that it will fail within a certaimte period, known as thaission-time

1. The dynamic faulttree is splitinto independent subgtesng a linear-time algorithm §].
A sub-tree is independent when its gates share no inputattds outside the sub-tree.
Dynamic sub-trees are not split into smaller sub-trees asdutaazation techniques do
not provide an exact solution. This is explained in detdibtye

2. For sub-trees that contain no other independent sub-theeunreliability is calculated
using 3 diferent techniques:

(a) Static sub-trees, which consist only of static gateslssic events, are analyzed
using Binary Decision Diagrams {].

(b) Dynamic sub-trees, which contain at least one dyname, gae analyzed using
CTMC [11].

(c) Sub-trees which cannot be analyzed by either of the abh@tbods (often because
they are too large) are analyzed using Monte Carlo simuidtip

3. The solved sub-trees are replaced by basic events witlec filure probability in the
DFT. This fixed failure probability is the unreliability ofi¢ sub-tree found in step 2.



18 CHAPTER 2. Dynamic Faurt TREES

4. Steps 2 and 3 are repeated until the DFT is completelyceglay one basic event. The
unreliability of the entire DFT is now equal to the failureopability of this basic event.

The DIFtree methodology allows the time to failure for a basient to be modelled using
either fixed probabilities or probabilities with exponahtMWeibull or Log normal distributions.
In dynamic sub-trees fixed probabilities cannot be used@sdhe time-independent and the
DFT gates are time-dependent (a basic event with a fixedréapuobability has a constant
unreliability, no matter what the mission-time is). The B#e methodology has been imple-
mented in thé&alileotool [2], but it should be noted that Galileo does not support MoratedC
simulation.

One of the problems of the DIFtree methodology is that lasgeachic sub-trees cannot be
solved accurately. Monte Carlo simulation gives inacairasults for reasonable calculation
times and using CTMC to solve these sub-trees results in GU§AC that cannot realistically
be analyzed. This shortcoming is made even more problerogtice fact that dynamic sub-
trees cannot be split into smaller sub-trees. This is cabgehe fact that sub-trees are solved
to find their unreliability for a certain time period, in otheords the probability that the top-
level node of the sub-tree will fire within a time period. Toalyize dynamic fault trees we
however need to know the failure distribution of its substeet just their unreliability.

Figure 2.5: Example of a dynamic fault tree with two indepamdsub-trees (left) and the same
DFT with the sub-trees replaced by basic events (right).

Figure2.5illustrates this problem. In step 2 of the DIFTree methodglthe two subtrees
A* andB* could be analyzed and replaced by basic evantand B* with fixed probabilities
as shown in the right part of Figu@5. Using this modified DFT we could easily find the
probability that both eventa* and B* fail within a certain mission-time, but because the top
node of the DFT is a PAND gate we must calculate the probglihiat bothA* and B* fail
within a certain mission-timand A fails before B. Because we have replaced the two subtrees
by basic events with fixed probabilities this calculationégslonger possible. The consequence
is that the modularization technique of DIFTree cannot ljdie@ to the DFT in Figur&.5and
it must be solved by transforming it in its entirety to a CTMC.

Solving dynamic sub-trees using CTMC in the DIFtree methaglpis performed as fol-
lows:

1. The start state of the CTMC is defined as the state in whidbas@ event has fired.



2. From any non-system-failure state X, transitions areeddd (possibly new) states for
every basic event Y that can fire in state X with as rate thefairate of the failing
component Y. The new state is defined as the state in whichabie kvents that had
fired in state X, the basic event Y and its dependent eventsfirad.

3. Each newly added state is analyzed with regard to the DE€d¢avhether it is a system-
failure state (i.e. a state in which the system, represdoyettie top node of the DFT,
fails). If the DFT contains PAND-gates we can also identtteas in which the DFT can
not fail anymore. These states can also be disregardeda2ste

4. Repeat steps 2 and 3 until no new states are added.

5. Calculate the system unreliability as the state-prdibaloif the system-failure state of
the created CTMC for a certain time period using forward @hap-Kolmogorov dter-
ential equations.

A DFT with x basic events the corresponding CTMC can require in the arfigl - 2%
states using this method][ This number is reduced by functional dependencies anthtite
that once the system has failed further component-failaresiot considered. It can be further
reduced by merging all the system-failure states into oseegy-failure state (the states from
which the DFT can not fail anymore, because of a PAND gateatsombe merged). Even with
these improvements the order of complexity for the tramsédion of DFT to CTMC remains
high.






Chapter 3

Input /Output Interactive Markov Chains

In this chapter we discuss the formalism of injoutput interactive Markov chains (I0OIMC).
This formalism is an integration of Ingi@utput Automataf 1] and CTMC [Lg] [29]. IOIMC
are closely related to Interactive Markov Chains][(IMC) which are an integration of inter-
active processes (IPY{] and CTMC. We will first discuss why we have chosen the IOIMC
formalism to model the semantics of DFT before formally definlOIMC in Section3.2.
Finally we will define two equivalences on IOIMC in Sectich8 and3.4.

3.1 Design choices

Figure3.1 shows an example of an ingatitput interactive Markov chain. Circles denote
states in the model and transitions are depicted as arrotws.sthrting state is identified by
a black dot, in this case the starting statd®is There are two dierent kinds of transitions
in an IOIMC model: Markovian transitions, denoted by a smatitangle on the arrow and
interactive transitions, denoted by a line on the arrow.

Figure 3.1: Example of an IOIM.

In the following subsections we will explain exactly how tdMC P shown in Figure3.1
behaves.

21



22 GaapTER 3. INPUT/OUTPUT INTERACTIVE M ARKOV CHAINS

3.1.1 Probabilistic behavior

IOIMC P has a Markovian transition from sted to stateP2. This transition has eate of
A. Here, 1 is a real, positive number which tells us something aboutnathe transition from
P1 to P2 will be taken. To be more specific, the rateells us the probability that the transition
is taken within a time periotl

P(I0IMC P moves from stat®1 to P2 within time periodt) = 1 — e

We also say that the probability thBtmoves fromP1 to P2 is exponentially distributed
over the time-period. Such an exponential distributionnsemorylesswhich means that the
amount of time IOIMCP has already spent in stad has no influence on this distribution.
And because exponential distributions are memorylessatibgre to th&larkov property14)].

It is important to realize that a Markovian transition doesaefinewhenan IOIMC moves
from a state to another but only gives us a distribution fe thove. For instance, if = % and
we want to look at IOIMCP after 3 time-units we see that the probability tiabas moved
from P1 to P2 is 1— e 23 = 0.78 or 78%. Note that, if at= 3 we know thaf is still in state
P1 then the probability that it moves 2 within 3 time-units is once again1B because of
the memoryless property of exponential distributions.

An I0IMC with only Markovian transitions can be interpretasla CTMC. The Markovian
transitions in an IOIMC and the transitions in a CTMC behawexactly the same way.

In this thesis we will use the Markovian transitions of IOIM&model the firing of basic
events in a DFT. These basic events in turn model the failfr@pmponents of a system. The
rate A of a Markovian transition is then equal to the inverse of theamtime-to-failure of
the component. This approach to modelling the failure of gonents using IOIMC assumes
that the time-to-failure of a component is distributed engaatially. This modelling choice is
discussed in more detail in Subsecti.3

3.1.2 Interactive behavior

In Figure 3.1 we can see that there is an interactive transition from Ratéo stateP3
labelleda?. This denotes that the move frd?ih to P3 is aninput actionnameda. This means
that if some other IOIMC performs aputput actionnameda while IOIMC P is in stateP1
thenP will move to stateP3 immediately. It is important to note that every state of\MQI
P has an outgoing input-action namadThis means thal is always ready to respond to an
output-actiona, even if this does not result in a state-change (wReas in stateP4 or P5).
We say that IOIMCP is input-enabledwith respect to actioma, becausé® is able to respond
to actiona in every state. Input actions are delayaldllaey must wait until another IOIMC
performs the corresponding output-action.

A different kind of interactive transition goes from stBteto stateP5. This transitionis la-
belledb! and is an output action. When IOIME performs this output action all IOIMC which
haveb as an input action must perform these input actions. Outdidres are immediat& his
means that when IOIM® moves to stat®4 notime passes before it moves to sté®. It is
however possible that another interactive transitionketammediately. Specifically, if two
or more diferent output actions are possible in a state, the choiceeleetthe transitions is




3.2. Iput/OutpPut INTERACTIVE M ARKOV CHAINS 23

non-deterministic One of the transitions is taken immediately, but it is nobwn how this
choice is made.

Besides input and output actions there are also internarescfwhich are not featured in
the example IOIMCP). Internal actions do not influence other IOIMC and are ntitenced
by other IOIMC. Internal actions are immediateor internal actions we find the same non-
determinism as for output actions.

An I0IMC with only interactive transitions is isomorphic & inpufoutput automaton.
As explained earlier IOIMC are closely related to IMC. Théelence is that in IMC inter-
active transitions are not separated into input, outputiatginal actions. An IMC with only
interactive transitions is then isomorphic to an 1F][

In this thesis we use the interactive transitions of IOIM@todel communication between
different gates and basic events in a DFT. When a basic evenfdirasstance, it then signals
its firing using an output action. Gates that have to resporttie firing of this basic event
(because itis one of their inputs) then have a correspomamg action. This modelling choice
is discussed in more detail in Subsectibf.l Interactive transitions are also used to activate
spares in a DFT (for a detailed explanation of this modeliihgice see Subsectiant.?).

3.1.3 Compositional aggregation

The reason it is very interesting to combine Markovian aneractive transitions is that in-
teractive transitions enable the construction of largeMOIby composition of several smaller
IOIMC. The subject at hand - the analysis of dynamic faulesre is a good example. In-
stead of transforming the entire DFT into one large CTMC Seetion2.4) we would like to
transform the components of the DFT first and then createotiaé[OIMC by combining the
smaller ones. The IOIMC formalism is one such approach toatoimg Markovian and inter-
active transitions, which is similar to the IMC formalism.déscussion of dferent approaches
to combining Markovian and interactive transitions in oaarialism can be found inlLf).

An IOIMC can also be transformed into a smaklggregatedOIMC that is equivalent with
the original IOIMC (note that there are severdtelient types of equivalences). This 'equiv-
alence preserving state space aggregation’ can \fBggtzely reduce the resources necessary
to create a model of some real-life systeni][ The technique o€ompositional aggregation
consists of composing a large model out of smaller ones amgaggting sub-models after each
compositional step (see Figuse?). Combining the formalisms of CTMC and inpotitput au-
tomata allows us to use compositional aggregation to aad)T: basic events are modelled
as very simple IOIMC with Markovian transitions to model thelay before firing and gates
are modelled as IOIMC that respond to signals from theirispu

3.2 Input/Output Interactive Markov Chains

In this section we give the formal definition of an IOIMC as Ixad a number of additional
definitions. We have arrived at the definition of IOIMC by appy the inpufoutput notion to
Interactive Markov chains following the application ofgimotion to IP in P1]. First we define
action signatures



24 GaapTER 3. INPUT/OUTPUT INTERACTIVE M ARKOV CHAINS

Modeling with aggregation

modeling aggregating
|:: > |:||> Aggregated
System A model AM

Modeling with compositional aggregation

Aggregated

System A Sub-Models sub-models
modeling aggregating composing aggregating
Al A2
TA7 o0 T e e~
aggregating composing @ aggregating composing
composing aggregating
|:> Composed |:> Aggregated
model CM model AM

Figure 3.2: Example of compositional aggregation. Contpm®l aggregation avoids the
construction and aggregation in one step of the large modeiih would require a lot of
resources.

Definition 3.1 An action signature Sig is a partition of a set A8ig) of actions into three
disjoint sets i(Sig), out(Sig) and in(Sig) of input, output and internal actions, respectively.

We also define the set of external actions of an action siggatexi(Sig) = in(Sig U
out(Sig). We now use action signatures to define iriputput interactive Markov chains.

Definition 3.2 An inputoutput interactive Markov chain is a quintugs, Sig —+»,
-, P) where

e S is a nonempty set of states,

Sig is an action signature,

—+ c S x Act(Sig) x S is a set of interactive transitions,

-2 c SXR*' xS is a set of Markovian transitions,

P € S is the initial state, and

a
The IOIMC is input-enabledYs e S,a€ in(Sig - (s € S- s—» 9)



3.2. Iput/OutpPut INTERACTIVE M ARKOV CHAINS 25

Note that any IOIMC can be considered as an IMC (with = Act(Sig)) and any continuous-
time Markov chain can be considered as an IOIMC (WAtt{Sig) = 0).

Formally the set of actions for an IOIM@ with action signatureSig is Act(Sig-), but
we will use Act(P) as shorthand for the actions Bf in(P), out(P), int(P) andex{P) can
be used as shorthand for the input, output, internal andredtactions ofP, respectively.
From now on we always $lix input-actions with a question-mar&¥), output-actions with an
exclamation-markd!) and internal actions with a semi-coloa;). Using this notation input-
actiona? matches output-acticsl. Note that the actual identity of actica® is still a and
nota?. So action®? anda! are actually the same action in dférent role. We can use this
notation because an action can not have more than one rael@IBC (see Definitior3.1).
An example of an IOIMC is shown in Figufel

To enable us to use compositional aggregation (see Sutwsé&cii.3 we need a method to
combine two IOIMC into one IOIMC. This method is callpdrallel compositiorand the idea
is to look at the behavior of two IOIMC operating in parall€nly compatibld OIMC can be
composed. Two IOIMC are compatible if they do not share adfations and if their internal
actions are unique. When operating in parallel the IOIMCsgrechronize@n matching input
and output actioner identical input actions in both IOIMC. Markovian transit®are simply
interleaved.

Definition 3.3 Let P = (Sp, Sigs, +p, &0p, P) and Q = (SQ,Sng,+Q,E+Q, Q) be two
IOIMC, with oufP) n out(Q) = 0, int(P) N act(Q) = 0 and in{Q) N act(P) = 0. Parallel
composition of P and Q is an IOIM(S, Sig -+, =, P||Q), where

e S:={P|Q|P eSpAQ €Sq),
out(Sig := out(Sig) U out(Sig,),
in(Sig) := in(Sigs) U in(Sig,) — out(Sig),
int(Sig := int(Sigs) U int(Sig,),

—b is the least relation satisfying the last five rules in tabBlé and

e b is the least relation satisfying the first two rules in taBlé.
Note that AgtSig) = Act(Sig) U Act(Sigy).

Figure 3.3 shows an example of parallel composition. IOIMCand Q both have three
states. Their parallel compositiétiQ could, at most, have nine states (three times three), but
we can see that it only has six, because three of its possdissare unreachable.

From Definition3.3we can see that when parallel composing two IOIMC, outpubast
will always be immediate. This is caused by the fact that ougetions are always synchro-
nized with input actions (otherwise the IOIMC would not bengratible) and since IOIMC are
input-enabled this means that if an output action is avkalaba state of one of the IOIMC it
will also be available in the composite state.

We useabstractionto make actions in an IOIMC internal. This is useful when atoads
no longer needed to communicate with other IOIMC. When almacs$ abstracted (dnidden
in an IOIMC its role is simply changed to internal.



26 GaapTER 3. INPUT/OUTPUT INTERACTIVE M ARKOV CHAINS

1 P-&:P’
PIQ-&PIQ

2 Q-&Q
PIQ-GPIQ

3 PP acactP)Aad¢actQ)
PIQ-HPIQ

4 LY a¢actP)Aacac(Q)
PIIQ—|—>PIIQ

5 M acin(P) Aacin(Q)
PIIQ—|—>P Iy

6 M acin(P) A a € ou(Q)
PIIQ—|—>P I

7 w ac out(P) A acin(Q)
PIQ-bPIQ

Table 3.1: Structural rules for parallel composition of M.

P1]|Q2
P3||Q3

P2||Q3
P1j|Q1

1
Q 2 Q3

P3||Q2

b?

Figure 3.3: Example of parallel composition of IOIMZandQ. The action signatures of the
IOIMC are given besides their starting state.

Definition 3.4 Let P= (S, Sig -+, &>, P) be an IOIMC. Abstraction of actiongaa, in P is
an IOIMC (S, Sig, +, =, hide a;...a, in P), where

e in(Sig) = in(Sig — {a;...an},

e OUf(Sig) = out(Sig - {a;...a,}, and

e int(Sig) = int(Sig) U {a;...an}.

We will model a DFT as a set @ommunicatingdOIMC. We define such a set acammu-
nity, based on the notion @bmpatibilityin [21].

Definition 3.5 A communityC of InpufOutput Interactive Markov Chains is a set of IOIMC in
which,



3.2. Iput/OutpPut INTERACTIVE M ARKOV CHAINS 27

e VCi,C;eCACi #Cj: out(Cy) ﬂOUt(Cj) =0,
e VCi,C;eCACi #Cj: int(Ci) ﬂACt(Cj) =0
So a set of IOIMC is a community if and only if no two membersrghan output action

and an internal action of one member is never also an actianather member. An example
of an IOIMC community (IOIMCC) is given in Figura.4.

A
1
|

o

Figure 3.4: Example of an IOIMC community. To the right of eagember its action signature
is given. Dashed arrows denote communication between msmbe

So why use IOIMC communities instead of just IOIMC? The reabes in the fact that
we need to define exactly when certain actions are abstractedIOIMC. Let’'s consider the
parallel composition of IOIMQQ andA in the IOIMC community shown in Figur@.4. This
parallel composition would result in an IOIMQ]|A with input actionb? and output-actions
al andq!. To determine which of these actions must be hidden we haeensider the other
IOIMC in the community. For instance in IOIMQ)|A the actions? andq! should not be
hidden, since IOIMCB and P use these actions to communicate WQA. Action a! can,
however, be hidden safely because no other IOIMC in the comitynis interested in this
signal. This assessment is based on the assumption thatlthgignals used to communicate
between the community and the ‘outside world’ are thosetiapd output signals that do not
have corresponding output and input signals within the 10IBbmmunity. For the example
in Figure3.4we find that the IOIMCC only communicates with the ‘outsiderldbvia output
signalp.

All this means that, for IOIMC communities, we can get a wifined definition of paral-
lel composition followed by abstraction without having pesify (a) what actions we are syn-
chronizing on and (b) what actions we are hiding, since bathlze derived from the IOIMC
community. We call this combination of parallel compositend hidingabstracting composi-
tion or combination. Before giving the definition of the abstiragtcomposition in an IOIMC
community we define action signatures for subsets of an I08d@munity.



28 GaapTER 3. INPUT/OUTPUT INTERACTIVE M ARKOV CHAINS

Definition 3.6 For a subset D of an IOIMC communigy we define the following shorthand
notations:

e The union of all the input actions of all theffifirent IOIMC in D is given by: all_i(D) =
Dl in(D;)
Dj 1/

e The union of all the output actions of all thgf@rent IOIMC in D is given by: all_o{D) =
5" out(D;), and

e The union of all the internal actions of all thefiéirent IOIMC in D is given by: all_i(D) =
Up<? int(Dy).

We now define the action signature of D within the IOIMC comityuhas follows:

e The input signature of D consists of all those input actiohelements of D that do not
correspond to any output action in D:

in(D) = all_in(D) \ all_out(D)

e The output signature of D consists of all those output astiohelements of D that do
not corresponanly to input actions within D:

out(D) = all_out(D) \ (all_in(D) \ all_in(C \ D))

e The rest of the actions of D are of course internal:

DieD

int(D) = U act(D;) \ (in(D) U out(D))

Dj

Figure3.5shows a schematic of the action signature of a subsétan IOIMCCC. We see
three diferent types of output actions Bt output actions that do not correspond to any input
action inC (1), output actions that correspond to a number of inpubastinC but outsideD
(2) and output actions that correspond to a number of ingudracboth in- and outsidb (3).
There are also two fferent types of input actions: input actions that do not apoad to any
input action inC (4) and input actions that correspond to an output actiap lout outsideD
(5). Finally internal actions dD are either internal actions of some IOIMCINh(not shown in
Figure3.5) or output actions iD that correspond to a number of input action®ibut not to
input actions irC (6).

Definition 3.7 LetC = {Cy,...,Cy} be an IOIMC community. Let B {D4,..., Dy} be a set
of IOIMC such that DC C. The abstracting composition of D (his combine D in C,where:

combineD in C = (C — D) U (hide int(D) in D4|...||Dm)

Note that the action signature boide int(D) in D4]|...||Dn, is the same as the action signa-
ture ofD.

Two examples of abstracting composition are given in FigGré and3.7. IOIMC com-
munity O’ is the abstracting composition of membé&rsnd Q of IOIMCC D in Figure 3.4.
9" is the abstracting composition of memb&randB in D.



3.3. SRONG BISIMULATION 29

output —
input - =)
internal  sesseeeennn »

Figure 3.5: Schematic of the action signature of a subseat ®9&MCC

A
IP
|
1
q2,r
D’ P p!
RAS
~
2 {
7 N
b? b?,c
QlIA q! R r
a; -
A LS AN

Figure 3.6: Example of abstracting composition

3.3 Strong bisimulation

Meaningful equivalences for IOIMC should be based on edenaes of both interactive
processesl[s, section 2.2] as well as continuous-time Markov chairis $§ection 3.5]. In short,
equivalences for interactive processes are based on taehdeequivalent states should have
outgoing transitions with the same labels to equivalenestéso if a stat® has an outgoing
transition labelledh to a stateS than any state equivalent ®should have a@-transition to
a state equivalent t8). Equivalences of CTMC are defined similarly, taking inte@ant the
mathematical principles of exponential distributions.

Additionally, equivalences for IOIMC should address theywateractive and Markovian
transitions behave with respect to each other. Consideinstance the IOIMC shown in Fig-
ure 3.8 In its starting state this IOIMC can perform both an outpahgition or a Markovian



30 GaapTER 3. INPUT/OUTPUT INTERACTIVE M ARKOV CHAINS

a?,b? b?,c?
Q q! R r

Figure 3.7: Example of abstracting composition

transition. The probability that the Markovian transitisntaken immediately is zero. An
output transition can be taken immediately since no outsifieence can prevent or delay it
(in contrast with input actions which can be delayed by thérenment). Even if we paral-

lel compose this IOIMC with another IOIMC the output trarit cannot be delayed, since
IOIMC are input-enabled. We assume that an I0OIMC that majop@ran output or an inter-
nal transition is not allowed to let time pass and will penficthe output or internal transition
immediately. This assumption is called theximal progress assumpti¢gfb5, section 4.2].

To define equivalences we musitfdrentiate between stable and unstable states. Stablg, state

Figure 3.8: Example of an IMC.

denotedstablg(P), are states that have no outgoing internal or output astioimstable states,
denotedunstable(P), do have outgoing internal or output actions. The reasesdlstates are
called unstable is that, because of the maximal progressmpg®on, an IOIMC will always
leave an unstable state immediately via one of its internaligput transitions.

To deal with Markovian transitions we definecamulative ratgunctiony,,, which gives
the sum of all rates of Markovian transitions from a state sew&of other statesy,, (R C) =



3.3. SRONG BISIMULATION 31

Y[R A RAR € C]. Itis easy to see that, (R, C) equals the rate of the delay for the IMC
moving from state R to a state in C, because the sum of ratedsetiie rate of the minimum
delay for the relevant transitions. In the folld®#' stands for the superset of all appearing
states and\ct denotes all appearing actions.

We will now give the definition of strong bisimulation for I®IC. Two IOIMC states are
said to be strongly bisimilar if they have matching outgoiransitions and the same action
signature. The action signature of a state is the same astiba aignature of the IOIMC this
state belongs to.

Definition 3.8 (Strong bisimulation) Let P = (S, Sig —», &>, P) be an IOIMC. Let R be
an equivalence relation on S. Then R isteong bisimulationff for all (s,t) € R, ac Act(P)

a a
1. s—» s implies that there is a transition-t- t’ with (s,t’) € R.
2. s stable implies t stable ang (s, C) = yu(t, C), for all equivalence classes € S/R

The states s and t in P agrongly bisimilar notation s~p t, if and only if there exists
a strong bisimulation R witlis, t) € R. Strong bisimilarity for an IOIMC P is defined as the
union of all strong bisimulations on P:

~p= U{R | R is a strong bisimulation on}P
We often omit the name of the IOIMC if it is clear from context.

Coinductive definitions such as that-ehave shown to be very useful for other equivalence
relations. We do have to show however thats indeed a strong bisimulation and also the
largest one.

Theorem 3.1 For relation ~ we find:

1. ~ is the largest strong bisimulation.

We do not give the proof here, but it follows the lines of thesagroof for weak bisimilarity
(see Theorem.3).

The equivalence relation divides the set of all IOIMC state3¥ into equivalence classes.
An equivalence class is a subset$# which contains states that are all strongly bisimilar
to each other. One useful aspect of such equivalence clestdes we can now ’loosen’ our
restrictions when analyzing IOIMC. This means that whekRitgl about IOIMC being the
same we could ’loosen’ this concept from 'completely ideali to 'strongly bisimilar’. The
idea here is that we don’t care if two IOIMC are not completdintical as long as they are
strongly bisimilar. For instance instead of analyzing géailOIMC, which may be very costly,
we could analyze a smaller, strongly bisimilar IOIMC. Letsy we want to compose a large
IOIMC X with another IOIMCZ and these IOIMC contain andm states respectively. The
resulting IOIMCX||Z can have as many as- n states so it is very worthwhile to calculate this
composition using a smaller IOIM& bisimilar to IOIMC X. Of course we must ensure that
the resulting IOIMCY]||Z is not suddenly dierent (with regard to strong bisimulation!) from
X||Z.



32 GaapTER 3. INPUT/OUTPUT INTERACTIVE M ARKOV CHAINS

Theorem 3.2 Strong bisimilarity is substitutive with parallel comptisn and hiding.

Pl ~ P2 ImpIIeS H”Pg ~ P2||P3
Pl ~ P2 Imp“es F%”Pl ~ P3||P2
P, ~ P, implies hideay,...,a,in Py ~ hidea,...,a,in P,

We do not give the proofs here, but they follows the lines @& shhme proofs for weak
bisimilarity (see Theorerfi.4).

3.4 Weak bisimulation

Weak bisimulation for inpybutput interactive Markov chains is defined along the same
lines of weak bisimulation for IMC 15, section 4.4]. Like in strong bisimulation outgoing
input and output transitions have to match in weakly bisamstates, but now these transitions
may be preceded and followed by a number of internal tramsti Markovian transitions can
also be preceded or followed by a number of internal traorssti

Weak bisimulation equivalences identify states with theeaisible behavior while pre-
serving performance measures (e.g. reliability). Babicalko IOIMC statess, t are weakly
bisimilar if whatever steps can be taken fr@tan also be taken fromp and the target states
are again bisimulation equivalent. Weak bisimulation edz$s from internal computation, i.e.
one step in statemay correspond to the same step in staggeeceded and followed by a num-
ber of internal transitions. Internal computation is fohlzed by the weak transition relation
=3

Definition 3.9 Let P= (S, Sig —+, &>, P) be an IOIMC. We define the internal transitions
relation —»™ as the relation{(s,t) | (s,a,t) € - A a € in(P)}. We denote by= the
transitive, reflexive closure ef~™, i.e. we haves=¢ if and only if $ can be reached from s
via a sequence of internal transitions. For input and outpctions a we write <5 ¢ if there

a
are states,tt’ such that s=t —» t'=s". For an internal action a s simply means that
s=S.

Just like strong bisimulation, weak bisimulation abssdodm individual Markovian tran-
sitions and looks instead at cumulative rates, again résggethe maximal progress assump-
tion. One of the dterences between strong and weak bisimulation is that in Wisakulation
Markovian transitions can be preceded and followed by matiesteps. To define the restriction
on cumulative rates for weak bisimulation we must introdbLite internal backward closure.

Definition 3.10 [15] The internal backward closur@™ of a set of states C is defined as
the set of states that may internally move to a state in CCle= {s' | 3s€ C - s=s}.

Weak bisimulation also disregartiéarkovian self-loopgS]. This means that Markovian
transitions are considered to be unobservable and Mankdrdaasitions to equivalent states do
not have to be simulated. The reason the restriction on M#kdransitions is weakened is



that, because Markovian transitions are memoryless, rgaaran equivalent state does not
affect subsequent behavior. In other words, if we have two wdakimilar statesA andB the
behavior of the IOIMC is not fected by the presence or absence of a Markovian transition
from Ato B.

Definition 3.11 (Weak bisimulation) Let P= (S, Sig -+, &, P) be an IOIMC. Let R be
an equivalence relation on S. Then R iwaak bisimulationfffor all (s,t) € R, ae Act(P)

1. s>¢ implies that there is a weak transitiorst’ with (s,t) eR.

2. s=§ and ¢ stable imply that there is & such that &=t and t stable andy,(s, C™) =
yu(t’,C™), for all equivalence classes € (S/R) \ [S]r

The states s and t in P amgeakly bisimilar notation s=p t, if and only if there exists a
weak bisimulation R witlis, t) € R. Weak bisimilarity for an IOIMC P is defined as the union
of all weak bisimulations on Pxp= [ J{R | R is a weak bisimulation on}PWe often omit the
name of the IOIMC if it is clear from context.

It is important to note that weak bisimilarity really onlyfidirentiates on the (futureutput
behavior of a state. The fundamentafeience between two states under weak bisimulation
is always that one can perform some output action and the o#mot, even if this output
action moves to a weakly bisimilar state. Since IOIMC arautrgnabled we do not see such a
difference for input actions and an internal action to a wealdyrbiar state also does not need
to be simulated. Finally, Markovian transitions to weakigiimilar states also do not need to
be simulates since the second clause of weak bisimulaties dot apply to weakly bisimilar
states. This means that when two states are not weakly lasib@cause of an input, internal
or Markovian transition, this élierence is always instigated by anothetetience in the target
states of the transitions. For an IOIMC has that no outpusitens we find that all of its states
must be weakly bisimilar (proof?).

Analogous to strong bisimulation we want to show tkas the largest weak bisimulation
and that it is substitutive with parallel composition andtaction.

Theorem 3.3 For an IOIMC P relation~p we find:

1. ~p is the largest weak bisimulation on P.

Theorem 3.4 Weak bisimilarity is substitutive with parallel compositiand hiding.

P, ~ P, implies RJ|Ps~ Py|Ps
P, ~ P, implies RJP;~ P3P,
P, ~ P, implies hideay,...,a,in P; ~ hide ay,...,a,in P,

The proofs for Theorem3.3and3.4 can be found in Appendik.






Chapter 4

DFT syntax and semantics

In this chapter we will formally define the syntax and sen@naf the dynamic fault tree
formalism. In Sectior.1the syntax of DFT is formally defined. We then discuss how weha
extended the DFT formalism to make it more modular. In Seecti@the concept of dormancy
is discussed.

The second part of this chapter concerns the formalizatiaheosemantics of DFT using
IOIMC. We will start by explaining some notations we use ie ©IMC models of DFT
elements in Sectiod.4. Secondly examples of all the IOIMC models of DFT elemenés ar
given. Afterwards some design choices will be highlighted &xplained before a formal
translation of DFT elements into IOIMC models is given.

4.1 Formal DFT syntax

In this subsection we give a formal definition of the struetaf dynamic fault trees. First
we give a definition of the DFT elements and then the definitiom DFT itself.

Definition 4.1 The seELEMENTS is a set of tuples representing DFT elements. There are 7
different types of tuples:

e OR is a two-tuple consisting of the type of the OR-gate and arabtwmber of inputs:
OR = (ORn), where ne NAn > 1.

e AND is a two-tuple consisting of the type of the AND-gate and anahtnumber of
inputs: AND = (AND, n), where ne N A n > 1.

e VOTING is a three-tuple consisting of the type of the VOTING-gateatral number
of inputs and a natural number representing the thresh®dTING = (VOTING n, k),
wherepke NAl<k<n.

e PAND is a two-tuple consisting of the type of the PAND-gate andtanahnumber of
inputs: PAND = (PAND, n), wherene NAn > 1.

e SPARE is a two-tuple consisting of the type of the spare gate andtarabnumber of
inputs: SPARE = (SPAREN), where ne NAn > 1.

35



36 CHAPTER 4. DFT SYNTAX AND SEMANTICS
e FDEP is a two-tuple consisting of the type of the FDEP-gate and s number of
inputs: FDEP = (FDEP, n), where ne N A n > 2.

e BE is a four-tuple consisting of the type of the basic eventntitaral number of inputs
0, the active delay rate and the passive delay rate of the lsot:BE = (BE, 0, 4, u),
whered,u € R A A,u > 0. For cold basic events we find that= 0, for warm basic
events we fin@ < u < A and for hot basic evenjs = A.

We also define the functions type and inputs which can be wsddtérmine for any DFT
element its type and the number of its inputs:

e type: ELEMENTS — {OR AND, VOTING PAND, SPAREFDEP, BE} is given by the
first member of the DFT element tuple: tyiag = first(E).

e inputs: ELEMENTS — N is given by the second member of the DFT element tuple:
input§E) = secondE).

A dynamic fault tree is described as a directed acyclic grajple elements, basic events as
well as complex gates, will be the vertices of this graph w/thle connections in the DFT will
be the edges of the graphs. Edges will be directed from osi{jlu ‘top’ of a DFT element)
to inputs (the ‘bottom’ of a DFT gate).

Definition 4.2 A dynamic fault tree is a quadrup(¥, in, |, T) where:

e V is a set of vertices,

e in:V — V*is a function that defines the connections between theseagrive in(v)
means that there is an edge from vertex w to vertex v,

e | : V - ELEMENTS is a labelling function, and
e T €V is the top vertex which corresponds to the top element dDEe

We define the function’ithat defines the non-dummy connections between the vetinges
outputs of FDEP-gates are dummy connections). We also deBeeof edges E based on the
function in and a function k; which gives the first non-dummy input of a vertice:

o in:V-oV ={VW)|(V,W)ein A W ={w|weW A typdl(w)) # FDEP}},
e E:VxXV={v,w)]|wein(Vv)}, and
e iNjst: V—V ={(,w)|in(v) =W A wis the first element of YV

The restrictions on DFT are given below, but first a set of petedent vertices is defined using
the concept of subtrees:

e Foranyvertex vinthe DFT we define thebtreebelow v as the vertex itself and the set of
vertices from which the vertex is reachable: subtr&e— PV, wheresubtree below x =
{x}U{y|yeV A xreachable fromy in the directed grai E)}.



4.2. COMPLEX SPARES AND DEPENDENCIES 37

e A vertex v igndependent when the vertices in thaibtree below v share no inputs with
gates outside the sub-tree. We define the set indep as thet dibs that holds all the
independent vertices: inde@ V, where xe indep & Yy € subtreebelow x - (3z €
V \ subtreebelow x-y € in(2) —» y = X).

e (V,E) forms a directed acyclic graph,

e All inputs of the elements must be connectéde V - (V) = G & inputgG) = |in(v)|,
e The top vertex may not have any connected outgits€ V - T € in(v),

e The top vertex may not be an FDEP-gate: {yfE)) # FDEP,

e Every vertex besides the top vertex must have a connectpdtodtv € V \ {T}- (Av €
V- w e in(v)),

e The first non-dummy input of a spare gate (the primary compymeay not be an input
to another spare gate (spare components may be shared bespage gates).Vw €
V-@veV-w=ingg(V) A typgl(v)) = SPARE — (Ax € V- X # v A typdl(V)) =
SPAREA w € in’(x)), and

e Inputs of spare gates (both primary and spares) must be enl#gnt subtreesyw
V-(AveV- -wein’'(v) A typgl(v)) = SPARE — w € indep.

4.2 Complex spares and dependencies

Looking at static fault trees (see Sectidrl) we can see that they are highly modular, i.e.
we can take any static fault tree and use it as a module in anstidttic fault trees (by attaching
its top-node as an input to some gate). We want to achieveatie $evel of modularity for
dynamic fault trees, because increased modularity extérelsnodelling capabilities of the
DFT formalism. This does not seem like a big problem, but,if@tance, the tool Galileo
mentioned in Subsectioh.4 does not allow fully modular DFT models. In particular the
dependent inputs of FDEP gates must be basic events anddteeisputs of a spare gate are
also required to be basic events (s&z Jections 4.2.2 and 4.2.3]). In our approach we allow
these inputs to be complex events (i.e. gates) as well as basits, although spares are still
required to be independent subtrees, as defined in Defiritibn

Before tackling the problem of making the DFT formalism mamedular we must ask
ourselves whether this is worthwhile. In particular we marsswer the question whether is
it useful to use independent sub-trees instead of baside@srspare inputs of a spare gate.
Consider a computer system that simply consists of two gsmrs, one primary processor and
one spare. Because switching between processors mustbeguwek the spare processor will
be running in a stand-by mode when it is not yet active. Figuieshows how we can model
this computer system as a simple DFT. This DFT can be solved tise Galileo tool, because
the spare-input of the spare gate is indeed a basic eventewoywhat if we want to increase
the fault tolerance of our system by replacing the singlegssors by two processors running
in parallel. We could model this new computer system usimgRRT in Figure4.2. There



38 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

| System |

Figure 4.1: Example of a dynamic fault tree.

| System |

Figure 4.2: Example of a modular dynamic fault tree

is no reason why we wouldn’t want to analyze such a DFT, sodef@itely worthwhile to
expand the DFT formalism to allow such DFT.

In our approach the inputs of spare gates may be any DFT etelverdo, however, restrict
the inputs to spare gates to being independent sub-tfe@snstance in Figuré.2the sub-tree
consisting ofPrimary, P1 andP2 is independent since it is only connected to other elements
via its top nodePrimary. The same goes for the sub-tree of elentadre

Another way in which DFT are more modular in our approach & e allow complex
events to be dependent via FDEP gafEsis means that the dependent inputs of an FDEP gate
are not restricted to being basic events.

Allowing complex events to be used as spares does cause sotvlems in the interpre-
tation of DFT models. These problems all revolve around treept of dormancy. We have
already mentioned that spares can be dormant or active anhdhtky are activated by spare
gates when necessary. For basic events dormancy is sirhpleate at which they fail simply
changes. For complex events activation is more involvetstiumanageable. We will discuss
the meaning of dormancy for complex events used as sparks ekt section.



4.3. ActivatioN AND DorRMANCY 39

4.3 Activation and Dormancy

The introduction of spare gates to the DFT formalism has misoduced the concepts
of activation and dormancy. Recall that when the primary ponent of a spare gate fails
it activatesits first available spare and before it is activated this spswdormant A good
example of this is the spare tire in the example DFT describe$ection2.3. In this case
the concept of dormancy is simple, because the spare tir@deled as a basic event: the
spare tire simply fails at a lower rate when it is dormant.h@ previous section we have seen,
however, that in our approach we also allow independentsebto be spares and that means
we must define the concept of dormancy for independent segtre

To decide how to model dormancy for independent subtrees ugt consider what a DFT
actually models and especially what thé&elience is between basic events and gates. In DFT
models basic events model the behavior of physical obj&ztes on the other hand model the
consequences of other events happening and never the bebigphysical components. If we,
for instance, look back on the example of a DFT for a road sge(Sectio.3) we can see that
basic events all model the behavior of physical objectsgfithe engine and the mobile phone)
and gates model the consequences of the failures of thaitanft can be argued that gates
can model someomplexcomponent (such as the car in our road trip example), but Wle wi
always find that every one of its physical subcomponents idathed by some basic event in
the subtree under this gate. The only gate that might be derexd to model a physical device
is the spare gate, since it must physically detect the faibdiits primary component and then
switch operation to one of its spares. If we, however, wambt¢orporate this physical aspect
of a spare gate in our DFT we must once again use a basic everoidel its possible failure.

We therefore define the dormancy of an independent subtréee atormancy of its basic
events. When an independent subtree, used as a spareyvaeattll its basic events are
activated. If we look at the DFT in Figure 3we see that when component 1 fails component
2 is activated. The activation of component 2 simply meaashbth basic events (A2 and B2)

| System |

| Component 1 | | Component 2 |

OO ©E
Figure 4.3: An example of a dynamic fault trees with compasien
are activated. The behavior of the AND-gate doesn’'t chafgEause A2 and B2 are warm

basic events they may fire even when they are dormant. If totydo then component 2 fires
before component 1, but this is proper behavior for warmdagents.



40 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

Things get interesting when we look at nested spare gatesgpare gates that are part
of a spare of another spare gate). For instance in Figut¢he spare component (as well
as the primary component) consists of a spare gate with aapyitmasic event and a spare.
Should component 1 in Figuré.4 fail then P2 will become active but foiS2 nothing will

| System |

—
AN

Component 1 Component 2

YY)

Figure 4.4: An example of a dynamic fault trees with nestedegates.

change. It stays dormant un#?2 fails as well. ShouldP2 fail before component 1 does
(this is possible since it is a warm basic event) t&&also stays dormant. This means that
spare gates do behavetdrently when dormant or active. Theffdirence is that active spare
gates activate their spares, but dormant spare gates dorthiis approach if an independent
subtree is dormant then everything inside the independdtitee is also dormant and when an
independent subtree becomes active everything insidetfeendent subtree, except for the
spares, becomes active. The activation of spares is gjillaged by the spare gates that share
them.

We have now clearly defined dormancy for independent subtréaly basic events and
spare gates haveftirent active and dormant behaviors, other gates have oelyehavior.
For subtrees that are not independent dormancy is not wéhetl because it becomes unclear
when certain basic events and spare gates activate. Thiestmetrthe inputs of spare gates to
being independent subtrees.

4.4 Notation

In this section we discuss the notations used in the resiothapter.

In general DFT events (modelled as either gates or basi¢®\werolve through four stages.
At first the event hasn’t been activated yet. We call this tberthnt stage. In the case of
warm or hot events the event may move from its dormant stage toing state (see below).
Activation of an event can be seen as the switching on or ¢gkito use of a component. After
activation the event is fully operational. The active stafja DFT event is usually comprised
of multiple IOIMC states. Eventually the conditions may lght for the event to fire (for
instance, k of the m input-events of gztkgate may have fired). In this third stage, the firing
stage, the event will fire and so it will get to its last stagevimch the event has fired. These
four stages are shown in Figufeb.



4.4. NoTATION 41

Dormant -
Firing

Active

Figure 4.5: The life cycle of a DFT event.

We will see that the firing stage of the DFT elements life-eyalways corresponds with
one IOIMC state. This state will be colored gray in the IOIM@atels shown in this section
and will be referred to as thiled state or thdiring state. In the same way the fourth stage
also corresponds with a single IOIMC state. This state veltlenoted with a double circle in
the IOIMC models of this section and will be referred to asftred state. IOIMC states that
correspond with the associated DFT element being opegdtjonthe dormant or active stage)
are simply denoted as white circles. They will be referregismperationalstates. The dormant
stage is not depicted in any special way in the IOIMC diagraBasic events are only dormant
(first stage) in their starting state (already denoted witlotan the middle). The dormancy of
a gate depends totally on the dormancy of its inputs. Thezef@ do not see a dormant stage
in the I0OIMC models of gates, except in that of the spare géte way activation has been
modelled using IOIMC is described in detail in Subsectiofi2 Lastly we must note that for
the PAND-gate there is a fifth stage of operation in which thie gan no longer fire, no matter
what happens. This is called the disabled stage and alwanssts of a single state denoted
with an X. Figure4.6 shows the notations described in this section.

@ Start state
O Dormant or active state
O Firing state

Figure 4.6: Diterent IOIMC states.

© Fired state
® Disabled state

We will also use the following naming convention for interans in the IOIMC models.
f(A) denotes the action of evehtfiring (or the failing of componen#). a(A, B) denotes
the activation of the spar& by spare gatd®. a(A) denotes the activation of the independent
subtree with top-node naméd All IOIMC models given in this thesis are fully input-enabl
as described in subsecti@2. For the sake of simplicity we have sometimes left out those
input-actions which have no #ect on the state of the IOIMC (in other words, we have left
out input-actions from a state to itself)



42 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

4.5 10IMC models

In this section we will give some examples of IOIMC models ¢iDelements, based on
their names, their parents, their inputs and their delégsrén the case of basic events). This
information can be directly derived from the formal definiti(c.q. Definitiord.2) of the DFT
containing the DFT element. The formal translation of thearednts in a DFT to a community
of IOIMC is given in Sectio.7. The IOIMC models described in this chapter can be found
in full in Appendix B.

4.5.1 Basic Events

There are three ffierent basic events. In their operational stage basic ea#iiiitshave the
same way: after an exponentially distributed delay thely $&gnalling this failure to the rest
of the IOIMC community.

Cold basic events cannot fail before activation. The I0IMGdel of the cold basic event
is shown in Figurel.7. This particular basic event is namadand has a delay rate af

a(A)?

Figure 4.7: I0IMC model of a cold basic evenBE, O, 1, 0)

Warm basic events can fail before activation, but they da sodifferent (usually reduced)
rate. The IOIMC model of a warm basic event with na&kective delay rate and dormant
delay rateu is given in Figurel.8.

Hot basic events can also fail before activation, and thethdoat the same rate as after
activation. The IOIMC model of a hot basic event with nafand delay ratel is given in
Figure4.9.

4.5.2 ORgate

An OR gate fires when one of its inputs fires. In FigdréOwe see the IOIMC model of
the OR gate with two inputs. Note that the IOIMC model has andgition labelled with an
activation action. This means that the activation actiamotsan input-action for this IOIMC.
This is also the case for AND, /Kl and PAND gates. The generalization of the OR, AND,
K/M, PAND and spare gates can be found in Apperiglix



4.5. |0IMC moDELS 43

Figure 4.8: IOIMC model of a warm basic eveniHE, O, A, u)

Figure 4.9: IOIMC model of a hot basic evenBE, 0, 1, 1)

A

f(11)?

f(A)!
° i ‘®
I L

Figure 4.10: I0IMC model of the OR gateOR 2)

4.5.3 AND gate

Figure4.11 shows the IOIMC model of the AND gate with two inputs andl2. The
AND-gate fires when both its input events have fired.



44 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

Figure 4.11: 10IMC model of the AND-gateAND, 2)

4.5.4 K/M-gate

A 2/3-gate with three inputkl, 12 andl 3 is depicted in Figuré.12. It fires when at least
two of its three inputs have fired.

Figure 4.12: IOIMC model of the voting gate/QTING 3, 2)

4.5.5 PAND gate

The PAND gate fires if all its inputs fire in left to right ordéfthe inputs fire in the wrong
order, the PAND gate moves to its disabled state and can e fire. Figurel.13shows the



4.5. |0IMC moDELS 45

Figure 4.13: IOIMC model of the PAND gateP?AND, 2)

IOIMC model of the PAND gate with two inputs. Note that in oypaoach inputs cannot fire
at the same time. If the situation occurs that two DFT elesarg ready to fire at the same
moment, then the order in which they fire is chosen non-detestically (see Sectiod.6.5
for a discussion of this design choice).

4.5.6 Spare Gate

Figure4.14 shows an IOIMC model of a spare gate nanfedith primary P and spare
SP. This spare is shared between spare gatnd spare gat€. This model looks quite
complicated but in fact it isn’t. Note first of all that the spayates shows dormant and active
behavior in contrast to the other gates. FiglEsshows a simplified view of the same model,
where the dormant and active behavior of the spare gate hesre d¢plit. In order to switch
from dormant to active behavior the input action should be#eddrom the dormant states to
the appropriate active states. The dormant and active Btatgs can be merged, because when
the spare gate is ready to fire it no longer matters whethsrdbrmant or active. The same
goes for the fired state.

Looking at the simplified model we can see that, when dormaspare gate acts a lot
like an AND-gate. This is no surprise considering a spare &als when its primanand all
of its spares have failed. Theftirence with an AND-gate is that spares being activated by
another spare gate has the sariea as that spare failing. The active behavior of a spare gate
differs from the dormant behavior in that the spare gate will ngwa activate spares when
appropriate. The fact that dormant spare gates never tetivair spares is in line with our
interpretation of dormancy discussed in the Sectich

In AppendixB the complete IOIMC model of a spare gate is given. Becausai® gate
can have multiple spares and because all of these spare® cdrated between any number
of spare gates the behavior of a spare gate seems quite conifdeever, the behavior of a



46 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

A Cc

[ ] [ ]
b Yy

a(SP_P,C)?

f(SP_P)?

a(A)?

a(SP_P,C)?

a(A)?

Figure 4.14: IOIMC model of the spare gat&Q 2)

spare gate can be reduced to four basic states. It can bedattmeant or active and it can have
a primary running or not. Figuré.16shows the general behavior of a spare gate. At first the
spare gate is dormant and its primary component is opesdtidhree things may happen: the
primary component may fail (although it is of course dormaaone of the (dormant) spares
may become unavailable, either because it fails or becaissadtivated by another spare gate
and finally the spare gate itself may be activated. A sparerhegxy unavailable doesn'’t really
change the situation except of course that there is now esesfeare available. When the spare
gate is activated with its primary component still openadlats behavior doesn’t really change.
Spares can still become unavailable and the primary cdrfaslil Notice that the spare gate
does not activate the primary. Primary and spare gate howewe the same activation signal
so they will be activated at the same time. Th&edence between active and dormant behavior
can be seen when the spare gate loses its primary componien e spare gate is active it
will activate the first of its available spares, but when tbare gate is dormant it won'’t. Notice
also that at the moment the spare gate wants to activatestsspare any spare (including
the first) may still become unavailable. This situation masegise to the non-determinism
discussed in Section.6.5 Finally a spare gate will fire in one of two situations: eitltiee



4.6. DESIGN CHOICES 47

Dormant
f(SP_P)?

a(SP_P,C)?

f(SP_P)?

a(A)?
f(P)?

C

f(SP_P)?

Active

Figure 4.15: Simplified IOIMC model of the spare gate.

primary fails and no more spares are available or the spasedgeesn’t have an operational
primary and the last of its spares becomes unavailable ésspghre gate cannot activate this
spare to become the new primary). Both situations can ocbenvhe spare gate is dormant
or active.

4.5.7 FDEP gate

The proper modelling of functional dependencies is aclidwe using firing auxiliaries
(FA). For some dependent DFT element a firing auxiliary gosevhen its firing action should
be taken, namely when either the DFT element fires normady &s if it were not dependent)
or when one of its trigger events fires. Figdré 7shows the firing auxiliary of a DFT element
A which is dependent on two other DFT elemeBtandC. The actionf*(a) corresponds to
the normal firing of evenA while action f(a) models the actual firing of evet, whether
normally or triggered by some other event.

So an FDEP gate in the DFT is modelled by one firing auxiliaryMO for each of its
dependent inputs.

4.6 Design choices

The structure (i.e. syntax) of dynamic fault trees is defif@dhally in Section4.1 In
this section the behavior (i.e. semantics) of dynamic fagks is defined by modelling them
as inputoutput interactive Markov chains. To model DFT elements@¥IC a number of



48

CHAPTER 4. DFT SYNTAX AND SEMANTICS

A spare becomes
unavailable

A spare becomes
unavailable

Primary fails

Spare gate is dormant and
has an operational primary

Spare gate is dormant and does
not have an operational primary

A spare becomes
unavailable

Primary fails

Spare gate
is activated

Spare gate

No operational primary is activated

and no more spares

A spare becomes
unavailable

Primary fails

Primary fails

Spare gate is active and
has an operational primary

Spare gate is active and does
not have an operational primary

The first spare
is activated

A spare becomes
unavailable

A spare becomes
unavailable

Figure 4.16: Schematic model of a spare gate.

FDEP

—
|

FDEP

f(B)?
f(c)? f(A)!

® —> +—>
*(A)?

Figure 4.17: Firing auxiliary IOIMC model.



4.6. DeSIGN CHOICES 49

important design decisions need to be made. In particulavi®ok at the way the concepts
of events firing and events being activated are modelledeireal every DFT is modelled as
an independent subtree (which can possibly be used in arldEi®, such that every DFT may
be activated, may fire or may be dependent on other events.

4.6.1 Firing

The firing of events is the basis of the DFT formalism and i &l simplest to model
using IOIMC. Every event, whether basic or complex may atespuoint fire. This is modelled
by an interactive transition with an output actib(A)! for an event named. DFT elements
that have evenf as input respond to it firing by having input-transitionsdiéd f (A)?. So,
the output actiorf (A)! is used to signal the firing of eveAtand any interested DFT element
may respond to this firing by having an input transition |&dxeF (A)?.

4.6.2 Activation

Activation is more complex than firing. Although only basikeats and spare gates have
an activation input-action (see Sectib:3), all DFT elements are defined to have an activation
signal Elements other than basic events and spare gates simplyt ds@this signal (it is not
in the action signature of their IOIMC). For basic events apdre gates that are not used as
spares activation is simple: they are activated when tlaggnis are activated. This means that
they have the same activation-signal as their parents. dghelement of a DFT always has its
own activation signal.

For spares activation is more complicated. A shared sparbdeactivated by several dif-
ferent spare gates. We have chosen the following approadlodelling spare gate-, primary-,
and spare behavior:

e Primaries, which are unique for each spare gate, are amtivagether with their spare
gate.

e Spares can be activated by any of their sharing spare gatdshaving aifferentspare-
activation signal.

e A spare gate can activate any of its spares. A spare gateesdponds to the activation
by other spare gatesharing one or more of its spares.

The way these elements communicate is shown in FigLiré

The activation auxiliary (AA) model is used to allow a spapebe activated by several
different spare gates. As inputs the activation auxiliary hasttivation signals of the spare
gates and as output it has the activation signal for the DEMeht used as a spare. After it
receives one of the activation signals from one of the spatesghe AA activates the spare. In
Figure4.19we see the activation auxiliary for a spare which is sharetiioyspare gates.

The most interesting aspect of this communication is thetfeat each spare gate has its
own unique signal to activate the shared spare. A simpleoagp is to have a single activation
signal for spare componef®, but apart from the diiculty of having two identical output-
actions &(S)! for both the spare gates) the two spare gatestsignal to each other that they



50 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

Partial DFT of Component C

Corresponding 10IMC models
v(m)\kc) a(C) /GZ)

a(s,G1)

>

Gl a(8,62) G2

<

f(P1) f(P2)
a©) a(s,G1) a(s,G2) a(C)
P1

(S)

AA(S) (S) P2

la(S)

S

Figure 4.18: Communication between spare gates, primanespares

a(s,G1)?

a(s)!
| \O
I 7

a(s,G2)?

Figure 4.19: Activation auxiliary IOIMC model.

have activated the spare. This is of course only possibleegd two signals are distinct. We
will also see that the approach we have chosen deals verly migé the situation when both
primaries fail at the same time (due to a shared functiona¢déency). In this case one of the
two spare gates will activate the spare, while the other.fifée spare gate that gets the spare
is chosen non-deterministically as intended (see Sulosetts.5.

We have seen that DFT elements that are not used as spares gatrie activation signal as
their parents. This is of course only possible if each pawéstich a DFT element has the same
activation signal. The restriction that spares must bepeddent subtrees (see Sectibf)
ensures that this is the case. If two parents of a DFT eleneam titterent activation signals
then obviously one of them must at least be part of a sparéhéyrdre part of two dierent
spares), which immediately means that this spare cannat belapendent tree and therefore



4.6. DeSIGN CHOICES 51

the DFT is not valid.

4.6.3 Time

In our IOIMC models of DFT elements time is modelled by usingrkbvian transitions.
The only models containing Markovian transitions are th&davents, because these model
the fact that there is a delay before a basic event happensseTdelays are exponentially
distributed to make sure that the models adhere to the Mapkoperty. Although it is not
possible to directly use other distributions, they can g@yxmated using, for instance, phase-
type distributions?g].

4.6.4 Auxiliary IOIMC models

In Section4.5we have seen that every IOIMC model has at least a firing owtplivn and
some also have an activation input-action. This genericagmh also requires to use only very
local information when constructing an IOIMC model of a DA&reent. This, however, does
cause a problem when considering shared spares and depB&tdealements.

A spare that is shared byspare gates will not have a single activation signal, buterat
n different, dedicated, activation signals. One for each spaee g@ ensure that the spare
activates when one of the spare gates tries to activate ictaraton auxiliary (see Subsec-
tion 4.6.2 is added which acts simply as a relay between the sparessidating spare gates.
The use of the activation auxiliary is shown in Figdr@Q

a(A,B) a(A,C)

Activation auxiliary
l a(A)

A

Figure 4.20: Example of how an activation auxiliary I0IMCQuised to properly model spare-
activation.

Dependent DFT elements fire in twdi@irent ways: either they fire normally by themselves
or they are triggered by some DFT element. The firing auyil{aee Subsectiof.5.7) models
this behavior by outputting the DFT element’s firing signtéiéait receives either the firing
signal of one of the triggers or the firing signal of the depamidFT element itself. This of
course does mean that the firing signal of the dependent Déezlt needs to be renamed.
After renaming the signal and parallel composing the resplOIMC with the firing auxiliary
the renamed firing signal can then be hidden. The use of thmg fauxiliary is shown in
Figure4.21 In this figure the firing signal of basic evefdis renamed td *(A).



52 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

Figure 4.21: Example of how a firing auxiliary IOIMC is usedamperly model dependency.

4.6.5 Simultaneity

When the trigger of an FDEP-gate fires all its dependent splso fire. This implies that
both the trigger and the dependent events fire at exactlyatine snoment. However, the failure
of these events is modelled by the sending of a numberftdrdnt signals. For instance, in
Figure4.22 eventA triggers event® andC. Their failure is modelled by the actiorfg, fg
and fc.

R

g I
Figure 4.22: Example of a DFT with a functional dependency.

The fact that evemd immediately triggers evenBandC is modelled in the following way:
1. No time transpires between the failures of event8 andC.

2. EventA occurs before even8andC.

3. EventsB andC occur in a non-deterministic order.

To understand why we have chosen this way to model simutiacaiised by FDEP-gates
we look at what an FDEP-gate models exactly. One of the us&P&P-gates is to model
network elements in a computer system. For instance, inr€i§22 eventsB andC might
model the failure of two remote computer systems conneddtid main system via a but
whose failure is modelled by eveAt When the bus fails the remote computer systems im-
mediately become unavailable to the main system which axpthe first rule. The third rule
may seem strange at first, because it seems logical to moeleis®/andC to fail at exactly
the same time. However, in real life systems, events rarayioat exactly the same time and
more importantly the occurrence of events is usuallynasicedat exactly the same time. So



4.6. DeSIGN CHOICES 53

the third rule is based on the assumption that the main sysi#motice the unavailability of
one of the remote computers before the other. Which one ite®first is not specified and
the order is therefore modelled to be non-deterministioviee second rule seems debatable:
why should the failure of the network be noticed before thavaiability of the two remote
computers? The reasoning behind this ordering is basedeaasumption that the occurrence
of some event in a DFT is "noticed” simultaneously by all otlxents in the DFT. Whether
this assumption is always correct is open to debate. It shmihoted that the second rule also
supports the notion afausality the cause(in this case the trigger) always occurs before the
gffect(the dependent event).

Figure 4.23: Partial IOIMC behavior of everAs B andC.

Figure4.23shows part of an IOIMC representing the evehitB andC observed in parallel.
We can see that this IOIMC conforms to the three rules inttedwabove. When eveAtoccurs
(after an exponentially distributed delay with radefirst signal f (A) is fired and then signals
f(B) and f(C) in a non-deterministic order. This non-determinism hasa@nsequences: in the
running example the eveystenms modelled by a Priority-AND gate so the order in which
eventsB and C occur determines whether the system fails. This is reflectatdle I0IMC
model of the behavior of this DFT shown in Figute4by the internalf (A) transitions.

Figure 4.24: Simplified IOIMC behavior of the example DFT.

Because of the non-determinism the IOIMC model in Figu&4is not isomorphic to a
CTMC, but it can be interpreted as a Markov decision procBH3K) [33], a variation on
CTMC. The MDP can then be analyzed to find upper and lower b®ford for instance, the
unreliability of the system.



54 CHAPTER 4. DFT sSYNTAX AND SEMANTICS

4.7 Translation of a DFT to an IOIMC community

Before giving the translation of a DFT to an IOIMC communitg give the formal trans-
lation of DFT elements to IOIMC models. The DFT elements agéngd by their name,
attributes (e.g. failure rates) and local surroundingh@DFT. In the DFT element descrip-
tions all DFT elements have a name, a set of spare-paPgnis set of regular pareni; and
a set of triggerd’. The parents are the elements that have the element undeassiisn as an
input. The spare-parents are spare gates that have then¢lenter discussion as spare-input
(so not as primary). All the other parents of an element argatoed in the regular parents
set. The triggers are DFT elements that this element isitumetity dependent on. Furthermore
basic events have one or two rates which define their prabtbibehavior and gates have a
number of inputs contained in the vectoiK/M gates also have two paramet&andm which
of course denote the threshold and total number of inputthfogate.

In the IOIMC descriptiondy, denotes the firing signal of IOIM®, ay denotes its activa-
tion signal andAy denotes the set of activation signals of the fay for an IOIMC M. For
the spare gatpr denotes the primary input white denotes the vector of its spares. The func-
tion Act handles any operations needed to properly handle the aotivaf an IOIMC model
based on the set of parents of the corresponding DFT eleniaetfunctionDep handles the
triggering of a DFT element based on its set of triggers.

[CBEnamerate, Psp, P, T)] =

Act(Dep(IOIMCcge(fum, am, rate), T), Psp, Pr)
[WBHEnameratea, ratep, Psp, Pr, T)] =

Act(Dep(IOIMCyge(fu, au, ratea, ratep), T), Psp, PRr)
[HBE(namerate, Psp, Pr, T)] =

Act(Dep(IOIMCyge(fum, am, rate), T), Psp, PRr)

So, basic events all have a firing signg}) an activation signalgy) and one or two rates. Just
like all other IOIMC models activation must be dealt with edon the element’s parents and
dependency must be dealt with based on the element’s tagger

[ORnhamel, Psp, Pr, T)] =
Act(Dep(IOIMCor(fum, am, (fi |1 € 1)), T), Psp, Pr)
[AND(namel, Psp, Pr, T)] =
Act(Dep(IOIMCanp(fm, am, (fi |1 € 1)), T), Psp, Pr)
[KM(namek,m I, Psp Pg, T)] =
Act(Dep(IOIMCkm(fu, am, k, m (fi |1 € 1)), T), Psp, Pr)
[PAND(namel, Psp, Pr, T)] =
Act(Dep(I0IMCpano( fum, am, (fi [ 1 € 1)), T), Psp, Pr)

The logical gates look much the same as basic events exagh#dy also have a list of input
signals. Note that lists are ordered which is importanttierRriority-AND gate. As mentioned
before the static gates all have an activation signal ajhawne of them use this signal in their



4.7. TRANSLATION OF A DFT 10 AN IOIMC coMMmUNITY 55

IOIMC models. Why this is the case will become clear when Aleefunction is described
below.

[SGnamepr, S, Psp Pr, T)] =
ACt(DeFﬂOlMCSG(fM, am, fpr’ <(as,M’ fs : As\ <as,M>) | S€ S)), T), PSP, PR)

In the above equation *’ is used to prefix a list of actionswatsingle action. The spare gate
is the most complex of the IOIMC models. Besides a firing arndvaiton signal it also has the
firing signal of its primary component. Furthermore the spgaite has a list of tuples. Each
tuple corresponds to one of the spare gates spares andrnsotitai spare’s activation signal
(asm) and a list of disabling signals for the spare. The disaldilggals consist of the failure
signal of the sparef) and the activation signals of the other spare gates sh#ratgspare
(As). The spare gate may use the activation signal for a spagg (o activate the spare.

Act(M, Psp, Pg) =

M i Psp=(O)APrR=(
M[am \ ap] , If ;’SPZQF/)\PRi()
, wherep €

hide am in M”lOlMCAA(aM,(aMp | pPe P5p>) ,f Psp# ()

The handling of activation is based solely on the parentsnagélament which are split into
two sets: one containing spare gates that use the elemerspaseaand one containing other
parents. There are three possibilities for activation o Rlement. First, the element may
be the top element of the DFT having no parents. In this cagengpneeds to be done to the
IOIMC model. Secondly, the DFT element may be a primary etgratthe DFT, that is to say,
not a spare. In this case the IOIMC'’s activation signal isaread to the activation signal of
one of its parents (this is denoted ag [\ a,]). This is also the reason all IOIMC models need
to have an activation signal defined even if they do not usaliigis easy to see that these first
two clauses will result in all the primary elements of a DFTVihg the same activation signal
as the top node. This is in correspondence to the way we haseoho represent activation
(see Subsection.6.2. The choice of parent for the renaming of the activatiomaligs not
important as all parents must have the top node as commoastancEhis leaves the activation
of spares which is handled by the third clause. When an eleimenspare of one or more
spare gates, then it gets a number of dedicated activagoralsi from these spare gates. To
cope with these multiple signals the IOIMC model of the DF&neént is composed with an
activation auxiliary (as discussed in Subsectiof4).

Dep(M, T) =
hide ;, in M[fy \ f{,]I1OIMCea(fu. f, : (f |t T))

Dependent DFT elements are composed with a firing auxil@amake sure that the element
also fires when one of its triggers fires. First, however, tivegisignal of the DFT element must
be renamed. This renamed signal is used as input to the finxieay and after compaosition
it can be hidden.

Above we have seen how to translate individual DFT eleméns.can now translate an
entire DFT to a community of IOIMC by applying this individu@anslation on each of its
elements (except the FDEP-gates):



Definition 4.3 Let D = (V,in,|,T) be a DFT. ThelOIMCC-translationof D is an I0IMC
communityC where:

C = {[detailsy(V)] | ve V A typdl(v)) # FDEP}

The functiondetailsy is defined below as well as the auxiliary functions,FPg and Trig for
DFT D which give the spare parents, regular parents and gigdor a node of D respectively:

detailsy(v) =
CBE(v, 4, Psp(V), Pr(V), Trig(V)) ,ifl(v) = (BE, 0,4, u) A u=0
WBHE\V, 4, u, Psp(v), Pr(V), Trig(Vv)) JFI(V) = (BE, O, A, u) A u# A
HBE(V, 4, Psp(V), Pr(V), Trig(Vv)) JFI(V) = (BE, O, 4, u) A u= 24
OR(v, in’(v), Psp(V), Pr(V), Trig(V)) , if typeg(l(v)) = OR
AND(v, in’(v), Psp(V), Pr(V), Trig(V)) , if type(l(v)) = AND

KM(v, k, m,in’(v), Psp(V), Pr(V), Trig(V)) , if I(v) = (VOTING m, k)
PAND(v, in’(v), Psp(V), Pr(V), Trig(V)) , if typeg(l(v)) = PAND
S Qyv, headin’(v)), tail (in"(v)),
Psp(V), Pr(V), Trig(V)) , if type(l(v)) = SPARE
Psp(v) = {w]|vein’(w) A v# headin’(w)) A typdl(w)) = SPARE
Pr(V) = {w]vein’(w) A w¢ Psp(V)}
T(v) = {w]|3dxeV - typgl(x)) = FDEP A w = headin’(x)) A v € tail(in’(X))

In the abovenead(l) gives the first item of a list | angil (1) gives all the items of a list | except
the first item.



Chapter 5

Compositional Analysis of DFT

In this chapter we will describe an analysis technique forashgic fault trees based on the
compositional semantics of DFT elements described in @ndptThis analysis technique is
called compositional analysis. Compositional analysisased on the idea of composing the
IOIMC models of the elements of a DFT into a single IOIMC whicdn then be analyzed
to find fault tolerance measures. Below we describe the ftepssneeded to find a single
IOIMC representing the behavior of a DFT. This IOIMC can thenused to find a CTMC
representing the behavior of this DFT (step 5) and then wesolue this CTMC to find fault
tolerance measures such as the unreliability of the sysemtrithed by the DFT.

5.1 Step 1: Translation

First we must convert the building blocks of the given DFToit@IMC. Figure5.1shows
the conversion of an example DFT to a community of IOIMC. Oatight side of the picture
we see the IOIMC corresponding to the DFT elements on theTéfé actions used to signal
the firing of events are drawn as arrows. To simplify the figutlke concepts of activation and
triggering have been ignored in this running example.

In Figure5.2 we see the IOIMC models of the PAND-gdleand the basic eve®. The
translation of DFT elements into IOIMC models has alreadgrbéescribed in detail in Sec-
tion4.7

5.2 Step 2: Abstracting composition

In order to calculate fault tolerance measures for our mgnekample we need to transform
the community of IOIMC shown in Figure linto a single IOIMC. We do this by using parallel
composition and abstraction. Figuse3 shows the parallel composition of the IOIMC-model
of PAND-gateD and the IOIMC-model of the basic evehin which the actionf (A) is hidden.

In other words Figur&.3shows the abstracting composition of the sulfBe#\} in the IOIMC
community (see Sectiod.2). The resulting IOIMC community is shown in Figubed.

The order in which the IOIMC are composed has a big impact ergtitiency of compo-
sitional analysis. The composition of IOIMZ andA, for instance, has only eight states which
can be reduced to 7 through aggregation (see step 3). Theositiop of IOIMC E andA on

57



58 CuaprteErR 5. ComposITiONAL ANALYsIS oF DFT

T f(System)

I0IMC
(f(System),
<f(D).f(E)>)

f(D) fE)
Convert DFT-elements

to interacting 10IMC

n -E

,\ I0IMC 00 10IMC,,

A . (f(D),<f(A),f(B)>) (f(E),<f(B).f(C)>)
f(A) f(B) f(8) f(C)

I0IMC . (f(A).») loIMC . (f(B).») I0IMC . (f(C).»)

Figure 5.1: Conversion of a DFT into a community of IOIMC

i(8)?

I0IMC (f(D),<f(A).f(B)>)

PAND
(A)2.4(8)? <
D)

i(®)?

10IMC (f(A).\) N

) ' ' ' '
;(A)‘

Figure 5.2: I0IMC models of two DFT elements. Their desaoip$ (as in Sectiod.7) are
given as well as their action signatures.

hide f(A) in DJ|A

i(®)?
o)
f(A);

Figure 5.3: Parallel composition of a PAND-IOIMC and a basient-IOIMC



5.3. SEp 3: AGGREGATION 59

Tf(system) Tf(System)

System System

Abstracting composition
of I0IMC D and A
D
E hide f(A) in D||A E
f(A) f(8) f(8) f(C) ®) f(B) w

A B Cc B C

Figure 5.4: Result of the abstracting composition of IOINd@&nd IOIMCA

the other hand has 15 states. This is caused by the fact #ratithno synchronization in this
composition (i.e. IOIMCE andA have no matching inpfdgutput actions). Ordering strategies
for composition are further discussed in Subsecch2

5.3 Step 3: Aggregation

The purpose of aggregation is to minimize the IOIMC modetated by abstracting com-
position in step 2. Aggregating an IOIMC simply means crega smaller IOIMC that is, in
some way, equivalent with the original IOIMC. The choicelwé equivalence used is crucial in
this step. In this thesis we use the weak bisimulation edgmee to aggregate IOIMC models
(see Sectios.4for the definition of this equivalence and a discussion on whychoose it).

hide f(A) in DI|A (R

Figure 5.5: Result of aggregation using weak bisimulation

In Figure 5.5 we see the result of aggregating the IOIMC from Fig6ré using weak
bisimulation. The only dference between the original IOIMC and the resulting IOIM@his
removal of one state in the lower right corner.



60 CuaprteErR 5. ComposITiONAL ANALYsIS oF DFT

5.4 Step 4: Repetition

As mentioned before we need to have one single IOIMC to betaldalculate fault tol-
erance measures. In the examples we have seen so far we &es®itmed a DFT into Six
IOIMC models and then composed two of these to get five IOIMG@et® By repeating steps
two and three (composition and aggregation) we eventualiyge single IOIMC model rep-
resenting the behavior of the DFT. Figu¥es shows this IOIMC model.

Figure 5.6: IOIMC representation of the running examplee ghey states represent states in
which the system has failed.

This IOIMC representation of a DFT can be reused in the coitipnal analysis of other
DFT that have the example DFT as an independent subtree. aknm& of this analysis tech-
nigue is shown in Sectiof.1. If we, however, want to calculate fault tolerance meassue$
as unreliability for this DFT we need to transform the I0IM@ad a CTMC.

5.5 Step 5: CTMC generation

The final step of compositional analysis is to find a CTMC reprging the behavior of
the DFT. An IOIMC can be interpreted as a CTMC if it has no iattive transitions, but
the 1I0IMC we found for our running example still has two irgetive transitions labelled
f(Systenl. But because we are now only interested in this IOIMC ftéahd not in how it
interacts with its environment), we can hide this signal arake the transitions internal. By
then aggregating the IOIMC using weak bisimulation we auastirom these internal transi-
tions and find an IOIMC which can be interpreted as a CTMC gareéng the behavior of the
example DFT. This CTMC is shown in Figuge?.

The grey states in this CTMC are those states in the correapp@TMC which are weakly
bisimilar to the failed states in the IOIMC in Figue6 after hiding signalf (Systeq Note
that when activation is taken into account the activatigmail for the system also has to be
hidden in order to find an IOIMC which can be interpreted as MCT

We can now use CTMC analysis techniques to find fault tolexameasures for our example
system. For instance, the unreliability of the exampleeystor a mission-time of 1 equals
0.473 or 473%.

For certain DFT non-determinism will arise because of stemdity. Because of this non-
determinism it will not be possible to find a CTMC represeaotabf these DFT, but this prob-



5.5. SEep 5: CTMC GENERATION 61

Figure 5.7: CTMC representation of the running example. Jitey states represent states in
which the system has failed.

lem can be avoided by altering the DFT or by converting theMOlto a diferent formalism
such as MDP. For more information on this phenomenon seeeBtibs4.6.5






Chapter 6

Case Studies

In this chapter we will discuss three case studies. Thesestaslies show that the com-
positional approach to analyzing DFT can be much mdieient than the traditional DIFTree
approach. The case studies also give a good indication ofi whenpositional analysis is ex-
pected to outperform DIFTree analysis.

We have analyzed the dynamic fault trees by first translatiegn to a number of Tipp
processes using the DFT2Tipp tool and then using the Tipd 1apto perform parallel com-
position, abstraction and, partly, aggregation. This metbf analysis is described in detail in
Section7. We have then used the Tipp tool to find the unreliability ¢ FT for a certain
mission time. We have compared the performance of this agprwith the performance of
the Galileo tool, which implements the DIFTree approacle Sectior?.4) by comparing the
size of the generated IOIMC and CTMC respectively.

6.1 The Hypothetical Cascaded P-AND System case study

The first case we look at is a simple case study taken ftdmuljich is designed to show the
shortcomings of the DIFTree approach to analyzing dynaenitt trees. Figuré.1shows the
Hypothetical Cascaded P-AND System (HCPS). All basic esang¢ cold and have a failure
rate of 1 failure per time unit. Because the DFT has a dynaapabde the order in which
all the basic events fail must be taken into account wherstoaming the DFT into a CTMC
using the DIFTree approach. The resulting CTMC is theretprige large (4113 states and
24608 transitions).

6.1.1 Compositional analysis

The HCPS DFT consists of two P-AND gates and three AND gatgs wih four identical
basic events. In fact the three AND gate modules (consigtaulp of an AND gate and four
basic events) are completely identical. We will use thig fadmprove the #iciency of our
analysis. To do this, one such module will be translatedanttOIMC and this IOIMC will be
reused three times. Figuée?2 shows the AND-gate module.

Note that the top node is calléd instead ofA, C or D. After transforming the module
into an IOIMC the correct models can simply be found by remanthe IOIMC'’s firing and

63



64 CHAPTER 6. CASE STUDIES

N

Figure 6.1: DFT of the hypothetical cascaded PAND system.

Figure 6.2: DFT of the component.

activation signal. This is an important advantage of theMOlformalism, where the I0IMC
model of a DFT can be reused in the compositional analysish&frdFT. It is not possible to
reuse the CTMC generated by the DIFTree approach.

First the DFT elements in the module are translated into IOliModels which together
form an IOIMC community (Step 1 of compositional analyses €haptet). This community
is shown in Figures.3. After this translation compositional aggregation is usefind a single
IOIMC which represents the behavior of the module.

Figure6.4 shows the result of parallel composing IOIMCandT, hiding actionf(A) and
aggregating the result using weak Markovian bisimulatiblnis corresponds to steps 2 and 3
described in Chaptér.

We now continue the compositional aggregation until a @d@IMC is found (Step 4 in
Chapters). Figure6.5shows this IOIMC. When studying this IOIMC in detail we carme $keat
it correctly models the behavior of the AND-gate module. eAfactivation of the cold basic
events we find that the first failure of a basic event occur®at fimes the rate of a single
failure. This models the fact that any of the four basic es@emay fail first and, in this module,
it is unimportant which one fails first. The second failurertfoccurs at a three times the rate
of a single event and so on until finally the AND gate itselfSai

We can now translate the entire HCPS DFT by reusing the I0IM€gthat some renam-
ing is done. Then compositional analysis (see Chaptexr used to find a CTMC representing
the behavior of the hypothetical cascaded P-AND systens TRMC is then analyzed to find



6.1.

Tue HypotHETICAL CASCADED P-AND SySTEM CASE STUDY

If(r)!

65

f(c)?

f(m!

f(A); f(C); f(D);

a(m)?

a(T)? 1

]

Q

3

]
e
| ¢

l a(T)?
|

a(m)?
1 f(o)!

Figure 6.3: IOIMCC of the component.

a(m? a(m? a(m?

1 f(Ay 1 f(B)! 1 fo)

the unreliability of the whole system.

6.1.2 Results

In table6.1 we find the results of the HCPS case study. Note that there tismag infor-
mation as the compositional analysis was partially perémtmmanually (see Sectiaf).

Approach Maximum numbern Maximum number,  Unreliability
of states of transitions | (Mission-time= 1)

DIFTree 4113 24608 0.00135

Compositional 156 490 0.00135

Table 6.1: Results for the HCPS case study.

The DIFTree result is the size of the state space of the asmisrtime Markov chain gen-
erated directly from the DFT. The result for the composigilapproach is the largest appearing
IOIMC during compositional aggregation. We also see thah lamalysis techniques give us
the same unreliability for a mission-time of 1 time unit. ligkre 6.6 we see the sizes of the
IOIMC for different steps in the compositional aggregation process.

We can see that the CTMC generated by the Galileo tool usimd@tkTree approach is
more than 25 times as large as the largest IOIMC appearingglaompositional analysis.
This large diference will have a seriougfect on the performance of the tool in calculating
measures such as unreliability for the DFT. This larg@edence is caused by the fact that



66 CHAPTER 6. CASE Srubpiks

-+ am? —+ am?

f(T)!

a(Ty? 4 3 2 1 f(T)!

Figure 6.5: IOIMC representation of the module.

Galileo cannot use any modularization in its analysis. Eason for this is that the top node
‘System’ of the DFT is a PAND gate. Furthermore the DFT oni§sfavhen all of its twelve
basic events fail (in the correct order). So to find the CTMCtfie HCPS DFT Galileo must
consider all the dferent orderings of the twelve basic events. In compositianalysis we
make use of two characteristics of this DFT to minimize thpeagping I0IMC models: The
four basic events under each AND gate may fail in any orderahbasic events have the
same failure rate. Thisfiect can be seen very clearly in the IOIMC representation ef th
AND-module shown in Figuré.5which has only 7 states.



6.2. CArRDIAC ASSIST SYSTEM 67

# states
180
160 -

140
120 A O Before aggregation

100 - l After aggregation

80
60 A

40
20 -
0 - I0IMC models

< [a1] O [a) O [a] 1< <

+ + I 4 + @ +

| < m ©0O m (@) b IS

+ + = T = [}

Q [ < ©TMm m n @

> P + o + + >

g £ = =« a o

i + T +

= ° Q = O [a)

g 3 g

o o &_)

= m

Figure 6.6: State space chart.

6.2 Cardiac Assist System

The second case study is based on the Cardiac Assist Sys#&8) (@roduced in £0.
Specifically it considers a hypothetical variation on theSJAtroduced in§]. The DFT of the
Cardiac Assist System (CAS) is shown in FigGré.

CPU_fdep CPU_unit
' MP Motors Pump_A Pump_B

ORNNA

§Y 5688

Figure 6.7: DFT of CAS.

The CAS consists of three separate modules: the CPU unim¢ter unit and the pump
unit. These correspond to the CPU, motor and pump in the palysardiac assist system that
is modelled by the DFT. There are two CPU’s: a primary (P) améiam spare (B). Both are
functionally dependent on a cross switch (CS) and a systeersgision (SS), which means that
the failure of either these components will trigger theuigelof both CPU’s. There are also two
motors: a primary and a cold spare. The switching comporettturns on the spare motor



68 CHAPTER 6. CASE Srubpiks

when the primary fails is also subject to failure, but thigui@ is only relevant if it occurs

before the failure of the primary motor. Finally, there anese pumps: two primary pumps
running in parallel and a cold shared spare pump. All threegaimust fail for the pump unit
to fail. Table6.2shows the failure rates of theftkrent components:

Component Failure rate
CS 0.2
SS 0.2

P 0.5

B 0.5
MA 1
MB 1
MS 0.01
PA 1
PB 1
PS 1

Table 6.2: Failure rates for the CAS case study

6.2.1 Compositional analysis

Using compositional analysis we found the aggregated IOt®[Zesentations of the CPU,
Motor and Pump unit which had 27, 11 and 6 states respectiElye now wish to solve
the DFT completely we must use compositional aggregatiacotobine the four remaining
IOIMC (three IOIMC representations of the units and one I@lIvepresentation of the top
OR-node).

The largest IOIMC that appears is the parallel compositicth® IOIMC representing the
combined behavior of the top node ‘System’, the CPU unit &iedMotor unit and the IOIMC
representing the behavior of the Pump unit. This IOIMC h& $ates and 3660 transitions.
If we compare this with the results of modular analysis usheyDIFTree approach we see
that the Galileo tool generates three small Markov chaiesween 4 and 6 states) and then
uses binary decision diagram techniques (since the top ‘Sydéem’ is a static gate) to very
efficiently find the unreliability of the DFT.

To find out why compositional analysis performs so poorlytfos case study, we take a
closer look at the IOIMC representation of the CPU unit whiels 27 states. The correspond-
ing Markov chain generated by Galileo only has 4 states. rEi§L8 shows the beginning of
the IOIMC for the CPU unit after compositional aggregation.

The reason that we get such a large IOIMC is that the weak blaiion used by Tipp tool
to aggregate the IOIMC is not weak enough. For instance, fippdoes not dierentiate be-
tween input and output actions and therefore it does noydpplmaximal progress assumption
(see Sectiord.3) to output actions. If we look at Figui@8 we see that the Markovian transi-
tion from stateA to stateD could simply be ignored under the maximal progress assompti
Now let’s consider stat® in Figure6.8. Because there is a firing transition from stét¢o



6.2. CArRDIAC ASSIST SYSTEM 69

~0.4- » C 1
Activation signal

—a?Pp
b' D )

Firing signal
—flp
Markovian transition @
—0.4p

Figure 6.8: Partial IOIMC for the CPU unit.

stateB we know that the CPU has failed in steBe We also see that there is a Markovian
transition from statd to stateC, but we are not interested in this behavior because the CPU
has already failed. In fact we are not really interested w la@havior that can never lead to
an output transition and we could aggregate such statea sitayle ‘uninteresting’ state. This
notion of ‘interesting’ and ‘uninteresting’ behavior cddead to a new, weaker, bisimulation
for IOIMC. More information on this notion can be found in Selotion8.3.1

To investigate theféect of this weaker bisimulation we have used it to aggredegé@IMC
models of the three modules of the CAS case study. This agtioegwas performed using
the two properties explained above. We found the exact samaiability using standard
compositional analysis and using the compositional amalysgh extra aggregation. However,
further work needs to be done to formally define this weakeiadence.

Using extra aggregation we reduced the I0IMC models of thes GAodules to three
IOIMC, each with only 6 states. Figufe9 shows these three models.

CPU unit Motor unit Pump unit

= ¢ ¢
Crm om0 d&p@ OO0

Figure 6.9: IOIMC models of the fferent units.

Compositional aggregation (using the weaker bisimulatarthese three models and the
IOIMC model of the top OR-gate now resulted in a largest I0IBIMNly 36 states and 119
transitions. Figuré&.10shows a chart of the state space sizes of the IOIMC generatatd
compositional aggregation using the weaker equivalence.

6.2.2 Results

Table6.3shows the results of the CAS case study. For each analyswo#te number of
states and transitions is given for the largest appearimdgh{®arkov chain or IOIMC).

We can see that the DIFTree approach is the mibisient in terms of state space. In this
approach the three modules of the CAS DFT are translated tkdMa@hains, the largest (the



70 CHAPTER 6. CASE Srubpiks

# states

45

40

35 4

@ Before aggregation
25 B After aggregation

1 DO Extra aggregation
20

10IMC models

[T
o o 6 O
System + CPU F

System + CPU
Mot
System + CPU
Motor
Pump:

Figure 6.10: Chart of the compositional analysis of the CAB@gthe weaker bisimulation.

Approach Max. Statespace Transitions| Unreliability
Pure MC generation 85 526 0.6579
DIFTree 8 10 0.6579
Compositional 808 3660 0.6579
Extra aggregation 36 119 0.6579

Table 6.3: Results for the CAS case study.

pump module) having 8 states. These Markov chains are thezhtadind the unreliability of
each module and these figures are then used to calculaterddehbility of the cardiac assist
system using veryfcient BDD techniques. See also Sectibdfor more information on the
DIFTree approach to analyzing DFT.

If we do not employ the modularizing techniques of the DIFETepproach and simply
generate a Markov chain representing the entire DFT it isentlwein 10 times as large which
shows the ffectiveness of the DIFTree approach. However this Markoinclvidh 85 states is
still a lot smaller than the largest IOIMC which is generatieniing compositional analysis of
the DFT. The compositional analysis can in turn be improwedding a weaker bisimulation
for the aggregation of IOIMC as explained in the previousssation.

We can conclude that the modularization technique emplayéde DIFTree approach is
very dfective for DFT with distinct modules. It should be noted thbuhat this technique is
only available if the top node of the DFT is static. For instif the top node of the CAS
DFT were a priority-AND gate then the modularization wouldt be applicable as we have
also seen in the HCPS case study.

We can also conclude that the equivalence relation usedjreggte IOIMC has a huge im-
pact on the fficiency of compositional analysis of DFT. Especially theaspt of disregarding
‘uninteresting’ behavior (see Subsecti®.1) has a major impact on the reduction achieved
by aggregating I0IMC.

Finally the CAS case study shows that compositional aralgees not always perform
better (i.e. generate smaller models) than the traditiapproach to analyzing DFT. In fact,



6.3. MULIT-PROCESSOR DISTRIBUTED COMPUTER SYSTEM 71

further research has shown examples of DFT which can mucle aidciently be analyzed
using the DIFTree approach than using compositional aizalyfie DIFTree approach is par-
ticularly effective in cases where it can employ its modularization teghes and we have also
seen that compositional analysis performs poorly whenimgalith highly interconnected
DFT, although by using a weaker equivalence this problemilshze alleviated somewhat.

6.3 Multi-processor distributed computer system

The last case study is based on a multi-processor distdlmateputer system (MDCS) in-
troduced in P7]. To this real-life fault-tolerant computer system we hadeled some dynamic
elements to make it more realistic and complex in the sameasin P5]. Figure6.11shows
the DFT of the MDCS.

Disk2

Figure 6.11: DFT for the MDCS case study.

The MDCS consists of a budlj, two processorsR; andP,), four hard disks D11, D1,
D,; andD,,) and three memoriesV{;, M, andMs). The processors, disks and memories are
divided between two computing modules (‘(CM1’ and ‘CM2’). & failure rates for the basic
events can be found in tabfe4.

This DFT was analyzed using the compositional aggregatipmaach and the results of
this analysis are given in the following subsection.

6.3.1 Results

For the MDCS case study we only give the results for the coitipnal analysis with extra
aggregation. Using only Tipp tool's aggregation leads &besspaces in excess of 1000 states.
Table6.5gives the results for this case study.

For this case study we see that compositional analysis leadsmaller largest IOIMC
model than the CTMC obtained with the DIFtree method. Thssiiteseems to indicate that for



Component Active failure rate| Dormant failure rate
N 2 0
P1,P2 500 0
D11,D21 80000 40000
D12,D2, 80000 40000
M1,M, 30 0
M3 30 15

Table 6.4: Failure rates for the MDCS case study in failuessl®® hours

Approach Max. Statespace Transitions| Unreliability
DIFtree 253 1383 2.00025-10°°
Extra aggregation 157 756 2.00025- 10°°

Table 6.5: Results for the MDCS case study.

many DFT the compositional aggregation approach is mi@i@ent than the DIFtree approach.
The fact that Tipp tool's weak Markovian bisimulation leadsrelatively large state spaces
underlines the fact that it is highly desirable to implemsais supporting weak bisimulation

for IOIMC.



Chapter 7

Tool support

Tool support for the research described in this thesis s@eal by two tools: the DFT2Tipp
tool created specifically for this research and the TippTod|.

The DFT2Tipp tool translates a DFT specification to a TipgBpecification. This trans-
lation is performed in 3 steps:

e Parsing of the DFT specification. See Secfioh
e Linking of the DFT elements parsed from the DFT specificati®ee Sectioii.3.

e Writing the TippTool specification. See Section.

Before describing the process of translation the usageedDHiI 2Tipp tool is explained in
Section7.1 Lastly we also describe how DFT2Tipp ties in with TippTombinalyze Dynamic
Fault Trees in Section.5.

Throughout this section we will use a running example to stteninner workings of the
DFT2Tipp tool and how it works together with the TippTool. &@DFT specification for this
example is shown below:

toplevel "A";
"A" and "B" "C"; "B" lambda=4.00 dorm=0.00; "C" lambda=2.00
dorm=1.00;

This example DFT is shown in Figurel

7.1 Usage

The DFT2Tipp tool must be run using a UNIX operating systenme Tool reads from
standard input and writes to standard output. This meansthsimply calling dft2tipp you
can type the DFT specification into the console finishing withEOF character (Ctrl-D on
most UNIX systems). The TippTool specification is then mthto the same console. Of
course it is more common to read the DFT specification fromeaatfild to write the TippTool
specification to a file. This can be accomplished by pipingripat and output. The following
command reads the DFT specification from file specl.dft amesvihe TippTool specification
to specl.tpp:

73



74 CHAPTER 7. TOOL SUPPORT

Figure 7.1: Example of a DFT

dft2tipp <specl.dft >specl.tpp

The format of the DFT specifications is that of the tool Galil@he format of the output
is the where-section of a TippTool specification. For moraitewe refer to the manuals of
Galileo [2] and TippTool [L4].

7.2 Parsing

The parsing of the DFT specification is done using the stahd&iX programming tools
lex & yacc [20]. Lex was used to generate a lexical analyzer and yacc waktaggenerate a
parser for DFT specifications. We refer to the files dft.| afid/énd the lex&yacc documenta-
tion (available in any Unix operating system’s man pagesipfore info. The result of parsing
is a list of unlinked DFT elements. During parsing the foliog/fields are filled in for each
DFT element:

e type: The type of the DFT element. Either gate or basic event.
e name: The name of the DFT element.

line: The line of the DFT specification on which the DFT elemisrdefined.

for DFT gates:

1. g_type: The type of the gate.
2. inputs: A list of the names of the inputs of the gate.
3. threshold (for voting gates only): The threshold of thénggate.

4. n_inputs (for voting gates only): The total number of nowial inputs of the voting
gate.

for basic events:

1. distr: The distribution of the basic event.
2. cov: The coverage attribute of the basic event.



7.3. LINKING 75

res: The restoration attribute of the basic event.
dorm: The dormancy attribute of the basic event.
repl: The replication attribute of the basic event.

o g kW

phase: The phase of the basic event.

After parsing, our running example results in three DFTEata, which are shown in

DFTList DFTList DFTList
<<DFTListPtr>> +e: DFTE ementPLr —+e: OFTEI ement Pt —]+e: DFTE enent PLr
_elements +next: DFTLi stPtr +next: DFTLIi stPtr +next: DFTLI stPtr

dft_gate dft_be dft_be
+type: dft_type = T_GATE +type: dft_type = T_BE +type: dft_type = T_BE
+nanme: char* = A +nane: char* = B +nane: char* = C
+line: int =2 +line: int =3 +line: int =4
+n_parents: DFTListPtr +n_parents: DFTListPtr +n_parents: DFTListPtr
+sp_parents: DFTListPtr +sp_parents: DFTListPtr +sp_parents: DFTListPtr
+triggers: DFTListPtr +triggers: DFTListPtr +triggers: DFTListPtr
+act: char* di str|+act: char* di str|*+act: char*
inputs|+g_type: gate_type = AND distr: DistributionPtr +di str: DistributionPtr
+inputs: NameListPtr +cov: doubl e +cov: double
+threshol d: int +res: doubl e +res: double
+n_i nputs: int +repl: int +repl: int
+al | _inputs: DFTListPtr +dorm doubl e = 0.00 +dorm double = 1.00
+nt _inputs: DFTListPtr +phase: int +phase: int
NameList d_exp d_exp
next|+name: char* = B +d_type: distr_type = EXPONENTI AL +d_type: distr_type = EXPONENTI AL
+next: NameListPtr +l anbda: double = 4.00 +l anbda: double = 2.00
NameList
+name: char* = C
+next: NaneListPtr

Figure 7.2: Result of parsing

The other fields of the DFT element are set during linking Whecdiscussed in the next
subsection.

7.3 Linking

During linking the DFT elements are connected in the follogwvays:
e Gates have a list of pointers to their children. (only foregat

e Children have a list of pointers to their parents.

e Spares have a list of pointers to their sharing spare gates.

e Dependent elements have a list of pointers to their triggers



76 CHAPTER 7. TOOL SUPPORT

The function check_and_link() also checks the integrityhaf DFT specification (such as
whether or not the specified inputs of a gate are present iDfiespecification). The function
check_parents() is then called to check that there are womiected DFT elements. Finally
the function set_activation() uses the new links to deteenfor each DFT element what its
activation signal is.

After linking, our running example still consists of thred=DElements, which are now
linked together. These DFTElements can be seen in Figare

DFTList DFTList DFTList
<<DFTListPtr>> PP —— PP —— —+e: DFTEl enent Ptr
elements next: DFTListPtr +next: DFTListPtr

+next: DFTListPtr +
«dft_gate «dft_be «dft_be
+type: dft_type = T_GATE +type: dft_type = T_BE +type: dft_type = T_BE
+name: char* = A +nane: char* = B +name: char* = C
+line: int =2 +line: int =3 +line: int =4
+n_parents: DFTListPtr —+n_parents: DFTListPtr —+n_parents: DFTListPtr
+sp_parents: DFTListPtr +sp_parents: DFTListPtr +sp_parents: DFTListPtr
+triggers: DFTListPtr +triggers: DFTListPtr +triggers: DFTListPtr
+act: char* = A +act: char* = A +act: char* = A
+g_type: gate_type = AND +distr: DistributionPtr +distr: DistributionPtr
+inputs: NanmeListPtr +cov: doubl e +cov: doubl e
+threshold: int =2 +res: doubl e +res: doubl e
+n_inputs: int = 2 +repl: int +repl: int
+al | _inputs: DFTListPtr +dorm double = 0.00 +dorm double = 1.00
+nt _inputs: DFTListPtr +phase: int +phase: int
DFTList DFTList DFTList DFTList
H+e: DFTEl enentPtr H+e: DFTEl enmentPtr +e: DFTEl ement Ptr +e: DFTEl enent Ptr
+next: DFTListPtr |r +next: DFTListPtr +next: DFTListPtr +next: DFTListPtr
DFTList DFTList
L—+e: DFTEl ementPtr L +e: DFTEl ement Ptr
+next: DFTListPtr +next: DFTListPtr

Figure 7.3: Result of linking

Basic events "B" and "C" are in gate "A"’s list of all inputsadaits list of non-trivial inputs.
The other way around "A" is in "B" and "C"’s list of normal paits. We also see that the func-
tion set_activation() has set the DFTElement::act fieldsafbthree DFT elements. Because
there are no spare gates in this DFT all elements have the aetiaation-signal, namely that
of the top element of the DFT.

7.4 Output

The function translate() uses the list of linked DFT elersaygnerated from the DFT spec-
ification to write a partial TippTool specification to standl@utput. This output describes a
number of InpyOutput Interactive Markov Chains, which together desctiteebehavior of
the DFT. The output is divided into three parts: the actigmatures of the I0IMC, the def-



7.4. QurpuT 77

initions of the I0OIMC and the definitions of the necessarypllipol processes. The result of
running dft2tipp on our example is given below:

%%
A(f_B,f_ O (£_A);
B(a_A) (£_B);

Ca_A) (£_O);

%%7': )

process A :=
GATE_2_2_O0[f_B,f_C,f_A] endproc
process B :=
BE_PASSIVE_COLD[a_A,f_B](4.000000) endproc

process C :=
BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

( * %% * )

process GATE_2_2_O[input_1,input_2,out] :=

input_1;GATE_2_2_1[input_2,input_1,out] []

input_2;GATE_2_2_1[input_1,input_2,out] endproc
process BE_PASSIVE_COLD[act,out] (rate) :=
act;BE_ACTIVE[act,out] (rate) endproc

process BE_PASSIVE_HOT[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc
process BE_ACTIVE[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc



78 CHAPTER 7. TOOL SUPPORT

process BE_FIRING[act,out] :=
act;BE_FIRING[act,out] []
out;BE_DONE[act] endproc

process GATE_2_2_2[red_1,red_2,out] :=

red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out;GATE_DONE_2[red_1,red_2] endproc

process BE_DONE[act] :=
act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=
red_1;GATE_DONE_2([red_1,red_2] []
red_2;GATE_DONE_2[red_1,red_2] endproc

( * %% * )

The three parts of the output are separated by %%’s (noté-tfseud «) are used by Tipp-
Tool to denote comments, so the first part of the output iséhdammented as are the sepa-
rating %%’s). The three parts are described individuallghefollowing subsections.

7.4.1 Action signatures

The function output_sigs() writes the action signaturebeflOIMC to the standard output.
These action signatures list the input- and output-actionsach I0OIMC. The format for an
action signature is:

name (input-actions) (output-actions)

This part of the output of the dft2tipp tool is written as a ¢oant in the TippTool speci-
fication and is included to make it possible to properly apalthe behavior of the entire DFT
using compositional aggregation. In other words, we neekhtiw the action signatures of
the 10IMC to figure out on which actions we have to synchrorizd when we can hide cer-
tain actions. Note that the compositional Markov chaingdusg the TippTool do not have
action-signatures themselves.

For our running example we get the following action signesur

AC(f_B,f_ O (f_A);
B(a_A)(f_B);

Ca_A) (£_O);



7.4. QurpuT 79

We can see, for instance that the AND-gate "A" has inpuastif B" and "f_C", which
correspond to the firing of basic events "B" and "C". Its onlyput-action is "f_A" which
corresponds with the firing of the AND-gate itself. We caroadee from these action signa-
tures that the IOIMC community (representing the behavfdhe entire DFT) has one input
signal "a_A" and one output signal "f_A" representing thavation and firing of the DFT
respectively.

7.4.2 10IMC definitions.

All the IOIMC behave like one of the TippTool processes pdad by the DFT2Tipp tool.
These processes are generic and have variable actionslapdaakes. These variables are filled
in for each I0IMC definition. The IOIMC definitions are print#o the standard output by the
function output_defs(). Our running example gives us thievong three IOIMC definitions:

process A :=
GATE_2_2_O[f_B,f_C,f_A] endproc

process B :=
BE_PASSIVE_COLD[a_A,f _B](4.000000) endproc

process C :=
BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

We can see in this example that IOIMC A (which correspond$i¢&AND-gate A in the
DFT) is defined as a TippTool process which behaves exa&#ytlie process GATE_2 2 0
with actions "f_B", "f_C" and "f_A". The process name GATE 22 0 should be interpreted
as follows:

e GATE denotes that this is a process that describes a stagdterd
e The first "2" denotes that the gate has 2 input signals.

e The second "2" denotes that the gate has a threshold of 2vasis that the gate fires
when 2 of its inputs have fired).

e The final "0" denotes that so far none of the gate’s inputs fiese.

Of course the three processes used in these IOIMC definkGASE_2 2 0, BE_PASSIVE_-
COLD and BE_PASSIVE_HOT - must be defined somewhere. Dutwegptrinting of the
IOIMC definitions the tool keeps track of the processes tleadnto be defined in the global
variable procs. At the end of the printing of the IOIMC defimits of our running example
procs contains the three processes, which are shown ing=igr

7.4.3 Process definitions

The function output_procs() passes through all the presassa process-list printing their
definitions to the standard output. An example of a proceBsitien is given below:



80 CHAPTER 7. TOOL SUPPORT

v

process_gate

ProcList +type: process_type = GATE

+p: ProcessPtr — +total: int =2

+next: ProcListPtr +threshol d: int = 2
+fired: int =0
ProcList W

+p: ProcessPtr — process

+next: ProcListPtr +type: process_type = BE_PASSI VE_COLD
ProclList
rocess
+p: ProcessPtr p

+next: ProclistPtr +type: process_type = BE_PASSI VE_HOT

<<ProcListPtr>>

procs

Figure 7.4: Process list after writing IOIMC definitions

process GATE_3_2_1[input_1,input_2,red_3,out] :=
input_1;GATE_3_2_2[input_2,red_3,input_1,out] []
input_2;GATE_3_2_2[input_1,red_3,input_2,out] []
red_3;GATE_3_2_1[input_1,input_2,red_3,out] endproc

The left side of the equation tells us that this is the debnitdof process GATE 3 2 1,
which has four variable actions: "input_1", "input_2", dr8" and "out". On the right side
of the equation we see a number of possible actions followethé process these actions

result in. These dierent possibilities are separated by the choice-oper§tir:A schematic
representation of this process definition is given in Figute

input_1
—'—)‘ ’ GATE_3_2_2[input_2,red_3,input_1,out]
input_2
GATE_3_2_1[input_1,input_2,red_3,0ut] <>—'—)Q GATE_3_2_2[input_1,red_3,input_2,0out]
red_3
4‘—)@ GATE_3_2_1[input_1,input_2,red_3,out]

Figure 7.5: Schematic of a process definition

Initially only the processes found on the right side of théMQ definitions are written by
the function output_procs(). This function, however, adds the processes that appear on the
right side of process definitions to the process-list. To@mke that processes are not defined
twice the function add_Proc() checks whether the proceasglaelded is already present in the
process-list. The nature of the processes ensures thatbgdn output_procs() finishes at
some point. Our running example gives us the following pssaefinitions (Note that the first
three processes correspond to the processes found onltheidg of the IOIMC definitions):



7.5. TrirerTooL 81

process GATE_2_2_O[input_1,input_2,out] :=

input_1;GATE_2_2_1[input_2,input_1,out] []

input_2;GATE_2_2_1[input_1,input_2,out] endproc
process BE_PASSIVE_COLD[act,out] (rate) :=
act;BE_ACTIVE[act,out] (rate) endproc

process BE_PASSIVE_HOT[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc
process BE_ACTIVE[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc

process BE_FIRING[act,out] :=
act;BE_FIRING[act,out] []
out;BE_DONE[act] endproc

red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out;GATE_DONE_2[red_1,red_2] endproc

process GATE_2_2_2[red_1,red_2,out] :=

process BE_DONE[act] :=
act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=
red_1;GATE_DONE_2[red_1,red_2] []
red_2;GATE_DONE_2[red_1,red_2] endproc

7.5 TippTool

The result of the DFT2Tipp tool can be used to analyze theraidFT using TippTool.
In this section we will describe how this analysis can beqrened. First we will see how
the IOIMC community generated by DFT2Tipp can be combinetbtm a single, weakly
bisimilar, IOIMC. Consequently we will look at how we can uSgpTool to analyze this
IOIMC to calculate interesting fault tolerance measurestie Dynamic Fault Tree. Lastly we
will look at two possible ways to improve the aggregation@fVIC.



82 CHAPTER 7. TOOL SUPPORT

7.5.1 Compositional Aggregation

A TippTool specification takes on the following formej:

specification NAME
behaviour

BEHAVIOUR FORMULA

where

PROCESS DEFINITIONS

endspec

The output of the DFT2Tipp tool are process definitions wiiaeh be used as such in
a TippTool specification. The name of this specification cancbosen arbitrarily. In this
subsection we describe the process of compositional agtypeghat can be used to compose
and aggregate IOIMC models. Before composing two I0IMC niedes recommended that
these models are first aggregated. If we look at IOIMC A in ammning example, for instance
we see that before aggregating it the IOIMC has 7 states (gees .6).

redundant input signal
live il putsg nal

GATE_2 2 _2[f B,f C[f_A]

GATEZZlfoBfA] GATE_DONE 2[foC]

LB fc A
B iB B
fc fc
GATE_2_2_0[f_B,f_C/f Al
GATE_2_2_2[f_Cf_Bf_A]
GATE_2_2_1[f_B,f_Cf_A] GATE_DONE_2[f_C/{_B]
[Xel ; i) ; A ;
[Xe B [}
fC fC

Figure 7.6: Schematic of IOIMC A as interpreted by TippTool

Itis obviousthat states GATE_DONE_2[f B,f C]and GATE_BB 2[f C,f B]are equiv-
alent except for the ordering of their actions. In the samgstates GATE_2 2 2[f B,f Cf -
Al and GATE_2 2 2[f C,f B,f_A] are equivalent. The reasoppTool sees these states as



7.5. TrirerTooL

different is that their actions are ordereéeliently. Below we show how to aggregate a single

process with respect to weak bisimilarity using TippTool.

IOIMC A is defined in the process definitions generated by DRpR as process A. To
aggregate this process we first specify it as the behavioe nédme of the specification is
chosen arbitrarily and the process definitions generatddiRW2Tipp are placed in the where-

section:

specification compaggr

behaviour

A
where
(*%%

A(£_B,f_ O (£_4);

B(a_A) (f_B);

C(a_A) (£_O);

%%*)

process

process

process

(:’:%%:':)

process

process

A :=

GATE_2_2_O0[f_B,f_C,f_A] endproc

B :=

BE_PASSIVE_COLD[a_A,f_B](4.000000) endproc

C :=
BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

input_1;GATE_2_2_1[input_2,input_1,out] []

GATE_2_2_O0[input_1,input_2,out] :=

input_2;GATE_2_2_1[input_1,input_2,out] endproc

BE_PASSIVE_COLD[act,out] (rate) :=
act;BE_ACTIVE[act,out] (rate) endproc



84 CHAPTER 7. TOOL SUPPORT

process BE_PASSIVE_HOT[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

process BE_ACTIVE[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc

process BE_FIRING[act,out] :=
act;BE_FIRING[act,out] []
out ;BE_DONE[act] endproc

process GATE_2_2_2[red_1,red_2,out] :=
red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out ;GATE_DONE_2[red_1,red_2] endproc

process BE_DONE[act] :=
act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=

red_1;GATE_DONE_2[red_1,red_2] []
red_2;GATE_DONE_2[red_1,red_2] endproc

(:’:%%:':)

endspec

To aggregate this specification with respect to weak bisintyl we call TippTool as fol-
lows:

tipptool -i compaggr_A
In this example our TippTool specification is saved in theddenpaggr_A.tpp. The flag -
I” denotes that TippTool should aggregate using IM (Intev@dViarkovian) bisimulation. The

resulting TippTool specification (written to compaggr_éutpp) is given below:

specification compaggr_Ared
behaviour



7.5. TrirerTooL 85

VQ1
where

process VQ1 := £ C; VQ2 [] f£_B; VQ3 endproc
process VQ2 := £ C; VQ2 [] f£_B; VQ4 endproc
process VQ3 := £ B; VQ3 [] £_C; VQ4 endproc
process VQ4 := £ B; VQ4 [] f_C; VQ4 [] f_A; VQ5 endproc
process VQ5 := f_B; VQ5 [] f_C; VQ5 endproc

endspec

By adding processes Qo the original specification and changing the IOIMC defoniti
of A we can replace IOIMC A's original behavior with the aggated behavior:

process A := VQl endproc

process VQ1 := £ C; VQ2 [] f£_B; VQ3 endproc
process VQ2 := £ C; VQ2 [] f£_B; VQ4 endproc
process VQ3 := £ B; VQ3 [] £_.C; VQ4 endproc
process VQ4 := £ B; VQ4 [] f_C; VQ4 [] f_A; VQ5 endproc
process VQ5 := f_B; VQ5 [] f_C; VQ5 endproc

After reducing all the IOIMC in this way we can start the compional aggregation of
the IOIMC community. Compositional aggregation consigtsamsecutively composing and
aggregating two IOIMC until only one IOIMC is left. To spegithat we want to analyze
the composition of two processes the behavior clause of ifygTdol specification must be
altered. Below, for instance, we see the behavior clausthéanalysis of the composition of
the IOIMC A and B:

hide £ B in (A |[f_B]| B)

IOIMC A and B are synchronized on action 'f_B’ (the only actithe two IOIMC share).
This action is then hidden since no other IOIMC in the comrtyunas the action in its action
signature. The resulting aggregated IOIMC is given below:

specification compaggr_ABred
behaviour

YW1
where

process YW1 :
process YW2 :

£ C; YWS5 [] a_A; YW6 endproc
a_A; YwW2 [] £_C; YW3 endproc



86 CHAPTER 7. TOOL SUPPORT

£ C; YW3 [] a_A; YW3 [] f£_A; YW4 endproc

f C; YW4 [] a_A; YW4 endproc

£ C; YWS5 [] a_A; YW7 endproc

(tau, 4.0); YW2 [] a_A; YW6 [] f£_C; YW7 endproc
(tau, 4.0); YW3 [] £_C; YW7 [] a_A; YW7 endproc

process YW3 :
process YW4 :
process YW5 :
process YW6 :
process YW7 :

endspec

We now update the original specification, replacing the 1QGINEfinitions (and action sig-
natures) of IOIMC A and B with one IOIMC definition (and actisignature) A_B (note that
the behavior-clause is set to compose and aggregate IOIM8Cafd C):
specification compaggr
behaviour

hide £ C in (A_B |[[f_C,a_A]| O

where
(*%%
A_B(f_C,a_A)(f_A)

Ca_A) (£_O);

%%7': )

process A B :=
YW1l endproc

process C :=
BE_PASSIVE_HOT[a_A,f_C](2.000000) endproc

(:’:%%:':)

process GATE_2_2_O[input_1,input_2,out] :=
input_1;GATE_2_2_1[input_2,input_1,out] []

input_2;GATE_2_2_1[input_1,input_2,out] endproc

process BE_PASSIVE_COLD[act,out] (rate) :=
act;BE_ACTIVE[act,out] (rate) endproc



7.5. TrirerTooL 87

process BE_PASSIVE_HOT[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc

input_1;GATE_2_2_2[red_2,input_1,out] []

red_2;GATE_2_2_1[input_1,red_2,out] endproc

process GATE_2_2_1[input_1,red_2,out] :=

process BE_ACTIVE[act,out](rate) :=
act;BE_ACTIVE[act,out] (rate) []
(tau,rate) ;BE_FIRING[act,out] endproc

process BE_FIRING[act,out] :=
act;BE_FIRING[act,out] []
out ;BE_DONE[act] endproc

process GATE_2_2_2[red_1,red_2,out] :=

red_1;GATE_2_2_2[red_1,red_2,out] []

red_2;GATE_2_2_2[red_1,red_2,out] []

out ;GATE_DONE_2[red_1,red_2] endproc

process BE_DONE[act] :=
act;BE_DONE[act] endproc

process GATE_DONE_2[red_1,red_2] :=
red_1;GATE_DONE_2[red_1,red_2] []
red_2;GATE_DONE_2[red_1,red_2] endproc

(:’:%%:':)

process YW1 := £ _C; YWS [] a_A; YW6 endproc

process YW2 := a_A; YW2 [] £.C; YW3 endproc

process YW3 := £ C; YW3 [] a_A; YW3 [] f_A; YW4 endproc
process YW4 := £ C; YW4 [] a_A; YW4 endproc

process YW5 := f_C; YWS [] a_A; YW7 endproc

process YW6 := (tau,4.0); YW2 [] a_A; YW6 [] f_C; YW7 endproc
process YW7 := (tau,4.0); YW3 [] £.C; YW7 [] a_A; YW7 endproc

endspec
After the composition and aggregation of IOIMC A_B and C we &aft with a single

IOIMC and so compositional aggregation is finished. In thet sebsection we will see how
we can analyze this IOIMC to determine the Dynamic Fault Sreareliability.



88 CHAPTER 7. TOOL SUPPORT

7.5.2 Analysis using TippTool

In this subsection we explain how the IOIMC representingliblavior of a DFT can be
analyzed. Let’s take a look at the resulting IOIMC of our rungnexample:

specification compaggr_ABCred
behaviour

TT1
where

process TT1 := (tau, 2.0); TT5 [] a_A; TT6 endproc

process TT2 := a_A; TT2 endproc

process TT3 := f_A; TT2 [] a_A; TT3 endproc

process TT4 := (tau, 4.0); TT3 [] a_A; TT4 endproc

process TT5 := a_A; TT4 endproc

process TT6 := (tau, 2.0); TT4 [] a_A; TT6 [] (tau, 4.0); TT7 endproc
process TT7 := (tau, 2.0); TT3 [] a_A; TT7 endproc

endspec

We can see that this IOIMC has two actions: 'a_A and 'f_Adseubsectior’.4.1). In
fact when transforming Dynamic Fault Trees into IOIMC usiigT2Tipp and compositional
aggregation the resulting I0OIMC always have two actions:aetivation action and a firing
action. These actions are always named 'a_top’ and 'f_tegpectively, where 'top’ is the
toplevel element of the DFT. Action 'a_top’ is an input-actiwhich represents the activation
of the DFT and 'f_top’ is an output-action, which represethis firing of the DFT. In other
words these actions represent the switching on and bredking of the system under analysis.

The unreliability of a system is the probability that theteys fails within a certain time
period. Looking at our example IOIMC this is the probabilibat the TippTool process has
executed action 'f_A within that time period. For contirugtime Markov chains the proba-
bility that the CTMC is in a certain state after a certain pérof time can be calculated using
differential equations. The presence of actions in TippToalgsses however makes it unclear
how to calculate such measures. This issue is handled infTég@@y assuming that all ac-
tions take place immediately. This interpretation is vesgenient to us as this means that the
IOIMC representing DFT are interpreted to activate immesdiygand also to fire immediately.
This is exactly the behavior we want for our IOIMC: there slidee no dormant period when
the system starts operating and there should be no delag iiaithng of the system when the
right conditions are met.

TippTool can compute the probability that a process is inrtagestate at a certain time.
In our example we want to know the probability that proces4 iBlin state TT2 after a certain
period of time, since TT2 is the state in which the system h#éesd. To calculate this measure
we must add a measure definitions file in the same directorgea3ippTool definition. For
our example this file looks as follows:



7.5. TrirerTooL 89

STATEMEASURE Failed TT2

The file must have the same name as the TippTool specificatilynroth extension .mdf.
Now we run the following command to calculate the measuré aitime period of 4 time
units:

tipp -s jensen -t 4 compaggr_ABCred

The result of this calculation (in this case 0.99966253)igt&n both to standard output
and to the file compaggr_ABCred.sm.Failed, since we nanmethémasure 'Failed’.

For our example calculating the unreliability was quiteyelast for other DFT it will be
more complicated:

¢ In some cases the IOIMC will still express behavior aftergizgstem has failed. In this
case we must calculate the probability that the processassiet of states instead of a
single state. The diculty will be in determining in which states the system haleta

e When Priority-AND gates are used the system may enter a statdich it can no
longer falil (it is up to the designer of the DFT to decide wieethis is desired behavior).
Unfortunately using DFT2Tipp and TippTool to transform lsicDFT into an 10IMC
will result in an IOIMC that doesn't dierentiate between states in which the system has
failed and states in which the system can no longer fail.

e There are Dynamic Fault Trees that express non-determsibishavior. This is usually
caused by multiple events happening at the same time dueharadsdependency or
shared input. TippTool handles non-determinism by assgmhiat all possible outcomes
have the same probability of occurring. This is not desimgtdvior, since the distribution
of a non-deterministic choice is unknown instead of eqbpiie.

The first two problems shown above can be solved by paralieposing the IOIMC under
analysis with a so-called Observer IOIMC. This IOIMC actesathe DFT and then responds
to the firing of the DFT by moving to a failed state. Below we & TippTool definition of
an Observer IOIMC:

process Observer := a_A;Activated [] f_A;Failed endproc
process Activated := f_A; Failed endproc
process Failed := f_A; Failed endproc

We now parallel compose this Observer IOIMC with the IOIMGlod DFT under analysis
and hide the activation and firing signal. The resulting Tigpg specification for our running
example is given below:

specification compaggr_ABCred
behaviour

hide a_A,f_A in TT1 |[a_A,f_A]| Observer



where

process TT1 := (tau, 2.0); TT5 [] a_A; TT6 endproc

process TT2 := a_A; TT2 endproc

process TT3 := f_A; TT2 [] a_A; TT3 endproc

process TT4 := (tau, 4.0); TT3 [] a_A; TT4 endproc

process TT5 := a_A; TT4 endproc

process TT6 := (tau, 2.0); TT4 [] a_A; TT6 [] (tau, 4.0); TT7 endproc
process TT7 := (tau, 2.0); TT3 [] a_A; TT7 endproc

process Observer := a_A;Activated [] f_A;Failed endproc
process Activated := f_A; Failed endproc
process Failed := f_A; Failed endproc

endspec

The states of the composite IOIMC will look like 'TTObserver’ or 'TT2Failed’. We can
now change our measure definitions file to calculate the fibtyathat the IOIMC is in any
state containing the string 'Failed’:

STATEMEASURE Failed Failed

The unreliability can now be found once again by runningptiprhis approach will also
work for IOIMC with more than one failed state or IOIMC whicb dot diferentiate between
failed and non-failed states.



Chapter 8

Conclusion

In this chapter we will draw conclusions from the researchhaee done on the compo-
sitional analysis of DFT using IOIMC. We will compare the utts of the research with the
goals set out in Sectioh.2 and we will also look forward to possible avenues of resetirah
could be pursued in the future.

8.1 Formalizing dynamic fault trees

A formal syntax for DFT was realized by defining a DFT as a dedacyclic graph and
then by imposing a number of restrictions on this graph (sdes&ction4.1). This formaliza-
tion has removed some of the vagueness of the DFT formalisencaN now strictly decide
whether a DFT is valid by checking if the restrictions of Défon 4.2 hold. The formal se-
mantics of DFT was defined by specifying an IOIMC model forre®FT element and by
defining how these IOIMC models could be combined to defind#havior of an entire DFT
(see Chaptedl). This has also helped remove the former vagueness of thefOiATalism.

In particular the problems regarding simultaneity, theusence of several events simultane-
ously, where solved by using non-determinism to model toetfaat we do not always know
the exact order in which eventfact a system.

We can thus conclude that the formalization of the DFT forsmalwas successful. It should
also be noted that we have extended the DFT formalism by adfpmore complex spares and
dependencies (see Sectibn).

Another advantage of the compositional approach to defibiRgj semantics it that the
DFT formalism can now be extended or altered more easily. [fanadion to one of the DFT
gates can be realized simply by changing that gate’s I0IMgZesentation and this does not
affect the other DFT elements. Similarly new gates with thein ®@I1MC representation can
be added to the DFT formalism. Finally it is possible to edtdre DFT formalism in total, for
instance by adding a notion of repaid]. This change could also be implemented by changing
the IOIMC representations of theffirent DFT elements.

91



92 CuarTER 8. CoONCLUSION

8.2 Compositional analysis

By finding an I0IMC model of each DFT element it became posstbl analyze DFT
in a compositional way. Instead of translating the entirel'Dito a large Markov chain the
components (elements) of the DFT are translated into IOIM@els. These IOIMC models
are then composed to find a single IOIMC which represents éaoor of the DFT (see
Chapters).

The advantage of this method is that compositional agggaan be employed to avoid
the generation of large IOIMC models. In compositional agation the IOIMC models are
aggregated at each step of the composition process using equivalence. Each time two
IOIMC models are composed the resulting model is first regglaoy a smaller, equivalent,
model before composing it with another IOIMC model.

In a number of case studies (see Chapjeve have compared the results of compositional
analysis with the results of tradition DFT analysis teclueis| (see Section.4). First of all we
found that both analysis techniques yielded the same nualeesults which suggests that the
results found by using compositional analysis can be tdusSecondly we found cases in which
compositional analysis greatly outperformed traditioaahlysis. Especially in DFT which
have a simple, dynamic, structure with few connections bamyrbasic events compositional
analysis performs relatively well. We also found cases,édwas; in which traditional analysis
outperformed the composition method. Especially in DFThviéw basic events but many
gates and interconnections traditional analysis perfaetatively well. The modularization
techniques employed in the DIFTre&3] approach to DFT analysis also drastically improve
its performance in analyzing certain DFT. Finally we haversthat the choice of equivalence
used to aggregate I0IMC models is crucial in combatting taeesspace explosion problem.
A small improvement in aggregation can, because of the itejgehature of compositional
analysis, yield a huge decrease in state space in the apgé@tMC models.

8.3 Future Work

In this section we suggest a number of topics for furtherarese First of all we look into
improving IOIMC aggregation. Secondly we discuss the stttyéordering strategies for the
compositional aggregation of IOIMC communities. Finallg wxamine the possibilities of
analyzing DFT more thoroughly using advanced logical fdasu

8.3.1 Equivalences on IOIMC

As already noted it is crucial to find a good equivalence oMOImodels. If the equiva-
lence is too loose than the aggregated IOIMC model no londgn@ately models the behavior
of the (partial) DFT. This may lead to the compositional gael yielding incorrect results.
If the equivalence is too strict, however, the aggregatdM©will be larger than necessary.
This problem is compounded by the fact that in compositianalysis IOIMC models are com-
posed frequently. We feel that the equivalence used in thgositional analysis described in
this thesis, namely weak bisimulation, is too strict. Bely® suggest a number of ways to



8.3. Future Work 93

make this equivalence less strict and we have seen in onestadbe (see Sectiof.2) that
these improvements can have a hufjea on the state spaces of the generated IOIMC models:

e Output focusing. For any IOIMC model we are really only interested in its ertdr
behavior. An IOIMC model uses this external behavior to camivate with the outside
world. In fact, because IOIMC must be input-enabled, they anleresting behavior
is an IOIMC model’s output behavior. This aspect of IOIMC ratzdis reflected in the
IOIMC model of an entire DFT: we are then interested in when@MC model signals
its failure using its one output action. We can use this motwmsplit an IOIMC’s state
space into interesting and uninteresting states. Unistiegestates are those states that
can never lead to any output action. We can now make our dgan@looser by simply
not putting any restrictions on uninteresting states. Whlisresult in the aggregation of
all uninteresting states into one single state, potegtraitlucing the state space of the
IOIMC model greatly.

¢ Ignoring Markovian self-loops In [4, Definition 13] a weak bisimulation is defined
which does not take into account Markovian transitions fistates in an equivalence
class to states in the same equivalence class. This makestmellation looser than the
Markovian bisimulation in I5, Definition 3.4]. This concept could also be applied to
our definition of weak bisimulation for IOIMC.

8.3.2 Ordering Strategies

In each step of compositional analysis two IOIMC models framIOIMC community
are chosen to be composed and then aggregated. In our sialigsve found that the order
in which the IOIMC models are chosen for compositional aggten has a huge influence
on the state spaces of the generated IOIMC models. In thsssthi@s choice has been made
by hand in an experimental fashion, but it is highly desiatol be able to choose this order
automatically in the future. It is therefore very useful twther study what is the best, or at
least a good, ordering strategy for the compositional agagien of an IOIMC community.

A number of factors influence the size of the largest appgd@MC during the compo-
sitional aggregation of a community:

e More synchronization means less stateg:irst of all we can predict the size of a com-
posite IOIMC model. In the worst case the state space of theposite IOIMC will
be the cross-product of the state spaces of the two IOIMCgbsemposed. This figure
can be reduced drastically by choosing two IOIMC models Wiiave a lot of match-
ing signals. The more the two IOIMC models have to be synaheashthe smaller the
composite IOIMC will be.

e More hiding means better aggregation. We use weak bisimulation to aggregate the
appearing IOIMC models. It is therefore to choose the coitiposorder in such a way
that the appearing IOIMC models can be aggregated signifjcaweak bisimulation
is based primarily on abstracting from internal transisiont is therefore logical that
models with a lot of internal transitions can be aggregatéat.a Internal transitions
appear when actions are hidden and therefore it is usefuidose I0IMC models for



94 CuarTER 8. CONCLUSION

composition in such a way that many signals can be hidden.lyikgpthis principal
often means that independent modules within a DFT are coedpiist since we can
then hide all the internal signals within this module.

e 4x4 > 6Xx2. As noted before the state space of a composite IOIMC modesigiset of
the cross-product of the state spaces of its component IQtd@Gels. This meant that,
in terms of state space size, it is much better to construetiange I0IMC model and
compose it iteratively with small IOIMC models to reach thaafilOIMC model than
to construct two medium sized IOIMC models and to composeetio models as the
final step in compositional aggregation.

¢ Using knowledge of DFT element modelsWe can use some knowledge of the IOIMC
models of DFT elements to predict the best order of commwsifror instance, we know
that composing an IOIMC model of some DFT element with itsileary models will
result in an IOIMC model with the same number of states, buenransitions than the
original.

8.3.3 Advanced DFT analysis

In this thesis we have focused mainly on determining the liatmdéity of systems using
DFT modelling. The unreliability of a system is the probapithat it will fail within a certain
time period. This is a much used fault-tolerance measurealwery simple one. It seems
reasonable to assume that there is also interest in moreleommeasures, for instance: the
probability that some system componéails before system componeBtor the probability
that the system will fail while some componehts still operational.

Such complex properties can be expressed using advandesisogh as continuous stochas-
ticlogic (CSL) [1] used widely in model-checking]. CSL is applicable téabelled CTM{J 3].

A labelled CTMC is a CTMC with a set of atomic propositions andbelling function which
assigns to each state the set of atomic propositions thatha in that state.

So how does this apply to DFT analysis? A DFT is traditionahd in our approach
analyzed by transforming it into a CTMC (without labellin@ut if it were possible to translate
a DFT into a labelled CTMC with an atomic propositioA$ailed for each DFT evenA and
with its states labelled to reflect the status of all the DFngs then we could check interesting
CSL properties for this labelled CTMC. To transform a DFToiatlabelled CTMC we could
apply labels to IOIMC and follow the compositional analysisthod described in this thesis.
This extension of the IOIMC formalism which involves findirgpropriate definitions for
parallel composition, abstraction and aggregation ligebe the scope of this thesis, but below
we will outline some ideas for any future research in thisare

Let’s consider the DFT in Figurg.1. For the sake of simplicity we will ignore the notion
of activation in this example. Basic eveAithas a failure rate oft and B has a failure rate
of u. We want to transform this DFT into a labelled CTMC with ths@emic propositions:
Afailed, Bfailed and Cfailed. To do this we could transform the DFT into a community of
three labelled IOIMC shown in Figui&2. We can now transform this labelled IOIMCC into
a labelled CTMC using compositional aggregation. Undealpelrcomposition sets of atomic



Figure 8.1: Example DFT.

none {A failed} {A failed}
A » f(A)!
AP={A failed} (:) D ) ( ) — ( )
none {B failed} {B failed}

M fi

B (B)!
AP=(B failed} @_D_)O_I_)O

f(B)? . .
{C failed} {C failed}

f(C)!

AP={C failed}

Figure 8.2: Community of labelled IOIMC which models the DiRTigure 8.1

propositions are simply unified and we must ensure that thvalgnce we use for aggregation
preserves the labelling of the states. The resulting lad€liTMC is shown in Figur8.3.

We could now use the labelled CTMC of Figuge3 to calculate such measures as, for
instance, the probability that will fail before B or the probability tha€ fails within a certain
time period aftelA fails.

Incorporating the concept of dormancy (see Seciidhinto this new approach should be
quite simple. We could, for instance, for a basic event addtamic propositiorAactiveand
assign it to all the active states of the IOIMC modelfofin that way we could also analyze
properties involving the dormancy of the spares in a DFT.



{A failed}

{A failed,
B failed,
C failed}

"
AllBJIC

AP={A failed,
B failed, C failed}

Figure 8.3: Labelled CTMC which models the DFT in fig@ré.



Appendix A

Proofs

A.1 Theorem3.3

For an IOIMC P relation~p we find:
1. ~p is the largest weak bisimulation on P.

Proof. First we prove that for any IOIM@® =p is the largest weak bisimulation dh To do
this we must prove thatp is an equivalence relation by proving that it is reflexivansyetric
and transitive. The proofs for reflexivity and symmetry atgte simple, but the proof for
transitivity is somewhat more complex.

For any JO-IMC P it is trivial that the identity relationdp is a weak bisimulation. For any
statesin Sp we find that §, s) € Idp and thuss ~ s. In other wordsx is reflexive. Ifs ~ t
then there is a weak bisimulatiddiwith (s,t) € R. BecauseR is an equivalence relation we
also find thatf; s) e Rand sat ~ s. We now find thats ~ t impliest ~ s. This means that is
symmetric.

Let R; andR, be two weak bisimulations oR and letR;R," be defined as therecursive
composition

RiR* = {(st) | Ane N, Xy, ..., X, € S
n>0A (S,Xl)ER]_URZ A oA (Xn,t)ER]_URz}

BecauseR; andR, are equivalence relations it is trivial thRtR," is reflexive and symmetric.
From the definition oR;R,* we can also immediately deduce that it is a transitive r@hati

We will now prove thatR;R," is a weak bisimulation relation. Recall that B, f) is in
RiR;" then there exist a series of statgs..., X, such that they are stepwise related through
eltherRé or Ry: sRx1RXo.. X Rit WhereR. is R, or R,. We find that for any actioma € Aa”
with s==>¢ there is arx; with x1=>xl and ©,%;) € Rt URy. This in turn means that there
is anx;, with x2:>x2 and §, %) € Ry UR,. So we find a series of statej ..., x;, t" such that
(s, xl) ERRUR A .. A (X, 1) e RRUR,. Thust==t’ with (s,t) € RiR,", which means that
the first clause of Definitloﬂ%.ll holds. To prove that the second clause holds we must first
consider the equivalence classefeR,".

From the definition we know tha®; ¢ RiR" andR, € R;R;". This means that any
equivalence class d¥;R," is exactly the union of one or more equivalence classd®; @nd

97



98 AprPENDIX A. PRrOOFS

it is also exactly the union of one or more equivalence cas$&,. So for any equivalence
classC of R;R," we find that there is a s€;, C, ...C|, of equivalence classes 8§ and a set
Cy,Cy5,...Cy, of equivalence classes B with n,m > 0 such that:

C=CuC,u..uC,=C/uUCjuU..UCy

It is trivial that this also holds for the internal backwarmssure of an equivalence class of
RIR":
Cint _ C;_int U C/Zint U U C/int _ C:/L/int U C/zlint U U C//int
- cee n - cee m

For a states we find that it's equivalence class f&R,": [S]gr,r,» cOntains all states such
that (5,t) € RiR,". Becausegt) € R; implies (s, t) € RiR;" we find that Flr, C [S]r,r,» @and
conversely §|r, € [S|rr,r- Because equivalence classes are disjunct we now find that if
equivalence class &, R,": C # [S]gr,r, thenC N [s]g, = 0 and alsaC N [g]g, = 0.

Let (s,t) € RiR," and let there be & such thats==¢s ands is stable. If §t) e R UR,
then the second clause of Definitiri1holds. Otherwise there exists ansuch that§, x;) €
Ri U Ry, so either § x;) € Ry or (s, X1) € Ry. For the first case we find that there isxjrsuch
that x;= x| andx; stable andy, (s, C'™™) = y,(x;, C'™), for all equivalence class& of R,
except Fg,. For the second case we find that there is<asuch that:x;=Xx; andx; stable
andyy(s,C™) = y,(x;, C"™), for all equivalence class&3’ of R, except Flg,. So we find
that there is always ar, such that;=x; andx; stable andy,(s,C™) = y,(x;,C™), for
all equivalence class&€3of RiR," except F]g,r,-- Note that the equivalence classe$d, and
[S']r, must be contained irsf]g,r,- @nd not in any other equivalence clas$pR,". The same
holds for the pairsXy, %), (X2, X3), ..., (X, t), SO in the end we find that the second clause of
Definition 3.11holds forR;R,* soR;R,* is a weak bisimulation.

If we now have thats ~p X andXx =~p t then there exist two weak bisimulatioRs and
R, such that § X) € R; and &, t) € R,. Then §t) € RiR,* and becaus& R," is a weak
bisimulation onP we find thats ~p t which means thatp is an equivalence relation.

Becausev is the union of all weak bisimulations it is trivial thatitself is a weak bisim-
ulation now that we have proven that it is an equivalencdiogla That~ is the largest weak
bisimulation onP follows immediately from its definition.

A.2 Theorem3.4

Weak bisimilarity is substitutive with parallel compositiand hiding.

P, ~ P, implies RJ|Ps~ Py|Ps
P, ~ P, implies Rj|P, = P3P,
P, ~ P, implies hideay,...,a,in P, ~ hide ay, ..., a, in P,

Proof. We now prove that weak bisimilarity is substitutive with alé&l composition. LeP;
and P, be IOIMC with identical action signatures, IBtbe their union and lex ~p y. This



A.2. THEOREM 3.4 99

means that there is a weak bisimulat®on P such that X, y) € R. We now define the relation
R as follows:

R ={(Xlz¥ll2) | (xy) € R A z€ Sp;}

BecauseR is an equivalence relation dit is trivial thatR’ is also an equivalence relation on
PJ|Pa.

Let (s|u,tjlu) € R, then & t) is in R. Now let Sju=—s||u with a € A¥. This means
a
that there exist’||u” ands”||u”” such thats—=¢g’, u=u", s’|lu” - s”|lu”’, =S and
a
u”=U’. From the definition of parallel composition we can deduc fi|jlu’ —> S”||u”’
a

implies that one of the following holds” —+ s” A U = U” /\ ac Act(P) A a ¢ Act(P3)
or u” ~}» u” A s” =s" AaeActPs) A ag ActP)ors” ~}» S” AU b U” ANac
Act(P) A a € Act(P3). In other words elthes:>s’ A U=U A ae Act(P) A a¢ Act(Ps) or
U—U' A S==F A ae Act(P3) A a ¢ Act(P) OF S—=8 A U=SU A ac Act(P) A a e Act(Ps).
Because ¢, t) € Rwe find that there is # with (s, t’) € Rsuch that: t=st' A U==U A ac
Act(P) A a ¢ Act(Ps) or U=l A t==t A ae Act(P3) A a ¢ Act(P) o t=st’ A U==U' A
a € Act(P) A a € Act(P3). From the definition of parallel composition we now knowttha

t||u:a>t’||u’ and from the definition oR we know that §||u’, t'||u’) is in R. This means that
the first clause of Definitio.11holds forR'.

From the definition oR’ we can deduce that it has the following equivalence classes:
S*/R ={{xly| xe C} | C € Sp/R Y € Sp,}

Because ¢ S) € Rif and only if Yu € Sp, - (9|u, S|lu) € R we find that for an equivalence
class Blulr: [Sllu]lr = {S|lu| S € [S]r}.

Now let (d|u, t|ju) € R with sju=¢||u’ ands||u’ stable and le€ be an equivalence class
of R with C # [S||u]r. From the definition of parallel composition we know thasthieans
thats—=¢s andu=u’ and boths' andu’ stable. We know that each equivalence clas® o
derived from an equivalence class®fnd a state it5p,. Let D be that equivalence classRf
and lety be that state. S@ = {qly| s€ D} andu =y — D # [S]r. Note that ifu” # vy, s||u
cannot be irC. Now we find the following for the internal backward closufe®

cnt {(Xly | Ixly € C - X|ly =Xy}

{(X|ly | IXe D - X=X A Y=Y}



100 AprPENDIX A. PRrOOFS

If we now look at the cumulative rate sfiju’ to C™ we find:
’)/M(S,Hu,, Cint)

A
= > {A]13AxeD S " X A X=X A U=yl +

zmﬂuxeDuuﬁMyAgzmAyzwn

A
Z“/”HXED-S'—HMX'/\ X=X AU =y} +

A
ENAHXGDUU%MYA§:XAYZWH
(Becauses andu’ are stable)

Yu(S, DM + y (U, (Y™ ,ifU=yASeD

_ (s, D™) Jfu=yAs¢D
U, (yE™) Jifu#yAseD
0 Jfw £y AS¢D

yu(s, D™ ifU=yAS¢D
= {yn(U ™) LifuU £y ASeD
0 Jfu+£yAnseD
(Becausar =y — D # [S]lrkmeans thatr =y A S € D is never true.)

Because ¢ t) € Rwe know thats=+¢s ands stable imply that there is & such that—=—t’
andt’ stable with §,t") € R* andy, (s, D™) = y,(t’, D'™) for every equivalence clag3 of R
except Br. Itis furthermore trivial thas' andt’ are in the same equivalence clas$ofWe
now conclude that:

yu(Slu,C™)

yu(s, D) ifw=yAS¢D
= {ya(U )™ LifU £y A SeD
0 JfuU#£yAse¢D
yu@, DM ifU=yAt ¢D
= Lyu(U {yf™) ifuyAteD

0 U £y At ¢D
(yw(t’, D) = v, (s, D'™) because ¢ D implies thatD # [S]r.)
S (t/”u/, Cint)

So clause two of Definitiod.11holds forR. For any state € Sp, we find that if k,y) € R
then ||z yl|z2 € R and sinceR is a weak bisimulatiorx||z ~ y||z thus proving that weak
bisimilarity is substitutive with parallel composition.

1Becauseg t) € Rands=¢ there is ay such that=y and @, y) € R. For this pair clause 1 and 2 of weak
bisimulation must hold once more. Eventually we will fitidhis way.



A.2. THEOREM 3.4 101

We now prove that weak bisimilarity is substitutive with img. LetP be an IOIMC and
let s ~p t then there is a weak bisimulatidhon P such that § t) € R. Let B C Ext(P) be a
subset of the visual actions Bfand letR’ be a binary relation defined as follows:

= {(hide Bin shide Bin) | (s,t) € R}

It is trivial that R is an equivalence relation dmnde B in P Let hide B in s—hide Bin &.
From the definition of hiding we can immediately deduce thate exists an € N with n > 0,
a series of states, ..., X, and a series of actions, ..., b, € B such that:

by by bn-1 bn
S=X=>.. xk:>xk+1 =X =S

Becauseg t) € Rwe find a series of states, .. such that:

’nl

bn-1 bn
t:>x1=> x{<=>xk+l =X =t

It follows thathide B in t=>hide B in t so the first clause of Definitiod.11holds forR.

Let hide B in s=hide B in $ andhide B in $ stable. This means that ttgere is e N
with n > 0, a series of actionts, ..., b, and a series of states, ..., X, such tha‘s::»xl Xn=¢
with by, ..., by € B. Fort we then flnd the same series of actions and a weakly bisinetaofs
states. We particularly find axj such that X,, x;) € R. Becausex,—s ands’ stable we find
at’ such thatx,=—t" andt’ stable withy,,(s, D) = y,(t’, D) for all equivalence classd3 of
R except for F]r and §,1t") € R. Becauseéhide B in $ is stables andt’ have no outgoing
transitions labelled with an action B

From the definition oR we see that its equivalence classes can be defined as follows:
{{hide Binx| xe D} | D € S?/R}

Note that for any statg in S we find that hide B in ¥r = {hide Biny|y € [y]r}.

Let C be an equivalence class Bf such thaiC # [hide B in $]g and letD be the corre-
sponding equivalence class®fthusD # [S]r. We now find the following for the cumulative
rate ofhide B in $to C":

yM(hlde Bin $ C")
= {|A2]3(hide Bin %) € S¥ (hideBiny e C-

hideBin s ~}»M hide B in X A hide B in X=hide B in %}
= {|2]3(hide Bin%) e S¥ xeD-

A
hide B in $ " hide B in X A hide B in X=hide B in %}
A
= {2]3IX € S¥ xeD-5 —" ¥ A hide B in x=hide B in %}
— YM(S/, Dint+)

HereD™ = {x' | 3x € D - hide B in X=hide B in %. Note thatD"™* 2 D'™. For somen € N
with n > O letEy, ..., E, be the equivalence classesRihat can reac with a number of weak



transitions labelled with actions i or with a weak move (note that this means tbatself is
always inEg, ..., E,). In other words we find that:

VE,-(Ye€ Ey-dmeN, fy, ..., fne S by, ...,bn € B
b. bm
M>0A e=f..fni1=fn A fne D)

When we hide the set of actiomsin the states of the equivalence clasEgsve find that they
move internally to states in equivalence cl&sNote that becausieide B in $ is stable and
C # [hide B in g]r, [S]r can not be inE (that would either mean thdtide B in $ moves
internally to a state i€ making it unstable or thdtide B in $is in C but this is not possible
becaus€ # [hide B in ¢]r). SoD™* = [ Jg E™. Now we find thaty, (s, D'"*) = y,(t", D*)
(Recall that we found earlier that,(s,D) = yu(t’, D) for all equivalence classe® of R
except F]r which is not inE). In the same way we showed thai(hide B in $,C) equals
yu(S, D), we can now show that,(t’, D™*) equalsy, (hide B in t,C™). This proves that
the second clause of Definitighl1 holds forR. This means thatide B in s~ hide B int
whens ~ t and thus weak bisimilarity is substitutive with hiding.



Appendix B

Complete IOIMC models of DFT elements

In this appendix the complete IOIMC models of DFT elements given. For each DFT
element we will give the IOIMC action signature and its babain both IML and schematic
form based on its actions and delay-rates. Mk language is given in Sectidh 1. Together
the action signature and behavior define the IOIMC as in DiedimB.2. The action signatures
are based on the immediate surroundings of the corresppil element. This translation
can be found in Sectiod.7. In the schematic representation of the IOIMC behavioretbtt
lines between two transitions or states represent a finitgeu of similar transitions or states.
Both thelML and schematic representations of the behaviors omit iagtitns from a state to
itself. All models are input-enabled and the true behawarsbe found by adding a transition
to itself for any state that is missing an outgoing input@ctiThis transition should of course
be labelled with the missing input action.

The schematic representations of the IOIMC models givenhigndppendix are often recursive.
In these schematic representations states have names rangepers in the form of actions.
Dotted states represent states that are already presdr giggram only with dferent pa-
rameters. For instance, in Figuse2, the transition from statAND(f (M), a(M), F;) to dotted
stateAND(f(M),a(M), F; \ f;) labelled f(i;)? should be read as a transition from the start-
ing state to itself, except with one element of the vedipremoved. Intuitively this means
that, after one of its inputs fires, an n-input AND-gate b&sathe same as an (n-1)-input
AND-gate. Dotted lines between two states, for instancee &tBlD(f (M), a(M), F; \ f;) and
AND(f(M),a(M), F; \ f,) in FigureB.2, denote a finite number of states. The same goes for
dotted lines between transitions.

B.1 Notation

To make talking about IOIMC somewhat easier we now defineahguageML [15, section
5.1]. We will use this language to describe IOIMC textuaM/e assume a countable set of
variablesV that will be used to express repetitive behavior.

Definition B.1 Let 1 € R*, a € Act and Xe V. We define the languag®iL as the set of

expressions given by the following grammar.
E:=0lag|(V.EIE+EI X x=E| L

103



104 AppenDIX B. CompLETE IOIMC mopELS oF DFT ELEMENTS

The intuitive meaning of the language constricts is as ¥adlo

e 0 describes a terminated behavior that cannot perform aeyaictive- or Markovian
transition.

e a.E describes an IOIMC that, after performing interactsmvill behave like the IOIMC
described bye. We say that is action prefixedy a.

e (1).E describes an IOIMC that will behave like IOIME after a delay which is expo-
nentially distributed with ratd. We say thak is delay prefixedy A.

e E + F describes two alternatives. The IOIME+ F may behave like IOIMCE or like
IOIMC F. How this choice is made depends on the IOIE@ndF.

e x=E describes a recursive behavietE behaves like IOIMCE, but when the variablX
is encountered it reinitializes te-E.

B.2 Cold Basic Event

Action signature

For IOIMC CBE(fy, au, rate) we find action signatur8igwith:
—in(Sig = {au}

—out(Sig) = {fu}

—int(Sig =0

IML definition

CBE(fy, au, rate)
CB Eactive( 1:M ) rate)
CBEiiing(fm)

an 2.C BEgciive( fu, rate)

(rate).CBEring(fm)
fu!.0

Schematic of behavior

A schematic of the behavior of a cold basic event can be foaffigire4.7.

B.3 Warm Basic Event

Action signature

For IOIMC WBHfy, av, ratea, ratep) we find action signatur8igwith:
—in(Sig = {am}
—out(Sig = {fu}



B.4. Hor Basic Event 105

—int(Sig) = 0

IML definition

WBHfu, au, ratea, ratep)
W BEqcive( fu, raten)
W BEiring( fm)

an 2.W BEcivel fu, raten) + (ratep).W BEiing( fu)
(ratea).W BEiing(fm)
fw!.0

Schematic of behavior

A schematic of the behavior of a cold basic event can be fonifdigure4.8.

B.4 Hot Basic Event

Action signature

For IOIMC HBE(fy, av, rate) we find action signatur8igwith:
—in(Sig = {am}

—out(Sig = {fu}

—int(Sig =0

IML definition

HBE(fy, am, rate) am ?.H BEagiive( fv, rate) + (rat€).HBEgiing (fm)
HB Eqciive( fu, rate) (rate).H BEgiing ()
HBEsiing(fm) = fu!.0

Schematic of behavior

A schematic of the behavior of a cold basic event can be foaffdgure4.9.

B.5 OR-gate

Action signature

For IOIMC OR(fy, au, Fi) we find action signatur8igwith:
—in(Sig = {fi | fi e F}

—out(Sig = {fu}



106 AppenDIX B. CompLETE IOIMC mopELS oF DFT ELEMENTS

—int(Sig) = 0

IML definition

Schematic of behavior

A schematic representation of the behavior of an OR-gatdedaound in Figure3. 1.

OR(f(M),a(M),F_i)

f(i_n)?

Figure B.1: Schematic of the behavior of an OR-gate.

B.6 AND-gate

Action signature

For IOIMC AND(fy, aw, Fi) we find action signatur8igwith:
—In(Slg) = {f, | fi e Fi}

—out(Sig = {fu}

—int(Sig =0

IML definition

_ [ tul0 VPR =)
AND(fu,am, Fi) = { ZI:EFi fi2 AND(fy,am, Fi \ (f)) , otherwise

Schematic of behavior
A schematic representation of the behavior of an AND-gaitebeafound in Figures.2.



B.7. K/M-GATE

AND(f(M),a(M),F_i)

AY
] AND((M),a(M),F_iVi_1)
4

] AND(H(M),a(M),F_i\f_n)

AND(f(M),a(M),<>)

: f(M)! :

Figure B.2: Schematic of the behavior of an AND-gate.

B.7 K/M-gate

Action signature

For IOIMC KM(fy, am, k, m, F;) we find action signatur8igwith:
—In(Sl@ = {f, | fi e Fi}

—out(Sig) = {fu}

—int(Sig =0

IML definition

KM(fu,am, kK, m F;) =
fl.0 i |Fil < m—k
;:eFi fi2.KM(fu, aw, k. m Fi\ (f)) , otherwise

Schematic of behavior

A schematic representation of the behavior of/Mkjate can be found in Figure.3.

B.8 PAND-gate

Action signature

For IOIMC PAND(fy, av, Fi) we find action signatur8igwith:
—In(Sl@ = {f, | fi e Fi}
—out(Sig = {fu}

107



108 AppenDIX B. CompLETE IOIMC mopELS oF DFT ELEMENTS

KM(f(M),a(M),k,m,F_i),

if |F_i|>m-k f(i_1)?

1 KM((M),a(M).km,F_iVf_1)

Loty

) KM(f(M),a(M),k,m,F_i\f_n)

KM(f(M),a(M).k,m,F_i),

otherwise [ ) foa :: ::

Figure B.3: Schematic of the behavior of AMkgate.

—int(Sig) = 0
IML definition
PANufM, am, F,) =

f(A)!.0 _ Jif Fi =)
head F; 2.PAND(fy, a, tail F;) + fota'l Fif20 , otherwise

Schematic of behavior

A schematic representation of the behavior of a PAND-gatebeafound in Figure3.4.

B.9 Spare gate

Action signature
For IOIMC S fu, au, fer. S) we find action signaturigwith:
—in(Sig = {aw} v (US‘:,Us)€§ UEZEUS us)

—ou(Sig) = {fu} U (&9 a,)
—int(Sig = 0



B.9. SPARE GATE 109

PAND(f(M),a(M),F_i\f(i_1))

PAND(f(M),a(M),F_i)

Eotiny

PAND(f(M),a(M),k,m,<>)

f(m)!

Figure B.4: Schematic of the behavior of an PAND-gate.

IML definition

SAfu, a, for, S) =
SGp(fm, am, fpr, S)

SG p(fum, am, for, S) =
for2.SGon(fm» au, S) +

(as,U s)€§ useUsg

Z Z Us?.SGD,p(fM, awm, fpr, § \ <(as’ US))) +

Us
am ?.SGA,p(fM, fpr’ §)
SGN(ASTS) =
3 U98 (51Us 2. SG, (i, 2w, S\ (@ U)) +
aM?.SGAN(fM, §) ) if § = <>
fm!.0 , otherwise
SGA,P(fM’ fpl’§) =
for2.SGan(fu, S) +

(as,U s)eg UseUsg

D Us2SGup(fu, for, S\ (a5, Us)))

Us
SGw(A.S) =
first head S!.SGy p( fu, head second head, tail S)+

2695 (2 U2.SGan(fw. S\ ((as. Us)))) ifIS|> 0
fm!.0 , otherwise



110 AppenDIX B. CompLETE IOIMC mopELS oF DFT ELEMENTS

Remember tha® consists of tuples of an activation signal and a vector aftaling signals for
each of the spare gate’s spares. fBst head S! denotes the activation signal of the first spare
andhead second head denotes the firing signal of this spare since the vector afliisg

signals for each spare always starts with the spare’s filgitas

Schematic of behavior

A schematic representation of the behavior of a spare gatbefound in Figuré3.5.

SG_DP
(f(M).a(M).f(pr).S)

f(pr)?

~

N SG_D,P
b o, fpn.sis_1)
4

M SG_DP
b aowam fon.sis_n)
’

SG_DN
(f(M).a(M).S)

SG_DN
.12 L. (wamsis_1)
u(s_1)?  ,e""Ts

i SG_DN
iL. (a8

SG_DN
(f(M).a(M).<>)

SG_AP
(V). f(s_1).\s_1)
us 1)?  emT -
_|_).' \ SG_AP .
" 2 (M).(pr) S\s_1) 3 { '
’\‘-‘ "-‘ -’ SG_AN
ion H (f(M),S\s_1)
(f(M).f(pr).S) E
u(s_n)? wsnye ettt
SG_AP K
; ((M).f(pr).S\s_n) N :‘ '
‘eo..*’ SGAN
(f(M),S\s_n)
SG_AN
(fM),<>) -

Figure B.5: Schematic of the behavior of a spare gate.

B.10 Activation Auxiliary

Action signature

For IOIMC AA(ay, Aw) we find action signatur8igwith:

—|n(8|@ = {aX,M | aym € Ay}
—out(Sig) = {am}



—int(Sig) = 0

IML definition

ax M EAM

ANaw,Av) = > aw?au!.0

ax.Mm

Schematic of behavior

A schematic representation of the behavior of an activatioxiliary can be found in Fig-
ureB.6.

AA(a(M),AM))
a(M,X_1)?

Eamxjp

Figure B.6: Schematic of the behavior of an activation aaml

B.11 Firing Auxiliary

Action signature

For IOIMC FA(fu, F},) we find action signaturigwith:
—in(Sig = {f}, | f;, € F},}

—out(Sig) = {fu}

—int(Sig = 0

IML definition

fu€Fy

FA(fw,Fi) = ) fu2fu!0
i

Schematic of behavior

A schematic representation of the behavior of a firing aasylican be found in FigurB.7.



FA(H(M),F*(M))

f*(M)_1?

f*(M)_n?

Figure B.7: Schematic of the behavior of an activation aawyl



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A Aziz, K Sanwal, V Singhal, and R K Brayton. Verifying conuous-time markov
chains. InEighth International Conference on Computer Aided Veriima volume
1102, pages 269-276. Springer Verlag, 1996.

Galileo DFT analysis tool. httpwww.cs.virginia.edfiftree. Galileo Website.

C Baier, B Haverkort, H Hermanns, and J-P Katoen. Modeeking algorithms for
continuous-time markov chaindEEE Transactions on Software Engineeri@§(6):524—
541, 2003.

C Baier, H Hermanns, J-P Katoen, and V Wolf. Comparatirgnbhing-time semantics.
In CONCUR pages 492-507, 2003.

A Bobbio, G Franceschinis, R Gaeta, and L Portinale. Ratec fault tree for the de-
pendability analysis of redundant systems and its higbtpetri net semanticslEEE
Transactions on Software Engineerjr&29(33):270-287, 2003.

H Boudali. A Temporal Bayesian Network Reliability Modeling and Aseyramework
PhD thesis, University of Virginia, 2005.

M A Boyd and S J Bavuso. Simulation modeling for long diwatspacecraft control

systems. IiProceedings of the Annual Reliability and Maintainabilgymposiunpages
106-113, 1993.

Mario Bravetti. Revisiting interactive markov chainglectr. Notes Theor. Comput. Sci.
68(5), 2002.

D Coppit and K J Sullivan. Formal specification in collabtive design of software tools.
Submitted to High Assurance System Engineering (HASE e@mde 1999.

O Coudert and J C Madre. Fault tree analysi6?° prime implicants and beyond. In
Proceedings of the Annual Reliability and Maintainabil8ymposiun1993.

J B Dugan, S J Bavuso, and M A Boyd. Dynamic fault tree n®der fault tolerant
computer system3EEE Transactions on Reliabilify#1(3):363-377, September 1992.

J B Dugan and K S Trivedi. Coverage modeling for depeiialanalysis of fault-
tolerant systemdEEE Transactions on Computer38(6):775—-787, 1989.

113



114 BiBLIOGRAPHY

[13] Y Dutuit and A Rauzy. A linear time algorithm to find moesl of fault trees.IEEE
Transactions on Reliability45(3):422—-425, 1996.

[14] R Gulati and J B Dugan. A modular approach for analyzitagic and dynamic fault
trees. InProceedings of the Annual Reliability and Maintanabilityngposium pages
69-75, 1998.

[15] H Hermanns. Interactive Markov Chainsvolume 2428 ofLecture Notes in Computer
Science Springer-Verlag, 2002.

[16] H Hermanns, U Herzog, U Klehmet, V Mertsiotakis, and Md@e. Compositional per-
formance modelling with the tipptooRerformance Evaluatiqr89(1-4):5-35, 2000.

[17] H Hermanns and J-P Katoen. Automated compositionakdachain generation for a
plain-old telephone systenscience of Computer Programmirg6(1):97-127, 2000.

[18] R A Howard. Dynamic probability systems. Volume 1: Markov moddlecision and
Control. John Wiley & Sons, Inc., 1971.

[19] P A Lee and T Andersorfault tolerance: Principles and Practiceolume 3 ofDepend-
able Computing and Fault-Tolerant systerRsentice Hall, 1981.

[20] J Levine, T Mason, and D Browr.ex & Yacc O’Reilly, second edition edition, 1992.

[21] N A Lynch and M R Tuttle. An introduction to inpfdutput automataCWI Quarterly
2(3):219-246, 1988.

[22] M. Malhotra and K. S. Trivedi. Dependability modelinging petri-netsIEEE Transac-
tions on Reliability 44(3):428-440, September 1995.

[23] R Manian, J B Dugan, D Coppit, and K J Sullivan. Combiniagous solution techniques
for dynamic fault tree analysis of computer systeti&E International High-Assurance
Systems Engineering Symposjn21-28, 1998.

[24] R Milner. Communication and Concurrencirentice Hall Inc., 1989.

[25] S. Montani, L. Portinale, A. Bobbio, and D. C. Raiteriutdmatically translating dynamic
fault trees into dynamic bayesian networks by means of avaodt tool. InProceedings
of The First International Conference on Availability, Rélility and Security (ARES)
pages 804—-809. IEEE Computer Society, 2006.

[26] D C Raiteri, M lacono, G Franceschinis, and V VittoririRepairable fault tree for the
automatic evaluation of repair policidsternational Conference on Dependable Systems
and Networkspages 659-668, 2004.

[27] A Rauzy. New algorithms for fault tree analysifeliability Engineering and System
Safety 40:203-211, 1993.

[28] W J Stewart. Matrix-Geometric Solutions in Stochastic Models, An Aitonic Ap-
proach The John Hopkins University Press, 1981.



BIBLIOGRAPHY 115

[29] W J Stewart.Introduction to the Numerical Solution of Markov Chairfarinceton Uni-
versity Press, 1994,

[30] K K Vemuri, J B Dugan, and K J Sullivan. Automatic syntlsesf fault trees for
computer-based system&EE Transactions on Reliabilityt8(4):394-402, 1999.

[31] W E Veseley, F F Goldberg, N H Roberts, and D F Ha&sllt Tree Handbookvolume
(NUREG-0492). United States Nuclear Regulatory Commisi®a1.

[32] H A Watson and Bell Telephone Laboratoridsaunch Control Safety Studell Tele-
phone Laboratories, 1961.

[33] D J White. Markov Decision Processedohn Wiley & Sons Ltd., 1993.



