
The Tree Processing Language

Defining the structure and behaviour of a tree

Name E. Papegaaij
Email e.papegaaij@alumnus.utwente.nl

Supervisors dr. ir. Theo C. Ruys
ir. Philip K.F. Hölzenspies
dr. ir. Arend Rensink

Institute Unversity of Twente
Chair Formal Methods and Tools

Enschede, March 4, 2007

mailto:e.papegaaij@alumnus.utwente.nl

Abstract

Tree structures are commonly used in many applications. One of these is a com-
piler, in which the tree is called an abstract syntax tree (AST). Different techniques
have been developed for building and working with ASTs. However, many of
these techniques are limited in their applicability, require major effort to imple-
ment or introduce maintenance problems in an evolving application.

This thesis introduces the Tree Processing Language, a language for defining
the structure of a tree and adding functionality to this tree. The compiler tplc is
used to produce the actual class hierarchy implementing the specified tree. TPL
provides a clear separation between the structure of a tree, a tree definition, and
behaviour of a tree, logic specifications. Different aspects of the behaviour of a tree
can be provided in separate logic specifications, allowing a clear separation of
concerns.

TPLc generates a heterogeneous tree structure with strictly typed children.
Functionality in a logic specification is specified using the inheritance pattern. To
allow different inheritance trees in different logic specifications, the inheritance
pattern is enhanced with multiple inheritance. For languages that do not support
multiple inheritance, the inheritance pattern with composition is developed.

To prove the applicability of tpl, tplc is written in tpl. When compared with
an implementation in Java, this implementation provides a better separation of
concerns and is easier to maintain.

Samenvatting

In veel systemen worden boom structuren gebruikt. Eén van deze is een vertaler,
waarin de boom een abstract syntax tree (AST) wordt genoemd. Er zijn ver-
schillende technieken ontwikkeld om ASTs te construeren en er mee te werken.
Echter, veel van deze technieken zijn beperkt in hun bruikbaarheid, vereizen veel
moeite om te gebruiken of introduceren onderhouds problemen in een veranderd
systeem.

Deze scriptie introduceert the Tree Processing Language, een taal voor het definié-
ren van een boom en het toekennen van functionaliteit aan deze boom. De vertaler
tplc produceert de uiteindelijke klasse hiërarchie, die the opgegeven boom imple-
menteert. TPL biedt een duidelijk scheiding tussen de structuur van een boom,
een tree definition, en het gedrag van een boom, logic specifications. Verschillende
aspecten van het gedrag van een boom kunnen in losstaande logic specifications
gegeven worden. Dit staat een duidelijke scheiding van gedrag toe.

TPLc genereert een heterogene boom structuur met strict getypeerde kinderen.
Functionaliteit in een logic specification wordt gespecificeert met behulp van het
inheritance pattern. Het inheritance pattern wordt uitgebreid met meervoudi-
ge overerving om het mogelijk te maken om verschillende overervingsbomen te
gebruiken in verschillende logic specifications. For talen die geen meervoudige
overerving ondersteunen is het inheritance pattern met compositie ontwikkeld.

Om de bruikbaarheid van tpl te bewijzen is tplc geschreven in tpl. Wanneer
deze versie vergeleken wordt met een implementatie in Java blijkt dat de versie in
tpl een betere scheiding van gedrag heeft en beter te onderhouden is.

ii

Preface

Compiler construction has always been one of my favourite fields of software en-
gineering. In the past few years I’ve written several parsers and compilers. Of
these compilers, the compiler for the functional programming language Tina has
been the most challenging. I used a hand-written heterogeneous abstract syntax
tree as underlying data structure. The most important algorithm applied onto
this AST, the transformation of Tina into a core lambda expression language, was
written as part of these AST node classes. However, the overwhelming number
of AST classes (almost 100) made this approach increasingly difficult to maintain
when other algorithms (such as a lambda lifter) where added. At that moment, it
became clear that a more structured approach was required. To keep the devel-
opment of an application, based on a heterogeneous tree, maintainable, different
algorithms needed to be separated in different files. The development of tpl is an
attempt to provide such an environment.

When I first approached Theo C. Ruys, my premiere supervisor, for an assign-
ment, I has no idea I would be solving this problem, which had bothered me for
a long time. At first, ambitious as I was, I proposed to design and implement
a completely new parser generator. Luckily, Theo slowed me down a bit and
directed me to focus on the real problem: the heterogeneous AST.

For his help in concreting the features of tpl, reading and correcting this thesis
and his patience during the endless discussions we had last year, I would like to
thank Theo C. Ruys, my premiere supervisor. His guiding helped me structure
my thoughts, to be able to write them down. I would also like to thank Philip K.F.
Hölzenspies for his help in writing and formatting this thesis. His knowledge of
the English language has proven to be far better than mine. Last, but not least,
I would like to thank Arend Rensink for having taken the time to examine this
thesis.

Emond Papegaaij
Enschede, March 4, 2007

iv

Contents

1 Introduction 1
1.1 Compiler Construction and Abstract Syntax Trees 1

1.1.1 Lexical Analysis and Parsing 1

1.1.2 Construction of the AST . 2

1.1.3 Context Checking and Code Generation 3

1.2 Problem Statement . 3

1.3 Outline . 4

2 Related Work 7
2.1 The Organisation of an AST . 7

2.1.1 Homogeneous ASTs . 7

2.1.2 Heterogeneous ASTs . 8

2.1.3 Homogeneous versus Heterogeneous 12

2.2 Applying Algorithms to an AST . 13

2.2.1 Checking the Node Type . 13

2.2.2 Inheritance Pattern . 14

2.2.3 Visitor Pattern . 15

2.2.4 Multiple Dispatch . 17

2.2.5 Aspect-Orientation . 18

2.2.6 Attribute Grammars . 18

2.3 Available Parser Generators and Tree Processors 19

2.3.1 Lex and Yacc . 19

2.3.2 ANTLR . 19

2.3.3 JavaCC . 20

2.3.4 SLADE . 20

2.3.5 SableCC . 21

2.3.6 JFlex, CUP and Classgen . 21

2.3.7 Treecc . 22

3 The Tree Processing Language 23
3.1 Rationale . 23

3.1.1 Structure of the Tree . 24

3.1.2 Behaviour of the Tree . 24

3.2 Architectural Overview . 26

3.3 Tree Structure . 27

3.4 Adding Functionality . 28

3.4.1 Attribute Grammars . 29

3.4.2 Test/Query Language . 30

3.5 Advanced Usage of the Inheritance Pattern 31

3.5.1 Example . 31

3.5.2 Inheritance Pattern with Multiple Inheritance 32

3.5.3 Inheritance Pattern with Composition 32

vi Contents

3.5.4 Expression Language Revisited 35

4 Language Specification 37
4.1 Introduction . 37

4.2 Tutorial . 37

4.2.1 Tree Definition . 37

4.2.2 Interpreter . 39

4.2.3 Pretty Printer . 39

4.2.4 Context Checker . 41

4.2.5 Running the Example . 41

4.3 Common Syntactical Elements . 43

4.4 Tree Definition . 44

4.4.1 The AST Node . 45

4.4.2 Types . 45

4.4.3 Top Level Structure . 46

4.4.4 Node Definition . 46

4.4.5 The Structure of the Generated AST 48

4.4.6 Comments and Headers . 50

4.4.7 AST Construction . 50

4.5 Logic Specification . 51

4.5.1 Top Level Structure . 52

4.5.2 Node Declaration . 52

4.5.3 Attributes . 54

4.5.4 Interface Methods . 54

4.5.5 Implementation Methods . 55

4.5.6 Tree Traversal . 55

4.5.7 Inheritance . 57

4.5.8 Macros in Logic Actions . 57

4.5.9 The Structure of the Generated AST 61

4.5.10 Comments and Headers . 63

5 Design of TPLc 65
5.1 Hierarchy . 65

5.2 Driver . 66

5.3 Parser . 66

5.3.1 Common Tokens . 66

5.3.2 Tree Definition . 69

5.3.3 Logic Specification . 69

5.4 Context Checker . 70

5.4.1 Tree Definition . 70

5.4.2 Logic Specification . 72

5.4.3 Actions . 73

5.4.4 Node Selection . 73

5.4.5 Added Attributes . 73

5.5 Generator . 75

5.5.1 Generation Targets . 75

5.6 String Template . 78

5.7 Runtime Library . 78

5.7.1 Node Base Classes . 78

5.7.2 Tree Construction Classes . 78

5.7.3 Type Conversion Classes . 78

5.7.4 Runtime Node Selection . 79

5.7.5 ANTLR Integration . 79

Contents vii

6 Conclusions and Future Work 81
6.1 Summary . 81

6.2 Evaluation . 81

6.3 Future Research . 82

6.3.1 Multiple Bindings for Logic . 82

6.3.2 Inclusion of Pattern Matching 82

6.3.3 Merge Inheritance Trees . 83

6.3.4 Attribute Grammars . 83

6.3.5 Addition of Children in a Subclass 83

6.3.6 Accessing Attributes in other Logic Specifications 83

6.3.7 Graphs . 84

6.3.8 Visiting Pattern . 84

A Software Requirements Specification 85
A.1 Environment . 85

A.2 Structural Organisation . 85

A.3 User Interaction . 85

A.3.1 Input . 85

A.3.2 Syntax . 85

A.3.3 Messages . 86

A.3.4 Output . 86

A.4 Language Features . 86

A.4.1 Tree Definition . 86

A.4.2 Logic Specification . 87

A.5 Nonfunctional Requirements . 88

B Testing 89
B.1 Runtime Library . 89

B.2 Parser . 89

B.3 Context Checker . 90

B.4 Generator . 90

C Improvements in the Final Version 91
C.1 Structural Changes . 91

C.1.1 Parent Type . 91

C.1.2 Setting of the Parent . 91

C.1.3 Accessor Methods . 91

C.1.4 Comments and Headers . 92

C.2 For-Each Statement . 92

C.3 Node Selection . 92

D Visiting Methods and Attribute Grammars 93

E Calculation Language Code Listings 99
E.1 Sample Input . 99

E.2 Driver . 99

E.3 Parser Specification . 100

E.4 Tree Definition . 101

E.5 Context Checker . 102

E.6 Interpreter . 103

E.7 Pretty Printer . 104

viii Contents

F Planning 107
F.1 Requirements Analysis and Design . 107

F.2 Prototype Implementation . 107

F.3 Design Refinements and Syntax Fixation 107

F.4 Final Product Implementation . 108

List of Figures

1.1 Example parse tree . 3

1.2 Example abstract syntax tree . 3

2.1 AST with a single inheritance level . 9

2.2 AST with inheritance on alternatives 10

2.3 AST with custom defined inheritance 11

3.1 Architectural Overview . 27

3.2 Functionality added to the AST nodes 28

3.3 Behaviour with the inheritance pattern 33

3.4 Inheritance pattern with multiple inheritance 33

3.5 Inheritance pattern with composition 34

3.6 Inheritance pattern with composition and interfaces 35

3.7 Functionality added to the AST nodes 36

4.1 Class diagram for tree definition . 48

4.2 Binding of a logic specification . 51

4.3 Inherited and synthesised attributes 57

4.4 Class diagram for logic specification 62

5.1 Component diagram for tpl . 65

5.2 Tree traversal of the tree definition . 76

5.3 Tree traversal of the logic specification 77

x List of Figures

List of Tables

4.1 Comments in the tree definition and their destination 50

4.2 Comments in the logic specification and their destination 63

5.1 Attributes added to tree definition nodes 74

5.2 Attributes added to logic specification nodes 74

5.3 Dependencies between tree attributes and context checks 76

5.4 Dependencies between logic attributes and context checks 77

C.1 Comments and their destination . 92

D.1 Attributes used in the context checker 93

xii List of Tables

List of Grammar Fragments

1.1 Simple Expression . 2

2.1 Expression example . 9

2.2 Attribute grammar . 19

4.1 Example calculation language . 38

4.2 Simple elements in the target language 44

4.3 Composite elements in the target language 44

4.4 Common elements . 44

4.5 Tree definition top level . 46

4.6 Node definition . 46

4.7 Tree node parameters . 47

4.8 Logic specification top level . 52

4.9 Logic node specification . 53

4.10 Attribute specification . 54

4.11 Interface method specification . 55

4.12 Implementation method specification 55

4.13 Visiting method specification . 56

4.14 For-each statement . 58

4.15 Node selection . 59

4.16 Visit invocation . 61

4.17 Return values . 61

5.1 Identifier in Java . 67

5.2 Target class in Java . 67

5.3 Target type in Java . 67

5.4 Package name in Java . 68

D.1 Simple declaration and use attribute grammar 94

xiv List of Grammar Fragments

List of Listings

2.1 Checking the node type . 14

2.2 Inheritance pattern . 15

2.3 Visitor pattern . 16

3.1 Example tree definition . 27

3.2 A simple interpreter . 29

3.3 A pretty printer . 30

3.4 Query examples . 31

3.5 Pattern matching examples . 32

4.1 Program and Declaration tree nodes 38

4.2 Statement tree nodes . 38

4.3 Expression tree nodes . 39

4.4 Literal tree nodes . 39

4.5 Interpreter for Program and Declaration 40

4.6 Interpreter for statements . 40

4.7 Interpreter for expressions . 40

4.8 Pretty printer base declarations . 41

4.9 Pretty printer BinaryExpression . 42

4.10 Context checker for Program . 42

4.11 Setting the TreeAdaptor . 42

4.12 Node definitions . 47

4.13 Parent type illustration . 50

4.14 Node declarations . 53

4.15 Attribute declaration . 54

4.16 Interface method declaration . 55

4.17 Implementation method declaration 56

4.18 Inheritance within a logic specification 58

4.19 For-each statement . 58

4.20 Node selection . 59

4.21 Multiple return values . 61

5.1 Tree definition AST . 69

5.2 Logic specification AST . 71

D.1 Declare and use tree definition . 94

D.2 Declare and use symbol table . 95

D.3 Declare and use logic specification . 95

E.1 Calculation language sample input . 99

E.2 Calculation language driver . 99

E.3 Calculation language parser specification 100

xvi List of Listings

E.4 Calculation language tree definition 101

E.5 Calculation language context checker 102

E.6 Calculation language interpreter . 103

E.7 Calculation language pretty printer 104

1Chapter

Introduction

Tree structures have been, and probably will be for a considerable time in the
future, a widely used way of organising and working with data. Tree structures
are used to represent the structure of an input file (concrete and abstract syntax
trees), user interface components, the representation of HTML pages (the docu-
ment object model), XML and many more. Due its wide acceptance, extensive
research has been spent on working with tree structures.

This thesis is placed in the context of working with tree structures in an object-
oriented programming environment. The main focus is on defining the runtime
organisation of the tree and applying algorithms on this structure. The origin
of the tree—the system responsible for constructing the tree structure—and the
actual construction of the tree are discussed, but fall outside the main research
area.

In this chapter, an introduction on compiler construction is given, in §1.1.
This section shows how an abstract syntax tree is acquired, and what the typical
operations are that need to be performed on an AST. §1.2 describes the problem
statement of this thesis. Finally, the outline of this thesis is given in 1.3.

1.1 Compiler Construction and Abstract Syntax Trees

A multi-pass compiler performs the compilation of a source file in several stages.
These stages will be discussed in this section. Compilation starts with reading a
source file, and recognising the syntax of the input. Next, an abstract representa-
tion of this input is constructed. This is the abstract syntax tree. This AST is used
in subsequent phases to perform context checking and code generation. More
complex compilers might have more phases, such as optimisers.

Abstract syntax trees are also commonly used in other disciplines, such as
communication (eg. a web browser) and source code refactoring in an integrated
development environment (IDE) [Eclipse, 2007]. It is also possible that the abstract
syntax tree is not the result of a parser reading an input file, but from speech, or
from a graphical programming language. However, the most common usage is a
compiler, which reads an input language.

1.1.1 Lexical Analysis and Parsing

In the first stage, the lexical analysis, the compiler reads the input file and pro-
duces a stream of tokens. Every token corresponds to a fragment, or construct,
found in the input file, such as identifiers, literals, operators and keywords. These
tokens are fed to a parser, which discovers (and checks) the structure of the input.

Writing a lexer (or scanner) and parser by hand is tedious, difficult and error
prone. Many programs have been developed, which assist the developer in writ-
ing the lexer and parser. These tools often take a syntax specification in (E)BNF,

2 Chapter 1. Introduction

and generate a lexer and parser from this specification. Therefore, these tools are
commonly called parser generators. Some of these tools are mentioned in §2.3.

Different strategies exist, on how a parser matches the input language, such
as LALR and recursive descent parsing. However, a discussion of these is beyond
the scope of this thesis1.

1.1.2 Construction of the AST

In a multi-pass compiler, the task of the parser is to record the structure of the
parsed input in an abstract syntax tree. This tree contains all relevant information
from the input. What exactly is relevant information, depends on the subsequent
phases. Normally, tokens, such as comma’s and brackets, are discarded. Also,
nesting of parser production rules is removed.

AST construction is exemplified with the grammar presented in fragment 1.1.
This grammar matches simple expressions with addition and multiplication. The
actual values are represented by numbers and identifiers. Expressions can be
nested with brackets.

Grammar Fragment 1.1 Simple Expression
〈expression〉 ::= 〈term〉 (‘+’ 〈term〉)?

〈term〉 ::= 〈atom〉 (‘*’ 〈atom〉)?

〈atom〉 ::= ‘(’ 〈expression〉 ‘)’
| 〈number〉
| 〈identifier〉

〈identifier〉 ::= A sequence of letters.

〈number〉 ::= A sequence of digits.

This grammar matches sentences such as ‘1’, ‘1 + 1’ and ‘(1 + a) * b’. The
parse tree of the sentence ‘3 + 5 * (a + b)’ is given in figure 1.1. This figure
shows how the complete sentence is matched as an 〈expression〉. The 〈expression〉
consists of a 〈term〉, followed by the literal ‘+’, again followed by a 〈term〉. The left
〈term〉 is a simple 〈atom〉, which in turn is a 〈number〉. The right 〈term〉 consists
of two 〈atom〉s, separated by a ‘*’. This process is continued until all tokens (the
bottom line of the figure) are matched.

The parse tree clearly shows the structure of the parsed text, but this structure
is not very practical to work with. If an interpreter for this grammar is needed, a
set of four constructs is sufficient: addition, multiplication, numbers and identi-
fiers. The Add node adds the results of the left and right operands. This node is
created when a ‘+’ is matched in 〈expression〉. The Multiply node multiplies the
left operand with the right. It is created when a ‘*’ is matched in 〈term〉. A Number

node is created when a 〈number〉 is matched, and yields the value of the number.
Finally, the Identifier node, which is created when an 〈identifier〉 is matched,
resolves the value in a symbol table.

When this approach is taken, the sentence ‘3 + 5 * (a + b)’ yields the abstract
syntax tree shown in figure 1.2. From ‘3’ and ‘5’, two Number nodes are created,
and two Identifier nodes from ‘a’ and ‘b’. The nested addition is converted into

1An explanation of various parsing algorithms, such as LR(k) and LL(k), can be found in [Aho
et al., 1986].

1.2. Problem Statement 3

Figure 1.1: Example parse tree

Figure 1.2: Example abstract syntax tree

an Add node. The brackets are discarded, because the structure of the tree itself
is strong enough to indicate the nesting of ‘a + b’. Additional Add and Multiply

nodes are created for the other addition and the multiplication. It is clear that the
AST still follows the structure of the expression, but is not as verbose as the parse
tree.

1.1.3 Context Checking and Code Generation

Parsing the input file and constructing the AST is only the first phase of the
compilation process. The next phases typically consist of context checking, op-
timisation and code generation. These phases use the AST as underlying data
structure.

With each phase, different demands are put on the AST. The context checker
of a compiler often annotates the AST with additional information, such as types
and references to the symbol table. The optimiser is likely to transform parts
of the AST, to produce faster code with identical behaviour. Finally, the code
generation reads the results of the preceding phases, to produce fast and correct
code. These cases indicate, that it should be possible to add attributes to the AST
nodes, transform parts of the tree and to traverse over the tree.

1.2 Problem Statement

Not only compilers use tree structures. Trees are a common data structure in
many applications. Other examples are: component trees in a graphical user
interface, most file systems and (simple) databases. Moreover, any data stored as
XML can be represented as a tree structure. This can be the general purpose XML
Document Object Model (DOM), but it is also possible to use a custom object
structure to represent the data in the application. The requirements for working

4 Chapter 1. Introduction

with most of these trees are similar: they require attributes to be added to the tree
nodes, and the nodes often need to contain behaviour.

In addition to the behaviour specific to a certain application, tree structure
normally need functionality to construct the tree, to read the tree, for (string)
serialisation and for copying. These operations are similar for different tree struc-
tures, but depend on the actual structure of the tree. A lot of effort is required to
implement these operations, which need to be repeated for every tree structure.
Also, these operations need to be kept in sync with the structure of the tree when
this structure is modified.

A system is required to reduce the amount of work that needs to be done to
implement a tree structure and to minimise maintenance problems. This system
should consist of tool taking a specification and generating a tree structure. The
tool should automatically generate functionality to construct, read, modify and
copy the tree. The structure of the tree should be enforced using the type-system
of the generation language. In addition to specifying the structure of the tree,
it should be possible to specify behaviour of this tree (operations on the tree).
A clear separation should be provided between different operations and between
the operations and the structure. Finally, it should be possible to integrate the tool
with a parser generator to construct the tree directly from a generated parser.

1.3 Outline

In this thesis, tpl and the tool tplc are discussed. TPLc is the implementation of
the tool described above. Below, the outline of this thesis is given.

Chapter 2. Related Work discusses techniques for working with tree structures
that are currently available. It highlights the different organisations that
are being used to design tree structures. It continues with a discussion on
different techniques that have been developed to add functionality to a tree.
Finally, a list of currently available parser generators and tree processors is
given.

Chapter 3. The Tree Processing Language introduces tpl and gives the rationale
behind this new language. The motivations for the decisions made in the
design of tpl are explained. The architecture of the compiler tplc is briefly
touched. Also, an introduction on the language itself is given.

Chapter 4. Language Specification gives the specification of tpl. A formal spec-
ification of the syntax, in ENBF, is given, combined with an informal speci-
fication of the semantics.

Chapter 5. Design of TPLc presents the design of the compiler tplc. The com-
piler is divided into six components, each of which is discussed.

Chapter 6. Conclusions and Future Work concludes this thesis. It discusses the
contributions of the research, followed by some indications of future re-
search.

Appendix A. Software Requirements Specification gives the requirements spec-
ification of tpl.

Appendix B. Testing explains the design of the testing framework used to test
tplc.

Appendix C. Improvements in the Final Version enumerates the improvements
in the final version of tplc over the prototype.

1.3. Outline 5

Appendix D. Visiting Methods and Attribute Grammars provides a discussion
of the relation between visiting methods and attribute grammars.

Appendix E. Calculation Language Code Listings contains the code listings for
the calculation language example, used in chapter 4.

Appendix F. Planning contains the original planning for the entire project.

6 Chapter 1. Introduction

2Chapter

Related Work

The abstract syntax tree is a well known data structure, often used in compiler
construction, but also in communication systems or integrated development en-
vironments. Due to its widespread use, many techniques exist for working with
an AST. Some of these are supported by (or require) tools. These techniques, and
there accompanying tools, are discussed in this chapter.

In this discussion, a distinction is made between the structure, or organisation,
of an AST and the algorithms that are applied on an AST. First, an introduction
of various, commonly used organisations of an AST are given in §2.1, followed by
a discussion of various approaches of working with an AST in §2.2. Finally, §2.3
lists a set of tools, that are currently available for use in compiler construction.

2.1 The Organisation of an AST

Different organisations for an AST can be used. The two categories are the homo-
geneous AST and the heterogeneous AST. In the first, all nodes are of the same
type (or data structure). In the second, different nodes can have different types.
This section will discuss these categories, with their applications, advantages and
disadvantages.

2.1.1 Homogeneous ASTs

In a homogeneous AST, every node has the same type (or, in an object-oriented
environment, is of the same class). The major advantage of this approach is that
only a single type needs to be developed. The popular parser generators antlr

[Parr and Quong, 1995] and JavaCC [JavaCC, 2006] with JJTree [JJTree, 2006] all
take this approach by default.

2.1.1.1 Using a Homogeneous AST

For a homogeneous AST, only a single node type needs to be developed. This
simplicity is both its strength and its weakness. The single node type can be
developed as part of a framework, which can be reused in different applications.
This means no code has to be written to construct an AST, making it the ideal
solution for simple applications, or when time is limited.

The node type, should at least be able to store the children of the node. This
can be accomplished by adding a list structure as part of the node type, or the
nodes themselves can form a linked list. In another design, a node contains a
reference to its first child (if any), and a reference to its first sibling (if any). To be
able to distinguish different parts of the tree, the node also contains a type field.
For information such as identifiers, names and literals, the node type usually also
contains a field, which can be filled with arbitrary data (such as a name, a number
or a single character).

8 Chapter 2. Related Work

2.1.1.2 Problems

An AST is often decorated with additional information (attributes). This is espe-
cially useful in a multi pass compiler, to pass information from one stage to the
next. To add attributes to nodes in a homogeneous AST, the node type will need
support for these attributes. This is usually achieved by adding a dictionary to the
node type. However, because all nodes are of the same type, this allows all nodes
to contain attributes, even when they were not supposed to. Checking, whether
a node is actually allowed to contain a certain attribute, can only be done at run-
time, and requires additional code. Furthermore, the compiler can not guarantee
type correctness of the attributes. Errors are difficult to detect, as they usually
only surfaces when the erroneous attribute is used or set.

Another disadvantage is that algorithms can only be applied to the AST us-
ing a switch statement, as described in §2.2.1. Other techniques, such as the
inheritance pattern (§2.2.2) and the visitor pattern (§2.2.3) depend on type poly-
morphism, which requires a heterogeneous AST.

A third problem surfaces when functionality for a node requires access to one
or more children. For example, the context checker of a function declaration might
need to extract the name of the function from the identifier node that represents
its name. Cases like these are likely to be common, thus a solution, which allows
reuse of code, is desirable. The code to extract the child node can be written in
a utility method, which can be used throughout the application. However, these
methods need to be kept in sync with the structure of the AST, introducing a
maintenance hazard.

With a homogeneous AST, where all children are stored in a single list struc-
ture, it can also be difficult to cope with sub-structures with multiplicities other
than ‘exactly one’. When an optional subtree is omitted, all following subtrees
shift one location towards the beginning of the list of children. A similar problem
surfaces with lists. This makes it difficult to write the access methods mentioned
before, because a search over the list of children is required, instead of a simple
selection by index. It is also possible to restrict the structure of the AST, by disal-
lowing optional nodes (and use a special ‘absent node’) and use container nodes
for lists. However, this requires additional work during tree construction.

A homogeneous AST also limits the amount of type checking that can be
performed by the compiler. For example, the compiler is unable to detect when
the method written to retrieve the name of a function declaration is invoked with
a variable declaration node supplied as argument. It is even possible that the
method does not fail when given this node (for example, when it simply returns
the first child). This makes these kinds of errors difficult to find and solve.

2.1.2 Heterogeneous ASTs

In a heterogeneous AST, different nodes can have a different type. In most het-
erogeneous trees, a distinct node type is used for every category of nodes, where
a node category often relates to a production rule in the parser (see §1.1.2). Ex-
amples of such node types are: ‘identifier’, ‘if statement’ and ‘method body’. This
approach is taken by JJTree in ‘multi’ mode [JJTree, 2006], jtb [Tao and Palsberg,
2005], SableCC [Gagnon and Hendren, 1998] and most other tree builders, that
build heterogeneous ASTs. ANTLR 3 [Parr, 2006] takes a slightly different ap-
proach. It allows any relation between node categories and node types, when a
custom implementation of the TreeAdaptor (the component responsible for build-
ing the trees) is provided.

One of the most significant advantages of a heterogeneous AST is that different
functionality and attributes can be provided for different node types. However,

2.1. The Organisation of an AST 9

Node

ExpressionLiteral ExpressionBinary

BinaryMultiply

BinaryAdd

Literal Multiply

Add left
right

left
right

binary

add

literal

Figure 2.1: AST with a single inheritance level

Grammar Fragment 2.1 Expression example
〈expression〉 ::= 〈literal〉

| 〈binary〉

〈binary〉 ::= 〈multiply〉
| 〈add〉

〈literal〉 ::= A sequence of digits.

〈multiply〉 ::= 〈expression〉 ‘*’ 〈expression〉

〈add〉 ::= 〈expression〉 ‘+’ 〈expression〉

the large number of types can lead to maintenance problems.
This section first describes different designs used for heterogeneous ASTs. The

biggest difference between these designs is the number of inheritance levels. This
is followed by a discussion of the advantages of a heterogeneous AST over a ho-
mogeneous AST. Finally, the disadvantages of a heterogeneous AST are discussed.

2.1.2.1 Single Inheritance Level

In a AST organisation with a single inheritance level, all node classes directly ex-
tend from one common class, as displayed in figure 2.1, which shows the class
organisation for grammar 2.1. Every node class represents an alternative from
the grammar specification. This is the default design chosen by JJTree [Weath-
erley, 2002] in ‘multi’ mode (in which case all node classes directly extend from
SimpleNode) and jtb [Tao and Palsberg, 2005] (where all node classes implement
the Node interface and extend from Object).

The major disadvantage of this technique is that it makes little use of the power
of inheritance. Although it is possible to add attributes and functionality to the
node classes, similar node classes can not inherit these attributes and functionality.
This can result in code duplication and makes the code difficult to maintain in a
large application.

Another problem is that it is impossible to provide typed access to children
when a production rule has several alternatives. Consider the grammar displayed
in fragment 2.1. The classes corresponding to the production rules 〈multiply〉 and
〈add〉 should contain two references to an 〈expression〉. However, an 〈expression〉
can be a 〈literal〉 or 〈binary〉. The type of the reference, therefore, has to be an
intersection of all these types. The only class satisfying this intersection is the
common base class Node, extended by all nodes. This makes it impossible to
distinguish between an expression and one of the other nodes. The same problem

10 Chapter 2. Related Work

Node

TLiteral TMultiply TAddPExpression PBinary

AExpressionLiteral AExpressionBinary ABinaryMultiply ABinaryAdd

left right

left
right

binary

add

literal multiply

Figure 2.2: AST with inheritance on alternatives

occurs with the reference to a 〈binary〉 from ExpressionBinary.

2.1.2.2 Inheritance on Alternatives

A design commonly used by tools, which automatically generate the AST classes,
is based on inheritance on alternatives. As with a single inheritance level, all
nodes still extend from a single common node, but another level of inheritance
is added. The first level of types represents the production rules, whereas the
second level of types represents the alternatives of those production rules. Classes
representing terminals (or tokens) are sometimes generated as direct subclasses
of the common node. This is shown in figure 2.2, which shows the node classes
for grammar fragment 2.1, with three terminals and two production rules, both
with two alternatives. Other tools let terminals extend from a common terminal
class, which is a subclass of the common root node class.

Inheritance on alternatives is used to resolve the problem described earlier and
illustrated with grammar 2.1. It allows the construction of a strictly-typed AST.
Both left and right references for TMultiply and TAdd are now references to the
class PExpression, representing the 〈expression〉 production rule, and is extended
by all classes representing the alternatives for this production rule. AExpression-
Binary receives a reference to PBinary.

Inheritance on alternatives has a great resemblance with algebraic data types,
where it is known as a recursive sum of products. The alternatives are the prod-
uct types, with recursive references to the production rules, or sum types. Wang
et al. [1997] describe how a definition in an ‘abstract syntax description language’
is compiled to several target languages. For the function language ML, they gen-
erate algebraic data types. The output for the object-oriented Java language uses
a variation of inheritance on alternatives, without a common root node class. For
C, a set of of structs, which contain a union over all alternatives, is generated.

The tools SableCC, described by Gagnon and Hendren [1998], JJForester, by
Kuipers and Visser [2003], and ApiGen, by Van den Brand et al. [2005], all gener-
ate ASTs with inheritance on alternatives.

Classgen [Klein and Brandl, 2003] also generates trees with inheritance on al-
ternatives. However, unlike the other tools, classgen can also generate product
types that are not part of a sum. These classes directly extend from the common
root class, without an intermediate level of inheritance. This is used for produc-
tion rules with only a single alternative.

A disadvantage of inheritance on alternatives is that the inheritance tree is
fixed. This makes it difficult to share attributes and functionality between nodes.
Consider the case where common functionality is needed for all binary expres-
sions. This can be accomplished by creating a 〈binary〉 production rule, for

2.1. The Organisation of an AST 11

Node

Expression

Binary

Add

Literal

Multiply

left
right

Figure 2.3: AST with custom defined inheritance

which all binary expressions are alternatives1, and implementing the function-
ality as part of the type that corresponds to this production rule (PBinary in this
case). However, this technique cannot be applied when functionality needs to
be shared by all expressions. For example, when an instance variable is added
to PExpression, which contains the type of the expression, then this variable
cannot be easily accessed from TLiteral. Access to the variable needs to be pro-
vided by AExpressionLiteral when the literal reference is visited. This can
be achieved by passing the variable itself, which will become cumbersome when
multiple variables are required and does not work when Literal also needs ac-
cess to methods in PExpression, or by passing a reference to PExpression, which
results in encapsulation breaching—public accessor methods need to be provided
for the attributes and the required methods also need to be declared public.

2.1.2.3 Custom Defined Inheritance

With the previous two techniques, the inheritance structure of the AST is deter-
mined by the tool generating the AST classes. With custom defined inheritance,
the developer is free to specify the inheritance tree by hand. A possible inheri-
tance tree for the grammar in fragment 2.1 is given in figure 2.3.

An obvious disadvantage is that this requires additional work from the de-
veloper. However, using a custom defined inheritance tree, it is possible to solve
the problem with the expressions, illustrated in the previous section. The class
Literal, representing a 〈literal〉 can now be defined as a subclass of the class
for 〈expression〉, which gives it access to the instance variables and methods of
Expression.

When a custom defined inheritance tree is used together with the inheritance
pattern (§2.2.2), the developer is able to specify functionality at every level of
inheritance. For example, when the inheritance tree of figure 2.3 is used, func-
tionality can be specified in Expression, which is shared over all expressions. It is
also possible to specify behaviour for just the binary expressions, or just for Add.

Custom defined inheritance is less common than the other designs, probably
because of the added complexity. Treecc [Weatherley, 2002] allows the developer
to specify any inheritance tree, although the syntax used is somewhat cryptic.

1Naturally this is only possible if the tool gives the developer the freedom to move all binary
expressions under a single production rule. For example, in cases where the parser is used to indicate
operator precedence, it is often not possible to move all binary expressions under a single rule, without
loosing the operator priority.

12 Chapter 2. Related Work

2.1.2.4 Problems with a Heterogeneous AST

Writing the classes for a heterogeneous AST by hand is a tedious task, prone to er-
rors. AST nodes often all need functionality such as accessor methods for the chil-
dren, string serialisation and constructors with the children as arguments. Many
of these need to be kept in sync with the structure of the AST. When changes to
the structure of the AST are common, an error is easily made.

Also, it is difficult to utilise the heterogeneous structure of the AST, with-
out affecting the maintainability of the system adversely. A single algorithm is
likely to operate over several nodes. When the functionality for such an algo-
rithm is added directly to the node classes (the inheritance pattern, §2.2.2), it will
be spread across several files. Also, the code will be mixed with code for other
algorithms and general node functionality. This makes it difficult to get a good
overview of the code, and makes it hard to maintain. It is possible to implement
algorithms as visitors [Gamma et al., 1995]. This moves all code and attributes,
related to a single algorithm, to a single file. However, the visitor pattern also has
its disadvantages, as described in §2.2.3.

2.1.3 Homogeneous versus Heterogeneous

Heterogeneous ASTs have a clear advantage over homogeneous ASTs, in that they
allow the developer to define code for individual node classes. This solves the
problems with adding and using attributes (see §2.1.1.2 on page 8) trivially. The
solutions to the other limitations of a homogeneous AST will be explained here.

2.1.3.1 Type Polymorphism and Inheritance

A heterogeneous AST allows the use of type polymorphism. This makes it pos-
sible to use the inheritance pattern (§2.2.2) and the visitor pattern (§2.2.3), where
with a homogeneous AST only the switch statement (§2.2.1) can be used.

Type polymorphism in object-oriented environments is based on subtyping.
Therefore, the applicability of type polymorphism strongly depends on the de-
sign of the AST. A heterogeneous AST based on a single inheritance level only
provides two levels of types: the common root node class and all other node
classes. This requires operations to be specified on all node classes, or a single
node. Although this is sufficient for the visitor pattern, it limits the usefulness of
the inheritance pattern. A similar problem occurs with an AST based on inheri-
tance on alternatives, where operations can only be specified per alternative, per
production rule or for all node classes. When a custom defined inheritance tree
is used, it is possible to use type polymorphism at every level of the inheritance
tree. This makes it possible, for example, to specify operations on expressions,
but also on binary expressions, statements, etc.

Inheritance allows reuse of functionality between similar nodes. However, as
with type polymorphism, this is best used with a custom defined inheritance
tree.

2.1.3.2 Selection of Child Nodes

It became apparent already that a heterogeneous AST with a single inheritance
level is not strong enough for strictly typed access to children (this is illustrated
with grammar 2.1). This is solved with the addition of another level of inheritance
on alternatives.

However, type-safe access to child nodes requires the node types to contain
typed references to the children. This makes it impossible to use a single list with
all children. Also, the methods to access the children need to be typed, thus for

2.2. Applying Algorithms to an AST 13

every child at least a method to read the child is needed, and most likely also
methods to modify the children.

Sometimes these methods need to perform additional bookkeeping, when the
tree is modified. For example, a reference to the parent needs to be set, when a
node is added. These methods need to be provided for all children for all nodes.
Not only is it a lot of work, to write all these methods; they need to be updated
when the structure of the AST is modified. This creates a serious maintenance
problem. A good solution is to generate the typed references and modification
methods directly from an AST specification.

2.2 Applying Algorithms to an AST

In the introduction to compiler construction, it was already mentioned that algo-
rithms need to be applied to the AST. Examples mentioned are context checkers,
optimisers and code generators. These algorithms can be added as part of the
AST node classes, or written in separate classes. Several different techniques have
been developed, for interoperability of algorithms and a tree, or adding function-
ality to a tree. The most important will be discussed in this section. Many of the
examples given in this section are based on the examples used by Palsberg and
Jay [1998].

2.2.1 Checking the Node Type

One of the most straightforward approaches to apply an algorithm to an AST, is
to create a large switch statement (or an else-if chain), and decide what code
to run by looking at the type of a supplied node. This is also called ‘a type case’.
This is illustrated in listing 2.1. This technique is most commonly used when the
AST is homogeneous, as most other techniques require a heterogeneous AST.

Although this algorithm is fast and simple, it has some drawbacks. The most
obvious is the frequent need for type checks and type casts, which is regarded
bad practise in object-oriented languages. Another problem is that the compiler
can not check that all cases are covered. If a new node type is introduced, and
not added to the algorithm, a RuntimeException will occur when the algorithm
is used. It would be preferable if the compiler could inform the developer of a
missing case. Because this is not possible, the switch statements will become
increasingly hard to maintain when the system grows.

An advantage is that the algorithm can be implemented completely separate
from the AST nodes. No changes need to be made to the node classes to im-
plement a new algorithm. This makes it possible to add functionality without
recompiling the AST node classes.

2.2.1.1 Using Type Cases

To be able to apply an algorithm to an AST, in a flexible manner, without having
to write the switch statements by hand, tree walkers are often used. A tree
walker is similar to a parser, except that the tree walker parses a two-dimensional
tree structure, instead of a linear token stream. Actions can be executed when a
node is matched. The tree walker generator is responsible for generating the code
to match the nodes. Because the cases in the switch statements are generated
automatically, they do not have to be updated by hand, when the structure of the
AST changes. This ensures that the code is always in sync with the grammar and
that actions are executed at the right places.

14 Chapter 2. Related Work

Listing 2.1: Checking the node type
interface List {

public static final int NIL = 0;
public static final int CONS = 1;

5 int getType();
}

class Nil implements List {
public int getType() {

10 return NIL;
}

}

class Cons implements List {
15 int head;

List tail;

public int getType() {
return CONS;

20 }
}

public String printList(List l) {
switch (l.getType()) {

25 case NIL:
return "Nil";

case CONS:
Cons consL = (Cons) l;
return "(Cons " + consL.head + " " + printList(consL.tail) + ")";

30 default:
throw new RuntimeException("Illegal List: " + l.getType()) ;

}
}

Different approaches for tree walkers are available. ANTLR provides a true
tree parser. Tree parsers in antlr 3 [Parr, 2006] flatten the tree to a stream of tree
tokens, with additional UP and DOWN tokens to indicate nesting, and walk over the
tree using a recursive descent parser. Because the tree parser is based on linear
parser rather than tree traversal, it has some drawbacks. The linear structure of
the token stream makes it difficult to skip subtrees. Functionality such as visiting
a subtree more than once, requires manual marking and rewinding of the token
stream to allow the same tokens to be matched more than once.

A different approach is taken by Kimwitu [Van Eijk et al., 1997] and Memphis
[Memphis]. Both extend the syntax of C with pattern matching constructs. These
patterns can be used to examine the tree, and execute actions, depending on the
structure of the tree. Using these patterns, recursive algorithms over the AST can
be constructed. The tools assist the developer in writing the switch statements,
and are able to inform the developer of malformed patterns, or missing cases.

2.2.2 Inheritance Pattern

The previous technique does not use type polymorphism provided by object-
oriented languages. An approach, that better utilises object-orientation, is called

2.2. Applying Algorithms to an AST 15

the inheritance pattern (which is a variation on the interpreter pattern [Gamma
et al., 1995]). It uses an abstract method in the base class, that needs to be im-
plemented in all subclasses. This implies that the inheritance patterns requires
a heterogeneous AST. The same print algorithm as before is given in listing 2.2,
but now implemented with the inheritance pattern.

Listing 2.2: Inheritance pattern
interface List {
String print();

}

5 class Nil implements List {
public String print() {

return "Nil";
}

}
10

class Cons implements List {
int head;
List tail;
public String print() {

15 return "(Cons " + head + " " + tail.print() + ")";
}

}

This approach is clearly more elegant than that of listing 2.1. All casts and
type checks are eliminated. Also, the compiler will give an error when the print

method is not implemented in all node classes. Normally, the inheritance pattern
is applied by adding an abstract method in the root node type and providing
an implementation in all subclasses. This implies that all node types need an
implementation and all methods should take the same arguments and have the
same result type. When the inheritance pattern is used together with a custom
defined inheritance tree, it is possible to specify operations only on certain types,
or to use different method arguments and return types for different node types.

However, the inheritance pattern suffers from a problem: a single algorithm is
spread across several files. When multiple algorithms are added to the AST node
classes, a single algorithm becomes hard to find between all other, unrelated code.
Furthermore, when a new algorithm needs to be added, all node classes need to
be modified. This makes it impossible to add functionality without recompiling
the node classes, for which the source code of these classes needs to be available.

2.2.3 Visitor Pattern
The visitor pattern [Gamma et al., 1995] is a commonly used design pattern, which
can be used to extend existing code with additional functionality. It uses an
accept method on the nodes, to simulate a double dispatch. The accept method
forwards the call to the visitor, which contains the functionality. This is illustrated
in listing 2.3. All functionality related to the print algorithm is now in a single
class. Also, new functionality can be added to AST nodes, without the need to
recompile the AST node classes.

However, several disadvantages of the visitor pattern are already visible in this
example. The first is the need for accept methods in all classes. This means the
AST has to be prepared for the visitor pattern. If these methods are not present,
they need to be added to all classes, something which may not be possible, when

16 Chapter 2. Related Work

Listing 2.3: Visitor pattern
interface List {

void <T> T accept(Visitor<T> v);
}

5 class Nil implements List {
public <T> T accept(Visitor<T> v) {
v.visit(this) ;

}
}

10

class Cons implements List {
int head;
List tail;
public <T> T accept(Visitor<T> v) {

15 v.visit(this) ;
}

}

interface Visitor<T> {
20 T visit(Nil node);

T visit(Cons node);
}

class PrintVisitor implements Visitor<String> {
25 String visit(Nil node) {

return "Nil";
}

String visit(Cons node) {
30 return "(Cons " + node.head + " " + node.tail.accept(this) + ")";

}
}

the source code is not available. Another problem is that all visit methods need
to have the same return type and method arguments (the latter are omitted from
the print example). With parameterised types, it is possible to use different
return types and method arguments for different visitors, but within a single
visitor, they should still all be the same.

Another major problem with the visitor pattern is its inflexibility with respect
to changes of the structure of the tree. An important part of the pattern is the
Visitor interface, which defines a visit method for each node type. When a new
node type added, a new visit method needs to be added, which necessitates the
addition of this method to all visitors (implementations of the Visitor interface).
This is an invasive change, which affects many classes.

More problems are mentioned by Hachani and Bardou [2002]. They indicate,
that there is no clear separation between definitions required by the pattern and
other definitions. A visitor class does not indicate that it contains functionality for
other classes. Also, the visitor pattern suffers from encapsulation breaching. For
example, when a visitor needs access to attributes, these attributes need public
accessor methods. This makes the attributes part of the public interface of the
class, which may not be desirable.

Several attempts have been made to improve the visitor pattern. Palsberg and
Jay [1998] describe the WalkAbout class, which can traverse object structures, with-

2.2. Applying Algorithms to an AST 17

out relying on an accept method. This is further improved by Bravenboer and
Visser [2001] by separating the visitor in two parts: (1) the visitor itself, containing
the functionality of the algorithm and (2) a guide, describing the traversal order
over the tree. A generic guide is also presented, which uses an algorithm similar
to that of the WalkAbout class.

However, both suffer from a large performance penalty, because Java reflec-
tion is used to discover and visit the children. An implementation with dedicated
methods (the inheritance pattern) or the visitor pattern outperforms the original
WalkAbout class by several orders of magnitude (although the visitor pattern im-
plementation is somewhat slower than the inheritance pattern). Bravenboer and
Visser [2001] manage to improve the efficiency of the WalkAbout algorithm sig-
nificantly, using a caching mechanism, but the difference between the WalkAbout

and a normal visitor still is 2 orders of magnitude.
A different approach is taken by Visser [2001]. This approach is further dis-

cussed by Van Deursen and Visser [2004]. They describe JJTraveler, a system of
small, almost trivial visitors, which can be combined to build complex behaviour.
Many of these visitors can be written in a generic form and are included as a
standard library. Examples of these combinators are Identity, Sequence and
All. The first does nothing. The Sequence combinator takes two visitors and
performs one after the other. All applies a visitor to every immediate subtree
sequentially.

The AST class generator of JJForester [Kuipers and Visser, 2003] is extended
to generate the syntax dependent visitor classes, including the Fwd combinator,
which is used to build the bridge between generic and syntax dependent com-
binators. Using these combinators, they are able to construct complex syntax
analysis tools with relatively little code. What is even more important; many
of these algorithms can be (partially) written in a generic form, which makes it
possible to reuse them in applications with a different AST.

However, these visitor combinators are still based on the standard visitor pat-
tern. Therefore, they still suffer from the same drawbacks: accept methods are
needed in all classes and all methods need identical signatures. To be able to write
generic visitor combinators, which can be reused on different ASTs, a variation
of the staggered visitor pattern [Vlissides, 1999] is used. This pattern separates
the visitor pattern in a generic framework and an application specific part. It
requires all nodes to extend from a generic framework node class. This generic
node class defines two methods: one that returns the number of children, and one
that returns a child, using its index. Implementations of these methods need to be
provided in the node classes. When a framework with JJTraveler support is used,
such as JJForester, all required methods are automatically generated. When the
node classes are written by hand, or generated by a framework which does not
support JJTraveler, all node classes need to be modified. Sometimes, it may not
even be possible to apply these changes (for example, to change the superclass of
all node classes), limiting the applicability of the visitor combinator framework.

2.2.4 Multiple Dispatch

The traditional visitor pattern requires an accept method on all nodes to perform
a double dispatch. There are, however, also languages with native support for
multiple dispatch. In these languages, the actual method, to which the execution
is dispatched, is chosen not only on the first argument, but on several. This
allows a visitor to dispatch execution to the correct visit method directly, without
the need for an accept method in the node class.

MultiJava [Clifton et al., 2000] extends Java with open classes and multiple
dispatch. Open classes allow the addition of functionality to a class, without

18 Chapter 2. Related Work

subclassing it. A valid Java program still is a valid MultiJava program, with the
same semantics. MultiJava programs are compiled to Java bytecode, which runs
on a standard Java virtual machine.

The Nice programming language (formally Bossa) [Bonniot, 2000] is more than
an extension to Java. The syntax is still similar to Java, but has many enhance-
ments. One of these enhancements is the multimethod. A multimethod can be
used to add functionality to an existing class, without subclassing it (similar to
open classes). Multimethods also support multiple dispatch.

2.2.5 Aspect-Orientation

Functionality that needs to be added to a tree can be seen as behaviour which
crosscuts the AST classes. Aspect-orientation can be used to specify this crosscut-
ting behaviour. The impact of aspect-orientation on compiler development is dis-
cussed by Wu et al. [2006]. In this paper, it becomes clear that aspect-orientation
solves many of the traditional problems of compiler development. Aspect-orien-
tation is able to provide the visitor pattern in a much cleaner way.

However, as indicated by Wu et al. [2005], it is not able to lift all limitations
of the object-oriented visitor pattern. The visitor pattern is still difficult to use
when the structure of the AST changes frequently. To overcome this difficulty, an
approach, the compiler matrix, is introduced, with which it becomes possible to
change an implementation between the inheritance pattern and the visitor pat-
tern. This greatly reduces maintenance problems when both operations and AST
structure are subject to frequent changes. This does, however, add another tool
to the build process. The AST classes are generated with TLG [Bryant and Lee,
2002], functionality is added using the compiler matrix and, finally, the code is
compiled using AspectJ. Little or no documentation is available for the first two
applications and support for all three is limited.

Treecc, by Weatherley [2002], provides a limited aspect-oriented language spe-
cifically tailored to compiler development. It checks for complete coverage of
defined operations and allows easy transition between the inheritance pattern
and the visitor pattern. With Treecc, it is possible to specify the structure of the
AST and the functionality in different modules. However, attributes need to be
declared as part of the structure, and can not be declared as part of the module
with the functionality, which requires the attribute. Also, the syntax of Treecc
is somewhat cryptic and difficult to understand for someone with little or no
experience with Yacc and C.

2.2.6 Attribute Grammars

Attribute grammars are introduced by Knuth [1968]. A system is described in
which attributes and semantic rules can be attached to a grammar definition. A
distinction is made between inherited attributes, which are evaluated from the
top down, and synthesised attributes, which are evaluated from the bottom up.
The semantic rules are used to specify the relation between different attributes.
Attribute grammars are often used as formal specification of the semantics of a
grammar. This means that the specification can also be used as the implementa-
tion.

An example of the print algorithm, as attribute grammar, is given in grammar
fragment 2.2. This grammar only uses synthesised attributes. The resulting string
is constructed from the bottom up in a single pass over the tree. A more complex
example is given in grammar fragment D.1 on page 94, which combines inherited
and synthesised attributes, and requires multiple passes over the tree.

2.3. Available Parser Generators and Tree Processors 19

Grammar Fragment 2.2 Attribute grammar
〈list〉 ::= ‘Nil’

| ‘Cons’ 〈number〉 〈list〉

〈number〉 ::= A sequence of digits.

list : Nil. [v of list = ‘Nil’;]
list1 : Cons number list2. [v of list1 = ‘(Cons ’ ++ v of number ++ ‘

’ ++ v of list2 ++ ‘)’;]
number : number_token. [v of number = value of number_token;]

SLADE [SLADE, 2002] provides a very limited attribute grammar evaluator,
which requires the attributes to be evaluated in a single pass. SLADE has been
used at the University of Twente, for the course compiler construction, and can
only be used to write compilers.

The Attribute Grammar System, initially developed by Swierstra et al. [1998],
is a general purpose attribute evaluator. An attribute grammar, in which se-
mantic functions are described through Haskell expressions, is compiled into a
Haskell program. The Attribute Grammar System fully supports attribute gram-
mars with inherited and synthesised attributes and grammars which require mul-
tiple passes. This is achieved through the use of lazy evaluation in Haskell, which
automatically resolves the order in which the attributes need to be evaluated.

2.3 Available Parser Generators and Tree Processors

A great variety of parser generators and tree processors is available. Some parser
generators can also generate tree processors, other tree processor generators are
provided as separate applications. This section discusses a small selection of
parser and tree processor generators. The chapter is slightly biased towards Java
systems. This is because Java is a popular programming language in the academic
world and because tpl is implemented in Java. This section will not discuss the
advantages and disadvantages of the tools, because most are already covered in
the other parts of this chapter.

2.3.1 Lex and Yacc

A very popular lexer and parser generator combination is Lex and Yacc. Many
Lex and Yacc compliant alternatives are also available, such as Flex and Bison. Lex
and Yacc generate C/C++ code for lexing and parsing respectively. Actions can be
embedded in the grammar, which can be used to construct an AST. However, Yacc
does not provide support for ASTs. These can either be constructed using hand
written code, or with a separate tree processor tool, such as Memphis [Memphis]
and Kimwitu [Van Eijk et al., 1997]. Both extend the C syntax with constructs
that can be used to specify the structure of the AST. To perform operations on
this tree, both languages provide pattern matching constructs, which can be used
to create switch-like statements.

2.3.2 ANTLR

ANTLR [Parr and Quong, 1995] is a popular parser generator written in Java.
From the website [ANTLR, 2006]:

20 Chapter 2. Related Work

ANTLR, ANother Tool for Language Recognition, (formerly pccts)
is a language tool that provides a framework for constructing recog-
nizers, compilers, and translators from grammatical descriptions con-
taining Java, C#, C++, or Python actions. ANTLR provides excellent
support for tree construction, tree walking, and translation.

ASTs can be directly constructed from the parser. ANTLR uses a homogeneous
AST by default, but it is possible to specify different classes for different AST
nodes, creating a heterogeneous AST. The tree walkers used by antlr are based
on a recursive descent parser. The tree is flattened to a stream of tree nodes. UP

and DOWN tokens are inserted, to indicate nesting of nodes. Actions can be inserted
in the tree parser, to perform operations on the tree.

2.3.3 JavaCC

JavaCC is another very popular parser generator written in Java. From the website
[JavaCC, 2006]:

Java Compiler Compiler™ (JavaCC™) is the most popular parser gen-
erator for use with Java™ applications. [. . .] In addition to the parser
generator itself, JavaCC provides other standard capabilities related
to parser generation such as tree building (via a tool called JJTree in-
cluded with JavaCC), actions, debugging, etc.

Unlike antlr, JavaCC does not support target languages other than Java. Also,
no tree walker is included. By default, JavaCC does not construct ASTs. However,
different tree building preprocessors exist. These preprocessors generate Java
actions in the grammar to construct the trees.

2.3.3.1 JJTree

JJTree is a tree building preprocessor that comes with the default JavaCC distri-
bution [JJTree, 2006].

JJTree is a preprocessor for JavaCC [tm] that inserts parse tree building
actions at various places in the JavaCC source. The output of JJTree is
run through JavaCC to create the parser.

JJTree will generate a homogeneous AST by default, but it is possible to gen-
erate heterogeneous ASTs. JJTree does not generate any visitors, but can generate
the required visit methods in the AST nodes.

2.3.3.2 JTB

JTB [Tao and Palsberg, 2005] also is a tree builder preprocessor, but is less known.
JTB always generates a heterogeneous AST that is partially, strictly typed. Only
single, required nodes are strictly typed. This is caused by the fact that jtb gener-
ates an AST with a single inheritance level.

In addition to the AST node classes jtb also generates several visitors (with
and without arguments and return values), which visit the tree in depth-first or-
der. Methods in these visitors can be overridden to provide custom functionality.

2.3.4 SLADE

SLADE is a system that has been used for the course compiler construction at the
University of Twente. From the website [SLADE, 2002]:

2.3. Available Parser Generators and Tree Processors 21

The slade system is a development environment for programming
languages. The main restriction on the nature of the programming
language that is developed is the Application Programming Interface,
abbreviated to API. A general-purpose API is included in the system,
but the user is free to add and change the routines in the API to suit his
or her needs. The slade system is written in, and generates, C code.
A compiler that is generated by slade generates code for a VIrtual
Machine called vim.

SLADE does not generate an AST. All actions are executed directly from the
parser. SLADE only supports single-pass-compilers. An interesting feature of
slade is its attribute evaluator engine. Attributes can be passed up and down the
parse tree.

2.3.5 SableCC
SableCC [Gagnon and Hendren, 1998] is a parser generator written in Java that
generates parsers in Java.

SableCC is an object-oriented framework that generates compilers
(and interpreters) in the Java programming language. This framework
is based on two fundamental design decisions. Firstly, the framework
uses object-oriented techniques to automatically build a strictly typed
abstract syntax tree. Secondly, the framework generates tree walker
classes using an extended version of the visitor design pattern which
enables the implementation of actions on the nodes of the abstract syn-
tax tree using inheritance. These two design decisions lead to a tool
that supports a shorter development cycle for constructing compilers.

The most interesting feature of SableCC is its strictly typed AST. All operations
on the AST are type-safe and all sub-nodes are stored as typed fields. SableCC
uses inheritance on alternatives for the AST node classes. All token classes are
subclasses of the Token class. The names of classes for production rules are pre-
fixed with a ‘P’, and an ‘A’ is used for alternatives.

2.3.6 JFlex, CUP and Classgen
JFlex [Klein, 2005], cup [Flexeder et al., 2006] and classgen [Klein and Brandl,
2003] are a scanner generator, parser generator and a class generator respectively.
These three tools are designed to work together, although they can also be used
separately. All three generate Java code.

JFlex and cup together form a parser generation framework, but do not have
support for AST construction. Classgen can be used to generate the AST classes.
On the website, classgen is described as:

classgen is a 100% Java, platform-independent class generator. Though
it was designed with compiler design in mind it’s very compact and
flexible specification language allows to generate classes for all pur-
poses. For the compiler designer it offers some more extremely useful
features. It has built in support for the visitor design pattern and gets
along perfectly with the scanner generator JFlex and the parser gener-
ator cup.

Attributes and methods can be added to the AST node classes. Classgen can
also prepare the AST node classes for the use of the visitor pattern. Classgen uses
inheritance on alternatives for the generated AST node classes.

22 Chapter 2. Related Work

2.3.7 Treecc
Treecc [Weatherley, 2002] is a tree generator, with support for several target lan-
guages, including Java and C#.

The treecc program is designed to assist in the development of com-
pilers and other language-based tools. It manages the generation of
code to handle abstract syntax trees and operations upon the trees.
[...] Treecc was originally written to assist with the development of the
C# compiler for the Portable.NET project. However, it is much more
general than that and can be used in any system that makes heavy use
of abstract syntax trees and the operations upon them.

Treecc does not provide a parser generator, but can be used in conjunction
with many parser generators. As with Classgen, Treecc allows the declaration
of node attributes and functionality, but Treecc offers more robust support for
‘operations’. It is able to check if an operation is defined for all nodes, even
when multiple arguments are used. Both the inheritance and visitor pattern are
supported. The developer is able to fully define the inheritance tree of the AST
node classes.

3Chapter

The Tree Processing

Language

The Tree Processing Language (or tpl) is a domain specific language for specify-
ing trees and behaviour on trees. Applications written in tpl can be compiled to
tree structures with the tool tplc. TPL’s typical application is in the field of com-
piler construction, but it can be used in any system which uses tree structures.
TPL allows the developer to specify a strictly typed tree, annotate the tree with
attributes and add functionality to this tree.

TPL tries to minimise the effort required by the developer to develop a tree
structure, by generating as much of the code as possible. The organisation used
in this generated code focuses on static type checking, performed by the compiler,
and code reuse. TPL does not focus on how the tree is constructed at runtime.
Although, it is possible to let an AST, written in tpl, be constructed by a parser.
Support for antlr 3 is provided.

This chapter will discuss the added value of tpl. In §3.1, the techniques dis-
cussed in the previous chapter are evaluated, and careful choices are made, on
which tpl is based. Next, an overview of tpl’s architecture is given in §3.2. Fol-
lowed by an explanation of the structure of the tree in §3.3 and the addition of
functionality to the tree in §3.4. Finally, §3.5 gives a detailed view of the inheri-
tance pattern, as it is used by tplc.

3.1 Rationale

Language processing, and in particular compiler construction, is a complex field
of engineering. The previous chapter mentions many techniques which are avail-
able to the developer. However, many of these techniques suffer from mainte-
nance problems or lack the flexibility required in a large language processing
system. In this section, a combination of techniques is discussed, which support
the construction of a maintainable and extensible language processor.

Conventional compiler construction is often based on the syntax definition of
the source language. The suggested approach is to use the abstract syntax tree
as base for the compiler. The compiler becomes an operation on the abstract
syntax tree. This approach can also be taken in other systems that operates on a
tree structure. The tree does not need to be an abstract syntax tree, but can be
any tree-like data structure. For example, it can be a component tree in a user
interface.

Working with a large tree structure, with many different kinds of nodes, is
a task with much repetition. Node creation, inspection and manipulation often
requires code for different node classes, which is similar in nature, but has subtle
differences. Also, these pieces of code often have a strong reliance on the runtime
structure of the tree and need to be updated whenever this structure changes.
Therefore, as much of the tree (types and code) as possible should be automati-
cally generated from a specification. The tool that generates the tree code should
not fix the choice for an implementation language for the tree; however to limit

24 Chapter 3. The Tree Processing Language

the complexity of the tool, it is demanded that an object-oriented language is
used.

As already mentioned in chapter 2, a tree has two main distinctive features: its
structure and its behaviour (or functionality). This separation will also be present
in the discussion in this section. First, the structure of the tree will be discussed
in §3.1.1, followed by a discussion of the behaviour of the tree in §3.1.2.

3.1.1 Structure of the Tree

§2.1 discusses the two categories of AST organisation: homogeneous, where ev-
ery node is of the same type, and heterogeneous, where nodes can have different
types. Homogeneous trees are especially useful in smaller systems, or when the
tree is developed by hand. Heterogeneous trees, on the other hand, are cumber-
some to create by hand, due to the large number of different types, but allow
stricter type checking and more advanced techniques of adding behaviour to the
tree. Automatically generating the tree types and management code eliminates
the primary disadvantage of a heterogeneous tree. Therefore, the choice is made
to use a heterogeneous tree.

From the three commonly used organisations for a heterogeneous tree (see
§2.1.2), custom defined inheritance provides the most flexibility with respect to
code reuse (especially when the inheritance pattern is used) and is able to sup-
port a tree with strictly typed children. However, to specify a tree with custom
defined inheritance, it is needed to specify the node types, their super types, the
children, and the types of the children, whereas with the other two approaches
the entire structure of the tree can be determined from a grammar specification (or
something similar). The added benefits are considered to outweigh the additional
work that has to be performed when specifying the tree.

3.1.2 Behaviour of the Tree

In §2.2 six different approaches are discussed with which the behaviour of a tree
can be specified. The first three, checking the node type (§2.2.1), the inheritance
pattern (§2.2.2) and the visitor pattern (§2.2.3) can be used in most object-oriented
languages. Multiple dispatch (§2.2.4) and aspect-orientation (§2.2.5) require fea-
tures, which are not present in most object-oriented languages. Finally, attribute
grammars (§2.2.6) are usually evaluated with an interpreter, or a preprocessor is
used to produce compilable code from the grammar, which evaluates the attribute
grammar.

The decision to require a typical object-oriented language as target language
eliminates the multiple dispatch and aspect-oriented approaches. The other ap-
proaches all have their own field of applicability. A switch statement is very useful
for short algorithms, which can be implemented inline, in a single method. The
visitor pattern is very useful for adding behaviour to a tree, when the source code
is not available (or cannot be modified). This is not possible with the inheritance
pattern, but the latter does not suffer from encapsulation breaching and allows
different method arguments and return types to be used for different parts of the
tree. This makes the inheritance pattern a good candidate to use for specifying
behaviour when the source code of the tree nodes is available. Finally, attribute
grammars allow a formal specification of the behaviour of a tree. However, they
need to be compiled into a representation that can be evaluated by the target
language.

Due to the different applications of the different techniques, it would be prefer-
able if all where supported by the tree generator. Support for the visitor pattern
requires accept methods in all node classes and a visitor interface, with visit

3.1. Rationale 25

methods for all node classes. These are straightforward to generate and are there-
fore included. The other three approaches are more difficult to integrate and are
discussed below.

3.1.2.1 Attribute Grammars

A typical object-oriented language does not provide the features required for sup-
port for attribute grammars. Attribute grammars require a dependency analysis
to determine the order in which the attributes need to be evaluated. An excep-
tion is the class of L-attributed grammars (see [Alblas and Nymeyer, 1996, Section
9.2]), which can be evaluated in a single top-down pass over the tree.

Support for L-attributed grammars is straightforward to provide, because they
have a great resemblance with method invocations: the inherited attributes are
provided through method arguments and the synthesised attributes are returned
by the method invocation. To be able to return multiple synthesised attributes, the
methods should be able to return multiple values. Although this is not supported
by most object-oriented languages, it can easily be emulated by wrapping the
values in a tuple object.

The tree generator should be able to evaluate L-attributed grammars; thus
provide multiple return values. Other classes of attribute grammars require a
dependency analysis, which is difficult to provide in object oriented languages.
A preprocessor, which converts an attribute grammar into a representation which
can be read by the tree generator, can solve this. However, this preprocessor will
not be part of the tree generator tool.

3.1.2.2 Query/Test Language

A query/test language can be used to select parts of the tree and to test whether
the tree conforms to a certain structure. This can also be used to implement node
type checks, as discussed in §2.2.1. XPath [Clark and DeRose, 1999] is an example
of such a language. Naturally, these queries and tests can also be written by hand,
but the advantage of an advanced query/test language is that the representation
usually is more compact, easier to understand and can be checked by the compiler.

The tree generator tool should incorporate a query/test language with at least
the following features: node selection, iteration over nodes, and type cases with
pattern matching.

Node Selection It should be easy to locate nodes deeper down the tree, but also
higher up the tree. Queries that are often used are the selection of a child, a
direct ancestor or the node itself. These queries should therefore be easy to write
and clear. More complicated queries, which include node type checking, or other
conditions, are less common, but can be useful. The tool should support a query
language that is powerful enough to express these more complicated selections.

It is often possible to determine the exact type of the nodes returned by a
query, for example when a typed child is selected. Typed queries allow better
type checking when the generated classes are compiled by the target language’s
compiler. Therefore, the tool should support typed queries where possible.

Iteration over Nodes A query can often return multiple nodes. Iterating over
these nodes is a common operation. For example, the context checker of a method
declaration probably needs to iterate over the specified method arguments. Be-
cause this operation is used frequently, the tool should provide support for itera-
tion over nodes. This can be combined with the node selection, where the iterator
iterates over the results of a query.

26 Chapter 3. The Tree Processing Language

Type Cases Type cases, or node type checks, often are a convenient way of spec-
ifying algorithms on a tree. The biggest disadvantage is the effort that it takes
to keep these checks in sync with the actual structure of the tree during devel-
opment. Therefore, the language should support automatically generated (and
checked) type cases, similar to those seen in Memphis [Memphis] and Kimwitu
[Van Eijk et al., 1997]. This includes pattern matching constructs, for more com-
plicated checks.

3.1.2.3 Inheritance Pattern

As stated before, the inheritance pattern provides a flexible way of expressing the
behaviour of a tree. In the standard inheritance pattern, an abstract method is
added to the base class and implemented in the concrete classes, extending from
this base class. When a custom defined inheritance tree is used, this can easily be
extended to a form where the abstract method is added to a subclass of the base
class and only applies to the subclasses of this class.

However, with this approach, the inheritance pattern still follows the inheri-
tance tree of the node classes. This inheritance tree is designed to make it possible
to build a strictly typed tree and may not be suitable for all operations that need
to be defined over the tree. For example, consider a user interface component
tree with visible and invisible1 components. Only visible components require
a paintComponent method and the invisible components do not. This could be
realised by creating a VisibleComponent node class and letting all visible com-
ponents extend from this class. However, this moves implementation details of
the behaviour of the tree to the structure of the tree. Not only does this violate
the separation of concerns, it may also be impossible to realise, when different
operations need to be applied to disjoint subtrees of the node classes.

To solve these problems, the inheritance tree of a single behaviour should be
definable independently of the inheritance tree of the node classes or any other
behaviour. Not only does this allow the definition of operations on disjoint sub-
trees of node classes, but it also makes it easier to specify common functionality.
This is explained in §3.5.

3.2 Architectural Overview

The flow of information for an application developed with tplc is displayed in
figure 3.1. A tree definition and several logic specifications are taken by tplc
to produce the implementation of the AST. All source files (including additional
support files) are compiled by the compiler to produce binaries (or class files for
Java).

The tree definition describes the structure of the AST, and is discussed in §3.3.
The logic specifications are used to add functionality to a tree, which is discussed
in §3.4.

The figure also includes the generation of a parser with antlr, which is op-
tional. ANTLR is used to generate a parser from the parser specification. In
addition, antlr also generates a token file, which contains the mapping from to-
ken names to internal numbers. With tpl it is possible to give a mapping from
the token names in the token file to the AST node classes. This can be used in
the parser to construct the AST instance using antlr’s native tree construction
mechanism.

1Invisible indicates that the component does not have a graphical representation at all, not that it
is currently hidden.

3.3. Tree Structure 27

Figure 3.1: Architectural Overview

Listing 3.1: Example tree definition
package expression;

abstract Expression;
abstract Binary(Expression left, Expression right) extends Expression;

5

Literal(Integer value) extends Expression;
Multiply extends Binary;
Add extends Binary;

The resulting AST, generated by tplc, can be used throughout the application.
It is possible to let antlr construct the AST, but the AST can also be constructed
in different ways. Functionality added to the tree, is available to the application
using the tree. A typical compiler would use several logic specifications for func-
tionality, such as a context checker and a code generator. First, the file is parsed,
and an AST constructed. Next, the context checker is invoked. Finally, the code
generator is called.

3.3 Tree Structure

TPL uses a separate file, a tree definition, to describe the structure of the AST. An
example of such a file is given in listing 3.1, which defines an AST for expressions.

28 Chapter 3. The Tree Processing Language

Node

Expression
eval():int
toString():String

Binary
getOperator():String
toString():String

Add

getOperator():String
eval():int

Multiply

getOperator():String
eval():int

Literal
value:Integer
eval():int
toString():String

right
left

Figure 3.2: Functionality added to the AST nodes

The resulting class hierarchy is displayed in figure 2.3 on page 11. The AST
has a heterogeneous structure, with custom defined inheritance, as described in
§2.1.2.3. Not only the inheritance tree, but also the names and types of children
are specified in this file. Two kinds of children are supported by tpl: nodes and
values. The first is used to form the runtime structure of the AST. The second
can be any data type, as long as it can be constructed from a string. When the
AST is constructed by a parser, the parser will construct the value from the token.
Typical applications are enumerations, such as operator types, and literals, such
as strings and integers.

All child nodes in the AST are strictly typed. The developer needs to specify
the exact types of these children. Methods to access the children are automatically
generated by tplc. Constructors, to build ASTs manually, are also added.

3.4 Adding Functionality

The tree structure, described in §3.3, only forms the basis of the entire AST struc-
ture. Functionality is added to this tree using logic specifications. Multiple logic
specifications can be used, which makes it possible to separate different algo-
rithms. Every logic specification can specify its own inheritance tree, onto which
the inheritance pattern is applied. Attributes can also be specified in a logic spec-
ification and are added with the functionality.

Two exemplary logic specifications, that specify functionality for the tree def-
inition in listing 3.1, are given in listing 3.2 and 3.3. The first implements an
interpreter and the second a pretty printer. The resulting class hierarchy is dis-
played in figure 3.22.

In the interpreter specification, specifications for the node classes Expression,
Literal, Multiply and Add can be seen. The specification adds an abstract eval
method to the Expression node class. This method is implemented in the other
nodes, to return the correct results. For Literal, the result is the value. Both
Multiply and Add recursively invoke the eval method on the left and right chil-
dren and use these values to evaluate the result. In this example, it can be seen

2This class diagram is a simplification of the class structure actually generated. A description of
the actual structure can be found in §3.5.4

3.4. Adding Functionality 29

Listing 3.2: A simple interpreter
/* * An interpreter for the expression language. */
package expression.interpreter;

abstract Expression {
5 interface public int eval() ;

}

Literal extends Expression {
interface public int eval() {

10 return #value;
}

}

Multiply extends Expression {
15 interface public int eval() {

return #left.eval() * #right.eval();
}

}

20 Add extends Expression {
interface public int eval() {

return #left.eval() + #right.eval();
}

}

that the inheritance tree of the interpreter differs from that of the tree definition:
both Multiply and Add extend from Expression, instead of Binary. The Binary

node is not needed at all.
For the pretty printer, a superclass is used, which does not have a correspond-

ing node class; Printable. Another interesting feature is the use of a protected

method in Binary, which returns a string representation of the operator. This
allows the common behaviour of the pretty printer for binary expressions to
be shared by all binary expressions. The difference between an interface and
an implementation method is that an implementation method is not exposed
through the public interface of a node class. This is explained further in §3.5.4.

A disadvantage of the inheritance pattern is that it is not possible to add func-
tionality without recompiling the AST node classes. Therefore, tplc also adds
accept methods to the AST node classes, for use with the visitor pattern. A
Visitor interface is also generated. TPLc does not provide any default imple-
mentations of the visitor pattern, such as a depth-first visitor. With tpl, the visitor
pattern should only be used to add behaviour to the tree, when the source code
is not available. During normal development, the logic specifications should be
used to add behaviour to the tree.

3.4.1 Attribute Grammars

As mentioned before, support for L-attributed grammars is desirable. TPL pro-
vides this support through visiting methods, which can return multiple values.
When every AST node has exactly one visiting method and these nodes are vis-
ited in depth first order, then the evaluation of these methods corresponds to the
evaluation of a L-attributed grammar. However, tpl allows the addition of mul-
tiple visiting methods to a single AST node. This can be used to evaluate more

30 Chapter 3. The Tree Processing Language

Listing 3.3: A pretty printer
/* * A pretty printer for the expression language. */
package expression.pretty;

abstract Printable {
5 interface public String toString();

}

abstract Expression extends Printable;

10 Literal extends Expression {
interface public String toString() {

return #value.toString();
}

}
15

abstract Binary extends Expression {
interface public String toString() {

return #left.toString() + " " + getOperator() + " " + #right.toString();
}

20

implementation abstract protected String getOperator();
}

Multiply extends Binary {
25 implementation protected String getOperator() {

return "*" ;
}

}

30 Add extends Binary {
implementation protected String getOperator() {

return "+";
}

}

complicated attribute grammars, although the developer has to determine the de-
pendencies between the attributes by hand and coordinate the evaluation. For a
deeper discussion of attribute grammars, refer to appendix D.

3.4.2 Test/Query Language

A query language is included in tpl. This language can be used to select nodes
and to iterate over nodes. Some simple examples can already be observed in
listings 3.2 and 3.3. #left, #right and #value are used to select the left and
right children, or the value of a node. With a #foreach statement, it is possible to
iterate over a node set that results from a query.

Some more complex examples are shown in listing 3.4. The first returns the
parent of the parent of the current node. The second query matches the parent of
every node under the current node; in other words: all non-leaf nodes under the
current node. Where / indicates a single step, // indicates an arbitrary number
of steps. With the third query, all nodes of type Identifier anywhere under the
children statements are matched. The [Type1, Type2, ...] notation is used

3.5. Advanced Usage of the Inheritance Pattern 31

Listing 3.4: Query examples
#parent/parent
#this//parent
#statements//*[Identifier]
#*//*[AssignExpression]/var

to filter nodes of certain types. The asterisk character, *, serves as a wildcard to
match all children of a node. The final query combines most features to return
the left-hand-side of every assignment expression.

TPLc automatically determines the most specific type of the results of a search,
to which the nodes will conform. For example, for the last query in listing 3.4,
tplc determines that the nodes will all be of type Identifier, as the var child of
AssignExpression is of type Identifier. This makes it possible for the compiler
of the target language to perform static type checking. TPLc includes a checker,
which generates an error when a query always returns the empty set.

Another feature of queries, supported by tpl, is the compilation and execution
of queries at runtime. This allows an application (or the user of an application) to
construct and execute queries when the application is running. Naturally, static
type checking is not possible on runtime queries.

TPL does not support type cases (yet), as seen in in Memphis [Memphis] and
Kimwitu [Van Eijk et al., 1997]. Support for type cases is discussed in §6.3.2.

3.5 Advanced Usage of the Inheritance Pattern

TPL uses the inheritance pattern to add functionality to the node classes. How-
ever, due to the ability to allow different inheritance trees for different logic spec-
ifications, it is not trivial to apply the inheritance pattern. This section discusses
the structure generated by tplc to support different inheritance trees for a single
tree structure.

First, an example is introduced, which illustrates why the standard inheri-
tance pattern is not strong enough to solve some of the problems faced, when
implementing behaviour of a tree. This is followed by a possible solution, which
uses multiple inheritance, in §3.5.2. Next, in §3.5.3, a solution is presented, which
allows the generation of different inheritance trees in a language that does not
support multiple inheritance. Finally, in §3.5.4, the example presented in §3.4 is
revisited and the actually generated code is discussed.

3.5.1 Example

In many functional programming languages a technique, called pattern matching,
is used. Several examples of pattern matching are given in listing 3.5. The factorial
example uses 0 and n. This results in the first function to be selected when fac

is called with 0 as parameter and the second to be selected in all other cases. In
those other cases, the value of the parameter is bound to n, which can be used in
the right-hand-side of the function. The other functions use nested patterns. The
outer pattern, x:xs, splits a list into its head and its tail. An identifier (as in the
factorial function) and a wildcard are nested inside this pattern. The identifier
and the wildcard both match all values, but the wildcard does not bind the value
to an identifier.

32 Chapter 3. The Tree Processing Language

Listing 3.5: Pattern matching examples
fac 0 = 1

fac n = n * fac (n−1)

listhead (x:_) = x

5 listtail (_:xs) = xs

The tree node for a function (in this simplified example) should contain a
name, a pattern and an expression. The node classes for the different patterns will
be a subclass of the Pattern node class and a similar structure can be used for
the expression node classes. However, pattern can often be used as expressions.
In this example, only the wildcard pattern is not a valid expression. It would
be desirable if code could be shared between patterns and expressions. It is not
possible to make the Expression node class a subclass of Pattern, because not
all expressions are patterns (for example, multiplication is not a valid pattern).
This results in two separate inheritance subtrees, one for patterns and one for
expressions. The inheritance pattern only allows code to be shared through the
common base class(es) of these trees. However, code added to the first common
superclass of Pattern and Expression will be shared with all expressions and
patterns. This makes it difficult to implement behaviour, such as a pretty printer,
for a single pair of a pattern and an expression. Either the behaviour needs to
be implemented in both classes or is available to all patterns and expressions.
An implementation which implements the common behaviour in the base class is
illustrated in figure 3.3.

3.5.2 Inheritance Pattern with Multiple Inheritance

To solve the problem discussed above, multiple inheritance can be used. A class
diagram of the same tree, as displayed in figure 3.3, is shown in figure 3.4, but now
multiple inheritance is used to share the functionality. The class diagram shows
that both LiteralPattern and LiteralExpression inherit from PrintLiteral

thereby inheriting the literal printing behaviour. The behaviour can be shared
without moving it up in the inheritance ‘tree’.

The inheritance pattern with multiple inheritance greatly increases the re-
usability of functionality, with the disadvantage of a more complicated design.
Many classes have to be maintained and, in large systems, it can become difficult
to get a good overview of the relations between these classes. However, with tpl,
development is based in the tree definition and the logic specifications. The final
class structure is generated and the burden of maintaining these class is taken by
tplc.

3.5.3 Inheritance Pattern with Composition

Not all languages provide multiple inheritance. For example, the very popu-
lar languages Java and C# do not. For these languages, a different solution
is needed. As with the multiple inheritance approach, the behaviour is imple-
mented in separate classes. However, these classes are not linked to the tree
node classes through inheritance, but through composition; the node classes hold
an instance of the classes implementing the behaviour. This is illustrated in fig-
ure 3.5. AbstractCommonNode provides an abstract print method, through which
the pretty print behaviour can be accessed. This method is implemented in the

3.5. Advanced Usage of the Inheritance Pattern 33

Node

AbstractCommonNode
printLiteral(AbstractCommonNode node):String
printIdentifier(AbstractCommonNode node):String
print():String

PatternExpression

LiteralExpression
value:int
print():String

IdentifierExpression
name:String
print():String

MinusExpression
left:Expression
right:Expression
print():String

LiteralPattern
value:int
print():String

IdentifierPattern
name:String
print():String

WildcardPattern

print():String

return printLiteral(this)

return printLiteral(this)

return printIdentifier(this)

return printIdentifier(this)

Figure 3.3: Behaviour with the inheritance pattern

Node

AbstractCommonNode

PatternExpression

LiteralExpression
value:int

IdentifierExpression
name:String

MinusExpression
left:Expression
right:Expression

WildcardPattern

LiteralPattern
value:int

IdentifierPattern
name:String

AbstractPrint
print():String

PrintMinusExpression

print():String

PrintLiteral

print():String

PrintIdentifier

print():String

PrintWildcardPattern

print():String

Figure 3.4: Inheritance pattern with multiple inheritance

34 Chapter 3. The Tree Processing Language

Node

AbstractCommonNode
print():String

PatternExpression

LiteralExpression
value:int
print():String

IdentifierExpression
name:String
print():String

MinusExpression
left:Expression
right:Expression
print():String

WildcardPattern

print():String

LiteralPattern
value:int
print():String

IdentifierPattern
name:String
print():String

AbstractPrint
print():String

PrintMinusExpression

print():String

PrintLiteral

print():String

PrintIdentifier

print():String

PrintWildcardPattern

print():String

Figure 3.5: Inheritance pattern with composition

subclasses of AbstractCommonNode. MinusExpression and WildcardPattern pro-
vide their own implementation of the print method, in the classes PrintMinusEx-
pression and PrintWildcardExpression respectively. LiteralExpression and
LiteralPattern share the same implementation of the print method, through
PrintLiteral. The node classes IdentifierExpression and IdentifierPat-

tern, share the behaviour in PrintIdentifier. The inheritance pattern itself is
applied to the composition nodes, containing the behaviour.

Although it is possible to share behaviour across nodes in different parts of
the inheritance tree, using the inheritance pattern with composition, it is not pos-
sible to access this behaviour through a common interface. This is not a problem
with the pretty print functionality, because all nodes are printable, however other
behaviour may only be applicable to subtrees of the tree. For example, consider a
user interface framework, with different components. Some of these components
might have the ability to fire user events, for which listeners can be registered,
through a method called addEventListener. Even though these components all
have this method, it is not possible to access this behaviour without relying on
the exact type of the component, because the method is not part of a common
type of all the components. This can be solved by moving the method upward
in the inheritance tree (to the root), but this results in all components sharing
the method, even when a component cannot fire user events. A more elegant
solution is to specify the method in an interface and to have the various compo-
nents implement this interface. This is illustrated in figure 3.6, which also shows

3.5. Advanced Usage of the Inheritance Pattern 35

Component
paintComponent()

Label
Button

addEventListener(l:Listener)

List

addEventListener(l:Listener)

Image

TextField

addEventListener(l:Listener)

AbstractComponentPainter
paintComponent()

«interface»

EventSource

addEventListener(l:Listener)

EventSourceImpl

addEventListener(l:Listener)

Node

Figure 3.6: Inheritance pattern with composition and interfaces

a second composition, used to paint the components. For simplicity, the concrete
implementations of the abstract class AbstractComponentPainter are omitted.

The inheritance pattern with composition allows the construction of different
inheritance trees in languages that do not support multiple inheritance. A dis-
advantage is the added runtime overhead. A single tree node instance will be
composed out of several objects. Also, calls to these objects have to be forwarded
through the node classes. A solution would be to merge inheritance trees when
possible. This is discussed further in §6.3.3.

3.5.4 Expression Language Revisited
In §3.4, an example was presented which implemented an interpreter and a pretty
printer for an expression language. In that section, only the external behaviour of
the logic specification was discussed. The foregoing shows the actual structure of
the generated code. In this section, the actually generated code for the example is
discussed.

Figure 3.7 shows the generated classes for a language that does not support
multiple inheritance. The classes on the left represent the AST nodes, the classes
in the middle the pretty printer and the classes on the right the interpreter. These
examples clearly show the inheritance pattern with composition, as it is applied
by tplc. The interfaces IPrettyPrintable and IInterpreterExpression specify
the required methods for the pretty printer and interpreter respectively. These
methods are implemented by the various Pretty and Interpreter classes. To
make the behaviour available to the AST node classes, Expression contains a
InterpreterExpression and a PrettyExpression. The other AST node classes
fill these slots with instances of their corresponding functionality classes.

The class diagram also shows the difference between an interface method
and an implementation method. Methods declared with the interface keyword,
such as eval, are accessible on the AST nodes, whereas methods declared with
implementation, such as getOperator, are not. The eval method is part of the
IInterpreterExpression interface, which is implemented by Expression. This
makes it possible to invoke eval on Expression. The getOperator method is
only part of the classes that implement the pretty printer. It is not possible to
invoke that particular method on one of the AST nodes.

36 Chapter 3. The Tree Processing Language

N
ode

E
xpression

toString():StringB
inary

A
dd

eval():int
toString():String

M
ultiply

eval():int
toString():String

L
iteral

value:Integer
eval():int
toString():String

PrettyPrintable

PrettyE
xpression

PrettyB
inary

getO
perator():String

toString():String

PrettyA
dd

getO
perator():String

PrettyM
ultiply

getO
perator():String

PrettyL
iteral

toString():String

«interface»

IPrettyPrintable

toString():String

InterpreterE
xpression

InterpreterA
dd

eval():intInterpreterM
ultiply

eval():int

InterpreterL
iteral

eval():int

«interface»

IInterpreterE
xpression

eval():int
A

bstractL
ogic

right left

Figure
3.

7:Functionality
added

to
the

A
ST

nodes

4Chapter

Language Speci�cation

In this chapter, a specification of the syntax and semantics of tpl is given. §4.1
introduces tpl An example, that will be used throughout this chapter to exemplify
the constructs of tpl, is given in §4.2. Next, in §4.3, a set of frequently used
syntactical elements is discussed. §4.4 discusses the syntax and semantics of the
tree definition, followed by the syntax and semantics logic specification in §4.5.

4.1 Introduction

TPL is a language in which the structure and functionality of a tree can be de-
scribed. From this specification, a set of tree node classes is generated. TPL
supports the generation of trees in different languages. The chosen language is
called the target language1. TPL is especially useful for abstract syntax trees, that
can be constructed by a parser front-end, but other applications (such as a user
interface component tree) are also possible.

A specification in tpl consists of two parts: a single tree definition and zero or
more logic specifications. The tree definition describes the type and structure of
the AST, whereas a logic specification describes attributes and functionality that
are part of a certain node.

4.2 Tutorial

In this section, a running example—a simple calculation language—will be pre-
sented. For this calculation language, a set of logic specifications is developed.
The first is a simple context checker. It checks whether identifiers are declared
before they are used. The second logic specification is an interpreter, which evalu-
ates the input. The last specification is a pretty printer. Fragments of this example
will also be used in this chapter to illustrate the concepts of tpl. The full code
listing of the calculation language is available in appendix E.

The syntax of the calculation language is defined in grammar fragment 4.1.
For this syntax, a grammar specification in antlr is developed. This grammar
specification is provided in §E.3.

4.2.1 Tree Definition

The syntax shows that a 〈program〉 can contain zero or more 〈declaration〉s, and
always has a single 〈statement-block〉. A 〈declaration〉 starts with the ‘var’ key-
word, followed by a single 〈identifier〉. The structure of the node types, that cor-
respond to these production rules, is given in listing 4.1. Here a Program node
type is declared, which contains zero or more Declaration nodes and a single

1Although tpl is setup to be language independent, a back-end needs to be available for the
selected target language. Currently, only the Java target is supported.

38 Chapter 4. Language Specification

Grammar Fragment 4.1 Example calculation language
〈program〉 ::= (〈declaration〉)* 〈statement-block〉

〈declaration〉 ::= ‘var’ 〈identifier〉

〈statement〉 ::= 〈expression〉 ‘;’
| 〈if-statement〉
| 〈print-statement〉

〈expression〉 ::= 〈identifier〉
| 〈number〉
| 〈expression〉 ‘+’ 〈expression〉
| 〈expression〉 ‘-’ 〈expression〉
| 〈identifier〉 ‘:=’ 〈expression〉

〈if-statement〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ ‘{’ 〈statement-block〉 ‘}’
‘else’ ‘{’ 〈statement-block〉 ‘}’ ‘;’

〈print-statement〉 ::= ‘print’ ‘(’ 〈expression〉 ‘)’ ‘;’

〈statement-block〉 ::= (〈statement〉)*

〈identifier〉 ::= A sequence of letters.

〈number〉 ::= A sequence of digits.

StatementBlock. The Declaration node only contains an Identifier. The ‘var’
literal is not part of the abstract syntax tree, because it adds no information to
the Declaration. Where the ‘var’ token is needed in the parser to recognise a
〈declaration〉, the Declaration AST node can be distinguished by its type alone.

Listing 4.1: Program and Declaration tree nodes
Program(Declaration* declarations, StatementBlock statements) −> PROGRAM;
Declaration(Identifier variable) −> DECLARATION;

The next step is to declare the nodes for statements. To represent the common-
ality between the different statements, all statements extend from an abstract base
Statement class. The node definitions for the statements is given in listing 4.2.

Listing 4.2: Statement tree nodes
abstract Statement;
IfStatement(Expression condition, StatementBlock thenPart,

StatementBlock elsePart) extends Statement −> IF;
PrintStatement(Expression message) extends Statement −> PRINT;

5 StatementBlock(Statement* statements) extends Statement −> BLOCK;

Listing 4.3 shows the node definitions for the expressions of the calculation
language. The first line shows that all expressions are also statements, something
that can be deduced from the first alternative of the 〈statement〉 production rule. It

4.2. Tutorial 39

also shows AddExpression and MinusExpression inheriting the left and right

children from BinaryExpression. AssignExpression also inherits these children,
but renames left to var and changes its type to Identifier.

Listing 4.3: Expression tree nodes
abstract Expression extends Statement;
abstract BinaryExpression(Expression left, Expression right) extends Expression;
AddExpression extends BinaryExpression −> ADD;
MinusExpression extends BinaryExpression −> MINUS;

5 AssignExpression(left as Identifier var) extends BinaryExpression −> ASSIGN;

Finally, the literals are defined in listing 4.4. The first line defines a Literal

class, parameterised with a type T2. This parameter represents the type of the
value of the node. Both Number and Identifier subclass this node, where the
first provides Integer for T and the latter provides String. In addition, both
modify the type of the value.

Listing 4.4: Literal tree nodes
abstract Literal<T>(T value) extends Expression;
Number(value as Integer) extends Literal<Integer> −> NUMBER;
Identifier(value as String) extends Literal<String> −> IDENTIFIER;

4.2.2 Interpreter

The interpreter is implemented as a logic specification. The execution starts in
the run method in Program. The Program node is shown in listing 4.5. The run

method invokes the visiting method of Program. This method creates a variable
store, visits all declarations and finally visits the statements child. The visiting
method of Declaration adds the declared variable to the store, initialised to 0.

The Program node calls the visiting method of Statement. This method is de-
clared in listing 4.6. Again, Statement is declared abstract and it provides the
signature for the visiting methods of all statements. For example, IfStatement
implements this method, where it checks the result of the condition and, depend-
ing on that result, visits thenPart or elsePart.

Listing 4.7 shows the implementation of the Expression and AssignExpres-

sion nodes. The main difference between a statement and an expression is that
the former does not return a value. Therefore, Expression adds an abstract vis-
iting method which does return a value. The visiting method inherited from
Statement is implemented by invoking the new method and discarding the re-
sult. AssignExpression implements the new visiting method by evaluating the
right-hand-side and storing the result in the store. Notice that AssignExpression
directly extends Expression; there is no BinaryExpression.

4.2.3 Pretty Printer

In listing 4.8, the base classes of the pretty printer are shown. The class Printable
is declared to be part of the base node class Node. Printable specifies an abstract
visiting method that is responsible for pretty printing the node. It also overrides

2The use of type parameters is a feature of the target language Java, not of tpl

40 Chapter 4. Language Specification

Listing 4.5: Interpreter for Program and Declaration
Program {

interface public void run() {
#this .visit();

}
5

visit() {
Map<String, Integer> store = new HashMap<String, Integer>();
#foreach(#decl <− #declarations) {

#decl.visit(store);
10 }

#statements.visit(store);
}

}

15 Declaration {
visit(Map<String, Integer> store) {
store.put(#variable.visitWrite(), 0);

}
}

Listing 4.6: Interpreter for statements
abstract Statement {
visit(Map<String, Integer> store);

}

5 IfStatement extends Statement {
visit(Map<String, Integer> store) {

if (#condition.visitExpr(store) != 0) {
#thenPart.visit(store);

} else {
10 #elsePart.visit(store);

}
}

}

Listing 4.7: Interpreter for expressions
abstract Expression extends Statement {
visit(Map<String, Integer> store) {

#this .visitExpr(store);
}

5

int visitExpr (Map<String, Integer> store);
}

AssignExpression extends Expression {
10 int visitExpr(Map<String, Integer> store) {

int value = #right.visitExpr(store);
store.put(#var.visitWrite(), value);
return value;

}
15 }

4.2. Tutorial 41

toString to call this visiting method. Another class, IndentedConstruct is in-
troduced. This class contains a utility method to produce the correct indentation.
Notice that this class is not part of an AST node.

Listing 4.8: Pretty printer base declarations
Node: abstract Printable {

interface public String toString() {
return #this .visit(0);

}
5

String visit(int indentation);
}

abstract IndentedConstruct extends Printable {
10 implementation protected String writeIndentation(int indentation) {

String ret = "";
for (int count=0; count<indentation; count++) {
ret += " ";

}
15 return ret;

}
}

The declarations for the statements of the pretty printer contain no inter-
esting parts and are therefore skipped. In listing 4.9, the implementation for
AssignExpression is shown. The Expression class extends IndentedConstruct,
inheriting the toString and writeIndentation methods. The implementation
of the visiting method generates the correct indentation and calls a special visit-
ing method for expressions, which does not generate any indentation. Binary-

Expression implements this method for all binary expressions. The left and
right operand are printed, with the operator in between. Finally, AddExpression
provides the getOperator method, specified by BinaryExpression, and returns
the string "+".

4.2.4 Context Checker
The most interesting part of the context checker for the calculation language is
the visiting method for Program. This method returns the number of errors de-
tected in the program. The declaration of this method is given in listing 4.10.
The method can be split into two parts: checking the declarations and checking
the usage. The actual checks are performed in the visitDeclare and visitUse

methods.
This visiting method uses more complex node selections than the previous

methods. Until now, only selections of the current node (#this) and of children
(#child) where used. #declarations/variable returns the variable child of
every declaration in declarations. The other node selection matches any child
that is an Identifier (because of *[Identifier]) anywhere in the tree (//) under
statements.

4.2.5 Running the Example
To run the example, a driver is needed. This driver parses the input file and
constructs the AST. Next, the appropriate methods are called on the AST. The
driver for the calculation language is given in §E.2. The most important line,

42 Chapter 4. Language Specification

Listing 4.9: Pretty printer BinaryExpression
abstract Expression extends IndentedConstruct {
String visit(int indentation) {

return writeIndentation(indentation) + #this.visitExpr() + ";\n";
}

5

String visitExpr();
}

abstract BinaryExpression extends Expression {
10 implementation abstract protected String getOperator();

String visitExpr() {
return #left.visitExpr() + " " + getOperator() + " " + #right.visitExpr();

}
15 }

AddExpression extends BinaryExpression {
implementation protected String getOperator() {

return "+";
20 }

}

Listing 4.10: Context checker for Program
int visit() {

int errors = 0;
Set<String> symbols = new HashSet<String>();
#foreach(#curId <− #declarations/variable) {

5 errors += #curId.visitDeclare(symbols);
}
#foreach(#curId <− #statements//*[Identifier]) {
errors += #curId.visitUse(symbols);

}
10 return errors;

}

Listing 4.11: Setting the TreeAdaptor
calcParser.setTreeAdaptor(

new TPLTreeAdaptor(new calc.PackageDescription()));

4.3. Common Syntactical Elements 43

concerning tpl, is where the TreeAdaptor is set, as displayed in listing 4.11. The
TreeAdaptor is responsible for constructing the AST. TPLTreeAdaptor allows the
construction of an AST written in tpl. It uses the information provided by the
given PackageDescription, which is generated by tplc.

Before the example can be compiled, the driver, parser, tree definition and
logic specifications all need to be placed in a subdirectory called calc. Also, the
class path needs to be setup correctly. ANTLR v3 and tplc are required. When
the environment is configured, the example can be compiled:

java org.antlr.Tool calc/Calc.g

ANTLR Parser Generator Version 3.0b6 (??) 1989-2007

java -jar tplc.jar -report -parser calc.CalcParser calc/calc.tree \\

calc/calccontext.logic calc/calcinterpreter.logic calc/calcpretty.logic

TPLc Tree Compiler 0.99

Parsing calc/calc.tree... done.

Parsing calc/calccontext.logic... done.

Parsing calc/calcinterpreter.logic... done.

Parsing calc/calcpretty.logic... done.

Checking tree definition... done.

Checking logic specifications... done.

Generating code... done.

javac calc/CalcDriver.java

Note: ./calc/CalcParser.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

The first step calls antlr, which generates the lexer, the parser and a token file
(a list of all tokens used in the grammar). Next, tplc is called. The ‘-parser
calc.CalcParser’ option is used to indicate that the token file, generated by
antlr, for CalcParser should be read. TPLc generates all AST classes. Finally,
everything is compiled with the Java compiler. Now the example can be run:

java calc.CalcDriver input.calc

Program is:

var a;

var b;

a := 3;

b := 5;

if (a - b) {

print (a + b);

} else {

print (a - b);

}

No errors found.

Running...

8

4.3 Common Syntactical Elements

TPL supports the generation of trees in different languages. The selected language
is called the target language. However, only parts of the code are generated, the
remaining code is taken from the tree definition and logic specifications. This
means that both tree definition and logic specifications need support for frag-
ments of the target languages, embedded in these grammars. Examples of these
fragments are types, identifiers and method bodies and signatures.

44 Chapter 4. Language Specification

The elements defined in grammar fragment 4.2 are fragments of the target lan-
guage, used in both the tree definition and logic specifications. These elements are
matched using their ‘official’ syntax; the same syntax as is used by the compiler
of the target language. Examples for the Java target can be found in §5.3.1.

Grammar Fragment 4.2 Simple elements in the target language
〈identifier〉 ::= An identifier as defined by the target language.

〈target-class〉 ::= A class type in the target language.

〈target-type〉 ::= Any possible type in the target language, including classes,
arrays and primitives.

〈package-name〉 ::= The name of a package or module in the target language.

In addition to these simple elements, that can normally be matched by their
syntax definitions, tpl also uses some composite elements. These elements can
contain large fragments of code in the target language, which makes them dif-
ficult to match using their exact syntax. These elements are therefore matched
as (restricted) free form text. The composite elements are defined in grammar
fragment 4.3.

Grammar Fragment 4.3 Composite elements in the target language
〈expression-action〉 ::= An expression in the target language.

〈method-sig-action〉 ::= A method signature in the target language.

〈method-body-action〉 ::= The body of a method in the target language, enhanced
with macros (see §4.5.8).

TPL has some more syntactical elements that are used in both the tree defini-
tion and logic specification. These elements define headers and comments. The
effect of these elements depends on the context in which they are used. Their
syntax is defined in grammar fragment 4.4.

Grammar Fragment 4.4 Common elements

〈header〉 ::= ‘header’ ‘{’ 〈method-body-action〉N4.3 ‘}’

〈node-header〉 ::= ‘nodeheader’ ‘{’ 〈method-body-action〉N4.3 ‘}’

〈comment〉 ::= ‘/*’ 〈any-char〉 ‘*/’

4.4 Tree Definition

The tree definition describes the structure and typing of the AST nodes. It con-
tains a number of node definitions, which define a heterogeneous tree structure.
Every node definition corresponds to a class. These node classes can be declared
to contain children. The inheritance relation between the node classes can be

4.4. Tree Definition 45

freely defined. When a parser is used as front-end, the tree definition can be used
to specify the relation between token types, as used by the parser, and AST node
classes. The tree definition only specifies the structure of the tree, it does not
contain any behaviour.

This section defines the formal syntax and informal semantics of the tree defi-
nition of tpl. It begins with an explanation of the structure of a single AST node,
in §4.4.1. This is followed by a discussion of types and node types in §4.4.2. Next,
in §4.4.3, the top level structure of the tree definition is discussed. How a node is
defined is explained in §4.4.4. TPLc generates a set of AST classes. The organisa-
tion of these classes is discussed in §4.4.5. The constructs, to which comments can
be added, are discussed in §4.4.6. Finally, in §4.4.7, the coupling with a parser, in
particular antlr, is explained.

4.4.1 The AST Node

A tree is constructed from several nodes. A distinction is made between internal
nodes and leaf nodes. An internal node contains one or more children, whereas
a leaf node does not contain any children at all. An example of an internal node
is a binary expression, which contains two children. An example of a leaf node is
a literal, such as an integer. In addition, an AST node also contains a reference to
its parent.

A node can also contain a value. This value can be used to add information
to the AST, which can not be encoded (easily) as a tree structure. Examples are
literals (such as numbers and strings), names of identifiers, but also enumerations
(such as operator types). When a parser is used as front-end, then the value of a
node must have a type for which instances can be constructed from strings (see
§4.4.7). This allows the parser to automatically instantiate the values of the nodes.

Child nodes are subtrees that are located under the node itself. Child nodes
are identified by their name. For example, the binary expression ‘plus’ has two
child nodes: left and right. In the case of the binary expression, the number
of children is exactly two, but other multiplicities are also possible. A function
definition for example might have zero or more modifiers, exactly one name, zero
or more arguments and optionally a return type.

4.4.2 Types

The tree definition is used to specify the type and structure of the AST. Every
node, defined in a tree definition, defines a new type: a node class. These are
classes, defined in the target language, that extend the Node class. Only node
classes can be used as children of a node.

TPL is based on a strictly typed tree. This means that for every child, the type
is known. References to the children are typed and all access to the children is
performed through these typed references. This makes it impossible to construct
trees that do not conform to the structure defined in the tree definition.

When a parser, such as antlr, is used as a front-end, this parser often has its
own notion of types of the AST nodes, commonly called token types. These token
types are related to node classes, but are not the same. TPL allows a mapping
from token types to the node class, that should be constructed when a token of
the given type is matched.

Types in tpl are represented by the types in the selected target language. This
implies that types in tpl follow the semantics of types in the target language.

46 Chapter 4. Language Specification

4.4.3 Top Level Structure
A complete tree definition contains a package declaration, node definitions and
optionally a header. This is specified in grammar fragment 4.5.

Grammar Fragment 4.5 Tree definition top level

〈tree-definition〉 ::= 〈comment〉N4.4? 〈package-declaration〉 〈header〉N4.4?
〈node-def 〉H4.6*

〈package-declaration〉 ::= ‘package’ 〈package-name〉N4.2 ‘;’

The package specification specifies the target package for the generated AST
node classes. How this package is interpreted, depends on the target language.
For Java, a package construct is added to the class and the file is placed in the
corresponding directory. The header section is included in the header of every
generated node class. This can, for example, be used for imports.

4.4.4 Node Definition
The formal syntax of a node definition is given in grammar fragment 4.6. A node
definition consists at least of the node class that is declared. This class can extend
another node class. If nothing is specified, it will extend the base node class Node.
Optionally, one or more token types can be specified, for which the node class
should be used. It is an error to specify the same token type in multiple node
definitions.

Grammar Fragment 4.6 Node definition

〈node-def 〉 ::= 〈node-header〉N4.4?
〈comment〉N4.4?
‘abstract’? 〈target-class〉N4.2

〈param-list〉H4.7?
〈extends-clause〉?
〈token-types〉? ‘;’

〈extends-clause〉 ::= ‘extends’ 〈target-class〉N4.2

〈token-types〉 ::= ‘->’ 〈token-type〉 (‘,’ 〈token-type〉)*

〈token-type〉 ::= 〈identifier〉N4.2

A node class can be declared abstract. If it is, no instances of it can be
made. It will only serve as a base class for other node classes. This also makes it
impossible to specify token types for the node class.

Node definitions can have a parameter list. The formal syntax of the parameter
list is given in grammar fragment 4.7. This parameter list defines the structure of
the node. It defines whether the node has child nodes and/or a value. A node
class extending another node class, for which the structure is already defined, will
inherit this structure. It is an error to redefine the structure of a node class, that
already inherited its structure, except when using the as keyword. Only node
classes with a defined structure can be coupled to a token type.

With the as keyword, it is possible to modify a parameter, inherited from a
superclass. Two types of modifications are allowed: (1) creating an alias and

4.4. Tree Definition 47

Grammar Fragment 4.7 Tree node parameters
〈param-list〉 ::= ‘(’ 〈parameters〉? ‘)’

〈parameters〉 ::= 〈commented-param〉 (‘,’ 〈commented-param〉)*

〈commented-param〉 ::= 〈comment〉N4.4? 〈param〉

〈param〉 ::= 〈target-class〉N4.2 ‘value’
| ‘value’ ‘as’ 〈target-class〉N4.2

| 〈target-class〉N4.2 〈multiplicity〉? 〈identifier〉N4.2

| 〈identifier〉N4.2 ‘as’ 〈target-class〉N4.2 〈identifier〉N4.2?

〈multiplicity〉 ::= ‘?’ | ‘+’ | ‘*’

(2) narrowing the type (using a subclass of the type). The optional 〈identifier〉 can
be used to create an alias, which will make a child available under a different
name. The child will also still be accessible under the old name. When the type
of a child is narrowed in a subclass, the access to the child in this subclass will be
of the new type.

Parameters, that define child nodes, can have a multiplicity defined. The sup-
ported multiplicities are: ? for zero or one, + for one or more and * for zero or
more. A node with no multiplicity defined, will have the multiplicity of exactly
one.

The parameter keyword value is used to specify the type of the value of a
node. At most a single definition of value can be present in a structure definition,
and it should be the first. When a parser is used as front-end, the value will auto-
matically be set. The parsed string, corresponding to the token, will be converted
to an instance of the correct type (see §4.4.7).

When the AST is the result of a parser run, special care should be taken in
defining the order of the children of a node class. Most importantly, the children
should be defined in the same order as they are added by the parser. Furthermore,
subsequent child node definitions should be unambiguous. This is explained in
more detail in §4.4.7.

Listing 4.12: Node definitions
Program(Declaration* declarations, StatementBlock statements) −> PROGRAM;
abstract BinaryExpression(Expression left, Expression right) extends Expression;
AssignExpression(left as Identifier var) extends BinaryExpression −> ASSIGN;
abstract Literal<T>(T value) extends Expression;

5 Number(value as Integer) extends Literal<Integer> −> NUMBER;

Listing 4.12 show several node definitions, taken from the calculation lan-
guage. The first defines a node called Program, which contains zero or more
declarations and a StatementBlock. BinaryExpression is an abstract base def-
inition, for all expressions that have a left and right operand. One of these ex-
pressions is AssignExpression, which redefines left as an Identifier. Literal
is an Expression with a value. The type of the value is specified as a type pa-
rameter (a Java 5 feature). Number provides Integer for this type parameter. It
also specifies that the value is now an Integer. This is needed, because tpl does
not know anything about the types used. When omitted, Number will get a value

with the incorrect type T.

48 Chapter 4. Language Specification

Node
Node()
getParent():Node
setParent(parent:AbstractTPLNode)

Statement
Statement()
getParent():Node
setParent(parent:AbstractTPLNode)

Expression
Expression()
getParent():Node
setParent(parent:AbstractTPLNode)

BinaryExpression
left:Expression
right:Expression
BinaryExpression()
BinaryExpression(left:Expression, right:Expression)
getLeft():Expression
setLeft(right:Expression)
getRight():Expression
setRight(right:Expression)
getParent():Statement
setParent(parent:AbstractTPLNode)

AddExpression

AddExpression()
AddExpression(left:Expression, right:Expression)
getParent():Statement
setParent(parent:AbstractTPLNode)

AssignExpression

AssignExpression()
AssignExpression(var:Identifier, right:Expression)
getVar():Identifier
setVar(var:Identifier)
getParent():Statement
setParent(parent:AbstractTPLNode)

Literal
value:T
Literal()
Literal(value:T)
getValue():T
setValue(value:T)
getParent():Node
setParent(parent:AbstractTPLNode)

T

Number

Number()
Number(value:Integer)
getValue():Integer
setValue(value:Integer)
getParent():Statement
setParent(parent:AbstractTPLNode)

Identifier

Identifier()
Identifier(value:String)
getValue():String
setValue(value:String)
getParent():Node
setParent(parent:AbstractTPLNode)

AbstractTPLNode
tokenType:String
parent:AbstractTPLNode
payload:Object
AbstractTPLNode()
clone():Object
getNodeType():String
setNodeType(nodeType:String)
getPayload():Object
setPayload(payload:Object)
getParent():AbstractTPLNode
setParent(parent:AbstractTPLNode)

Figure 4.1: Class diagram for tree definition

4.4.5 The Structure of the Generated AST

The tree definition defines the structure of the AST. The different constructs are
used to generate a node class hierarchy. An example of such a generated class
hierarchy is displayed in figure 4.1.

For every node definition, a single class is generated. These classes are placed
in the declared package. The classes all indirectly extend from the AbstractTPL-

Node class, which provides the basic functionality for all node types. When node
A extends node B, node class CA, generated from A’s node definition, will be a
subclass of CB, generated from B’s node definition. A node type that is declared
abstract results in an abstract node class.

Every generated node class has the following components:

Constructors At least a constructor with no arguments is generated. When the
structure of a node is defined, an additional constructor is generated that
takes all children as arguments.

4.4. Tree Definition 49

Typed Fields A node class, that defines a structure, has instance fields, that con-
tain the references to the children of that node. Fields are generated for
the value and all child nodes. These fields are of the type specified in the
definition. All fields are protected.

Accessor methods For every component of the declared structure, a set of acces-
sor methods is generated. For the multiplicities ‘exactly-one’ and ‘zero-or-
one’, this will be a get and set method. For the multiplicities ‘zero-or-more’
and ‘one-or-more’, an add, remove and set method is generated. The add

and set methods all call setParent on the new child, updating the parent
of the node.

Parent accessor Every node that can have a parent (i.e. a node type that is not
used as a child in any of the node definitions) receives getParent and
setParent methods, which provide access to the parent of the node. The
type of node returned by the getParent method is the most specific type
that still contains all possible parents (see below). setParent checks at run-
time if the specified parent is of the correct type3. When the node can not
have a parent, both getParent and setParent are overridden to throw an
exception.

Annotations Every node class is annotated with the Structure annotation, which
describes the structure of the node. This annotation contains information
about the children of the node and the token types to which the node is
bound. When the target language does not support annotations, a static
field can be used to store the information.

For nodes with a multiplicity of ‘zero-or-more’ or ‘one-or-more’ a list is gener-
ated. The two other multiplicities are compiled into a single instance. An empty
list or null is used to indicate a missing node for the two cases respectively.

Modifications to the structure, made with as, are taken into account when the
nodes are generated. When an alias is created, extra accessor methods are added.
This can be seen in the AssignExpression class in figure 4.1. When the type
is narrowed, this modified type is used in the constructor and accessor methods.
This is also illustrated by the AssignExpression class, where the constructor takes
an Identifier, and both getVar and setVar use Identifier, not Expression.

4.4.5.1 Parent Type

The getParent method returns the parent of a node, if it exists. Nodes often only
occur in a fixed context, making it desirable to return a correctly typed parent.
The return type should be as specific as possible. This approach is taken by tplc
for the generated getParent and setParent methods.

The union of all contexts in which a node can be used is taken and the highest
common denominator is taken as the type of the parent. Literals and variable dec-
larations in the calculation language clearly illustrate this technique. Listing 4.13

gives their tree definitions.
A Declaration can only occur as part of a Program node. The type of Dec-

laration’s parent will therefore be Program. Identifier on the other hand can
be used inside a StatementBlock (as statement) or inside a Declaration. The
highest common denominator of these two classes is Node, which becomes the
type of Identifier’s parent. A Literal can be either an Identifier or a Number

3setParent is not overridden with a more strictly typed argument, because that would introduce
an overloaded method. The old method (taking an AbstractTPLNode) would still exist and would be
called in case of a wrongly typed argument. The overriding method does check if the argument is of
the correct type.

50 Chapter 4. Language Specification

Listing 4.13: Parent type illustration
Program(Declaration* declarations, StatementBlock statements) −> PROGRAM;
Declaration(Identifier variable) −> DECLARATION;
StatementBlock(Statement* statements) extends Statement −> BLOCK;

5 abstract Statement;
abstract Expression extends Statement;
abstract Literal<T>(T value) extends Expression;

Number(value as Integer) extends Literal<Integer> −> NUMBER;
10 Identifier(value as String) extends Literal<String> −> IDENTIFIER;

Construct Destination

Package declaration Package
Node definition Tree node class
Node parameter Field in the tree node class

Table 4.1: Comments in the tree definition and their destination

and thus can be used in the contexts of both types. The type of the parent of
Number is Statement. The type of Literal’s parent will be the common superclass
of Statement and Node: Node.

4.4.6 Comments and Headers

Comments can be added to most constructs of the tree definition. The constructs
where comments are supported can be found in table 4.1. This table also shows
the destination of the comments. The contents of a comment will be copied in
verbatim to the output file.

It is not possible to add comments to the various accessor methods and con-
structors. For these methods comments are generated that refer to the comments
for the parameters.

TPL also supports comments that are not copied to the generated files. These
comments start with ‘//’ and stop at the end of the line.

It is also possible to add headers to either a single node, or to all nodes in the
tree definition. These headers are placed at the beginning of the generated files.

4.4.7 AST Construction

ASTs can be constructed through manual calls of the constructors of the nodes,
but a more common approach is to let a parser construct the AST. TPL provides
an interface with antlr, which allows antlr to construct an instance of an AST
generated by tplc.

ANTLR v3 uses the TreeAdaptor interface to construct ASTs. TPL provides
a custom implementation of this interface to create the nodes. This adaptor uses
the types of the nodes to determine the parameter to which new nodes should be
added. The information it needs is added to the generated classes in the form of
annotations. All AST construction techniques available in antlr are supported.

To convert the tokens, read from the input, to the values in the nodes, tpl

uses the ConversionSelector. The default implementation of this selector is able
to convert a string to all formats that can be represented by the primitive types

4.5. Logic Specification 51

X

ifaceMethod()

Y

Z

visitFunc()
method()

X
attribute String attr
interface public void ifaceMethod()
implementation public void method()

Z

visit()
interface public void method()

FuncX
String attr
ifaceMethod()
method()

FuncZ

visitFunc()
method()

Generated Tree Nodes Logic Specification ‘func’ Generated Logic Specification
Nodes

Figure 4.2: Binding of a logic specification

the target language supports. The Java implementation supports Byte, Short,
Character, Integer, Long, Float, Double, and Boolean. It is also possible to
specify different conversions through the addConverter method. When the con-
version fails (either because the input does not have the right format, or because
the converter is not available) a TypeConversionException is thrown.

Nodes are added one by one to their parent in a sequential order. At any
moment it should be clear to which parameter a new sub-node should be added.
For example, the following node definition is invalid: N1(A a, B? b1, C* c, B

b2), whereas this definition is valid: N2(A a, B b2, C* c, B? b1). In the first
example, after an A has been inserted, it is unclear whether a B node should be
inserted as parameter b1 or as b2. It might be possible that both b1 and c are not
present in the input.

These ambiguities are detected when the tree definition is processed and re-
ported as errors. In most cases ambiguities such as above can be resolved using
antlr’s tree rewrite rules.

4.5 Logic Specification

Logic specifications are used to add application functionality to AST nodes. This
includes attributes (instance fields), methods and interfaces. These are added to
the AST nodes, defined in the tree definition. A logic specification can depend on
other logic specifications, which will also be part of the AST.

A logic specification defines a separate class inheritance tree. Instances of these
classes are put in the tree node4 classes and accessible through composition. This
is illustrated by figure 4.2. In this figure the binding of logic specification node
classes X and Z to the tree node classes X and Z is shown. The arrows indicate
the destination of the declared constructs. The class inheritance tree is backed
by a similar interface inheritance tree (not shown in the figure) that contains all
interface methods. These interfaces are implemented by the tree node classes and
the logic node classes, making the functionality accessible from the outside. The
methods in the tree node classes call their equivalent in the corresponding logic
node class.

This section defines the formal syntax and informal semantics of the logic

4The term ‘node’ is somewhat ambiguous. It can refer to the concept of a node in an AST, to
the class implementing that concept, or to a part of a logic specification that adds functionality to
that class. When the actual meaning is not clear in the context the term is used in, tree node class is
used to refer to the class implementing a node in the tree and logic node class is used to refer to the
corresponding part of the logic specification.

52 Chapter 4. Language Specification

specification. First, the top level structure of the logic specification is given in
§4.5.1. Followed by the specification of a logic node class in §4.5.2. Next, the
elements that form the body of a node, attributes and methods, are explained
in §4.5.3 to §4.5.6. Inheritance between nodes is discussed in §4.5.7. In method
bodies, several macros can be used. These macros are discussed in §4.5.8. §4.5.9
discusses how the logic specification is compiled into a representation in the target
language. Finally, §4.5.10 explains the usage of comments and headers in a logic
specification.

4.5.1 Top Level Structure

The structure of a logic specification is very similar to that of the tree definition.
The syntax for a logic specification is defined in grammar fragment 4.8.

Grammar Fragment 4.8 Logic specification top level

〈specification〉 ::= 〈comment〉N4.4? 〈package-declaration〉 〈header〉N4.4?
〈logic-deps〉? 〈node-declaration〉H4.9*

〈package-declaration〉 ::= ‘package’ 〈package-name〉N4.2 ‘;’

〈logic-deps〉 ::= ‘depends’ 〈identifier〉N4.2 (‘,’ 〈identifier〉N4.2)* ‘;’

The 〈package-declaration〉 specifies the target package for the generated classes
and interfaces. The header section is included in every logic node class, its ac-
companying interface and in tree node classes if needed (when a logic node is
bound to a tree node). With the depends keyword, other logic specifications that
the specification depends on, can be given. A dependency may only be listed
once.

4.5.2 Node Declaration

Functionality in a logic specification is provided by means of logic node classes.
The tree node classes acquire this functionality by including the logic node classes
through composition. The syntax for the logic node classes is given in grammar
fragment 4.9.

The syntax of a logic node specification is similar to that of a tree node
definition. At least the name of the node class needs to be given. Using the
〈extends-clause〉, it is possible to let this node class extend another class. When
no superclass is specified, the node class will extend AbstractLogic (see §4.5.7).
The optional 〈node-name〉, followed by a colon, allows the binding of a logic node
class to a tree node class. This will add the functionality provided by the logic
node class to the tree node class. The tree node class should be defined in the
tree definition (§4.4.4). When the 〈node-name〉 is omitted, the name of the logic
node class is used. When this name does not match the name of a tree node, the
logic node is not bound to a tree node. It is not allowed to bind more than one
logic node class to a single tree node class in the same logic specification. Finally,
the logic node class can have a body, that contains attributes (§4.5.3), interface
methods (§4.5.4), implementation methods (§4.5.5) and visiting methods (§4.5.6).
The elements 〈node-header〉 and 〈comment〉 are discussed in §4.5.10.

The example in listing 4.14 declares the Program and AssignExpression nodes
for the interpreter of the calculation language.

4.5. Logic Specification 53

Grammar Fragment 4.9 Logic node specification

〈node-declaration〉 ::= 〈node-header〉N4.4?
〈comment〉N4.4?
(〈node-name〉 ‘:’)?
‘abstract’? 〈target-class〉N4.2

〈extends-clause〉?
(‘{’ 〈body〉 ‘}’ | ‘;’)

〈node-name〉 ::= 〈target-class〉N4.2

〈extends-clause〉 ::= ‘extends’ 〈target-class〉N4.2

〈body〉 ::= (〈comment〉N4.4? 〈body-element〉)*

〈body-element〉 ::= 〈attribute〉H4.10

| 〈interface-method〉H4.11

| 〈implement-method〉H4.12

| 〈visit-method〉H4.13

Listing 4.14: Node declarations
Program {

interface public void run() {
#this .visit();

}
5

visit() {
Map<String, Integer> store = new HashMap<String, Integer>();
#foreach(#decl <− #declarations) {

#decl.visit(store);
10 }

#statements.visit(store);
}

}

15 abstract Expression extends Statement {
visit(Map<String, Integer> store) {

#this .visitExpr(store);
}

20 int visitExpr (Map<String, Integer> store);
}

AssignExpression extends Expression {
int visitExpr(Map<String, Integer> store) {

25 int value = #right.visitExpr(store);
store.put(#var.visitWrite(), value);
return value;

}
}

54 Chapter 4. Language Specification

Program declares an interface method run which calls the visiting method in
Program. This visiting method creates a new store, adds all declarations to the
store and visits all statements (see §4.5.6).

The AssignExpression node extends Expression (left out) and implements a
visiting method that stores the value of the right expression under the name of
the var identifier in the store. The value is also returned from the visiting method.

When a logic node is bound to a non-abstract tree node class, all its interface
methods should have a corresponding implementation. The tree node itself will
be available to the functionality through the macro #this (see §4.5.8). When a
logic node class is declared abstract and it is bound to a tree node class, then the
tree node class will only inherit its interface methods. Because no implementation
and composition is added, it is required that the tree node class is also abstract.
A subclass of the logic node should provide all abstract methods and should be
bound to a subclass of the tree node (see §4.5.7).

4.5.3 Attributes

Attributes are member fields that can be used to store information in a node.
For example, a variable node might get a reference to its symbol table entry. An
attribute can also have an initial value. The grammar used to add an attribute to
a logic class is given in grammar fragment 4.10.

Grammar Fragment 4.10 Attribute specification

〈attribute〉 ::= ‘attribute’ 〈target-type〉N4.2 〈identifier〉N4.2

(‘=’ 〈expression-action〉N4.3)? ‘;’

〈target-type〉 is the type of the attribute declared in the target language. The
expression 〈expression-action〉 is also specified in the target language and can be
used to give the attribute an initial value. Listing 4.15 shows two correct attribute
definitions when Java is the target language5.

Listing 4.15: Attribute declaration
attribute SymbolEntry symbolReference;
attribute Type variableType = Type.UNKNOWN;

4.5.4 Interface Methods

To access behaviour of a node through its public interface, an interface method
should be added. An interface method exposes behaviour of a node through a
method in the tree node class. The method call on the tree node class is forwarded
to the logic node class. Examples of behaviours that can be exposed are access
to attributes, type information and specialised string serialisation logic. Visiting
methods are always part of the interface of a node (see §4.5.6). The syntax, used
for interface methods, is given in grammar fragment 4.11.

As with attributes, both 〈method-sig-action〉 and 〈method-body-action〉 are actions
in the target language, declaring the interface method. Listing 4.16 gives two
examples, from the calculation language, that declare interface methods for the
Java language.

5These examples are not part of the calculation language.

4.5. Logic Specification 55

Grammar Fragment 4.11 Interface method specification

〈interface-method〉 ::= ‘interface’ 〈method-sig-action〉N4.3

(‘;’ | ‘{’ 〈method-body-action〉N4.3 ‘}’)

Listing 4.16: Interface method declaration
interface public String toString() {

return #this .visit(0);
}

5 interface public void run() {
#this .visit();

}

An interface method without a body is declared abstract. The method will be
part of the interface, but its implementation should be provided in all subclasses.
In these subclasses, the method should also be provided as an interface method.
It is not possible to remove a method from the public interface in a subclass. When
a method is declared with implementation (see §4.5.5), it is possible to override it
with interface. This will add the method to the public interface in the subclass,
where it was previously not exposed.

Inside 〈method-body-action〉 it is possible to use several macros for accessing
child nodes and visiting methods (see §4.5.8).

4.5.5 Implementation Methods

An implementation method adds functionality to the node, that is not accessible
through the public interface of the tree node classes. In contrast to interface
methods, no forwarding call from the tree node class to the logic node class is
added for implementation methods. The grammar used to add implementation
methods is given in grammar fragment 4.12.

Grammar Fragment 4.12 Implementation method specification

〈implement-method〉 ::= ‘implementation’ 〈method-sig-action〉N4.3

(‘;’ | ‘{’ 〈method-body-action〉N4.3 ‘}’)

Listing 4.17 shows some implementation method specifications, from the cal-
culation language’s pretty printer, for the Java target.

4.5.6 Tree Traversal

Both the interface and implementation methods allow functionality to be attached
to a single node type. However, algorithms often operate on the entire tree, or a
part of it. To define functionality that is part of a tree traversal, a visiting method
can be used. A visiting method is always part of the public interface of a node. It
is declared with the syntax given in grammar fragment 4.13.

A visiting method can have one or more return values. When multiple re-
turn values are specified these should be returned and read with the designated
macros (see §4.5.8).

56 Chapter 4. Language Specification

Listing 4.17: Implementation method declaration
implementation protected String writeIndentation(int indentation) {
String ret = "";
for (int count=0; count<indentation; count++) {
ret += " ";

5 }
return ret;

}

implementation abstract protected String getOperator();
10

implementation protected String getOperator() {
return ":=";

}

Grammar Fragment 4.13 Visiting method specification
〈visit-method〉 ::= 〈visit-signature〉

(‘;’ | ‘{’ 〈method-body-action〉N4.3 ‘}’)

〈visit-signature〉 ::= 〈return-type〉? 〈identifier〉N4.2 ‘(’ 〈argument-list〉? ‘)’
〈throws-clause〉?

〈throws-clause〉 ::= ‘throws’ 〈target-type〉N4.2 (‘,’ 〈target-type〉N4.2)*

〈return-type〉 ::= 〈target-type〉N4.2

| ‘(’ 〈named-type〉 (‘,’ 〈named-type〉)* ‘)’

〈named-type〉 ::= 〈target-type〉N4.2 〈identifier〉N4.2

〈argument-list〉 ::= 〈named-type〉 (‘,’ 〈named-type〉)*

It is possible to override the return type of a visiting method in a subclass.
When the visiting method in the superclass declares only a 〈target-type〉, the sub-
class can also only declare a 〈target-type〉. This type should be a subclass of the
return type of the method in the superclass. When the visiting method in the
superclass declares multiple return values, or a single value with a name, the
subclass is allowed to add new values and to change the type of existing values.
Again a new type should be a subclass of the old type.

Adding new method arguments or changing the type of an argument in a
subclass is not allowed. An external class might use the subclass with the type
of the superclass. This would cause the method to be called with insufficient
arguments. For example, a program might iterate over all expressions. At that
point, the program only knows about the signature of the method, as it is defined
on Expression. When one of these expressions (such as Identifier) required
an additional method argument the program would fail to provide it, because it
accesses the identifier through the signature provided in Expression.

〈method-body-action〉 specifies the behaviour of the visiting method. It is spec-
ified in the target language, enriched with the macros defined in §4.5.8. It is
possible to omit the method body, in which case an abstract visiting method is
declared, which needs to be implemented in all subclasses.

4.5. Logic Specification 57

Program

var var var if print

a b c a + c a

1 b

...
...
...
.HH

a
...

...

...
.HH

b
...

...

...
.II

c

...
..
..
..
..
...
...

... . .
.

KK

a

...
..
..
...
...
....

......
..

..

b
..
..
...
..
...

.
..
.

c

.................��
store

.........................��

store
......... ��

store
......		

store

..............��
store

.....

store

.....��
store

........��
store

Figure 4.3: Inherited and synthesised attributes

Inside the visiting logic it is possible to pass information to nodes deeper in
the tree, or up towards the root. This is related to attribute grammars, where
information is passed through attributes. An attribute passed down the tree is
called an inherited attribute and an attribute passed upward is called a synthe-
sised attribute. With visiting methods, inherited attributes are passed as method
arguments and synthesised attributes as return values. Both attributes are il-
lustrated in figure 4.3. Arrows from the leafs toward the root are synthesised
attributes. In this example they pass the name of a declared variable upward. The
arrows from the root toward the leafs are inherited attributes. They pass the store
with the values of variables to all parts of the program. Expression results are
omitted from the figure. A comparison between visiting methods and attribute
grammars is presented in appendix D.

4.5.7 Inheritance

A logic specification can define an inheritance tree that is independent of the
tree defined by either the tree definition, or any other logic specification. As
mentioned before, this is achieved through a separate inheritance tree, an ac-
companying interface inheritance tree and composition. Inheritance among logic
specification classes follows the semantics of the target language.

There are some restrictions to the independence of the inheritance tree defined
in a logic specification. When an interface is bound to a tree node class at a cer-
tain point, all tree node classes extending—directly or indirectly—this node, will
inherit this interface. When another interface is bound to one of these subclasses,
this interface should be a subinterface of the first.

This is illustrated by Expression in the interpreter of the example language.
The corresponding code fragments are given in listing 4.18.

The Statement specifies a visiting method that takes a store and returns noth-
ing. Expressions can also be used as statements in this language. Therefore
Expression also needs to specify the visiting method declared by Statement. In
addition it also declares a new visiting method that returns the result of the ex-
pression.

4.5.8 Macros in Logic Actions

Both the implementation and visit method bodies are specified in the target lan-
guage. To aid the developer in accessing various properties of the AST, such as
nodes and other logic specifications, various macros can be used. These macros
are expanded to code in the target language. When possible, error checking is

58 Chapter 4. Language Specification

Listing 4.18: Inheritance within a logic specification
abstract Statement {
visit(Map<String, Integer> store);

}

5 abstract Expression extends Statement {
visit(Map<String, Integer> store) {

#this .visitExpr(store);
}

10 int visitExpr (Map<String, Integer> store);
}

performed, but these checks are limited, because not much is known about the
context in which the macros are used.

4.5.8.1 Iterating over Nodes

The for-each statement can be used to loop over multiple nodes. The syntax for
the for-each statement is given in grammar fragment 4.14.

Grammar Fragment 4.14 For-each statement
〈for-each〉 ::= ‘#’ ‘foreach’ ‘(’ ‘#’ 〈iterator〉

‘<-’ 〈node-selection〉H4.15 ‘)’

〈iterator〉 ::= 〈identifier〉N4.2

The nodes are made available one at a time as the first identifier. #foreach

behaves as a normal for in the target language and, as such, can be followed by
a statement block.

Listing 4.19 gives some exemplary for-each statements, as they can be used
in an application. The first iterates over all Statements and calls the visitStmt

method on every Statement. The second iterates over all Identifiers under
statements and calls the visit method on every Identifier.

Listing 4.19: For-each statement
#foreach(#stmt <− #statements) {
ret += #stmt.visit(indentation);

}

5 #foreach(#curId <− #statements//*[Identifier]) {
errors += #curId.visitUse(symbols);

}

4.5.8.2 Selecting Nodes and Values

It is often necessary to access nodes when implementing certain behaviour. These
nodes can range from the current node to any node anywhere in the tree. TPL

4.5. Logic Specification 59

provides a query language through which nodes can be accessed. Node selection
queries always start with the # symbol. The syntax of this query language is given
in grammar fragment 4.15.

Grammar Fragment 4.15 Node selection
〈node-selection〉 ::= ‘#’ 〈selection-step〉

(〈step-operator〉 〈selection-step〉)*

〈step-operator〉 ::= ‘/’ | ‘//’

〈selection-step〉 ::= 〈selector〉 〈filter〉?

〈selector〉 ::= 〈identifier〉N4.2 | ‘this’ | ‘value’ | ‘parent’ | ‘*’

〈filter〉 ::= ‘[’ 〈identifier〉N4.2 (‘,’ 〈identifier〉N4.2)* ‘]’

The most commonly used queries consist of a single 〈selection-step〉. They are
used to select direct children of a node (such as #left), the current node (with
#this), the value of the current node (with #value) or its parent (with #parent).
The wildcard 〈selector〉 ‘*’ selects all children.

Subsequent 〈selection-step〉s can be concatenated with a 〈step-operator〉. Two
〈step-operator〉s are available. The first, ‘/’, continues a query at the node that is
currently selected, whereas the second, ‘//’, continues at the current node, or any
of its direct or indirect children.

A 〈filter〉 can be applied to a 〈selection-step〉, to only allow nodes of a given set
of types. These types should be node classes, defined in the tree definition. If no
〈filter〉 is specified, all nodes are selected.

Normally, a node selection starts at the current node. When an iterator from
a for-each statement (see §4.5.8.1) is used as the first 〈selection-step〉, the node
selection will start at the iterator, instead of the current node. An iterator can
only be specified as the first 〈selection-step〉.

The node selection can also be used to access the value of a node, with the
‘value’ 〈selector〉. The selection of the ‘value’ of a node is only allowed as the last
〈selection-step〉. Also, the node selection should always match exactly one value.

Listing 4.20: Node selection
#parent
#declarations/variable
#statements//*[Identifier]
#this//*[AssignExpression]/var

Listing 4.20 gives some node selection examples. The first selects the parent
of the current node. The second selects the variable under every declaration. The
third searches the entire tree under statements for nodes of type Identifier.
The last query matches all var nodes under a AssignExpression.

Semantics The semantics of a node selection are defined in 1..m steps. A step
is defined as σi =< si, Ti, oi, σi+1 > and the last step as σm = ⊥, where si is the

60 Chapter 4. Language Specification

selection, Ti the filters applied and oi the operator that seperates this step from
the next.

The function A(n, s) defines the advancement for a node and a selection:

A(n, s) =

{n} if s = ‘this’
P(n) if s = ‘parent’
V(n) if s = ‘value’
C(n) if s = ‘*’
{x ∈ C(n) | N(x) = s} if τ(s) = 〈identifier〉

This advance function uses several utility functions. These functions are defined
as:

P(n) =

{
∅ if n does not have a parent
{the parent of n}

V(n) =

{
∅ if n does not have a value
{the value of n}

C(n) = A set of all children of n, excluding its value
N(n) = The name under which a child is stored in its parent

Every node selection starts with a selection set S containing just the current
node or an iterator (see §4.5.8.1). The function A is applied to every node in
the current selection set and the results are merged into a single set. The filters
are applied. The following function executes a single step σi, using the current
selection set S, the selection si and filters Ti:

S′(S, si, Ti) =
{

m | m ∈
⋃

n∈S
A(n, si) ∧ τ(m) ∈ Ti

}
Between the steps, the 〈step-operator〉 determines with which nodes the algo-

rithm will continue. The semantics of the 〈step-operator〉 is defined by the follow-
ing function on the current selection set S and the operator oi:

O(S, oi) =

{
S if oi = ‘/’
S ∪⋃

n∈S D(n) if oi = ‘//’

D(n) = C(n) ∪
⋃

n′∈C(n)

D(n′)

The execution ε(S, σi) of a entire node selection becomes:

ε(S,⊥) = S

ε(S, < si, Ti, oi, σi+1 >) = ε(O(S′(S, si, Ti), oi), σi+1)

4.5.8.3 Visiting Nodes

Calling a visiting method is similar to calling a normal method. It should always
follow a node selection as defined above. All attributes should always be provided
in the specified order. The complete syntax for visiting method invocation is given
in grammar fragment 4.16. Listing 4.19 gives some visit invocation examples.

Visiting methods can return multiple values, as specified in §4.5.6. Special
macros are available for constructing and reading these values. As with the visit
method invocation, these attributes should be given in the specified order. The
syntax for these macros is given in grammar fragment 4.17.

4.5. Logic Specification 61

Grammar Fragment 4.16 Visit invocation

〈visit-invocation〉 ::= 〈node-selection〉N4.15 ‘.’ 〈identifier〉N4.2

‘(’ 〈arguments〉 ‘)’

〈arguments〉 ::= 〈expression-action〉N4.3

(‘,’ 〈expression-action〉N4.3)*

Grammar Fragment 4.17 Return values

〈multi-val-create〉 ::= ‘$’ ‘(’ 〈arguments〉N4.16 ‘)’

〈multi-val-store〉 ::= ‘$’ 〈identifier〉N4.2 ‘=’ 〈visit-invocation〉N4.16

〈multi-val-read〉 ::= ‘$’ 〈identifier〉N4.2 ‘.’ 〈identifier〉N4.2

The 〈multi-val-create〉 construct is used to create a tuple with the given values.
With 〈multi-val-store〉, the result of a visiting method is stored in a local variable
with the given name. Finally, with 〈multi-val-read〉, the values can be read from
this variable.

Listing 4.21: Multiple return values
Program {

interface public void example() {
#foreach(#decl <− #declarations) {
$declRet = #decl.visitNameType();

5 System.out.println($declRet.name + ": " + $declRet.type);
}

}
}

10 Declaration {
(Integer value, String type) visitNameType() {

return $(#variable/value, "int");
}

}

Listing 4.21 gives some examples6 of using multiple return values. In Decla-

ration, a tuple is constructed, containing the value, and the string "int". Program
iterates over all declarations, storing the result of visitNameType in the local vari-
able declRet, and printing its contents.

4.5.9 The Structure of the Generated AST

Every logic specification is compiled into a separate class hierarchy. Instances
of these classes have a reference to the tree node to which they belong and are
part of these nodes using composition. Figure 4.4 shows a fraction of the class
diagram for the interpreter of the example language. This figure shows that
AbstractLogic contains the reference to a tree node, of type N. InterpreterPro-

6These examples are not from the calculation language. This language is too simplistic to use
multiple return values.

62 Chapter 4. Language Specification

AbstractTPLNode

Node
Node()
getParent():Node

Program
declarations:List<Declaration>
statements:List<Statement>
Program()
Program(declarations, statements)
...
run()
visitInterpreter()

InterpreterProgram

InterpreterProgram(node:N)
run()
visitInterpreter()

N extends Program

AbstractLogic
node:N
AbstractLogic(node:N)

N extends AbstractTPLNode«interface»
IInterpreterProgram

run()
visitInterpreter()

Figure 4.4: Class diagram for logic specification

gram provides Program for this type parameter N. Program accesses Interpreter-
Program through composition. Instantiation of the composition classes is done
automatically when the functionality is first used.

The logic specification enhances the node classes, generated by the tree defi-
nition. Three additions are made to the node classes, for every logic specification,
that adds functionality to a node: (1) the node class implements the interface (if
any) specified by the logic specification, (2) a protected field, containing a ref-
erence to the logic node class, is added, where needed, when the tree node class
is not declared abstract and (3) all interface methods are passed to that field
(including the visiting methods).

4.5.9.1 Attributes

Attributes are directly added to the logic classes as instance fields. Because ev-
ery logic specification will have its own class hierarchy, accessor methods in the
node are needed when other logic specifications need access to the attributes.
These accessor methods will need to be part of the public interface of the logic
specification.

4.5.9.2 Interface Methods

Interface methods are the only methods that are accessible from outside the logic
specification. This includes all visiting methods. Every interface method is added
to the interface for that node class. This interface is implemented by the tree
node class and the logic node class. In the tree node class, these methods are
implemented by forwarding control to the logic node class. The logic node class
contains the actual method. The run method, shown in figure 4.4 is an interface
method of Program. It is added to the interface IInterpreterProgram, the tree
node class Program and the logic node class InterpreterProgram. The method in
InterpreterProgram contains the actual functionality and this method is called
from Program.

When an interface method is declared without a body (it is abstract), then
the method is only added to the interface, and a forwarding implementation is
added to the tree node class. The implementation of the abstract method needs
to be provided in a subclass of the logic node class.

4.5. Logic Specification 63

Construct Destination

Package declaration Package
Node declaration Logic node class and interface
Attribute Field in logic node class
Interface method Method in logic node class and interface
Implementation method Method in logic node class
Visiting method Method in logic node interface

Table 4.2: Comments in the logic specification and their destination

4.5.9.3 Implementation Methods

All implementation methods are added to the logic node classes. These methods
are not added to the interface, or the tree node class. This makes it impossi-
ble to access implementation methods from outside the logic specification. It is
possible to specify abstract implementation methods. Such a method needs an
implementation in a subclass.

4.5.9.4 Visiting Methods

Visiting methods are mostly treated as normal interface methods. The name of
the logic specification is appended to the name of the method to avoid naming
conflicts between multiple logic specifications. When a visiting method returns
multiple values, a tuple class is generated to hold those values. This tuple class
has private fields for all values, a single public constructor that takes all fields
as arguments and a get-method for every value. Overriding the return types (see
§4.5.6) will result in a subclass of the tuple defining the new values.

4.5.10 Comments and Headers
As with the tree definition the logic specification also supports comments on
most constructs. These constructs are displayed in table 4.2, together with the
destination of those comments. The contents of a comment will be copied in
verbatim to the output file. In the logic specification it is also possible to use
comments that start with ‘//’ and stop at the end of the line. These comments are
ignored.

As with the tree definition, the logic specification allows the addition of head-
ers to a single node, or to all nodes. When an header is added to a node, this
header is also added to the accompanying interface and all tree node classes im-
plementing that interface.

64 Chapter 4. Language Specification

5Chapter

Design of TPLc

In this chapter an overview of the design of tplc, the compiler for systems written
in tpl is presented. It starts with an hierarchical overview of tplc’s components,
followed by a discussion of these components. §5.2 describes the driver. The
parser is discussed in §5.3, the context checker in §5.4 and the generator in §5.5.
The use of the StringTemplate engine is explained in §5.6. Finally the design of
the runtime library is discussed in §5.7.

5.1 Hierarchy

TPLc reads its input from a single tree definition and zero or more logic specifi-
cations. It generates a collection of classes in the target language. The input files
are parsed and fed to the context checker. The context checker verifies the types
and attributes used in the constructs in the input. Finally, the input is sent to the
code generator, which instantiates the right templates.

An overview of the hierarchy of tpl is given in figure 5.1. In this diagram the
following components are displayed:

Driver The Driver component controls the execution flow of tpl. It parses the
command line options and starts all other components in the right order.

Parser The Parser component contains parsers for tree definitions and logic spec-
ifications. The parsers generate ASTs.

ContextChecker The ContextChecker verifies the correctness of both the tree def-
inition and any logic specification. It also decorates the ASTs with addition
information, such as type information, that can be used by the generator.

Parser

TreeParser LogicParser

StringTemplate

Generator

TreeGenerator LogicGenerator

NodeSelectionGenerator

ContextChecker

TreeChecker LogicChecker

NodeSelectionChecker

Driver

Runtime

TreeBuikder Converter

NodeSelection ANTLR

Figure 5.1: Component diagram for tpl

66 Chapter 5. Design of TPLc

Generator The Generator component is responsible for generating the various
classes. From the ASTs, produced by the ContextChecker, the correspond-
ing StringTemplates are instantiated. As with the ContextChecker, this
component is split into three parts: tree definition, logic specifications and
node selection.

StringTemplate From [Parr, 2004]: “StringTemplate is a java template engine
for generating source code, web pages, emails, or any other formatted text
output.” It will be used by the Generator component to build the classes.

Runtime The Runtime library contains classes required when a generated appli-
cation is run. This consists of base classes for the AST nodes, functionality
for constructing the AST, type conversion classes, runtime node selection
support and an integration with antlr.

5.2 Driver

The driver is a simple component that is the entry point of tpl. It is started from
the command line and initiates all other components. The main responsibilities
of the driver are parsing the command line options and calling the other com-
ponents. First, the tree definition is parsed, followed by all logic specifications.
Next, the resulting ASTs are passed to the context checker. Finally, the ASTs are
passed to the generator, which generates the output files.

5.3 Parser

Multiple parsers are required for tpl. The two most important are the parser for
a tree definition and the parser for logic specifications. Both parsers are imple-
mented in antlr v3 and have some common tokens and rules. Most of these
tokens are target language dependent. In this section the common tokens and
rules will be discussed, followed by a discussion of both parsers.

5.3.1 Common Tokens
Most of the common tokens and rules used by both parsers are target language
dependent. These tokens are listed in §4.1. Some of these tokens match complex
strings, such as method signatures or expressions. Writing complete lexers for
these tokens would result in including large portions of the parser of the target
language in the parser for tpl. To prevent this, the special tokens will be parsed
as free form text with delimiters, which indicate the start and end of the tokens.
These delimiters may depend on the context of the token. Below, all common
tokens and rules will be discussed.

5.3.1.1 Identifier Token

Identifiers are matched with a single token in most programming languages. The
definition for identifiers, from the Java Language Specification [Gosling et al.,
2005] is given in grammar fragment 5.1. When the identifier starts with visit, a
special type of identifier, 〈visit-identifier〉, will be matched.

5.3.1.2 Target Class Rule

The 〈target-class〉 rule matches a class name (or type) in the target language. This
can be complex structures, such as parameterised types in Java or plain identifiers.

5.3. Parser 67

Grammar Fragment 5.1 Identifier in Java
〈identifier〉 ::= 〈identifier-chars〉

〈identifier-chars〉 ::= 〈java-letter〉 (〈java-letter-or-digit〉)*

〈java-letter〉 ::= Any Unicode character that is a Java letter.

〈java-letter-or-digit〉 ::= Any Unicode character that is a Java letter-or-digit.

The 〈target-class〉 rule should not match arrays. Its syntax, for the Java target, is
given in grammar fragment 5.2.

Grammar Fragment 5.2 Target class in Java

〈target-class〉 ::= 〈identifier〉N5.1 〈type-arguments〉?
(‘.’ 〈identifier〉N5.1 〈type-arguments〉)*;

〈type-arguments〉 ::= ‘<’ 〈type-argument〉 (‘,’ 〈type-argument〉)* ‘>’

〈type-argument〉 ::= 〈target-class〉
| ‘?’ ((‘extends’ | ‘super’) 〈target-class〉)?

5.3.1.3 Target Type Rule

The 〈target-type〉 rule matches all types in the target language, including prim-
itives, classes and arrays. Grammar fragment 5.3 gives the syntax for the Java
target.

Grammar Fragment 5.3 Target type in Java

〈target-type〉 ::= (〈target-primitive〉 | 〈target-class〉N5.2) (‘[’ ‘]’)*;

〈target-primitive〉 ::= ‘void’ | ‘boolean’ | ‘byte’ | ‘char’ |
‘short’ | ‘int’ | ‘float’ | ‘double’

5.3.1.4 Package Name Rule

A package name indicates the target package, namespace or module of the gener-
ated code. This notion depends heavily on the selected target language. For Java
this is a list of identifiers separated by dots, as shown by grammar fragment 5.4.

5.3.1.5 Expression Action Token

〈expression-action〉 tokens can be used in attribute declarations and in visit method
invocations. In the first case they assign a default value to an attribute and in the
second case they are used as values for attributes (synthesised and inherited).
Expressions can be difficult and large constructs. Providing an exact lexer for ex-
pressions would result in including a large part of a parser for the target language
in the lexer. Also, it is likely that other parts of the input could also be matched
by that lexer, producing ambiguities. Therefore the following strategy is used:

68 Chapter 5. Design of TPLc

Grammar Fragment 5.4 Package name in Java

〈package-name〉 ::= 〈identifier〉N5.1 (‘.’ 〈identifier〉N5.1)*;

(1) The token 〈expression-action〉 can only be matched when the boolean flag
isExprFollow() returns true.

(2) The token ends when a ‘;’, a ‘,’ or a ‘)’ is read that is not part of the
expression1. These characters are ignored when part of a string, other literal
or comment.

(3) Every opening parenthesis or curly bracket should be matched by a closing
parenthesis or curly bracket.

5.3.1.6 Method Signature Action Token

The token 〈method-sig-action〉 faces a similar problem as 〈expression-action〉. The
token matches a complete method signature. This includes modifiers, the return
type, the name and all method arguments. The following rules are used to match
a 〈method-sig-action〉 token:

(1) The token can only be matched when the boolean flag isSigFollow() re-
turns true.

(2) The token ends when a ‘;’ or ‘{’ token is read that is not part of the method
signature, accounting for literals and comments.

(3) The method body is allowed to contain expressions, as discussed above.
This allows the usage of annotations in Java2.

5.3.1.7 Method Body Action Token

The 〈method-body-action〉 token matches the entire body of a method, enclosed in
braces. This makes the token a little easier to match. The following rules are used
to match 〈method-body-action〉:

(1) The boolean flag isBodyFollow() returns true.

(2) The token ends when an unmatched ‘}’ is read. Braces inside strings, other
literals and comments are ignored.

5.3.1.8 Implementation

Due to several limitations in antlr v3, the lexer is split in 4 different lexers. One
performs the default lexing and the other 3 are responsible for the 3 actions tokens
described above. The mTokens() method in the main lexer is modified to call one
of the tree other lexers, when the corresponding conditions are met. Also, only
an implementation is provided for the Java target language. Rules specific to Java
are spread throughout all lexers and parsers, making it impossible to support
different languages without major code duplication. ANTLR’s current feature set
is not rich enough to allow the construction of an extensible parser.

1This causes a problem when Java generics are used in an expression. The lexer mistakenly assumes
that, when given the input ‘new TreeMap<String, String>()’, the expression ends at the comma. A
simple workaround is enclosing the expression in parentheses

2Although the lexer allows annotations, tplc currently is not able to process these annotations.

5.3. Parser 69

5.3.2 Tree Definition

The parser for the tree definition only supports the Java target. ANTLR v3 does
not (yet) support a mechanism for grammar reuse in multiple parsers. Therefore,
all common tokens, required by the tree definition parser, are included in this
parser.

As mentioned before, the parser generates an AST. Because tplc is imple-
mented in tpl, this AST is specified as a tree definition. This definition is given
in listing 5.1.

Listing 5.1: Tree definition AST
package nl.utwente.ewi.tpl.ast.tree;
Definition(

Comment? comment,
PackageName packageName,

5 HeaderAction? treeHeader,
NodeDef* nodes) −> DEFINITION;

NodeDef(
HeaderAction? nodeHeader,
Comment? comment,

10 Type type,
ParameterList? parameters,
AbstractToken? declAbstract,
Type? superclass,
Identifier* bindings) −> NODE_DEF;

15 ParameterList(Parameter* parameters) −> PARAMETER_LIST;
abstract Parameter;
ValueParameter(

Comment? comment,
Type type) extends Parameter −> VALUE_PARAMETER;

20 ValueAsParameter(
Comment? comment,
Type newType) extends Parameter −> VALUE_AS_PARAMETER;

ChildParameter(
Comment? comment,

25 Type type,
Identifier name,
Multiplicity? multiplicity) extends Parameter −> CHILD_PARAMETER;

ChildAsParameter(
Comment? comment,

30 Identifier name,
Type newType,
Identifier? newName) extends Parameter −> CHILD_AS_PARAMETER;

Multiplicity(MultiplicityType value) −> MULTIPLICITY;
PackageName(String value) −> PACKAGE_NAME;

35 HeaderAction(String value) −> HEADER;
Identifier(String value) −> IDENTIFIER;
Type(String value) −> TYPE;
AbstractToken() −> ABSTRACT;
Comment(String value) −> COMMENT;

5.3.3 Logic Specification

Due to the same limitations the tree definition parser faces, the logic specification
parser also supports only the Java target. The common tokens are also included

70 Chapter 5. Design of TPLc

in this parser.
The logic specification parser also generates an AST. The structure of this AST

is given in listing 5.2.

5.4 Context Checker

The context checker is responsible for guaranteeing type correctness and correct
usage of constructs. While doing so, it also decorates the AST with attributes
needed for the code generation. Some of these attributes are also used internally
by subsequent context checks. The context checker operates on the AST con-
structed by the parser (§5.3). The context checker is implemented in one logic
specification for tree definitions and one for logic specifications.

This section describes the checks performed for both tree definitions and logic
specifications. This is followed by a description of the attributes that are added
to a checked tree. Finally, the order, in which the attributes are resolved and the
context checks are performed, is determined.

5.4.1 Tree Definition

The main function of the context checker for the tree definition is to check the
correctness of the structure of the tree. It also checks the mapping from the tree
to the token types and whether the construction of the tree is unambiguous. The
following checks are performed:

(1) A single type can only be declared once. It might occur that equal types have
different names, for example when Java parameterised types are used. To
match these types, a target language dependent comparison is performed.
The Java target discards any type parameters.

(2) The superclass of a node should be a valid node type. This can either be a
class defined in the tree definition, or the Node class. When no superclass
is defined, Node is used. The type is resolved using the same mechanism as
above.

(3) Circular inheritance relations are not allowed.

(4) A value parameter should be the first parameter.

(5) The types of the child nodes should be valid node types. As with the su-
perclass, this can either be a class defined in the tree definition, or the class
Node. For the value parameter any type is accepted.

(6) No two child nodes can have the same name.

(7) It is an error to redefine the structure of a node when the structure is already
defined in one of the superclasses.

(8) Only existing children may be modified with the as keyword.

(9) When a child is assigned a new name, that name should not already have
been used in the structure. TPL can not check the type of a redefinition, this
will be checked by the compiler of the target language.

(10) It is an error to couple a node, that is declared abstract or does not have a
structure defined, to token names.

5.4. Context Checker 71

Listing 5.2: Logic specification AST
package nl.utwente.ewi.tpl.ast.logic;
Specification(

Comment? comment,
PackageName packageName,

5 HeaderAction? logicHeader,
Identifier* logicNames,
NodeSpec* nodes) −> SPECIFICATION;

NodeSpec(
HeaderAction? nodeHeader,

10 Comment? comment,
Type type,
AbstractToken? declAbstract,
Type superclass,
BodyElement* bodyElements,

15 Type? binding) −> NODE_SPEC;
abstract BodyElement;
Attribute(

Comment? comment,
Type type,

20 Identifier name,
Expression? initialValue) extends BodyElement −> ATTRIBUTE;

abstract Method(
Comment? comment,
Signature signature,

25 MethodBody? body) extends BodyElement;
IfaceMethod(signature as ActionSignature) extends Method −> IFACE_METHOD;
ImplMethod(signature as ActionSignature) extends Method −> IMPL_METHOD;
VisitMethod(signature as VisitSignature) extends Method −> VISIT_METHOD;
abstract Signature;

30 VisitSignature(
VisitReturnType? returnType,
Identifier name,
TypeNamePair* inherited,
Type* exceptions) extends Signature −> VISIT_SIGNATURE;

35 ActionSignature(String value) extends Signature −> METHOD_SIG_ACTION;
abstract VisitReturnType;
SingleVisitReturnType(Type type) extends VisitReturnType −>

SINGLE_VISIT_RETURN_TYPE;
MultipleVisitReturnType(TypeNamePair+ synthesised) extends VisitReturnType

−> MULTIPLE_VISIT_RETURN_TYPE;
40 TypeNamePair(

Type type,
Identifier name) −> TYPE_NAME_PAIR;

PackageName(String value) −> PACKAGE_NAME;
Identifier(String value) −> IDENTIFIER, VISIT_IDENTIFIER;

45 Type(String value) −> TYPE;
Expression(String value) −> EXPRESSION_ACTION;
MethodBody(String value) −> METHOD_BODY_ACTION;
HeaderAction(String value) −> HEADER;
AbstractToken() −> ABSTRACT;

50 Comment(String value) −> COMMENT;

72 Chapter 5. Design of TPLc

(11) When a node is coupled to one or more token names, these names should
be declared in the token file.

(12) Nodes and token names are coupled one-to-many.

(13) The definition of the child nodes should be unambiguous, as described in
§4.4.7.

5.4.2 Logic Specification

The logic specification consists of two types of constructs: (1) constructs declaring
the structure of the logic, specified in tpl and (2) the actual logic inside the action
tokens. Most checks are performed on the structure. The checks performed on
the action tokens are limited to the macros. The compiler of the target language
will check the syntax and typing of the actions. For the structure the following
checks are performed:

(1) A logic specification dependency should refer to an existing logic specifica-
tion.

(2) A logic specification dependency should only be declared once.

(3) Node names in a logic specification should be unique.

(4) Logic node classes may only extend other logic node classes declared in the
same logic specification.

(5) Circular inheritance relations are not allowed.

(6) When a logic node is bound to a tree node using the explicit binding syntax,
the tree node should be declared in the tree definition.

(7) A logic node that is declared abstract can only be bound to a tree node
that is also declared abstract.

(8) Logic node classes are bound to tree node classes one-to-one, per logic spec-
ification.

(9) When a logic node is bound to a tree node, and a subclass of that logic node
is also bound to a tree node, the second tree node should be a subclass of
the first.

(10) Attribute names should be unique within a node class.

(11) Visiting method names should be unique within a node class.

(12) The names of return values and method arguments of a visiting method
should be unique for that method.

(13) When a visiting method is declared with the same name as a visiting method
in a superclass, this new visiting method should at least define the same
synthesised attributes. The types of the attributes can be different. New
attributes can be added when the superclass declares more than one syn-
thesised attribute, or a single attribute with a name.

(14) When a node is not declared abstract it should implement all visiting
methods declared by its superclasses.

(15) Interface methods can only be overridden by other interface methods.

5.4. Context Checker 73

5.4.3 Actions
As stated before, the context checking performed on actions is limited. Only the
various macros are checked. Code surrounding the macros is regarded as free-
form text and no checks are performed whatsoever. The following checks are
performed on the action macros:

(1) The node selection on which a visiting method is called should yield a node
with the multiplicity of ‘exactly one’. Iterators declared in a #foreach state-
ment are considered to have a multiplicity of ‘exactly one’.

(2) A visiting method, called on a node, should be available on that node.

(3) When a visiting method is called, all its inherited attributes should be pro-
vided. It is an error to provide too many attributes.

(4) It is an error to store the results of a visiting method, using the multi-value
store syntax, when that method that does not return multiple values.

(5) It is only possible to instantiate a multi-value return tuple in a visiting
method with multiple return values.

(6) When instantiating a multi-value return tuple, all synthesised attributes
should be provided. It is an error to provide too many attributes.

(7) Only declared attributes of a return value of a visiting method can be ac-
cessed.

5.4.4 Node Selection
The node selection context checker checks not only the correctness of a node
selection, but also determines the type and multiplicity of the result. It uses
a recursive algorithm over the AST of the node selection. The context checker
is implemented in the logic specification contextCheck, that is part of the nl.

utwente.ewi.tpl.nodeselection package.
A node selection is considered erroneous when it can never return at least a

single node. This can happen when the parent of the root node is selected, when
a non-existing child is requested, or when incorrect combinations of filters and
nodes are given. When the value of a node is selected, it should always yield
exactly one result. It is also an error to continue a selection after selecting value.

The type and multiplicity of a node selection are used for the context checks
and code generation of visiting method calls and for-each statements. When a
visiting method is called, the context checker reports an error when the node
selection does not yield exactly one node.

5.4.5 Added Attributes
Table 5.1 shows the attributes that are added to the tree definition AST nodes. The
attributes added to the logic specification AST nodes are shown in Table 5.2. The
attributes listed in these tables are all added during the first pass over the AST.
For the tree definition, this pass is defined in the annotateTree logic specification
and for the the logic specification it is defined in annotateLogic. In addition to
setting these attributes, these logic specifications also add some useful methods
to the AST and performs context checks related to the attributes set. Some more
attributes are added during the generation pass. These additional attributes are
mainly needed to work around limitations in StringTemplate and will not be
discussed.

74 Chapter 5. Design of TPLc

AST Node Attribute Description

ChildAsParameter original A link to the ChildParameter that is
overridden by the new definition.

typeNode A link to the NodeDef that defines the
type of the parameter.

ChildParameter typeNode A link to the NodeDef that defines the
type of the parameter.

Definition allNodes A map with all nodes defined in the
tree definition.

rootNode The artificial NodeDef for the node
Node.

tokens A map from a token’s name to its
number created from the tokens file.

NodeDef logicNodes All logic specification nodes that are
bound to the node.

matched-

Tokens

The token names that are matched by
the node. This includes all subclasses.

parentTypes A list of NodeDefs that are explicitly
declared as possible parents.

subclasses All subclasses of the node.
superclass A link to the NodeDef that is the su-

perclass of the node.
Parameter index The index of the parameter in the

node’s parameter list.

Table 5.1: Attributes added to tree definition nodes

AST Node Attribute Description

MethodBody usedNodes A list of NodeDefs used as iterators in
#foreach statements.

MultipleVisit-

ReturnType

superReturn-

Type

A link to the return type that is mod-
ified by this type.

name The name of the tuple that contains
the returns values.

NodeSpec interface-

Needed

A flag indicating if an interface is
needed for the node.

treeBinding The NodeDef the node is bound to.
subclasses All subclasses of the node.
superclass A link to the NodeSpec that is the su-

perclass of the node.
Specification dependencies A list of specifications the specifica-

tion depends on.
logicName The name of the logic specification

(derived from the file name).

Table 5.2: Attributes added to logic specification nodes

5.5. Generator 75

Several of the attributes set during the annotation pass can not be resolved
until other attributes are evaluated. Sometimes a context check needs to be per-
formed before the attribute can be set or vice versa. Tables 5.3 and 5.4 show the
dependencies between the attributes and context checks for tree definitions and
logic specifications. The order of the items in the tables represents the order in
which the checks are performed and the attributes are set. The dependencies dis-
played in these tables represents the dependencies as they are seen in the code.
To determine the order of the evaluation of the checks and attributes, a transitive
closure of the tables is needed.

The tables 5.3 and 5.4, however, lack information about the traversal of the
tree. Some attributes can only be set when another attribute is set on all nodes of
that type in the entire AST. The same holds for some context checks. For example,
the parentTypes attribute relies on the superclass chain between nodes: if node
A can have node P as parent, then node S, superclass of A, can also have P as
parent. If the superclass attribute is not set on all nodes, this algorithm will
give incorrect results. This issue is solved by first visiting all NodeDefs, setting the
superclass and subclasses attributes, and then revisiting the nodes and their
Parameters, to collect parent type information.

Figures 5.2 and 5.3 illustrate the order in which the nodes for respectively the
tree definition and logic specification are visited. The nodes are visited in depth
first order, from the left to the right, as they are displayed in the figures. For
Parameters and VisitReturnTypes, the node type that is visited is determined at
runtime. This is indicated with a line with a bullet.

5.5 Generator

The generator component is implemented in two logic specifications. generate-
Tree generates the output files resulting from the tree definition and is the starting
point of the generation. The generateLogic specification generates the output
files resulting from the logic specifications. Both use StringTemplates (see §5.6)
to construct the resulting code.

The first logic specification generates a class hierarchy, as displayed in fig-
ure 4.1, using the guidelines given in §4.4.5. These classes are the AST node
classes. Functionality, specified in the logic specifications, is then added, as dis-
played in figure 4.4, using the rules given in §4.5.9, by the second logic specifica-
tion.

5.5.1 Generation Targets

Special care is taken to keep the generator completely independent of the target
language. As much information as possible about the target language is stored in
the templates. However, not everything can be generated without special support
functionality. For example, the code to write a Java file may be different than
the code required to write a C++ file, as the first needs to be placed in the right
directory, according to the package specification, whereas the second has no such
requirement.

This target language dependent functionality should not be mixed with the
target language independent code. Therefore, a special interface, Target, pro-
vides access to this functionality in an implementation independent manner. Ev-
ery generation target will have its own implementation of the Target interface.
Examples of pieces of functionality, that are accessible through the Target inter-
face, are the name of the StringTemplateGroup, file creation and method signa-
ture parsing.

76 Chapter 5. Design of TPLc

Depends on to
ke
ns

tokens ro
ot
No
de

rootNode (5.
4
.1.

1
)

(5.4.1.1) • al
lN
od
es

allNodes • • (5.
4
.1.

2
)

(5.4.1.2) • su
pe
rc
la
ss

superclass • • (5.
4
.1.

3
)

(5.4.1.3) • • su
bc
la
ss
es

subclasses • in
de
x

index (5.
4
.1.

4
)

(5.4.1.4) • (5.
4
.1.

5
)

(5.4.1.5) • (5.
4
.1.

6
)

(5.4.1.6) (5.
4
.1.

7
)

(5.4.1.7) • ty
pe
No
de

typeNode • • • • (5.
4
.1.

8
)

(5.4.1.8) • (5.
4
.1.

9
)

(5.4.1.9) • • ty
pe
No
de

(fo
r a
s)

typeNode (for as) • • • • or
ig
in
al

original • • pa
re
nt
Ty
pe
s

parentTypes • • ma
tc
he
dT
ok
en
s

matchedTokens • (5.
4
.1.

1
0
)

(5.4.1.10) • (5.
4
.1.

1
1
)

(5.4.1.11) • (5.
4
.1.

1
2
)

(5.4.1.12)
(5.4.1.13) • • • •

Table 5.3: Dependencies between tree attributes and context checks

De f inition
set(tokens)
set(rootNode)
check(5.4.1.1)
set(matchedTokens)

NodeDe f
check(5.4.1.2)
set(superclass)
check(5.4.1.3)
set(subclasses)

NodeDe f NodeDe f
check(5.4.1.10)
check(5.4.1.11)
check(5.4.1.12)

ParameterList

ChildAs−
Parameter

set(index)
check(5.4.1.5)
check(5.4.1.9)
set(typeNode)
set(parentTypes)
set(original)
check(5.4.1.8)

Child−
Parameter

set(index)
check(5.4.1.5)
check(5.4.1.6)
check(5.4.1.7)
set(typeNode)
set(parentTypes)

ValueAs−
Parameter

set(index)
check(5.4.1.4)
check(5.4.1.8)
check(5.4.1.9)

Value−
Parameter

set(index)
check(5.4.1.4)
check(5.4.1.7)

ParameterList
check(5.4.1.13)

visit
ggggggggggggggggg visitStructure��

��
�� visitBinding

VVVVVVVVVVVVVVV

visit

visit

•mmmmmmmmmmmmmmmmmmm

visit

•����������

•

visit

11
11

11
11

1 •
visit

OOOOOOOOOOOOOOOOO

visitAmbiguity

//////////

Figure 5.2: Tree traversal of the tree definition

5.5. Generator 77

Depends on lo
gi
cN
am
e

logicName (5.
4
.2.

1
)

(5.4.2.1) • (5.
4
.2.

2
)

(5.4.2.2) • • de
pe
nd
en
ci
es

dependencies • • (5.
4
.2.

3
)

(5.4.2.3) (5.
4
.2.

4
)

(5.4.2.4) • su
pe
rc
la
ss

superclass • (5.
4
.2.

5
)

(5.4.2.5) • • su
bc
la
ss
es

subclasses • in
te
rf
ac
eN
ee
de
d

interfaceNeeded • (5.
4
.2.

6
)

(5.4.2.6) tr
ee
Bi
nd
in
g

treeBinding • (5.
4
.2.

7
)

(5.4.2.7) • lo
gi
cN
od
es

logicNodes • • (5.
4
.2.

8
)

(5.4.2.8) • • (5.
4
.2.

9
)

(5.4.2.9) • • • (5.
4
.2.

1
0
)

(5.4.2.10) (5.
4
.2.

1
1
)

(5.4.2.11) na
me

name • • (5.
4
.2.

1
2
)

(5.4.2.12) su
pe
rR
et
ur
nT
yp
e

superReturnType • • (5.
4
.2.

1
3
)

(5.4.2.13) • • us
ed
No
de
s

usedNodes • (a
cti

on
)

(action) • • (5.
4
.2.

1
4
)

(5.4.2.14) • •
(5.4.2.15) •

Table 5.4: Dependencies between logic attributes and context checks

Speci f ication
set(logicName)
check(5.4.2.1)
check(5.4.2.2)
set(dependencies)
check(5.4.2.3)

NodeSpec
check(5.4.2.4)
set(superclass)
check(5.4.2.5)
set(subclasses)
set(interfaceNeeded)

check(5.4.2.6)
set(treeBinding)
check(5.4.2.7)
set(logicNodes)
check(5.4.2.8)

NodeSpec
check(5.4.2.9)

check(5.4.2.10)
check(5.4.2.11)
check(5.4.2.14)

VisitSignature
check(5.4.2.12)
check(5.4.2.13)

SingleVisit−
ReturnType

check(5.4.2.13)

MultipleVisit−
ReturnType

set(name)
check(5.4.2.12)
check(5.4.2.13)
set(superReturnType)

Method
check(5.4.2.15)

MethodBody
check(action)
set(usedNodes)

visitSuper/visitBinding
iiiiiiiiiiiiiii

visitInheritance/visitMembers
JJJ

JJJ
JJJ

check iiiiii

visit •hhhhhhhhhh
•

visit//
//

visit
NNNN

visit
++

++
+

Figure 5.3: Tree traversal of the logic specification

78 Chapter 5. Design of TPLc

5.6 String Template

The StringTemplate[Parr, 2004] library is a template engine that is used to create
a mapping between the constructs in tpl and the generated output. String-

Template is also used as the generation engine behind antlr v3.
TPL defines a template interface TPL, which contains all available templates.

To support a new target language a StringTemplateGroup has to be created that
implements at least these templates. The attributes of the templates are chosen
in such a way that they make no assumptions on the syntax and semantics of
the target language. If an attribute does contain fragments of functionality or
constructs from the target language, the contents of the attribute needs to be
generated by another template.

Unfortunately, StringTemplate is not strong enough to solve all model-view
related problems. For example, it is impossible to convert the first character of a
string to upper case. Also, it is impossible to strip type parameters from a type
declaration (for example Literal<T> to Literal). A separate pass over the AST
annotates the AST with attributes that only have a syntactic value, such as the
rawType attribute, that is added to NodeDef, Parameter and NodeSpec.

5.7 Runtime Library

The runtime library is needed by applications written in tpl. It contains support
classes, such as the base classes for the AST nodes. All classes of the runtime
library are part of the nl.utwente.ewi.tpl.runtime package.

5.7.1 Node Base Classes

There are two base classes for nodes: AbstractTPLNode, the base class for AST
nodes and the base class for logic nodes, called AbstractLogic. This last class
only contains a reference to an AST node, as can be seen in figure 4.4.

AbstractTPLNode contains the type of the node. Optionally, a payload can be
added to the node. This is especially useful to store the token that resulted in the
node, when the source of the tree is a parser run. It also stores a reference to the
parent of the node.

5.7.2 Tree Construction Classes

Trees can be constructed using the generated node constructors. However, some-
times, for example when antlr is used to instantiate the AST, it is required to
build trees through a ‘homogeneous’ interface, with methods, such as addChild,
createNode and getChildCount. The class TPLTreeBuilder provides this inter-
face. It uses the annotations added to the AST nodes (§4.4.7) and reflection to
construct the nodes. These annotations, Structure and StructureParameter, are,
together with an enumeration that describes the various multiplicities, also part
of the runtime library. It is also possible to inspect these annotations at runtime,
using TPLTreeInspector.

5.7.3 Type Conversion Classes

TPL supports arbitrary types to be used for the value of a node. During the
construction of the AST, tokens are automatically converted to the right type, as
indicated by the Structure annotation. The classes responsible for the conversion,
make up the nl.utwente.ewi.tpl.runtime.converter package. The package

5.7. Runtime Library 79

contains implementations of the Converter interface for all primitive wrapper
classes (such as Integer and Boolean). All converters are accessed through the
ConversionSelector, which selects the appropriate Converter, according to the
given type. It is also possible to add custom implementations of the Converter

interface to the ConversionSelector.

5.7.4 Runtime Node Selection
Node selections can be part of the input, in which case they are compiled into
code in the target language, which performs the selection. However, it is also
possible to perform node selections at runtime. The package nl.utwente.ewi.

tpl.runtime.nodeselection includes a node selection parser and the logic spec-
ification selection, which can be used to parse a node selection and apply it to
an AST.

5.7.5 ANTLR Integration
It is possible to construct ASTs, generated with tplc, directly from an ANTLR
parser. This is accomplished through a custom implementation of the Tree-

Adaptor interface. This implementation is provided by the TPLTreeAdaptor class
in the nl.utwente.ewi.tpl.runtime.antlr package. This class uses the tree con-
struction classes provided by tpl to build the AST (see §5.7.2).

80 Chapter 5. Design of TPLc

6Chapter

Conclusions and Future Work

This chapter looks back at the work presented in this thesis. First, the conclusions
and contributions are given in §6.1. This is followed by a discussion of future
research in §6.3.

6.1 Summary

Abstract syntax trees, or trees in general, are common data structures in software
applications. Many techniques for building ASTs and working with them exist.
The most important are outlined in chapter 2. However, many of these techniques
are limited in their applicability, require major effort to implement, or introduce
maintenance problems in an evolving application.

This thesis introduces tpl and its accompanying compiler tplc in chapter 3,
which solve many of the problems a developer would face, when designing and
developing a tree structure. The most important concepts for tpl are type safety
and automatic generation of code, from a specification which provides a clear
separation of concerns. TPL allows the definition of a strictly typed tree, a tree
definition, to which behaviour can be added in a modular fashion. Different facets
of this behaviour can be developed in separate modules, called logic specifications.

TPLc compiles behaviour specifications into the classes composing the tree
structure. The inheritance pattern is combined with multiple inheritance to pro-
vide a flexible connection between the behaviour and the tree nodes. It allows
the specification of different inheritance trees for the tree definition and the logic
specifications. To be able to provide the same functionality for languages that
do not support multiple inheritance, the inheritance pattern with composition is
developed. This pattern emulates multiple inheritance in single inheritance lan-
guages, such as Java.

A common applications of tree structures are abstract syntax trees in compil-
ers. Therefore, tpl allows a binding between parser rules and tree node classes.
An implementation for the antlr parser generator is provided.

A query language is also integrated in tpl. Using these queries, it is possible
to search the tree for certain nodes or sub-structures. A construct is provided to
iterate over the results of a query.

6.2 Evaluation

The compiler for tpl, tplc, is implemented in tpl. This implementation demon-
strates the advantages of using tpl over a general purpose object-oriented lan-
guage in compiler construction. The implementation written in tpl is boot-
strapped with the prototype compiler, written in Java. Even though this prototype
compiler does not support all features, its code is already convoluted. A single file
contains functionality for tree construction and modification, string serialisation,

82 Chapter 6. Conclusions and Future Work

context checking and code generation. Furthermore, a single piece of behaviour,
such as the context checker, is split over multiple files. With tpl, a single file is
used for every piece of behaviour. Also, the code for constructing and modifying
the tree is automatically generated. This results in a compiler that is easier to
maintain and that has less lines of code, even though it supports more features.

In the comparison between tpl and attribute grammars, it becomes apparent
that tpl’s feature set supports the evaluation of L-attributed grammars. However,
when more complex attribute grammars need to be evaluated, the evaluation
order of the attributes needs to be determined by hand.

The visiting methods, supported by tpl, allow the return of multiple values.
For this feature, a special syntax is introduced, with which tuples can be instan-
tiated, stored and used. Although useful, these tuples are cumbersome to work
with. For example, it is not possible to declare tuple variable without actually
storing a value in it. It is questionable if support for tuples falls within the scope
of tpl or if the target language should deal with these.

A disadvantage of tplc is the large number of classes it generates. For exam-
ple, for the abstract syntax tree for logic specifications has 23 tree node classes, but
the generated class structure consists of 113 classes. This is the result of the inher-
itance pattern with composition. The large number of classes makes it difficult to
debug the application and imposes a runtime overhead. This pattern also requires
the addition of accessor methods for attributes when functionality from one logic
specification requires access to an attribute defined in another logic specification,
even when the attribute is added to the same tree node class as the functionality.

6.3 Future Research

During the development of tplc several issues surfaced, which could not be ad-
dressed in the current version. These issues, and possible solutions, are discussed
below.

6.3.1 Multiple Bindings for Logic

Currently, tpl allows a node implementing functionality to be bound to at most
a single tree node. This makes it impossible to specify the structure displayed in
the figures 3.4 and 3.5. In these figures, the functionality classes PrintLiteral

and PrintIdentifier are both bound to two tree nodes. To implement cases like
these, additional classes need to be introduced; one class for each tree node that
needs the functionality.

It would be better if tpl would allow a single functionality node to be bound
to multiple tree nodes. However, this does require a change in the node selection
context checking algorithm. The current algorithm depends on a single starting
node type. This needs to be extended to multiple node types.

6.3.2 Inclusion of Pattern Matching

In §2.2.1.1 Kimwitu [Van Eijk et al., 1997] and Memphis [Memphis] were intro-
duced. These tools introduce constructs, with which it is possible to match tree
structures against patterns. These patterns can be used to construct algorithms
over the tree.

It was stated in §3.1.2.2 that support for these patterns would be recom-
mended. Still, tpl does not include such pattern matching constructs. It would
be beneficial if the macros in the method bodies were to be extended with pattern
matching constructs.

6.3. Future Research 83

6.3.3 Merge Inheritance Trees

Figure 3.7 illustrates that tplc generates a complex class structure, even for a small
specification. It requires 17 classes and 2 interfaces for a specification that could
also have been compiled to 6 classes, as is displayed in figure 3.2. Cases like
these, where the behaviour could have been included in the tree node classes, are
common. However, there are also cases, like the example illustrated by figure 3.4,
where this is not possible.

The large number of classes imposes a performance penalty for some plat-
forms, such as the Java Virtual Machine, which needs to load and verify the
classes. Also, the additional indirection, when the inheritance pattern with com-
position is used, adds an overhead to every method class and the instances of
the functionality classes greatly increase the memory consumption of the tree.
Therefore, TPLc should merge inheritance trees of logic specifications and the
tree definition whenever this is possible. This can greatly reduce the number
of classes generated and the number of composition classes required, increasing
computational performance and reducing memory consumption.

6.3.4 Attribute Grammars

Attribute grammars can be useful when a formal specification of a language is
needed. TPL can be used to evaluate the class of L-attributed grammars, using
visiting methods with multiple return values. These grammars can be evaluated
in a single top-down pass over the tree. However, other attribute grammars might
require multiple passes over the tree. TPL can be used to evaluate these gram-
mars, but the order, in which the attributes are evaluated, needs to be specified
manually.

To be able to use tpl with any attribute grammar, a preprocessor needs to
be developed, which performs a dependency analysis of the attributes. This pre-
processor will take an attribute grammar specification and compile it into tree
definition and logic specification, which can be processed by tplc.

6.3.5 Addition of Children in a Subclass

With the as keyword, it is possible to change the name and type of a child of
a node in the tree definition. TPL allows only these modifications. A possible
improvement would be to allow the addition of new children in a subclass. This
can be extended to replace the notion of ‘defining the structure a node’. A node
definition would start with no children defined and children are added in the
subclasses.

6.3.6 Accessing Attributes in other Logic Specifications

The generation of separate inheritance trees for different logic specifications has
a counter productive effect on accessing attributes in logic specifications. An at-
tribute defined in one logic specification cannot be accessed directly from another
specification. The addition of accessor methods is required, and these methods
need to be defined with the interface keyword. However, this exposes the at-
tributes through the interface of the tree nodes.

It would be preferable if attributes could be accessed directly from other logic
specifications. A possible solution would be to automatically generate the re-
quired accessor methods. However, this still exposes the attributes through the
interface of the tree nodes. A solution, which might require multiple inheritance,

84 Chapter 6. Conclusions and Future Work

would be the generation of an ‘attribute class’ per tree node class, which is ex-
tended by the functionality classes for that node. To prevent the usage of multiple
inheritance, this ‘attribute class’ could also be shared through aggregation.

6.3.7 Graphs
TPL is used to describe tree structures. Trees are a particular class of graphs, in
which any two vertices are connected by exactly one path. TPL could be extended
to support graphs that are not trees. It is questionable whether tpl should be
extended to support arbitrary graphs, but the generated code could be made
more flexible in this regard. If a node could have more than one parent, it would
be possible to share a subtree in different parts of tree.

6.3.8 Visiting Pattern
TPL always generates visit methods and a Visitor interface for use with the
visitor pattern. It would be better if the generation of these methods was optional.
A switch could be added which makes it possible to chose between no visitor
support, normal visitor support and support for visitor combinators.

AAppendix

Software Requirements

Speci�cation

TPL is a language in which tree structures can be described. Specifications in tpl

are compiled with tplc. This software requirements specification (SRS) establishes
the requirements and structure of tpl, and its compiler tplc.

A.1 Environment

TPLc will be a standalone application, implemented in Java. It is executed by the
Java Virtual Machine, making it available on all platforms for which a Java Virtual
Machine is available.

A.2 Structural Organisation

TPLc will be invoked through a command line interface. A specification in tpl

consists of two parts: the tree definition and zero or more logic specifications.
The first describes the structure of a tree, and the second contains the behaviour
of this tree.

TPLc takes these files, and generates a class structure. The tree definition is
used to construct a class inheritance tree, representing the tree nodes (see §A.4.1).
The behaviour specified in the logic specifications is added to these tree nodes
(see §A.4.2). All generated output files will be of a specified language and are put
in the correct packages or modules, depending on what the target language uses.
TPL will only support object oriented languages as generation target.

A.3 User Interaction

TPLc is a command line application, with no real interaction. The application is
started by the user, and it either generates the output files, or aborts with an error.
This section describes the input and output of tplc.

A.3.1 Input

• Options to tplc will be specified through command line options.

• At least a single file, the tree definition, needs to be given at the command
line. All other files should be logic specifications. The tree definition should
be the first file.

A.3.2 Syntax

Although the syntax is an important part of any language, it only serves as an
interface to the concepts of that particular language. The syntax for both the tree

86 Appendix A. Software Requirements Specification

definition and logic specification of tpl will be developed after the complete fea-
ture set has been designed. The syntax shall facilitate all features of the language
and shall be easy to understand for someone with Java experience.

A.3.3 Messages

TPLc can give messages at various points in its execution. The events that trigger
these messages and the contents of these messages are described below.

A.3.3.1 Notification Messages

When the -report command line option is specified, tplc will give status infor-
mation to the user. Information is given about the action currently performed and
the file(s) being processed.

A.3.3.2 Error Messages

Error messages are always displayed when processing can not continue due to
some abnormal situation. These include syntax errors, IO errors, context errors,
etc.

TPL is a research project and not intended to be used in a production environ-
ment. Therefore, the error handling does not need to be very robust. TPLc will
bail out after the first error and will not try to recover.

A.3.4 Output

The output generated by tplc consists of several files in the chosen generation
language. These files are (1) the generated AST node classes, (2) the classes with
the functionality of the tree, (3) a Visitor interface and (4) metadata . These files
will be placed in the directories specified in the input files.

A.4 Language Features

This section describes the features of the language tpl itself. First the require-
ments of the tree definition are given, followed by the requirements of the logic
specification.

A.4.1 Tree Definition

The tree definition allows the developer to define a type-safe AST structure. It
shall conform to the following requirements:

• It shall be possible to define a package or module for the AST node types.

• The tree definition shall allow the definition of names for every node type.

• It shall be possible to specify a many-to-one relation between token types
and node types.

• It shall be possible to define the structure of a node type; specifying the
children of the node type. The types of these children shall be other node
types.

• It shall be possible to define names for children.

A.4. Language Features 87

• It shall be possible to specify the multiplicity (optional, exactly one, zero or
more and one or more) of every child.

• A node type shall also be able to hold a value, which is a special non-tree
child.

• The type of the node value shall be specifiable as any class for which a
converter from strings is available.

• Every operation on every node shall always be type-safe.

• Type-safe constructors will be generated for every node type. The argu-
ments of these constructors are the child nodes and, when specified, the
value.

• For every child node, a type-safe get- and set-method shall be generated.
Or, in the case of a multiplicity of greater than one, a get-, add- and remove-
method are generated.

• It shall be possible to define inheritance between node types.

• In a single path in the inheritance tree from the root class to a node type
associated with one or more token types, there shall always be exactly one
definition of the structure of the node type. Superclasses of the node type
defining the structure will not have a structure defined; subclasses will have
the structure defined.

• It shall be possible to narrow the type or change the name of children in
subclasses of a node type defining the structure.

A.4.2 Logic Specification
The logic specification allows the developer to add attributes and functionality to
the AST node classes. It shall conform to the following requirements:

• It shall be possible to define a package or module for the classes and inter-
faces generated for the logic specification.

• It shall be possible to specify required logic specifications.

• It shall be possible to specify attributes with an optional initial value which
are added to AST node types.

• It shall be possible to specify interface methods—methods that are available
on the AST node types—which are added to the AST node types.

• It shall be possible to specify implementation methods—methods that are
not available on the AST node types—which are added to the AST node
types.

• It shall be possible to specify visiting methods—interface methods which
can return multiple values—which are added to the AST node types.

• Both the interface and implementation methods shall have an optional body.

• Code in the various method bodies will accept macros for accessing at-
tributes, child nodes and visiting methods.

• It shall be possible to bind a logic type to an AST node type.

• Node types can extend other node types, inheriting attributes and interface,
implementation and visiting methods.

88 Appendix A. Software Requirements Specification

A.5 Nonfunctional Requirements

TPL will be developed in separate stages. These stages are:

• Requirements analysis and design.

• Prototype implementation.

• Design refinements and syntax fixation.

• Final product implementation.

There will be three deliverables: (1) This thesis, (2) the product and (3) API
documentation.

BAppendix

Testing

The set of unit tests is used for regression testing. All unit tests are implemented
with JUnit [JUnit, 2006]. Different testing suites are developed for the four main
components: the runtime library, the parsers, the context checkers and the gener-
ator. These test cases are discussed below.

In addition to these unit tests, tplc itself also is a test case. TPLc is imple-
mented in itself, using many of the features present in the language. TPLc should
be able to compile itself.

B.1 Runtime Library

The most complex parts of the runtime library are the TreeAdaptor and the
ConversionSelector. Only these classes are tested, and with them the various
Converter implementations.

TPLTreeAdaptor is tested for compliance with the (informal) specification if
its API in TreeAdaptor on a per-method basis. All cases mentioned in the API
are tested one by one.

For the ConversionSelector a set of 4 test cases per primitive type is used:

(1) A successful conversion from a string to the selected type.

(2) A malformed string, which results in a TypeConversionException.

(3) An overflow of the primitive (when applicable), which should also result in
a TypeConversionException.

(4) A successful conversion from a primitive value back to a string.

B.2 Parser

The parser unit tests are responsible for testing the relation between the input
source and the generated AST. Every test case contains both the input and the
output as plain text. The test fails when the generated output does not match the
expected output.

Extensively testing a parser against different input fragments is questionable.
The grammar is specified in a semi-formal notation, that is close to EBNF. Any
sentence that is accepted by the EBNF specification should also be accepted by
the generated parser. If this is not the case, it is a bug in the parser generator, not
in the parser. The test cases are chosen in such a way that they are likely to hit
problems in the grammar specification, and not in the parser generator.

90 Appendix B. Testing

B.3 Context Checker

The context checker test cases can be divided in 4 groups: (1) Helper classes,
(2) tree definition checks, (3) logic specification checks and (4) macro checks.
These groups use a different test case setup.

For the first group one or more test case classes are written per helper class.
These test cases test conformance to the API using black box testing.

The test cases for the other three groups are written in pairs: a case that
should trigger a context error and a similar case in which the error should not
occur. These test cases all use multiple input files per test case, which are named
according to the following naming scheme:

Tree Definition Every test case consists of two input files, the first is named
case<n>Incorrect.tree and contains the erroneous definition, the second
is named case<n>Correct.tree and has no errors.

Logic Specification Every test case consists of three input files. One file contains
the tree definition for both the correct and incorrect logic specification. It
is called case<n>Logic.tree. The correct and incorrect logic specifications
are called case<n>Correct.logic and case<n>Incorrect.logic.

Macros The files for the action macros are similar to those of the logic specifica-
tion. The tree definition is called case<n>Action.tree. The correct and in-
correct cases are called case<n>CorrectAction.logic and case<n>Incor-

rectAction.logic.

B.4 Generator

Extensive testing of the code generator is difficult to achieve, because the output
should not only compile, but also be conform the specifications in §4.4.5 and
§4.5.9.

These sections however do not specify the exact layout of the code, just its high
level structure. This makes it impossible to perform a tests based on pre-written
sample outputs using a simple text comparison.

A solution would be to inspect the code after compiling it to a Java class file.
However this requires the execution of the Java compiler from within the test case
and custom class loading. Also it is still impossible to verify the correctness of
the actual code.

Because of these problems it was chosen to see the implementation of tpl in
itself as the test case of the generator. The generator is assumed to work correctly
if the bootstrapped version of tpl passes all unit tests.

When a problem with the generator is found, a test case that reveals the prob-
lem is written as part of the example calculation language. This example is pro-
cessed before the test cases are executed. The generated code can be inspected
through reflection.

CAppendix

Improvements in the Final

Version

TPL’s development consists of a prototype phase followed by the development of
the final product. This final version is not only an architectural improvement, but
it also addresses functional problems. This chapter discusses functional improve-
ments made in the final version.

C.1 Structural Changes

Several changes are carried trough with regard to the structure of a node. These
change and their rational are explained in this section.

C.1.1 Parent Type

In the prototype the parents of a node were of the type AbstractTPLNode. When a
parent was accessed it needed to be cast to the required type. In the final version
the parents have a type that is as specific as possible. The union of all contexts in
which a node can be used is taken and the highest common denominator is taken
as the type of the parent.

C.1.2 Setting of the Parent

In the prototype, the parent of a node was set with a separate call to the setParent
method. The TPLTreeAdaptor first added the child to its new parent and then
called this method. When using the TPLTreeAdaptor this poses no problems,
however when constructing a tree by hand, it is easy to forget to call the set-

Parent method; resulting in an invalid tree. To guarantee the structural integrity
of the AST the call to setParent is moved to the accessor methods on the nodes.
When a child is added to a node, this setParent method is called by the add- or
set-method automatically.

C.1.3 Accessor Methods

In the prototype a pair of get- and set-methods was generated for every child.
When the child had a multiplicity of greater than one, these accessor methods
operated on the list of children. This made it possible (and even required) to
modify the list outside the node. To give the node more control over these lists,
the accessor methods for the multiplicities ‘zero-or-more’ (*) and ‘one-or-more’
(+) have been modified. The set-method is removed, making it impossible to
overwrite the list. To prevent modification of the list outside the node, the get-
method returns an unmodifiable wrapper of the list. To add or remove nodes a
pair of add- and remove-methods is added.

92 Appendix C. Improvements in the Final Version

Construct Destination
Tree Definition

Package declaration Package
Node definition Tree node class
Node parameter Accessor methods and field

Logic Specification

Package declaration Package
Node declaration Logic node class and interface
Attribute Field in logic node class
Interface method Method in logic node interface
Implementation method Method in logic node class
Visiting method Method in logic node interface

Table C.1: Comments and their destination

C.1.4 Comments and Headers
In the prototype it was not possible to add comments to any part of the node def-
inition or the logic specification. This is addressed in the final version, where it is
now possible to add comments to most constructs. The comments will be copied
in verbatim to the corresponding constructs in the generated code. For example,
comments on a node definition will end up in the tree node class. Table C.1 shows
the constructs supporting comments and the destination of those comments.

The header section of both the tree definition and logic specification have been
improved to allow the addition of headers to a single node.

C.2 For-Each Statement

In the final version, the for-each statement is improved to use a 〈node-selection〉
to select the nodes to iterate over. The for-each statement can now loop over
any node selection. This is especially powerful with the combination of a more
advanced node selection (see §C.3).

C.3 Node Selection

The prototype compiler uses a very limited node selection. It is only possible to
select a direct child, the value, the parent or the current node. The final version
provides an improved node selection, in which it is possible to select children of
children and filter nodes on a given type. This concept is discussed in §4.5.8.

DAppendix

Visiting Methods and

Attribute Grammars

The visiting methods used by tpl are related to the concept of attribute gram-
mars. An attribute grammar is an extension of a context free grammar in which
it is possible to specify the flow of information. This flow is specified by means
of synthesised and inherited attributes. A synthesised attribute is used to pass
information from a node to its parent and an inherited attribute is used to pass
information from a node to its children.

TPL’s traversal functionality also allows passing attributes up and down the
abstract syntax tree. However, the semantics of an attribute grammar and tpl’s
traversal functionality are not entirely the same. This is best illustrated with an
example. The example was taken from [Alblas and Nymeyer, 1996] and was
slightly modified.

Consider a language with the syntax defined in grammar fragment D.1, in
which variables can be declared and used. In this language variables need to
be declared in the same block as they are being used or in one of the parent
blocks. For this grammar, a context checker is specified as attribute grammar.
The evaluation rules for this attribute grammar are also displayed in grammar
fragment D.1.

The Attributes used in this grammar are specified in table D.1. The original
and updated attributes are used to gather all variable declarations in a block.
original is passed into a rule, all declarations are gathered and returned with
the updated attribute. Per block these results are put into the attribute available,
which contains all valid variables.

In the specification, several utility methods are used. new_table() creates an
empty symbol table. append creates a new table that contains the new name and
all declarations of the old table. An error is reported when the new declaration is
already present. concatenate creates a new symbol table that contains all entries
of both tables. Duplicate entries from the first argument will override entries
from the second. The final operation check_declaration reports an error when
the entry is not in the symbol table. The Java implementation of the symbol table
is given in listing D.2.

To specify the same context checker in tpl, a tree definition and a single logic
specification are needed. The tree definition is given in listing D.1. It defines an
AST, which matches the grammar given in fragment D.1.

Two differences between the attribute grammar and tree definition can already

Name Type Attribute

original Symbol Table inh of statement_part, statement
updated Symbol Table syn of statement_part, statement
available Symbol Table inh of block, statement_part, statement
name String syn of identifier_token

Table D.1: Attributes used in the context checker

94 Appendix D. Visiting Methods and Attribute Grammars

Grammar Fragment D.1 Simple declaration and use attribute grammar
〈program〉 ::= 〈block〉

〈block〉 ::= ‘begin’ 〈statement-part〉 ‘end’

〈statement-part〉 ::= 〈statement-part〉 〈statement〉
| 〈statement〉

〈statement〉 ::= ‘var’ 〈identifier〉
| ‘use’ 〈identifier〉
| 〈block〉

program : block.
[available of block = new_table();]

block : begin_token statement_part end_token.
[original of statement_part = new_table();

available of statement_part = concatenate(
updated of statement_part, available of block);]

statement_part0 : statement_part1 statement.
[original of statement_part1 = original of statement_part0;

original of statement = updated of statement_part1;
updated of statement_part0 = updated of statement;
available of statement_part1 = available of statement_part0;
available of statement = available of statement_part0;]

statement_part : statement.
[original of statement = original of statement_part;

updated of statement_part = updated of statement;
available of statement = available of statement_part;]

statement : var_token identifier_token.
[updated of statement =

append(name of identifier_token, original of statement);]
statement : use_token identifier_token.

[updated of statement = original of statement;
check_declaration(name of identifier_token,

available of statement);]
statement : block.

[updated of statement = original of statement;
available of block = available of statement;]

Listing D.1: Declare and use tree definition
package decluse;

Program(Block block);
Block(StatementPart statementPart);

5 StatementPart(Statement+ statements);

abstract Statement;
VarStatement(Identifier name) extends Statement;
UseStatement(Identifier name) extends Statement;

10 BlockStatement(Block block) extends Statement;
Identifier(String value);

95

Listing D.2: Declare and use symbol table
package decluse;

import java.util.HashSet;
import java.util.Set;

5

public class SymbolTable {
private Set<String> declared;

private SymbolTable() {
10 declared = new HashSet<String>();

}

public static SymbolTable newTable() {
return new SymbolTable();

15 }

public static SymbolTable concatenate(
SymbolTable newDefs, SymbolTable oldDefs) {

SymbolTable ret = new SymbolTable();
20 ret.declared.addAll(oldDefs.declared);

ret.declared.addAll(newDefs.declared);
return ret;

}

25 public static SymbolTable append(
Identifier name, SymbolTable defs) {

SymbolTable ret = new SymbolTable();
ret.declared.addAll(defs.declared);
if (!ret.declared.add(name.getValue())) {

30 System.out.println("Duplicate identifier : "+name.getValue());
}
return ret;

}

35 public static void checkDeclaration(
Identifier name, SymbolTable defs) {

if (defs.declared.contains(name.getValue())) {
System.out.println("Undeclared identifier : "+name.getValue());

}
40 }

}

be observed: (1) StatementPart is declared to contain multiple Statements rather
than using left recursion and (2) the synthesised attribute name of Identifier

now is a property of the node (and is called value).
Behaviour is added to this tree definition with the logic specification given in

listing D.3. This listing clearly shows a major difference between attributes gram-
mars and tpl: multiple visiting methods are present on a node. In this example
this is caused by the fact that the given grammar requires a 2-pass evaluation.
In the first pass the attributes original and updated are evaluated and the second
pass evaluates the attribute available. The tpl implementation takes a slightly
different approach, by only performing two passes over the statements, instead of
the entire tree.

96 Appendix D. Visiting Methods and Attribute Grammars

Listing D.3: Declare and use logic specification

package decluse.eval;

header {
import decluse.SymbolTable;

5 import static decluse.SymbolTable.*;
}

Program {
visit() {

10 #block.visit(newTable());
}

}

Block {
15 visit(SymbolTable available) {

SymbolTable updated = #statementPart.visitCollect(newTable());
#statementPart.visitCheck(concatenate(updated, available));

}
}

20

StatementPart {
SymbolTable visitCollect(SymbolTable original) {
SymbolTable updated = original;
#foreach(#stmt <− #statements) {

25 updated = #stmt.visitCollect(updated);
}
return updated;

}

30 visitCheck(SymbolTable available) {
#foreach(#stmt <− #statements) {

#stmt.visitCheck(available);
}

}
35 }

abstract Statement {
SymbolTable visitCollect(SymbolTable original);
visitCheck(SymbolTable available);

40 }

VarStatement extends Statement {
SymbolTable visitCollect(SymbolTable original) {

return append(#name, original);
45 }

visitCheck(SymbolTable available) {}
}

50 UseStatement extends Statement {
SymbolTable visitCollect(SymbolTable original) {

return original;
}

55 visitCheck(SymbolTable available) {
checkDeclaration(#name, available);

}

97

}

60 BlockStatement extends Statement {
SymbolTable visitCollect(SymbolTable original) {

return original;
}

65 visitCheck(SymbolTable available) {
#block.visit(available);

}
}

In general the evaluation of an attribute grammar can be performed in any
order. The evaluation starts with all attributes undefined, except for special at-
tributes such as the value of a terminal. The evaluator picks an attribute for which
the input is defined and calculates the output. This operation is repeated until
either all attributes are defined, or no attributes remain for which the input is
defined.

TPL however does not incorporate a full attribute evaluator. It is the task
of the developer to define the order in which the attributes are evaluated. In
this case two passes are needed over all statements. The attributes used in the
tpl version are still the same. However, they are spread over multiple visiting
methods. Some attribute grammars, namely the class of L-attribute grammars
(see [Alblas and Nymeyer, 1996, Section 9.2]), can be evaluated in a single pass
over the tree. These attribute grammars can be implemented directly in tpl.

98 Appendix D. Visiting Methods and Attribute Grammars

EAppendix

Calculation Language Code

Listings

E.1 Sample Input

Listing E.1: Calculation language sample input
var a;
var b;

a := 3;
5 b := 5;

if (a − b) {
print (a + b) ;

} else {
10 print (a − b);

};

E.2 Driver

Listing E.2: Calculation language driver
package calc;

import nl.utwente.ewi.tpl.runtime.antlr.TPLTreeAdaptor;
import org.antlr.runtime.ANTLRFileStream;

5 import org.antlr.runtime.CharStream;
import org.antlr.runtime.CommonTokenStream;

public class CalcDriver {
public static void main(String[] args) throws Exception {

10 CharStream calcInput = new ANTLRFileStream(args[0]);
CalcLexer calcLexer = new CalcLexer(calcInput);
CommonTokenStream calcTokens = new CommonTokenStream(calcLexer);
CalcParser calcParser = new CalcParser(calcTokens);

15 calcParser.setTreeAdaptor(
new TPLTreeAdaptor(new calc.PackageDescription()));

Program program = (Program) calcParser.program().getTree();
System.out.println("Program is:\n"+program);

20 program.check();
System.out.println("Running...");
program.run();

}
}

100 Appendix E. Calculation Language Code Listings

E.3 Parser Specification

Listing E.3: Calculation language parser specification

grammar Calc;

options {
output = AST;

5 }

tokens {
PROGRAM;
DECLARATION;

10 IF;
PRINT;
BLOCK;
ADD;
MINUS;

15 ASSIGN;
}

@lexer::header {
package calc;

20 }

@parser::header {
package calc;

}
25

program

: declaration* statementBlock
−> ^(PROGRAM declaration* statementBlock)

;
30

declaration

: ’var’ IDENTIFIER ’; ’
−> ^(DECLARATION IDENTIFIER)

;
35

statement

: expression ’; ’ !
| ifStatement

| printStatement

40 ;

expression

: IDENTIFIER ’:=’ expression

−> ^(ASSIGN IDENTIFIER expression)
45 | addSubExpression

;

addSubExpression

: atomicExpression ’+’ addSubExpression
50 −> ^(ADD atomicExpression addSubExpression)

| atomicExpression ’−’ addSubExpression
−> ^(MINUS atomicExpression addSubExpression)

| atomicExpression

;

E.4. Tree Definition 101

55

atomicExpression

: IDENTIFIER

| NUMBER

;
60

ifStatement

: ’ if ’ ’ (’ expression ’)’ ’ { ’ ifThen=statementBlock ’}’ ’else ’
’ { ’ ifElse=statementBlock ’}’ ’;’
−> ^(IF expression $ifThen $ifElse)

65 ;

printStatement

: ’ print ’ ’ (’ expression ’)’ ’ ; ’
−> ^(PRINT expression)

70 ;

statementBlock

: statement*
−> ^(BLOCK statement*)

75 ;

IDENTIFIER

: (’a’ .. ’z’|’A’ .. ’Z’)+
;

80

NUMBER

: (’0’ .. ’9’)+
;

85 WS

: (’ ’ | ’\t’ | ’\f’ | ’\r’ | ’\n’)+ { $channel=HIDDEN; }
;

E.4 Tree Definition

Listing E.4: Calculation language tree definition

package calc;

Program(Declaration* declarations, StatementBlock statements) −> PROGRAM;
Declaration(Identifier variable) −> DECLARATION;

5

abstract Statement;
IfStatement(Expression condition, StatementBlock thenPart,

StatementBlock elsePart) extends Statement −> IF;
PrintStatement(Expression message) extends Statement −> PRINT;

10 StatementBlock(Statement* statements) extends Statement −> BLOCK;

abstract Expression extends Statement;
abstract BinaryExpression(Expression left, Expression right) extends Expression;
AddExpression extends BinaryExpression −> ADD;

15 MinusExpression extends BinaryExpression −> MINUS;
AssignExpression(left as Identifier var) extends BinaryExpression −> ASSIGN;

abstract Literal<T>(T value) extends Expression;

102 Appendix E. Calculation Language Code Listings

Number(value as Integer) extends Literal<Integer> −> NUMBER;
20 Identifier(value as String) extends Literal<String> −> IDENTIFIER;

E.5 Context Checker

Listing E.5: Calculation language context checker

package calc.context;

header {
import java.util.Set;

5 import java.util.HashSet;
}

Program {
interface public boolean check() {

10 int errors = #this.visit();
if (errors == 0) {
System.out.println("No errors found.") ;
return true;

} else {
15 System.err.println(errors + " errors found.") ;

return false ;
}

}

20 int visit() {
int errors = 0;
Set<String> symbols = new HashSet<String>();
#foreach(#curId <− #declarations/variable) {
errors += #curId.visitDeclare(symbols);

25 }
#foreach(#curId <− #statements//*[Identifier]) {
errors += #curId.visitUse(symbols);

}
return errors;

30 }
}

Identifier {
int visitUse(Set<String> symbols) {

35 if (!symbols.contains(#value)) {
System.err.println("Undeclared variable ’"+#value+"’.");
return 1;

}
return 0;

40 }

int visitDeclare(Set<String> symbols) {
if (symbols.contains(#value)) {
System.err.println("Variable ’"+#value+"’ already declared .") ;

45 return 1;
}
symbols.add(#value);
return 0;

}

E.6. Interpreter 103

50 }

E.6 Interpreter

Listing E.6: Calculation language interpreter

package calc.interpreter;

header {
import java.util.HashMap;

5 import java.util.Map;
}

Program {
interface public void run() {

10 #this .visit();
}

visit() {
Map<String, Integer> store = new HashMap<String, Integer>();

15 #foreach(#decl <− #declarations) {
#decl.visit(store);

}
#statements.visit(store);

}
20 }

Declaration {
visit(Map<String, Integer> store) {
store.put(#variable.visitWrite(), 0);

25 }
}

abstract Statement {
visit(Map<String, Integer> store);

30 }

IfStatement extends Statement {
visit(Map<String, Integer> store) {

if (#condition.visitExpr(store) != 0) {
35 #thenPart.visit(store);

} else {
#elsePart.visit(store);

}
}

40 }

StatementBlock extends Statement {
visit(Map<String, Integer> store) {

#foreach(#stmt <− #statements) {
45 #stmt.visit(store);

}
}

}

50 PrintStatement extends Statement {

104 Appendix E. Calculation Language Code Listings

visit(Map<String, Integer> store) {
System.out.println(#message.visitExpr(store));

}
}

55

abstract Expression extends Statement {
visit(Map<String, Integer> store) {

#this .visitExpr(store);
}

60

int visitExpr (Map<String, Integer> store);
}

AssignExpression extends Expression {
65 int visitExpr(Map<String, Integer> store) {

int value = #right.visitExpr(store);
store.put(#var.visitWrite(), value);
return value;

}
70 }

AddExpression extends Expression {
int visitExpr(Map<String, Integer> store) {

return #left.visitExpr(store) + #right.visitExpr(store);
75 }

}

MinusExpression extends Expression {
int visitExpr(Map<String, Integer> store) {

80 return #left.visitExpr(store) − #right.visitExpr(store);
}

}

Number extends Expression {
85 int visitExpr(Map<String, Integer> store) {

return #value;
}

}

90 Identifier extends Expression {
int visitExpr(Map<String, Integer> store) {

return store.get(#value);
}

95 String visitWrite() {
return #value;

}
}

E.7 Pretty Printer

Listing E.7: Calculation language pretty printer

package calc.pretty;

Node: abstract Printable {

E.7. Pretty Printer 105

interface public String toString() {
5 return #this .visit(0);

}

String visit(int indentation);
}

10

abstract IndentedConstruct extends Printable {
implementation protected String writeIndentation(int indentation) {
String ret = "";
for (int count=0; count<indentation; count++) {

15 ret += " ";
}
return ret;

}
}

20

Declaration extends IndentedConstruct {
String visit(int indentation) {

return writeIndentation(indentation) + "var " +
#variable.visitExpr() + ";\n";

25 }
}

Program extends IndentedConstruct {
String visit(int indentation) {

30 String ret = "";
#foreach(#decl <− #declarations) {
ret += #decl.visit(indentation);

}
ret += #statements.visit(indentation);

35 return ret;
}

}

IfStatement extends IndentedConstruct {
40 String visit(int indentation) {

return writeIndentation(indentation) +
" if (" + #condition.visitExpr() + ") {\n" +
#thenPart.visit(indentation+1) +
writeIndentation(indentation) + "} else {\n" +

45 #elsePart.visit(indentation+1) +
writeIndentation(indentation) + "}\n";

}
}

50 PrintStatement extends IndentedConstruct {
String visit(int indentation) {

return writeIndentation(indentation) +
"print (" + #message.visitExpr() + ");\n";

}
55 }

StatementBlock extends IndentedConstruct {
String visit(int indentation) {
String ret = "";

60 #foreach(#stmt <− #statements) {
ret += #stmt.visit(indentation);

106 Appendix E. Calculation Language Code Listings

}
return ret;

}
65 }

abstract Expression extends IndentedConstruct {
String visit(int indentation) {

return writeIndentation(indentation) + #this.visitExpr() + ";\n";
70 }

String visitExpr();
}

75 abstract BinaryExpression extends Expression {
implementation abstract protected String getOperator();

String visitExpr() {
return #left.visitExpr() + " " + getOperator() + " " + #right.visitExpr();

80 }
}

AddExpression extends BinaryExpression {
implementation protected String getOperator() {

85 return "+";
}

}

MinusExpression extends BinaryExpression {
90 implementation protected String getOperator() {

return "−";
}

}

95 AssignExpression extends BinaryExpression {
implementation protected String getOperator() {

return ":=";
}

}
100

Literal extends Expression {
String visitExpr() {

return #value.toString();
}

105 }

FAppendix

Planning

Project Phase Days Start Date End Date

Requirements analysis and design 53 25-04 17-08

Prototype implementation 30 18-08 28-09

Design refinements and syntax fixation 20 29-09 26-10

Final product implementation 35 27-10 14-12

Total 138

F.1 Requirements Analysis and Design

Task Days Start Date End Date

Investigation other parsers 1 25-04 25-04

Concretize concepts 3 26-04 28-04

Preliminary requirements analysis 3 01-05 05-05

Planning 1 08-05 08-05

Formalising language concepts 10 10-05 24-05

Formal syntax specification 5 26-05 02-06

Software design 15 05-06 28-06

Testcase design 15 30-06 17-08

Total 53

F.2 Prototype Implementation

Task Days Start Date End Date

Prototype implementation 20 18-08 14-09

Testcase implementation 10 15-09 28-09

Total 30

F.3 Design Refinements and Syntax Fixation

Task Days Start Date End Date

Problem identification 3 29-09 03-10

Update requirement analysis 2 04-10 05-10

Update formalising language concepts 3 06-10 10-10

Update formal syntax specification 2 11-10 12-10

Update software design 5 13-10 19-10

Update testcase design 5 20-10 26-10

Total 20

108 Appendix F. Planning

F.4 Final Product Implementation

Task Days Start Date End Date

Final product implementation 10 27-10 09-11

Testcase implementation 5 10-11 16-11

Documentation 20 17-11 14-12

Total 35

Bibliography

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
second edition, 1986. ISBN 0321486811.

Henk Alblas and Albert Nymeyer. Practice and Principles of Compiler Building with
C. Prentice Hall, 1996. ISBN 0133492672.

ANTLR. ANTLR parser generator, 2006. URL http://www.antlr.org/. Last
checked at 2006-05-17.

Daniel Bonniot. Structural interfaces for ML≤, April 2000. URL http://nice.

sourceforge.net.

Mark van den Brand, Pierre-Etienne Moreau, and Jurgen Vinju. A generator of
efficient strongly typed abstract syntax trees in java. IEE Proceedings - Software,
152(2):70–78, 2005. URL http://link.aip.org/link/?IPS/152/70/1.

Martin Bravenboer and Eelco Visser. Guiding visitors: Separating navigation from
computation. Technical Report UU-CS-2001-42, Institute of Information and
Computing Sciences, Utrecht University, 2001.

B. Bryant and B.-S. Lee. Two-level grammar as an object-oriented requirements
specification language. In HICSS ’02: Proceedings of the 35th Annual Hawaii In-
ternational Conference on System Sciences, volume 9, page 280, Washington, DC,
USA, 2002. IEEE Computer Society. ISBN 0-7695-1435-9.

James Clark and Steve DeRose. XML path language (XPath). W3C recommenda-
tion, World Wide Web Consortium, November 1999. URL http://www.w3.org/

TR/1999/REC-xpath-19991116.

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd D. Millstein. Mul-
tiJava: Modular open classes and symmetric multiple dispatch for Java. In
OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN conference on Object Oriented
Programming, Systems, Languages, and Applications, pages 130–145, October 2000.

Arie van Deursen and Joost Visser. Source model analysis using the JJTraveler
visitor combinator framework. Software Practice and Experience, 34:1345–1379,
2004.

Eclipse. Eclipse.org home, 2007. URL http://www.eclipse.org. Last checked at
2007-02-18.

Peter van Eijk, Axel Belinfante, Henk Eertink, and Henk Alblas. The term pro-
cessor generator Kimwitu. In TACAS ’97: Tools and Algorithms for Construction
and Analysis of Systems, pages 96–111, Enschede, The Netherlands, April 1997.
Springer.

http://www.antlr.org/
http://nice.sourceforge.net
http://nice.sourceforge.net
http://link.aip.org/link/?IPS/152/70/1
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.eclipse.org

110 Bibliography

Andrea Flexeder, Michael Petter, Scott E. Hudson, C. Scott Ananian, Frank Flan-
nery, Dan Wang, and Andrew W. Appel. CUP LALR parser generator for java,
2006. URL http://www2.cs.tum.edu/projects/cup/.

Etienne M. Gagnon and Laurie J. Hendren. SableCC, an object-oriented compiler
framework. In TOOLS ’98: Proceedings of the Technology of Object-Oriented Lan-
guages and Systems, pages 140–154, Washington, DC, USA, August 1998. IEEE
Computer Society. URL http://sablecc.org/index.html.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation. Addison-Wesley, Boston, Mass., third edition, 2005. ISBN 0-321-24678-0.
URL http://java.sun.com/docs/books/jls.

Ouafa Hachani and Daniel Bardou. Using aspect-oriented programming for de-
sign patterns implementation, 2002.

JavaCC, 2006. URL https://javacc.dev.java.net/. Last checked at 2006-05-17.

JJTree, 2006. URL https://javacc.dev.java.net/JJTree.html. Last checked at
2006-05-17.

JUnit, 2006. URL http://www.junit.org. Last checked at 2006-08-08.

Gerwin Klein. JFlex: The fast lexical analyser generator, 2005. URL http://

jflex.de.

Gerwin Klein and Alfons Brandl. classgen, 2003. URL http://classgen.

sourceforge.net/index.html.

Donald E. Knuth. Semantics of context-free languages. Mathematical Systems The-
ory, 2(2):127–145, 1968.

T. Kuipers and J.M.W. Visser. Object-oriented tree traversal with JJForester.
Science of Computer Programming, 47(1):59–87, April 2003. doi: doi:10.1016/
S0167-6423(02)00108-9.

Memphis. Memphis C/C++: A Language for Compiler Writers. URL http://

memphis.compilertools.net/. Last checked at 2007-02-28.

Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In COMPSAC
’98: Proceedings of the 22nd IEEE Int. Computer Software and Applications Confer-
ence, pages 9–15, Vienna, Austria, August 1998.

Terence Parr. ANTLR v3, 2006. URL http://www.antlr.org/v3. Last checked at
2006-11-10.

Terence Parr. Enforcing strict model-view separation in template engines. In
WWW ’04: The World Wide Web conference, pages 224–233, New York, NY, USA,
May 2004. ACM Press. URL http://www.stringtemplate.org.

T.J. Parr and R.W. Quong. ANTLR: A predicated-LL(k) parser generator. Software
Practice and Experience, 25(7):789–810, July 1995.

SLADE, 2002. URL http://fmt.cs.utwente.nl/tools/slade/. Last checked at
2006-05-17.

http://www2.cs.tum.edu/projects/cup/
http://sablecc.org/index.html
http://java.sun.com/docs/books/jls
https://javacc.dev.java.net/
https://javacc.dev.java.net/JJTree.html
http://www.junit.org
http://jflex.de
http://jflex.de
http://classgen.sourceforge.net/index.html
http://classgen.sourceforge.net/index.html
http://memphis.compilertools.net/
http://memphis.compilertools.net/
http://www.antlr.org/v3
http://www.stringtemplate.org
http://fmt.cs.utwente.nl/tools/slade/

Bibliography 111

S. Doaitse Swierstra, Pablo R. Azero Alcocer, and Joao Sariava. Designing and
implementing combinator languages. In AFP ’98: Advanced Functional Program-
ming, pages 150–206, September 1998.

Kevin Tao and Jens Palsberg. The Java Tree Builder, 2005. URL http://

compilers.cs.ucla.edu/jtb/. Last checked at 2006-05-17.

J.M.W. Visser. Visitor combination and traversal control. In OOPSLA ’01: Pro-
ceedings of the 16th ACM SIGPLAN conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 270–282, New York, NY, USA, Octo-
ber 2001. ACM Press. ISBN 1-58113-335-9. doi: http://doi.acm.org/10.1145/
504282.504302.

John Vlissides. Visitor in frameworks, November 1999. C++ Report.

Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Christopher S. Serra. The
Zephyr Abstract Syntax Description Language. In DSL ’97: Proceedings of the
Conference on Domain-Specific Languages, Santa Barbara, California, October 1997.

Rhys Weatherley. Treecc: An aspect-oriented approach to writing compilers. Jan-
uary 2002.

Xiaoqing Wu, Suman Roychoudhury, Barrett R. Bryant, Jeffrey G. Gray, and Mar-
jan Mernik. A two-dimensional separation of concerns for compiler construc-
tion. In SAC ’05: Proceedings of the 2005 ACM Symposium on Applied Computing,
pages 1365–1369, New York, NY, USA, March 2005. ACM Press. ISBN 1-58113-
964-0. doi: http://doi.acm.org/10.1145/1066677.1066985.

Xiaoqing Wu, Barrett R. Bryant, Jeff Gray, Suman Roychoudhury, and Mar-
jan Mernik. Separation of concerns in compiler development using aspect-
orientation. In SAC ’06: Proceedings of the 2006 ACM Symposium on Applied Com-
puting, pages 1585–1590, New York, NY, USA, April 2006. ACM Press. ISBN
1-59593-108-2. doi: http://doi.acm.org/10.1145/1141277.1141646.

http://compilers.cs.ucla.edu/jtb/
http://compilers.cs.ucla.edu/jtb/

112 Bibliography

	Introduction
	Compiler Construction and Abstract Syntax Trees
	Lexical Analysis and Parsing
	Construction of the AST
	Context Checking and Code Generation

	Problem Statement
	Outline

	Related Work
	The Organisation of an AST
	Homogeneous ASTs
	Heterogeneous ASTs
	Homogeneous versus Heterogeneous

	Applying Algorithms to an AST
	Checking the Node Type
	Inheritance Pattern
	Visitor Pattern
	Multiple Dispatch
	Aspect-Orientation
	Attribute Grammars

	Available Parser Generators and Tree Processors
	Lex and Yacc
	ANTLR
	JavaCC
	SLADE
	SableCC
	JFlex, CUP and Classgen
	Treecc

	The Tree Processing Language
	Rationale
	Structure of the Tree
	Behaviour of the Tree

	Architectural Overview
	Tree Structure
	Adding Functionality
	Attribute Grammars
	Test/Query Language

	Advanced Usage of the Inheritance Pattern
	Example
	Inheritance Pattern with Multiple Inheritance
	Inheritance Pattern with Composition
	Expression Language Revisited

	Language Specification
	Introduction
	Tutorial
	Tree Definition
	Interpreter
	Pretty Printer
	Context Checker
	Running the Example

	Common Syntactical Elements
	Tree Definition
	The AST Node
	Types
	Top Level Structure
	Node Definition
	The Structure of the Generated AST
	Comments and Headers
	AST Construction

	Logic Specification
	Top Level Structure
	Node Declaration
	Attributes
	Interface Methods
	Implementation Methods
	Tree Traversal
	Inheritance
	Macros in Logic Actions
	The Structure of the Generated AST
	Comments and Headers

	Design of TPLc
	Hierarchy
	Driver
	Parser
	Common Tokens
	Tree Definition
	Logic Specification

	Context Checker
	Tree Definition
	Logic Specification
	Actions
	Node Selection
	Added Attributes

	Generator
	Generation Targets

	String Template
	Runtime Library
	Node Base Classes
	Tree Construction Classes
	Type Conversion Classes
	Runtime Node Selection
	ANTLR Integration

	Conclusions and Future Work
	Summary
	Evaluation
	Future Research
	Multiple Bindings for Logic
	Inclusion of Pattern Matching
	Merge Inheritance Trees
	Attribute Grammars
	Addition of Children in a Subclass
	Accessing Attributes in other Logic Specifications
	Graphs
	Visiting Pattern

	Software Requirements Specification
	Environment
	Structural Organisation
	User Interaction
	Input
	Syntax
	Messages
	Output

	Language Features
	Tree Definition
	Logic Specification

	Nonfunctional Requirements

	Testing
	Runtime Library
	Parser
	Context Checker
	Generator

	Improvements in the Final Version
	Structural Changes
	Parent Type
	Setting of the Parent
	Accessor Methods
	Comments and Headers

	For-Each Statement
	Node Selection

	Visiting Methods and Attribute Grammars
	Calculation Language Code Listings
	Sample Input
	Driver
	Parser Specification
	Tree Definition
	Context Checker
	Interpreter
	Pretty Printer

	Planning
	Requirements Analysis and Design
	Prototype Implementation
	Design Refinements and Syntax Fixation
	Final Product Implementation

