
“Discrete Simulation of
Behavioural Hybrid Process Calculus”

M.H. Schonenberg

Bhave!

“Discrete Simulation of Behavioural Hybrid Process Calculus”

Master’s Thesis
Faculty of Electrical Engineering,
Mathematics & Computer Science

University of Twente

M.H. Schonenberg
m.h.schonenberg@student.utwente.nl

Graduation Committee

Dr. T. Krilavičius (first supervisor)
Dr. Ir. R. Langerak
Dr. J.W. Polderman

20th September 2006

Abstract

Nowadays complex systems, such as electrical and mechanical, are often controlled
by software. Moreover, hybrid models are used to model and analyse complex
biological and chemical systems. These systems are called hybrid systems because
they display both discrete and continuous behaviour. For the development and
analysis of these systems techniques are needed that capture both behaviours and
their relation. Simulation is one of the tools to obtain insight in dynamical systems
behaviour. Simulation results provide information on system performance and they
are useful for detecting potential weaknesses and errors.

In [8, 9, 11] Behavioural Hybrid Process Calculus (BHPC) is proposed for modelling
hybrid systems. BHPC is a process algebraic calculus that extends the standard
repertoire of operators that combine discrete functional behaviour with features to also
represent and compose continuous-time behaviour. At the higher abstraction level
these two types of behaviour are treated uniformly, i.e., as normal elements of process
algebra. Following [20], behaviour can be simply seen as the set of all allowed real-time
evolutions, or trajectories, of the system variables. One of the most important properties
of BHPC is that the strong bisimulation relation for BHPC is a congruence. Such a
property allows to interchange bisimilar processes in any process algebraic expression.
In other words, it allows to refine processes, change their internal representation, and
interchange them without any losses as long as they manifest the same behaviour.

We present abstraction techniques that can be used to simulate hybrid system control
structures. These techniques are applicable for all hybrid calculi where continuous-
time behaviour is treated like an ordinary element of the algebra. We also present a
general and modular discrete engine definition that is based on BHPC semantics. Due
to its modularity, this definition allows hybrid extension and further extensions of
BHPC. Applicability of the discrete simulation theory and definitions is tested by the
implementation of these techniques in a prototype. The prototype is able to simulate
control structures of hybrid systems, but moreover it is applicable as tool for testing
developments of BHPC since the modular implementation supports extensions of
BHPC. Finally, we propose a visualisation technique for hybrid simulation that allows
analysis of hybrid behaviour.

The applicability as “sand-box” tool for BHPC can help with further developments of
the BHPC framework. We believe that due to the modularity of our engine definitions,

i

the engine could also be suitable for other other frameworks. Furthermore we believe
that our visualisation technique for analysing hybrid behaviour has great potential
and can help in gaining insight in the relation between discrete and continuous-time
behaviour.

ii

Acknowledgements

This thesis is the result of many months of work and doubt. During this period I had
wonderful people around me, helping me on the topic, being good company, or both.

First of all I would like to thank Tomas Krilavičius for giving valuable feedback and for
helping me get back to work during periods of doubt. For the finishing touches on
the thesis and presentation, I would like to thank Bas van Schoonhoven and Laurens
Satink. I would like to thank Albert Brand for converting my sketch of a bee into a logo
for the Bhave tool set. Also, I would like to give my sincere thanks to my family, that
supported me, even without fully understanding the contents of my study. Finally,
thanks to Ramon de Jonge for all your good company, patience and belief in me.

Enschede, 20th September 2006
Helen Schonenberg

iii

Contents

1 Introduction 1

1.1 Modelling hybrid systems . 2

1.2 Hybrid system analysis . 2

1.3 Goals . 3

1.4 Methodology . 4

1.5 Contribution . 5

1.6 Outline . 5

2 Behavioural Hybrid Process Calculus 7

2.1 Trajectories . 7

2.2 Hybrid transition systems . 14

2.2.1 Bisimulation . 16

2.3 Language and operational semantics . 16

2.3.1 Language . 16

2.3.2 Operational semantics of BHPC 17

2.3.3 Congruence property . 22

2.4 Expansion law . 22

2.5 Derived BHPC operators . 23

2.5.1 Parametrisation of action prefix . 23

2.5.2 Idling . 23

2.5.3 Delays . 24

2.5.4 Guard . 24

2.6 Application of BHPC . 24

2.6.1 Bouncing ball . 24

v

CONTENTS

2.6.2 Thermostat . 26

2.7 Conclusions . 28

3 Discrete Simulation 29

3.1 Simulation . 29

3.2 Language . 30

3.3 Abstraction . 30

3.3.1 Internal abstraction . 31

3.3.2 Observable abstraction . 34

3.4 Engine state . 37

3.4.1 Start & end states . 38

3.5 Engine state transitions . 39

3.5.1 Menu calculation . 39

3.5.2 Execution of transition steps . 43

3.6 Discrete engine . 43

3.7 Conclusions . 44

4 Design & Implementation 45

4.1 Discrete Bhave architecture . 46

4.2 Decomposition of the engine . 48

4.2.1 Engine procedures . 48

4.2.2 Data types . 49

4.2.3 Software architecture . 49

4.3 Technical details . 50

4.3.1 Communication . 50

4.4 Engine procedures . 51

4.4.1 Data types . 51

4.4.2 Simulation algorithm . 52

4.4.3 Initialisation procedure . 52

4.4.4 Menu procedure . 53

4.4.5 Selection procedure . 53

4.4.6 Next procedure . 53

vi

CONTENTS

4.5 Event routines . 54

4.5.1 Menu . 54

4.5.2 MenuNF . 54

4.5.3 NFstop . 56

4.5.4 NFaprefix . 56

4.5.5 NFtprefix . 56

4.5.6 NFguard . 56

4.5.7 NFchoice . 58

4.5.8 NFrenaming . 59

4.5.9 NFhiding . 61

4.5.10 NFrecursion . 61

4.5.11 NFparcomp . 62

4.6 Conclusions . 63

5 Simulation Example 65

5.1 Model . 65

5.2 Trace . 66

5.3 Conclusions . 68

6 Towards Hybrid Simulation 69

6.1 Hybrid engine . 70

6.1.1 Engine State Transitions . 70

6.1.2 Hybrid engine . 71

6.2 Design . 71

6.3 Visualisation . 72

6.3.1 Basic MSP . 73

6.3.2 Event-lines . 75

6.3.3 Additional MSP constructs . 76

6.3.4 Plot scales . 79

6.4 Conclusions . 80

7 Conclusions 83

vii

CONTENTS

7.1 Abstraction techniques . 83

7.2 Discrete definition . 84

7.3 Design & implementaion . 84

7.4 Towards hybrid simulation . 84

7.4.1 Hybrid engine definition . 84

7.4.2 Hybrid visualisation . 85

7.5 Implementation extensions . 85

7.6 Final remarks . 85

A BHPC Modelling Language 91

A.1 Input format . 91

A.2 Scope . 93

A.3 Syntax . 94

A.4 Language keywords & symbols . 99

B Menu Calculation 101

C Internal Specification 105

C.1 Informal XML description . 105

C.1.1 BHPC model . 106

C.1.2 Fragments for future design . 109

C.2 XML scheme . 110

D Software Architecture 117

D.1 Discrete Bhave Package . 117

D.2 Event Routine Package . 119

D.3 Process Package . 120

E Simulating Extended Bouncing Ball 123

E.1 BHPC model . 123

E.2 ASCII model . 124

E.3 Trace . 124

F User Manual 133

viii

CONTENTS

F.1 Start simulation . 133

F.2 Event selection . 134

ix

List of Tables

3.1 Overview of alternative SOS rules for action prefix. 34

3.2 MNF for (discrete) BHPC processes . 41

4.1 Overview implementation details. 50

4.2 Engine communication details. 50

A.1 Translation table for BHPC processes . 93

A.2 Operator precedence in BHPC . 93

A.3 Language keywords and symbols . 100

xi

1
Introduction

Behaviour of systems with continuously changing behaviour, also called continuous-
time systems, can be expressed by variables that evolve over time. Opposite to these
are discrete event systems in which behaviour is influenced by asynchronous discrete
events, rather than by time. Hybrid systems are systems that display both discrete and
continuous-time behaviour. Hybrid behaviour can be found in physical systems that
display sudden changes in continuous evolution, for instance caused by interaction
with digital devices. For example, electrical, mechanical and biological systems can
manifest hybrid behaviour. Hybrid systems have become more common now that
physical systems are more often controlled digitally, for example by the increased usage
of embedded software.

The increasing interest in hybrid systems has led to a growing interest in models and
formalisms to specify and analyse these systems. Simulation is one of the tools for
analysing dynamical systems behaviour. It can help in detecting potential weaknesses
and errors in hybrid system models and in choosing adequate control strategies and
parameters. In this thesis we describe the development of techniques and a prototype
for discrete simulation of Behavioural Hybrid Process Calculus (BHPC).

BHPC is an extension of classical process algebra. The extension is based on the
behavioural theory [25], which is suitable for modelling and analysis of hybrid
dynamical systems [8, 9, 11]. In the remainder of this introduction we give a more
detailed description of our goals and approach. First we provide some background
information about modelling and analysis of hybrid systems in Section 1.1 and 1.2.
Then we describe our goals in Section 1.3 and present our methodology in Section

1

1.1. M  

1.4. Section 1.5 summarises our contribution to the field of analysing hybrid systems.
Finally the outline for this thesis is given in Section 1.6.

1.1 Modelling hybrid systems

A prominent framework for hybrid systems is provided by the family of hybrid
automata models (hybrid automata [2], hybrid behavioural automata [19], hybrid
input/output automata [22]). For an overview of these modelling frameworks we refer
to [11]. More recently process algebraic models have been put forward as a vehicle for
the study of hybrid systems [6, 8, 13, 29].

Process algebra A process algebra [24, 16, 5, 7] is a theoretical framework for the
modelling and analysis of the behaviour of concurrent discrete event systems that has
been developed within computer science in the past quarter century. It has generated a
deeper understanding of the nature of concepts such as observable behaviour in the
presence of non-determinism, system composition by interconnection of concurrent
system components, and notions of behavioural equivalence of such systems. It has
contributed fundamental concepts such as bisimulation, and has been successfully
used in a wide range of problems and practical applications in concurrent systems.

Behavioural Hybrid Process Calculus In [8, 9, 11] Behavioural Hybrid Process
Calculus (BHPC) is proposed for modelling hybrid systems. BHPC is a process
algebraic calculus that extends the standard repertoire of operators that combine
discrete functional behaviour with features to also represent and compose continuous-
time behaviour. At a higher abstraction level these two types of behaviour are treated
uniformly, i.e., as normal elements of process algebra. Following [25], behaviour can
be simply seen as the set of all allowed real-time evolutions, or trajectories, of the system
variables.

In contrast to [13] and [6], in BHPC strong bisimulation is a congruence relation with
respect to the parallel composition of subsystems1, i.e., substituting a subsystem with
a bisimilar subsystem does not affect the behaviour of the composition. We believe
that BHPC has great potential for modelling and analysis of hybrid systems. In this
work we contribute to the analysis of hybrid systems by developing techniques and a
prototype for discrete simulation of BHPC.

1.2 Hybrid system analysis

Most real life systems are too complex to be conveniently analysed by their algebraic
description only. Simulation can be used for computer guided analysis of the model.

1In [13], the robust and stateless bisimulations are however congruent.

2

1. I

Simulation tools are used to evaluate model behaviour by trying different model
scenarios. For hybrid simulation there are several tools available, based on different
modelling frameworks. In [10] an exhaustive overview for languages for modelling,
simulation and analysis of hybrid systems is given. For a description of the most
popular tools we refer to [11].

Bhave tool set We believe in the potential of a tool set for modelling and analysis of
hybrid systems, based on the characteristics of BHPC. Bhave2, acronym for “BHPC’s
hybrid and visual engine”, is a collection of tools, developed for this purpose. Currently
the tool set is still under development. The Bhave prototype [11] is a prototype for
limited hybrid simulation of BHPC. Despite its limits, it has been used successfully for
simulation of systems with complex behaviour, e.g. Zeno phenomena.

Visualisation of simulation results Whereas simulation results for continuous-time
behaviour are given by plots that visualise the evolution of system variables along
a time line, simulation results for discrete behaviour are given by message sequence
charts (MSC) [27, 17], that depict interaction patterns between processes. Hybrid
systems manifest both types of behaviour that can influence one another. More precisely,
the evolution of system variables may trigger events and events may trigger change of
evolution. Hence a combined view is crucial to fully analyse hybrid system behaviour.
Several approaches are proposed in [28, 21, 15], but none of them provides such a
combined view.

1.3 Goals

We believe that the BHPC framework can contribute to the modelling and analysis of
hybrid systems. Hybrid system analysis without tool support can be a cumbersome task.
Hence, tool support is essential for the employment of BHPC in its field. Simulation is
a common technique for tool guided analysis of hybrid systems.

We take a first step towards full hybrid simulation of BHPC by developing techniques
and a prototype for discrete simulation of BHPC. Discrete simulation is the simulation of
discrete behaviour (actions) and can be used to analyse hybrid system control structures.
The prototype for discrete simulation has to be extendible to hybrid simulation to
allow support for continuous-time behaviour in further developments. Moreover
the prototype should be developed as a sand-box type of tool to facilitate further
developments of BHPC.

2http://fmt.cs.utwente.nl/tools/bhave/

3

http://fmt.cs.utwente.nl/tools/bhave/

1.4. M

1.4 Methodology

To accomplish our goal, we investigate abstraction of continuous-time behaviour, the
definition and implementation of an engine based on BHPC semantics, extendibility of
the engine and visualisation of hybrid simulation results.

Abstraction techniques To perform discrete simulation of BHPC, continuous-time
behaviour must be removed from the model. In BHPC continuous-time behaviour is
represented by trajectories, which are treated like normal process algebraic elements.
Therefore discrete simulation can be performed by abstracting from trajectories. This
can be done by treating trajectories as special actions (representatives), regarding
the operational semantics that apply for trajectories. For example, there should not
be synchronisation between actions and representatives for trajectories in discrete
simulation.

Engine based on BHPC semantics The engine performs correct simulation, if and
only if for all BHPC specifications, the engine produces the same traces as the operational
semantics of BHPC. Therefore there must be a clear relation between the engine
procedures that are responsible for determining simulation steps and the operational
semantics of BHPC. Following [32] we define procedures that determine simulation
steps by decomposing BHPC expressions using the operational semantics of BHPC.

Extendibility of the engine The engine needs to be extendible for both hybrid
simulation and changes to BHPC. Both extensions can affect the procedures that
determine the set of the simulation steps, which are based on the semantics of BHPC.
For hybrid extension, the procedure for executing simulation steps must also be able to
cope with execution of continuous-time behaviour and related changes to the engine
state. Therefore we present a modular engine definition in which procedures for
determination and execution of simulation steps are hidden from the engine definition.

Visualisation of hybrid simulation results Hybrid systems display both discrete
and continuous-time behaviour, which may influence one another. For full analysis of
hybrid behaviour it is necessary to present both behaviours and their interaction. This
can be done by combining existing visualisation techniques for both behaviours. Plots
and message sequence charts (MSC) can be combined in one view by drawing plots
above MSCs that are rotated 90 degrees. The combination of discrete and continuous-
time behaviour shows their interaction, e.g. when an event changes the evolution of
a system variable, then the plot for that variable will change after occurrence of that
event.

4

1. I

1.5 Contribution

In this thesis we have made several contributions to the field of hybrid system analysis.

Abstraction techniques for discrete simulation We have presented abstraction tech-
niques to abstract from continuous-time behaviour in BHPC. These techniques can
be used to gain insight in control structures of hybrid systems without parallelism.
They are also applicable for other hybrid algebraic formalisms where continuous-time
behaviour is treated as a normal algebraic element.

General engine definition We have provided a modular engine definition for the
discrete simulation of BHPC that is based on its semantics. Due to the modularity,
the engine allows hybrid extension and changes to BHPC itself. Another result of the
modularity is that BHPC related procedures can easily be replaced by procedures for
other modelling frameworks, making this a general engine definition, suitable for other
hybrid algebraic frameworks.

Tool for experimenting with BHPC We have implemented a prototype that is based
on the discrete engine definition. The tool can be used to simulate control structures
of hybrid models, specified in BHPC. Moreover, the tool is suitable as experimental
environment for BHPC, supporting further BHPC developments.

Visualisation techniques Finally, we have presented MSP, a visualisation technique
for the analysis of hybrid systems, that visualises hybrid behaviour. Other visualisation
techniques do not represent a combined view of discrete and continuous-time behaviour
and their relation.

1.6 Outline

We start with a description of BHPC in Chapter 2. Then we present the discrete engine
in Chapter 3. The design and implementation of the discrete engine are given in
Chapter 4. Simulation results are presented in Chapter 5. In Chapter 6 definitions for a
hybrid engine are presented. Moreover in this chapter we propose a new format to
present simulation results for hybrid simulation that captures both the discrete and
continuous behaviour. Finally conclusions and future work are presented in Chapter 7.

5

2
Behavioural Hybrid Process Calculus

Behavioural Hybrid Process Calculus (BHPC) [8, 9, 11] is an extension of classical
process algebra that is suitable for the modelling and analysis of continuous and hybrid
dynamical systems and can be seen as a generalisation of the behavioural approach [25]
in a hybrid setting. This chapter contains a selection of BHPC definitions and theory
from [11] that are relevant for our work. For a full description of BHPC and proofs we
refer to [11].

Behaviour in hybrid systems can be seen as the set of all allowed real-time evolutions,
or trajectories, of the system variables. Section 2.1 introduces trajectories. [8, 9, 11]
use a labelled transition system to describe dynamic system behaviour. Their labelled
transition system, or hybrid transition system, consists of two types of transitions,
namely discrete transitions and continuous transitions. Section 2.2 describes hybrid
transition systems. The BHPC language and operational semantics are described in
Section 2.3. Section 2.4 defines the hybrid expansion law that is used to solve parallel
composition. Section 2.5 gives additional BHPC operators to increase usability of the
language. Application of BHPC is exemplified in Section 2.6.

2.1 Trajectories

In [11] it is assumed that trajectories are defined over time intervals (0, t] (where t can be
∞) and map to a signal space to define the evolution of the system. Components of the
signal space correspond to the different aspects of the continuous-time behaviour, like
temperature, pressure, etc. These components are associated with trajectory qualifiers

7

2.1. T

that identify them.

Definition 2.1.1 (Signal space). LetW be a set of signal domains (typically ⊆ R) and T
be a set of trajectory qualifiers. A signal space is a pair

W =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
with Wi ∈ W, qi ∈ T , where qi denotes the trajectory qualifier of Wi, and qi , q j for
i , j, i.e., all Wi have different trajectory qualifiers. �

Example 2.1.2 (Signal space). A bouncing ball is a simple example of a hybrid system
(Example 2.6.1). It is a simplified model of an elastic ball that is bouncing and losing a
fraction of its energy with every bounce. The altitude of the ball is h, v is the vertical
speed, and c is a coefficient for the energy loss. The following signal space can be used
to define dynamical behaviour of ball:

WBB = (R+ ×R, (h, v))

where qualifiers h and v refer to the altitude of ball (in R+) and the vertical speed (in
R), respectively. �

Definition 2.1.3 (Trajectory). Let W =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
be a signal space.

Then a trajectory in signal spaceW is a function

ϕW : (0, t]→W1 × · · · ×Wn (2.1)

where t ∈ R+ is the duration of the trajectory, also denoted as t(ϕ). SubscriptW is
omitted when the signal space is clear from the context. �

Often trajectories are defined over infinite time intervals. However, hybrid systems
usually evolve according to some trajectory only for a certain period of time. The
restriction to interval (0, t] allows to define such evolutions. There are two reasons for
the choice of such type of intervals. It is convenient technically. Moreover, it most
accurately reflects the reality. An evolution starts at a certain time with a certain state,
and the first change occurs in the left limit. Consequently, the evolution stops at a
certain time moment with a certain state.

Furthermore, infinite trajectories are allowed, but with certain limitations. They have
also defined an empty trajectory.

Definition 2.1.4 (Empty trajectory). εdenotes an empty (or a completed trajectory). �

Definition 2.1.5 (Set of trajectory qualifiers). A function T : Φ → T , where Φ is a set
of any trajectories and T is a set of qualifiers, collects all trajectory qualifiers of the

8

2. B H P C

trajectory:

T(ϕW) =
{q | ϕW : (0,u]→W1 × · · · ×Wn

∧W =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
∧ q ∈ {q1, . . . , qn}}.

and ε is defined such that ∀ϕ , ε : T(ϕ) = T(ε). �

Notation 2.1.6. Φ denotes a set of trajectories, possibly including infinite trajectories.
Unless mentioned explicitly, all trajectories in the set (except empty trajectories)
evolve in the same signal space (have the same trajectory qualifiers, i.e., formally
∀ϕ,ψ , ε ∈ Φ T(ϕ) = T(ψ)).

ϕ � t is shorthand for ϕ � (0, t], where ϕ is a trajectory and � t is a restriction of a
function (sometimes denoted |t). �

Definition 2.1.7 (Projection). Let ϕ : (0,u] → W1 × · · · ×Wn be a trajectory, such that
W =

(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
. Then a projection of the trajectory w.r.t. a trajectory

qualifier qi (i = 1, . . . ,n) is the trajectory

πqi (ϕ) : (0,u]→Wi

in signal spaceWi =
(
Wi, qi

)
. �

Remark 2.1.8 (Extended projections). Let

ϕ : (0,u]→W1 × · · · ×Wn

be a trajectory inW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
and let T ′ ⊆ T(ϕ). Then projection

for a set of trajectory qualifiers T ′ is the trajectory

πT
′

(ϕ) : (0,u]→W′

1 × · · · ×W′

m

such thatWT ′ =
(
W′

1 × · · · ×W′
m ,

(
q′1, . . . , q

′
m

))
, {q′1, . . . , q

′
m} = T

′ and ∀qi ∈ T
′ πqi (ϕ) =

πqi (πT
′

(ϕ)). �

Example 2.1.9 (Trajectories and projections). Let WBB =
(
R+ ×R,

(
Altitude,Velocity

))
be a signal space for the bouncing ball (Example 2.1.2). Then the trajectory for the
bouncing ball can be defined as a mapping

ϕ : (0, t]→ R+ ×R

and, e.g., given as

d
dt
πAltitude(ϕ) = πVelocity(ϕ)

d
dt
πVelocity(ϕ) = −g

with initial values πAltitude(ϕ)(0) = h0 and πVelocity(ϕ)(0) = v0, respectively. �

9

2.1. T

�

�

�
;

�

Figure 2.1: Concatenation

If the signal types of two trajectories coincide, they can be concatenated to one trajectory,
which is not necessarily smooth.

Definition 2.1.10 (Concatenation of trajectories). Let ϕ : (0, t]→W1 × · · · ×Wn (where
t , ∞) and ψ : (0,u] → W1 × · · · ×Wn be trajectories. The concatenation of ϕ and ψ is
given by the trajectory

φ;ψ : (0, t + u]→W1 × · · · ×Wn

defined by

ϕ ; ψ(t′) =

ϕ(t′), 0 < t′ 6 t
ψ(t′ − t), t < t′ 6 t + u

Moreover, ε is a neutral element in the concatenation, i.e., for all Φ, ϕ ∈ Φ ε ; ϕ = ϕ =
ϕ ; ε. �

Example 2.1.11 (Concatenation). Let ϕ and ψ be trajectories depicted by the solid and
dashed lines on the left side of Figure 2.1, respectively. Then the concatenation ϕ ; ψ is
a trajectory depicted on the right side of Figure 2.1 by a dotted line. �

�

�

� � �

Figure 2.2: Time-shift

For the sake of convenience, a time-shift operation is defined. It displaces a trajectory
to “the left” by some time. An example of the time shift by ∆ time units is presented in
Figure 2.2. The figure on the left side represents the original function, and the figure on
the right side represents the function after the time-shift.

10

2. B H P C

Definition 2.1.12 (Time-shift). LetΦ be a set of trajectories andϕ : (0, t]→W1×· · ·×Wn
be a trajectory. Then the time-shift operator

↑ : Φ ×R>0 → Φ

is defined for t′ < t as follows:

ϕ ↑ t′ : (0, t − t′]→W1 × · · · ×Wn such that ∀u ∈ (0, t − t′] ϕ ↑ t′ (u) = ϕ(t′ + u).

�

If one trajectory coincides on the signal space with the initial part of another trajectory,
it is called a prefix of this trajectory.

Definition 2.1.13 (Prefix of trajectory). Let ϕ : (0, t] → W1 × · · · ×Wn and ψ : (0,u] →
W1 × · · · ×Wn be trajectories, such that t 6 u. Then ϕ is a prefix of ψ (denoted ϕ � ψ),
if ϕ = ψ � t. Furthermore, if ϕ � ψ and t < u, then ϕ is called a strict prefix of ψ and
denoted ϕ ≺ ψ. �

They define a set of trajectories prefixes and a closure of such set.

Definition 2.1.14 (Set of trajectories prefixes). Let Φ be a set of trajectories such that
∀χ, κ ∈ Φ T(χ) = T(κ). Then a set of trajectories prefixes is defined as follows Pref≺(Φ) =
{ϕ | ∃ψ ∈ Φ, ϕ ≺ ψ} \ Φ and the set of trajectories prefixes minus empty trajectory as
Pref+ = Pref≺(Φ) \ ε. �

Definition 2.1.15 (Set of trajectories prefixes closure). Let Φ (∀ϕ,ψ ∈ Φ T(ϕ) = T(ψ))
be a set of trajectories. A set that includes all behaviours from Φ and all prefixes of the
behaviours from the Φ can be defined as follows Φ = Φ∪Pref≺(Φ). The set of trajectories
closure minus empty trajectory and minus infinite trajectories is defined as follows

Φ
+
= {ϕ | ∃ψ ∈ Φ, ϕ ≺ ψ, t(ϕ) , ∞} \ ε

�

The remainder of a taken trajectory is expressed by trajectory continuation, a supplement
to the trajectory prefix.

Definition 2.1.16 (Trajectory continuation). Let ϕ : (0, t] → W1 × · · · × Wn and ψ :
(0,u]→W1 × · · · ×Wn be trajectories such that ψ ≺ ϕ. Then trajectory continuation of ϕ
after taking ψ is defined as

ϕ\\ψ : (0, t − u]→W1 × · · · ×Wn,

such that
ϕ\\ψ = ϕ ↑ u.

�

11

2.1. T

Trajectory continuations define the remainder of the taken trajectory. A generalised
version of it, a set of trajectory continuations, singles out a subset of trajectory continuations,
i.e., all remainders from the set of trajectories, which have the same initial part.

Definition 2.1.17 (Set of trajectory continuations). Let Φ be a set of trajectories such
that ∀χ, κ ∈ Φ T(χ) = T(κ) and ψ be a trajectory or trajectory prefix of some trajectory
belonging to the set. Then a set of trajectory continuations for ψ is defined as follows

Φ\\ψ = {ϕ | ψ ; ϕ ∈ Φ}

�

�

Figure 2.3: Set of continuations

Example 2.1.18 (Set of trajectory continuations). Consider the set of trajectories de-
picted on the left side of Figure 2.3, consisting of 5 partly coinciding trajectories.
Suppose the the trajectory depicted by the solid line is taken for a duration of ∆. Then
the set of trajectory continuations for this prefix will include all continuations depicted
on the right side of Figure 2.3. Only remainders of trajectories coinciding with the
trajectory depicted by the solid line during ∆ are part of the continuation set. �

Definition 2.1.19 (Partial prefix). Let H be a set of trajectory qualifiers, and let ϕ :
(0, t]→W1×· · ·×Wn inW =

(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
andψ : (0,u]→W′

1×· · ·×W′
m in

W′ =
(
W′

1 × · · · ×W′
m,

(
q′1, . . . , q

′
m

))
be trajectories, such that t 6 u. LetT = T(ϕ)∩T(ψ) ⊆

H.

• Trajectory ϕ is a partial prefix of ψ (denoted ϕ �H ψ), if πT (ϕ) = πT (ψ � t).

• If ϕ �H ψ and t < u, then ϕ is called a strict partial prefix of ψ and denoted ϕ ≺H ψ.

• In case of t = u the trajectories are equal on the coinciding trajectory qualifiers
and are called partially equal (denoted ϕ =H ψ).

�

12

2. B H P C

The partial prefix relaxes requirements put by the prefix (Definition 2.1.13), i.e., only
the projections over coinciding trajectory qualifiers are compared.

Example 2.1.20 (Partial prefix). Consider two trajectories that define the (altitude, ve-
locity) and (altitude, temperature) pairs, respectively. Then one of these trajectories is
a partial prefix of another, if the altitude evolves in the same way. It allows to define
different aspects of the same object separately and then compose definitions to get a
complete specification of the object. �

Based on synchronising trajectory qualifiers, two trajectories can be composed creating
a new, “wider”, trajectory, such that evolutions of coinciding trajectory qualifiers are
merged and non-coinciding parts extend the state space.

Definition 2.1.21 (Composition of trajectories). Let H be a set of synchronising trajec-
tory qualifiers, and let ϕ : (0, t]→W′′

1 × · · · ×W′′

k inW =
(
W′′

1 × · · · ×W′′

k ,
(
q′′1 , . . . , q

′′

k

))
and ψ : (0,u]→W′

1 × · · · ×W′
m inW′ =

(
W′

1 × · · · ×W′
m,

(
q′1, . . . , q

′
m

))
be trajectories such

that T(ϕ) ∩ T(ψ) ⊆ H, πT(ϕ)∩T(ψ)(ϕ) = πT(ϕ)∩T(ψ)(ψ) and u 6 t. Then a composition of
trajectories is a trajectory

ϕ ×H ψ : (0,u]→W1 × · · · ×Wn

inW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
such that

T(ϕ ×H ψ) = T(ϕ) ∪ T(ψ),

πT(ϕ)(ϕ ×H ψ) = ϕ,

πT(ψ)(ϕ ×H ψ) = ψ.

�

They extend composition of trajectories to composition of sets of trajectories.

Definition 2.1.22 (Composition of sets of trajectories). Let H be a set of synchronising
trajectory qualifiers, and let Φ andΨ be sets of trajectories such that, ∀ϕ,ψ ∈ Φ T(ϕ) =
T(ψ), ∀ϕ,ψ ∈ Ψ T(ϕ) = T(ψ) and ∀ϕ ∈ Φ,∀ψ ∈ Ψ holds T(ϕ) ∩ T(ψ) ⊆ H. Then a
composition of sets of trajectories is defined as follows

Φ ×H Ψ = {ϕ ×H ψ | ϕ ∈ Φ ∧ ψ ∈ Ψ ∧ ϕ =
H ψ ∧ πT(ϕ)∩T(ψ)(ϕ) = πT(ϕ)∩T(ψ)(ψ)}

Moreover, if ε ∈ Φ ∨ ε ∈ Ψ, then ε ∈ Φ ×H Ψ. �

Several different ways will be used to define sets of trajectories. All trajectories are
required to have the same qualifiers, i.e., ∀ϕ,ψ ∈ Φ T(ϕ) = T(ψ).

• By listing all trajectories belonging to the set: Φ = {ϕ1, . . . , ϕn} such that ∀i, j =
1, . . . ,n T(ϕi) = T(ϕ j).

13

2.2. H  

• By putting restrictions on the already existing set of trajectories: Φ ↓ Pred = {ϕ ∈
Φ | Pred(ϕ)}, where Pred is a predicate.

• Sometimes it is useful to define conditions on the end-points of trajectories or the
exit conditions. ⇓ denotes such conditions, as restrictions on the set of trajectories:
Φ ⇓ Predexit = {ϕ : (0,u]→W1 × · · · ×Wn ∈ Φ | Predexit(ϕ(u))}. Application of exit
conditions is exemplified in Example 2.6.1, where, e.g. ⇓ h = 0 requires that the
trajectory finishes at 0 altitude.

Moreover, an empty trajectory ε will denote an instantaneous exit availability.

Trajectory qualifiers can be used to access corresponding parts of trajectories when it is
clear from the context. For example , qi will mean the same as πqi (ϕ) (i = 1 . . . n) for

ϕ : (0, t]→W1 × · · · ×Wn withW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
.

Furthermore, qi can be used instead of πqi (ϕ)(u) with u ∈ (0, t] as a time, when it is clear
from the context, e.g., as it is used in definition of Predexit.

Moreover, the combination of trajectory restrictions and exit conditions is allowed

Φ ↓ Pred ⇓ Predexit = {ϕ : (0,u]→W ∈ Φ | Pred(ϕ) ∧ Predexit(ϕ(u))}

2.2 Hybrid transition systems

Automata, state-transition diagrams and other similar models are often used to describe
the dynamic behaviour of the systems. They consist of states s ∈ S (with S as a set of
states) and some construct, defining changes of the states. Most of the time changes
of the states are defined by transitions, which are given as a relation (function) over a
subset of the Cartesian product of the states (S × S). Usually transitions are denoted by
an arrow, e.g., (s, s′) ∈→ or s→ s′.

Labelled transition systems are a class of transition systems, where transitions are labelled
with some actions a ∈ A (whereA is a set of actions). The transition relation is defined
over subset of S ×A × S. For (s,a, s′) ∈→ they write s a

−→ s′.

A hybrid transition system is a labelled transition system with two types of transitions.

Definition 2.2.1 (HTS). A hybrid transition system is a tuple HTS = 〈S,A,→,W,Φ,→c〉,
where

• S is a state space;

14

2. B H P C

• A is a set of (discrete) action names;

• →⊆ S ×A × S is a (discrete) transition relation;

• W is a signal space;

• Φ is a set of trajectories ϕ : (0, t]→W1 × · · · ×Wn for t ∈ R+, and t , ∞, ε < Φ;

• →c⊆ S ×Φ × S is a (continuous-time) transition relation.

They define the following convenient equivalences for transition relation membership

s a
−→ s′ ⇐⇒ (s,a, s′) ∈→

s
ϕ
−→ s′ ⇐⇒ (s, ϕ, s′) ∈→c .

The set of discrete action names includes a silent action, denoted τ. It does not represent
a potential communication and is not directly observable. Silent action may be used to
specify a non-deterministic behaviour (as internal actions in [24]). �

Remark 2.2.2. Constraints ε < Φ and ∀ϕ ∈ Φ, t(ϕ) , ∞ can be used to exclude
empty and infinite transitions. However, infinite evolutions can be constructed by
concatenating finite trajectories. ε can used to denote completed trajectories. �

Notation 2.2.3. They adhere to the following notation.

• Greek alphabet symbols (like ϕ,ψ) will be used to denote trajectories, which are
taken on a continuous-time transition.

• Latin alphabet (like a,b) will be used to denote actions.

�

Definition 2.2.4 (Density). Density is required for all trajectories

s
ϕ
−→ s′ ⇐⇒ ∃s′′, ϕ1, ϕ2 : ϕ = ϕ1 ; ϕ2 ∧ s

ϕ1
−→ s′′ ∧ s′′

ϕ2
−→ s′.

�

Density allows to split every trajectory into arbitrarily many parts.

Remark 2.2.5 (Labels of continuous-time transitions). Label ϕ in s
ϕ
−→ s′ is a semantic

object, viz. the set theoretic graph of the function ϕ. �

Remark 2.2.6 (Sufficiency of density). The above property of density does not suffice
in general, because it allows pathological transition systems, see [18]. However, BHPC
cannot describe such pathological cases, so that the density definition for BHPC
suffices. �

15

2.3. L   

2.2.1 Bisimulation

One of the main tools to compare systems is strong bisimulation. The bisimulation for
continuous dynamical systems is presented in [30]. The process algebraic version is
nicely explained in [24]. Strong bisimulation requires both subsystems to be able to
imitate each other at every step. A strong bisimulation for hybrid transition systems
requires both systems to be able to execute the same trajectories and actions and to
have the same branching structure.

Definition 2.2.7 (Hybrid strong bisimulation). A binary relationR ⊆ S×S on the states
is a hybrid strong bisimulation, if for all p, q ∈ S, such that p R q, holds

p a
−→ p′ =⇒ ∃q′ such that q a

−→ q′ and p′ R q′

q a
−→ q′ =⇒ ∃p′ such that p a

−→ p′ and p′ R q′

p
ϕ
−→ p′ =⇒ ∃q′ such that q

ϕ
−→ q′ and p′ R q′

q
ϕ
−→ q′ =⇒ ∃p′ such that p

ϕ
−→ p′ and p′ R q′.

�

The first two statements define bisimulation requirements for the discrete actions, and
the last two for the continuous-time transitions.

Definition 2.2.8 (Bisimilarity). States p and q are bisimilar (denoted p ∼ q), if there exists
a hybrid strong bisimulation R, containing the pair (p, q). �

2.3 Language and operational semantics

2.3.1 Language

To define evolution and interaction of systems, a language and it’s semantics, based on
hybrid transition systems are introduced. The syntax of language is presented in BNF
notation (Backus-Naur form).

B ::= 0 a.B
[

f | Φ
]
.B

∑
i∈I

Bi B ‖HA B new w.B B [σ] P

• 0 is a deadlock, the process that does not show any behaviour.

• a.B is an action prefix, where a ∈ A is a discrete action name and B is a process.
It first performs a and then engages in B. An action prefix denotes a discrete
transition in the underlying hybrid transition system.

•
[

f | Φ
]
.B

(
f
)

is a trajectory prefix, where f is a trajectory variable and Φ is a set of
trajectories. It takes a trajectory or a prefix of a trajectory in Φ. If a trajectory or

16

2. B H P C

a part of it was taken and there exists a continuation of the trajectory, then the
system can continue with a trajectory from the trajectory continuations set. If a
whole trajectory was taken, then the system may continue with B, too.

•
∑
i∈I

Bi is a choice of processes. To generate the set they allow arbitrary index sets I.

It chooses before taking an action prefix or trajectory prefix. Binary version of
choice is denoted B1 + B2.

• B ‖HA B is a parallel composition of two processes with an interconnection set H and a
synchronisation set A. The interconnection set H ⊆ T is a set of trajectory qualifiers
for the synchronisation of trajectories and the synchronisation set A ⊆ A is
the set of action names for the synchronisation of discrete transitions. Parallel
composition defines a new process that executes both processes in parallel forcing
trajectory prefixes and actions in A to synchronise. If actions are not in A, they
are executed in the interleaving manner, i.e., sequentially in an arbitrary order.

• new w.B is a hiding operator, where w is a set of discrete action names and
trajectory qualifiers to hide.

• B[σ] is a renaming operator, where σ is a renaming function. Function σ takes an
action name or a trajectory qualifier and changes it. Renaming function for the
actions σ : A→A. For the trajectory qualifiers renaming is defined as σ : T → T
and it should be injective for the trajectory qualifiers. B[σ] behaves as B but with
the actions and trajectory-qualifiers renamed according to σ.

• P is a recursive equation, where P is a process identifier.

Syntactic functions L(B) andN(B) are used for collecting action and trajectory qualifiers
occurring in B, respectively.

Consistent signal flow is required, i.e., only the parallel composition is allowed to change
the set of trajectory qualifiers in the process. Renaming operation only renames
trajectory qualifiers, but does not change their types. We refer to [11] for the definition
of restrictions that ensure consistent signal flow.

2.3.2 Operational semantics of BHPC

This section defined the semantics of the BHPC operators.

Action prefix a.B

Process a.B defines a process which executes the action a and then behaves as B.

A special silent action, denoted τ, is introduced. It does not represent a potential
communication and is not directly observable. Silent actions may be used to specify a

17

2.3. L   

non-deterministic behaviour (as internal actions in [24].

a.B a
−→ B (2.2)

In Section 2.5.1 a parametrised version of the action prefix is given. The use of both
ordinary and parametrised action prefixes is illustrated in Section 2.6.

Trajectory prefix
[
ϕ | Φ

]
.B

(
f
)

A trajectory prefix defines the behaviour that starts with a trajectory denoted by f and is
followed by the trajectory continuation or behaviour specified by B.

[
f | Φ

]
.B

(
f
) ϕ
−→

[
f ′ | Φ\\ϕ

]
.B

(
ϕ ; f ′

)
for all ϕ ∈ Φ

+
(2.3)

where Φ is a set of trajectories such that ∀ϕ,ψ ∈ Φ T(ϕ) = T(ψ), f , f ′ are trajectory
variables andϕ;ψ ∈ Φ orϕ ∈ Φ such that t(ϕ) , ∞ andϕ , ε. If a trajectory or a part of it
was taken and there exists a continuation of the trajectory, then the system can continue
with a trajectory from the trajectory continuations set (Definition 2.1.17). Hotheyver,
if a whole trajectory was taken, then the system may continue with the consecutive
process with the substituted trajectories (see (2.4)).

(
ϕ ; f ′

)
defines substitution of the

taken trajectories in the following processes, i.e., all instances of f in B are substituted
by the taken trajectory ϕ concatenated with its follow-up f ′, or if it is finished, by the
whole taken trajectory ϕ.

The behaviour for empty trajectories ε will be defined later, after the definition for
concatenation (2.4) is given.

Notation 2.3.1. The following notation for trajectory prefix can be convenient to express
restrictions and exit conditions.

[
q1, . . . , qm

∣∣∣ Φ y Pred
ww� Predexit

]
where

• q1, . . . , qm are trajectory qualifiers, which can be used to access corresponding
parts of trajectories.

• As explained in the end of Section 2.1, the set of trajectories can be defined in
several different ways.

Definition of trajectory sets directly in the definition of trajectory prefix is allowed.
Commas will be used to separate conditions. If required, ⇓ can be used to separate exit
conditions. �

18

2. B H P C

Concatenation

Concatenation extends definition of trajectory prefix. It formalises behaviour after
taking a complete trajectory. The process can choose to continue with another trajectory
or an action prefix, depending on the successive process. Concatenation is formalised
by the following derivation rules.

B
(
ϕ
) ψ
−→ B′[

f | Φ
]
.B

(
ϕ
) ϕ;ψ
−−→ B′

ϕ ∈ Φ (2.4a)

B (ε) a
−→ B′[

f | Φ
]
.B

(
f
) a
−→ B′

ε ∈ Φ (2.4b)

In (2.4a) it is shown, how to concatenate two trajectories. While (2.4b) defines a
situation, where after taking a whole trajectory process continues with an action prefix.

The following rule is derived from concatenation and trajectory prefix rules. If ε ∈ Φ
then [

f | Φ
]
.B(f) =

[
f | Φ \ ε

]
.B(f) + B(ε)

Choice
∑
{B(v) | v ∈ I}

Choice is a generalised operator on sets of behaviour expressions. To generate the set
they allow arbitrary index sets I. It can be thought of as a generalisation of the ordinary
process algebraic choice.

B (w) a
−→ B′∑

v∈I
B (v) a

−→ B′
w ∈ I (2.5a)

B (w)
ϕ
−→ B′∑

v∈I
B (v)

ϕ
−→ B′

w ∈ I (2.5b)

In (2.5a) the choice for action prefixes is defined, which is the same as in usual process
algebras. Rule (2.5b) tells that choice for trajectories is made before taking a trajectory.
Examples from Section 2.6 illustrate the application of choice.

Parallel composition B1 ‖
H
A B2

Parallel composition models concurrent evolution of several processes. During the
evolution they may interact with each other via synchronisation on discrete and
continuous-time transitions. In BHPC synchronisation on identical names is assumed as

19

2.3. L   

the basic synchronisation concept. In order to avoid context-dependent interpretations
of operators, the set of action names A and the set of trajectory qualifiers H that are
subject to synchronisation, are made explicit in the parallel operator ‖HA .

This form of synchronisation implies that parallel components jointly execute identical
actions or trajectories with common signal evolutions that occur in their transitions
and are subject to synchronisation.

The basic idea of synchronising trajectories is not much different than that of synchro-
nising actions. Let B1 and B2 be the processes which can take trajectories

ϕ : (0, t]→W′

1 × · · · ×W′

m and ψ : (0, t]→W′′

1 × · · · ×W′′

k

inW′ =
(
W′

1 × · · · ×W′
m,

(
q′1, . . . , q

′
m

))
andW′′ =

(
W′′

1 × · · · ×W′′

k ,
(
q′′1 , . . . , q

′′

k

))
, respec-

tively. The static constraint is imposed that B1 ‖
H
A B2 is only theyll-formed iff

L(B1) ∩ L(B2) ⊆ A and N(B1) ∩ N(B2) ⊆ H (where L is a syntactical function, that
collects actions names from the process). LetW be a set of signal domains and let

T
′ = T(ϕ) ∩ T(ψ). (2.6)

If a set of coinciding trajectory quantifiers is a subset of the synchronisation set

T
′
⊆ H (2.7a)

and trajectories are the same on the coinciding quantifiers

πT
′

(ϕ) = πT
′

(ψ), (2.7b)

then the resulting trajectory is a synchronised trajectory of B1 ‖
H
A B2 that simultaneously

changes the states of B1 and B2, defined as

χ : (0, t]→W1 × · · · ×Wn

inW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
such that

T(χ) = T(ϕ) ∪ T(ψ),

πT
′

(ϕ) = πT
′

(ψ) = πT
′

(χ),

ϕ = πT(ϕ)(χ),

ψ = πT(ψ)(χ).

It can also be defined via the composition of trajectories (Definition 2.1.21), i.e.,
χ = ϕ ×H ψ. For parallel composition the following SOS rules are defined.

B1
a
−→ B′1,B2

a
−→ B′2

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B′2

a ∈ A (2.8a)

B1
a
−→ B′1

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B2

B2 ‖
H
A B1

a
−→ B2 ‖

H
A B′1

a < A (2.8b)

20

2. B H P C

B1
ϕ
−→ B′1,B2

ψ
−→ B′2

B1 ‖
H
A B2

ϕ×Hψ
−−−−→ B′1 ‖

H
A B′2

(2.6) and (2.7) hold (2.8c)

Rule (2.8b) explains interleaving semantics for the discrete behaviour, when discrete
actions names do not coincide. Synchronisation on actions is defined in (2.8a). Rule (2.8c)
defines the parallel composition of similar trajectories. Notice that because of density
(Definition 2.2.4) no rules for the trajectories with different durations are needed.
Parallel composition is illustrated in Examples 2.6.1and 2.6.2.

Hiding new w.B

Following the conventions of the process calculus a hiding is introduced as a scope
restriction operator. new w.B restricts the use of the names w to B. Hiding for discrete
actions is just an ordinary hiding. It is worth emphasising that hiding (especially in
continuous-time case) should be used carefully, because two different trajectories can
easily become observably equivalent, if only equivalent parts of the behaviour are
visible. Hiding may easily influence the outcome of parallel composition and choice.

B a
−→ B′

new w.B τ
−→ new w.B′

a ∈ w (2.9a)

B a
−→ B′

new w.B a
−→ new w.B′

a < w (2.9b)

B
ϕ
−→ B′

new w.B
πT(ϕ)\w(ϕ)
−−−−−−→ new w.B′

(2.9c)

The first rule states that if an action should be hidden, it is renamed to τ (silent) action.
Otherwise (the second rule) nothing changes. The third rules defines hiding for the
continuous-time behaviour, i.e., some qualifiers are not visible any more.

Renaming B [σ]

Renaming operator B [σ], where σ is a defined renaming function. Renaming of both action
and signal names is allowed. The renaming function σ changes trajectory qualifiers,
but not their type.

B a
−→ B′

B[σ]
σ(a)
−−→ B′[σ]

B
ϕ
−→ B′

B[σ]
σ(ϕ)
−−−→ B′[σ]

(2.10)

Recursion

The ordinary process algebraic recursion is extended to work with trajectory prefix. It
allows to define processes in terms of each other, like in equation P , B, where P is a

21

2.4. E 

process identifier and actions and signal types of B are only allowed actions and signal
types in P.

B a
−→ B′

P a
−→ B′

P , B
B

ϕ
−→ B′

P
ϕ
−→ B′

P , B (2.11)

2.3.3 Congruence property

Process algebras usually employ a congruence as a basis for systems analysis. A
congruence for a process algebra is an equivalence relation (i.e, reflexive, symmetric and
transitive) that has the substitution property, i.e, equivalent systems can replace each
other inside any larger system, without changing the behaviour of that system.

Theorem 2.3.2. Hybrid strong bisimulation equivalence on HTSs is a congruence w.r.t. the
operations of BHPC defined by the in Section 2.3.2.

For the proof of this theorem we refer to [11].

2.4 Expansion law

The expansion law (Theorem 2.4.2) expresses the parallel composition as a choice of
processes (where parallel composition of discrete actions is resolved in the interleaving
manner).

It is possible to reduce any process in BHPC to a basic form. For processes that do not
involve parallel composition it is trivial. Below they show how the parallel composition
can be eliminated.

Remark 2.4.1 (Notation). make apparent Substitution is explicitly made apparent in
the expansion law and its proofs in [11].

(
ϕ ; f ′/ f

)
denotes substitution of f by

ϕ ; f ′. �

Theorem 2.4.2 (Expansion law). Let

B =
∑
i∈I

bi.Bi +
∑
j∈J

[
f j | Φ j

]
.B j, C =

∑
k∈K

ck.Ck +
∑
l∈L

[
gl | Ψl

]
.Cl

for some terms Bi,B j,Ck and Cl, actions bi and ck, trajectories
[

f j | Φ j

]
and

[
gl | Ψl

]
and the

corresponding sets of qualifiers names TΦ j and TΨl , finite index sets I ∩ J = K ∩ L = ∅. Let

22

2. B H P C

h j = π
TΦ j (h) and hl = π

TΨl (h). Then

B ‖HA C = (2.12)∑
i∈I

bi<A

bi.(Bi ‖
H
A C) +

∑
k∈K
ck<A

ck.(B ‖HA Ck) +
∑

i∈I,k∈K
bi∈A,
bi=ck

bi.(Bi ‖
H
A Ck)+ (2.13)

∑
j∈J
l∈L

[
h | Φ j ×H Ψl

]
. (2.14)

([
f ′j | Φ j\\h j

]
.B j

(
h j ; f ′j / f j

) wwwwwwH

A

[
g′l | Ψl\\hl)

]
.Cl

(
hl ; g′l/gl

))
(2.15)

Here Φ j andΨ j are assumed not to contain ε. When Φ j andΨ j contain ε, then according to
(2.3.2), they can be rewritten to

[
f | Φ \ ε

]
.B(f) + B(ε).

For the proof of Theorem 2.4.2 we refer to [11].

2.5 Derived BHPC operators

BHPC is an assembly language for modelling of hybrid systems. [8, 9, 11] present
several derived operators to increase usability of the language. Parametrisation of
action prefix is given in Section 2.5.1. Section 2.5.2 and 2.5.3 describe idle and ∆(delay),
defining a trajectory prefix without any observable behaviour and delay, respectively.
Finally a guard operator is introduced in Section 2.5.4.

2.5.1 Parametrisation of action prefix

Parametrisation of action prefix is defined similar to [24]

a(v : V).B(v) ,
∑

v∈V
a(v).B(v) (2.16)

Parametrisation is frequently used for value passing, as it is demonstrated in the bouncing
ball example (Example 2.6.1).

2.5.2 Idling

Idling in BHPC is treated as a continuous-time signal without any observable behaviour.

idle.B =
[
t | 0

]
.B

where t is a reserved variable denoting time and the set of trajectories 0 is defined as
0 = {(0, t]→ R+ ∀t}. Variable t is not used in the formal definition of the calculus. In its

23

2.6. A  BHPC

implementation however, it is part of any trajectory prefix, see [11]. It does not manifest
any observable behaviour, but reacts as soon as it is invoked by another process, which
communicates with the process that follows the idling period.

2.5.3 Delays

In BHPC time and time related constructs, e.g., delays, are treated as a continuous-time
signals with rate 1.

∆(delay).B =
[
t
∣∣∣ t(0) = 0, ṫ = 1

ww� t = delay
]
.B, (2.17)

where t is a reserved variable denoting time. Variable t is not used in the formal
definition of the calculus. In its implementation however, it is part of any trajectory
prefix, see [11]. In contrast to idling (Section 2.5.2) it contains only one trajectory, and
can exit only after completing it. Of course, it can take this trajectory in parts. A delay
process does not manifest any observable behaviour for delay time units, thereafter the
system progresses with the process following delay.

2.5.4 Guard

Sometimes it is useful to check some conditions explicitly, and if they are not satisfied,
to stop the progress of process. Guard is one of such constructs.〈

Pred(x)
〉
.B(x) =

∑
w|=Pred(w)

B (w) (2.18)

Here x are process parameters variables. Behaviour is very simple, i.e., if a transition
can be taken, then it is taken, if and only if the guard is satisfied.

2.6 Application of BHPC

The next examples illustrate the application of BHPC.

2.6.1 Bouncing ball

Example 2.6.1 (Bouncing ball). A well known example of a hybrid system is a bouncing
ball that dissipates its energy with every bounce. In [11] the hybrid automaton for the
bouncing ball is depicted by Figure 2.4.

In the figure and the remainder of this example h denotes the altitude of the ball
and v denotes its velocity. c and g are constants that denote the loss of energy and
gravitational constant, respectively. The ball moves according to the flow conditions
(described in the bulb) and variables are reassigned (along the edges) at the bounce
(h = 0). Evolution of the simple bouncing ball is depicted in Figure 2.5.

24

2. B H P C

-
v := v0

h := h0

'

&

$

%
ḣ = v

v̇ = −g

h > 0
�

h = 0

v := −cv
.

.......
.......

.

Figure 2.4: A bouncing ball.

Figure 2.5: Graph for h. Figure 2.6: Graph for v.

In BHPC the bouncing ball can be defined in the following way:

BB(h0, v0) , [h, v | Φ(h0, v0) ⇓ h = 0] .BB(0,−c ∗ v)
Φ(h0, v0) = {h, v : (0, t]→ R |

h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

The BHPC description contains definitions for a bouncing ball process and a tra-
jectory set. The bouncing ball process is defined as a symbolic trajectory prefix
[h, v | Φ(h0, v0) ⇓ h = 0], followed by a recursive call to the bouncing ball process. The
trajectory prefix contains a reference to trajectory set Φ in which the dynamics of the
bouncing ball are described by flow conditions. Furthermore, there is only one exit
condition defined in the prefix. After execution of the trajectory prefix the system con-
tinues with a recursive call to the bouncing ball process. During recursion (BB(0,−c ∗v)),
signals can be updated.

Consider the following extension for the bouncing ball in which the loss of kinetic
energy is compensated by a controller.

25

2.6. A  BHPC

BB(h0, v0)) , [h, v | Φ(h0, v0)) ⇓ h = 0] .bounce(c : [0, 1]).
[h, v | Φ(0,−cv) ⇓ v = 0] .push(v : R).BB(h, v)

Control(v0) , idle.bounce(c : [0, 1]).
idle.push ((1 − c) v) .Control ((1 − c) v)

System(h, v) , BB(h0, v0) ‖v0
push,bounce Control(v0)

The controller pushes the ball and increases its kinetic energy to compensate for the dis-
sipation of energy. Information about the loss of energy is available by synchronisation
on discrete actions between the bouncing ball and the controller.

�

2.6.2 Thermostat

Example 2.6.2 (Thermostat). Another well known introductory example of hybrid
systems is a thermostat [1]. The room temperature is controlled by a thermostat, which
continuously senses the temperature and switches a heater on and off. The temperature
changes are defined by the ordinary differential equations. The hybrid automaton is
depicted in Figure 2.7.

'

&

$

%

Off

d
dt l = −Kl

l > tempmin

'

&

$

%

On

d
dt l = K(h − l)

l 6 tempmax

-
init

l := l0

.
...........................

..........................
.........................

........................
.....................

.....

.................
.........~

on

l 6 tempon

.
...................

.........

.......................
....

..........................
..........................

............................

.............................} off
l > tempoff

Figure 2.7: A thermostat

When the heater is off, the temperature decreases according to the exponential function
l(t) = θeKt, where t is time, l is the temperature in the room, θ is the initial temperature,
and K is a constant determined by the room. When the heater is on, the temperature
increases according to the function l(t) = θe−Kt + h(1 − e−Kt), where h is a constant that
depends on the power of the heater. The temperature should be maintained between
tempmin and tempmax. Temperatures tempon and tempoff are the minimal and maximal
thresholds, when the heater can be turned on and off, respectively. Evolution of the
temperature is depicted in Figure 2.8.

26

2. B H P C

Figure 2.8: Graph for the thermostat.

In BHPC the thermostat can be defined as:

Thermostat(l0) , ThOff(l0)

ThOff(l0) ,
[
l
∣∣∣ ΦOff(l0)

ww� tempOn > l > tempMin
]
.on.ThOn(l)

ThOn(l0) ,
[
l
∣∣∣ ΦOn(l0)

ww� tempOff 6 l 6 tempMax
]
.off.ThOff(l)

ΦOff(l0) = {l : (0, t]→ R | l(0) = l0, l̇ = −Kl}

ΦOn(l0) = {l : (0, t]→ R | l(0) = l0, l̇ = K(h − l)}

The BHPC description contains two processes:

• In process ThOff the heater is off and the trajectory prefix defines the temperature
fall. When the temperature reaches the interval

[
tempOn, tempMin

]
, the process

can perform action on and switch to the process ThOn.

• Process ThOn analogously defines the period of heating.

By adding a controller it is possible to upgrade the thermostat without changing the
specification itself. The controller observes temperature and forces the thermostat to
switch on and off at exactly tmpOn and tmpOff , correspondingly:

Control(l0) ,
[
l
∣∣∣ any(l0)

ww� l = tmpOn
]
.on.[

l
∣∣∣ any(l0)

ww� l = tmpOff
]
.off.Control(l)

UpgradedThermostat(l0) ,Thermostat(l0) ‖lon,off Control(l0)

27

2.7. C

where any(l) is a special function that models an observer, i.e., it accepts any behaviour
for l. It works only in parallel composition. Technically it just adds exit conditions to
the parallel composition of trajectory prefixes.

�

We refer to [11] for more examples on application of BHPC.

2.7 Conclusions

BHPC is a framework for modelling and analysis of hybrid systems that combines
principles from control theory and computer science, hereby acknowledging the
complexity and importance of both aspects of hybrid system behaviour. The most
notable feature of BHPC is that hybrid strong bisimulation property is a congruence,
which allows substitution of bisimilar processes. These and other features make the
framework a suitable candidate for modelling and analysis of hybrid systems.

BHPC theory is applicable in simulation tools, as shown with a prototype in [11].
We use discrete simulation of BHPC as starting point for hybrid simulation. For
discrete simulation we will abstract from the continuous behaviour in BHPC, which
is represented by trajectories. The syntactic separation of discrete behaviour and
continuous behaviour in BHPC enables such an approach. In the next chapter we
investigate abstraction techniques for discrete simulation of BHPC.

28

3
Discrete Simulation

Most real life systems are too complex to be analysed conveniently without employing
simulation tools. In this chapter we will give an introduction to simulation and discrete
simulation in Section 3.1. We also present the language that can be used to model
hybrid systems for simulation in Section 3.2. Discrete simulation can be performed
by abstraction from continuous-time behaviour. Abstraction techniques for discrete
simulation are presented in Section 3.3. The remainder of this chapter is used for the
definition of the engine. The state of the engine is defined in Section 3.4. The engine
is defined by means of a simulation algorithm in Section 3.6. The algorithm consists
of two main procedures; one for determining simulation steps and one for executing
simulation steps. Both procedures and related definitions are defined in Section 3.5.

3.1 Simulation

In computer science, systems are usually analysed by abstract models in which a
mathematical notation is used to represent system behaviour. Most real life systems
are too complex to facilitate convenient analysis of their mathematical representation
without employing (simulation) tools. Simulation tools can be used to evaluate model
behaviour by automatic generation of different model scenarios. For correct simulation,
the simulation procedures should be based on the semantics of the modelling framework.
Simulation can be used for analysis of existing systems and development of future
systems. Hybrid simulation has two precursors: discrete and continuous simulation.

29

3.2. L

Simulation of discrete systems Discrete simulation in computer science can be based
on various types of automata (e.g. [4],[20], [3]), or process algebras (e.g. [7], [32], [14]).
In control theory it is based on discrete event systems [34]. Discrete simulation of
BHPC only simulates the discrete behaviour of a hybrid model specified in BHPC. It
can be used to simulate hybrid system control structures and is useful during early
stages of modelling or prototyping. In our work, discrete simulation serves as starting
point for development of techniques and tools for hybrid simulation.

Currently verification techniques, like model checking [12], have replaced simulation
techniques in computer science. Simulation can only detect presence of errors in
a simulated scenario, while many other scenarios may remain unexplored. Model
checking can be used to verify the properties of a system for all scenarios and therefore
can detect absence of errors. In general, verification is undecidable for hybrid systems
and can only be applied to some classes [26].

3.2 Language

For the discrete simulation of BHPC, we simulate the language, defined in Section 2.3.1.
In this definition, the set of BHPC process expressions is generated by B. Each word
produced by B is a BHPC process expression p ∈ B, i.e. (one.P + two.Q) ∈ B.

B ::= 0 a(v).B
[

f | Φ
]
.B 〈Pred〉 .B

∑
i∈I

Bi B ‖HA B new w.B B [σ] P

Normal action prefix has been replaced by the parametrised action prefix. Trajectory
prefix may be part of the hybrid model for discrete simulation, but we use abstraction to
eliminate continuous-time behaviour. Abstraction replaces continuous-time behaviour
with a representative that follows the semantics for normal actions.

3.3 Abstraction

In this section we discuss several abstraction techniques. Abstraction converts a hybrid
model into a model that only contains discrete behaviour. We distinguish two types
of abstraction: one in which continuous time behaviour is represented by internal
actions (internal abstraction) and the other in which continuous time behaviour is
represented by observable actions (observable abstraction). Both techniques yield a
model containing only discrete behaviour. Rules and semantics for discrete actions
from discrete algebra can be used to simulate the abstracted model.

30

3. D S

3.3.1 Internal abstraction

Internal abstraction is an abstraction technique that converts continuous behaviour
into internal actions. Usually τ represents internal actions [24]. Internal abstraction
converts (symbolic) trajectory prefixes into action prefixes with τ as action. So

[
ϕ
]
.B

and
[

f | Φ
]
.B are converted into τ.B. Example 3.3.1 shows internal abstraction for the

bouncing ball example.

Example 3.3.1 (Internal abstraction for the bouncing ball). Internal abstraction converts

BB(h0, v0) , [h, v | Φ(h0, v0) ⇓ h = 0] .BB(0,−c ∗ v)
Φ(h0, v0) = {h, v : (0, t]→ R |

h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

into

BB(h0, v0) , τ.BB(0,−c ∗ v)
Φ(h0, v0) = {h, v : (0, t]→ R |

h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

where τ represents the symbolic trajectory prefix. Although the trajectory set definition
(Φ) is not removed from the model, the model does not contain any references to this
definition, since all references have been removed during abstraction. �

We can not distinguish between normal internal actions and trajectory abstractions with
τ as representative for continuous time behaviour. However, this distinction is required
by the semantics of parallel composition, in which continuous components can only
synchronise with other continuous components. Without the distinction, continuous
components represented by τ can also evolve without continuous synchronisation. We
shall illustrate this in Example 3.3.2.

Example 3.3.2 (Abstracting mixed parallel compositions). Consider the parallel com-
position a.B1 ‖

H
A

[
ϕ
]
.B2. According to the SOS rules for parallel composition this

composition has the following transitions

a.B1 ‖
H
A

[
ϕ
]
.B2 9 , if a ∈ A

a.B1 ‖
H
A

[
ϕ
]
.B2

a
−→ B1 ‖

H
A

[
ϕ
]
.B2 , if a < A

Internal abstraction, using τ converts a.B1 ‖
H
A

[
ϕ
]
.B2 into a.B1 ‖

H
A τ.B2, which has the

following transitions

a.B1 ‖
H
A τ.B2

τ
−→ a.B1 ‖

H
A B2 , if a ∈ A

a.B1 ‖
H
A τ.B2

τ
−→ a.B1 ‖

H
A B2 , a.B1 ‖

H
A τ.B2

a
−→ B1 ‖

H
A τ.B2 , if a < A

�

31

3.3. A

As illustrated in Example 3.3.2, simple replacement of continuous behaviour with τ
changes system behaviour, which is not what we want. Therefore we must be able
to distinguish between internal actions and abstractions and hence we do not use τ
as representative for abstraction. The definition of another representative for internal
abstraction that allows distinction between internal actions and abstracted continuous
behaviour is a solution for this problem. Suppose we define τ@ to be this representative,
then we extend the set of actions to A ∪ {τ@}.

Action prefix SOS rule revisited After extending the action set with the representative
for internal abstraction, we need to adapt the semantics for action prefix. For normal
actions the SOS rule remains unchanged, but note that we removed the abstraction
representative from the action set in 3.1.

The semantics for trajectory prefixes state that trajectories can either be executed
completely, or partly. Therefore it seems natural to add these characteristics to the new
SOS rules for action prefix, in which a trajectory is represented by τ@. In 3.2 we give the
SOS rule for τ@ that allows unobservable execution of the abstraction representative.

Definition 3.3.3 (SOS Action Prefix for internal abstraction).

a.B a
−→ B a ∈ A \ {τ@} (3.1)

τ@.B
τ@
−→ B + τ@.B (3.2)

�

The abstracted system produces correct traces when it produces traces which are
congruent (up to representation of qualifiers) to the traces of the hybrid system.
Unfortunately this is not always the case. Consecutive behaviour for trajectory prefixes
of the abstracted models can be executed too early or too late, leading different traces.
This may lead to miss of potential deadlocks and simulating irrelevant behaviour, i.e.
behaviour that is not in the original model. Example 3.3.4 illustrates this problem.

Example 3.3.4 (Abstraction problems). Consider the parallel composition[
ϕ
]
.x.y.B1 ‖

H
A

[
ψ
]
.x.B2

and suppose

A = {x}
ϕ ≺

H ψ

Then the composition has the following trace[
ϕ
]
.x.y.B1 ‖

H
A

[
ψ
]
.x.B2

ϕ×Hψ
−−−−→ x.y.B1 ‖

H
A

[
ψ\\ϕ

]
.x.B2

32

3. D S

After execution of ϕ×H ψ there are no transitions for the parallel composition, since one
component can only synchronise on an action, whereas the other can only synchronise
on a trajectory.

While its abstraction
τ@.x.y.τ@.B1 ‖

H
A τ@.x.B2

according to 3.2 contains the following trace (amongst others)

τ@.x.y.B1 ‖
H
A τ@.x.B2

τ@
−→ x.y.B1 ‖

H
A x.B2

x
−→ y.B1 ‖

H
A B2

...

This trace is not part of the original system. �

Incorrect traces like the one from Example 3.3.4 can be caused by either executing
trajectories too long, or too short. The semantics from 3.2, in which execution of a
trajectory can be extended, do not prevent incorrect traces and can be replaced by a
simpler version, presented in 3.3.

τ@.B
τ@
−→ B (3.3)

Although discrete abstraction can disturb event order and can produce irrelevant
traces, discrete simulation produces correct traces for all systems without parallel
composition and for all parallel compositions with partial equivalent trajectories, i.e.
parallel compositions for which the trajectories have the same duration. For these
systems event order remains intact during simulation of the abstraction. So, if a system
contains parallelism, correct discrete simulation can be performed under the restriction
of partial equivalent trajectories. Examples of parallel compositions with partially
equivalent components are

• parallel compositions in which a trajectory is in parallel with an idling process

• parallel compositions that have the same exit conditions for the synchronising
qualifiers

We have redefined the SOS rule for action prefix and presented two alternatives, see
the overview presented in Table 3.1. Both options can not guarantee correct traces
in presence of parallelism. While the first option enables premature execution of
consecutive behaviour, the second option also allows overdue execution of consecutive
behaviour. So the second option offers no benefits while its implementation is more
complicated, i.e. the engine must decide whether to execute a trajectory partly or
completely. Hence we use the SOS rule from the first option for our tool.

Furthermore, we adapt the SOS rules such that a parallel composition synchronises on
internal abstraction representatives.

33

3.3. A

Option 1
a.B a

−→ B a ∈ A \ {τ@}

τ@.B
τ@
−→ B

Option 2
a.B a

−→ B a ∈ A \ {τ@}

τ@.B
τ@
−→ B + τ@.B

Table 3.1: Overview of alternative SOS rules for action prefix.

Definition 3.3.5 (SOS Parallel Composition for internal abstraction).

B1
a
−→ B′1,B2

a
−→ B′2

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B′2

a ∈ A \ {τ@} (3.4a)

B1
τ@
−→ B′1,B2

τ@
−→ B′2

B1 ‖
H
A B2

τ@
−→ B′1 ‖

H
A B′2

(3.4b)

B1
a
−→ B′1

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B2

B2 ‖
H
A B1

a
−→ B2 ‖

H
A B′1

a < A ∪ {τ@} (3.4c)

�

3.3.2 Observable abstraction

Observable abstraction is an abstraction technique in which continuous-time behaviour
is represented by observable actions. Since we want an abstraction that is observable
and that enables the distinction between actions and abstractions, we need to define
a representative for abstraction that follows the semantics for actions. We use @ as
representative for observable abstraction and again we extend the SOS rule for action
prefix to include this representative.

Definition 3.3.6 (SOS Action Prefix for observable abstraction).

a.B a
−→ B a ∈ A ∪ {@}

�

Notice the difference with the semantics for internal abstraction; here the representative
is observable. This representative will be visible in the set of simulation steps and
in simulation traces. We also change the SOS rule for parallel composition such that
abstractions synchronise in parallel composition and again representatives will be
visible.

34

3. D S

Definition 3.3.7 (SOS Parallel Composition for observable abstraction).

B1
a
−→ B′1,B2

a
−→ B′2

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B′2

a ∈ A ∪ {@} (3.5a)

B1
a
−→ B′1

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B2

B2 ‖
H
A B1

a
−→ B2 ‖

H
A B′1

a < A ∪ {@} (3.5b)

�

With this abstraction technique all trajectories are represented by one representative as
shown for the extended bouncing ball in Example 3.3.8.

Example 3.3.8 (Observable abstraction for the extended bouncing ball). Observable ab-
straction converts

BB(h0, v0)) , [h, v | Φ(h0, v0)) ⇓ h = 0] .bounce(c : [0, 1]).
[h, v | Φ(0,−cv) ⇓ v = 0] .push(v : R).BB(h, v)

Control(v0) , idle.bounce(c : [0, 1]).
idle.push ((1 − c) v) .Control ((1 − c) v)

System(h, v) , BB(h0, v0) ‖v0
push,bounce Control(v0)

into

BB(h0, v0)) , @.bounce(c : [0, 1]).@.push(v : R).BB(h, v)
Control(v0) , @.bounce(c : [0, 1]).@.push ((1 − c) v) .Control ((1 − c) v)

System(h, v) , BB(h0, v0) ‖v0
push,bounce Control(v0)

where @ is the representative for a trajectory prefix. �

Simulation traces for observable abstraction not only contain actions, but also repre-
sentatives of trajectories, approaching hybrid traces just a little bit more than internal
abstraction techniques. However, it can be very difficult to relate an abstraction
representative from the trace to a trajectory from the BHPC expression. Consider
Example 3.3.9 where we give a BHPC model for which the representatives in the trace
can not be related to the trajectories.

Example 3.3.9 (Relating representatives to trajectories).

P , a.(Q + R)
Q ,

[
f | Φ

]
.S

R ,
[

f | Ψ
]
.S

35

3.3. A

S , . . .

The trace for this BHPC model would look like a, @, It is impossible to deduce
whether a trajectory from Φ orΨ has been executed. �

Relating trajectory expressions Having an unique abstraction representative for each
unique trajectory expression yields insight in which trajectory of the model has been
simulated. This can be done by adding an unique index to the abstraction representative
for each trajectory expression that is not encountered before. There is a special index for
delay and idle trajectories. We define H@ to be the set of all abstraction representatives.
Now we change the SOS rules for action prefix and parallel composition again to use
abstraction representatives from the set H@.

Definition 3.3.10 (SOS Action Prefix for unique observable abstraction).

a.B a
−→ B a ∈ A ∪H@

Where H@ is the set of all abstraction representatives. �

Definition 3.3.11 (SOS Parallel Composition for unique observable abstraction).

B1
a
−→ B′1,B2

a
−→ B′2

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B′2

a ∈ A (3.6a)

B1
a
−→ B′1,B2

b
−→ B′2

B1 ‖
H
A B2

a×b
−−→ B′1 ‖

H
A B′2

a,b ∈ H@ (3.6b)

B1
a
−→ B′1

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B2

B2 ‖
H
A B1

a
−→ B2 ‖

H
A B′1

a < A ∪H@ (3.6c)

�

We shall exemplify the use of unique abstraction for the extended bouncing ball in
Example 3.3.12.

Example 3.3.12 (Unique observable abstraction for the extended bouncing ball).

BB(h0, v0)) , @1.bounce(c : [0, 1]).@2.push(v : R).BB(h, v)
Control(v0) , @idle.bounce(c : [0, 1]).@idle.push ((1 − c) v) .Control ((1 − c) v)

System(h, v) , BB(h0, v0) ‖v0
push,bounce Control(v0)

�

36

3. D S

The original BHPC model contained four trajectories: two idle trajectories and two
distinct trajectories for the bouncing ball process. With unique abstraction we distin-
guish three distinct trajectories, namely @idle for the idle trajectories and for the distinct
trajectories of the bouncing ball process @1 and @2. Implementation of this technique
requires a mechanism to evaluate equality of trajectory expressions and a mechanism
for uniquely naming new trajectory expressions.

Remark 3.3.13 (Equality of representatives). Note that in parallel composition we have
a distinct rule (3.6b) for unique abstraction prefixes to enable synchronisation of different
abstraction representatives. Whereas equality of actions is required for synchronisation
of actions, this is not required for representatives of trajectories. For example it should
be possible to execute @1 and @idle in parallel in Example 3.3.12. �

All in all, although abstraction does not guarantee correct traces for all hybrid systems,
it does help in getting insight in the control structure of a hybrid system. Furthermore
observable abstraction gives more insight than internal abstraction. Since our tool
set will be used as a “sand box”, a place to experiment with BHPC and related
developments, we use observable abstraction for the prototype for discrete simulation.
In the future the tool will support hybrid simulation, so for further developments of
the tool we recommend further investigation whether the gain of insight, by relating
trajectory expressions, is worth the effort.

3.4 Engine state

The discrete engine simulates abstract hybrid behaviour by determining and executing
transitions for states. Section 2.2 defined a hybrid transition system (HTS) that describes
transitions by the SOS rules. Here we extend the HTS so that the states of engine relate
to the HTS. An engine state is a triple that consists of a time stamp, a BHPC process
expression and a snapshot of the signal space.

Definition 3.4.1. (Engine state).
Let the tuple HTS=〈S,A,→,W,Φ,→c〉 be a hybrid transition system. Then we define a
simulation state e ∈ E as

e = 〈θ, p, ϕ(θ)〉

Where θ ∈ R is the time stamp of e, p ∈ S is a BHPC process expression of e and ϕ(θ) is
the signal snapshot1 for signal spaceW of s at time θ. �

Example 3.4.2 (Simulation state for the thermostat example). Let Wthermostat = (R, (t)).
Suppose that after 300 time units the temperature t (∈ R) is 18.1 degrees and the system
behaviour can be described by off.ThOff(t). Then the simulation state would be

1In continuous systems, usually called continuous state

37

3.4. E 

e = 〈300,off.ThOff(t), 18.1〉

�

Transitions for engine states depend on the HTS. When a process expression has a
transition in the HTS by performing some action, then the engine state containing this
process expression can also make a transition by performing this action. A transition
changes one, or more state components. Here we describe for each component when it
evolves.

Time stamp θ The time stamp has to be updated when time has passed during a
transition. Discrete transitions are instantaneous and do not take time. Time can only
pass during trajectories. Hence the time stamp can only change after a continuous
transition.

Process expression p A BHPC process expression p is an element of the BHPC
language, generated by B (Section 2.3.1). The BHPC process expression p has to be
updated after each transition according to the SOS rules.

Signal Snapshot ϕ(θ) The signal snapshot changes after each transition in which
the signals have been changed. This can only happen during trajectories. The signal
snapshot will not change during discrete simulation.

Since off.ThOff(t) off
−→ ThOff(t) is a transition of our HTS, the engine state from Example

3.4.2 has the following transition

〈300,off.ThOff(t), 18.1〉 off
−→ 〈300,ThOff(t), 18.1〉

3.4.1 Start & end states

After the start of the simulation, the simulation continues until the simulation end time
is reached or when it is impossible to take transitions. When the end time is reached,
the engine stops the simulation regardless the BHPC process. The simulation can also
stop before the simulation end time is reached. This will only happen in absence of
transitions for the current state, i.e. when all processes are idling (livelock), or when all
processes are semantically equivalent to 0 (deadlock).

Definition 3.4.3. (Start & end states).
Let 〈θ, p, ϕ(θ)〉 be a simulation state, with θ a time-stamp, p a BHPC process expression
and ϕ(θ) a signal snapshot. Then we can define the start state (e0) for the engine as

e0 = 〈0, p0,⊥〉

38

3. D S

Where p0 denotes the initial process of the BHPC model and all signals are undefined
(denoted as ⊥). At the end of the simulation duration the end state is defined as

eendtime = 〈θ = θend, p, ϕ(θ)〉

Suppose an end-time θend for the simulation is given, then the deadlock state is defined
as

edeadlock = 〈θ < θend, p, ϕ(θ)〉

Where the process expression p is strong bisimilar to the stop process, denotes as (p ∼ 0).

�

3.5 Engine state transitions

For simulation, the engine first determines the set possible transitions. Recall that a
transition for an engine state depends on transitions for their process expressions in
the HTS. When a process expression has a transition in the HTS by performing some
action, then engine states containing this process expression can also have a transition
by performing this action.

What we need for simulation is a procedure that determines the possible transitions
for a process expression and a procedure that selects a transition and sets the new
engine state. Following [32] we define a function M that determines the possible
transitions and we define a function N that executes a transition. Both functions
follow the semantics of the language given in Chapter 2.3.2.

3.5.1 Menu calculation

Given a BHPC process expression, M determines the set transitions, or actually,
the set of simulation steps. A simulation step is a tuple that contains an action and
a process expression. The process expression represents the behaviour of the current
process after performing the action of the tuple.

Definition 3.5.1 (Simulation step). Let HTS = 〈S,A,→,W,Φ,→c〉 be a hybrid transi-
tion system, p, p′ ∈ S be BHPC process expressions, a ∈ A an action and p a

−→ p′ ∈→ be
a transition of the hybrid transition system. Then (a, p′) ∈ T is a simulation step of the
engine, where T represents the set of simulation steps. �

Letting M determine pairs (simulation steps) of possible actions and related process
expressions for the consecutive behaviour has considerable benefits[32]. There is no
need to calculate the process expression for the next engine after selecting an action for

39

3.5. E  

simulation because it is already available as part of the simulation step. Determining
the process expression in advance is trivial, since consecutive behaviour is part of action
prefixes from which actions are determined. Moreover determining the expression
after selecting an action can cause difficulties, such as illustrated in Example 3.5.2.

Example 3.5.2 (Storing process expressions). Let (a.P + a.Q) be a choice process for
which we want to determine the set of possible engine transitions. Storing simulation
steps results in {(a,P), (a,Q)}. The process expression for the next state is available
when selecting an action.

However, without storing process expression we can choose an action from the set {a}.
The process expression for the next state needs to be determined and could either be P,
or Q and this non-determinism must be solved somehow. �

To determine the set of simulation steps for BHPC processes, we define a recursive
function that uses the SOS rules to decompose the process up to the level where
actions are described. For most BHPC processes, the definition of such a function is a
straightforward application of the SOS rules, but for parallel composition parallelism
must be resolved. Chapter 2.4 describes how parallel composition for discrete actions is
resolved in an interleaving manner using an expansion law. We use a discrete version
of this expansion law for discrete simulation, which does not contain continuous-time
behaviour.

Theorem 3.5.3 (Discrete Expansion law). Let

B =
∑
i∈I

bi.Bi and C =
∑
k∈K

ck.Ck

for some terms Bi and Ck, actions bi and ck, finite index sets I and L. Then

B ‖HA C =
∑
i∈I

bi<A

bi.(Bi ‖
H
A C) +

∑
k∈K
ck<A

ck.(B ‖HA Ck) +
∑

i∈I,k∈K
bi∈A,
bi=ck

bi.(Bi ‖
H
A Ck)

Note that application of the expansion law requires normal form of the parallel
composition components. We define a discrete version of the BHPC normal form
presented in [11].

Definition 3.5.4 (Discrete BHPC normal form). A BHPC process expression p ∈ B is in
normal form when it has the form p =

∑
i∈I

bi.Bi �

Transforming processes into normal form and determining the set of simulation steps
are similar procedures, are both recursive functions that determine the set of action
prefixes by using the SOS rules to decompose a process up to the level where actions
are described. The difference is that for determining the set of simulation steps, action
prefixes need to be converted into simulation steps.

40

3. D S

We define a function MNF that converts processes into normal form while determin-
ing the set of simulation steps. Therefore we do not convert action prefix processes into
simulation steps until MNF has finished. We define a function M that converts
a set of action prefix processes into a set of simulation steps.

Definition 3.5.5 (M for BHPC). Let T be the set of transition steps, (a .B) an action
prefix with a ∈ A ∪ {@} and let N be the set of BHPC process expressions in normal
form such that ∀p ∈ N • p =

∑
i∈I

bi.Bi for BHPC process expressions p. Then we define

M: N→ T as
M(N) = {(a,B) | (a.B) ∈ N}

�

Definition 3.5.6 (MNF for BHPC). Let B be the set of BHPC process expressions,
a ∈ A be an action and T be the set of simulation steps. Then we define the function
MNF : B→ T as

MNF(B) = {(a.B′) | B a
−→ B′}

�

We present MNF for all BHPC process types in Table 3.2. See Appendix B for detailed
derivations for the definitions in the table. Subsequently Example 3.5.7 illustrates how
MNF can be applied on a choice process using the BHPC SOS rules.

MNF(0) = ∅
MNF(a.B) = {(a.B)}
MNF(

[
ϕ
]
.B) = {(@.B)}

MNF(
∑
v∈I

B(v)) =
⋃
v∈I

MNF(B(v))

MNF(B ‖HA C) = MNF

(∑
i∈I

bi<A∪{@}

bi.
(
Bi ‖

H
A C

))
∪ MNF

(∑
k∈K

ck<A∪{@}

ck.
(
B ‖HA Ck

))
∪ MNF

(∑
a=bi=ck
a∈A∪{@}

a.
(
Bi ‖

H
A Ck

))
where B =

∑
i∈I

bi.Bi and C =
∑
k∈K

ck.Ck

MNF(P) = MNF(B) where P , B
MNF(B [σ]) = [σ] (MNF(B))
MNF(new w.B) = [τ/e1, . . . , τ/en] (MNF(B))

MNF(〈Pred〉.B) =

{
MNF(B) , if Pred is satisfied
∅ , otherwise

Table 3.2: MNF for (discrete) BHPC processes

41

3.5. E  

Note that in Table 3.2 a trajectory prefix is converted into an action prefix by MNF.
In this action prefix ‘@’ represents abstraction of continuous-time behaviour. Also
note that independent evolution for parallel components is only allowed for actions.
Abstracted components are only allowed to synchronise with abstracted components.

Example 3.5.7 (Application of MNF). Applying the MNF definition for BHPC,
where B is a choice process (one.Test + 0), we first get

MNF(one.Test + 0) = {(a.B′) | (one.Test + 0) a
−→ B′}

Then using the SOS rule for choice

B (w) a
−→ B′∑

v∈I
B (v) a

−→ B′
w ∈ I

results in applying MNF on all choices

MNF(one.Test + 0) =MNF(one.Test) ∪MNF(0)

For which we can use the SOS rule for action prefix a.B a
−→ B to derive

one.Test one
−−→ Test

For 0 there is no SOS rule, hence

MNF(one.Test) = {(a.B′) | one.Test a
−→ B′}

= {(one.Test) | one.Test one
−−→ Test}

MNF(0) = {(a.B′) | 0 a
−→ B′}

= ∅

So
MNF(one.Test1 + 0) = {(one.Test1)}

�

In summary, MNF is a recursive procedure that decomposes process expressions
following the BHPC semantics and collects action prefixes. The set of action prefixes
for a process at any point in the calculation represents the normal form of that process.
The set is converted into a set of simulation steps by M. The set of simulation
steps represents the possible transitions from the current to the next engine state. We
not only store the action of an action prefix in the simulation step, but we also store
the associated process expression. Therefore after selecting an action for simulation,
the process expression for the next state is also known. Due to the normal form,
our approach differs from [32] where action prefixes are immediately are converted
into simulation steps. As a result the expansion law can be easily applied to resolve
parallelism.

42

3. D S

3.5.2 Execution of transition steps

N executes simulation steps and gives the next simulation state using a simulation
step and the current simulation state. Recall that simulation steps, calculated by M,
already contain a BHPC process for the next state. Therefore we only need to determine
the new time stamp and signal space for the next state.

For the discrete simulator we only consider discrete transitions. Discrete transitions
are transitions for which the event is an action, As described before, the time stamp
and signal space are unaffected by discrete transitions.

Definition 3.5.8 (N). Let HTS = 〈S,A,→,W,Φ,→c〉 be a hybrid transition system,
p, p′ ∈ S be BHPC process expressions and a ∈ A be an action. Suppose (a, p′) is a
simulation step, selected from the set of possible transitions T calculated by M and
suppose 〈θ, p, ϕ(θ)〉 ∈ E is the current simulation state of the engine from the set of
engine states E. Then we define the function N : T × E→ E, such that

N
(
(a, p′), 〈θ, p, ϕ(θ)〉

)
= 〈θ, p′, ϕ(θ)〉 , if (p,a, p′) ∈→

�

3.6 Discrete engine

Here we present the discrete simulation engine that only captures the fundamental
functionality, namely engine state definition, a function to determine the possible
transitions for a simulation state and a function to execute transitions. Similar to [23],
we define our simulator by a simulation algorithm in pseudo code.

BHPC_S()
1 e← 〈0, p0, ϕ(0)〉
2 T←M(πp(e))
3 while T , ∅
4 do (a, p′)← S(T)
5 e′ ← N((a, p′), e)
6 T←M(MenuNF(πp(e′))

Where

• e, e′ ∈ E represent engine states

• p0 represents the initial process expression

• πp(e) is the process expression of the engine state (by projection). Suppose
e = 〈θ,a.b.P, ϕ(θ)〉 ∈ E is an engine state, then πp(〈θ,a.b.P, ϕ(θ)〉) = a.b.P

• T is the set of transitions

43

3.7. C

• M, MNF and N are functions that determine the set of simulation steps,
the set of action prefixes and the next engine state respectively

• S is a way to select a simulation step (manually, automatically, or from
batch) from the set of simulation steps T

The algorithm consists of an initialisation part (1,2) and a simulation loop (4-6). A more
detailed description of the procedures can be found in Chapter 4.

Remark 3.6.1 (Abstraction). Note that abstraction is not a part of the algorithm. Ab-
straction is performed during the execution of the algorithm by MNF by converting
trajectory prefixes into abstraction prefixes. �

3.7 Conclusions

We have presented several techniques to abstract from continuous-time behaviour by
using representatives for trajectories that are treated like actions. These techniques only
produce correct traces for hybrid systems without parallelism. Continuous behaviour
can be converted into internal actions (internal abstraction), or into observable actions
(observable abstraction). Distinction between normal actions and representatives of
continuous-time behaviour is essential for correct abstraction of parallel composition
in BHPC.

Our prototype for discrete simulation has been developed as a tool for experimenting
with BHPC. Observable abstraction gives more insight and hence we have chosen
to use observable abstraction for our prototype. In future tool developments this
abstraction technique could be extended by relating abstraction representatives to
trajectory expressions. Further investigation is needed to evaluate costs and benefits of
this extension.

The definition of the discrete engine is given by the simulation algorithm. The main
procedures of this algorithm are M (determines simulation steps) and N (executes
simulation steps). A simulation step is a tuple of an action and a behaviour expression.
The behaviour expression denotes the consecutive behaviour expression for the next
state, after execution of the related action. Letting M determine simulation steps
rather than just actions prevents recalculation of consecutive behaviour after selection
of an action from the set determined by M. These procedures are all based on [32].
The modular definition of the engine, in which the main procedures are encapsulated,
facilitates convenient extensions. Extension to hybrid simulation only focusses on
parts of the M and N components, while the simulation algorithm itself remains
unchanged, we refer to Chapter 6 for more details.

44

4
Design & Implementation

Bhave is a collection of tools for the analysis of hybrid systems1. Bhave is an acronym for
“BHPC’s hybrid and visual engine”. Discrete Bhave is the discrete engine that simulates
the discrete behaviour of a hybrid system. The discrete engine is built as a hybrid
“sand-box”, a place to experiment with BHPC and related developments, rather than
industrial tool prototype. Consequently, the architecture and implementation of the
tool are being designed in such a way that it is easy to accommodate the changes in
the calculus and to test the algorithms developed for hybrid systems in the BHPC
framework. This chapter presents the design and implementation details of Discrete
Bhave.

First we derive the architecture for the discrete engine from the architecture of Bhave
from [11]. For the sake extendibility and generality, we have decomposed the engine,
e.g. there is a separate package for event handling that contains all BHPC related
methods. Most notably, it contains the implementation of M described in Chapter 3.
The decomposition of the engine can be found in 4.2. We provide technical details for
the implementation in Section 4.3. The remainder describes the implementation details
for our prototype. In Section 4.4 we give the details for the engine and in Section 4.5
we describe the details for the event handler.

1http://fmt.cs.utwente.nl/tools/bhave

45

http://fmt.cs.utwente.nl/tools/bhave

4.1. D B 

4.1 Discrete Bhave architecture

The purpose of the engine is to support the analysis of hybrid systems specified in
BHPC. We distinguish two main functions for the engine, namely to simulate models
and to yield simulation results. For simulation of hybrid systems, the engine must be
able to interpret BHPC models. States are used to depict the system at a particular
time and during simulation the engine must be able to manipulate stored states. The
engine should determine simulation steps for the current state and execute a selected
simulation step. To yield simulation results the engine must be able to build a simulation
trace by writing executed simulation steps to a trace file. In Figure 4.1 we give an
overview of the required functionality for the engine.

Support analysis of hybrid systems specified in BHPC

BHPC model interpretation

Simulating Models

State storage & manipulation

Simulation step determination

Simulation step selection

Simulation detail storage

Yielding Results

Simulation step storage

Simulation step execution

Figure 4.1: Functionality of Discrete Bhave.

The architecture of Discrete Bhave is based upon the architecture for the Bhave tool set,
presented in [11]. For Discrete Bhave we have restricted the architecture to components
that are strictly necessary for discrete simulation. For example the connection to the
DAE/ODE solvers for the discrete engine is not included in the architecture of Discrete
Bhave. The architecture for Discrete Bhave can be found in Figure 4.2, where only the
parts relevant for the discrete engine are highlighted.

The central component in Figure 4.2 is the simulation control centre, which in our case
is the discrete engine. The engine receives an internal specification with which system
behaviour is simulated. The engine uses a library of executable routines to determine
the set of simulation steps for the current engine state. The user selects an event from
this set and the engine will execute the selected event and engine adds the related
transition to a trace file. In the architecture we distinguish the following components
that are relevant for the development Discrete Bhave.

Internal Specification The Bhave compiler BHPCC [33] converts a hybrid system
model, represented in ASCII, into an internal specification for the simulation
control centre (discrete engine). The discrete engine is able to derive all necessary
information for simulation from the internal specification, e.g. the initial process

46

4. D & I

Specification

Compiler/
Translator

Specification in
internal format

Translator to
other formalism

Compiler/
translator to
executable

Executable
specification

Specification in
other language

Editor
Text editor Visual editor

Simulation
control
centre

Other
simulation
platform

Library of
executable

routines

DAE/
ODE

solvers
Optimization

Simulation
results

Visualisation
unit

Visualised
simulation results

Library

Experiment
descriptionSimulation

results
analysis

tools

Specification in
internal format

Simulation
control
centre

Library of
executable

routines

Simulation
results

Figure 4.2: Overview of the architecture.

and the process definition for a recursive process. The internal representation for
BHPC models can be found in Appendix C.

Library of executable routines The library determines the set of simulation steps for
the current BHPC process expression.

Simulation Results Discrete Bhave writes engine states and engine state transitions
to a trace file.

Simulation Control Centre The simulation control centre is the central part of the
architecture. It is the connection between the internal representation, the library
of executable routines and simulation results. The simulation control centre is
represented by Discrete Bhave in the context of this thesis.

A complete description of the Bhave tool set architecture can be found in [11].

47

4.2. D   

4.2 Decomposition of the engine

In Chapter 3.6 we defined a discrete engine.

BHPC_S()
1 e← 〈0, p0, ϕ(0)〉
2 T←M(πp(e))
3 while T , ∅
4 do (a, p′)← S(T)
5 e′ ← N((a, p′), e)
6 T←M(MenuNF(πp(e′))

Where

• e, e′ ∈ E represent engine states

• p0 represents the initial process expression

• πp(e) is the process expression of the engine state (by projection)

• T is the set of transitions

• M, MNF and N are functions that determine the set of simulation steps,
the set of action prefixes and the next engine state respectively

• S is a way to select a simulation step (manually, automatically, or from
batch) from the set of simulation steps T

In this section we will give a decomposition of the engine into a collection of procedures
and data structures. Figure 4.3 depicts the decomposition of the engine into procedures.
Note that the set of simulation steps is determined by the event routines.

4.2.1 Engine procedures

We distinguish the following procedures

Initialisation procedure The initialisation procedure sets the time, process and signal
space for the initial engine state. After setting the initial engine state, the initial-
isation procedure invokes the event routine to determine the set of simulation
steps for the initial engine state.

Simulation loop Selects an event for simulation from the set of simulation steps and
subsequently executes the event which sets the new engine state. Transitions
to new engine states are written to the trace file. After setting the new engine
state, the initialisation procedure invokes the event routine todetermine the set of
simulation steps for the new engine state.

Event routine Contains the implementation of M and MNF and hence deter-
mines the set of simulation steps.

48

4. D & I

Simulation Loop

[simsteps empty]

Event Routine

select event

execute event (Next)

get menu for current state

Initialise

[simsteps not empty]

set initial state time

set initial state process

set initial state signal space

Menu_NF

/ engine state process

get menu for current state

/ set of simulation steps

Menu

/ engine state process

Write result to trace

Figure 4.3: Decomposition of the engine.

4.2.2 Data types

Simulation of system behaviour can be seen as evolution of system variables and we
use states to depict the system at a particular time. Hence we can represent system
evolution by a state machine. To evolve from state to state the engine must be able to
determine possible transitions and execute them.

Simulation State The state of the engine that describes the system at a particular time.
In Chapter 3 we will define the engine state as triple with a time stamp, a BHPC
process and variables.

Simulation Step Transition from the current engine state to the next engine state by
some event. Simulation steps are stored by the Results Procedure and together
form simulation results.

4.2.3 Software architecture

A description of the software structure can be found in Appendix D. We give a global
description of the engine decomposition into packages, classes and methods. A detailed
description of the software can be found in the documentation, see 2.

2http://fmt.cs.utwente.nl/tools/bhave/

49

http://fmt.cs.utwente.nl/tools/bhave/

4.3. T 

4.3 Technical details

Table 4.1 gives an overview of the implementation details.

Language C++
Compiler Microsoft (R) 32-bit C/C++

Optimizing Compiler Version 12.00.8168 for 80x86
Documentation Doxygen 1.4.6
XML parser Tiny XML 2.4.1

Table 4.1: Overview implementation details.

Language The engine is implemented in C++, with the standard libraries of Visual
Studio 6 for win32 applications. Microsoft (R) 32-bit C/C++ Optimizing Compiler
Version 12.00.8168 for 80x86.

Documentation The Documentation is written with Doxygen3. Doxygen is a docu-
mentation system that can be used for different languages, among which C++. It can
generate documentation in various formats.

XML parser TinyXml4 is an OS independent XML parser, written in C++. It is a very
simple and small parser that can be easily integrated by adding some header and cpp
files.

4.3.1 Communication

An overview of the communication for the discrete engine is given in Table 4.2.

Component Type
Internal Specification Input: XML
Simulation Results Output: Text, XML
Event Routines Control: RPC

Table 4.2: Engine communication details.

Internal specification The BHPC compiler (BHPCC) [33] is the Bhave tool set com-
ponent that converts BHPC models into an internal specification. The internal
specification is written in XML format, we refer to Appendix C for a detailed
description of the internal representation.

3http://www.stack.nl/~dimitri/doxygen/
4http://www.grinninglizard.com/tinyxml/

50

http://www.stack.nl/~dimitri/doxygen/
http://www.grinninglizard.com/tinyxml/

4. D & I

Simulation results The simulation results for the engine prototype are nothing more
than a trace of transitions made during simulation. We refer to Chapter 5 and
Appendix E for examples of simulation traces. The trace file consists of a sequence
of all executed events (actions or abstractions) and related BHPC expression for
the consecutive state. In the trace events are indicated by the keyword “EVENT:“
and BHPC expressions by the keywords “ENGINE STATE PROCESS“. Moreover
BHPC expressions are given in XML format. For future developments we propose
visual results for hybrid simulation in Chapter 6.3 by using message sequence
plots (MSP), a combination of message sequence charts and plots that captures
hybrid behaviour.

Event routines Menu calculation is performed by the event handler of the Event
Routines package. With remote procedure calls (RPC) the getMenumethod of the
event handler is invoked with a process for which the menu is to be determined.
The getMenu method returns the list of simulation steps as defined in Chapter
3.5.1. The package further only contains methods for menu calculation.

4.4 Engine procedures

The simulation procedure starts with initialisation of the engine state. Then the Event
Handler is invoked to determine the set of simulation steps for the process expression
of the current engine state. In the simulation loop, a simulation step from the set is
selected and executed by N, which sets the new engine state. Subsequently, the
Event Handler is invoked again to determine the set of simulation steps for the process
expression of the updated current engine state. Then, as long as there are simulation
steps to be executed and the simulation end time is not over, the loop is repeated.

4.4.1 Data types

The engine needs the following data types for simulation.

model Stores the description (in XML) of the hybrid system.

currState Stores the current state of the engine. Recall that the engine state is described
by three components, namely a timestamp, a process expression and a signal
space.

simMode Stores the simulation mode of the engine: manual, automatic, or batch.

simDuration Stores the allowed duration of the simulation.

eventHandler Contains M and MNF for calculation of simulation steps.

51

4.4. E 

types
record EngineState

time : Time ;
proc : Process ;
space : SignalSpace ;

end

enum SimMode = eManual , eRandom , eBatch ;

var model : XML;
var c u r r S t a t e : EngineState ;
var simMode : SimMode ;
var simDuration : Time ;
var eventHandler : EventHandler ;

end

4.4.2 Simulation algorithm

We present the simulation algorithm for discrete simulation. Since M determines the
simulation steps for continuous behaviour, this simulation also applies for hybrid sim-
ulation. The difference in adding continuous behaviour resides in the implementation
of M and N.

l i s t <SimStep> s t e p L i s t ;

record SimStep
event : Event ;
proc : Process ;

end ; s tep

BHPC_S()
1 I()
2 stepList←M(currState.proc)
3 while currState.time < simDuration ∧ stepList , ∅
4 do step← S(stepList)
5 currState← N(step)
6 stepList←M(currState.proc)

4.4.3 Initialisation procedure

Description During initialisation, the first engine state is set. The initialisation
procedure sets the engine state time to 0, sets the initial engine state process and sets all
qualifiers to zero. After initialisation the current engine state is the initial engine state.

52

4. D & I

I()
1 curr_state.time← 0
2 curr_state.proc← GIE()
3 curr_state.space← SIQ()

GIE gets the initial process expression by

1. Getting the name of the initial process from the model.

2. Finding the process definition for name in the model.

3. Getting the process expression from the process definition.

4.4.4 Menu procedure

Description The Menu procedure of the simulation engine is a procedure that invokes
the Event Handler (Event Routines Package) to determine the set of simulation steps.
The Event Handler contains the implementation of M and MNF. For a detailed
description of the Event Handler, we refer to Section 4.5.

M()
1 return EventHandler.M(currState.proc)

4.4.5 Selection procedure

Description The S procedure allows selection of a simulation step from the
set of simulation steps (by M). Depending on the simulation mode of the engine,
selection will be done manual, automatic, or from batch.

For manual mode an interaction mechanism with the user is needed. In automatic
mode the engine selects the transition. The selection by the engine can be random, or
based on heuristics. In batch mode the engine should be able to interpret the selection
from a batch file. After selection of the menuItem Nwill execute the simulation step
described by the menuItem. In the prototype only manual selection is implemented.

4.4.6 Next procedure

Description The N procedure executes a simulation step and updates the current
engine state. For discrete transitions, only the process expression has to be updated.
The process expression for the new engine state is stored in the simulation step and
does not have to be recalculated.

53

4.5. E 

N(item : MenuItem)
1 currState.proc← item.proc

4.5 Event routines

Calculation of the set of simulation steps is performed by M. M is implemented
in the EventHandler class of the Event Routines package. This class contains public
procedure M to start calculation of the set of simulation steps. The EventHandler
also contains procedures MNF and M to calculate the set of action prefix processes
and the set of simulation steps respectively. The implementation of these procedures
follows the definitions of Chapter 3. After calculation M returns the set of
simulation steps. Appendix D contains the software architecture of the discrete engine.
For a detailed description of the software we refer to the tool documentation 5.

4.5.1 Menu

M is a private procedure of the EventHandler class of the Event Routine Package
that converts a list of action prefix processes into a list of simulation steps. This
conversion can be done by transforming each action prefix (a.B) from the list into a
simulation step (a,B).

l i s t <Act ionPref ix> p r e f i x L i s t ;
l i s t <MenuItem> menuItemList ;

M(prefixList)
1 for i = 1 to prefixList.size()
2 do (a.B)← prefixList[i])
3 I

(
(a,B),menuItemList

)
4 return menuItemList

4.5.2 MenuNF

MNF is a recursive definition that decomposes BHPC expressions up to the level
where actions are defined in the SOS rules. In Table 3.2 we gave a definition of MNF.
In the implementation we use procedure MNF to determine the type of a BHPC
expression and to invoke procedures that decompose BHPC expressions of this type.

5http://fmt.cs.utwente.nl/tools/bhave/

54

http://fmt.cs.utwente.nl/tools/bhave/

4. D & I

For example MNF(a.B) selects a procedure to determine the normal form for an
action prefix, which is NF in this case.

l i s t <Act ionPref ix> p r e f i x L i s t ;

MNF(p : Process)
1 switch
2 case T(p) = stop :
3 prefixList = NF(p)
4 case T(p) = action prefix :
5 prefixList = NF(p)
6 case T(p) = trajectory prefix :
7 prefixList = NF(p)
8 case T(p) = guard :
9 prefixList = NF(p)

10 case T(p) = choice :
11 prefixList = NF(p)
12 case T(p) = parallel composition :
13 prefixList = NF(p)
14 case T(p) = hiding :
15 prefixList = NF(p)
16 case T(p) = renaming :
17 prefixList = NF(p)
18 case T(p) = recursion :
19 prefixList = NF(p)
20 return prefixList

The decomposition procedures invoked by MNF (i.e. NF, NF, . . .) are
implementations of recursive procedures from Table 3.2 and hence follow the SOS rules
of the language.

Recall from Section 3.5.1 that we use an expansion law to resolve parallelism and
that application of this law requires normal form for the processes. The result of
MNF is in normal form, i.e. it is a set of action prefix processes. For example the set
{(a.A), (b.B), (c.C)} represents the following process in normal form (a.A + b.B + c.C).

In the implementation we use lists instead of sets. After calculation of MNF, M
converts the list of action prefixes into a list of simulation steps. The remainder of this
chapter is dedicated to description of the decomposition procedures from MNF.
For each procedure we repeat the MNF definition from Table 3.2 and present a
pseudo-algorithm for the procedure.

55

4.5. E 

4.5.3 NFstop

MNF(0) = ∅

When the event handler detects a stop process, it will return an empty list of action
prefix processes.

NF(0)
1 return []

4.5.4 NFaprefix

MNF(a.B) = {(a.B)}

For action prefix the procedure inserts the action prefix into an empty list and returns
the list.

NF(a.B)
1 return [(a.B)]

4.5.5 NFtprefix

MNF(
[
ϕ
]
.B) = {(@.B)}

A trajectory prefix is converted into an action prefix by replacing the prefix by the
abstraction representative. This abstraction prefix is inserted into an empty list and
returned.

NF(
[

f | Φ
]
.B)

1 return [(@.B)]

4.5.6 NFguard

MNF(〈Pred〉.B) =

{
MNF(B) , if Pred is satisfied
∅ , otherwise

56

4. D & I

For evaluation of the guard predicate we need a solver. When the guard is satisfied,
MNF for B must be determined, otherwise the procedure returns an empty list.

NF(〈Pred〉.B)
1 if Pred
2 then return MNF(B)
3 else return []

For our prototype we do not use solvers to evaluate guard expressions. We just
assume that the guard predicate is always satisfied. Therefore we ignore the predicate
and directly call MNF with the consecutive behaviour as can be seen in the
pseudo-algorithm for our prototype.

NF(〈Pred〉.B)
1 return MNF(B)

We exemplify decomposition of guard processes for our prototype in Example 4.5.1.

Example 4.5.1 (Guard handling).

NF(〈False〉 .a.B) =MNF(a.B)
= NF(a.B)
= [(a.B)]

NF(〈True〉 .a.B) =MNF(a.B)
= NF(a.B)
= [(a.B)]

NF(〈Pred〉 .
[

f | Φ
]
.B) =MNF(

[
f | Φ

]
.B)

= NF(
[

f | Φ
]
.B)

= [(@.B)]

�

Clearly, MNF is always invoked, disregarding satisfaction of the guard predicate.
The examples moreover depicts the decomposition mechanism which alternates be-
tween MNF and decomposition procedures. MNF determines the process
expression type and selects the appropriate decomposition procedure. The decom-
position procedure decomposes process expressions according to the SOS rules and
collects the list of action prefix processes from its components, which is determined by
MNF.

57

4.5. E 

4.5.7 NFchoice

MNF(
∑
v∈I

B(v)) =
⋃
v∈I

MNF(B(v))

NF determines the set of action prefix processes by joining sets of action prefix
processes for all choice options.

l i s t <Act ionPref ix> p r e f i x L i s t ;
l i s t <Process> c h o i c e L i s t ;

NF(
∑
v∈I

B(v))

1 choiceList← C(
∑
v∈I

B(v))

2 for i← 1 to choiceList.size()
3 do M

(
MNF(choiceList[i]), prefixList

)
4 return prefixList

This procedure first collects all options in the choiceList. Then we use MNF to
determine the list of action prefix processes for each option and merge this list with
prefixList to collect all action prefix processes. In Example 4.5.2 we exemplify the
application of NF.

Example 4.5.2 (Choice handling). NF
(
a.A + (

[
f | Φ

]
.B + 0)

)
=M

(
MNF(a.B),MNF(

[
f | Φ

]
.B + 0)

)
=M

(
NF(a.A),NF((

[
f | Φ

]
.B + 0)

)
=M

(
[(a.A)],M

(
MNF(

[
f | Φ

]
.B),MNF(0)

))
=M

(
[(a.A)],M

(
NF(

[
f | Φ

]
.B),NF(0)

))
=M

(
[(a.A)],M

(
[(@.B)], []

))
=M

(
[(a.A)], [(@.B)]

)
= [(a.A), (@.B)]

�

First the choice process is decomposed into two processes. The choice process joins the
simulation steps resulting from its components. Decomposition continues until the
level of stop, action prefix and trajectory prefix.

58

4. D & I

4.5.8 NFrenaming

MNF(B [σ]) = [σ] (MNF(B))

NF first determines the set of action prefix processes for B and then applies
renaming to this set. Applying renaming on an action prefix process renames the action,
if possible, and attaches the renaming to the consecutive behaviour.

l i s t <Act ionPref ix> o r i g i n a l L i s t ;
l i s t <Act ionPref ix> p r e f i x L i s t ;
Ac t ionPre f ix renamedPrefix ;

NF(B [σ])
1 originalList←MNF(B)
2 for i← 1 to originalList.size()
3 do (a.B)← originalList[i]
4 renamedPre f ix← AR

(
[σ] , (a.B)

)
5 I(renamedPre f ix, prefixList)
6 return prefixList

AR([σ] ,a.B)
1 return σ(a).B [σ]

This procedure first determines the list of action prefix processes. Then AR
is used to rename the action according to the renaming function and the renaming
function is attached to the consecutive behaviour. All (possibly renamed) action prefixes
are collected in the prefixList and finally returned. In Example 4.5.3 we exemplify the
application of NF.

Example 4.5.3 (Trace for guard process). In four iterations we give a trace for the fol-
lowing renaming process MNF

(
(a.b.(c.0) [σ2]) [σ1]

)
with σ1 = {x/a, y/b, z/c} and

σ2 = {a/c}

Iteration 1 MNF

(
(a.b.(c.0) [σ2]) [σ1]

)
= NF

(
(a.b.(c.0) [σ2]) [σ1]

)
= AR

(
[σ1] ,MNF(a.b.(c.0) [σ2])

)
= AR

(
[σ1] ,NF(a.b.(c.0) [σ2])

)
= AR

(
[σ1] , [(a.b.(c.0) [σ2])]

)
= [

(
(x.b.(c.0) [σ2]) [σ1]

)
]

59

4.5. E 

M converts [
(
(x.b.(c.0) [σ2]) [σ1]

)
] into [

(
(x,b.(c.0) [σ2]) [σ1]

)
]. From this list only

action x can be selected.

Iteration 2 (After selection and execution of x)
MNF

((
b.(c.0) [σ2]

)
[σ1]

)
= NF

((
b.(c.0) [σ2]

)
[σ1]

)
= AR

(
[σ1] ,MNF

(
b.(c.0) [σ2]

))
= AR

(
[σ1] ,NF

(
b.(c.0) [σ2]

))
= AR

(
[σ1] ,

[(
b.(c.0) [σ2]

)])
=

[(
y.
(
(c.0) [σ2]

)
[σ1]

)]
Iteration 3 (After selection and execution of y)
MNF

((
(c.0) [σ2]

)
[σ1]

)
= NF

((
(c.0) [σ2]

)
[σ1]

)
= AR

(
[σ1] ,MNF

(
(c.0) [σ2]

)
= AR

(
[σ1] ,NF

(
(c.0) [σ2]

))
= AR

(
[σ1] ,AR

(
[σ2] ,MNF(c.0)

))
= AR

(
[σ1] ,AR

(
[σ2] ,NF(c.0)

))
= AR

(
[σ1] ,AR

(
[σ2] , [c.0]

))
= AR

(
[σ1] ,

[
(a.0) [σ2]

])
=

[(
(x.0) [σ2]

)
[σ1]

]
Iteration 4 (After selection and execution of x)
MNF

((
0 [σ2]

)
[σ1]

)
= NF

((
0 [σ2]

)
[σ1]

)
= AR

(
[σ1] ,MNF

(
0 [σ2]

))
= AR

(
[σ1] ,NF

(
0 [σ2]

)
= AR

(
[σ1] ,AR

(
[σ2] ,MNF

(
0
))

= AR
(

[σ1] ,AR
(

[σ2] ,NF
(
0
))

= AR
(

[σ1] ,AR
(

[σ2] , []
)

60

4. D & I

= AR
(

[σ1] , []
)

= []

There are no new events to simulate. �

4.5.9 NFhiding

M(new w.B) = [τ/e1, . . . , τ/en] (MNF(B))

Hiding is very similar to renaming; hiding can be seen as a special case of renaming
where everything is renamed to τ. The hiding set can easily be converted into a hiding
function by mapping all set elements to τ.

l i s t <Act ionPref ix> p r e f i x L i s t ;

NF(new w.B)
1 return MNF(B [τ/e1, . . . , τ/en])

4.5.10 NFrecursion

MNF(P) = MNF(B) where P , B

NF tries to instantiate the recursive process by searching the process definition
for the recursive process. GE searches the BHPC model to find the definition
for P and returns the behaviour expression of this definition. Then we apply MNF
on this behaviour expression to determine the list of action prefixes.

BHPCexpr expr ;

NF(P)
1 expr← GE(P,BHPCmodel)
2 return MNF(expr)

Unguarded processes This approach works well when all recursions are guarded
recursions. A recursion is unguarded when the process identifier is not preceded by an
action, i.e. B , a.B + B contains one unguarded recursion. Without measures to deal
with this situation the engine can get stuck in resolving recursion. In [11] two practical
approaches are suggested: disallowing unguarded processes and limiting the number
of recursion steps the engine may take without intervention.

61

4.5. E 

For our implementation we allow unguarded recursion, since it gives more freedom in
defining BHPC processes. When recursion is not resolved after a predefined number
of recursion steps, the user is asked for feedback on how many addition steps should
be taken to resolve recursion.

4.5.11 NFparcomp

MNF(B ‖HA C) = MNF

(∑
i∈I

bi<A∪{@}

bi.
(
Bi ‖

H
A C

))
∪ MNF

(∑
k∈K

ck<A∪{@}

ck.
(
B ‖HA Ck

))
∪ MNF

(∑
a=bi=ck
a∈A∪{@}

a.
(
Bi ‖

H
A Ck

))
where B =

∑
i∈I

bi.Bi and C =
∑
k∈K

ck.Ck

To determine the menu for the parallel composition, we apply the expansion law
from Chapter 2.4. The expansion can be applied on the parallel composition when its
components (processes) are in normal form, which is the case since we apply MNF
on the components of the composition.

vector<Act ionPref ix> l e f t V ;
vector<Act ionPref ix> r ightV ;
l i s t <Act ionPref ix> p r e f i x L i s t ;

NF(B ‖HA C)
1 leftV ←MNF(B1)
2 rightV ←MNF(B2)
3 for (bi.Bi) ∈ leftV
4 do if bi < A ∪ {@}
5 then I(bi.(Bi ‖

H
A C), prefixList);

6 else bi ∈ A ∪ {@}
7 for (cj.C j) ∈ rightV
8 do if cj ∈ A ∧ bi = cj
9 then I(bi.(Bi ‖

H
A C j), prefixList);

10
11 for (cj.C j) ∈ rightV
12 do if cj < A ∪ {@}
13 then I(cj.(B ‖HA C j), prefixList);
14 return prefixList

First NF determines the normal form for the left and right parallel composition
components. Then all events from the left component and all synchronising events are

62

4. D & I

determined in the first loop. All action prefixes from the left normal form are evaluated;
if the action is not a synchronising action, then we add bi.(Bi ‖

H
A C) to the prefixList. For

synchronising events a synchronisation partner is searched in the right normal form.

Then all action prefixes from the right component are evaluated in the second loop;
if the action is not a synchronising action, then we add cj.(B ‖HA C j) to the prefixList.
Finally, NF returns the list of all action prefixed.

4.6 Conclusions

The implementation of the discrete simulation functionality is based on the definitions
of Chapter 3. We decomposed the engine definition (simulation algorithm) into
components that map naturally onto the architecture of the engine. Moreover we
have made a distinction between BHPC related procedures, e.g. M, and other
engine procedures, like updating the engine state, or selection of simulation steps. We
have implemented all BHPC related procedures in a separate package. As a result,
extensions of BHPC only apply to some parts of this package, which is convenient for
implementing extensions and changes BHPC.

Most notably, our implementation of the discrete engine is a direct implementation of
the discrete engine definition of Chapter 3. Therefore the implementation is based on
the operational semantics of BHPC, which gives it a strong mathematical base. During
development of the prototype we started with the framework for the tool and gradually
added BHPC processes. In essence we have experienced the suitability of the prototype
to serve as “sand-box” for extensions and changes to BHPC. From our experience
adding new BHPC procedures can be done in a very structural manner and therefore
we are confident in the suitability of the prototype as experimental environment for
further BHPC developments.

63

5
Simulation Example

In this chapter we provide a simulation trace performed with our discrete engine. First
we give a BHPC model in Section 5.1. For completeness present both the mathematical
and the ASCII representation. The simulation trace of the engine is given in Section 5.2.
The trace consists of a sequence of actions that have been executed and consecutive
engine states. Engine states are given by BHPC expressions in internal format, see
Appendix C.

5.1 Model

The model has been chosen to include a variety of BHPC expressions, while keeping
the internal representation as short as possible for readability.

BHPC representation

aprefixP , a.guardP
guardP , 〈Pred〉 .tprefixP

tprefixP ,
[

f | Φ1
]
.choiceP

choiceP , 0 + parcompP

parcompP , leftProc1 ‖HA rightProc1
leftProc1 , b.leftProc2
leftProc2 ,

[
f | Φ2

]
.leftProc2

rightProc1 ,
[

f | Φ3
]
.rightProc1

65

5.2. T

ASCII model

actions: a, b
initial aprefixP

proc aprefixP ^= a . guardP
proc guardP ^= <pred> . tprefixP
proc tprefixP ^= [f | PHI_1] . choiceP
proc choiceP ^= 0 + parcompP
proc parcompP ^= leftP1 |{}{}| rightP1
proc leftP1 ^= b . leftP2
proc leftP2 ^= [f | PHI_2] . leftP2
proc rightP1 ^= [f | PHI_3] . rightP1

5.2 Trace

The following trace is produced by our engine.

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<actionprefix>
<name>a</name>
<process>

<recursion>
<name>guardP</name>

</recursion>
</process>

</actionprefix>
</process>

</behaviourexpression>

EVENT: a (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<recursion>
<name>guardP</name>

</recursion>
</process>

</behaviourexpression>

EVENT: @ (action)

ENGINE STATE PROCESS

66

5. S E

<behaviourexpression>
<process>

<recursion>
<name>choiceP</name>

</recursion>
</process>

</behaviourexpression>

EVENT: b (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<recursion>
<name>leftProc2</name>

</recursion>
</process>
<process>

<recursion>
<name>rightProc1</name>

</recursion>
</process>
<set />

</parallelcomposition>
</process>

</behaviourexpression>

EVENT: @ (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<recursion>
<name>leftProc2</name>

</recursion>
</process>
<process>

<recursion>
<name>rightProc1</name>

</recursion>
</process>
<set />

</parallelcomposition>
</process>

67

5.3. C

</behaviourexpression>

EVENT: @ (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<recursion>
<name>leftProc2</name>

</recursion>
</process>
<process>

<recursion>
<name>rightProc1</name>

</recursion>
</process>
<set />

</parallelcomposition>
</process>

</behaviourexpression>

...

The trace for the extended bouncing ball example can be found in Appendix E.

5.3 Conclusions

The output format for the simulation results is an alternating sequence of events and engine
states. These traces of the discrete engine contain all information necessary for the analysis of
hybrid system control structures. For a more convenient analysis of the results, we suggest a
connection to a visualisation unit and depict actions in MSC. For future hybrid analysis we
propose a new visualisation technique in Chapter 6.

68

6
Towards Hybrid Simulation

For the analysis of hybrid systems it is not sufficient to just analyse the discrete and the
continuous-time behaviour separately. The evolution of system variables can be influenced
by discrete events, and vice versa. Therefore analysis of hybrid systems must also cover the
relationship between discrete and the continuous-time behaviour.

The hybrid simulation technique for hybrid simulation of BHPC, that is used in [11], is a modified
version of the event tracking algorithm from [31]. After initialisation, the continuous-time
behaviour is simulated until an event is detected. Subsequently, the event time is determined
and corresponding signal space values are computed. Event-time and signal space values are
used to set the new engine state. Hereupon the simulation loop repeats these actions for the new
engine state.

In this chapter we present some ideas for extending our discrete engine definitions and discrete
prototype implementation to a hybrid engine. Moreover we define extensions for some of the
definitions of Chapter 3 in Section 6.1. Extending the presented theory for discrete simulation
to hybrid simulation essentially means adding support for continuous-time behaviour. This
extension is not trivial; for a detailed description of the complexity of supporting continuous-time
behaviour we refer to [11]. In Section 6.2 we describe necessary additions for the discrete engine
design to add support for continuous-time behaviour. Our most important contribution to hybrid
system analysis is the proposal of a new visualisation technique that presents both discrete and
continuous-time behaviour and their relation. We describe this visualisation technique in Section
6.3.

69

6.1. H 

6.1 Hybrid engine

6.1.1 Engine State Transitions

All engine state definitions from Chapter 3.4 remain unchanged. For convenience we repeat the
general engine definition.

Definition 6.1.1. (Engine state).
Let the tuple HTS=〈S,A,→,W,Φ,→c〉 be a hybrid transition system. Then we define a simulation
state e ∈ E as

e = 〈θ, p, ϕ(θ)〉

Where θ ∈ R is the time stamp of e, p ∈ S is a BHPC process expression of e and ϕ(θ) is the signal
snapshot for signal spaceW of s at time θ. �

We extend our transition definition with continuous transitions and enable the hybrid engine to
execute both discrete and continuous transitions. Therefore we generalise actions and trajectories
to events and use events in stead of actions in the definitions for simulation step, M and
N.

Definition 6.1.2 (Event). Let HTS = 〈S,A,→,W,Φ,→c〉 be the transition system. Then we
define a set of events E, where E = A∪Φ. �

Definition 6.1.3 (Hybrid simulation step). Let HTS = 〈S,A,→,W,Φ,→c〉 be a hybrid transition
system, p, p′ ∈ S be BHPC process expressions, e ∈ E an action and p e

−→ p′ ∈→ or p e
−→ p′ ∈→c be

a transition of the hybrid transition system. Then (e, p′) ∈ T is a simulation step of the engine,
where T represents the set of transition steps. �

Definition 6.1.4 (M for BHPC). Let N be the set of BHPC process expression in normal form
and let T be the set of transition steps and (e .B) an action or trajectory prefix, with e ∈ E. Then
we define M: N→ T,

M(N) = {(e,B) | (e.B) ∈ N}

�

Abstraction is removed from the recursive function MNF for trajectory prefix.

MNF(
[
ϕ
]
.B) = {(

[
ϕ
]
.B)}

Obviously a connection to a ODE/DAE solver is needed for simulation of a trajectory prefix,
which is done after selection of a simulation step. Parallel composition, renaming and hiding are
more complex for hybrid simulation and a solution is not trivial. We refer to [11] for a detailed
description of hybrid simulation for these expressions.

During continuous transitions a trajectory is executed. After a continuous transition, the time
stamp for next engine state is increased by the duration of the trajectory and also the time for
snapshot of the signal space is increased by this duration.

70

6. T H S

Definition 6.1.5 (N). Let (e, p′) be a simulation step from the set of possible transitions T,
calculated by M, and S be the set of simulation states and let 〈θ, p, ϕ(θ)〉 be the current
simulation state of the engine. If p e

−→ p′ is a transition in our HTS, then we define the function
N : δ × S→ S, such that

N
(
(e, p′), 〈θ, p, ϕ(θ)〉

)
=

{
〈θ, p′, ϕ(θ)〉 if e ∈ A
〈θ + t(e), p′, ϕ(θ + t(e))〉 if e ∈ Φ

Where t(e) denotes the duration of event e. �

6.1.2 Hybrid engine

The simulation algorithm implements the extended versions of M and N, further no
changes.

BHPC_S()
1 e← 〈0, p0, ϕ(0)〉
2 T←M(πp(e))
3 while T , ∅
4 do (e, p′)← S(T)
5 e′ ← N((e, p′), e)
6 T←M(MNF(πp(e′))

Where

• e, e′ ∈ E represent engine states

• πp(e) is the process expression of the engine state (by projection).

• T is the set of transitions

• M, MNF and N are functions that determine the set of simulation steps, the set
of action prefixes and the next engine state respectively

• S is a way to select a simulation step (manually, automatically, or from batch) from
the set of simulation steps T

6.2 Design

In Chapter 4 we presented the discrete engine design for BHPC. Extension to a hybrid engine
essentially means adding support for continuous-time behaviour.

In BHPC trajectory prefixes represent continuous-time behaviour and usually refer to trajectory
set definitions in which continuous behaviour is described by differential equations. Solvers will
be used to evaluate differential equations and an interface with these solvers must be designed
and implemented.

The hybrid engine also must support equations and expressions in other BHPC processes, such as
predicates in guards, (exit) conditions in trajectory prefixes, equations in trajectory set definitions
and parameters for actions and processes. Restrictions on allowed equations and expressions

71

6.3. V

for all these processes must be formulated and solvers are needed for evaluation. Furthermore
additional data types are needed to support continuous-time behaviour. Here we present an
overview of necessary additions for hybrid simulation.

Support for trajectory qualifiers Data structures to store qualifiers values for each process
should be designed. The structures that handle processes, should be extended to handle
qualifiers related to the process.

Parametrisation of processes Values are passed to processes via parameters. Consequently,
data structures to pass parameters to processes should be designed and integrated.

Trajectory-prefixes In the definition of BHPC trajectory-prefixes are defined in an abstract
fashion. However, a more practical way to represent them should be chosen. Usually,
differential equations (ODE or DAE1) are used to represent continuous behaviour. There-
fore, data structures to store and handle such equations should be designed. The type of
supported equations depends on ODE/DAE solver. Some solvers support only ordinary
differential equations, but differential algebraic equations solvers are getting common, too.
Consequently, it means, that an interface to solver(s) should be designed and implemented.

Guards In BHPC we do not put any restrictions on predicates. However, in practical application
a restrictions to allowed predicates should be chosen and a data structure to represent
them designed and implemented. An interface to some solver may be necessary to solve
predicates.

Parallel composition The complete expansion law should be implemented. Moreover, if
ODE/DAE are used to represent continuous behaviour and an oracle is not available, the
expansion law should be modified to allow to make choice amongst trajectory-prefixes
on-the-fly, i.e., during simulation.

Hiding and renaming Hiding and renaming of trajectory-qualifiers is not a trivial problem,
because it may influence options for choice. Hence, it is better to investigate behaviour of
restricted hiding and renaming, evaluate pros and cons of flexibility and error safety and
find a nice balance.

Recursion Parameters and qualifiers values management should be added to recursive calls
subroutines.

Extending discrete BHPC simulator to simulate hybrid systems is not a trivial problem. However,
it provides a very good base for future development of BHPC simulation tools. Moreover, some
of the problems related with hybrid extensions are investigated in Bhave prototype tool. See
http://fmt.cs.utwente.nl/tools/bhave for more information about Bhave tool-set.

6.3 Visualisation

Simulation results usually visualise the evolution of the system in time. Results for hybrid
systems are in essence represented by a mapping of state values and events to the time-line.

1An ordinary differential equation is a relation that contains functions of only one independent variable, and
one or more of its derivatives with respect to that variable. It’s general form is F(x, y, ẏ, ÿ, . . . , y(n)) = 0. A
differential-algebraic equation is a relation in which the derivatives are not (in general) expressed explicitly, and
typically derivatives of some of the dependent variables may not appear in the equations at all. General form
of such equations is F(ẋ, x, y, t) = 0, where x ∈ Rn, y ∈ Rm are differential and algebraic variables, respectively.

72

http://fmt.cs.utwente.nl/tools/bhave

6. T H S

Event traces or message sequence charts (MSC) [27, 17] adequately represent discrete system
behaviour. Graphs are adequate for the ordinary continuous system. In hybrid systems we have
both the evolution of system variables and events. Moreover the evolution of system variables
may trigger events and events may trigger change of evolution. Hence a combined view is
crucial to fully analyse hybrid system behaviour. Several approaches are proposed in [28, 21], [15,
p. 74], but none of them provides a combined view.

We propose to use message sequence plots (MSP). MSP is a combination of MSC and plots that
captures both discrete and continuous-time behaviour and their interaction. We do not provide a
formal definition of MSP, because we do not want to introduce a new formalism here, but rather
propose an abstract technique for visualisation of hybrid behaviour. Therefore, we just describe
MSP informally and illustrate its application by examples.

6.3.1 Basic MSP

MSP has two main compounds: 90◦ rotated message-sequence charts (MSC) and plots. MSC
represents discrete behaviour and continuous-time evolution is depicted by plots over time-lines.
A legend allows selection of qualifiers of interest, that are depicted in the plot. If several processes
evolve concurrently, the synchronising qualifiers for both processes appear.

Time line Horizontal lines, connected to the corresponding boxes with process identifiers,
represent processes and the time-line (life-line in MSC terminology). MSP represents each system
process by a distinct time-line. Along each time-line, time is assumed to flow to the right at the
same speed. Figure 6.1 depicts the time-line for Processi.

Processi

Figure 6.1: MSP Time-line for Processi

Plots The time-line represent the flow of time and serve as the time axis for plots. The plot only
shows the evolution of qualifiers of interest that are selected in the legend along the vertical axis
of the plot. In BHPC trajectories are visualised by plots. The beginning and end of a trajectory
are visualised by vertical dashed lines. Figure 6.2 shows the time-line for Processi along which
two trajectories are visualised. Only for qualifier qual4 the plot is shown.

Communication Communication in MSP is represented by communication lines, which
are solid labelled vertical lines. Directed communication can be visualised by arrows on the
communication lines. In BHPC there is only undirected communication by (parametrised) action
prefixes. Actions are depicted by a communication line that is connected to the time-line of the
originating process. To emphasise the originating process we add dots at the connections with
time-lines. Figure 6.3 depicts two processes Processi and Process j.

In the beginning both processes are synchronizing on their trajectories. After some time they

73

6.3. V

Processi

qual1
qual2
qual4

□
□
□v

Figure 6.2: MSP plot and time-line for Processi

Processi

Processj

qual1
qual2
qual3

□
□
□

v

qual1
qual2
qual4

□
□
□
v

v

act1 act2

act1

Figure 6.3: Communication in MSP

synchronise on action act1 and subsequently they synchronise their trajectories. Then Process j

executes action act2 after which both processes resume trajectory synchronisation again. After
the moment of execution of action act2 it is unclear in this figure whether Processi, starts a new
trajectory or continues with the remainder of an unfinished trajectory. Later we shall describe
extensions for MSP that do provide this information.

Remark 6.3.1 (Synchronising qualifiers). Recall that processes can only synchronise on trajec-
tories when their common qualifiers are synchronizing qualifiers and have the same evolu-
tion. �

74

6. T H S

6.3.2 Event-lines

MSP supports event-lines that can be used to interrupt the representation of time-flow. In Example
6.3.2 we give an example of a situation in that requires event-lines.

Example 6.3.2 (Event-lines for action sequences). Consider process P ,
[

f | Φ
]
.a.b.c

[
f | Ψ

]
. The

representation of time-flow must be interrupted to depict event order of this the action sequence
in the MSP. Otherwise all actions from the sequence would be depicted on top of each other on
the time-line, since actions are instantaneous. �

We use horizontally dashed lines to represent event-lines. In Figure 6.4 shows the MSP with
event-lines for Example 6.3.2.

Processi

t1 t2

a b c

Figure 6.4: MSP action sequence

There are MSP constructs, like an action sequence, that require some space for visualisation.
When the time-line is interrupted for one of the processes in the MSP, all processes must interrupt
their time-lines by the same width, to stay synchronised. Consider the following example in
Figure 6.5 in which a construct in one of the processes interrupts the time-line of that process.

Processi

Processj

Consumption
of space

w

t1 t2 t3 t4

t5 t6 t7 t8

Figure 6.5: Unsynchronised time-lines

The ideal situation is that the position on the time-line denotes the same time point on each
time-line. For example that t1 = t5 ∧ t2 = t6 ∧ t3 = t7 ∧ t4 = t8 holds in Figure 6.5. But in Processi

the time-line is interrupted by the width w of some construct and t2 = t3 while t6 , t7 and hence
t7 , t3, but t7 = t3 +

w
timespeed , where timespeed denotes the speed with which time is represented

along the time-line.

As a solution we introduce event lines, which are horizontally dashed lines along which time
does not proceed. In Figure 6.6 an event-line is used to keep all time-lines synchronised, . In this

75

6.3. V

figure t1 = t5 ∧ t2 = t6 ∧ t3 = t7 ∧ t4 = t8 does hold.

Processi

Processj

Consumption
of space

w

t1 t2 t3 t4

t5 t6 t7 t8

Figure 6.6: Synchronised time-lines

6.3.3 Additional MSP constructs

In this section we introduce some constructs that provide a more elaborate and convenient
analysis of BHPC.

Adding BHPC expressions In MSP details of the hybrid model can be added to the
simulation results to make their relation more apparent. For example we can decorate the results
with trajectory prefixes at the corresponding parts of plots. In Figure 6.7 we have added the
MSP trajectory expressions along the plots. The MSP shows two parallel processes: Processi,
executing trajectory ϕ and idling Process j. Then Processi subsequently executes action a, action b
and then synchronises with Process j by executing action c. Finally both processes synchronise
their trajectory prefixes.

Remark 6.3.3 (Trajectory information). By relating trajectory prefixes to plots, we now can see
whether a plot represents a new trajectory of the remainder of the previous trajectory which we
could not see in basic MSP. �

Recursion Recursive calls can be depicted as boxes with a new process identifier on the
time-line of the calling process. Optionally also recursion parameters can be depicted in the
box. If necessary we can use event lines to compensate for the space this construct takes on
the time-line and keep all time-lines synchronised. In Figure 6.8 we visualise a trace from the
process Processi ,

[
f | Φ

]
.Processi + Process j. The figure shows one process in the composition,

clearly three instantiations for Processi can be seen before Process j is instantiated.

Renaming We could depict renaming or the result of renaming in MSP. The former gives
most insight in when and how renaming takes place. Like trajectory information, renaming
functions could be put along the graph. There has to be decided what the order is in case more
than one renaming function is applied and therefore added to the MSP. Adding renaming details
to a MSP visualises the relation between qualifiers from the plot legend and their renaming.
Moreover, if we want to see the result of renaming in the plots, it would be quite difficult to keep
the legend up to date and consistent for all plots shown the MSP, i.e. renaming the legend could

76

6. T H S

Processi

qual1

qual2

qual3

□
□
□

v

[q1 | Φ ↓ Pred]

a b

c

Processj

qual1

qual2

qual3

□
□
□

v

[q1 , q3 | Ψ ↓ Pred]

[q1 , q2 | Χ ↓ Pred]

idle
v

v

Figure 6.7: Adding MSP expressions

Processi

qual1

qual2

qual3

□
□
□

v

Processi Processi Processj

[f | Φ] [f | Φ] [f | Φ]

Figure 6.8: Recursion

apply for some, but not all plots in the MSP. Hence the legend always applies to all plots and the
current renaming for the qualifier can be found along the plot. Consider BHPC expression

([
f , g, h | Φ

]
.a.

[
f , g, h | Ψ

]
.
(
a.

[
f , g, h | Ξ

]
.0
) [

y/ f , b/a
]) [

x/ f
]

for which we give the MSP with added renaming in Figure 6.9. In this figure only the second
action will be renamed and for the first two trajectory plots qualifier f will be renamed to x and
for the third to y.

Introduction of parallelism At the introduction of parallelism, we fork the original process
into two processes. Again, we keep the time-lines of all processes in the MSP synchronised. The

77

6.3. V

Processj

f

g

h

□
□
□

[f,g,h | Φ] [f,g,h | Ψ] [f,g,h | Ξ]

v

[x / f] [x / f] [y / f , a / b] ,
[x / f]

a a

[y
/ f, a

/ b] ,
[x

/ f]

[x
/ f]

Figure 6.9: Renaming

forked time-lines are decorated with a process identifier after execution of the the first recursive
call. Consider the following BHPC description where we have omitted trajectory set definitions.
Behaviour that will not depicted in the MSP is denoted as “. . . ”.

P , Q ‖q2 R

Q ,
[
q1 | Φ1

]
.
[
q1, q2 | Φ2

]
. . . .

R ,
[
q2, q3 | Φ3

]
.
(
S ‖q2

[
q2, q3 | Φ5

]
.T

)
S ,

[
q2 | Φ4

]
. . . .

T , . . .

Process P is immediately forked into two processes, namely Q and R. Eventually R is forked into
process S and a right component that becomes process T after execution of a trajectory. Figure
6.10 depicts the MSP for process P.

In the figure P is forked into process Q and R. We can see that both processes can execute their
first trajectory in parallel. Moreover we can see that both trajectories are partially equivalent;
they have no qualifiers in common and have the same duration. Subsequently, process R forks
into two new processes. Since its left component immediately performs a recursive call, the
horizontal line for this process is begins with a process identifier. Then we see execution of three
parallel trajectories. Moreover we can see that all trajectories are partially equivalent; they have
the synchronising qualifier in common and have the same duration. After parallel execution
of this trajectory, the horizontal line for the right component is also decorated with a process
identifier.

Folding & unfolding From the previous examples it is clear that the developer and user
will have to choose between the amount of represented information and clarity. Therefore, the
user should be allowed to choose what he wants to see, and be able to hide (fold) or expose

78

6. T H S

q1

q2

q3

□
□
□

v

T

S

P Q

R

v
v

[q2 ,q3 | Φ3]

[q1 ,q2 | Φ2][q1 | Φ1]

[q2 ,q3 | Φ5]

[q2 | Φ4]

Figure 6.10: Fork in MSP

(unfold) parts of MSP. For example, folding and unfolding can be introduced to control visibility
of the parallel composition components. When the components are folded into a single process,
the communication between these processes should be depicted in some other way, e.g. as lines
with action names that only cross this process line perpendicularly at both sides.

6.3.4 Plot scales

Choosing a suitable plot scale for MSP is not trivial. When in one plot we want to depict qualifiers
on a very different scale we do not want to stretch the vertical scale lines too much, since that can
diminish overview of different processes. Moreover, we do not want to depict plots below the
horizontal line, since then it can become unclear to which process a plot belongs. We exemplify
this by the extended bouncing ball in Figure 6.11. From this figure one might think that parts of
the plot for velocity could belong to the controller. Only the depicted trajectory prefix for the
bouncing ball suggest that it belongs to the bouncing ball.

BB(h0, v0)) , [h, v | Φ(h0, v0)) ⇓ h = 0] .bounce(c : [0, 1]).

[h, v | Φ(0,−cv) ⇓ v = 0] .push(v : R).BB(h, v)

Control(v0) , idle.bounce(c : [0, 1]).

idle.push ((1 − c) v) .Control ((1 − c) v)

79

6.4. C

System(h, v) , BB(h0, v0) ‖v0
push,bounce Control(v0)

System

h

v

□
□
v

v

BB(10,0)

Control(0)

[h,v | Φ (10 , 0) ↓↓ h=0]

Pu
sh

(0
.7

*8
)

B
ou

nc
e(

0.
7)idle idle

BB(7,v)

Control(0.3*v)

B
ou

nc
e(

0.
7)idle

[h,v | Φ (0 , -0.7v) ↓↓ v=0] [h,v | Φ (h0 , v0) ↓↓ h=0]

10

7

Figure 6.11: MSP for extended bouncing ball

As a solution we propose to only depict plot shapes above the horizontal line within a fixed
vertical range. Only then the relation between continuous behaviour, processes and discrete
behaviour can be represented in MSP. For detailed analysis of continuous behaviour, the real
plot should be easily available, i.e. with a mouse click on the plot shape in MSP.

6.4 Conclusions

Essentially, we need to add support for continuous-time behaviour for a hybrid extension of our
discrete engine. We have introduced the notion of event, which represents either an action or
a trajectory, and replaced actions in our definitions by events. Also, we have added execution
of continuous transitions to our engine, which enable updates of system time and signal space.
Most of our definitions, including the simulation algorithm, remain unchanged by these changes.

Obviously the engine needs a connection to a ODE/DAE solver to simulate trajectory prefixes.
Trajectory prefixes are simulated after selection of a simulation step. The engine must monitor
simulation, i.e. detect events and expiration of the simulation end time, and take corresponding
actions. The real challenge lies in solving parallel compositions of trajectories while preserving
the order and renaming [11]. There also a restricted prototype is described, that performs limited

80

6. T H S

hybrid simulation. Further research is needed to evaluate suitability of our discrete engine for
extension to a hybrid engine.

Our most important contribution to the analysis of hybrid systems is a new visualisation
technique (MSP), that can be used to visualise hybrid behaviour. In contrast to other visualisation
techniques, where discrete and continuous-time behaviour are represented separately, MSP
combines representation of both behaviours and depicts their relation. Analysis of this relation is
vital for analysis of hybrid behaviour where both behaviours interact and influence one another.
Therefore, we believe in the potential of MSP for hybrid system analysis. The proposed technique
can be easily adopted to other hybrid system modelling frameworks with minimal changes, e.g.
if communication is directed, arrows can be used to depict it. Formalisation and implementation
is needed to investigate the applicability of MSP.

81

7
Conclusions

With this thesis we take a first step towards hybrid simulation of hybrid systems by developing
theory and a prototype for discrete simulation of Behavioural Hybrid Process Calculus (BHPC).
BHPC is a hybrid algebraic framework, recently developed by [8, 9, 11], that is suitable for
modelling and analysis of hybrid systems. It manifests important properties, such as a strong
bisimulation relation that is a congruence with respect to parallel composition of subsystems.
However, without a simulation tool, the analysis of hybrid systems modelled in BHPC will be
a cumbersome task. Simulation tools can be used for automated analysis of model behaviour
by generation of different model scenarios, checking for errors and weaknesses in the model.
Results can be used to gain understanding in hybrid systems and improve their behaviour. In
this final chapter we summarise and evaluate all individual results given throughout the thesis
and present some suggestions for future research.

7.1 Abstraction techniques

To perform discrete simulation for BHPC, we have investigated abstraction techniques to abstract
from continuous-time behaviour. For these techniques we assumed that abstraction could be
performed by treating trajectories as special actions, or representatives. An extension of the
existing semantics was necessary to create distinction between actions and representatives,
which was necessary to prevent synchronisation between actions and representatives in parallel
composition. These techniques are also applicable to other hybrid algebraic frameworks where
discrete and continuous-time behaviour are treated on equivalent terms, i.e. they are both treated
as algebraic elements for which SOS-rules are defined.

Information about trajectory durations is inevitably lost during abstraction from continuous-time
behaviour. As a result discrete simulation cannot guarantee correct traces in the presence of

83

7.2. D 

parallelism. For hybrid systems containing parallelism, discrete simulation traces should always
be investigated to estimate their correctness. Such an investigation can be a cumbersome task
for more complex systems. Therefore we recommend hybrid simulation for hybrid systems
containing parallelism. For all other systems discrete simulation can be used to gain insight in
control structures.

7.2 Discrete definition

We have defined a discrete engine, based on BHPC semantics that is extendible for new BHPC
developments. Our discrete engine definition is based on our assumption that for relating
engine procedures to BHPC semantics, the approach from [32] for determining and execution of
simulation steps can be used. Moreover, we presumed that a modular definition of the engine,
that encapsulates determination and execution of simulation steps, is necessary for extendibility
of the engine.

We modified the definitions for determining and execution of simulation steps to represent the
semantics of BHPC. The most notable difference with [32] is that we derive simulation steps
from action prefixes as final step of our calculation. The benefit of using action prefixes during
calculation is that they represent a normal form and the expansion law can easily be applied to
solve parallelism. This approach is also applicable for other algebraic frameworks and due to
modularity of the engine definition, this will affect only encapsulated modules.

7.3 Design & implementaion

We have tested our theory and definitions by building a prototype based on the discrete engine
definition. There is a clear mapping between the engine definitions and implemented procedures
in our prototype and the prototype was able to simulate hybrid systems modelled in BHPC.

During development of the prototype we started with a framework for the tool and gradually
added BHPC processes. In essence we have experienced the suitability of the prototype to serve
as tool to experiment with extensions and changes to BHPC. From our experience adding new
BHPC procedures can be done in a very structural manner and therefore we are confident in the
suitability of the prototype as “sand-box” for further developments of BHPC.

7.4 Towards hybrid simulation

7.4.1 Hybrid engine definition

We presented a beginning and some ideas for defining a hybrid engine that is based on our
discrete engine. As assumed, most of the original engine definition remains unaffected by the
hybrid extensions. The real remaining challenge for hybrid extension is resolving trajectories. We
refer to [11] for detailed description of resolving continuous-time behaviour and the description
of a restricted prototype that performs limited hybrid simulation. Further research is needed to

84

7. C

evaluate suitability of our discrete engine for extension to a hybrid engine. Hybrid definitions
should be completed and a restricted simulation as described in [11] can be used as a starting
point for hybrid definitions and an implementation.

7.4.2 Hybrid visualisation

Finally we presented a new and promising technique for the visualisation of hybrid behaviour.
This technique, called MSP, combines the visualisation of discrete behaviour and continuous-time
behaviour, by rotated message sequence charts and plots respectively, and moreover their relation.
We also presented some extensions for MSP to facilitate a more elaborate analysis of hybrid
systems. We believe that MSP has great potential in visualising hybrid system behaviour since
it represents hybrid behaviour instead of a separate representation of the behaviours. Further
research is needed to formalise this technique and evaluate its applicability by a prototype.

7.5 Implementation extensions

Here we enumerate some possible extensions for our prototype.

Integration with BHPC parser Once the BHPC parser is finished the engine and the parser
should be integrated. Then the parser can generate models in internal representation from
ASCII representation, whereas now internal representation is generated by hand.

Integration with a visualisation unit In our prototype simulation traces are represented by
a textual format. Integration with a visualisation unit facilitates a more convenient
representation of these traces.

Selection Selection of events can only be done manually in our prototype. Other selection
modes, like automatic and batch selection, could be added.

Undoing transitions For more freedom, the possibility of going one or more steps back in
simulation and undoing transitions would be useful.

7.6 Final remarks

From an engine definition based on BHPC semantics, we presented a general and modular
implementation, that proved to be extendible for BHPC developments. As a result the prototype
can contribute to further BHPC developments as “sand-box” for testing new theory. Also we
presented a new visualisation technique that visualises hybrid behaviour by combining the
visualisation of discrete behaviour, continuous-time behaviour and their relation. Analysis of
this relation is vital for understanding hybrid behaviour in which both behaviours interact and
influence each other. These results have contributed to our goal to develop techniques and a
prototype for discrete simulation of BHPC that could be used to analyse and improve hybrid
system behaviour.

85

Bibliography

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theor. Comput. Sci.,
138(1):3–34, 1995.

[2] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages
209–229. Springer, 1993.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on U. In M. Bernardo and
F. Corradini, editors, Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer, September 2004.

[4] J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K.G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. Automated analysis of an audio control protocol using U. Journal of Logic and
Algebraic Programming, 52–53:163–181, July 2002.

[5] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Computation, 60(1/3):109–137, 1984.

[6] J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems. Technical report,
Dept. of Math. and Comp. Science, Technical University of Eindhoven (TU/e), P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands, 2003.

[7] T. Bolognesi and H. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks, 14:25–59, 1987.

[8] E. Brinksma and T. Krilavičius. Behavioural hybrid process calculus. Technical Report
TR-CTIT-05.45, CTIT, University of Twente, 2005.

[9] E. Brinksma, T. Krilavičius, and Y.S. Usenko. Process algebraic approach to hybrid systems.
In Proc. of 16th IFAC World Congress, Prague, Czech Republic, July 2005.

[10] L. Carloni, M.D. Di Benedetto, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli.
Modeling techniques, programming languages and design toolsets for hybrid systems.
Technical Report Deliverable DHS4-5-6, Project IST-2001-38314 COLUMBUS, 2004.

[11] T. Krilavičius. Hybrid Techniques for Hybrid Systems. PhD thesis, Formal Methods and Tools,
University of Twente, 2006.

[12] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronisation skeletons using
branching time logic. In Logic of Programs, volume 131 of LNCS, pages 52–71. Springer, 1982.

87

BIBLIOGRAPHY

[13] P.J.L. Cuijpers and M.A. Reniers. Hybrid process algebra. Technical report, Dept. of Math.
and Comp. Science, Technical University of Eindhoven (TU/e), P.O. Box 513, NL-5600 MB
Eindhoven, The Netherlands, 2003.

[14] H. Eertink. Simulation Techniques for the Validation of LOTOS Specifications. PhD thesis,
University of Twente, 1994.

[15] S. Hedlund. Computational methods for hybrid systems. Licentiate thesis ISRN
LUTFD2/TFRT--3225--SE, Department of Automatic Control, Lund Institute of Technology,
Sweden, September 1999.

[16] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.

[17] ITU-T. Recommendation Z.120. Message Sequence Charts. Technical Report Z-120, Interna-
tional Telecommunication Union – Standardization Sector, Genève, 2000.

[18] A.S.A. Jeffrey, S.A. Schneider, and F.W. Vaandrager. A comparison of additivity axioms in
timed transition systems. Report CS-R9366, CWI, Amsterdam, November 1993.

[19] A.A. Julius. On Interconnection and Equivalence of Continuous and Discrete Systems: A Behavioral
Perspective. PhD thesis, Systems Signals and Control Group, University of Twente, 2005.

[20] D.K. Kaynar, A. Chefter, L. Dean, S. Garland, N. Lynch, T.N. Win, and A. Ramirez-Robredo.
The IOA simulator. Technical Report MIT-LCS-TR-843, MIT Laboratory for Computer
Science, Cambridge, MA, July 2002.

[21] E.A. Lee and H. Zheng. Operational semantics of hybrid systems. In Hybrid Systems:
Computation and Control: 8th International Workshop, HSCC, LNCS, pages 25–53, February
2005.

[22] N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O automata. Information and
Computation, 185(1):105–157, 2003.

[23] K.L. Man and R.R.H. Schiffelers. Formal specification and analysis of hybrid systems. PhD thesis,
Technical University of Eindhoven (TU/e), 2006.

[24] R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[25] J.W. Polderman and J. C. Willems. Introduction to Mathematical Systems Theory: a behavioral
approach. Springer, 1998.

[26] T.A. Henzinger R. Alur and W. Wong-Toi. The theory of hybrid automata. In Proceedings of
the 36th Annual Conference on Decision and Control (CDC), pages 702–707. IEEE Press, 1997.

[27] E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequence charts. Comput.
Netw. ISDN Syst., 28(12):1629–1641, 1996.

[28] A. Samarin. Application de la programmation rèactive á la modélisation en physique, 2002.

[29] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers. Syntax and
consistent equation semantics of hybrid chi. Report CS-Report 04-37, Technical University
of Eindhoven (TU/e), Eindhoven, November 2004.

[30] A.J. van der Schaft. Bisimulation of dynamical systems. In R. Alur and G. J. Pappas, editors,
HSCC, volume 2993 of LNCS, pages 555–569. Springer, 2004.

88

BIBLIOGRAPHY

[31] A.J. van der Schaft and J.M. Schumacher. An Introduction to Hybrid Dynamical Systems,
volume 251 of LNCIS. Springer, London, 2000.

[32] P. van Eijk. Software tools for the specification language LOTOS. PhD thesis, University of
Twente, 1988.

[33] A.E. van Putten. Behavioural hybrid process calculus parser and translator to Modelica.
Technical report, University of Twente, 2006. Draft of master thesis.

[34] B.P. Zeigler, H. Praenhofer, and T.G. Kim. Theory of Modelling and Simulation. Academic
Press, second edition, 2000.

89

A
BHPC Modelling Language

Models of hybrid systems in BHPC need additional constructs to provide the compiler all
necessary information for simulation. For example the compiler needs identification of actions,
processes and the initial process. See [33] for details about additional constructs needed for the
compiler. In this appendix we describe the syntax of BHPC and these constructs. The syntax of
the BHPC modelling language is represented in EBNF, in which terminal symbols are represented
by capital bold words for enhanced readability. For terminals we provide both the ASCII and
the mathematical representation. Additional constructs for the compiler only have an ASCII
representation. First we will give an informal description of the language, the scope of the BHPC
operators and a BHPC model in mathematical and ASCII representation.

A.1 Input format

The compiler requires BHPC models to be written in ASCII format such that models for the
compiler can be written in an ordinary editor. As said, the compiler requires more than just an
ASCII representation of the BHPC model. In this section we illustrate the difference between
mathematical and ASCII models.

Mathematical models are models described in BHPC, which has been described in Chapter 2.3.
Figure A.1 shows the mathematical model for the bouncing ball example we have given before.
The model contains a process definition for the bouncing ball (BB) and a trajectory set definition
(Φ). In Figure A.2 the ASCII representation of the bouncing ball is given.

91

A.1. I 

BB(h0, v0) , [h, v | Φ(h0, v0) ⇓ h = 0] .BB(0,−c ∗ v)
Φ(h0, v0) = {h, v : (0, t]→ R |

h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

Figure A.1: Bouncing ball, mathematical representation

constants: (c,10), (g,10)
qualifiers: h,v

initial BB(8,10)

proc BB (h_0,v_0) ^=
[h,v | tset phi(h_0,v_0) exit h=0] . BB(0,-c*v)

tset phi (h_0,v_0) = {h,v:(0,t]->RR |
h(0)=h_0, v(0)=v_0, der(h)=v, der(v)=-g , h>=0 }

Figure A.2: Bouncing ball, ASCII representation

Consider the ASCII model in Figure A.2. Apart from the differences between mathematical
symbols and their ASCII representation, three differences between the mathematical model and
the ASCII model are illustrated. Declaration of constants and qualifiers, declaration of the initial
process and indication of process definitions and trajectory set definitions by a keyword.

For recognition the parser requires declaration of all constants, actions and qualifiers names are
used in the model. These declaration should be in the beginning of the model, in any order.
Moreover, all action names, qualifiers and constants have to be unique. Declarations of actions,
qualifier, or constants start with the keywords actions, qualifiers, or constants respectively.
Figure A.2 illustrates the definition of constants and qualifiers.

The engine must be able to determine the initial process to start simulation. For more freedom in
naming process the initial process does not have a fixed name, but this requires a declaration
of the initial process. A declaration of the initial process starts with the keyword initial. In
Figure A.2 process BB is declared to be the initial process of the model and the model contains
a process definition for process BB. Simulation can not be performed without an associated
process definition for the initial process. Initialisation of the bouncing ball process requires actual
parameter values for the initial process .

For convenient recognition of process definitions and the trajectory set definitions, the parser
requires the definitions to be preceded by the keywords proc and tset respectively.

The ASCII representation for BHPC processes is given in Table A.1. In the forthcoming sections
we give the scope and syntax of BHPC.

92

A. BHPC M L

Process BHPC ASCII
Stop 0 0
Action Prefix a.B a.B
Trajectory Prefix

[
ϕ
]
.B [phi].B

Symbolic Trajectory Prefix
[

f | Φ
]
.B [f | tset PHI].B

Guard 〈Pred〉 .B <Pred>.B
Choice

∑
i∈I

Bi choice{i in I} B_i

Binair Choice B1 + B2 B_1 + B_2
Parallel Composition B1 ‖

H
A B2 B_1 |{q_1,...,q_n},{a_1,...,a_n}| B_2

Hiding new w.B new{a_1,...,a_n}.B
Renaming B [σ] B[old_1/new_1,...,old_n/new_n]
Recursion P P

Table A.1: Translation table for BHPC processes

A.2 Scope

In Table A.2 operator precedence is defined for BHCP

Description Operator Type Precedence
Action Prefix a. prefix 1
Trajectory Prefix

[
ϕ
]
. prefix 1

Guard 〈Pred〉 . prefix 1
Choice

∑
i∈I

prefix 2

Choice + infix 2
Parallel Composition ‖

H
A infix 3

Renaming [σ] postfix 4
Hiding new w. prefix 4

Table A.2: Operator precedence in BHPC

So expression

new w.a.P +
[
ϕ
]
.Q + R ‖HA S[σ]

is equivalent to expression

new w.
((

(a.P) + (
[
ϕ
]
.Q)

)
+ (R ‖HA S[σ])

)
Hiding and renaming have the same precedence since they are similar processes. Hiding is a
special case of renaming where all elements are mapped to the internal action τ. Precedence in
hiding and renaming has to be made explicit by using parenthesis. Hence

new w.B [σ]

93

A.3. S

has no meaning and has to be written as either

new w.(B [σ]) or (new w.B) [σ]

A.3 Syntax

The syntax of BHPC and additional constructs is presented in BNF (Backus-Naur form), where
terminal symbols will be displayed in bold capital font for enhanced readability. The keywords
and symbols for the terminals can be found in Appendix A.4.

Model Definition

The definitions of constants, actions, or qualifiers (any number, any order) are followed by an
obligatory initial process definition. The remainder of the model consists of process definitions
and trajectory set definitions.

Model ::= (Const_Def Action_Def Qual_Def)∗

Initial_Process

(Proc_Definition TSet_Definition)∗

Constant Definition

Constant definitions are used for recognition of constants in the model and to define their values.
Constants can be defined in the beginning of the model. The appearance of “constants:” marks
the start of a constant definition. A constant definition may contain zero, or more (comma
separated) constant declarations.

Const_Def ::= CONST COLON [Const_Decl (COMMA Const_Decl)∗]

Constant Declaration

A constant declaration is enclosed in parenthesis and contains both the constants name and its
value. The value can be given as expression.

Const_Decl ::= LPAREN Identifier COMMA Expression RPAREN

Action Definition

Action definitions are used to recognize actions in the model. Actions can be defined in the
beginning of the model. The beginning of an action definition is indicated by “actions:”. An

94

A. BHPC M L

action definition may contain zero, or more (comma separated) actions.

Action_Def ::= ACTION COLON [Identifier (COMMA Identifier)∗]

Qualifier Definition

Qualifier definitions are used to recognize qualifiers in the model. Qualifiers can be defined in the
beginning of the model. The beginning of an qualifier definition is indicated by “qualifiers:”.
A qualifier definition may contain zero, or more (comma separated) qualifiers.

Qual_Def ::= QUAL COLON [Identifier (COMMA Identifier)∗]

Initial Process

In each model an initial process must be defined. Optionally, a list of parameter expressions is
given. These parameters are used to instantiate the process.

Initial_Process ::= INITIAL Identifier [ParameterList]

Process Definition

Processes can be defined in a process definition. An example of the mathematical representation
of a process definition can be found in Example A.3.1.

Example A.3.1 (BHPC Process Definition).

BB(h0, v0) , [h, v | Φ(h0, v0) ⇓ h = 0] .BB(0,−c ∗ v)

Where:

• BB Name for the defined process
• (h0, v0) Parameters for the defined process
• , Start of the process definition
• [h, v | Φ(h0, v0) ⇓ h = 0] . BHPC expression for a trajectory prefix operator
• BB(0,−c ∗ v) Reference (recursion) to a process named BB,

with parameters(0,−c ∗ v)

�

The ASCII representation of the process definition is preceded by the keyword “proc” and
contains the ASCII representation for all mathematical symbols.

ProcessDefinition ::= PROC Identifier [ParameterList] EQDEF ProcessExpr

95

A.3. S

Trajectory Set Definition

Trajectory sets can be defined in a trajectory set definition. An example of the mathematical
representation of a trajectory set definition can be found in Example A.3.2.

Example A.3.2 (BHPC Trajectory Set Definition).

Φ(h0, v0) = {h, v : (0, t]→ R | h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

Where:

• Φ Name for the defined trajectory set
• (h0, v0) Parameters for the trajectory set
• = Start of the set definition
• h, v : (0, t]→ R Trajectories h and v
• h(0) = h0, v(0) = v0 Expressions (Assignments)
• ḣ = v, v̇ = −g Expressions (Differential equations)
• h > 0 Expression (Guard)

�

The ASCII representation of the trajectory set definition is preceded by the keyword “tset” and
contains the ASCII representation for all mathematical symbols.

TSet_Definition ::= TSET Identifier [ParameterList] EQ

LCURLY (Trajectory)∗

[PIPE Expression (COMMA Expression)∗]

RCURLY

BHPC process expressions

BHPC processes are all kind of expressions that can be made using the BHPC syntax given in
Chapter 2.3.

ProcessExpr ::= Stop ActionPrefix TrajectoryPrefix Guard Choice

ParallelComposition Hiding Renaming Recursion

96

A. BHPC M L

Stop ::= STOP

ActionPrefix ::= Action SEQC ProcessExpr

TrajectoryPrefix ::= TrajectoryPrefixOp ProcessExpr

Guard ::= LANGLE Expression RANGLE SEQC ProcessExpr

Choice ::= ProcessExpr (CHOICE ProcessExpr)+

ParallelComposition ::= ProcessExpr PIPE NSet COMMA NSet PIPE ProcessExpr

Hiding ::= NEW NSet SEQC ProcessExpr

Renaming ::= ProcessExpr LBRACK RenamingMap RBRACK

Recursion ::= Identifier [ParameterList]

These rules are a straightforward translation into ASCII. Note that we only have binary choice.

Action

An action consists of a name and optionally a list of parameters can be given.

Action ::= Identifier [ParameterList]

Renaming Map

The renaming map may be empty or contain one or more comma separated renaming elements.

RenamingMap ::= LBRACK

[RenamingElement (COMMA RenameElement)∗]

RBRACK

Renaming Element

A renaming element contains the renaming for an action or qualifier. The old name is preceded
by a slash and the new name.

RenamingElement ::= Identifier SLASH Identifier

Name Set

The name set is used as a container for actions and qualifiers. A name set can appear in parallel
composition as container for the synchronising names, or in hiding as container for the internal
names. The set may be empty or contain one or more comma separated elements.

97

A.3. S

NSet ::= LCURLY [Identifier (COMMA Identifier)∗] RCURLY

Trajectory Prefix Operator

There are two types of trajectory prefix operators: simple trajectory prefix operators and symbolic
trajectory prefix operators. The simple trajectory prefix operator (e.g.

[
ϕ
]
.) contains a trajectory

and the symbolic trajectory operator (e.g. [h, v | Φ(h0, v0) ⇓ h = 0] .) consists of one or more
(comma separated) qualifiers and a reference to a trajectory set. Optionally restrictions and exit
conditions can be added to the trajectory set reference.

TrajectoryPrefix ::= SimplePrefix SymbPrefix

SimpelPrefix ::= LBRACK Trajectory RBRACK

SymbPrefix ::= LBRACK Qualifier (COMMA Qualifier)∗

PIPE TsetReference RBRACK

Trajectory

A trajectory is a mapping of a time interval to signals of the signal space, e.g. (ϕW : (0, t] →
W1 × · · · ×Wn). One or more qualifiers can be associated with the same mapping. This is the case
in the trajectory set definition we gave earlier

Φ(h0, v0) = {h, v : (0, t]→ R | h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

where both h and v are associated with the same trajectory.

Trajectory ::= Identifier (COMMA Identifier)∗

COLON DurationDomain TO SignalDomain

TSetReference

A trajectory set reference is part of the symbolic trajectory prefix operator and refers to a trajectory
set definition. Reference is made by the name of the trajectory set definition and optionally some
parameters. It is possible to define restrictions and exit conditions for the trajectory set.

TsetReference ::= Identifier [Parameters]

[RESTRICT Expression (COMMA Expression)∗]

[EXIT Expression (COMMA Expression)∗]

98

A. BHPC M L

Parameters

Parameter lists are enclosed in brackets and consist of one or more parameter names.

ParameterList ::= LPAREN Identifier (COMMA Identifier)∗ RPAREN

Identifiers

Actions, qualifiers, process identifiers, parameters and signalnames are all identifiers. Identifiers
can be any string of at least one letter, followed by any number of letters and numbers.

Identifier ::=
(
’a’..’z’ ’A’..’Z’

) (
’a’..’z’ ’A’..’Z’ ’0’..’9’ ’_’

)∗
Expressions

Basic expressions, Guards, assignment are all expressions. The exact definition of expressions is
left open for future developments for hybrid simulation.

Duration domain

The duration domain is a left open interval that defines the begin and end time for the trajectory.
The exact definition of this domain is left open for future developments for hybrid simulation.

Signal domain

The signal domain is the domain to which signals are mapped. The exact definition of this
domain is left open for future developments for hybrid simulation.

A.4 Language keywords & symbols

In Table A.3 the BHPC modelling language keywords and symbols for all used grammar tokens
are presented. There are no mathematical representations for the keywords with which the
BHPC modelling language extends the calculus.

99

A.4. L  & 

Grammar Terminal ASCII Representation Mathematical representation
ACTION actions
BECOMES := :=
CHOICE + +
COLON : :
COMMA , ,
CONST constants
EQ = =
EQDEF ^= ,
LANGLE < 〈

LBRACE { {

LBRACK [[
LPAREN ((
INITIAL initial
NEW new new
PIPE | |

PROC proc
SLASH / /
QUAL qualifiers
RANGLE > 〉

RBRACE } }

RBRACK]]
RPAREN))
SEQC . .
STOP stop 0
TO -> →

TSET tset

Table A.3: Language keywords and symbols

100

B
Menu Calculation

Table 3.2 contains the definition for MNFfor all BHPC expressions. In this Appendix we give
derivations for all definitions from the table. Note that these derivation are based on BHPC
semantics. For convenience we repeat the definition of MNF for BHPC first.

Definition B.0.1 (MNF for BHPC). Let B be the set of BHPC process expressions, a ∈ A be
an action and T be the set of simulation steps. Then we define the function MNF : B→ T

MNF(B) = {(a.B′) | B a
−→ B′}

�

Stop (0)

MNF(0) = {(a.B′) | 0 a
−→ B′}

and since 09, we have

MNF(0) = ∅

Action Prefix (a.B)

MNF(a.B) = {(a.B′) | a.B a
−→ B′}

and since
a.B a
−→ B

MNF(a.B) = {(a.B)}

101

Choice (
∑
v∈I

B(v))

MNF(
∑
v∈I

B(v)) = {(a.B′) |
∑
v∈I

B(v) a
−→ B′}

and since

B(w) a
−→ B′∑

v∈I
B(v) a

−→ B′
w ∈ I (B.1a)

for each component of the choice, we have that the choice of the components can
evolve.

MNF(
∑
v∈I

B(v)) =
⋃
v∈I

{(a.B′) | B(v) a
−→ B′}

=
⋃
v∈I

MNF(B(v))

Parallel Composition (B ‖HA C)
Where B =

⊕
i∈I

bi.Bi and C =
⊕
k∈K

ck.Ck

MNF(B ‖HA C)

= MNF

(∑
i∈I

bi<A

bi.(Bi ‖
H
A C) +

∑
k∈K
ck<A

ck.(B ‖HA Ck) +
∑

i∈I,k∈K
bi∈A,
bi=ck

bi.(Bi ‖
H
A Ck)

)
(B.2)

= MNF

(⊕
i∈I

bi<A

bi.
(
Bi ‖

H
A C

))
(B.3)

∪ MNF

(⊕
k∈K
ck<A

ck.
(
B ‖HA Ck

))
(B.4)

∪ MNF

(⊕
a=bi=ck

a∈A

a.
(
Bi ‖

H
A Ck

))
(B.5)

B.2 is based on application of the expansion law (Theorem 2.4.2). B.3, B.4,B.5 are based on
application of MNF for choice.

Recursion (P)

MNF(P) = {(a.B′) | P a
−→ B′}

and since

B a
−→ B′

P a
−→ B′

P , B

MNF(P) = {(a.B′) | B a
−→ B′} , where P , B

= MNF(B) , where P , B

102

B. M C

Renaming (B [σ])

MNF(B [σ]) = {(a.B′) | B [σ] a
−→ B′}

using

B a
−→ B′

B[σ]
σ(a)
−−→ B′[σ]

MNF(B [σ]) = {(σ(a).B′ [σ]) | B a
−→ B′}

= [σ] MNF(B)

Guard (〈Pred〉.B)

MNF(〈Pred〉.B) = {(a.B′) | 〈Pred〉.B a
−→ B′}

and since

B a
−→ B′

〈Pred〉.B a
−→ B′

|= Pred (B.6a)

MNF(〈Pred〉.B) =

{
{(a.B′) | B a

−→ B′} , if Guard is satisfied
∅ , otherwise

=

{
MNF(B) , if Guard is satisfied
∅ , otherwise

Hiding (new w.B)
In essence hiding is a renaming function where all element of the hiding vector are renamed to τ
(B.7). Hence we will use the MNF definition of renaming in the derivation for hiding (B.8).
Let the hiding vector new w = [a1, . . . ,an].

MNF(new w.B) = MNF

(
B [τ/a1, . . . , τ/a1]

)
(B.7)

= [τ/a1, . . . , τ/a1] MNF(B) (B.8)

103

C
Internal Specification

In this appendix we present the internal representation of BHPC models in XML. First we give
an informal description of the internal format in Appendix C.1. Then we present the validated
XML scheme representation in Appendix C.2. For an example of internal XML format we refer
to Appedix E, where this representation is used in the simulation trace.

C.1 Informal XML description

The representation is given by XML fragments that are depicted within in boxes. Each XML
fragment is labelled outside its box and references to (other) XML fragments may appear within
its box. Figure C.1 depicts three labelled XML fragments.

#EXAMPLE
<test>
#TEST1 ∗

#TEST2 +

</test>

#TEST1
<test1> one </test1>

#TEST2
<test2> two </test2>

<test>
<test1> one </test1>
<test1> one </test1>
<test2> two </test2>

</test>

Figure C.1: XML fragments (left) and a possible insertion of references (right).

105

C.1. I XML 

Within the first box the XML fragment for #EXAMPLE is given. According to the XML fragment,
an #EXAMPLE fragment is enclosed by test tags. Within the test tags there are two references to
other XML fragments. A reference represents the insertion of another XML fragment. The first
reference may be inserted zero or more times (#TEST1 ∗), the second reference must be inserted
at least once (#TEST2 +). In the right side of Figure C.1 the fragment for TEST1 and TEST2 has
been inserted into EXAMPLE twice and once respectively.

C.1.1 BHPC model

#MODEL

<bhpc>
#CONST_DEF
#ACTION_DEF
#QUAL_DEF)
#INITIAL_PROCESS
(#PROCESS_DEFINITION) ∗

(#TSET_DEFINITION) ∗

</bhpc>

#CONST_DEF

<constantdef>
(#CONSTANT) ∗

</constantdef>

#CONSTANT

<constant>
#IDENTIFIER
#EXPRESSION

</constant>

#ACTION_DEF

<actiondef>
(#IDENTIFIER) ∗

</actiondef>

#QUAL_DEF

<qualifierdef>
(#IDENTIFIER) ∗

</qualifierdef>

106

C. I S

#INITIAL_PROCESS

<initialprocess>
#IDENTIFIER
#PARAMETERS

</initialprocess>

#PROCESS_DEFINITION

<processdefinition>
#IDENTIFIER
#PARAMETERS
<behaviourexpression>
#PROCESS

</behaviourexpression>
</processdefinition>

#TSET_DEFINITION

<tsetdefinition>
#IDENTIFIER
#PARAMETERS
#TRAJECTORY ∗

#CONDITIONS
</tsetdefinition>

#PROCESS

STOP: PROCESS
<stop> 0 </stop>

ACTION_PREFIX: PROCESS
<actionprefix>
#IDENTIFIER
#PARAMETERS
#PROCESS

</actionprefix>

TRAJECTORY_PREFIX: PROCESS
<trajectoryprefix>
#TPREFIXOP
#PROCESS

</trajectoryprefix>

GUARD: PROCESS
<guard>
#PROCESS
#EXPRESSION

</guard>

107

C.1. I XML 

CHOICE: PROCESS
<choice>
#PROCESS
#PROCESS

</choice>

PARALLEL_COMPOSITION: PROCESS
<parallelcomposition>
#PROCESS
#PROCESS
#SET

</parallelcomposition>

HIDING: PROCESS
<hiding>
#PROCESS
#SET

</hiding>

RENAMING: PROCESS
<renaming>
#PROCESS
#MAP

</renaming>

RECURSION: PROCESS
<recursion>
#IDENTIFIER
#PARAMETERS

</recursion>

#SET

<set>
(#IDENTIFIER) ∗

</set>

#MAP

<map>
(#MAPITEM) ∗

</map>

#MAPITEM

<mapitem>
<old> #NAME </old>
<new> #NAME </new>

</mapitem>

108

C. I S

#TPREFIXOP

TRAJPREFIX: TPREFIXOP
<trajprefix>
#TRAJECTORY

</trajprefix>

SYMBPREFIX: TPREFIX
<symbprefix>
(#IDENTIFIER) ∗

#TSET_REFERENCE
</symbprefix>

#TRAJECTORY.

TRAJECTORY: TRAJECTORY
<trajectory>
(#IDENTIFIER) +

#MAPPING
</trajectory>

#TSET_REFERENCE

<tsetreference>
#IDENTIFIER
#PARAMETERS
#RESTRICTIONS
#EXITCONDITIONS

</tsetreference>

#PARAMETERS.

<parameters> (#EXPRESSION) ∗ </parameters>

#IDENTIFIER

<name> spelling </name>

C.1.2 Fragments for future design

The following fragments are irrelevant for discrete simulation and therefore left open as future
work.

#MAPPING

<mapping> spelling </mapping>

109

C.2. XML 

#EXPRESSION

<expression> spelling </expression>

#RESTRICTIONS

<restrictions> spelling </restrictions>

#EXITCONDITIONS

<exitconditions> spelling </exitconditions>

#CONDITIONS

<conditions> spelling </conditions>

C.2 XML scheme

The following XML scheme has been validated in http://www.w3.org/2001/03/webdata/xsv.
Elements that are not fully designed can be found as “unfinished elements”. For this project the
contents of these elements is not relevant and is represented by a string.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="Bhave"
xmlns="Bhave"
elementFormDefault="qualified">

<!-- SIMPLE ELEMENTS -->

<xs:element name="old" type="xs:string"/>
<xs:element name="new" type="xs:string"/>

<!-- UNFINISHED ELEMENTS -->

<xs:element name="mapping" type="xs:string"/>
<xs:element name="expression" type="xs:string"/>
<xs:element name="restrictions" type="xs:string"/>
<xs:element name="exitconditions" type="xs:string"/>
<xs:element name="conditions" type="xs:string"/>

<!-- COMPLEX ELEMENTS -->

110

http://www.w3.org/2001/03/webdata/xsv

C. I S

<xs:element name="bhpc">
<xs:complexType>
<xs:sequence>
<xs:element ref="constantdef" />
<xs:element ref="actiondef" />
<xs:element ref="qualifierdef" />
<xs:element ref="initialprocess" />
<xs:element ref="processdefinition" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="tsetdefinition" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element> <!-- constant definition tag -->

<xs:element name="constantdef">
<xs:complexType>
<xs:sequence>
<xs:element ref="constant" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element> <!-- constant definition tag -->

<xs:element name="constant">
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" />
<xs:element ref="expression" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- constant tag -->

<xs:element name="actiondef">
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="qualifierdef" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element> <!-- qualifier definition tag -->

111

C.2. XML 

<xs:element name="initialprocess" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" />
<xs:element ref="parameters" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- initial process tag -->

<xs:element name="processdefinition" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" />
<xs:element ref="parameters" />
<xs:element name="behaviourexpression" >
<xs:complexType>
<xs:sequence>
<xs:element ref="process" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element> <!-- process definition tag -->

<xs:element name="tsetdefinition" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" />
<xs:element ref="parameters"/>
<xs:element ref="trajectory" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="conditions" >
<xs:complexType>
<xs:all>
<xs:element ref="expression" />

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element> <!-- trajectory set definition tag -->

<xs:element name="process" >
<xs:complexType>
<xs:choice>
<xs:element ref="stop" />
<xs:element ref="actionprefix" />
<xs:element ref="trajectoryprefix" />

112

C. I S

<xs:element ref="guard" />
<xs:element ref="choice" />
<xs:element ref="parallelcomposition" />
<xs:element ref="hiding" />
<xs:element ref="renaming" />
<xs:element ref="recursion" />

</xs:choice>
</xs:complexType>

</xs:element> <!-- process tag -->

<xs:element name="stop" type="xs:string"/>

<xs:element name="actionprefix" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" />
<xs:element ref="parameters" />
<xs:element ref="process" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- action prefix tag -->

<xs:element name="trajectoryprefix" >
<xs:complexType>
<xs:sequence>
<xs:element ref="tprefixOp" />
<xs:element ref="process" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- trajectory prefix tag -->

<xs:element name="guard" >
<xs:complexType>
<xs:sequence>
<xs:element ref="process" />
<xs:element ref="expression" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- guard tag -->

<xs:element name="choice" >
<xs:complexType>
<xs:sequence>
<xs:element ref="process" />
<xs:element ref="process" />

</xs:sequence>

113

C.2. XML 

</xs:complexType>
</xs:element> <!-- choice tag -->

<xs:element name="parallelcomposition" >
<xs:complexType>
<xs:sequence>
<xs:element ref="process" />
<xs:element ref="set" />
<xs:element ref="process" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- parallelcomposition tag -->

<xs:element name="hiding" >
<xs:complexType>
<xs:sequence>
<xs:element ref="process" />
<xs:element ref="set" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- hiding tag -->

<xs:element name="renaming" >
<xs:complexType>
<xs:sequence>
<xs:element ref="process" />
<xs:element ref="map" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- renaming tag -->

<xs:element name="recursion" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" />
<xs:element ref="parameters"/>

</xs:sequence>
</xs:complexType>

</xs:element> <!-- recursion tag -->

<xs:element name="map" >
<xs:complexType>
<xs:sequence>
<xs:element name="mapitem" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

114

C. I S

<xs:element ref="old" />
<xs:element ref="new" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element> <!-- map tag -->

<xs:element name="set" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element> <!-- set tag -->

<xs:element name="tprefixOp" >
<xs:complexType>
<xs:choice>
<xs:element ref="trajprefix" />
<xs:element ref="symbprefix" />

</xs:choice>
</xs:complexType>

</xs:element> <!-- trajectory prefix operator tag -->

<xs:element name="trajprefix" >
<xs:complexType>
<xs:all>
<xs:element ref="trajectory" />

</xs:all>
</xs:complexType>

</xs:element> <!-- traj prefix tag -->

<xs:element name="symbprefix" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="tsetreference" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- trajectory set reference tag -->

<xs:element name="trajectory" >
<xs:complexType>
<xs:sequence>

115

C.2. XML 

<xs:element ref="identifier" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="mapping" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- trajectory tag -->

<xs:element name="tsetreference" >
<xs:complexType>
<xs:sequence>
<xs:element ref="identifier" />
<xs:element ref="parameters" />
<xs:element ref="restrictions" />
<xs:element ref="exitconditions" />

</xs:sequence>
</xs:complexType>

</xs:element> <!-- tsetrefrence tag -->

<xs:element name="parameters">
<xs:complexType>
<xs:sequence>
<xs:element ref="expression" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="identifier">
<xs:complexType>
<xs:all>
<xs:element name="name" type="xs:string"/>

</xs:all>
</xs:complexType>

</xs:element>

</xs:schema>

116

D
Software Architecture

This appendix globally describes the software structure for the discrete engine. For
a detailed description of all procedures we refer to the tool documentation 1. In this
appendix we shall describe all packages developed for the prototype for Discrete Bhave.
A high level overview of these packages is given in Figure D.1. The figure shows two
packages, namely the Event Routines Package and the package for the discrete engine,
the Discrete Bhave package. Recall that the Discrete Bhave package uses the Event
Routines package to determine the set of simulation steps.

Figure D.1: High level view.

First we shall describe the Discrete Bhave package in Section D.1. In Section D.2 we
will describe the Event Routines package. The process package, which is part of the
Discrete Bhave package, is described in Section D.3.

D.1 Discrete Bhave Package

The architecture for the Discrete Bhave package is depicted in Figure D.2.

1http://fmt.cs.utwente.nl/tools/bhave/

117

http://fmt.cs.utwente.nl/tools/bhave/

D.1. D B P

Discrete Bhave

+Start()
+Initialise()
+Simulate()
+Menu()
+Next()
+Select()
+printMenuHeader()
+printMenuContents()
+printMenuFooter()

-simMode
-simDuration
-model
-currState

Engine

Event
Routines

Process

+setName()
+setType()
+getName()
+getType()
+print()
+toString()

-type
-name
-duration

Event

+Time = time
+Process = proc
+SignalSpace = space

«enumeration»
EngineState

Figure D.2: Discrete Bhave Package.

The engine package consists of the following components

Engine Class The Engine class contains procedures and attributes for simulation.
The Simulate procedure implements the simulation algorithm. Menu uses the Event
Routine package to determine the set of simulation steps. The print procedures support
depiction of the list of simulation steps determined by Menu.

EngineState Enumeration Enumeration EngineState has a time, process expression
and signal space component and represents the engine state.

118

D. S A

Event Class The Event class is the class that represents actions and abstracted
trajectories in the discrete engine. In future developments, this class can also be used
for trajectories.

Process Package The process package contains classes for all processes and an XML
parser.

D.2 Event Routine Package

The Event Routine Package is responsible of handling events following BHPC semantics.
The architecture of this package is depicted in Figure D.3. The EventHandler class
contains all necessary procedures for Menu calculation.

+getMenu()
+menu()
+NF()
+NFstop()
+NFaprefix()
+NFtprefix()
+NFguard()
+NFchoice()
+NFparcomp()
+NFrenaming()
+NFhiding()
+NFrecursion()
+applyRenaming()

-menuList : MenuItem
EventHandler

+Event = event
+Process = proc

«enumeration»
MenuItem

Figure D.3: Event Routines Package.

Procedure description

getMenu Returns the list of simulation steps determined by Menu for the given process.
GetMenu is called by the Engine class Menu procedure.

menu Converts a list of action prefix processes into a list of simulation steps. The list
of action prefix process is determined by NF.

NF procedures Normal form procedures decompose a process expression into a list
of action prefix processes. The procedure NF checks the type of the current
expression and invokes the related NF procedure to decompose this process
type. For example, when the NF procedure detects an action prefix, NFaprefix is
invoked.

119

D.3. P P

applyRenaming Given an action and a renaming map, it returns the renamed action,
or the original action in case no renaming for this action is defined in the action
map.

D.3 Process Package

The process package contains classes for all processes, the XML parser package TinyXML
and a ProcessParser class. TinyXML is the XML parser package that is freely available 2.
Process class procedures call procedures from the ProcessParser for parser interaction.
The ProcessParser is a collection of procedures that use the TinyXML parser. For
replacement of the TinyXML parser only the ProcessParser class needs to be adapted.
Figure D.4 depicts the Process Package.

2http://sourceforge.net/projects/tinyxml

120

http://sourceforge.net/projects/tinyxml

D. S A

+s
et

In
iti

al
P

ro
c(

)
+g

et
Fi

rs
tP

ro
cT

yp
e(

)
+g

et
M

od
el

()
+s

et
M

od
el

()
+g

et
B

eh
av

io
ur

Ex
pr

()
+s

et
B

eh
av

io
ur

Ex
pr

()
+p

rin
t()

-n
am

e
-p

ar
am

et
er

s
-m

od
el

-b

eh
av

io
ur

Ex
pr

Pr
oc

es

Ti
Xm

l

+a
bs

tra
ct

B
eh

av
io

ur
()

+c
re

at
eE

xp
an

si
on

()
+e

xt
ra

ct
Pr

oc
es

s(
)

+g
et

A
ct

io
nN

am
e(

)
+g

et
A

ct
io

nP
ro

ce
ss

()
+g

et
C

ho
ic

es
()

+g
et

E
xp

r(
)

+g
et

Fi
rs

tP
ro

cT
yp

e(
)

+g
et

H
id

in
gD

oc
()

+g
et

H
id

in
gM

ap
()

+g
et

In
itB

eh
av

io
ur

()
+g

et
Le

ftP
ro

ce
ss

()
+g

et
P

ro
cD

ef
in

iti
on

()
+g

et
R

ec
ur

si
on

N
am

e(
)

+g
et

R
en

am
in

gD
oc

()
+g

et
R

en
am

in
gM

ap
()

+g
et

R
ig

ht
P

ro
ce

ss
()

+g
et

S
yn

ch
D

oc
()

+g
et

S
yn

ch
Se

t()
+i

ns
ta

nt
ia

te
Pr

oc
()

+s
hi

ftH
id

in
g(

)
+s

hi
ftR

en
am

in
g(

)

Pr
oc

es
sP

ar
se

r

+g
et

A
ct

io
n(

)
+g

et
P

ro
ce

ss
()

+a
pp

ly
H

id
in

g(
)

+a
pp

ly
R

en
am

in
g(

)

A
ct

io
nP

re
fix

+g
et

Pr
oc

es
s(

)

G
ua

rd

+g
et

Pr
oc

es
s(

)
+g

et
H

id
in

gM
ap

()
+g

et
H

id
in

gD
oc

()

H
id

in
g

+g
et

Le
ftP

ro
ce

ss
()

+g
et

R
ig

ht
Pr

oc
es

s(
)

+c
re

at
eE

xp
an

si
on

()
+i

sS
yn

ch
E

ve
nt

()

Pa
ra

lle
lC

om
po

si
tio

n

+g
et

C
ho

ic
es

()

C
ho

ic
e

+g
et

Pr
oc

es
s(

)
+g

et
R

en
am

in
gM

ap
()

+g
et

R
en

am
in

gD
oc

()

R
en

am
in

g

«s
ig

na
l»

-in
st

an
tia

te
()

R
ec

ur
si

on

+a
bs

tra
ct

()

Tr
aj

ec
to

ry
Pr

ef
ix

Figure D.4: Process Package.

121

E
Simulating Extended Bouncing Ball

We use the extended bouncing ball from Chapter 2.6. In this example the hybrid system
consists of a bouncing ball and controller which are in a parallel composition. The
bouncing ball process models a bouncing ball that loses kinetic energy while bouncing,
while the controller compensates for the loss of energy and pushes the ball.

Initially the ball loses height, until the floor is reached (h = 0) while the controller is
idling. At that moment BB and Controller synchronize on bounce. Then the ball gains
height, until all energy is used (v = 0) while the controller is idling again. At that time
they synchronize on push and the controller pushes the ball back to the floor and the
whole cycle starts over again.

E.1 BHPC model

BB(h0, v0)) , [h, v | Φ(h0, v0)) ⇓ h = 0] .bounce(c : [0, 1]).
[h, v | Φ(0,−cv) ⇓ v = 0] .push(v : R).BB(h, v)

Control(v0) , idle.bounce(c : [0, 1]).
idle.push ((1 − c) v) .Control ((1 − c) v)

System(h, v) , BB(h0, v0) ‖v0
push,bounce Control(v0)

123

E.2. ASCII 

E.2 ASCII model

In which we let a ball drop (v = 0) from 10 metres (h = 10). The ball is a bouncing ball
that loses 30% of its kinetic energy (c = 0.7).

constants: (c,0.7), (g,9.8)
qualifiers: h,v
initial System(10,0)
proc System(h,v) ^= BB(h_0,v_0) ||{v_0}{push,bounce} Control(v_0)
proc BB (h_0,v_0) ^= [h,v | tset phi(h_0,v_0) exit h=0] . bounce (c:0,1] .

[h,v | tset phi(0,-c*v) exit v=0] . push (v:RR] . BB(h,v)
proc Control(v_0) ^= idle . bounce(c:[0,1]) .

idle . push((1-c)*v) . Control((1-c)*v)
tset phi (h_0,v_0) = {h,v:(0,t]->RR |

h(0)=h_0, v(0)=v_0, der(h)=v, der(v)=-g , h>=0 }

E.3 Trace

The trace for the extended bouncing ball example is

(@,bounce,@,push)∗

The engine trace is given in the following (part of the) output file.

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<recursion>
<name>BB</name>
<parameters>

<expression>h_0</expression>
<expression>v_0</expression>

</parameters>
</recursion>

</process>
<process>

<recursion>
<name>Control</name>
<expression>v_0</expression>

</recursion>
</process>
<set>

<name>v_0</name>
<name>push</name>

124

E. S E B B

<name>bounce</name>
</set>

</parallelcomposition>
</process>

</behaviourexpression>

EVENT: @ (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<actionprefix>
<name>bounce</name>
<parameters>

<expression>c:[0,1]</expression>
</parameters>
<process>

<trajectoryprefix>
<tprefixOp>

<symbOp>
<tsetreference>

<name>Phi</name>
<parameters>

<expression>0</expression>
<expression>c*v</expression>

</parameters>
<restrictions />
<exitconditions>v=0</exitconditions>

</tsetreference>
</symbOp>

</tprefixOp>
<process>

<actionprefix>
<name>push</name>
<parameter>v:RR</parameter>
<process>

<recursion>
<name>BB</name>
<parameters>

<expression>h</expression>
<expression>v</expression>

</parameters>
</recursion>

</process>
</actionprefix>

</process>
</trajectoryprefix>

</process>

125

E.3. T

</actionprefix>
</process>
<process>

<actionprefix>
<name>bounce</name>
<parameters>

<expression>c:[0,1]</expression>
</parameters>
<process>

<trajectoryprefix>
<tprefixOp>

<idle />
</tprefixOp>
<process>

<actionprefix>
<name>push</name>
<parameters>

<expression>(1-c)*v</expression>
</parameters>
<process>

<recursion>
<name>Control</name>
<parameters>

<expression>v_0</expression>
</parameters>

</recursion>
</process>

</actionprefix>
</process>

</trajectoryprefix>
</process>

</actionprefix>
</process>
<set>

<name>v_0</name>
<name>push</name>
<name>bounce</name>

</set>
</parallelcomposition>

</process>
</behaviourexpression>

EVENT: bounce (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<trajectoryprefix>

126

E. S E B B

<tprefixOp>
<symbOp>

<tsetreference>
<name>Phi</name>
<parameters>

<expression>0</expression>
<expression>c*v</expression>

</parameters>
<restrictions />
<exitconditions>v=0</exitconditions>

</tsetreference>
</symbOp>

</tprefixOp>
<process>

<actionprefix>
<name>push</name>
<parameter>v:RR</parameter>
<process>

<recursion>
<name>BB</name>
<parameters>

<expression>h</expression>
<expression>v</expression>

</parameters>
</recursion>

</process>
</actionprefix>

</process>
</trajectoryprefix>

</process>
<process>

<trajectoryprefix>
<tprefixOp>

<idle />
</tprefixOp>
<process>

<actionprefix>
<name>push</name>
<parameters>

<expression>(1-c)*v</expression>
</parameters>
<process>

<recursion>
<name>Control</name>
<parameters>

<expression>v_0</expression>
</parameters>

</recursion>
</process>

</actionprefix>
</process>

127

E.3. T

</trajectoryprefix>
</process>
<set>

<name>v_0</name>
<name>push</name>
<name>bounce</name>

</set>
</parallelcomposition>

</process>
</behaviourexpression>

EVENT: @ (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<actionprefix>
<name>push</name>
<parameter>v:RR</parameter>
<process>

<recursion>
<name>BB</name>
<parameters>

<expression>h</expression>
<expression>v</expression>

</parameters>
</recursion>

</process>
</actionprefix>

</process>
<process>

<actionprefix>
<name>push</name>
<parameters>

<expression>(1-c)*v</expression>
</parameters>
<process>

<recursion>
<name>Control</name>
<parameters>

<expression>v_0</expression>
</parameters>

</recursion>
</process>

</actionprefix>
</process>
<set>

<name>v_0</name>

128

E. S E B B

<name>push</name>
<name>bounce</name>

</set>
</parallelcomposition>

</process>
</behaviourexpression>

EVENT: push (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<recursion>
<name>BB</name>
<parameters>

<expression>h</expression>
<expression>v</expression>

</parameters>
</recursion>

</process>
<process>

<recursion>
<name>Control</name>
<parameters>

<expression>v_0</expression>
</parameters>

</recursion>
</process>
<set>

<name>v_0</name>
<name>push</name>
<name>bounce</name>

</set>
</parallelcomposition>

</process>
</behaviourexpression>

EVENT: @ (action)

ENGINE STATE PROCESS

<behaviourexpression>
<process>

<parallelcomposition>
<process>

<actionprefix>
<name>bounce</name>
<parameters>

129

E.3. T

<expression>c:[0,1]</expression>
</parameters>
<process>

<trajectoryprefix>
<tprefixOp>

<symbOp>
<tsetreference>

<name>Phi</name>
<parameters>

<expression>0</expression>
<expression>c*v</expression>

</parameters>
<restrictions />
<exitconditions>v=0</exitconditions>

</tsetreference>
</symbOp>

</tprefixOp>
<process>

<actionprefix>
<name>push</name>
<parameter>v:RR</parameter>
<process>

<recursion>
<name>BB</name>
<parameters>

<expression>h</expression>
<expression>v</expression>

</parameters>
</recursion>

</process>
</actionprefix>

</process>
</trajectoryprefix>

</process>
</actionprefix>

</process>
<process>

<actionprefix>
<name>bounce</name>
<parameters>

<expression>c:[0,1]</expression>
</parameters>
<process>

<trajectoryprefix>
<tprefixOp>

<idle />
</tprefixOp>
<process>

<actionprefix>
<name>push</name>
<parameters>

130

E. S E B B

<expression>(1-c)*v</expression>
</parameters>
<process>

<recursion>
<name>Control</name>
<parameters>

<expression>v_0</expression>
</parameters>

</recursion>
</process>

</actionprefix>
</process>

</trajectoryprefix>
</process>

</actionprefix>
</process>
<set>

<name>v_0</name>
<name>push</name>
<name>bounce</name>

</set>
</parallelcomposition>

</process>
</behaviourexpression>

...

131

F
User Manual

The directory “Discrete Bhave” contains the discrete engine “engine.exe” and a di-
rectory for the models, named “Models”. The engine comes with a build-in XML parser
and no additional parsers are needed. To use the engine, just copy the “Discrete Bhave”
directory to a convenient location on your computer.

F.1 Start simulation

1. Use “cmd.exe” to run the tool from by selecting “start” and then “run”, type
“cmd” and press enter.

2. Switch in “cmd.exe” to the “Discrete Bhave” directory location by using
the “cd” command. Suppose the path to the “Discrete Bhave” directory is
“yourPathTo\DiscreteBhave”, then “cd yourPathTo\DiscreteBhave” should
set your prompt to “yourPathTo\DiscreteBhave>”.

3. Run the engine from the prompt
“yourPathTo\DiscreteBhave>.\Engine.exe Models\yourModel.xml manual 0”
where “yourModel.xml“ is the model of your choice from the “Models” directory.

Normally the BHPC model is then loaded and a menu appears. When there are
problems with the arguments to run the engine, a message appears that states the
correct use of arguments. Problems could occur in case the model could not be found,
which is indicated by a “Model could not be loaded” message. Finally when a
model without initial process is loaded, a “No initial process could be found”
message is given.

133

F.2. E 

F.2 Event selection

Events can be selected from the menu.

MENU

0: STOP SIMULATION
1: @ (action)

Choose an option:

_

Is an example of a menu. In each menu the first option (option 0), is the option to stop
simulation. All other options are options determined by the engine, like option 1 for
abstraction in this menu. By typing the identifier for the option and pressing enter the
option is selected and executed. Then the menu is calculated for the new engine state.
If there are no transitions to take, simulation is stopped automatically.

134

	1 Introduction
	1.1 Modelling hybrid systems
	1.2 Hybrid system analysis
	1.3 Goals
	1.4 Methodology
	1.5 Contribution
	1.6 Outline

	2 Behavioural Hybrid Process Calculus
	2.1 Trajectories
	2.2 Hybrid transition systems
	2.2.1 Bisimulation

	2.3 Language and operational semantics
	2.3.1 Language
	2.3.2 Operational semantics of BHPC
	2.3.3 Congruence property

	2.4 Expansion law
	2.5 Derived BHPC operators
	2.5.1 Parametrisation of action prefix
	2.5.2 Idling
	2.5.3 Delays
	2.5.4 Guard

	2.6 Application of BHPC
	2.6.1 Bouncing ball
	2.6.2 Thermostat

	2.7 Conclusions

	3 Discrete Simulation
	3.1 Simulation
	3.2 Language
	3.3 Abstraction
	3.3.1 Internal abstraction
	3.3.2 Observable abstraction

	3.4 Engine state
	3.4.1 Start & end states

	3.5 Engine state transitions
	3.5.1 Menu calculation
	3.5.2 Execution of transition steps

	3.6 Discrete engine
	3.7 Conclusions

	4 Design & Implementation
	4.1 Discrete Bhave architecture
	4.2 Decomposition of the engine
	4.2.1 Engine procedures
	4.2.2 Data types
	4.2.3 Software architecture

	4.3 Technical details
	4.3.1 Communication

	4.4 Engine procedures
	4.4.1 Data types
	4.4.2 Simulation algorithm
	4.4.3 Initialisation procedure
	4.4.4 Menu procedure
	4.4.5 Selection procedure
	4.4.6 Next procedure

	4.5 Event routines
	4.5.1 Menu
	4.5.2 MenuNF
	4.5.3 NFstop
	4.5.4 NFaprefix
	4.5.5 NFtprefix
	4.5.6 NFguard
	4.5.7 NFchoice
	4.5.8 NFrenaming
	4.5.9 NFhiding
	4.5.10 NFrecursion
	4.5.11 NFparcomp

	4.6 Conclusions

	5 Simulation Example
	5.1 Model
	5.2 Trace
	5.3 Conclusions

	6 Towards Hybrid Simulation
	6.1 Hybrid engine
	6.1.1 Engine State Transitions
	6.1.2 Hybrid engine

	6.2 Design
	6.3 Visualisation
	6.3.1 Basic MSP
	6.3.2 Event-lines
	6.3.3 Additional MSP constructs
	6.3.4 Plot scales

	6.4 Conclusions

	7 Conclusions
	7.1 Abstraction techniques
	7.2 Discrete definition
	7.3 Design & implementaion
	7.4 Towards hybrid simulation
	7.4.1 Hybrid engine definition
	7.4.2 Hybrid visualisation

	7.5 Implementation extensions
	7.6 Final remarks

	A BHPC Modelling Language
	A.1 Input format
	A.2 Scope
	A.3 Syntax
	A.4 Language keywords & symbols

	B Menu Calculation
	C Internal Specification
	C.1 Informal XML description
	C.1.1 BHPC model
	C.1.2 Fragments for future design

	C.2 XML scheme

	D Software Architecture
	D.1 Discrete Bhave Package
	D.2 Event Routine Package
	D.3 Process Package

	E Simulating Extended Bouncing Ball
	E.1 BHPC model
	E.2 ASCII model
	E.3 Trace

	F User Manual
	F.1 Start simulation
	F.2 Event selection

