
Master’s Thesis
in Computer Science

Towards an Explicit-State Model Checking
Framework

M.A. Kattenbelt

August 2006

Committee

dr. ir. Theo Ruijs

dr. ir. Arend Rensink

prof. dr. ir. Joost-Pieter Katoen

Research Group

Formal Methods and Tools

Faculty of EEMCS

University of Twente

http://fmt.cs.utwente.nl
http://www.ewi.utwente.nl/en/
http://www.utwente.nl/

i

Abstract

In the field of formal verification we use model checkers to verify models of systems against a spec-
ification. Often these model checkers are specialised for a a limited number of model specification
languages, property specifications and verification algorithms. The purpose-built nature of these
tools results in poor reusability, and in order to achieve optimisations the source code is generally
not modular. As a result new tools are often developed from scratch and interoperability of tools
is minimal.

This thesis presents a conceptual architecture for a framework to support these tools. This
architecture is based on a layered design. A generic layer is to provide generic functionality for the
simulation, testing and verification of models. An abstract layer provides a model implementation,
such that it can use the functionality in the generic layer. Finally, a tool layer maps a particular
model specification language to the abstract layer. The conceptual architecture has the objective
to support reuse of code and to encourage a modular design in tools.

Besides the conceptual architecture, we also introduce a framework in the sense of a library.
The design of this libary introduces an implementation of the conceptual architecture for explicit-
state model checking. Firstly, a generic layer for explicit-state model checking with generic simula-
tion and verification functionality is discussed. This generic layer uses type abstraction to abstract
from the types of states, labels and transitions in the state spaces of the models.

Similarly, an abstract layer is introduced which uses a state representation based on graphs. We
use the generic and abstract layer to model check PROM

+ models. PROM
+ is based on a minimalistic

version of PROMELA, but adds the notion of shared pointer variables and dynamic object allocation.
Although the framework offers the flexibility and modularity for which is was made, the re-

quired verification time of the tool is significantly slower than SPIN. This can be ascribed to some
design decisions that were made to make the framework more flexible. In particular this is the
use of reference counting pointers and the design of the search module in the generic layer, and
expensive operations in the abstract layer, such as linearisation and copying of the state graphs.

However, the statevector size achieved in our tool is generally smaller than those in SPIN using
default settings and without any optimisations. This implies that potentially our tool is competitive
with SPIN in terms of memory usage.

Finally, the graph-based state representation enables the exploitation of symmetry reductions
in the model. Thread-symmetry is exploited by means of a small change in the state linearisation
procedure. This significantly reduces the number of visited states and only poses little overhead.

ii

Table of Contents

1 Introduction 1

1.1 Formal Methods . 1

1.1.1 Simulation . 2

1.1.2 Formal testing . 2

1.1.3 Formal verification . 2

1.2 Model Checking Domain . 3

1.2.1 Property Specification . 3

1.2.2 Model Specification . 4

1.2.3 Comparison of High-Level Model Specification Languages 6

1.2.4 Overview of Tools . 7

1.2.5 Comparison of Verification Tools . 9

1.3 Problem Statement . 12

2 Conceptual Architecture 14

2.1 Unification of the Model Checking Domain . 14

2.1.1 The Black-Box Approach . 15

2.1.2 The Layered Approach . 15

2.2 Related Work . 17

2.2.1 Bogor . 17

2.2.2 Concurrency Workbench . 18

2.2.3 Model Checking Kit . 18

2.2.4 IF Toolkit . 19

3 The Generic Layer 20

3.1 State Space Interface . 20

3.1.1 Formal Interface of a State Space . 21

3.1.2 Programmatic Interface of a State Space . 22

3.1.3 Providing Generic Functionality . 23

3.2 Generic Simulation . 23

3.2.1 Simulation Strategy . 23

3.2.2 Simulation Observer . 24

3.2.3 Simulation Algorithm . 25

3.3 Generic Search . 26

3.3.1 Search Feedback . 27

3.3.2 Search Strategies . 27

3.3.3 Search Adapter . 31

3.4 Transformations of State Spaces . 33

3.4.1 Examples of State Space Transformations 33

3.4.2 Enabling Reuse for Transformations . 34

iii

4 The Abstract Layer 38
4.1 Design of Software Models . 38

4.1.1 Formal Description of the Model-Wide Type Graph 39
4.1.2 Design to Support Typing Information . 40
4.1.3 Formal Description of the State Graphs . 41
4.1.4 Design of State Representation . 44
4.1.5 Formal Description of Transitions and Labels 45
4.1.6 Design of Transition and Label Representation 46

4.2 Transformation to Linearised Representation . 48
4.2.1 Linearising Rooted Deterministic Typed Graphs 48
4.2.2 Linearising State Graphs . 49
4.2.3 Optimisation of State Linearisation . 52
4.2.4 Functionality to Support Bitvector Representation 53

5 Including Features 55
5.1 Change of Generic Layer . 55

5.1.1 Symbolic Model Checking . 55
5.1.2 Bounded Model Checking . 56

5.2 Search Strategies . 56
5.2.1 Breadth-First Search Strategy . 56
5.2.2 Directed Search Strategy . 56

5.3 Specialised Stores . 57
5.3.1 State Compression . 58
5.3.2 State Caching . 58
5.3.3 State Collapsing . 58
5.3.4 Minimised Automata . 58
5.3.5 Bit-State Hashing and Hash Compaction . 58

5.4 Reduction Methods . 59
5.4.1 Partial-Order Reduction . 59
5.4.2 Symmetry Reduction . 60

5.5 Additional Resources . 63
5.5.1 Use of External Storage . 63
5.5.2 Distributed Verification . 63

6 The Tool Layer: Model Checking Prom+ 65
6.1 The Modelling Language Prom+ . 65

6.1.1 Syntax . 65
6.1.2 Pointer Variables and Dynamic Object Creation 65
6.1.3 Semantics . 68
6.1.4 Prom+’s Language Features in Comparison 70

6.2 The Tool . 71
6.2.1 Tool lmplementation . 71
6.2.2 Performance . 72

7 Conclusion 74
7.1 Summary . 74
7.2 Evaluation . 76
7.3 Related Work . 77
7.4 Future Work . 77

A Notation 84

B Dedicated Solution for Depth-First Search 86

C Alternative Abstract Layers 90

D Example Prom+ Models 92

iv

List of Figures

2.1 Models-classes with similarities . 14

2.2 Black-box design of model checkers . 16

2.3 Layered architecture of the framework . 16

3.1 Programmatic interface of a state space . 22

3.2 Overview of simulation strategies . 24

3.3 Overview of simulation observers . 25

3.4 Overview of generic simulation module . 26

3.5 Overview of SearchStrategy and SearchFeedback 29

3.6 Overview of SearchAdapter . 31

3.7 A simple state space tranformation . 34

3.8 A tranformation for state compression . 35

3.9 A transformation to realise parallel composition . 35

3.10 A transformation to support LTL model checking 36

3.11 Reuse of a SimulationObserver . 36

4.1 Simplified design of the abstract layer . 39

4.2 Type graph of the dining philosophers model . 42

4.3 Design of typing information in the abstract layer 43

4.4 State graph of a dining philosophers model . 44

4.5 Design of state representation in the abstract layer 45

4.6 Representation of typing function τσ . 45

4.7 Representation of control-flow . 46

4.8 Representation of statements and expressions . 47

4.9 Transformation of SoftwareModels to BitvectorModels 48

4.10 Optimisation of state and type graph . 52

4.11 Support in Type for encoding and decoding SoftwareModels. 53

5.1 Overview of the BestFirstStrategy . 57

5.2 Overview of StateStores . 57

5.3 Inclusion of some specialised StateStores . 59

5.4 Generic implementation of partial-order reduction 60

5.5 A state space tranformation to a quotient system 61

5.6 A symmetric store action . 62

5.7 Conceptual setup of a distributed search . 63

6.1 The grammar of PROM
+ in EBNF style . 66

6.2 Representation of pointers in the state graph . 67

B.1 Design of a generic depth-first search algorithm . 88

C.1 State space defined by a software-based model . 90

C.2 State space defined by a graph grammar . 90

C.3 State space defined by a Petri net . 91

C.4 State space defined by a Rubik’s cube puzzle . 91

v

List of Tables

1.1 Comparison of model specification languages . 8
1.2 Overview of tools . 8
1.3 Comparison of verification tools . 12

3.1 Interaction between SEARCHFEEDBACK and SearchStrategy 28

4.1 Linearisation of a state graph . 52
4.2 Optimised linearisation of a state graph . 53

6.1 Overview of Prom+’s language features . 71
6.2 Comparison of performance . 73

vi

List of Algorithms

3.1 Transitions(s′) . 23
3.2 Simulation algorithm . 25
3.3 TryExploreStep(s ∈ S, r ∈ R ∪ {ǫ}) . 28
3.4 TryBacktrackStep(s ∈ S, r ∈ R ∪ {ǫ}) . 29
3.5 Depth-first search strategy . 30
3.6 ProvideFeedback(e ∈ E) −→ F . 32

4.1 Linearising a graph . 49
4.2 Linearising a state graph . 51

B.1 Recursive depth-first search algorithm . 87
B.2 TryTransition(r ∈ R) . 88
B.3 Iterative depth-first search algorithm . 89

vii

List of Interfaces

3.1 The STATESPACE interface . 21
3.2 The SIMULATIONSTRATEGY interface . 24
3.3 The SIMULATIONOBSERVER interface . 24
3.4 The SEARCHFEEDBACK interface . 27
3.5 The CONDITION interface . 31
3.6 The ACTION interface . 31
3.7 The SEARCHSTRATEGY interface . 32

5.1 An incomplete symbolic STATESPACE interface . 55

B.1 The GOAL interface . 86
B.2 The STORE interface . 86
B.3 The STACK interface . 87

viii

List of Code Listings

4.1 A dining philosophers model in DSPIN-style. 41

6.1 A PROM
+ model of Peterson’s mutex algorithm . 67

6.2 Deleting stack variables in C++ . 68
6.3 Deleting stack variables in DSPIN . 68
6.4 A PROM

+ model illustrating the pointer semantics. 69

7.1 A worst-case PROM
+ model for thread-symmetry reduction. 76

D.1 A PROMELA and PROM
+ model of Peterson’s mutex algorithm 92

D.2 A symmetrical PROM
+ model of Peterson’s mutex algorithm 93

D.3 A PROMELA and PROM
+ model of Dekker’s mutex algorithm 94

D.4 A symmetrical PROM
+ model of Dekker’s mutex algorithm 95

D.5 A PROMELA and PROM
+ model of Dijkstra’s mutex algorithm 96

D.6 A symmetrical PROM
+ model of Dijkstra’s mutex algorithm 97

D.7 A PROMELA and PROM
+ model of two dining philosophers 98

D.8 A symmetrical PROM
+ model of the dining philosophers 99

ix

Acknowledgements

First and foremost I would like to thank dr. ir. Theo Ruijs and dr. ir. Arend Rensink for their support
over the course of this project. Without their constructive comments and the discussions during
the weekly meetings I would not have been able to complete this project to the same standard. It
is due to an interesting course by dr. ir. Theo Ruijs and prof. dr. ir. Joost-Pieter Katoen that I got
interested in formal methods to begin with, for which I would like to thank them.

I would also like to thank my friends and family, and in particular Amy, for their interest in my
work, as well as their supportiveness, encouragements and patience.

Finally, I would like to thank my fellow students of the formal methods and software engineer-
ing lab. Many interesting discussions have made this project a pleasant experience.

Chapter 1

Introduction

In the field of software engineering a large part of the development process is spent on testing [45].
Testing helps to identify faults in the implementation of a system, which in turn helps developers
to make a system meet its requirements. Because tests typically do not cover all possible system
runs, testing does not guarantee the absence of faults [63]. Faults can lead to failures, which are
undesirable in any system and intolerable in safety-critical systems such as electronic flight control
systems in aircraft or medical systems. For these systems it could be argued that testing alone is
not sufficient.

Formal verification, and in particular model checking, is a field that complements testing. Rather
than ensuring some selective runs of the system behave correctly, the intention of model checking
is to formally prove all runs conform to the requirements. Typically model checking is not exercised
on the system and requirements directly, but on a model of the system and properties representing
the requirements. Formal verification can be included in the development process to further reduce
the number of faults in a system.

Verifying a model enables the ability to abstract from certain aspects of the system that are
irrelevant to the property under consideration. Models can usually be expressed as a state space,
which is a transition system that defines the behaviour of the model. A problem that is frequently
encountered is the state space explosion [18], which usually refers to the exponential growth of
the state space that occurs when a model exists of multiple asynchronous components. The state
space explosion makes model checking challenging. A significant amount of research is spent in
improving the efficiency of the verification process, developing techniques to reduce the size of the
state space and developing other means of enabling the verification of ever more complex models.

Verification tools, or model checkers, are the key to applying model checking in practice. This
thesis discusses the introduction of a framework for model checkers. The rest of this chapter dis-
cusses the domain of model checking, and discusses the objectives of the new framework. Chapter
2 introduces a conceptual design which globally introduces the approach that is used in the frame-
work. Furthermore, this chapter relates this design to existing frameworks. Chapter 3 through 5
introduce an implementation of the conceptual design for explicit-state verification. Finally, chap-
ter 6 presents a case-study which uses the framework to verify PROMELA-like models.

1.1 Formal Methods

Model checking is part of the more general field of formal methods, which is concerned languages,
techniques, and tools based on mathematical principles [20]. There are a few reoccurring terms in
this field:

System In the context of formal methods a system is usually a software program or a hardware
device. The objective of formal verification is to reduce the number of faults in a system,
but the system itself is usually too complex to verify. Therefore, verification usually involves
models of systems.

Introduction – 2

Model A model, often denoted by M, formally describes the behaviour of a system. The model
can be derived from an existing system, either automatically or manually, but can also be
constructed before any system is created. Verification prior to implementation could be ap-
plied to ensure a certain design or protocol is correct before any implementation efforts have
been completed. Models of systems tend to abstract from some irrelevant aspects of the sys-
tem, for instance by means of abstract interpretation [23, 22]. The terms model and system

are used pretty much interchangeably throughout this report, but one should bear in mind
that in reality model checking typically is performed on models of systems rather than the
systems themselves. Different means of formally specifying a model are described in section
1.2.2.

Specification The specification formally describes the requirements of the system. In this report
the specification is presumed to be in the form of properties, which are described in section
1.2.1.

The field of formal methods consists not only of numerous formal languages and techniques,
but also offers many tools to put the formal theory into practice. The functionality of tools in the
field of formal methods can be categorised into the categories of simulation, formal testing and
formal verification.

1.1.1 Simulation

A simulation is a step-by-step execution of a model. This is not only useful to see whether a model
is behaving as expected, but is also useful as a means to provide a trace to an erroneous state.
Although simulation is not really a field of research within formal methods, it is a useful function
to have in tools that work with models. Simulation is useful for quickly finding simple faults in a
model. Faults in the model can reflect faults in the system, or could have been introduced during
the modelling phase, meaning the model does not accurately reflect the system.

1.1.2 Formal testing

In the context of this document ‘testing’ should be interpreted as formal conformance testing [63].
Testing assumes the existence of a formal specification and treats a system as a black-box. Selected
runs of the system are analysed to see whether the implementation conforms to the specification.
The runs are chosen in such a way that if all tests succeed then it is likely that the implementation is
correct. Because testing is not exhaustive, testing can’t formally guarantee that the implementation
conforms to the specification.

1.1.3 Formal verification

A definition of verification from the ISO/IEC 12207 standard is ‘confirmation by examination and
provision of objective evidence that specified requirements have been fulfilled’ [45]. The two main
approaches for verification are theorem proving and model checking [20]. This thesis focuses on
model checking.

Theorem proving ‘Theorem proving is a technique by which both the system and its desired prop-
erties are expressed as formulas in some mathematical logic. [..] Theorem proving is the
process of finding a proof of a property from the axioms of the system’ [20].

Model checking Model checking is the formal verification of a model against a specification. Where
theorem proving can be considered an elegant way of mathematically proving a model be-
haves correctly, model checking is a more direct approach where every possible run of the
model is examined. Model checking uses a verification algorithm to confirm whether the
model (M) models the specification (p), which can be denoted asM |= p. The verification
algorithm is a systematic process that formally concludes whether M |= p or M 6|= p. The
verification algorithm differs significantly for different types of models and specifications.

3 – Model Checking Domain

Simulation, testing and verification are complementary. Simulation is a way of quickly finding
obvious faults early in the design process. Testing and verification should go hand in hand to
ensure the implementation conforms to the specification. Verification only proves that a model of
a system conforms to the specification, whereas testing makes it probable that the implementation
conforms to the model of the system.

Although our main focus in this document is on a framework to support model checking, the
functionality required for simulation and formal testing are closely related to this. For instance,
the model representation could be the used for simulation purposes as well as model checking.

1.2 Model Checking Domain

The framework presented in this thesis is intended to support model checking tools (e.g. model

checkers). The intention of this section is to provide an overview of the model checking domain. As
ideally a framework for model checking would support the model checking domain as a whole. We
start with discussion different means of specifying properties in section 1.2.1 followed by a discus-
sion of model specification languages in 1.2.2 and 1.2.3. Both properties and model specification
languages will be related to tools in section 1.2.4.

1.2.1 Property Specification

In the context of model checking a model either conforms to a property or it does not conform
to the property, there is no room for ambiguity. This means the specification of the system has to
be presented in terms of some formal language rather than a natural language. There are many
formalisms in which one could express properties over a system, the most popular of which are
invariants, LTL properties and CTL properties. These properties all are based on atomic propositions.

Atomic propositions The most elementary part of properties are atomic propositions. For each
state of the model these expressions are either true or false. Depending on the type of
model such an atomic proposition could be of many different types. Potentially valid atomic
propositions are ‘the value of global variable y is equal to 1’, ‘process A is blocked’ or ‘value
v is open’.

Invariants Propositional logic can combine atomic propositions and logical operators to form
propositional formulae. For each state of the system these formulae hold or don’t hold.
These propositional formulae can be used as a means of expressing an invariant of a model.
Invariants are safety properties that hold if for every state of the model the propositional for-
mula holds. For instance, say there is an atomic proposition d that denotes a desirable state
of the model, i.e. ‘variable x equals 0’. A possible invariant could be denoted by the trivial
propositional formula ¬d. This informally would be the property ‘variable x never equals 0’.
Invariants are considered a very important type of safety properties. A safety property is a
property whose violation can be proven by means of a finite trace [1], in contrast to liveness
properties. For expressing liveness properties or complex safety properties, temporal logics
are required such as LTL and CTL.

Linear Temporal Logic Invariants are not powerful enough to formulate the more complex spec-
ifications one would wish to express over a model. This is mainly due to the fact that it
cannot distinguish between states of the model. Temporal logics allow us to do just this.
Linear temporal logic (LTL) expresses properties over paths. All possible paths of a model
consist of a series of states. An LTL formula is either true or false for each path of the model,
and the LTL formula holds for the entire model only if for each possible path of the model
the LTL formula holds.

In order to express properties over paths, LTL has some additional operators compared to
propositional logic. Most importantly it has the temporal operators next (X) and until (U).
Consider a and b are LTL formulae and p is a path of the model under consideration. If a is
an atomic proposition then it holds for p if it holds for the first state of p. The formula Xa
holds for path p if a holds for the path that omits the first state of p. In order to explain the

Introduction – 4

until operator more terminology needs to be introduced. Consider path pi to be path p with
the first i states removed. The formula a U b holds for p if there is a n ∈ N such that a holds
for p0, . . . , pn−1 and b holds for pn.

For convenience one could derive more operators from the given operators, such as eventu-
ally (F), globally (G), release (R) and the weak until operator (W). A more concise and
more complete reference on the semantics and usage of LTL properties can be found in [40].
An example of a valid LTL property is G(d→ F¬d), which informally means ‘for each state on
the path, if variable x equals 0 then eventually it will not equal 0’. This type of property could
be used to guarantee the model does not get stuck in a situation where x is continuously 0.

Computation Tree Logic As LTL properties are defined over paths, they cannot express properties
that discriminate between paths. Computation tree logic (CTL) introduces an existential (E)
and an universal (A) operator such that path formulae can be joined to form state formulae.
For example, properties such as ‘there does not exist a path such that variable x can equal
0’ can now be formulated as ¬EFd, which is equivalent to AG¬d. Because all path sub-
formulea in CTL are wrapped with a quantifier, CTL properties express properties over states
of a model rather than paths. A CTL formula holds for a model if it holds for all initial states
of the model. A more elaborate discussion of CTL can be found in [40].

Invariants, LTL and CTL properties are arguably the most commonly used methods of express-
ing properties over systems. But besides these, there are numerous other ways in which one could
express the desired behaviour of a system, most of which are adaptations of LTL and CTL. It is not
the goal of this section to provide an exhaustive list of property specifications, but some important
alternatives will be discussed briefly.

One aspect which cannot be expressed in LTL nor CTL is probability. An adaptation of CTL

called probabilistic computation tree logic (PCTL) introduces a probability operator over path sub-
formulae. An example would be A P>.99(G¬p) which informally states ‘for all paths the probability
that ¬p always holds is more than 99%’. Although PCTL formulae are syntactically very similar to
CTL, the verification algorithms that are to used are significantly different. Also it should be taken
into account that in order for a PCTL formula to be meaningful a model would need to have a
notion of probabilities.

All previously defined property specifications cannot handle time requirements very well. The
only means of addressing time in LTL, CTL or PCTL is by means of saying one event occurs after
another. It is not quite difficult to express properties like ‘d occurs within 5 time units’. Continuous
stochastic logic (CSL) combines the probabilistic features of PCTL with an additional timed-until

operator. An example of a property specified in CSL is A P>.99(⊤U
<5d) which informally states

‘for all paths the probability that d holds within 5 time units is at least 99%’.
A more extensive explanation of both PCTL and CSL can be found in [50]. Again, it should be

noted that there exist many other variations of property specifications.

1.2.2 Model Specification

Similar to properties, system models can be specified in numerous different ways. In theory any
means of formally specifying a model could be used for the purpose of model checking. In prac-
tice there are some model specifications that are used quite often. In this section some of these
formalisms will be described.

Labelled Transition System A labelled transitions system (LTS) is arguably the most elementary
way of describing a system. A system is defined by means of a set of states (S), a set of labels
(L) and a transition relation (R ⊆ S×L×S). Although usually not included in the definition
of LTS, one could argue that you also need an initial state (I ∈ S), and in order to check
the properties described in section 1.2.1 one would need to be able to evaluate whether an
atomic proposition holds in a state. Similar to LTS are finite-state automata such as DFA and
NFA, but also Büchi automata and Kripke structures.

Timed Automata Timed automata (TA) introduce the notion of clocks. Each model consists of a
set of clocks (C), states (S) and labels (L), an initial state (I ∈ S), and a transitions relation

5 – Model Checking Domain

(R ⊆ S × L × B(C) × P(C) × S) where B(C) is a set of clock constraints that guard the
transitions. Clock constraints are simple expressions on clocks such as ‘clock c has a value
smaller than 5 time units’ (c < 5). Transitions of a TA are labelled with these constraints.
P(C) is the powerset of clocks, such that each transition is labelled with a set of clocks that
is to be reset. Additionally one can label states with invariants (Y : S −→ B(C)). Clocks
in timed automata have rational values which increase as time progresses. More detailed
information on TA in the context of model checking can be found in [2, 68, 9].

Stochastic Timed Automata Stochastic timed automata (STA) are fairly similar to timed automata
in the sense that they have clock variables. However, clocks in STA do not increase in value
as time progresses, but they are triggers that count down. A STA consists of triggers (C),
states (S), labels (L) and a transition function (R ⊆ S × L × P(C) × S), where P(C) is
the trigger set (the set of triggers that need to be expired for the transition to be enabled).
An STA also has a clock setting function (Set : S −→ P(C)) and a distribution function
(F : C −→ (R −→ [0, 1])). When the STA is in state s, all triggers c ∈ Set(s) are given a
value according to their distribution function F (c). This means that STA models are both
timed and probabilisitic. More information on STA can be found in [25, 24].

Continuous-Time Markov Chains Continuous-time Markov chains (CTMC) consist of a set of
states (S), a set of labels (L) and a transition function (R ⊆ S × S → [0,∞)). The la-
bels no longer are associated with transitions, but they are associated with the states by
means of some labelling function (L′ : S −→ L). Transisitions in R are paired with a param-
eter λ ∈ [0,∞) which is the parameter in a memoryless distribution function F (x) = λe−λx.

The chance that the transition s → s′ occurs within t time units is equal to
∫ t

0
F (x)dx =

1− e−R(s,s′)t. More information on CTMCs can be found in [3]. There also exists a discrete-
time Markov chain variant, DTMC, which directly associates each transitions with a proba-
bility rather than a distribution function.

Petri nets In a Petri net the transitions are defined different to the models presented so far. A petri
net has states (S), transitions (T) and a transition function (R : (S × T) ∪ (T × S)→ N). At
any one time all states in S have a particular number of tokens associated with them. These
tokens make up the marking of the Petri net. If a transition from T is fired, then R helps to
redistribute these tokens. For instance if R(s1, t1) = 1 then if t1 is fired, the number of tokens
in s1 is decreased by one. Similarly, if R(t1, s2) = 2 and t1 is fired, the number of tokens in
s2 is increased by two. The initial marking of a Petri net is given by a function I : S −→ N. A
more detailed discussion on the semantics of Petri nets can be found in [53, 34].

Graph Transition Systems In graph transformation systems (GTS) states (S) are graphs. The
transitions relation (R) consists of injective graph morphisms on graphs in S. Graph gram-
mers can be used to specify the transitions of a GTS in terms of graphs as well. The interested
reader is referred to [57] for more information.

The formalisms that have been presented so far are all mathematical models. This is an ad-
vantage in the sense that the semantics of these type of models are well-defined. However, as the
systems that are modelled grow increasingly complex a more scalable approach can prove prof-
itable. The formalisms that will be presented from here on will be based on textual representations
rather than mathematical models, and are comparable to programming languages,. This offers the
advantage that abstract concepts such as processes, locks, classes and functions are easily included
in a model, but has the disadvantage that the exact semantics of these models is much harder to
define and comprehend. It is not uncommon for the semantics of these textual representations to
be interpretable as one of the previously defined mathematical formalisms. For instance one could
say that the semantic model of MODEST-models are stochastic timed automata [24].

In this section only a very general description of these model specification languages will be
given, but a comparison will follow in the next section (1.2.3).

NuSMV NUSMV is the input language of the NUSMV model checker [15]. The language is derived
from SMV and is basically a definition of a transition relation. It is possible to compose mod-
els in a hierarchical fashion by using modules. SMV is most suited for modelling synchronous
systems, making it a suitable language for specifying models based on hardware.

Introduction – 6

Murphi The specification language MURPHI is based on guarded rules. At any one time a rule may
execute if its guard is enabled. There are no such things as processes, functions, or other
high-level features. MURPHI is mostly used for protocol verification. An interesting feature of
MURPHI is the support of scalar sets, which enables symmetry reductions during verification
(see also [61, 62]).

Promela Process meta language PROMELA is the input language of model checker SPIN [36]. Due
to the popularity of this tool, PROMELA is a prominent language in the world of software
and protocol verification. As the name suggests a PROMELA-model is defined as a set of
asynchronous processes. The exact semantics of PROMELA are dictated by the implementation
of SPIN, although formal semantics have been derived in [67].

MoDeST The semantic model of MODEST-models is based on stochastic timed automata, therefore
MODEST-models are probabilistic and timed. The main objective of MODEST is to be able to
express many types of submodels [24], such as timed automata and CTMCs. Due to the
complex nature of this language and its semantic model, building a verification tool for
MODEST could prove difficult.

BIR Bandera intermediate language (BIR) is the input language of the model checker BOGOR. BIR

has a lot of high-level constructs in order to model object-oriented software. In particular it
is well suited for modelling JAVA programs. The language BIR itself is extensible, its syntax
can be extended in BIR itself and the semantics can be implemented in JAVA. The formal
semantics of BIR have not been described in literature, and are presumably fairly complex.
See also [27, 60, 59].

Java Obviously JAVA is a programming language, but in the current context it is suggested that
JAVA-programs are also models. The JPF-tool is capable of verifying and simulating JAVA

models, and the java virtual machine (JVM) could also be seen as a tool for simulating (e.g.
executing) JAVA-models. Not all JAVA-programs are closed systems, as they might require
some interaction with the user. In order to exhaustively verify a JAVA-program it needs to be
closed.

1.2.3 Comparison of High-Level Model Specification Languages

The high-level model specification languages described in section 1.2.2 have only been discussed
briefly. To get more insight into the class of models that can be expressed in these languages, a
selection of model features is presented. Which features are present in which model specification
language is depicted in table 1.3.

Control-Flow A first category of model features concerns different ways of defining the control-
flow in sequential systems. Some basic control-flow constructs such as conditional statements
and loops are not considered features, as they are very common. A less common feature is is
the ability to jump to arbitrary locations in the control-flow, similar to the old-fashion goto

statement in BASIC. Although jumps are not considered very modular from a programming
perspective, in modelling languages they can simplify modelling systems with complicated
control-flows. Functions are a way to easily model a complicated or repetitive control-flow
by composing it of smaller control-flow units. An execution unit, called a thread or pro-
cess, has a stack of functions associated with it in order to keep track of the control-flow.
Exception handling is a way of abruptly changing the flow of control in case of exceptional
circumstances. If such an exceptional circumstance occurs, an exception is thrown down the
function stack until there is a function that knows how to handle such a exception. This
function will catch the exception. Finally, it is considered a feature if a model specification
language explicitly allows the composition of a model from multiple parallel threads. Note
that such threads could execute either synchronically or asynchronically.

Communication As most models allow compositions from parallel components1, this category

1These components are mostly threads or processes, but in the case of MURPHI they are guarded rules, and in NUSMV
they are referred to as modules.

7 – Model Checking Domain

of model-features concerns the communications and synchronisation between those compo-
nents. An atomic construct enforces that a single component is the only component to be
active while its control-flow is within such an atomic construct. Atomic statements are useful
when modelling systems where mutual exclusion is required, and can significantly reduce de
size of the state space to be verified. Locks in effect accomplish the same, but in a different
way. Where atomic constructs are explicitly part of a specification language, locks are objects
which grant access to certain resources. Only one component at a time can gain the lock,
through which mutual exclusion is achieved. A method of communications between compo-
nents is via channels, where messages are interchanged amongst components. If the case of a
non-buffered rendez-vous channel the components need to synchronise in order to exchange
messages.

Data Abstraction The following category of features concerns data abstraction. It is presumed
that all major model specification languages support primitives data types and variables,
such as integers and booleans. More interesting are composite types such as records. These
composite types can be composed from a number of other types. Although this is not nec-
essarily very useful by itself, it does make it possible to bundle information that intuitively
belongs to the same entity. Classes are similar to composite types, but also include functions.
A model specification language will be shown as capable of inheritance if it is possible to
define inheritance relations between data types. A subtype inherits all the fields of all its
parent-type. Inheritance can also be defined over classes. Functions of a super-class can
be overloaded by sub-classes. A language can model method overriding if a model can dy-
namically resolve the function to execute during run-time, depending on which sub-class the
function call was made. Another feature to consider is the ability to define custom data types.
With this term we do not mean the composite types or classes mentioned previously, but new
data types that can be included as if they were supported by the modelling language natively.
Finally, a special mention is given to symmetric data types. These are sets for which the or-
der of the elements is not interesting, as only symmetry preserving operations are allowed.
Scalar sets can be a useful way of defining symmetries in the data of models [43, 42].

Furthermore, it is considered a feature if the model specification language supports the dynamic
creation and deletion of objects or threads. If threads cannot be created dynamically, then every
single state of the model consists of the same number of threads, which might not be flexible
enough to model some systems. Dynamic object creation is useful for modelling heap-like memory
models of programs.

Other features are the inclusion of assertions in the model specification. These are in fact
part of the property specification rather than the model specification. An assertion is basically an
expression that should hold in a certain set of states of the model, dictated by the location at which
it is defined in the model. Also, some specification languages have means of modelling clocks, or
probabilities. Table 1.1 shows which features can be found in the modelling languages presented
in the previous section.

1.2.4 Overview of Tools

So far the tools belonging to the model checking domain have been mentioned only sporadically.
In table 1.2 an overview of tools is given in relation to the property specification and model spec-
ification languages presented in previous sections. In this section these tools will be addressed
only briefly, whereas in the next section a comparison of these tools will be presented. Again,
the selection of the tools that are presented here is not exhaustive and is slightly biased towards
explicit-state verification, but it should give the reader some idea of the capabilities of the tools in
this field. The scope of this document does not allow a very extensive discussion on the features
and techniques in the field of model checking. Besides the brief discussion of the features some
relevant literature will be provided. Furthermore, chapter 5 explains how these features see fit
in the framework, which might provide some additional insight into the features discussed in this
section.

2It might be possible to implement symmetric data types by means of a custom type in BIR.

Introduction – 8

Table 1.1 – A comparison of model specification languages based on se-

lected language features.

Control Flow Comm. Data Abstraction Miscellaneous

S
em

a
n
ti
c

M
o
d
el

J
u
m

p
s

F
u
n
ct

io
n

S
ta

ck
s

E
xc

ep
ti
o
n

H
a
n
d
li
n
g

P
ar

a
ll
el

T
h
re

a
d
s

A
to

m
ic

L
o
ck

s

C
h
a
n
n
el

s

C
o
m

p
o
si
te

T
yp

es

C
la

ss
es

In
h
er

it
a
n
ce

o
f
D

a
ta

M
et

h
o
d

O
ve

rr
id

in
g

C
u
st

o
m

D
a
ta

T
yp

es

S
ym

m
et

ri
c

D
a
ta

T
yp

es

D
yn

a
m

ic
D

a
ta

C
re

a
ti
o
n

D
yn

a
m

ic
T

h
re

a
d

C
re

a
ti
o
n

A
ss

er
ti
o
n
s

C
lo

ck
s

P
ro

b
a
b
il
it
ie

s

NuSMV LTS X X X

Murphi LTS X X X X

Promela LTS X X X X X X X

MoDeST STA X X X X X X X X

BIR LTS X X X X X X X X X X
2

X X X

Java LTS X X X X X X X X X X X X

Table 1.2 – A selection of tools put into the context of the previously

presented property specifications and model specification languages.

Simulation Testing Verification

Invariants LTL CTL PCTL, CSL

Labelled Transition System TORX TORX

Timed Automata UPPAAL UPPAAL UPPAAL

Stochastic Timed Automata

Continuous-Time Markov Chains MRMC MRMC

Petri nets

Graph Transition Systems GROOVE GROOVE GROOVE

NuSMV NUSMV NUSMV NUSMV NUSMV

Murphi MURPHI MURPHI

Promela SPIN SPIN SPIN

MoDeST MOTOR

BIR BOGOR BOGOR BOGOR

Java JPF JPF

TorX The TORX tool is a tool for simulating and testing labelled transition systems. The nature of
a test tool is to check a chosen set of runs of a system to see whether they conform the the
specifcation. TORX allows models to be specified in LOTOS, SDL and PROMELA [64].

UPPAAL UPPAAL is a tool for the simulation and verification of timed automata (TA). Timed au-
tomata are directly drawn in a graphical user interface. UPPAAL is capable of verifing CTL

properties. The verification algorithm first translates a TA into a zone-automaton (i.e. an LTS-
like representation in which each state is a zone is which the clock values are similar; see
[9]). An interesting feature of UPPAAL is the possibility of verifying models in a distributed
fashion [7].

MRMC The model checker MRMC is a tool for the verification of discrete-time and continuous-
time Markov chains as well as Markov reward models. Properties can be specified in a subset

9 – Model Checking Domain

of PCTL as well as CSL. Verification algorithms used in MRMC are significantly different to
those used for non-probabilistic models [3].

GROOVE GROOVE is a tool for the exploration of GTS models as defined by graph grammars
[58, 57]. Graph grammars allow a representation of states and transition rules in the form
of graphs. This arguably is a more natural way of representing systems. Recently, GROOVE

was extended with the capability of CTL model checking [47].

NuSMV The model checker NUSMV is different to other tools presented here in the sense that it
is oriented toward verifying models based on hardware. It uses a symbolic verification algo-
rithm for the verification of mainly CTL properties. It is possible to specify some properties
in LTL, which are translated to equivalent CTL properties by the tool.

Murphi MURPHI is a tool for the verification of models specified in the MURPHI language. As
this language is based on guarded rules, it is not very suitable for modelling object-oriented
systems, but it is well suited for the verification of protocols. As mentioned in section 1.2.2
an important feature of MURPHI is the support of symmetry reductions by means of scalar
sets [43, 42]. The tool supports distributed verification as well as use of a magnetic disk (to
increase the size of models that can be checked) [62, 61].

SPIN The SPIN model checker is arguably the most popular tool in the field of formal verification.
It a tool for verifying PROMELA models against LTL properties, and is efficient in doing so. It
applies specialistic techniques such as partial-order reductions, bit-state hashing and hash-
compaction in order to improve performance, and therefore the size of the models that can be
verified with SPIN [36]. Also, it is capable of enforcing weak fairness and checking progress
requirements. As can be seen in table 1.3 SPIN supports a lot of optimisation features. The
source-code of SPIN is optimised for performance. The downside of this is that the tool is
not written in a modular fashion. Reusing and extending SPIN is therefore difficult.

MoToR The tool MOTOR is currently only a simulator for MODEST-models. As part of the HAAST

project it is the first step towards verification of these complex models.

Bogor BOGOR is a model checker for models specified in BIR. It is an example of a tool that is
written in a modular and extensible way. Modules can be written to be used in BOGOR,
but also the BIR language can be extended. The correlation between BIR and JAVA is very
high, making BOGOR an interesting choice for the verification of object-oriented programs.
There exist modules for BOGOR that perform symmetry reductions as well as partial-order
reductions.

JPF JAVA PATHFINDER (JPF) is a verification tool for JAVA programs. It is useful for finding deadlocks
in JAVA programs. It is also possible to define custom properties in JAVA itself. The first version
of JPF translated JAVA programs into PROMELA models, so that they could be verified by SPIN.
The current version is built like a virtual machine which explores every possible path of
execution. It applies partial-order reduction, state collapsing and hash compaction in order
to improve efficiency [36].

1.2.5 Comparison of Verification Tools

Comparing all tools mentioned in section is rather difficult, as they were all built for different
purposes. Therefore this section will limit the comparison to the comparison of model checkers.
The intention of this section is to provide a list of features that can occur in model checking tools,
and should therefore be compatible with the framework. Chapter 5 will discuss how these features
can be included in the framework. The comparison is based on the features presented below:

Verification Algorithms There are a few categories of verification algorithms that can be distin-
guished. The explicit-state category applies algorithms in which states are individually repre-
sented. Usually the verification procedure is some type of exhaustive search over all states in
the state space. Examples of such explicit-state verification algorithms are given in [39, 38].

Introduction – 10

In symbolic verification algorithms states are not individually represented. The algorithm is
based on operations on sets of states. These sets can be symbolically represented by means
of BDDs. This approach is useful for model checking CTL properties [16]. Finally, there is a
distinguishable category called bounded model checking. This technique first transforms the
state space into a formula in propositional logic. This formula is constructed in such a way
that it is only satisfiable if some states of interest are reachable, after which a satisfiability
solver determines whether there exists a solution [17]. It is called bounded model checking
because only paths upto a particular number of transitions are considered.

Henceforth, our comparison criteria will be biased towards explicit-state verification algorithms.

Search Strategies If a tool uses an explicit-state verification algorithm, there is usually a choice as
to the order in which states in the state space are visited. The most common choice is to use
a depth-first traversal strategy. If a violation is found during depth-first traversal, the path to
the current state is given by the search stack, which can be used as a path to the erroneous
state (e.g. counter-example).

Another possibility is a breadth-first traversal strategy. The advantage of a breadth-first explo-
ration is that when a property violation is found, it is guaranteed that the counter-example of
this violation is the shortest counter-example possible. However, unlike a depth-first traver-
sal, you do not get this counter-example for free, as there is no longer a search stack to
extract the counter-example from. Another disadvantage is that a breadth-first approach is
usually more memory intensive.

Finally, the category of directed strategies is distinguished. The search algorithms in this cat-
egory use some heuristic to determine the order of traversal, in the hope of finding property
violations sooner. Popular directed search methods are best-first and A* [29, 28, 52].

Most other features in explicit-state verification are a direct result of the state space explosion

[18]. Tools strife to verify continuously large models. The ways in which they realise this can be
categorised into performance improvements, reduction methods and approximative methods.

Performance improvements The capabilities of tools, in both time and memory, is continuously
improved upon, which enables the verification of models with increasingly large state spaces.
Performance can be improved by means of more efficient algorithms and more efficient stor-
age techniques, but also by finding alternative resources.

State collapsing uses the fact that models are made of of components [35]. Rather than stor-
ing each individual state separately, states could share information about the components. If
in two global states have a process component in common, which is coincidentally also in
the same state, it is sufficient to store this information only once.

State compression attempts to reduce the size of the bitvectors that represent states [35]. A
Huffman encoding could be used for this purpose. Some training runs might be necessary to
analyse the frequency of bytes in order to optimise the compression.

Rather than storing every single state that was once visited, one could employ a caching

strategy [33]. The larger the cache, the less likely it is that states are revisited. The cache
could store as many states as the memory allows. The risk of caching is that states could be
visited more than necessary because they have been deleted from the cache.

If states are represented by vectors of bits, it is possible to use a minimised automaton to
serve the function of a state store [37, 36]. This automaton is labelled with bit values, and
accepts only the bitvectors that represent the states that have been visited.

A technique that is used in the context of symbolic verification algorithms is that of binary
decision trees BDD [13]. Such a decision tree is capable of storing binary function in a
memory-efficient way. As each state is distinguishable by the set of atomic propositions it
satisfies, we could interpret the set of atomic propositions as a set of boolean variables. The
BDD can very efficiently represent a set of states.

Some tools offer the possibility of distributed verification. The processing and memory load
is shared over multiple processing units. Although this feature can greatly increase the size

11 – Model Checking Domain

of models that can be verified, it is hard to devise algorithms that allow the verification to be
distributed [51, 61, 6].

Besides using memory for storing the visited states, it is also possible to use external storage

such as a hard drive. Although the capacity of hard drives is greater than memory, access
to the drive is relatively slow. This means using the magnetic disk for verification comes
at a performance hit. Special algorithms can be devised to use the disk without too many
drawbacks [62].

Reduction methods An active field of research is developing methods to significantly reduce the
size of a model’s state space, whilst ensuring the verification result remains formally correct.

First of all partial-order reduction is a commonly applied technique to reduce the size of the
state space. This reduction is based on the commutativeness of transitions. For instance if
there are two threads that are about to perform a transition, and those two transitions are
do not affect each other, there might be a situation where a reduction can be applied. Rather
than verifying all possible orders in which the transitions could execute, it might be sufficient
to explore only some orders of execution. This technique is quite complex and dependent
on the type of model at hand, therefore the interested reader is referred to chapter 10 of
[19] or [32, 55] for more specific information. The inclusion of partial-order reduction in
the framework is discussed in section 5.4.1.

Another reduction method is that of symmetry reduction [52, 10]. Symmetries within a model
are used to reduce the state space of models considerably. If two states are symmetrical, and
the property does not distinguish between those states, it is sufficient to explore only one
of those states. There are numerous of possible symmetries that can occur within models,
depending on the type of model at hand. However, in the context of software-based models
one could distinguish thread-symmetry, heap-symmetry and symmetric data types.

First we consider thread-symmetry [60]. Consider a dining philosophers system where each
philosopher is modelled by a process. One could argue that it doesn’t matter which philoso-
pher takes the first step, because if any other philosopher would have made this step the
result would be is symmetrical. Two states are equal except for a permutation of processes
instances.

Another symmetry that could occur is heap-symmetry, which focusses on permutations of
heap objects rather than threads [60]. The idea of heap symmetry is that it is usually irrele-
vant what the identity of an object is, or where it is located in memory, as long as the heap
structure is the same.

Finally one could also introduce special data types to help to identify symmetry, such as scalar
sets [42]. For instance one could have a scalar set of process identifiers. On such a set one
can only perform operations that preserve symmetry. It is useful if one would like to iterate
over processes and the order of iteration is not relevant. We will refer to these as symmetric

data types.

Approximative methods Some techniques abandon the principle of formal correctness for an ap-
proximate result. This allows the verification of model checking much larger models. Bit-
state hashing and hash-compaction are commonly applied approximative methods [48].

Bit-state hashing or supertrace is such an approximative method. A very large bitvector of
is created, and with a hash function each state is mapped to a bit in this vector. A search
algorithm uses this vector to see whether it already visited a state instead of a store. This
means that there is a small chance that an erroneous state will not be found, because two
states can map to the same bit in the bit vector. This means it is possible for the search to
wrongly conclude it has visited a state, thereby omitting a portion of the state space in which
erroneous states could still reside [48, 36].

Hash-compaction extends the principle of bit-state hashing. Rather than storing the bitvector,
a smaller hashtable is used. One hash function is used to find a location in the hashtable,
and the result of another hash function is the value that is stored in the hashtable. This
is an approximate technique as multiple states could map to the same hash value, and if a
hashtable without a linked list is used, some hash values might be discarded [48].

Introduction – 12

Table 1.3 – A comparison of verification tools. Note that most features

of comparison are chosen to compare explicit-state verification, rendering

the inclusion of NUSMV and MRMC rather useless. Features that aren’t

applicable for a tool are marked by a ‘- ’.

Algorithm Search Performance Improvements Reduction Methods Approx.
E
xp

li
ci

t-
S
ta

te

S
ym

b
o
li
c

B
o
u
n
d
ed

D
ep

th
-F

ir
st

B
re

a
d
th

-F
ir
st

D
ir
ec

te
d

S
ta

te
C
o
ll
a
p
si
n
g

S
ta

te
C
o
m

p
re

ss
io

n

B
in

ar
y

D
ec

is
io

n
D

ia
g
ra

m
s

M
in

im
is
ed

A
u
to

m
a
ta

S
ta

te
C
a
ch

in
g

D
is
tr

ib
u
te

d
V
er

ifi
ca

ti
o
n

U
se

o
f
E
xt

er
n
a
l
S
to

ra
g
e

P
ar

ia
l-
O

rd
er

R
ed

u
ct

io
n

T
h
re

a
d

S
ym

m
et

ry

H
ea

p
S
ym

m
et

ry

S
ym

m
et

ri
c

D
a
ta

T
yp

es

B
it
-S

ta
te

H
a
sh

in
g

H
a
sh

-C
o
m

p
a
ct

io
n

UPPAAL X X X X X

MRMC - - - - - - - - - - - - - -

GROOVE X X X X X X

NuSMV X X - - - - - X - - - - - - - -

Murphi X X X X X X X X X

SPIN X X X X X X X X X

Bogor X X X X X X X X

JPF X X X X X X X

1.3 Problem Statement

As is illustrated by table 1.2 most tools are very specialised, meaning they have been developed
with the goal of supporting only a single model specification language and only a small number of
different property specifications.

This specialisation enables the code-base of a tool to be optimised for a particular purpose
and does not encourage a modular and generic design. As a result, it is usually quite fruitless to
attempt to reuse the source code of these tools, and new tools are often written from scratch.
Any opportunity to share the functionality of tools is not exploited. Because tools do not share a
common code-base the interoperability of tools is quite poor. Interaction between tools can only
be achieved with considerable effort.
To address these issues this thesis introduces a framework for model checkers, where the meaning
of framework is two-fold:

Conceptual architecture A conceptual design of model checking tools which enables the reuse
of code and encourages a modular design. This conceptual design is applicable in a wider
perspective than just explicit-state model checking. It provides an architecture in which algo-
rithms can be reused for different kinds of models. The conceptual architecture is discussed
in chapter 2.

The library A library which has been designed using the principles of the conceptual architecture.
On a high level of abstraction this library defines means of simulating and verifying explicit-
state models (chapter 3). On a low level of abstraction it provides an implementation of
PROMELA-like models (chapters 4, 5 and 6).

Both will be referred to as ‘framework’ in the remainder of this thesis. The introduction of a
framework should help towards improving the previously described scenario in the model checking
domain. More specificly, this thesis works towards the following objectives:

• Provide and encourage the creation of generic functionality that can be used across sev-
eral verification tools. For instance, the framework could provide simulation or verification

13 – Problem Statement

functionality which can be used for a number of different models. By providing reusable
functionality and algorithms in a framework, new tools would no longer have to be build
from scratch. The development of new tools would be easier and the resulting code more
modular.

• Improvements in the interoperability of tools. If tools would be based on a common state
space and model representation, it would not require an extensive effort to make tools coop-
erate.

Chapter 2

Conceptual Architecture

The previous sections are intended to justify the development of a new framework in the model
checking field. In particular section 1.2.4 shows that most tools are very specialised and integration
of tools in this field is difficult. Rather than introducing a new black-box framework, which takes
input in the form of some complex and expressive intermediate language, this framework should
be more open, as is explained in the next few sections.

2.1 Unification of the Model Checking Domain

The main challenge when designing a model checking framework is to find a way to combine all the
modelling languages, property specifications and verification algorithms in one single framework
in a way such that reuse of code and modular design are possible.

Unfortunately, it is not necessarily the case that all system models share a common represen-
tation at a high level of abstraction. For instance probabilistic models have a different state space
representation to non-probabilistic models. However, it is possible to identify models types that
share an identical representation on a high-level of abstraction, such as those depicted in figure
2.1. When we abstract from the internal structure of states we can describe models of this type as
a labelled transition system.

x = x.next
A

B

x

y
’H’

’I’

 next

A

B

x

y
’H’

’I’

 next

State StateLabel

(Process A:)

State StateLabel

empty

empty

empty

prev

prev

prev

first

last

empty
empty

empty

prev

prev

first

last

prev

 val

insert

State StateLabel

F+

State StateLabel

Ack

Ack Ack

Figure 2.1 – These model types are identical on a high level of abstrac-

tion. However, on a lower level the internal structure of states, transitions

and labels are totally different. These figures are shown in more detail in

appendix C.

All models in figure 2.1 consist of states, labels and transitions. Although the internal structure
and interpretation of the models are different, the algorithms that could be used for the simula-
tion, testing and verification of these models are identical. This is where we argue there is an

15 – Unification of the Model Checking Domain

opportunity to provide reusable functionality, in terms of generic algorithms, which can be used for
multiple model types.

We identify two main approaches that can be used to create a new framework, namely the
black-box approach and the layered approach.

2.1.1 The Black-Box Approach

In general model checkers have one formalism in which the system model has to be defined (e.g.
BOGOR requires models to be specified in BIR). One could continue this philosophy when designing
a framework. Preferably, one would choose a semantically rich modelling language, such that a
number of other model types can be expressed in this language. For example, if one chooses
MODEST as the input language for a framework, the framework would also support CTMC-models
and TA-models, as these can be expressed in MODEST.

Whether there exists one particular modelling language in which all other models can be ex-
pressed is questionable. Therefore a framework using this approach would probably only support a
limited part of the model checking domain. There are a few reasons why one could argue defining
a common input formalism is not a suitable approach for a model checking framework:

• By choosing one particular input formalism the framework is limited to a certain class of
system models that can be expressed in this formalism. Additionally, even if it is possible to
express a model in this formalism this does not necessarily mean this is the optimal way to
verify such a model.

• By limiting the framework to a particular input formalism one would also limit the frame-
work to work on a particular level of abstraction. Although it might be possible to express
models of a different level of abstraction in the given formalism, this conversion might not
be optimal.

• Consider the chosen formalism is quite complex, which is a valid assumption given the fact
that the intention is able to express many different types of models in this formalism. Ar-
guably, devising a verification algorithm for such a complex language is difficult.

However, besides these disadvantages, this approach also has some some advantages:

• The required functionality to provide a framework would be straight-forward. By providing
simulation, testing and verification functionality for the chosen formalism, the framework
would be complete.

• Because the framework would only work with a single formalism the verification procedures
can be optimised for this single formalism.

In figure 2.2 the black-box principle is illustrated by means of the model checkers SPIN, MURPHI

and BOGOR. The figure shows that different model checkers require different input formalisms.
Note that we omitted the input of property specifications. Converting one formalism to the other is
at the least inefficient and undesirable, at the worst this is impossible. Model checkers are designed
in this way is because they don’t need to be reusable or generic, and optimisation of the tool is
easier on a single well-defined input formalism. In principle one could call any model checkers a
model checking framework in terms of the black-box approach, which is BOGOR’s approach [59].
However, BOGOR does allow a custom implementation of some modules and alterations of its input
language (see section 2.2.1).

2.1.2 The Layered Approach

Rather than employing a black-box approach, a framework could employ a more open approach.
For instance, the framework could support PROMELA-like models, but at the same time allow other
types of models to reuse lower-level parts of the framework where appropriate. The intention of
a layered design is that a framework would exploit the similarity of models and provide generic

Conceptual Architecture – 16

SPIN Murphi Bogor

BIRPromela Murphi

? ? ?
Figure 2.2 – In general model checkers can be considered black-box sys-

tems with models as input, specified in some particular formalism, and a

verification result as output. In this figure the black-box nature of SPIN,

MURPHI and BOGOR is illustrated.

algorithms where possible. Note that the models provided in figure 2.1 is not the only group of
models for which one could denote similarities.

Figure 2.3 introduces a layered architecture. The bottom layer represents the model on a
high level of abstraction, whereas the top layers are more concrete. Reuse can be accomplished
by sharing layers with a high abstraction. We can distinguish three layers, the generic layer, the
abstract layer and the tool layer. As is intuitively clear, the generic layer and abstract layer are
provided by the framework, and the tool layer is meant for tools that use the framework.

Generic
Layer

Abstract
Layer

Tool LayerSPIN GROOVE

Software Model

StateSpace

GTS

Simulation
Algorithms

Verification
Algorithms

Bogor

Testing
Algorithms

Prom +

Figure 2.3 – The proposed framework can be divided into three main

levels of abstraction: the generic layer, the abstract layer and the tool layer.

Generic layer The generic layer provides algorithms for certain types of models. For instance, one
could provide simulation, testing and verification algorithms for the class of models depicted
in figure 2.1.

It is not feasible to define just one generic layer for all models, this is due to the diversity
of models in the model checking domain. For instance, the fields of explicit-state, symbolic,
bounded and probabilistic model checking are too different to be encapsulated within the
same generic layer, and should probably be defined in separate generic layers.

The most important requirement of such a generic layer is that the algorithms in this layer
are oblivious to the abstract layer. Also, the generic layer should provide a means in which
model can be defined such that they can use the generic functionality. In figure 2.3 this is the
abstract base class StateSpace.

17 – Related Work

Abstract layer The abstract layer is the layer on top of the generic layer. In particular it gives an
internal structure to the generic layer. For example, in figure 2.1 where the generic layer
was only concerned with models on the level of states, labels and transition, the abstract
layer provides the internal structure to these concepts, such as Rubik’s cubes or Petri nets for
states.

The idea is that it is possible to have multiple abstract layers on the same generic layer such
that the algorithms of generic layers are reused.

Tool layer The tool layer is not provided by the framework, it is included in the figure to show how
tools could use the framework. In chapter 6 there is small case study of a tool for PROMELA-
like models, in which the intention of the tool layer should become clear. The nature of the
tool layer is that it is not reusable, however, the idea is that a well-defined abstract layer
could be used by multiple tools.

The layered approach has a few advantages compared to the black-box approach:

• The framework would not be limited to one input formalism, nor would it be necessary to
convert between input formalism.

• Usage of the framework is not limited to a single level of abstraction. As the architecture
consists of layers, it is possible to use the functionality provided in the framework at several
levels of abstraction.

Besides these advantages, the layered approach also has some disadvantages:

• The required functionality of the framework is not straight-forward. It would be difficult to
know which generic and abstract layers are required in order to truly call the framework a
model checking framework.

We argue the layered approach suits our goals much better than the black-box approach. It en-
ables the reuse of algorithms, and it also enforces a modular design due to the modularisation in
layers. Note that this chapter only presents a conceptual architecture of the model checking frame-
work. The rest of this thesis concerns a possible implementation of this conceptual architecture.

To be more specific, the generic layer presented in chapter 3 is based on explicit-state model
checking. It provides functionality to support the simulation as well as verification of ‘explicit-state
models’, no testing algorithms are taken into consideration. The abstract layer uses a graph-based
representation of states to model software-based models in chapter 4. Finally, the tool layer uses
the generic and abstract layer to verify a PROMELA-based specification language called PROM

+ in
chapter 6.

2.2 Related Work

Although chapter 1 explained why a framework for model checking is desirable, there has not been
a discussion of other frameworks in this field of research. In this section these frameworks will be
introduced. A brief overview of the features of these frameworks will be given, alongside with an
explanation how their approach relates to our conceptual design.

2.2.1 Bogor

Besides being a model checker for BIR, BOGOR is often portrayed as a model-checking framework
[59, 27]. This framework chooses BIR as the language in which all models are to be specified.
Although BOGOR could be described as a black-box framework (see section 2.1.1), it does have a
few features that provide some additional flexibility:

• BIR is an extensible language. It is possible to introduce new language features to extend
BIRs syntax. More specifically, one can introduce new native types, and define operations on
such types.

Conceptual Architecture – 18

• The model checker BOGOR is written in a modular fashion. It defines several interfaces
for which custom modules can be implemented. Examples of such interfaces are the
IStateManager and the ISchedulingStrategist.

This approach has several disadvantages, which convince us this architecture is not ideal for
a model checking framework. Firstly, the black-box nature of BOGOR is our main concern. As
all input is given in terms of BIR, we argue that BOGOR is only a suitable framework for models
that are semantically similar to BIR. As the BIR specification is fairly similar to object-oriented
programming languages such as JAVA, it could be argued that BOGOR is only suitable for this type
of models.

The second issue concerns the flexibility provided by the interfaces. These are custom modules
that can be used to implement features. A problem arises if multiple features require the custom
implementation of the same module. For instance, in order to implement both symmetry reduc-
tions and state collapsing, the state store module, or IStoreManager, requires a custom implemen-
tation. With two independent features there are 4 possible configurations in which the verification
can be executed. It is undesirable to implement a custom implementation of the module for each
configuration.

2.2.2 Concurrency Workbench

In article [21] a framework for verifying concurrent systems is described. It is a combination of
a toolkit called the concurrency workbench (CWB-NC) and a process algebra compiler (PAC-NC).
In this section this framework will simply be referred to as ‘the concurreny workbench’. This
framework assumes a language has well-defined semantics in the form of structured operational
semantics (SOS). These rules could be compared to inference rules which describe a transitions of
the system [21]. The process algebra compiler is used to generate a parser from a set of SOS-rules.
This parser can parse a model specification and generate a LTS that describes the semantics of the
model. The concurrency workbench toolkit is used to verify the LTS.

In effect this framework is language-independent, which could be considered a feature as well
as a shortcoming. The advantage is that if the semantics of some model specification language are
available in SOS, then by giving the framework these rules we should in theory be able to verify
this type of models. This would involve minimal effort, and provides a great deal of flexibility.

The disadvantage is that not all languages have formally defined semantics. For a specification
language like PROMELA, it is very difficult to construct SOS-rules [67]. We argue it is fair to say that
providing these rules is not always trivial.

2.2.3 Model Checking Kit

The Model-Checking Kit of the University of Stuttgart uses a layered approach [54]. This is similar
to the approach described in section 2.1.2, in the sense that specification languages are mapped
to a generic layer by means of abstraction. The verification algorithms work on this generic layer,
which is based on 1-safe Petri-nets. These Petri nets could be seen as a very basic semantic model
to model concurrent systems, similar to LTS [34]. Properties in the Model Checking Kit are also
described in terms of Petri nets.

The main feature of the Model Checking Kit is its layered design. Algorithms work on a low-
level of abstraction, making them reusable across different model specification languages. The
Model Checking Kit is totally based on 1-safe Petri-nets. Rather than using generics in such a
way that algorithms are oblivious to the internal structure of the models, all models are expressed
using the same Petri-net representation. By using type abstraction to abstract from the internal
structure of state objects the internal structure could still be preserved and used in specialised
parts of the framework. For instance, if we have a complex specification language that is verified
by this framework, than by mapping the model to the Petri-net representation would mean losing
internal information. This information can no longer be used when writing counter-examples or
storing states in a store.

19 – Related Work

2.2.4 IF Toolkit

The IF toolkit is another framework for the formal verification of models [12]. The principle of
the IF Toolset is based around a three layers of abstraction, which is similar to our philosophy. The
lowest layer is based on LTS, which is similar to our generic layer in the sense that simulation and
verification are performed on this level. The second layer is one based the intermediate description
language (IF). IF is a rich modelling language that includes notions of time, processes, channels
and other high-level features. The idea is that this layer provides a broad range of functionality
to support the IF language, such as slicing algorithms, static analysis tools, and functionality to
export to languages such as PROMELA. The third layer is similar to our tool layer, in the sense that
custom languages are supported by translation to the IF representation of the second layer.

However, there are some shortcomings to be mentioned about this approach. Most importantly
these concern the choice of a single formalism representation of models in the second layer. It is
curious how the second layer requires models to be represented in IF. Although the architecture
of the IF toolkit is designed according to the layered approach, the choice of a common represen-
tation in the form of a single formalism is more in line with the black-box approach, and seems
to infer some limitations. The principle behind the IF toolkit is that new specification languages
are supported by means of a tranformation to the second layer, and thus an IF specification. This
transformation could be difficult if the original source language is not closely related to IF. Also
it should be noted that the IF toolkit does not use type abstraction to abstract from the internal
structure of states.

Chapter 3

The Generic Layer

This chapter is devoted to the generic layer. Firstly, we introduce a method of specifying a model
to be used by this layer, then we provide functionality that uses this model. As this framework will
focus on explicit-state verification, we will provide a state space interface for the class of models
associated with this type of verification, as well as simulation and verification algorithms. Note that
explicit-state verification methods are typically simple exhaustive searches over the state space.

3.1 State Space Interface

To start with, the generic layer needs information about the model under investigation. The mod-
els we are targeting in this layer are the models that can be verified with explicit-state verification
techniques. In these models, of which a few examples were presented in figure 2.1, we can distin-
guish the notion of states, labels and transitions. The combination of these items is called a state

space. It is presumed that models that use the functionality of this layer have a state space. The
formal definition of a state space is as follows:

Definition 3.1. A statespace is a tuple 〈L, S, I, R〉, where L is a set of labels, S is a set of states,

I ∈ S is the initial state and R is a collection of transitions. Each transition in R consists of at least

a source and target state from S, and is labelled with a label from L.

Note that R is deliberately not limited to a subset of S×L×S. For instance, a model have two
transitions with the same source state, the same target state and the same label, but have some
additional information like clock guards or probabilities that distinguish the transitions. Although
this information might not need to be taken into account, a simple cartesian product might be
more limiting than necessary. Note that the state space definition is very similar to that of a
labelled transition system (LTS) and is therefore especially suitable for abstract layers based on
model specification languages that have this as their semantic model (see also table 1.3). There
are a number of ways in which one could provide the information encapsulated in the formal
definition of a state space. The first choice is between an ‘explicit representation’ and a ‘symbolic
representation’:

Explicit representation A representation of the state space which contains information about in-
dividual states, labels and transitions is called an explicit representation. This approach
is most suitable for explicit-state model checking algorithms, which are mostly exhaustive
searches of the state space.

Symbolic representation A symbolic representation of the state space is a representation where
the state space interface provides information in terms of sets of states and transitions rather
than individual states. These sets can be represented symbolically by for instance BDDs.

Because the generic layer focusses on explicit-state model checking, the explicit representation
is an obvious choice. Given this choice, one could present information about the state space in a
static fashion, or on-the-fly:

21 – State Space Interface

Static approach A static approach implies the programmatic interface is a direct translation of the
state space formalism. The complete sets of states, labels and transitions can be retrieved as
a whole. This approach is static because if verification is to be performed on such a model
then first all states, labels and transitions will have to be computed.

On-the-fly approach The interface provides the state space information piece-by-piece. Rather
than providing all states simultaneously, one can determine the successors of a given state.
The reachable state space can be explored in an iterative fashion. Application of the on-the-
fly approach often means that states are generated dynamically only when they are required.

It is usually preferable to use the on-the-fly approach, in most cases the static approach provides
more information than necessary. For instance when simulating or verifying a state space, there
is not always a need to visit all of the state space. An on-the-fly approach might provide some
performance benefits in this case. In case an algorithm needs a static representation this can
always still be reconstructed from the on-the-fly interface, by simply exhaustively exploring the
state space.

3.1.1 Formal Interface of a State Space

There is need for an interface that uses a explicit-state representation and presents information
about the state space in an on-the-fly manner. Interface 3.1 provides the required functionality:

InitialState : S

FirstTransition : S −→ R ∪ {ǫ}

NextTransition : R −→ R ∪ {ǫ}

Source : R −→ S

Label : R −→ L

Target : R −→ S

Interface 3.1 – STATESPACE

The STATESPACE abstracts from the fact that states (S), labels (L) and transitions (R) have
a different internal structure for different types of models. This allows us to write algorithms in
readable pseudo-code for these interfaces. The fact that we do not know the internal structure
of states, labels and transitions does come at a price; we cannot assume anything about these
objects. For instance we cannot assume transitions in R have probabilities associated with them. If
we do need probabilities for some algorithm we would need to provide these through some other
interface with a function (Probability : R −→ [0, 1]).

There might be a few functions in the STATESPACE interface that leave room for discussion:

• By means of InitialState a state space has exactly one initial state associated with it. It
could be argued that some models contain multiple initial states. However, by adding a new
artificial initial state with transitions to the original initial states one could solve this problem.

• The FirstTransition and NextTransition function could be perceived as an overly compli-
cated method of retrieving the set of outgoing transitions from some state in the state space.
Given a state s ∈ S the function FirstTransition gives the first outgoing transitions of state
s, or ǫ if s has no outgoing transitions. Given a transition r ∈ R, NextTransition retrieves
the next outgoing transition with the same source, or ǫ if there aren’t any. Note that this
method implies the presence of a total order over outgoing transitions of each state in the
state space. This means there could be models we exclude due to these methods.

One could replace these methods by a single method Transitions : S −→ P(R). However,
in accordance with the on-the-fly principle it makes more sense to provide as little infor-
mation as possible. This could dramatically improve performance; for instance a depth-first
search does not continuously need all outgoing transitions of a state space, the use of the
FirstTransition and NextTransition is much more efficient.

The Generic Layer – 22

• Finally, it could be argued that Source, Label and Target should be part of transitions them-
selves. However, it is preferable to not assume anything about the internal structure of
transitions, and thus we use this method instead. This also means that the state space of the
model can be retrieved by means of one single entity, namely the STATESPACE interface.

As interfaces in this document are just a convenient method of denoting some programmatic
concept, the next section will show how the STATESPACE interface is represented in the framework.

3.1.2 Programmatic Interface of a State Space

An interface such as STATESPACE denotes nothing more than an abstract base class. Each ‘function’
in the interface maps to an abstract function in the class. By implementing these functions in a
subclass, one can provide an implementation of a state space. This is exactly what the abstract
layer does, as was shown in figure 2.3.

However, there is one important aspect that needs to be addressed. In the previous section we
abstracted over the internal structure of states, labels and transitions. This principle needs to be
mapped to the programmatic interface of the state space. There are two methods with which one
could accomplish this:

Inheritance One could introduce base classes for states, labels and transitions, and define the
functions in the state space interface on these types. Algorithms would be generic in the sense
that they work with a particular class of states, labels and transitions. Models that implement
the state space interface would define subclasses of these states, labels and transition to
provide internal structure to these concepts. The algorithms could be used on models only if
their states, label and transition classes are derived from those of the algorithm.

Note that this is much more flexible than is required, as during the lifetime of a tool all states
used within that tool would most likely be of the same type. Also, the memory footprint of
using inheritance for elementary objects such as states and labels, and the runtime overhead
of continuous casting is unnecessary.

Type abstraction Another option is to abstract from the types of states, labels and transitions by
means of generics. Implementations of the state space interface would have to instantiate the
interface for particular type of states, labels and transitions. The advantage is that there is
no additional overhead of run-time polymorphism, whereas the disadvantage is that ‘generic
algorithms’ also have to abstract from types of states, labels and transitions by means of
generics. Once a generic algorithm is instantiated for a particular model at compile-time,
this algorithm should not sacrifice any performance compared to a specialised algorithm for
a particular type of model.

Because model checking is a field where performance is essential, the decision is to imple-
ment the state space interface by means of type abstraction. In figure 3.1 the abstract base class
representing the STATESPACE interface is presented.

StateSpace

+getInitialState(): State *

+getFirstTransition(State *): Transition *

+getNextTransition(Transition *): Transition *

+getSource(Transition *): State *

+getLabel(Transition *): Label *

+getTarget(Transition *): State *

State:typename

Transition:typename

Label:typename

Figure 3.1 – A class representing the STATESPACE interface, presented in

UML. Each function in the interface maps to an abstract function in the

abstract base class.

23 – Generic Simulation

Finally, it should be noted that this class is implemented in a slightly different way than pre-
sented. Instead of defining the functions in terms of normal pointers, in reality the implementation
uses a pointer with reference counting. In programming languages without garbage collection,
some entity should be appointed as responsible for managing the different state, label and transi-
tion instances. To provide a more flexible approach we use reference counting pointers.

3.1.3 Providing Generic Functionality

The STATESPACE interface is the means by which abstract layers can provide information about a
model. The generic layer uses this information to provide generic functionality such as simulation
and verification algorithms. The notation ‘STATESPACE’ denotes the definition of an interface,
whereas ‘[[StateSpace]]’ denotes an implementation of this interface. An example of an algorithm
that uses an implementation of STATESPACE is algorithm 3.1. Algorithms are also just a way of
formally denoting a programmatic concept, in this case an algorithm somewhere in the framework.

Algorithm 3.1: Transitions(s′)

Require: [[StateSpace]]

1: R′ ← ∅
2: r′ ← [[StateSpace]].F irstTransition(s′)
3:

4: while (r′ 6= ǫ) do
5: R′ ← R′ ∪ {r′}
6: r′ ← [[StateSpace]].NextTransition(r′)
7: end while
8:

9: return R′

Algorithm 3.1 is a function that retrieves all outgoing transitions of a state, and is added as a
function in the StateSpace class. It could be seen as an additional function in the STATESPACE

interface (Transitions : S −→ P(R)). Arguably, the notation of interfaces and algorithms is quite
limited, however, it does provide a useful abstraction for denoting algorithms compared to simply
providing source-code. The context of the interfaces and algorithms will be provided in the text.

3.2 Generic Simulation

A simulation of a model can be seen as the exploration of it’s state space. In order to achieve a
modular design of the simulation module, we introduce two new interfaces, SIMULATIONSTRATEGY

and SIMULATIONOBSERVER.

3.2.1 Simulation Strategy

In general we distinguish interactive, random and guided simulations. During an interactive simu-
lation the user decides which execution-path to follow. If at any time during the execution of the
model there is more than one way to proceed then the user is prompted to state his preference. A
random simulation follows a random execution-path of the model. Random simulation is useful
to confirm if the model behaves as expected. A guided simulation follows a predefined execution-
path. This path could be a trace from the initial state to an erroneous state, which could be the
counter-example of a failed verification attempt.

We consider these to be strategies that guide a simulation through the state space. This is
something that is essentially independent to other parts of the simulation module and is there-
fore it is a good candidate to be implemented by means of a strategy pattern. The interface of
SIMULATIONSTRATEGY consists of a single function ChooseTransition.

Given a set of transitions, the ChooseTransition function determines which transition to take.
Obviously the set of transitions cannot be ∅. As is intuitively clear, the set of transitions all share a

The Generic Layer – 24

ChooseTransition : P(R) −→ R ∪ {ǫ}

Interface 3.2 – SIMULATIONSTRATEGY.

common source state. It is possible that ǫ is returned which indicates the simulation should finish.
The SIMULATIONSTRATEGY is consulted throughout the simulation and determines the path the
simulation will take through the state space.

SimulationStrategy

+chooseTransition(...): Transition *

State:typename

Transition:typename

Label:typename

InterActiveSimulationStrategy

+chooseTransition(...): Transition *

GuidedSimulationStrategy

+chooseTransition(...): Transition *

RandomSimulationStrategy

+chooseTransition(...): Transition *

...

...

...

Figure 3.2 – The interface SIMULATIONSTRATEGY with three implementa-

tions, depicted as they see fit in the framework.

As is shown in figure 3.2, each type of strategy coincides with an implementation of SIMU-
LATIONSTRATEGY. The InterActiveSimulationStrategy and the GuidedSimulationStrategy

will need require additional information to realise their functionality, whereas the
RandomSimulationStrategy does not.

3.2.2 Simulation Observer

To encourage a modular design, the simulation module also provides an interface for observation.
This information could be used to print information about the progress of the simulation to the
console, or to update a graphical user interface. The SIMULATIONOBSERVER interface consists of a
set of procedures, rather than functions, and therefore has no influence on the simulation algorithm
itself.

SimulationStarted : ()

TransitionTaken : (R)

SimulationEnded : ()

Interface 3.3 – SIMULATIONOBSERVER.

An observer of a simulation is notified when the simulations starts and when it ends, as well as
each time a transition is taken. One could argue that in order to do anything useful as an observer,
you need to know what type of state, label and transition is being used. Fortunately, as interfaces
are simply generic abstract base classes it is possible to specialise an interface to work on just a
particular type of model, as is shown in figure 3.3.

25 – Generic Simulation

SimulationObserver

+simulationStarted()

+transitionTaken(Transition *)

+simulationEnded()

State:typename

Transition:typename

Label:typename

LtsSimulationObserver
Implements SimulationObserver<LtsState, LtsLabel, LtsTransition>

+simulationStarted()

+transitionTaken(LtsTransition *)

+simulationEnded()

Figure 3.3 – The SIMULATIONOBSERVER interface with a specialised im-

plementation for LTS models.

3.2.3 Simulation Algorithm

The simulation algorithm is given in algorithm 3.2. Note that this algorithm requires a [[StateSpace]],
[[SimulationStrategy]] and [[SimulationObserver]], all instantiated on the same type of states, la-
bels and transitions. One might argue that simulation algorithm 3.2 is quite basic, because it
does not take into account probabilities or priorities or other advanced features. However, one
could easily define a specialised [[SimulationStrategy]] that does take into account this additional
information.

Algorithm 3.2: Simulation algorithm

Require: [[StateSpace]], [[SimulationStrategy]], [[SimulationObserver]].

1: [[SimulationObserver]].SimulationStarted()
2:

3: s′ ← [[StateSpace]].InitialState()
4: R′ ← [[StateSpace]].T ransitions(s′)
5:

6: while (R′ 6= ∅) do
7: r′ ← [[SimulationStrategy]].ChooseTransition(R′)
8:

9: if (r′ 6= ǫ) then
10: [[SimulationObserver]].T ransitionTaken(r′)
11: s′ ← [[StateSpace]].Target(r′)
12: R′ ← Transitions(s′)
13: else
14: R′ ← ∅
15: end if
16: end while
17:

18: [[SimulationObserver]].SimulationEnded()

Algorithm 3.2 is implemented in a class Simulation, which uses an implementation of [[StateSpace]],
[[SimulationStrategy]] and [[SimulationObserver]]. This could be seen as an application of the
strategy pattern, as can be seen in figure 3.4.

The Generic Layer – 26

StateSpace

Simulation

-stateSpace: StateSpace *

-simulationStrategy: SimulationStrategy *

-observer: SimulationObserver *

+startSimulation()

State:typename

Transition:typename

Label:typename

SimulationObserver

SimulationStrategy

...

...

...

Figure 3.4 – An overview of the generic simulation module, which

combines the functionality of [[StateSpace]], [[SimulationStrategy]] and

[[SimulationObserver]].

3.3 Generic Search

Verification of a model that can be expressed as a state space is an exhaustive search of the state
space. One could argue that even LTL model checking is basically searching for acceptance cycles
in the state space of the synchronous product of the the Büchi automata representing the model
and the negation of the property. There are a number of ways in which a search module could
be provided. In particular there is always a trade-off between the flexibility of the functionality
provided by module and the performance of the module. The search functionality should provide
at least the following possibilities:

• Providing different search strategies, such as depth-first, breadth-first and directed search.
It is essential for an explicit-state model checking framework to be capable of providing
multiple strategies of state space traversal.

• Providing the ability to perform nested searches, such as nested depth-first search [38, 39].
Nested searches are particularly useful for searching for acceptance cycles.

• Providing the ability to search for a number of different goals, such as accepting states,
deadlock states, back-edges [4].

Which ever solution is used, there are a few requirements that are to be taken into considera-
tion. Ideally, the solution should be modular, flexible and not compromise on performance.

There are two approaches we will take into consideration. The first is is a search module
consisting of multiple solutions, each of which is dedicated to provide a particular part of the
required functionality. The second is a more general design which provides all functionality in one
solution.

Dedicated solutions For each desired type of search (e.g. depth-first search, breadth-first search,
directed-search, nested depth-first search, . . .) we could introduce a dedicated solution. The
dedicated design for a simple depth-first is described in appendix B, which is similar to the
depth-first algorithms presented in literature [38, 39, 10, 19]. Although a dedicated solution
for each search type could allow for an optimisation for the particular algorithm, this design
is not very flexible. The search module would consist of several optimised solutions for
different search types, and code reuse would be minimal, even though the functionality of
those solutions might be very similar.

27 – Generic Search

Modular solution Alternatively, we could design a search module that is flexible enough to take
into account all search types, at the cost of some performance overhead. A design which is
capable of providing all required functionality is presented in this section.

The choice between the different alternatives depends on the sacrifices in performance one is
willing to make to benefit a modular design. As the focus of this thesis is on modularity we choose
the ‘modular solution’.

To illustrate the need for a modular design, the search method in [4] is discussed. This method
attempts to find acceptance cycles (cycles with at least one accepting state), as is common in the
context of LTL model checking [38, 39]. The algorithm uses a breadth-first traversal method for
finding ‘back-edges’ in the state space, which are transitions of which the target state is of a lower
level than the source state. The level of a state is the iteration in which a breadth-first traversal first
visits the state. The general idea is that each cycle, and thus each acceptance cycle contains a back-
edge. For each back-edge a depth-first search is started to see whether it is part of an acceptance
cycle. Note that to realise this functionality, one would need to be able to target transitions (e.g.
back-edges) as well as states (accepting states), and it has to be possible to start a nested search of
a different strategy.

Similar issues arise when we try to find acceptance cycles with a nested depth-first search as it
is described in [38, 36, 19]. The intention of a nested depth-first search is also to find acceptance
cycles. The initial search searches for accepting states, and a nested depth-first search is started
from accepting states after all its successors were visited. This nested search which will look for
a cycle. This requirement implies that there are different kinds of events within search strategies
that trigger certain events.

The next section will introduce a simple design which provides a high degree of flexibility.

3.3.1 Search Feedback

To encourage a more modular design, we separate the function of search strategies. Strategies
dictate the order of traversal of the state space, but abstract from things like goal states and state
stores. Obviously, the need to identify goal states and storing the visited state space is still there,
this is provided by the SEARCHFEEDBACK interface.

During some events in the search strategy algorithm it will require some feedback. For instance
when its just explored a state, it would be useful to know whether this is a goal state, or whether
its been visited before. The set of all events that require ‘feedback’ is denoted by E. Obviously, the
type of events that occur during a search depends on the search strategy used. Also the feedback
that it returns depends on the event. The set of all feedback types is called F .

ProvideFeedback : (E) −→ F

Interface 3.4 – SEARCHFEEDBACK.

To provide useful feedback the information present in the event from E is not sufficient. It is
likely that the implementation of SEARCHFEEDBACK will need to query the search strategy in order
to extract more information.

The general idea is that a search strategy consults its feedback at every important event that
occurs. In table 3.1 a small overview of the interaction between the search strategy and SEARCH-
FEEDBACK is given. How an implementation of SEARCHFEEDBACK realises the required functional-
ity will be explained in section 3.3.3, for now it is sufficient to assume the SearchFeedback as an
abstract base class.

3.3.2 Search Strategies

In figure 3.5 it is shown how search strategies use the SEARCHFEEDBACK interface to perform a
search. This section will focus on the DepthFirstStrategy, but a similar discussion could discuss
a breadth-first or heuristic strategy.

The Generic Layer – 28

Table 3.1 – Interaction between SEARCHFEEDBACK and SearchStrategy.

A SearchStrategy triggers certain events and expects SEARCHFEEDBACK

to provide appropriate feedback.

Strategy Event (E) Expected Feedback (F)

Depth-First Strategy EXPLORE NEW, SKIP, GOAL

BACKTRACK CONTINUE, GOAL

Breadth-First Strategy EXPLORE NEW, SKIP, GOAL

Best-First Strategy EXPLORE NEW, SKIP, GOAL

As shown in table 3.1, a depth-first strategy has two events, namely EXPLORE and BACKTRACK.
An EXPLORE event occurs when a new step is explored in the state space. This new step is a state
of which the strategy is unsure whether it is a goal state (GOAL), whether it is a state that was
previously visited (SKIP), or a new state (NEW). The SEARCHFEEDBACK interface is responsible for
providing this information, and to help the SEARCHFEEDBACK interface, the DepthFirstStrategy

has a few functions to retrieve the current state and transition. Note that the EXPLORE event is
likely to be the same for all possible strategies.

The BACKTRACK event occurs just after the depth-first algorithm pops a transition from the stack
to start back-tracking. This event is useful for starting a nested search. Possible feedback is that
the algorithm can continue normally (CONTINUE), or that the goal state was found (GOAL).

Similar to the iterative depth-first search algorithm B.3, a depth-first strategy is defined in algo-
rithm 3.5. This strategy has two ‘helper’ functions for exploring (algorithm 3.3) and backtracking
(algorithm 3.4). The getCurrentState and getCurrentTransition in figure 3.5 are simply get-
ter functions for the currentState and currentTransitions variables in algorithm 3.5. The most
important difference to the iterative depth-first search is that detection of goal states and detect-
ing previously visited states is done simultaniously, using the functionality of [[SearchFeedback]].
The search strategy is shown in algorithm 3.5 on page 30. This algorithm uses a [[StateSpace]],
[[SearchFeedback]] and a [[Stack]], which is simply a stack of transitions with two functions
Push : (R) and Pop : R ∪ {ǫ} (see also appendix B).

Algorithm 3.3: TryExploreStep(s ∈ S, r ∈ R ∪ {ǫ})

1: currentState← s
2: currentTransition← r
3:

4: feedback ←[[SearchFeedback]].P rovideFeedback(EXPLORE)
5:

6: {* Note that SKIP is ignored. *}
7:

8: if (feedback = GOAL) then
9: if (r 6= ǫ) then

10: [[Stack]].Push(r)
11: end if
12: foundTarget← TRUE

13: else if (feedback = NEW) then
14: if (r 6= ǫ) then
15: [[Stack]].Push(r)
16: end if
17: foundNewState← TRUE

18: end if

29 – Generic Search

SearchStrategy

#searchFeedback: SearchFeedback *

+startSearch(initialState:State *): void

+currentState(): State *

+currentTransition(): Transition *

SearchFeedback

+provideFeedback(event:const int): int

State:typename

Label:typename

Transition:typename

Stack

+pop(): Transition *

+push(Transition *)

Queue

+push(State *)

+pop(): State *

...

DepthFirstStrategy

+EXPLORE_EVENT: const int

+BACKTRACK_EVENT: const int

+NEW: const int

+SKIP: const int

+GOAL: const int

+CONTINUE: const int

+startSearch(State *)

+currentState(): State *

+currentTransition(): Transition *

...

BreadthFirstStrategy

+EXPLORE_EVENT: const int

+NEW: const int

+SKIP: const int

+GOAL: const int

+startSearch(State *)

+currentState(): State *

+currentTransition(): Transition *

......

...

StateSpace

...

StateSpace

...

Figure 3.5 – Design of SearchStrategy and SEARCHFEEDBACK.

The strategies now no longer have a [[Store]] or [[Goal]] but a

[[SearchFeedback]] takes over this functionality.

Algorithm 3.4: TryBacktrackStep(s ∈ S, r ∈ R ∪ {ǫ})

1: currentState← s
2: currentTransition← r
3:

4: feedback ←[[SearchFeedback]].P rovideFeedback(BACKTRACK)
5:

6: {* Note that CONTINUE is ignored. *}
7:

8: if (feedback = GOAL) then
9: if (r 6= ǫ) then

10: [[Stack]].Push(r)
11: end if
12: foundTarget← TRUE

13: end if

The Generic Layer – 30

Algorithm 3.5: Depth-first search strategy

Require: [[StateSpace]], [[SearchFeedback]], [[Stack]].

1: foundTarget← FALSE

2: foundNewState← FALSE

3:

4: currentState← [[StateSpace]].InitialState()
5: currentTransition← ǫ
6:

7: TryExploreStep(currentState, currentTransition)
8:

9: while (¬foundTarget ∧ currentState 6= ǫ) do
10: {* Invariant: State currentState is a new state. *}
11: foundNewState← FALSE

12:

13: r′ ←[[StateSpace]].F irstTransition(s′)
14: while (¬foundTarget ∧ ¬foundNewState ∧ r′ 6= ǫ) do
15: {* Iterate over outgoing transitions of s′. *}
16: s′ ← [[StateSpace]].Target(r′)
17: TryExploreStep(s′, r′)
18: if (¬foundTarget ∧ ¬foundNewState) then
19: r′ ←[[StateSpace]].NextTransition(r′)
20: end if
21: end while
22:

23: if (¬foundTarget ∧ ¬foundNewState) then
24: r′ ←[[Stack]].Pop()
25: while (¬foundTarget ∧ ¬foundNewState ∧ r′ 6= ǫ) do
26: s′ ← [[StateSpace]].Target(r′) {* Iterate over stack. *}
27: TryBacktrackStep(s′, r′)
28: alt←[[StateSpace]].NextTransition(r′)
29: while (¬foundTarget ∧ ¬foundNewState ∧ alt 6= ǫ) do
30: {* Iterate over alternative outgoing transitions of r′. *}
31: s′ ← [[StateSpace]].Target(alt)
32: TryExploreStep(s′, alt)
33: if (¬foundTarget ∧ ¬foundNewState) then
34: alt←[[StateSpace]].NextTransition(alt)
35: end if
36: end while
37: if (¬foundTarget ∧ ¬foundNewState) then
38: r′ ←[[Stack]].Pop()
39: end if
40: end while
41: end if
42:

43: if (¬foundNewState) then
44: currentState← ǫ
45: currentTransition← ǫ
46: end if
47: end while
48:

49: if (¬foundTarget ∧ ¬foundNewState) then
50: currentState← [[StateSpace]].InitialState()
51: TryBacktrackStep(currentState, ǫ)
52: end if

31 – Generic Search

3.3.3 Search Adapter

So far there has been the assumption that there exists a functional implementation of SEARCHFEED-
BACK, but implementing such an interface is not trivial. This section describes an implementation
that is fairly general, and can be used for a number of commonly used search algorithms in model
checking. In figure 3.6 it is shown that SearchAdapter implements SEARCHFEEDBACK and uses a
SEARCHSTRATEGY. What is more important is how this class implements its feedback requirements.
By means of the method addHandler we can associate an event with a default feedback value, as
well as a list of CONDITIONs and ACTIONs. The idea is that ACTIONs provide feedback, and they
are taken into account if the CONDITION they are associated with holds. To explain this in more
detail we should first describe these interfaces.

SearchStrategy

SearchFeedback

...

SearchAdapter

-strategy: SearchStrategy *

+startSearch(State *)

+provideFeedback(event:cont int): int

+addHandler(event:const int,
 defaultFeedback:int,
 conditions:std::vector<Condition *>,
 actions:std::vector<Actions *>)

Condition

+conditionHolds(State *,
 Transition *): bool

Action

+performAction(State *,
 Transition *): int

...

... ...

*
*

...

Figure 3.6 – A SearchAdapter implements SEARCHFEEDBACK and uses

a SEARCHSTRATEGY. It can generate feedback from events by means of

CONDITIONs and ACTIONs.

A condition is similar to the GOAL interface (see B.2 on page 86) of the dedicated solution, in
the sense that it looks at the current state or transition and decides whether the condition holds or
not. Example conditions could be accepting conditions, deadlock condition, back-edge condition
or tautologic condition. As for other interfaces the implementation can be generic, or specialised
for a particular type of model. A condition uses the current state, and the transition leading to the
current state (or ǫ in case of the initial state). The CONDITION interface is defined in interface 3.5.

ConditionHolds : (S × (R ∪ {ǫ})) −→ {TRUE, FALSE}

Interface 3.5 – CONDITION.

An action object performs some action, such as the storage of a state in a store, starting a nested
search, or printing out the visited states. These actions are associated with a condition, and are
only executed if the condition holds. The execution of an action provides feedback which is taken
into account in the SearchAdapter implementation. The ACTION interface is defined in interface
3.6.

PerformAction : (S × (R ∪ {ǫ})) −→ F

Interface 3.6 – ACTION.

The current state and the transition leading to the current state are arguments of both the
ConditionHolds function of CONDITION and the PerformAction function in ACTION. From figure

The Generic Layer – 32

3.6 it is clear that one can interpret search strategies as an interface SEARCHSTRATEGY, which
provides the required information.

CurrentState : S

CurrentTransition : R ∪ {ǫ}

Interface 3.7 – SEARCHSTRATEGY.

Furthermore, a SearchAdapter potentially receives feedback from multiple actions, and will
have to make a choice as to which to return to the search strategy. For this a function Priority :
(F) −→ N is required, which implies the importance of certain feedback. As is clear from figure
3.5 feedback is represented as integer members anyway, so there is no need to explicitly define
such a function if the integer values are chosen correctly. The only influence it has is that if the
feedback of multiple ACTIONs is taken into account, the Priority function is used to select the
most important one. Naturally, in the case of our depth-first strategy, it is the assumption that
Priority(GOAL) > Priority(SKIP) > Priority(NEW) and Priority(GOAL) > Priority(CONTINUE).

As previously said the addHandler function of SearchAdapter enables events to be associated
with a default feedback value and a sequence of pairs of conditions and actions. Once feedback
is requested by the search strategy this information is taken into account. Informally for each
condition-action pair in the sequence the condition is evaluated. If the condition holds, the action
is executed and its feedback is taken into account. The most prioritised feedback is dominant and
is returned. A more formal description is given in algorithm 3.6 on page 32.

Algorithm 3.6: ProvideFeedback(e ∈ E) −→ F

Require: [[SearchStrategy]]
Require: defaultFeedbackV alue is the default value of feedback for e.
Require: 〈C0, A0〉, . . . , 〈Cn, An〉 is the sequence of pairs of [[Condition]] and [[Action]]

associated with e.

1: feedback ← defaultFeedbackV alue
2: i← 0
3: while (i ≤ n) do
4: s←[[SearchStrategy]].CurrentState()
5: r ←[[SearchStrategy]].CurrentTransition()
6: if (Ci.ConditionHolds(s, r)) then
7: actionFeedback ← Ai.P erformAction(s, r)
8: if (Priority(actionFeedback) > Priority(feedback)) then
9: feedback ← actionFeedback

10: end if
11: end if
12: i← i + 1
13: end while
14: return feedback

To illustrate the flexibility of the design described in this section, a few examples will be pro-
vided.

• Consider a scenario where a tool needs to find accepting state in a model. To start with
one would need to decide upon a search strategy. Assume one would choose the breadth-
first approach, which has one event (EXPLORE) which behaves identically to its depth-first
counterpart. Assume the user implemented an AcceptCondition specialised for a particular
model. This condition holds if the current state is accepting. Also the user has implemented a
StoreAction, which returns SKIP when a state is already in the store, and NEW if not. Further-
more, assume there are generic implementations of TautologicCondition and GoalAction,
which always hold and always return GOAL, respectively.

33 – Transformations of State Spaces

One could set up a SearchAdapter with a BreadthFirstStrategy and associate the
EXPLORE event with default feedback value NEW, and the condition-action sequence
〈AcceptCondition,GoalAction〉, 〈TautologicCondition,StoreAction〉.

• Now consider the scenario that the same user wishes to find acceptance cycles using a nested
depth-first search (see [38]). Assume two store actions are implemented, FirstStoreAction
and SecondStoreAction, one for the original search and one for the nested search.
Both store actions use the same state store, as is described in [38]. Also we have a
IsSeedCondition which evaluates to TRUE only if the current state matches some custom
seed that can be set. Furthermore, we have a SetSeedAction action which is responsible
for setting the custom state of the IsSeedCondition to the current state (and always returns
CONTINUE). A NestedSearchAction starts a second search and returns GOAL if the search was
successful, or CONTINUE otherwise.

The initial search would be a SearchAdapter with a DepthFirstStrategy, with the
EXPLORE event associated with default feedback value NEW, and the condition-action
sequence 〈TautologicCondition,FirstStoreAction〉. Also associate the BACKTRACK

event with default value CONTINUE and sequence 〈AcceptCondition,SetSeedAction〉,
〈AcceptCondition,NestedSearchAction〉.

The nested search (defined in NestedSearchAction) has a SearchAdapter with a
DepthFirstStrategy. The EXPLORE event is associated with with default feedback value
NEW, and the condition-action sequence 〈TautologicCondition, SecondStoreAction〉,
〈IsSeedCondition,GoalAction〉.

Perhaps the examples seem more complex than expected. For instance, the store functionality in
the second example is fairly complex to implement. However, this type of functionality is required
to implement a nested depth-first search as it is described in [38]. The modular design does not
simplify the problem, but provides a more natural way of solving it. As explained before, the
generic design of this layer does enable the possibility of implementing such functionality in a
generic fashion, i.e. for a whole class of models, rather than a specific type of model.

3.4 Transformations of State Spaces

In the search module, functionality was introduced that could search for, say, accepting states, as
well as accepting cycles. Although both search types are defined over state spaces, these state
spaces are typically not the same, or even of the same type. When we search for acceptance cycles
this is often because we have performed a synchronous product of two Büchi automata, one for the
system, and for for a negation of a property [66, 19, 36]. However, it is not desirable to make two
implementations of a model type, one for LTL model checking and one for model checking simple
properties. Therefore it is necessary to be able to make transformations in state spaces.

See figure 3.7 for an example of a transformation. A FooModel of a state space exists, and we
can use generic functionality over this type of model. However, we also want a transformation of
this type of model to BarModels. The typical way to implement this is to make an association from
BarModel to FooModel. Both model types implement the STATESPACE interface with different types
of states, labels and transitions.

3.4.1 Examples of State Space Transformations

Although the possibilities of transformations are very broad, there are a few typical examples that
can be discussed.

• Consider we have an implementation of a model in which each state, label and transition
consists of a lot of objects. As memory requirements are strict these need to be converted
to bitvectors before verification, which is a common approach model checking. This can
be done with a transformation, as can be seen in figure 3.8. A MemoryIntensiveModel is
tranformed into a BitvectorModel. This principle is applied in our abstract layer in section
4.2.

The Generic Layer – 34

StateSpace

State:typename

Transition:typename

Label:typename

FooModel
Implements StateSpace<FooState, FooLabel, FooTransition>

+getInitialState(): FooState *

+getFirstTransition(FooState *): FooTransition *

+getNextTransition(FooTransition *): FooTransition *

+getSource(FooTransition *): FooState *

+getLabel(FooTransition *): FooLabel *

+getTarget(FooTransition *): FooState *

BarModel
Implements StateSpace<BarState, BarLabel, BarTransition>

-fooModel: FooModel *

+getInitialState(): BarState *

+getFirstTransition(BarState *): BarTransition *

+getNextTransition(BarTransition *): BarTransition *

+getSource(BarTransition *): BarState *

+getLabel(BarTransition *): BarLabel *

+getTarget(BarTransition *): BarState *

Figure 3.7 – An example tranformation from a FooModel state space to a

BarModel state space.

• Consider a type of model whose ‘global’ state space is composed purely of a product of state
spaces of the components in the model. This too can be a transformation, although perhaps
this illustrates that the naming convention of ‘transformation’ does not cover the intended
usage, as this transformation transforms multiple state spaces into a single one (see figure
3.9).

• Finally, we can call the synchronous product of the Büchi automaton that represents the
negation of an LTL property and the Büchi automaton of the system model as a transforma-
tion. Each automaton implements a state space and the LtlProductModel is a generic class
for making this synchronous product for any kind of model. Although this might be tricky
to implement, once this is functionality is available it can be used to model check LTL model
checking for any type of state space. Note that figure 3.10 abstracts from the fact that the
LtlProperty will probably need a set of atomic propositions of a type that is consistent with
the model type under investigation. Note that as the states in the result of the synchronous
product are basically pairs of LtlState and the type of states over which the system model
is defined, the LtlProductState need to be generic as well.

3.4.2 Enabling Reuse for Transformations

The transformations presented in this section present us with a new design problem. Con-
sider the transformation from MemoryIntensiveModel to BitvectorModel from figure 3.8.
The MemoryIntensiveModel uses state, label and transitions types MemoryIntensiveState,
MemoryIntensiveLabel and MemoryIntensiveTransition.

Deadlock conditions, strategy observers etcetera, are all defined on these types of states, la-
bels and transitions, rather than their BitvectorModel equivalents. In the current setup, if one
wishes to search BitvectorModels one would also need to implement the interfaces such as con-
ditions and observers for BitvectorState, BitvectorLabel BitvectorTransition. However,
implementing the same condition for both seems redundant, and it is preferable to use classes
defined over the memory-intensive representation for the bitvector representation too.

However, as figure 3.9 and 3.10 show, this reuse is not always intuitive, as there is not always

35 – Transformations of State Spaces

StateSpace

State:typename

Transition:typename

Label:typename

MemoryIntensiveModel
Implements StateSpace<MemoryIntensiveState, MemoryIntensiveLabel, MemoryIntensiveTransition>

BitvectorModel
Implements StateSpace<BitvectorState, BitvectorLabel, BitvectorTransition>

-memoryIntensiveModel: MemoryIntensiveModel *

Figure 3.8 – A transformation to a more memory-efficient representation

of the state space.

StateSpace

State:typename

Transition:typename

Label:typename

ComponentModel
Implements StateSpace<ComponentState,ComponentLabel,ComponentTransition>

ProductModel
Implements StateSpace<ProductState, ProductLabel,ProductTransition>

-componentModels: std::vector<ComponentModel *>

*

Figure 3.9 – The parallel composition of the state spaces of components

into a product state space.

an obvious mapping from the transformed state space to one of the original state spaces. For
instance, for figure 3.10 one could have conditions implemented for the LtlProperty and for the
system model. It should be possible to use both types of conditions for LtlProductModels as there
is a clear mapping from this product to the property and system state spaces.

The solution is to provide one implementation of each generic interface that can provides the
required implementation by means of an implementation of the same interface for the original
state space and a mapping from the transformed state space to the original state space. For in-
stance, for the case of MemoryIntensiveModel and BitvectorModel one would need a mapping
from BitvectorModel to MemoryIntensiveModel and an implementation of a SIMULATIONOB-
SERVER for MemoryIntensiveModels, then it is possible to realise a SIMULATIONOBSERVER for
BitvectorModels. This is shown in figure 3.11. In the worst case this design would require
each interface to have one generic implementation that provides reuse for transformed models.

The Generic Layer – 36

StateSpace

State:typename

Transition:typename

Label:typename

LtlProperty
Implements StateSpace<LtlState,LtlLabel,LtlTransition>

LtlProductModel
Implements StateSpace<LtlProductState<...>,LtlProductLabel<...>,LtlProductLabel<...>>

-ltlProperty: LtlProperty *

-systemModel: StateSpace<State, Label,Transition> *

State:typename

Transition:typename

Label:typename

System

Figure 3.10 – Synchronous product of an LTL property and the system

model as a transformation.

StateSpace

State:typename

Transition:typename

Label:typename

SimulationObserver

State:typename

Transition:typename

Label:typename

MemoryIntensiveModelObserverMemoryIntensiveModel

BitvectorModel

TransformedSimulationObserver
Implements SimulationObserver<FromState,FromLabel,FromTransition>

-StateSpaceMapping<FromState,...,ToTransition> *

-fromObserver: SimulationObserver<ToState,ToLabel,ToTransition> *

+simulationStarted()

+transitionTaken(FromTransition *)

+simulationEnded()

FromState:typename

FromLabel:typename

FromTransition:typename

ToState:typename

ToLabel:typename

ToTransition:typename

StateSpaceMapping

+mapping: mapping<...> *

+mapState(FromState *): ToState *

+mapTransition(Transition *): Transition *

FromState:typename

FromLabel:typename

FromTransition:typename

ToState:typename

ToLabel:typename

ToTransition:typename

Figure 3.11 – Reuse of a MemoryIntensiveModelObserver by means of

a generic class TransformedSimulationObserver, given a mapping from

BitvectorModel to MemoryIntensiveModel.

37 – Transformations of State Spaces

Chapter 4

The Abstract Layer

So far the focus has been on the generic layer of the framework, which was concerned with models
on a high level of abstraction. This layer requires information about models on the level of a state
space, and did not assume anything about the internal structure of states, labels and transitions.
The abstract layer provides an internal structure to these states, labels and transition. Although
a specification on the level of a state space might be appropriate for some models, it is generally
desirable to specify models using a more abstract specification language. The naming convention
might introduce some confusion; the ‘abstract layer’ refers to the abstraction made from individual
states and transitions in the state space. However, when we say this layer has a low level of
abstraction we refer to the fact that the states, labels and transitions in this layer are more conrete
than in the generic layer, as they have an internal structure.

There are many possible ways in which one could provide an abstract layer, but this chapter
focuses on only one possibility. Some models that could be implemented as an abstract layer in
figure 2.3 in section 2.1.2, different implementations of the abstract layer would all share the
funcitonality in the generic layer.

As the initial drive behind this project was to develop a more modular version of SPIN, the
abstract layer in this chapter is mostly tailored to be able to model PROMELA-like models. For
this we introduce high-level features such as data, variables, processes, functions, control-flow
and statements. The models defined by the current implementation of the abstract layer will be
referred to as ‘software models’.

It should be noted that the state representation in this abstract layer is based on [60] (e.g.
BOGOR). The graph-like nature of the states presented in this article seem to be a natural way of
expression states of software models, and open up opportunities for symmetry reductions.

4.1 Design of Software Models

In chapter 2 and 3 it was explained that in order to use the generic layer, one would need to provide
an implementation of the STATESPACE interface, specialised with a particular type of state, label
and transition. The big picture of the abstract layer should thus include classes like SoftwareModel,
SoftwareState and SoftwareTransition. However, as transitions in software-based models are
mostly associated with statements of code, we choose to use the naming convention Statement for
labels rather than SoftwareLabel.

In figure 4.1 it is shown how these classes implement a state space interface. However, it
shows little detail of the funcitonality involved to transform the high-level features into a state
space. To illustrate this consider a SoftwareState. A SoftwareState remembers the state of the
SoftwareModel. At any one time, a model could have multiple parallel processes running, each
with their own function stack and local variables. Also there could be global variables, and a heap
of objects that is shared amongst processes. However, remembering the state is not enough, we
also must have enough information to be able to correctly implement the semantics of the model
in terms of transitions and changes of states. For this we require the notion of statement and
control-flow.

39 – Design of Software Models

StateSpace

SoftwareModel
Implements StateSpace<SoftwareState, Statement, SoftwareTransition>

SoftwareState SoftwareTransition Statement

1
2

...

1

Figure 4.1 – Simplified view of the abstract layer, consisting of

SoftwareModels. Note that Statements are not directly related

to SoftwareTransitions, but rather SoftwareTransitions link to a

ControlFlowTransition of the control-flow of a process or function type,

which is associated with a Statement

The information required is two-fold, not only do we need information about instances (e.g.
data values, process states) but also about types (e.g. data types, process types). To show why
this is useful, consider the control-flow of processes. This control-flow is the same for all process
instances of the same type. It makes sense to store this information per process type rather than
per instance. Throughout this chapter, the distinction between information about types and infor-
mation about instances is very explicit. Note that the inclusion of typing information does make
the design of the abstract layer more complex.

Firstly, the focus will be on the representation of states. SoftwareStates are considered to be
graphs, similar to [60], and as we also have typing information, we first consider the type graph
of states. This type graph is model-wide, shared by each state in the state space. See definition 4.1
and 4.2 for the formal definition of both a graph and a type graph.

Definition 4.1. A directed graph is a triplet 〈S, L, R〉, where S is a set of nodes, L is a set of labels

and R ⊆ S × L× S is set of directed labelled edges.

Definition 4.2. Consider graphs G = 〈SG, LG, RG〉, H = 〈SH , LH , RH〉 and a typing function

τ : SG −→ SH such that (s, l, s′) ∈ RG =⇒ (τ(s), l, τ(s′)) ∈ RH . H is called a type graph of G.

The reason why this chapter formally treats states as graphs and introduces type graphs as
well is because this opens up new possibilities to formally reason about them. For instance, the
algorithm used to linearise states to a bitvector makes strong use of fact that it is possible to
interpret states as graphs (see section 4.2.2). Also, treating states as graphs will proof useful when
trying to realise symmetry reductions in the state space (see also section 5.4.2).

4.1.1 Formal Description of the Model-Wide Type Graph

Consider SoftwareModelM which is to be expressed in terms of a state space 〈SM, LM, IM, RM〉.
The idea is that each SoftwareState in SM will be interpreted as a graph. Also, we assume there
exists a type graph ΓM which is a type graph for each state in SM. Each type node in ΓM has
additional information associated with it. For example a process type would have a control-flow. To
build this type graph it is necessary to find out more aboutM. It is presumed that the information
needed to build a type graph can be made available by means of static analysis over the model
specification.

MProc : The set of all process types inM.

MFunc : The set of all function types inM.

MData : The set of all data types inM.

MV ar : The set of all variables used inM.

The Abstract Layer – 40

The intuition is that process types, function types and data types are nodes in our type graph,
whereas variables are labels in the type graph. This information by itself is not sufficient to con-
struct the type graph, therefore we introduce some auxiliary functions.

MScope :MV ar −→ ({ι} ∪MProc ∪MFunc ∪MData)

MV arType :MV ar −→MData

MCall : (MProc ∪MFunc) −→ P(MFunc)

The function MScope maps variables to the scope in which they are defined, whereas MV arType

maps variables to the data type these variables resemble. All not only all types in the model are
nodes of the type graph, we also define an additional ι-type, which denotes the global type. Global
variables can use this type as their scope. Note that the definition ofMV arType implies we cannot
have references to process instances, or function instances. Finally, the relationMCall specifies the
functions a process and function type might call. This information is sufficient to reconstruct a call
graph of a model. Now, the type graph ΓM consists of the triplet 〈SΓM

, LΓM
, RΓM

〉 where:

SΓM
={ι} ∪MProc ∪MFunc ∪MData

LΓM
={∗} ∪MV ar

RΓM
={(MScope(var), var,MV arType(var))|var ∈MV ar} ∪

{(s, ∗, s′)|s ∈ (MProc ∪MFunc) · s
′ ∈MCall(s)}

The edge label ‘∗’ is used to model function calls. As one process or function type may call multiple
functions during its lifetime, it is clear that this label introduces non-determinism in the type graph.
But at any one time, a process or function instance can only call one function. This means that this
is not a cause for non-determinism in the state graphs.

Consider the model specification in listing 4.1. Although without defining formal semantics it is
not precisely clear how we could extract the required information, the intention is that the syntax
is intuitive enough to convince most readers. As before,M will denote the model under consider-
ation. GivenMProc,MFunc,MData,MV ar,MScope,MV arType andMCall, which ideally should
be extractable from listing 4.1 by means of static analysis, the type graph ΓM will be constructed.

Using the information that is provided, the type graph ΓM can be constructed. In figure 4.2 this
graph is shown using a graphical representation that is presumed to be intuitive, and is supposed
to naturally extend the graphical notation for state graphs given in [60].

SΓM
= {ι, init, Philosopher, takeFork, releaseFork, Fork,Boolean}

LΓM
= {∗, f1, f2, f3, left, right, take, release, value}

RΓM
= {(Philosopher, ∗, takeFork), (Philosopher, ∗, releaseFork),

(init, f1, Fork), (init, f2, Fork), (init, f3, Fork),

(Philosopher, left, Fork), (Philosopher, right, Fork),

(takeFork, fork, Fork), (releaseFork, fork, Fork),

(Fork, value,Boolean)}

4.1.2 Design to Support Typing Information

Perhaps it is hard to relate last section to the previously presented design diagrams of certain
parts of the framework. This section presents how the typing information can be put into practice.
Figure 4.3 shows a UML diagram that relates the SoftwareModel to the typing information.

Types that are present in our model are nodes in the type graph (SΓM
), and map to the Type

class in the design. As can be seen in the definition of SΓM
it consists of four ‘types’, ι, MProc,

MFunc and MData, which map to GlobalType, ProcessType, FunctionType and DataType, re-
spectively.

Edges in the type graph consist of both variables and function calls. As function calls have no
edge-specific information (i.e. they always have the same label ∗), they can be incorporated by
a simple list in each function and process to the functions they can call (MCall). Variable edges

41 – Design of Software Models

Listing 4.1 – A dining philosophers model in DSPIN-style.�
typedef Fork {

bool isTaken;

};

init {

Fork & f1 = new Fork;

Fork & f2 = new Fork;

Fork & f3 = new Fork;

f1 = false;

f2 = false;

f3 = false;

run Philosopher(f1 , f2);

run Philosopher(f2 , f3);

run Philosopher(f3 , f1);

};

proctype Philosopher(Fork & left , Fork & right) {

do ::

takeFork(left);

takeFork(right);

releaseFork(right);

releaseFork(left);

od;

};

function takeFork(Fork & take) : void {

atomic

{

!fork.isTaken -> fork.isTaken = true;

};

};

function releaseFork(Fork & release) : void {

fork.isTaken = false;

};

� �

however do have edge-specific information, as the edges are labelled with the variable itself. This
means the introduction of a Variable class can be justified. The definition of MScope is present
by means of association from the Type class to a number of variables. Each Variable has an
association with a DataType to representMV arType.

Although this section does not provide a thorough understanding of the functionality of the
classes presented in figure 4.3, hopefully it does provide the link between the presented formal
description of the type graph and the design of the abstract layer presented so far.

4.1.3 Formal Description of the State Graphs

Now that we have constructed the type graph for all state graphs ofM, we can describe what the
states of M will look like. Consider we would like to build the state graph of a state σ ∈ SM

defined by 〈Sσ, Lσ, Rσ〉 as well as a typing function τσ that maps nodes from the state graph to
nodes in the type graph (τσ : Sσ −→ SΓM

). Nodes in the state graph also have ‘internal data’, for
example the internal data of a boolean data instance would be a boolean value, and the internal
state of a process instance would consist of a process identifier and a control-flow state. This is
described in more defail in the section about state graph linearisation (section 4.2). Again, we

The Abstract Layer – 42

MP roc = {init, Philosopher}

MF unc = {takeFork, releaseFork}

MData = {Fork, Boolean}

MV ar = {f1, f2, f3, left, right, take, release, value}

MScope(f1) = init

MV arT ype(f1) = Fork

MScope(f2) = init

MV arT ype(f2) = Fork

MScope(f3) = init

MV arT ype(f3) = Fork

MScope(left) = Philosopher

MV arT ype(left) = Fork

MScope(right) = Philosopher

MV arT ype(right) = Fork

MScope(fork) = takeFork

MV arT ype(fork) = Fork

MScope(fork) = Philosopher

MV arT ype(fork) = Fork

MScope(value) = Fork

MV arT ype(value) = Boolean

MCall(init) = ∅

MCall(Philosopher) = {takeFork, releaseFork}

MCall(takeFork) = ∅

MCall(releaseFork) = ∅

ι

Fork

Init

Phil

releaseFork

takeFork

Bool

value

f1

f2

f3fork

fork

left

right

∗

∗

Figure 4.2 – Type graph of the states of the dining philosophers model

given in listing 4.1. The ι-node has no outgoing edges as there are no

global variables.

need to know more about the internal structure of σ:

σProc : The set of all process instances in σ.

σFunc : The set of all function instances in σ.

σData : The set of all data instances in σ.

These set of instances should be disjoint. Additionally, it is required to have all instances map to
their type; these functions will be used to define τσ later.

τσP roc
: σProc −→MProc

τσF unc
: σFunc −→MFunc

τσData
: σData −→MData

43 – Design of Software Models

SoftwareModel
The software model class, as was

presented before.

Type

+addVariable(Variable *): void

+getVariable(id:std::string): Variable *

DataType ProcessTypeFunctionType GlobalType

PrimitveType

BooleanType

UnsignedNumericType

SignedNumericType

1*

Variable

+getDataType(): DataType *

+getIdentifier(): std::string

*

1

ClassType...

...

*

Nodes of the
type graph.

Variable labels of
the type graph.

Scope of
variables.

Type of
variables.

Call edges of
the type graph.

Figure 4.3 – Design of typing information in the abstract layer. The notes

map the diagram elements to their formal definition in the previous sec-

tion.

Now we will define τσ by means of the functions we have just defined, and by adding the trivial
case for the global scope (ι denotes the global instance as well as the global type). From τσ it
should be clear that Sσ = {ι} ∪ σProc ∪ σFunc ∪ σData.

τσ(s) =

τσP roc
(s) , if (s ∈ σProc)

τσF unc
(s) , if (s ∈ σFunc)

τσData
(s) , if (s ∈ σData)

ι , if (s = ι)

Furthermore, for the states to map to the type graph, we need edges that reflect the variable edges
in the type graph. This could be seen as the value of a variable and is defined by function σV alue.
We use ǫ to denote a variable without value (e.g. a null pointer).

σV alue : (MV ar × Sσ)→ (σData) ∪ {ǫ}

A requirement is that the value function is consistent with the type graph:

val = σV alue((var, s)) ∧ val 6= ǫ⇒ τσ(s) =MScope(var) ∧ τσ(val) =MV arType(var)

The final piece of information concerns call stacks. For each process and function instance it is
required to know exactly which function is next on the call stack stack in the current state. This
information is given in σCall.

σCall ⊆ (σProc ∪ σFunc)× σFunc

The σCall set also has to be consistent with theMCall function in the typing information:

(p, f) = σCall ⇒ τσ(f) ∈MCall(τσ(p))

The Abstract Layer – 44

The σCall set comes with an additional constraint that each function instance is exactly once
on a function stack. From all given information the graph representation of state σ can finally be
defined:

Sσ ={ι} ∪ σProc ∪ σFunc ∪ σData

Lσ =LΓM

Rσ ={(s, v, σV alue(v, s))|v ∈MV ar, s ∈ Sσ · σV alue(v, s) 6= ǫ}

∪ {(p, ∗, f)|(p, f) ∈ σCall}

According to the definition of a type graph (definition 4.2 on page 39) it should hold that
(s, l, s′) ∈ Rσ =⇒ (τ(s), l, τ(s′)) ∈ RΓM

. According to the definition of Rσ, there are two main
types of edges in the state graph, edges representing variable values and edges representing func-
tion calls.

• To show the condition holds for call edges, consider that for each call edge (s, l, s′) ∈ Rσ

implies l = ∗ and (s, s′) ∈ σCall. The requirement of σCall was that it is consistent with the
typing information, e.g. (s, s′) ∈ σCall implies τσ(s′) ∈ MCall(τσ(s)). The definition of RΓM

shows that this means that (τ(s), l, τ(s′)) ∈ RΓM
.

• Similarly for variable edges, each variable edge (s, l, s′) ∈ Rσ implies s ∈ Sσ, l ∈ MV ar

and s′ = σV alue(l, s). The requirement on σV alue implies that τσ(s) = MScope(l) and
τσ(s′) = MV arType(l). As RΓM

includes (MScope(var), var,MV arType(var)) for each vari-
able inMV ar, it must hold that (τ(s), l, τ(s′)) ∈ RΓM

.

An example of a state graph is given in figure 4.4, which is again extracted from the model
specification given in listing 4.1. The type graph of this figure is shown in figure 4.2.

ι

Init

Phil. 1

Phil. 2 Phil. 3 releaseFork

Fork 2 Fork 1

Fork 3

BoolBool

Bool

value
value

value

f1

f2

f3

left

right

left

right

left

right

∗

fork

Figure 4.4 – A graph representation of a state of the dining philosophers

model given in listing 4.1. The types of the nodes have been explicitly

noted as text on the nodes. The example elaborates on the example in

[60].

4.1.4 Design of State Representation

Similar as to how we related the type graph to the design of typing information in the framework,
this section will associate the formal definition of states to the design of the framework that sup-
ports the representation of states. Figure 4.5 presents this design, which is similar to how figure
4.3 designed.

45 – Design of Software Models

SoftwareState

Instance

+setVariableValue(identifier:std::string,
 value:DataInstance *): void

+getVariableValue(identifier:std::string): DataInstance

DataInstance ProcessInstanceFunctionInstance GlobalInstance

PrimitveInstance

BooleanInstance

UnsignedNumericInstance

SignedNumericInstance

1*

*

ClassInstance...

...

1

Nodes of the
state graph.

Variable edges of
the state graph.

Call edges of
the state graph.

Figure 4.5 – Design of state representation in the abstract layer. The notes

map the diagram elements to their formal definition in the previous sec-

tion.

However, it is important to note that typing information is model-wide, and there only exists
one ‘type graph’ per software model. In contrast there exist as many ‘state graphs’ as there exists
states in the model.

Instance

+getType(): Type *

1

Nodes of the
state graph.

Type

Nodes of the
type graph.

Typing function.

Figure 4.6 – Representation of typing function τσ by means of a function

getType in each Instance.

The typing function τ is the link between state graphs and the type graph. An association from
Instance to a Type represents the formal definition of this typing function. Obviously, this does
imply the implicit requirement that GlobalInstances map to GlobalTypes, ProcessInstances
map to ProcessTypes etc.

4.1.5 Formal Description of Transitions and Labels

The type graph and state graphs represent the type of state with which SoftwareModels imple-
ment the STATESPACE interface. One would expect a similar discussion for the types of labels and
transitions. As states are represented by state graphs, it makes sense to see transitions as graph
morphisms. One could use formal specification methods like graph grammars [58, 57, 46] or other
similar techniques to formally define the transitions and semantics of our abstract layer. There are a
number of reasons why this abstract layer does not introduce formal means to describe transitions.

The Abstract Layer – 46

Firstly, state graphs are not purely graphs. The nodes in the state graph have internal values
associated with them. For instance, a data instance would have a data value associated with
it. These values could also change, meaning that a morphism on the state graphs alone is not
expressive enough to model transitions. Secondly, we argue that it is not always trivial to describe
the semantics of a specification language formally, especially if these semantics are to be expressed
in graph grammars.

Rather than using a formal representation of transitions, we introduce a more practical design
that closely follows the intuition.

4.1.6 Design of Transition and Label Representation

As previously mentioned, a Statement class represents the label type of the state space. Typically,
a such a statement is responsible for a number of transitions in the state space of a SoftwareModel.

Each process type and function type has a control-flow. This control-flow is a separate im-
plementation of the STATESPACE interface, and is labelled with Statements. The control-flow of
process types and function types is not directly part of the type graph, but should be seen as infor-
mation associated with the process type nodes and function type nodes in the type graph. Process
and function instances contain a single control-flow node which models their program counter.

Note that modelling control-flow as an implementation of a STATESPACE opens up the possibility
to simulate a control-flows, or check for the reachability of the final control-flow state.

ProcessTypeFunctionType

ControlFlow
Implements StateSpace<ControlFlowState, Statement, ControlFlowTransition>

StateSpace

ControlFlowState
*

ControlFlowTransition
*

2

1

Statement

+isEnabled(...): bool

+executeStatement(...)

Statements also
label SoftwareModels.

ProcessInstanceFunctionInstance

Program
counter

...

Figure 4.7 – The diagram that shows how control-flows are included in the

model. Each process and function type are associated with some control-

flow. Process and function instances merely point to their current state in

the control flow of their type.

Figure 4.7 shows how the notion of control-flow is included in the design of the abstract layer.
Statements are no longer directly linked to the SoftwareModel but rather are associated with
transitions in the control flow of process and function types.

In order to implement the STATESPACE interface for SoftwareModels, we would need to be able
to retrieve all outgoing transitions of a SoftwareState, and these outgoing transitions should be
presented in a total order (due to the FirstTransition, NextTransition functions in STATESPACE).
We will address this procedure informally.

A SoftwareState is based on a state graph. From this state graph we can extract all the process
instances (σProc). We look for outgoing transitions in a process instance in the order dictated by
their process identifiers. Given a process instance, one can follow the ‘∗’ edges to find the top most
frame on the call stack. This can be either the process instance or a function instance. All we
currently know about this instance is its current control-flow state, as this is considered to be part
of the internal information within function instances and process instances. With the τσ function,
the type of this instance can be resolved. Within this type the control-flow associated with the
instance can be found.

The FirstTransition and NextTransition of the control-flow can be used to find the next
possible transistions in the control-flow. The Statements that label the control-flow state space,

47 – Design of Software Models

have an additional function that can determine whether the statement is executable for the cur-
rent SoftwareState. This facilitates the need for conditional statements. Control-flow transitions
that are not executable are not taken into account in the FirstTransition, NextTransition of
SoftwareModels.

Consider a transition that is obtained from the SoftwareModel, and this transition is based
on a transition in the control-flow of a process or function type. The getTarget function in
SoftwareModel requires that based on this transition we can create a target SoftwareState. To
realise this the original SoftwareState is first copied. The Statement that labels the control-flow
transition is responsible for changing the new state to suit the semantics of the transition. Obvi-
ously, the control-flow state (or program counter) of the executing function or process instance is
changed such that it is the target of the control-flow transition.

To facilitate the requirement that Statements themselves are responsible for changing the
state, we introduces classes for Expressions and VariableReferences. Expressions evaluate
to a DataInstance when given a SoftwareState. VariableReferences are a special kind of
Expression which evalute to the value of a variable.

Statement

+isEnabled(...): bool

+executeStatement(...)

Assignment

AssignmentByValue

AssignmentByReference

RunStatement

DieStatement

ExpressionStatement

...

Expression

+getType(...): Type *

+evaluateExpression(...): Instance *

BooleanConstant

SignedNumericConstant

UnsignedNumericConstant

ComparingExpression
DataType:typename

LogicalExpression
DataType:typename

NumericalExpression
DataType:typename

LocalVariableReference

VariableReference

GlobalVariableReference

ParameterReference

1

1

2

1

Generic expressions.

...

...

Figure 4.8 – Some statements and expressions in the framework. Note

that the diagram is not complete, many associations have been left out for

clarity.

Figure 4.8 shows how Statements and Expressions fit in the framework. It goes beyond the
scope of this thesis to explain the semantics of each and every statement that was implemented.
The documentation of the source code will explain the individual classes in more detail. The idea
is that new Statements and Expressions can be introduced to model the semantics of the target
language to be used by the abstract layer.

One thing that does stand out in the design in the figure is the ‘generic expressions’. These
expressions are meant to model mathematical operations, but abstract from the data type they are
being used upon. For instance the ComparingExpression is meant to provide the operators =,
6=, >, ≥, < and ≤. If used on a particular DataType it is required that this type implements a
ComparingInterface, which has some abstract functions to realise the functionality. In a similar
fashion, LogicalExpression is a generic expression for the logical operators ∨, ∧ and ¬, and
NumericalExpression for the operators +, −, ∗, / and %.

In this way adding a new data type is simplified, simply choose the type of operations that are
valid for the data type and implement the interface related to these operators. In this way there is
no need to write dedicated expressions for the boolean type. For instance, the BooleanInstance

implements both ComparingInterface and LogicalInterface. Casting expressions are also im-
plemented in a similar fashion.

The Abstract Layer – 48

4.2 Transformation to Linearised Representation

This section introduces a transformation of SoftwareModels, and in particular the transformation
of SoftwareStates to a linearised bitvector representation. The reason for introducing a tranfor-
mation of the state space is two-fold:

• The state graphs described in the first part this chapter can become very large. Every node in
the state graph is an instance of a class and resides somewhere in the main memory. If one
was to model check using these graph representations as states, and one would verify a model
with a few million states, the memory used by the state graphs would be the bottle-neck of
the verification. A more compact representation is necessary if the memory requirements of
the framework are to be within acceptable limits.

• A common operation during verification is comparing states to see whether they are the
same. Comparing graphs for equality is trickier than comparing bitvectors.

StateSpace

SoftwareModel
Implements StateSpace<SoftwareState, Statement, SoftwareTransition>

BitvectorTranstiion

...

BitvectorModel
Implements StateSpace<DynamicBitset, Statement, BitvectorTransition>

1

SoftwareState SoftwareTransition Statement2
1

1

DynamicBitset
2

1

Figure 4.9 – Transformation of SoftwareModels to BitvectorModels, es-

sentially only the the state type is changed into a bitvector. As Statements

are included in the typing information rather than for each state, it is un-

likely that transforming them to a bitvector representation will be very

profitable.

4.2.1 Linearising Rooted Deterministic Typed Graphs

In this section it is presented how rooted deterministic typed graphs can be linearised. Credit is due
to Rensink who has kindly provided this algorithm; see also [57, 58, 60] about how graphs can be
used as state representation in the context of model checking. The limitation of this linearisation
procedure is that graphs have to be rooted, deterministic and typed.

Consider a graph G as presented by definition 4.1, and G is typed by means of a typing function
τG : SG −→ SH onto type graph H. Furthermore, consider there is an arbitrary total ordering
⊑LH

⊆ LH × LH over labels in the type graph. Also,– we need a root node ρ ∈ SG from which
every other node in SG is reachable.

To help with the linearisation we introduce two functions, LabelOutH and LabelIndexs. LabelOutH
is a function that maps nodes in the type graph to labels on the outgoing edges of that node. The
function LabelIndexs maps a set of labels (from LabelOutH) to natural numbers using the total

49 – Transformation to Linearised Representation

ordering function ⊑LH
.

LabelOutH : SH −→ P(LH)

LabelOutH(s) = {l | (s, l, s′) ∈ RH}

LabelIndexs : LabelOutH(s) −→ {1, . . . , |LabelOutH(s)|}

LabelIndexs(l) = |{l′ | l′ ∈ LabelOutH(s) · l′ ⊑LH
l}|

The function encode(i) denotes the linearised representation of i. We assume we can linearise
individual nodes of the state graph, nodes of the type graph and natural numbers. Furthermore,
let list be an indexed list of nodes (SG) starting with index 1. Algorithm 4.1 descibes how graphs
can be linearised.

Algorithm 4.1: Linearisation of a graph.

1: k ← 1
2: put ρ in list with index 1
3: enc← empty list of linearised items
4:

5: while (k ≤ |list|) do
6: s← element of list with index k
7: add encode(τG(s)) to enc
8: add encode(s) to enc
9: n← 1

10: while (n ≤ |LabelOutH(τG(s))|) do
11: l← LabelIndex−1

τG(s)(n)

12: if (there exists s′ such that (s, l, s′) ∈ RG) then
13: if (list contains s′) then
14: k′ ← index of s′ in list
15: add encode(k′) to enc
16: else
17: put s′ in list with index |list|+ 1
18: add encode(|list|+ 1) to enc
19: end if
20: else
21: add encode(0) to enc
22: end if
23: n← n + 1
24: end while
25: k ← k + 1
26: end while
27: return enc

Note that it could be considered unnecessary to ‘save’ the type of each node in the graph that
were included by means of a label that is no cause for non-determinism in the type graph, as the
type can be derived by means of the deterministic edge in the type graph. However, our type
graph is not fully deterministic (see figure 4.2 on page 4.2). Also with an eye on possible future
extensions of data types to include subtyping it might be wise to keep track of the type of each
node in the graph.

4.2.2 Linearising State Graphs

In order to use the algorithm in the previous section to linearise state graphs, we need to fulfill
the requirement that state graphs are rooted, deterministic and typed. From the formal definition
introduced in 4.1.3 it should be clear that each state graph σ has a typing function τσ which maps

The Abstract Layer – 50

nodes of the state graph onto type graph ΓM, and therefore fulfills the typing requirement. State
graphs are also deterministic, as the only edges in state graphs are ones representing variable
values and function calls. A variable can only have one value at a time and function calls are also
no cause of non-determinism because call stacks are stacks of function instances and each function
instance has at most one successor in the call stack.

The only requirement left to fulfill is the requirement that a state graph has to be rooted.
Unfortunately this is a much harder requirement to fulfill. As figure 4.4 on page 44 shows, a typical
state graph has no obvious root node. However, every node, or instance, is always reachable from
either the global instance or a process instance. This is where we cheat a bit, rather than having
one root node, we start several nodes in the list of nodes to be linearised.

In particular we start with the global instances and the process instances in the list. How-
ever, we cannot add them in arbitrary order as this might mean that two states that have the
same state graph can be linearised to different bitvectors. Therefore, they will be ordered by
means of their process identifier. Each process instance has a unique process idenfier as given
by ProcessIdentifierσ : (σProc) −→ N. We introduce a total order of process instances ⊑σP roc

⊆ (σProc×σProc) which is used find out the desired order in which process instances should be lin-
earised. For p, p′ ∈ σProc it should hold that ProcessIdentifierσ(p) ≤ ProcessIdentifierσ(p′)⇐⇒
p ⊑σP roc

p′. The function ProcessIndexσ is the order in which the processes are included in the
linearisation algorithm.

ProcessIndexσ : σProc −→ {1, . . . , |σProc|}

ProcessIndexσ(p) = |{p′| p′ ∈ σProc · p
′ ⊑σP roc

p}|

Furthermore, the total ordering over labels in the type graph is simply the alphabetical ordering of
the identifiers of the variables, which label the edges (and ∀l∈LH

· l ⊑LH
∗).

To illustrate the intention of the linearisation algorithm consider the state graph of the dining
philosophers problem in figure 4.4 on page 44. It will be shown informally what a linearisation of
this state graph would look like. The processes instances in this example are Init, Phil1, Phil2
and Phil3. Consider an aribitrary mapping:

ProcessIdentifierσ = {(Init, 0), (Phil1, 3), (Phil2, 7), (Phil3, 2)}

This in turn enables the calculation of the total order relation ⊑σP roc
, which will finally result into

the following indexing relation:

ProcessIndexσ = {(Init, 1), (Phil1, 3), (Phil2, 4), (Phil3, 2)}

This implies that before the first iteration of the linearisation algorithm begins, the list variable
contains the following nodes (1) ι, (2) Init,(3) Phil3, (4) Phil1, (5) Phil2.

Table 4.1 shows how this results into the linearisation of the state using algorithm 4.2. Each
row in the table represents an instance. If we put all the elements in the table in a sequence
a bitvector is formed that is a linearisation of the state. It is perhaps unclear what the encode()
function actually encodes.

Encoding types A simple search over the type graph will provide us with all types that we could
possibly encounter in all state graphs. Consider there are n types, then it is sufficient to use
⌈log2(n)⌉ bits to encode types. This functionality can be realised by the BitvectorModel.

Encoding instances Where the types could be encoded by means without help of the
SoftwareModel instances cannot. Instances need to encode their internal state. This is
all information besides variable values and function calls (as these are edges). We hold each
Type responsible for knowing how to encode instances.

• A global instance has no internal state, and therefore its bitvector representation is
empty. If ever there is a need to ‘save’ state-wide information, the global instance would
be the designated place to do so.

51 – Transformation to Linearised Representation

Algorithm 4.2: Linearisation of a state graph σ.

1: put ι in list with index 1
2:

3: n← 1
4: while (n ≤ |σProc|) do
5: process← ProcessIndex−1

σ (n)
6: put process in list with index |list|+ 1
7: n← n + 1
8: end while
9:

10: k ← 1
11: enc← empty list of linearised items
12:

13: while (k ≤ |list|) do
14: s← element of list with index k
15: add encode(τG(s)) to enc
16: add encode(s) to enc
17: n← 1
18: while (n ≤ |LabelOutH(τG(s))|) do
19: l← LabelIndex−1

τG(s)(n)

20: if (there exists s′ such that (s, l, s′) ∈ RG) then
21: if (list contains s′) then
22: k′ ← index of s′ in list
23: add encode(k′) to enc
24: else
25: put s′ in list with index |list|+ 1
26: add encode(|list|+ 1) to enc
27: end if
28: else
29: add encode(0) to enc
30: end if
31: n← n + 1
32: end while
33: k ← k + 1
34: end while
35: return enc

• A process instances consists at least of a ‘process identifier’ which is a natural number.
Ideally, each process instance in each state uses the same length of bitvector to encode
their identifier. As we do not exactly know what the biggest identifier would be in the
model, an upper bound would have to be chosen. Furthermore, a process instance needs
to remember the control-flow state it is in. For this the ControlFlow class will have to
provide a mapping of control-flow states to bitvectors.

Finally, for some semantics in languages it is necessary to store additional information
in the process instances. For example to realise the atomic execution of a process, each
process instance would need a bit flag in its representation to to indicate it is executing
exclusively. These bit flags would have to be encoded in the bitvector too.

• Similar to process instances, function instances will need to remember their control-flow
state, for which they can use the functionality introduced for process instances.

• Data instances simply need to remember their value. For instance, a BooleanInstance

will need 1 bit to encode whether its value is true or false.

Encoding edges Encoding edges is nothing more than referring to the row in which the target
instance is encoded. This is done by means of a natural number. Obviously, we cannot

The Abstract Layer – 52

Table 4.1 – Linearisation of the dining philosophers state depicted in fig-

ure 4.4. Each row represents an instance in the state graph.

Iteration Encoding of type Encoding of instance Encoding of edges

k = 1 encode(ι) encode(ι)
k = 2 encode(Init) encode(init) encode(6) ‘f1’ encode(7) ‘f2’ encode(8) ‘f3’
k = 3 encode(Philolospher) encode(phil3) encode(8) ‘left’ encode(6) ‘right’ encode(9) ‘*’
k = 4 encode(Philolospher) encode(phil1) encode(6) ‘left’ encode(7) ‘right’ encode(0) ‘*’
k = 5 encode(Philolospher) encode(phil2) encode(7) ‘left’ encode(8) ‘right’ encode(0) ‘*’
k = 6 encode(Fork) encode(fork1) encode(10) ‘value’
k = 7 encode(Fork) encode(fork2) encode(11) ‘value’
k = 8 encode(Fork) encode(fork3) encode(12) ‘value’
k = 9 encode(releaseFork) encode(rFork) encode(6) ‘fork’

k = 10 encode(Boolean) encode(bool1)
k = 11 encode(Boolean) encode(bool2)
k = 12 encode(Boolean) encode(bool3)

ι

Fork

Init

Phil

releaseFork

takeFork

Bool

value

f1

f2

f3fork

fork

left

right

∗

∗

(a) Optimised type graph

ι

Init

Phil. 1

Phil. 2 Phil. 3 releaseFork

Fork 2 Fork 1

Fork 3

Bool

value

Bool

value

Bool

value

f1

f2

f3

left

right

left

right

left

right

∗

fork

(b) Optimised state graph

Figure 4.10 – Optimisation of state and type graph. The boolean value of

forks is now encoded as an internal value of a Fork.

encode all natural numbers by means of a statically sized bitvector, nor do we know the
largest possible number of rows that could occur for all states in the model. Therefore we
require another upper bound.

4.2.3 Optimisation of State Linearisation

The size of the bitvector that represents a state should be as small as possible. For this reason this
section introduces a means of reducing the state vector. The optimisation is discussed informally.
This is done by designating certain types in the type graph and considering it as part of another
type. Figure 4.10 shows how the value of a Fork is considered directly as part of a Fork rather
than a separate instance.

The value of a Fork is no longer represented by a row, but is included in the encoded represen-
tation of Fork. The reduction in the bitvector is three-fold:

• The type Bool can be omitted as a type all together, possibly reducing the number of bits
required to encode types.

• There are fewer edges, as the value edge can be omitted.

53 – Transformation to Linearised Representation

• There are fewer ‘rows’ or instances in the state graph, avoiding overhead such as the type
designation. Also the reduction in rows means that fewer bits could be used to represent the
edges of the state graph.

Table 4.2 shows how much the state vector is reduced. However, the bitvectors representing
the internal value of fork1, fork2 and fork3 have increased by 1 bit to encode the boolean value.

Table 4.2 – Optimised linearisation of the dining philosophers state de-

picted in figure 4.4. Note how there are fewer rows and edges than in

table 4.1.

Iteration Encoding of type Encoding of instance Encoding of edges

k = 1 encode(ι) encode(ι)
k = 2 encode(Init) encode(init) encode(6) ‘f1’ encode(7) ‘f2’ encode(8) ‘f3’
k = 3 encode(Philolospher) encode(phil3) encode(8) ‘left’ encode(6) ‘right’ encode(9) ‘*’
k = 4 encode(Philolospher) encode(phil1) encode(6) ‘left’ encode(7) ‘right’ encode(0) ‘*’
k = 5 encode(Philolospher) encode(phil2) encode(7) ‘left’ encode(8) ‘right’ encode(0) ‘*’
k = 6 encode(Fork) encode(fork1) encode(bool1)
k = 7 encode(Fork) encode(fork2) encode(bool2)
k = 8 encode(Fork) encode(fork3) encode(bool3)
k = 9 encode(releaseFork) encode(rFork) encode(6) ‘fork’

This reduction is not always possible, as there are two conditions that must hold in order for
an instance to be eligible for optimisation:

• The instances that are encapsulated by a ‘parent instance’ should never be referenced from
other instances in the state graph. In the analogy of the tables, it is not possible to refer to a
row that isn’t there.

• The encapsulated instances should always have a value. This requirement is useful when
decoding a bitvector, as otherwise there is no means of knowing whether the next few bits
represent an internal instance or some edges.

It is not always possible to designate certain instances as suitable for optimisation, as in order to
validate the requirements one would have to look at each state graph in the state space. However,
one could argue that ‘stack variables’ in programming languages such as C++ or JAVA would almost
always fulfill the requirements (unless they can be pointed to by reference or pointer variables).
This is where we argue the reduction would be most useful. In the context of the additional
decisions made for pointer variables in section 6.1.2 we could argue that any normal variable is
suitable for optimisation. It should be noted that this optimisation is currently not implemented.

4.2.4 Functionality to Support Bitvector Representation

Most functionality can be provided by the BitvectorModel itself, such as the encoding of edges
and types. However, the encoding of instances is something it cannot do, and for this we need
to add some functionality to the design of SoftwareModels. 4.11 shows the abstract encode and
decode methods that are added to Type.

Type

+encode(Instance *,DynamicBitset &)

+decode(DynamicBitset &,bitPointer:int *): Instance *

Figure 4.11 – The Type class is responsible for encoding and decoding

Instances for which two abstract methods have been added encode and

decode.

The Abstract Layer – 54

The encode function adds its representation to the back of an existing bitvector, whereas the
decode function reconstructs its instance from a given bitvector.

Note that we have purposely not mentioned any decoding functionality, as this does not add
much too the understanding of the transformation. However, it should be taken into account that
any linearised representation can still be decoded to a SoftwareState.

Chapter 5

Including Features

Chapter 1 introduced a number of features that were encountered in tools (see section 1.2.5 in
particular). This chapter provides suggestions as to how these model checking techniques can be
implemented in the framework described in the previous sections. Although these suggestions
have been composed with much consideration, none of these features have been implemented,
and the implementation of such features would require a more in-depth study of these features.

5.1 Change of Generic Layer

In the introductory chapter it was explained that ————it is possible to categorise algorithms
into explicit-state, symbolic and bounded categories. Chapter 3 directly addresses the inclusion
of explicit-state verification algorithms in the framework. However, the symbolic and bounded
categories have not yet been addressed. The introduction of these approaches would require a
change of the generic layer.

5.1.1 Symbolic Model Checking

The current implementation of the framework does not support symbolic model checking. The
state space representation in the ‘generic layer’ is deliberately chosen to support explicit-state
verification. If symbolic model checking is to be included in the framework then a new ‘generic
layer’ for symbolic model checking is to be introduced with the same conceptual structure as the
current layers, but which defines state spaces symbolically.

As this project did not include an extensive study on symbolic model checking, this section
will only show how one would define a ‘generic layer’ for symbolic model checking conceptually.
Consider the incomplete interface 5.1. The idea is that all or most elements of a symbolic interface
would consist of sets of states, rather than individual states. Rather than enforcing a particular
representation of these sets, we use generics to abstract from the type of objects that represents
these sets. This is similar to how the explicit-state ‘generic layer’ abstracted from individual states.
When implementing the symbolic interface, BDDs can be used as the type to represent sets of
states. To perform model checking of temporal formulae, one would need additional operations
on these sets. For instance a common operation in CTL model checking algorithms is to find out
in which states a particular atomic proposition from AP holds. This could be realised by means
of a function Hold : AP −→ P(S). Besides a symbolic representation of states, it is also possible

States : P(S)

. . . : . . .

Interface 5.1 – Incomplete symbolic STATESPACE

to use symbolic representations of the transition relation. The complete definition of a symbolic

Including Features – 56

interface would require an extensive knowledge of symbolic model checking algorithms, and is not
considered to be in the scope of this project.

5.1.2 Bounded Model Checking

Bounded model checking assumes a model can be expressed as a propositional formula, and ver-
ification algorithms are in fact satisfiability solvers. To include bounded model checking in our
framework, we would need to redefine a ‘generic layer’ for bounded model checking. This would
most likely result in an interface which abstracts from the type of object that represents proposi-

tional formulae, clauses and literals. The interface could consist of a single function that returns
the total formula representing the system. Functions could be included to make queries about
the structure of the formula, such as extracting the clauses from a formula or testing whether a
clause is a unit clause. Also, functions could perform manipulations on the formula, such as remov-
ing clauses. Again, defining such an interface would require extensive knowledge about bounded
model checking, which is not within the scope of this project.

5.2 Search Strategies

In section 3.3.2 it was explained how a depth-first search can be realised by means of a
DepthFirstStrategy. The idea is that also breadth-first and directed searches are to be included
by the framework by means of implementations of SearchStrategy

5.2.1 Breadth-First Search Strategy

Figure 3.5 already shows how a breadth-first strategy could be included in the framework. It is very
similar to the depth-first strategy but has a queue of states rather than a stack of transitions. The
idea is that in each iteration a state is extracted from the queue, and for all outgoing transitions the
EXPLORE event is triggered. Feedback in the form of GOAL would terminate the search, SKIP would
do nothing, and NEW would add the target state to the queue.

Another undefined area is the problem of generating counter-examples. Arguably, there are
two ways to extract such a counter example. One could implement a queue with the sufficient
information to extract the counter example, or one could add sufficient information to a store to
extract the required information. Either solution would require a specialisation of some abstract
class in the framework, e.g. Queue or Condition, respectively.

5.2.2 Directed Search Strategy

Directed searches are to be implemented with a search strategy that uses a priority queue. Consider
a theoretical catagorisation of states in the state space. A state is a member of the open set if it is
in the queue, which means it was visited, but not yet expanded. The closed set is the set of visited
states that have been expanded, these could be stored in a state store via the search adapter.

A large number directed strategies could be described by means of a best-first principle [52].
Each iteration the most promising state of the open set is extracted from the open set and added
to closed, and new successors are added to open set. Which state is most promising is determined
by heuristics, which could be implemented by some function Heuristics : S −→ R

+. Heuristics
can be based on the cost of the path to the state as well as the estimated cost to a goal state. More
important is that for these strategies the heuristics are only evaluated for states in the open set. As
the priority queue directly resembles the open set, the information required for heuristics can be
stored in the priority queue.

Some other strategies, like A∗, allow states in the closed set to be reopened into the open set if
a less costly path to this state is found. This implies that the cost of the cheapest path to states in
closed must be stored. Not only does this mean that a specialistic store has to be built to deal with
these costs, it also implies that the interaction between the store and the search strategy is more
elaborate than simple feedback. The advantage of this approach is that it is guaranteed that the
goal state with the lowest cost is encountered first.

57 – Specialised Stores

It is arguable whether the latter class of directed strategies is very desirable to be used in model
checking. Although it does present the advantage of finding the ‘shortest’ path, it does come at
the the expense of reopening states and storing additional information in the state store. Figure
5.1 shows how a best-first strategy could see fit in the framework. It could be argued that the
BreadthFirstStrategy is the same as the BestFirstStrategy except for that the former retrieves
its states from a normal queue and the latter from a priority queue which happens to have priorities
based on heuristics. The most natural way of combining the two strategies would be to consider
a breadth-first search a heuristic best-first search with a constant cost of 1 for each transition and
the estimated cost of 0 to reach a goal state. The most promising state would be the state with the
lowest cost. This cost would be solely defined by the cost of the transitions on the path to the state.
As the cost of transitions is constant the most promising state would be the one with the shortest
path from the initial state.

SearchStrategy

#searchFeedback: SearchFeedback *

+startSearch(initialState:State *): void

+currentState(): State *

+currentTransition(): Transition *

BestFirstStrategy

+EXPLORE_EVENT: const int

+NEW: const int

+SKIP: const int

+GOAL: const int

+startSearch(State *)

+currentState(): State *

+currentTransition(): Transition *

...

...

StateSpace

PriorityQueue

+push(State *)

+pop(): State *

Heuristics

+costToGoal(State *): float

+transitionCost(Transition *): float

...

...

...

Figure 5.1 – The inclusion of BestFirstStrategy in the design of the

framework.

5.3 Specialised Stores

Efficient use of memory is essential in model checking, because the memory requirements can be
the bottleneck of the verification process. Typically, most memory is consumed to remember the
set of visisted states in a store. The functionality of a store is realised by means of Actions in the
generic layer, as is shown in figure 5.2.

Action

+performAction(State *,
 Transition *): int

...

StoreAction

+performAction(State *,
 Transition *): int

StateStore

+addState(State *): bool

State:typename

...

Figure 5.2 – The implementation of stores in relation to the search archi-

tecture described in section 3.3.

Including Features – 58

Specialising stores to achieve a more efficient use of memory is an important aspect of model
checking. In the generic layer we abstract from the type of states being used. Most specialised
stores cannot maintain this principle and specialise the store interface for a specific type of states.

5.3.1 State Compression

If states are represented by bitvectors, a more efficient store can be realised by compressing in-
dividual states. For instance a Huffman encoding could provide a significant improvement in the
significant improvement in the size of the state vector [35].

As our abstract layer represents states as bitvectors after linearisation of the state graphs, stores
specialised for bitvectors could be applied to the state resulting from the linearisation procedure
given in section 4.2.

5.3.2 State Caching

A store would be more efficient if it didn’t have to store every single visited state. The principle of
caching could be applied [33]. This means the state store requires functionality for deciding which
state is the least interesting and removing this state from the store to free memory.

Most functionality of a caching store could be realised by the store itself. However, if one
wants to ensure some states are always cached, such as the states on the current search stack, then
additional information is required. The store could be notified by actions hooked on the EXPLORE

as well as the BACKTRACK event of the depth-first search strategy by means of actions.

5.3.3 State Collapsing

By using knowledge about the internal structure of states, it is possible to achieve a more efficient
use of memory [35]. For instance the software models defined in chapter 4 have a notion of
instances. It is possible to collapse states by using these instances. Collapsing could be realised by
creating a separate store for instances and by storing states by means of references to this store.
This means that identical instances are stored only once in the ‘instance store’, rather than multiple
times as part of states in a normal state store.

One could argue it is possible to implement a collapsing store generically, by abstracting from
the type of states as well as the type of components being collapsed. This would require knowledge
about the components that can be identified in a state as well as providing methods to extract these
components and substitute them for a reference to the ‘component store’ in the state representa-
tion.

It is much easier to implement a collapsing store for a specific type of state and component. An
example of this approach is shown in figure 5.3, which collapses FooStates by means of extracting
FooComponents. As this store knows it only ever has to deal with FooStates, it can use the internal
structure of these states to find components to collapse.

5.3.4 Minimised Automata

If states are represented by bitvectors, then the set of visited states is a set of bitvectors. It is
possible to use an automaton with the alphabet {0, 1} to represent this set of states [37, 36]. The
automaton only accepts the words (e.g. bitvectors) that represent states that have been visited. To
see whether a state was already visited is the check of whether the automaton accepts the state’s
bitvector. Also, algorithms can be defined which insert new bitvectors in the automaton, such that
new states can be added. This specialisation would implement a StateStore with the state type
specialised to bitvectors.

5.3.5 Bit-State Hashing and Hash Compaction

Approximate techniques such as bit-state hashing and hash compaction are also specialisations of
stores. They are approximative in the sense that sometimes they can suggest a state was already
visited, due to a hash-collision, although in reality the state is explored for the first time [48].

59 – Reduction Methods

StateStore

+addState(State *): bool

State:typename

CompressedStore
Implements StateStore<DynamicBitset>

Uses Huffman compression.

+addState(DynamicBitset *): bool

CachedStore

+addState(State *): bool

State:typename

CollapsedFooStore
Implements StateStore<FooState>

+addState(FooState *): bool

FooComponentStore

BitStateHashingStore

+addState(State *): bool

State:typename

HashFunction

+hashState(State *): unsigned int

State:typename

Figure 5.3 – Several techniques in model checking that are to be imple-

mented as specialisations of StateStore.

Although these techniques do not require make any assumptions about state types them-
selves, they do require hash functions (e.g. HashState : S −→ N

+). In figure 5.3 a simple
BitStateHashing store is presented.

Currently, the framework contains a store specialised for bitvectors that has an internal hash-
function and a staticly sized hashtable of 216 elements.

5.4 Reduction Methods

Reduction methods such as partial-order reduction and symmetry reduction have no obvious place
in the framework, as did the new search strategies and specialised stores.

5.4.1 Partial-Order Reduction

Partial-order reduction is a means of reducing the state space by exploiting the commutativity of
transitions in models with asynchronously executing components. See chapter 10 of [19] and
[49, 28, 32, 55] for a discussion of this technique in literature.

Partial-order reduction strategies require information about processes, dependencies of transi-
tions, control-flow of processes and other high-level features that do not exist in the generic layer.
We categorise strategies for partial-order reduction as follows:

Static partial-order reduction Reduction strategies that only use the information present in the
abstract layer, without the help of run-time information in the generic layer, for example
[49].

Dynamic partial-order reduction Reduction strategies that do require information from the generic
layer, such as the states on the depth-first search stack. An example of this category is de-
scribed in chapter 10 of [19].

The need to use run-time information, such as the search stack, is a result of the C3 condition
[19], which excludes certain cycles from the reduced state space. Dynamic algorithms use the
search stack for cycle detection whereas static algorithms statically satisfy stricter requirements
that guarantee C3 is never violated [49].

A partial-order reduction results in a reduced state space, which consists of the same type of
states, labels and transitions as the original state space. We could offer information about the
reduced state space in several ways:

• Provide means of querying the reduced state space in the STATESPACE interface in addition to
the existing methods that query the normal state space. The generic algorithms in the generic
layer would have to be adapted to be able to exploit the reduced state space information.

Including Features – 60

• Implement the state space interface with the reduced state space information. This implies
all algorithms simply work on the reduced state space, and require no alteration.

Ideally, one would like to implement each partial-order reduction algorithm generically, rather
than on the level of abstract layers. Consider the algorithm described in [19], a generic implemen-
tation would require a lot of information, such as the processes in per state, dependency relations
of transitions, information about control-flow, the property being checked etc. This implies that it
is also required to abstract from new types, such as process types.

A possible generic design of the partial-order method described in [19] is presented in figure
5.4. The DynamicPartialOrderReductionInformation will have to be implemented somewhere
in the generic layer, for instance by the depth-first stack.

StateSpace

State:typename

Transition:typename

Label:typename

DynamicPartialOrderReduction

State:typename

Transition:typename

Label:typename

StaticPartialOrderInformation

+onStack(State *): bool

State:typename

Transition:typename

Label:typename

Process:typename

DynamicPartialOrderInformation

+getFirstProcess(State *): Process *

+getNextProcess(Process *): Process *

+preLabel(Label *): std::vector<Label *>

+depLabel(Label *): std::vector<Label *>

+current(Process *,State *): std::vector<Label *>

+...

Label:typename

Transition:typename

State:typename

Process:typename

Figure 5.4 – Design of a generic implementation of the partial-order re-

duction algorithm as described in [19].

Note that it is much simpler to implement partial-order on the level of abstract layers, as these
would have information regarding the processes and control-flow readily available. However, this
approach would not allow reuse of the partial-order functionality for other abstract layers.

5.4.2 Symmetry Reduction

The symmetries that can be found in the state spaces of models depend on the model type, and
can range from heap and process symmetry in models based on software to symmetry defined by
rotations and permutations of states in the state space of a Rubik’s cube.

Lets consider the formal definition of symmetries as defined in [52] which uses group theory
[31]. There can be a number of symmetries in a state space 〈L, S, I, R〉, which are defined
as bijection on S. For instance, software-based model could define separate bijections to realise
both heap symmetry and thread symmetry. Symmetries defined by bijections form a group under
function composition and thus allow the composition of multiple symmetries. A symmetry defined
by a bijection induces a new state space, or quotient system, where each state is a class of symmetric
states (e.g. equivalence class) defined by the orbit of the bijection.

The most common way of model checking quotient systems is by using representative functions
Rep : S −→ S which maps each state in the state space to a representative state of its equivalence
class. Ideally, one would like Rep to be canonical, which means that Rep(s) = Rep(s′) implies that
s and s′ are symmetric.

61 – Reduction Methods

It is not always possible to define Rep canonically, and if it is possible, it might still be preferable
to settle for a underestimation of symmetry if the computational complexity of Rep is too costly.
In [11, 52] it is explained how the inclusion of a representative function changes a depth-first
strategy. To include symmetry into the design we present two alternative solutions:

• One could consider the quotient system as the state space to be verified. In our framework
this implies a transformation is applied from original state space to a quotient system. These
transformations were explained in section 3.4. An example setup to realise such a transfor-
mation is shown in 5.5.

StateSpace

FooModel
Implements StateSpace<FooState, FooLabel, FooTransition>

Implements Representative<FooState, FooLabel, FooTransition>

+getRepresentative(FooState *): FooState *

SymmetryTranformation

Representative

+getRepresentative(State *): State *

...

......

Figure 5.5 – Implementation of symmetry reduction by means of a state

space transformation using a representative function.

There is a downside to this setup. Consider a verification run where a mutual exclusion prop-
erty is being checked using thread-symmetry. If the property is violated a counter-example
can be generated. Due to the transformation the counter-example will be based of represen-
tative states. As the representatives are based on thread symmetry it will be difficult to find
out which process is responsible for each transition in the counter-example.

• The alternative option is to use the algorithm presented in [11]. Instead of a verifying a
quotient system the knowledge of symmetry is only used when deciding whether a state was
previously visited or not. Although the search strategy and search feedback will still work
on the original states, a state store is responsible for storing representatives rather than the
original states. Figure 5.6 shows how this principle could look in practice.

Our software models use the last alternative. As the introductory chapter introduced three
types of symmetry, we will explain how these can be applied when using SoftwareModels. The
idea is that we do not provide a representative in the form of a SoftwareState, but rather present a
symmetric version of the linearised state. These are bitvectors where the order of process instances
does not depend on their process identifiers, but on other heuristics instead.

Heap symmetry As our state representation has no notion of memory addresses or object iden-
tifiers, the heap is solely defined by the structure of the state graph and the internal data
of instances. As our representation abstracts from memory addresses anyway, there is no
additional functionality needed to implement heap symmetry.

Symmetric data types The introduction of scalar sets in our framework would require an imple-
mentation of a DataType and DataInstance. The symmetry in a scalar sets could be directly
implemented in the linearisation function of the scalar type, as a scalar set is by nature always
symmetrical.

Thread symmetry Thread or process symmetry is based on a symmetry of process instances. We
consider two states in the process layer as thread-symmetrical if the structure of the state

Including Features – 62

Representative

+getRepresentative(State *): State *

...

Action

+performAction(State *,
 Transition *): int

...

SymmetricStoreAction

+performAction(State *,
 Transition *): int

StateStore

+addState(State *): bool

State:typename

...

Figure 5.6 – A symmetric store action using a representative function.

graphs and the internal data of all instances are identical, with the exception of the process
identifiers in the process instances.

As a representative function for thread-symmetry we try and order the process instances in
such a way that many state graphs that are thread-symmetrical are linearised in the same
way. Therefore we need to change the ProcessIndexσ function as process identifiers are
no longer relevant to the order of inclusion of the process instances. The process identifier
was the only means of distinguishing process instances that were identical in both type and
control-flow state.

Firstly, we try and sort process instances by type, and then by other heuristics such as process
counter (e.g. current control-flow state). If these do not distinguish between two process
instances, then heuristics based on the position of the instance in state graph can be used,
such as the number of frames on the call stack (represented by the ∗ edges), and the KBOTS

algorithm [60].

The current implementation compares only process types and control-flow states. To realise
this we need an arbitrary total order on process types ⊑MP roc

⊆ (MProc ×MProc). The
redefinition of bijection ProcessIndexσ assigns numbers 1, . . . , |σProc| to process instances
and with the following constraint with respect to the order of types.

ProcessIndexσ(p) < ProcessIndexσ(p′) =⇒ τσP roc
(p) ⊑MP roc

τσP roc
(p′)

Furthermore, if τσP roc
(p) = τσP roc

(p′) then ProcessIndexσ(p) < ProcessIndexσ(p′) is re-
stricted by a total order on the reachable control-flow states of the process type at hand. As
we have not introduced any formal means of describing the control-flow, we presume that
this informal desciption is sufficient to understand change in the order of inclusion of process
instances in the linearisation process.

When encoding the process instances we omit the linearisation of the process identifiers.
This results in a bitvector that is strictly speaking not a state of the original model, but it is a
representative of the equivalence class.

It should be taken into account that in order for this reduction to be correct the process
identifiers should not have a significant influence on the semantics of the model. For instance,
if the order in which the process instances can die is dependent on the order of processes in
the state then it can be the case that this reduction is not correct. To be more specific, it
should never be the case that by changing the order of the process instances we can reach a
goal state that could not be reached before.

63 – Additional Resources

5.5 Additional Resources

As was explained in section 1.2.5, performance improvements in tools can be accomplished by
finding alternative resources such as hard drives or by using distributed verification techniques.
Unfortunately, using these principles has a profound impact on the search architecture.

5.5.1 Use of External Storage

In terms of design the use of external storage is easily implemented as a specialisation of
StateStore, which could use some external storage device to realise its functionality. However,
in practice a problem arises when considering that these external devices are often slow, which
makes a store action to external devices expensive.

Rather than storing one state at a time, one could combine the store action of several states
into one action [62]. For instance, a breadth-first strategy could combine the store action of each
level of states, rather than storing them individually. The problem is that our current strategies
request feedback for each single explorative step.

A solution is to introduce a new strategy, with a new event (say BATCH EXPLORE) that triggers
each time the strategy wants a group of states checked. The arguments of the feedback function
would not no longer provide sufficient information, as a set of states is required, rather than a
single state. Also the feedback given by the search adapter is insufficient because feedback is
required for each of the states in the batch rather than feedback for a single state in terms of SKIP

or CONTINUE. This could be realised by means of some additional communication between the
search strategy and the state store. The current design of the search module does not provide a
means of directing this communication through the search adapter.

5.5.2 Distributed Verification

It is possible to verify large state spaces using distributed model checking. By distributing the
memory and computational requirements of the verification process over several processing units,
larger state spaces can be verified.

Unfortunately, the current search strategies and in particular the depth-first strategy are not
easily converted into their distributed variant. Especially the distributed search for acceptance
cycles is an active field of research, as is illustrated by [6, 5, 4, 14].

The inclusion of distributed algorithms in the framework is addressed only conceptually, as a
more detailed description would require an extensive study of distributed algorithms.

:SearchAdapter

:Queue:DistributedDepthFirstStrategy

:FooModel

:SendStateAction

:StoreAction

:FooStore

Node 1

:SearchAdapter

:Queue :DistributedDepthFirstStrategy

:FooModel

:SendStateAction

:StoreAction

:FooStore

Node 2

Network
messages.

Abstract
Layer

Generic
Layer

Abstract
Layer

Generic
Layer

Local
store.

Specialised
distributed
strategy.

Figure 5.7 – Conceptual setup of a distributed search.

Typically, all distributed algorithms divide the state space over the nodes in the network. Con-
sider the distributed depth-first algorithm presented in [51]. If there are n nodes in the network, a

Including Features – 64

function Node : S −→ {1, . . . , n} assigns the states in the state space to the nodes. Each node has
a local queue of states to explore. If during exploration a state is found that does not belong to the
current node, then a network message is used to send this state to the correct node.

Figure 5.7 introduces a conceptual object diagram where two nodes are verifying the same
state space. A special distributed search strategy is used as well as special SendStateActions to
send network messages to the other node. This diagram does not take into account the details
that would be required for distributed verification, such as a manager process, or how the network
messages result in a state being added to the local queue.

The two nodes do not physically share the objects in the abstract layer, such as state graphs. It
should be noted that the abstract layer is usually a means of constructing the state space on-the-fly,
and does not impose significant memory requirements.

Chapter 6

The Tool Layer: Model Checking Prom+

In this chapter we will discuss the usage of the framework to model check a simple model specifi-
cation language called PROM

+. PROM
+ is meant to illustrate the usage of the generic and abstract

layers presented in this thesis. It is in fact a tool in the ‘tool layer’ as depicted in figure 2.3 in
chapter 2.

6.1 The Modelling Language Prom+

As the name implies PROM
+ is based on a very small subset of PROMELA with a few changes and

additions. This section will explain the syntax and semantics of PROM
+, and relates the tool layer

to the abstract layer presented in chapter 4.

6.1.1 Syntax

The syntax of PROM
+ is given in the EBNF in figure 6.1. It is based the syntax of PROMELA as defined

in [36]. A few items in the grammar require further explanation:

• Declarations and statements are strictly separate. Each process definition should start with
the declaration of any local variables. It is not allowed to explicitly intialise variables in the
declaration. The reason for this restriction is that intialisation is seen as an action (or rather
a transition in the control-flow), whereas declarations are not.

• PROM
+ only supports primitive types. Potential extensions of PROM

+ could introduce new
types, such as channels, arrays, mtypes, typedefs or other types.

• PROM
+ supports the dynamic creation of objects. These ‘heap’ objects can only be assigned to

pointer variables. Similarly pointer variables can only refer to dynamically allocated objects.
Both pointer variables and dynamic object creation do not exist in PROMELA, therefore section
6.1.2 discusses this subject in more detail.

Besides the semantics of pointer variables and the ‘new’ and ‘reset’ statements, the semantics
are identical to the semantics of PROMELA as they are described in [36]. To illustrate the usage
of PROM

+-models, listing 6.1 provides an example of a PROM
+ specification of Peterson’s mutex

algorithm [8, 56].

6.1.2 Pointer Variables and Dynamic Object Creation

The PROM
+ language includes the notion of pointer variables similar to DSPIN’s ‘pointers’ [41, 26].

This section describes how pointers are included in the state representation, which was introduced
in section 4.1.3. Consider a state where the global instance ι has two variable values associated
with it, namely a DSPIN-style pointer variable int & x ptr which currently points to some integer
instance, and a normal variable int x. This could be represented in two ways:

The Tool Layer: Model Checking Prom+ – 66

prom ::= (mult decl ‘;’)
∗

(proctype ‘;’)
+

decl ::= type (‘*’)
?

ident

mult decl ::= type (‘*’)
?

ident (‘,’ (‘*’)
?

ident)
∗

proctype ::= ‘active’ ‘[’ number ‘]’ ‘proctype’ ident ‘(’ (params)
?
‘)’

‘{’ (mult decl ‘;’)
∗

(stmnt ‘;’)
+

‘}’

params ::= decl (‘;’ decl)
∗

type ::= ‘bit’ | ‘bool’ | ‘byte’ | ‘short’ | ‘int’

stmnt ::= do stmnt | if stmnt | assgn stmnt | new stmnt | reset stmnt | run stmnt |

expr | assert stmnt | ‘skip’

do stmnt ::= ‘do’ (branch)
+

‘od’

if stmnt ::= ‘if’ (branch)
+

‘fi’

branch ::= ‘::’(‘else’ ‘;’)
?

(stmnt ‘;’)
∗

(‘break’ ‘;’)
?

assgn stmnt ::= (‘*’)
?

ident ‘=’ expr

new stmnt ::= ident ‘=’ ‘new’ type

reset stmnt ::= ‘reset’ ident

run stmnt ::= ‘run’ ident ‘(’ (args)
?
‘)’

args ::= expr (‘,’ expr)
∗

expr ::= expr (‘<’ |‘<=’ | ‘>’ |‘>=’ | ‘==’ |‘!=’ | ‘&&’ |‘||’ | ‘+’ |‘-’ | ‘*’ |

‘/’ | ‘%’) expr | (‘!’ |‘-’) expr | ‘(’ expr ‘)’ | ‘true’ | ‘false’ |

number | (∗)
?

ident

assert stmnt ::= ‘assert’ ‘(’ expr ‘)’

ident ::= (‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’ | ‘ ’)
+

number ::= (‘0’ | . . . | ‘9’)
+

Figure 6.1 – The grammar of PROM
+ in EBNF style. The syntax and

semantics of Prom+ are based on PROMELA [36].

• Pointers could be types, as is shown in figure 6.2(a). The advantage of this approach is that
the state graph representation does not need to be altered. Modelling pointers as types would
enable pointers to pointers, and expressions of pointers (pointer arithmetics). However, this
implementation would introduce a lot of new concepts such as pointer types, dereferencing
expression, and the left-value operator [41], which would complicate the abstract layer. Also
adding an additional node per pointer variable would enlarge the state representation signif-
icantly, although the optimisation given in section 4.2.3 would be capable of minimising the
cost.

• Pointers could be special edges, as is shown in figure 6.2(b). The reasoning is that an edge
in a graph is already a ‘reference’ to an instance, and therefore there is no need to introduce
new types for pointers. It would also avoid making the state graph bigger due to pointer
usage, and would not introduce a significant amount of new functionality in the abstract
layer.

The current implementation uses the latter approach, as it keeps the state representation at a
lower size. Also there is no need for pointer arithmics (as we have to memory addresses to perform
arithmics with), and if ever a pointer to a pointer was required, this could be modelled by means
of a ‘typedef’ type with a pointer field. A typedef type in PROMELA is similar to a ‘struct’ in C++.

However, besides state representation there are also a lot of semantics involved when consider-
ing pointer variables. Note that the state representation we use, opposed to DSPIN, does not have
a notion of heap or stack instances, nor does it have a notion of memory locations. A further limita-
tion is that the linearisation algorithm implies that only reachable instances in the state graph are
taken into account. This introduces some problems when trying to implement the same semantics
as DSPIN, which follows the semantics of unmanaged C++.

• We have no direct means of detecting whether an object was allocated on the heap or on the
stack. Listings 6.2 and 6.3 show how this detection is necessary during deletion. Obviously

67 – The Modelling Language Prom+

Listing 6.1 – A PROM
+ model of Peterson’s mutex algorithm, unsuitable

for symmetry reductions due to the turn values and the Init process.�
byte mutex; bit * flag_1 , * flag_2 , turn;

active [1] proctype Property () { assert(mutex < 2); }

active [0] proctype Process(
bit * my_flag;
bit * other_flag;
bit turn_value)

{
do
:: *my_flag = 1;

turn = turn_value;
(* other_flag == 0 || turn != turn_value);

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

*my_flag = 0;
od;

}

active [1] proctype Init()
{

mutex = 0;
turn = 0;
startGuard = false;

flag_1 = new bit; *flag_1 = 0;
flag_2 = new bit; *flag_2 = 0;

run Process(flag_1 , flag_2 , 0);
run Process(flag_2 , flag_1 , 1);

}

� �

the presented code results in a run-time exception as one is not allowed to delete instances
that are not on the heap. To realise this with our state representation one would need to be
able to distinguish between stack and heap objects.

ι

intPointer

int

int

x ptr

value

x

(a) Pointers as types.

ι

int

int

x ptr

x

(b) Pointers as special edges (dashed).

Figure 6.2 – Representation of pointers in the state graph, either as a

separate type or as a special edge.

The Tool Layer: Model Checking Prom+ – 68

Listing 6.2 – Deleting stack variables in C++

�
int main() {

int x;

int * x_ptr;

x = 1;

x_ptr = &x;

delete x_ptr;

}

� �

Listing 6.3 – Deleting stack variables in DSPIN

�
active [1] proctype Main() {

int x;

int & x_ptr;

x = 1;

x_ptr = &x;

delete x_ptr;

}

� �

One solution is to denote some instance as a stack instance if it has a variable referring to it
that is not marked as a pointer variable. Note that this would be an expensive operation with
the current implementation, as we do not maintain back-edges for variable values. Other
solutions involve adding additional information to the state graph to mark data instances as
heap instances or stack instances. This could be done in the internal representation of the
data instances, or by globally maintaining a list of heap instances.

• If multiple pointers reference the same data instance, an this heap instance is deleted, this
would resolve in ‘dangling pointer’. These are pointers that refer to an invalid memory
address. Our state representation is simply a graph, we cannot refer to a node that isn’t in
the graph. An alternative would be to include an additional node to which pointers point
once their right-hand value is destructed. Note that without back-edges, it is an expensive
operation to find all pointers that refer to a certain instance.

Besides adding new functionality to the framework by solving the problems of pointer semantics
above, there is also the option of adopting different semantics. Rather than modelling C++-like
semantics, like DSPIN, one could also adopt the JAVA approach. Heap and stack are kept totally
separate in the sense that pointer variables can only refer to heap objects, not to stack objects, and
normal variables can only refer to stack objects. Also, there is no possibility to explicitly delete
heap objects, as a heap object is deallocated by the garbage collector only when there are no more
pointer variables that refer to it. These semantics are much easier to implement in our framework,
as it already has a ‘garbage collector’ (only reachable instances are taken into account in the state
graph).

This does mean have different semantics compared to DSPIN; in particular we have no left-
value operator, as we don’t want pointer variables to point to stack variables. Also we have no
delete statement, as this would imply a heap variable would be destructed. Instead we have a
reset statement, which makes the pointer variable change into a null pointer, which is synonymous
with the removal of an edge in the state graph. The garbage collector is responsible for removing
any unreferenced instances. Listing 6.4 shows how the semantics of PROM

+’s pointers differ from
DSPIN’s.

6.1.3 Semantics

It might be unclear how PROM
+ models can be mapped to our abstract layer. We will discuss how

we can create a type graph of a PROM
+ specification by means of the grammar in figure 6.1.

• The process types (MProc) are synonymous with the proctype definitions defined by the
proctype rule of the grammar. Each process type is a node in the type graph. The typename
associated with a process type is defined by the identifier (ident).

• The function types (MFunc) are non-existent in PROM
+, as it does not contain a notion of

functions. This implies that alsoMCall is empty.

69 – The Modelling Language Prom+

Listing 6.4 – A PROM
+ model illustrating the pointer semantics.�

int * x, * y; int * null;

active [1] proctype Main() {

x = new int;

x = 4; / Notice the C++ syntax. */

y = x;

reset x;

y == 4; / No run -time error , y still exists! */

reset y; /* The int instance will be destroyed. */

y == null; /* y equals null. */

}

� �

• The data types (MData) are defined by the type rule in the syntax. The range of these
primitive types are same as their counterparts in PROMELA [36]. For each of these types there
is exactly one node in the type graph.

• The variables (MV ar) are the labels of the type graph. They are defined by the rules decl

and mult decl. Note that his includes the parameters in process definitions. Note that the
inclusion of ‘*’ in a declaration marks the variable as a pointer variable.

The scope of the variables (MScope) is determined by the location in which they are defined.
If the variable was directly declared from within a mult decl in prom, then it maps to ι as it is
a global variable. If it is a result from the mult decl or params in proctype, then the scope of
this variable is the process type. The type of the variable (MV arType) is the data type of the
type field in the decl or mult decl rule that declared the variable.

Besides constructing the type graph, the typing information also contains a control-flow for
each process type. These control-flow graphs should not be considered as a subgraphs of the type
graph, but rather as the internal information of process types, as depicted in figure 4.7. Each
transition in the control-flow graph can be enabled or disabled depending on the global state of
the model. In section 4.1.6 it was explained how a control-flow relates to the SoftwareModel,
however, it is yet to be explained how such a control-flow is created from a PROM

+ specification.
Each process type has an initial control-flow state. Normal statements such as those defined by

grammar rules assgn stmnt, new stmnt, reset stmnt, run stmnt, expr, assert stmnt and the terminal
‘skip’ are simply edges in the control-flow graph, which follow each other sequentially. Each of
these statements maps to a subclass of Statement in our abstract layer. We will briefly discuss the
semantics of each of these statements:

• The assignment statement (assgn stmnt) can either assign an expression to a variable by
value, or assign a pointer variable to another pointer variable by reference. This depends on
how the variable on the left-hand side is defined. If this is declared as a pointer, then it can
be dereferenced by using an additional *. An assignment is always enabled.

• The new statement (new stmnt) allocates a new instance of a data type to a pointer variable
with the default value of this type. This statement is always enabled.

• The reset statement (reset stmnt) removes the value of a pointer variable. If this results in
a unreferenced data instance, then this instances is removed from the state graph. A reset
statement is also always executable.

• The run statement (run stmnt) adds a process instance of a certain type to the state graph.
The variable values receive a default initialisation and the arguments are evaluated. A run

The Tool Layer: Model Checking Prom+ – 70

statement is only executable if there is a process identifier available within the bound dictated
by the number of bits reserved to represent the process identifier. Normally 8 bits are reserved
and therefore 256 process instances can be created. The number of bits reserved for this
purpose can be changed by a command-line argument in the PROM

+ tool.

• The expression statement (expr) does not change the state. However, an expression state-
ment is only executable if the expression evaluates to a value that is not 0. Note that all
expression are evaluated as integers, just like in PROMELA.

• The assertion statement (assert stmnt) does not influence the semantics of the model, but is
only useful for the verification.

• The skip statement (‘skip’) is always executable, and changes nothing in the state graph.

The if stmnt and do stmnt are less obvious. They are not a single transition in the control-
flow, but are constructs that introduce non-determinism. Each ‘if’ and ‘do-statement’ consists of a
number of branches, which in turn consist of a sequence of statements. Both the ‘if’ and the ‘do-
statement’ give the process a choice as to which branch to go into, as long as the executability of
the transitions in the branches is not violated. Therefore, ‘if’ and ‘do’ statements are not executable
if the first statements of all their branches are not executable. The ‘else’ construct can be used
in the last branch of an ‘if’ or ‘do-statement’ to enable a branch if all other branches are not
executable. The difference between the ‘if’ and ‘do-statement’ is that after the sequences in the
branches the ‘do-statement’ routes the last transition of this branch to the beginning of the ‘do-
statement’, thereby creating a loop, whereas an branch of an ‘if-statement’ does not form a loop.
The ‘break’ construct can be used to ‘break’ out of a ‘do-loop’.

Finally, the control-flow of processes is always implicitly concluded with a statement that kills
the process instance. This statement is only enabled if the process instance has the highest process
identifier of all process instances in the state. Note that this statement is not always reachable.

The initial state of a PROM
+ model consists of a global instance (ι). Also the ‘active’ construct

provides the number of instances of a certain process type that are to be present in the initial state.
These are given process identifier according to the order in which the processes are specified in
the PROM

+ specification. Note that as the global instance and process instances can also contain
variables, these variabels are given a default value in the initial state. This is ‘0’ or ‘false’ for normal
variables of a primitive type, whereas pointer variables initially have no value.

6.1.4 Prom+’s Language Features in Comparison

In terms of the language features described in section 1.2.3, PROM
+ is quite limited, as is illustrated

by table 6.1. Although PROM
+ itself only exhibits only a small number of features, it does not use

the full potential of the abstract layer. For instance, the design of the abstract layer included the
notion of functions, but these are not included in PROM

+. It should be noted that the features that
are ascribed to the abstract layer have not all been implemented, but are considered compatible
with the current design.

It might be unclear how these features map to the principles described in previous chapters,
therefore the features will be briefly discussed per category.

Control-flow The features in the control-flow section are means to define a control-flow graph
in the typing information of the abstract layer. In the abstract layer this information is only
present in the form of a local state space. Given a global state and a process instance a
transition in the control-flow can be enabled or not. Jumps are simply transitions in this
control-flow state space and could be added quite easily. Functions allow the hierarchical
composition of control-flow on a function stack, and as we included the notion of functions
our state graph these are also are compatible with out abstract layer. Note that in the im-
plementation of the abstract layer, functions have not been included in order to speed up
the implementation of this layer. Exception handling would require additional functionality
in the abstract layer to simulate exceptions being thrown down function stacks. Parallelism
of processes is very clearly present in our abstract layer, as is illustrated by the possibility of
having multiple process instances in a state.

71 – The Tool

Table 6.1 – An overview of Prom+’s language features by means of the

features described in section 1.2.3.

Control Flow Comm. Data Abstraction Miscellaneous
S
em

a
n
ti
c

M
o
d
el

J
u
m

p
s

F
u
n
ct

io
n

S
ta

ck
s

E
xc

ep
ti
o
n

H
a
n
d
li
n
g

P
ar

a
ll
el

T
h
re

a
d
s

A
to

m
ic

L
o
ck

s

C
h
a
n
n
el

s

C
o
m

p
o
si
te

T
yp

es

C
la

ss
es

In
h
er

it
a
n
ce

o
f
D

a
ta

M
et

h
o
d

O
ve

rr
id

in
g

C
u
st

o
m

D
a
ta

T
yp

es

S
ym

m
et

ri
c

D
a
ta

T
yp

es

D
yn

a
m

ic
D

a
ta

C
re

a
ti
o
n

D
yn

a
m

ic
T

h
re

a
d

C
re

a
ti
o
n

A
ss

er
ti
o
n
s

C
lo

ck
s

P
ro

b
a
b
il
it
ie

s

Prom+ LTS X X X X

Abstract Layer LTS X X X X X X X X X X X X X

Promela LTS X X X X X X X

Communication The only means of communication between parallel components in our abstract
layer is currently by means of variables. Atomicy could be added by adding a single bit flag
to each process instances to indicate atomic execution, and by including this knowledge in
the getF irstTransition and getNextTransition of the SoftwareModel. Locks and channels
could be included by defining additional data types, and by creating special statements which
enforce the semantics of these objects.

Data Abstraction This category maps to the data types in the abstract layer. Composite types
could simply be specialised data types, whereas classes could map to a specialised composite
type and some function types in the type graph. Inheritance could be simulated by means of
associations between composite types. However, dynamic method overriding would require
additional run-time information and thus a change in the state graph definition. Symmetric
data types have been discussed in section 5.4.2, and can be implemented by means of a
custom data type.

Finally, the dynamic creation of objects and threads are simply statements that add additional
data instances and process instances to a state graph. Assertions are a special type of statements
that don’t change the state graph, but that do trigger AssertionConditions, such that assertion
violations can be detected during a search.

The inclusion of probabilities or clocks is not possible in the abstract layer as the generic layer
does not include these notions. They would require changes in the generic layer as did symbolic
and bounded model checking.

6.2 The Tool

As might be clear from the previous section most functionality in the PROM
+-tool is there to to

construct the correct type graph from the syntax of the model. This includes constructing the
control-flow of process types, and the declaration of global as well as local variables. Most of this
functionality is implemented in a parser and in a tree walker that walks over the AST of the PROM

+

specification.

6.2.1 Tool lmplementation

The PROM
+ tool illustrates how a tool can use the framework. Both the framework and the tool are

c++ projects. The framework implements both the generic layer (mcf::generic layer) and the
abstract layer for software models (mcf::software layer). The framework is then compiled as a
static library, and used in the tool. The PROM

+ tool contains a parser that creates a model, in terms

The Tool Layer: Model Checking Prom+ – 72

of the abstract layer in the framework, from a PROM
+ specification. The simulation and verification

functionality provided in the generic layer of the framework is used to provide simulations and
verifications for these models. The framework consists of approximately 6 KLOC, and the PROM

+

tool consists of approximately 6 KLOC of which most is code that is generated by a parser generator.
The tool is capable of simulating a PROM

+ model, but can also simulate the control-flow of
process types. The verification can target assertion violations as well as deadlocks. Finally, the
tools also realises thread-symmetry reductions.

6.2.2 Performance

To put the performance of our tool into a context it is compared to the state-of-the-art tool SPIN.
In order to compare the two tools we specify some models that are both valid PROM

+ and PROMELA

specifications. Besides this we test the effectiveness of the symmetry reductions by comparing
verification runs of the PROM

+-tool with symmetry disables to runs where symmetry reduction was
enabled. To do this we require PROM

+-models that exhibit thread-symmetries.
We developed models of three mutex algorithms, namely Peterson’s, Dekker’s and Dijkstra’s

algorithms [8, 56], as well as models of the dining philosophers problem. For these we have
created two sets of models, one that can be checked by both PROMELA and PROM

+ and an equivalent
model suitable for thread-symmetry reductions for just PROM

+. They can be found in appendix D,
ranging from code listings D.1 up to D.8. The dining philosophers were verified for both 3 and 4
philosophers.

Note that in order to create PROM
+ models that are suitable for symmetry reduction we need

to make sure that the permutation of symmetric processes does not influence the result of the
linearisation of the state graph. In terms of mutex algorithms this means that the initial process
needs to reset all the pointer variables used in the other processes, as it would otherwise include
them in its linearisation. Also, instead of using a turn value, we use a pointer variable to model
the ‘turns’ in mutex algorithms. In this way the linearisation process does not distinguish between
the two process due to the value of the turn variable as was the case in listing 6.1.

The mutex algorithms were verified for deadlocks and assertions, whereas the dining philoso-
pher models were only checked for dummy assertions (to make sure the complete state space was
visited). The models in appendices were compared by means of the following metrics:

States visited The number of unique states in the state space that was visited during the verifica-
tion run.

States revisited The number of times a state was revisited during the verification run. This means
that the number of transitions explored during the verification run is equal to the number of
states visited plus the number of states revisited.

Verification time The time it took the tool to execute the verification algorithm. This excludes
initialisation work such as parsing, code generation or intialisation of the state store. By
changing the source code of both the generated SPIN-models and the PROM

+-tool the time
required by the verification procedure was measured. The time presented in table 6.2 is the
average of 5 verification runs.

Statevector size The average size of the statevectors in the model rounded to the nearest byte.
This is based on the default settings of both tools. In the PROM

+-tool this implies a default
setting of 8 bits per process identifier and 8 bits per reference to an instance in the state
graph and no optimisations (see 4.2.3).

Memory usage The maximum amount of memory used by the tool, measured in megabytes. The
measurements obtained are only indicative.

The experiments were performed on a computer with an AMD XP 2000+ processor and 512MB

RAM. Both the PROM
+-tool and the generated code by SPIN were compiled in GCC 3.4.4 (MINGW)

with identical optimisation flags. Both tools were run in their default settings, with the exception
that the partial-order reductions in SPIN were turned off. Table 6.2 presents the results of the
measurements.

73 – The Tool

Table 6.2 – A comparison in performance of PROM
+ against SPIN. Both

the default settings (‘Prom
+’) and the results of verification with symmetry

reduction (‘Prom
+

(with thread symmetry reductions)’) is shown.

S
ta

te
s

V
is
it
ed

S
ta

te
s

R
ev

is
it
ed

V
er

ifi
ca

ti
o
n

T
im

e
(s

ec
o
n
d
s)

S
ta

te
ve

ct
o
r

S
iz

e
(b

yt
es

)

M
em

o
ry

U
sa

g
e

(m
eg

a
b
yt

es
)

P
et

er
so

n D
.1

Prom+ 64 88 0.08 13 0.7

Prom+
(with thread symmetry reductions) 64 88 0.09 10 0.7

SPIN 64 88 < 0.01 20 2.6

D
.2

Prom+ 126 138 0.23 23 0.7

Prom+
(with thread symmetry reductions) 82 82 0.18 19 0.7

D
ek

ke
r D
.3

Prom+ 288 398 0.35 13 0.7

Prom+
(with thread symmetry reductions) 288 398 0.48 10 0.7

SPIN 288 398 < 0.01 20 2.6

D
.4

Prom+ 356 468 0.81 26 0.8

Prom+
(with thread symmetry reductions) 206 260 0.55 21 0.7

D
ij
k
st

ra D
.5

Prom+ 860 1248 1.39 16 0.8

Prom+
(with thread symmetry reductions) 860 1248 1.84 13 0.8

SPIN 860 1248 < 0.01 24 2.6

D
.6

Prom+ 942 1338 2.34 26 0.8

Prom+
(with thread symmetry reductions) 498 694 1.83 23 0.8

P
h
il
o
so

p
h
er

s
(3

)

D
.7

Prom+ 885 1490 0.93 11 0.7

Prom+
(with thread symmetry reductions) 885 1490 1.18 8 0.7

SPIN 885 1470 < 0.01 20 2.6

D
.8

Prom+ 1082 1961 1.93 18 0.8

Prom+
(with thread symmetry reductions) 462 888 1.03 14 0.8

P
h
il
o
so

p
h
er

s
(4

)

D
.7

Prom+ 8545 22288 16.29 14 1.7

Prom+
(with thread symmetry reductions) 8545 22288 20.43 10 2.0

SPIN 8545 22288 0.03 24 2.7

D
.8

Prom+ 11124 29539 40.40 24 1.9

Prom+
(with thread symmetry reductions) 4464 11819 20.12 19 1.4

Chapter 7

Conclusion

This chapter concludes the thesis. It briefly discusses the findings of this thesis and evaluates the
results. Finally a brief discussion on related work and future work is given.

7.1 Summary

This section discusses the conceptual architecture, as well as the implementation of our generic
layer, abstract layer and the tool. The design decisions made during the development of the frame-
work and their impact on end result are also discussed.

Conceptual architecture In chapter 2 the conceptual architecture was discussed. In this chapter
we state this conceptual architecture is applicable for more than just explicit-state model
checking. In later chapters only one possible implementation of this conceptual architecture
was discussed. More specifically, the generic layer was based on explicit-state model checking
and the abstract layer based on graph-based representations of software-based models. We
argue this illustrates the conceptual architecture is suitable for explicit-state model checking,
but to show it is also suitable for symbolic, bounded or probabilistic would require a sim-
ilar discussion leading to generic layers in these fields. We do argue that for explicit-state
model checking the generic layer provides the ability to provide algorithms for simulation
and verification that are independent of the model type, which was one of our objectives.

The library In chapter 3 until 4 we presented a possible implementation of the conceptual archi-
tecture for explicit-state model checking. Not everything that was presented in this thesis was
actually implemented. For instance, the mappings discussed in section 3.4.2 have not been
implemented, nor have function types, function instances and function calls. The optimisa-
tion of the linearisation process described in section 4.2.3 has also not been implemented.
Finally, all features described in chapter 5 have not been implemented, except for the thread-
symmetry reductions.

Generic layer The generic layer provides the abstraction of a STATESPACE interface, which
enables the definition of generic simulation and verification algorithm. One point of
discussion concerns this interface. A total order of the outgoing transitions per state is
imposed by the FirstTransition and NextTransition functions, this might be too strict
for some models. Also, the programmatic interface with reference counting pointers
comes at a cost, a significant amount of verification time is spend on keeping track of
the references. The design of the search module provides great flexibility, but this comes
at the cost of the overhead of additional function calls.

It is important to note that the type abstraction principle in the generic layer does not
necessarily means that the framework is per definition slower than other tools with
specialised algorithms. The modular design of the search module, and the choice to use
pointers with reference counting are the design choices that came at performance hits.

75 – Summary

Abstract layer The graph representation of states as offers a formal basis which can be useful
for constructing algorithms, such as linearisation and symmetry reductions. Also, the
graph representation is intuitive to understand, as is the design of state representation
and typing information (figure 4.3 and 4.5). The transitions in our abstract layer have
no real formal basis. This implies that framework is very liberal with enforcing any
semantics of the models. This can be considered an advantage as this implies we can
use the abstract layer to model a wider range of model specification languages, but also
a disadvantage as it is the responsibility of the tool developer to ensure the semantics
are correct.

Additionally, we’d like to address the inclusion of pointers to the state graphs discussed
in section 6.1.2. Arguably, the decision to model pointers as data types would have
been more intuitive. Combined with the optimisation of the linearisation procedure the
argument that statevectors would be significantly larger would no longer be valid.

Tool layer The PROM
+ tool provides a model checker for a simple specification language

called PROM
+. The verification result of a few models have been presented in table 6.2.

There are a few interesting points regarding these measurements:

• The verification time measurements shows the PROM
+ tool is inferior to SPIN in

terms of the time required to verify a model. The PROM
+ tool is slower by an approx-

imate factor of 103, which is obviously a very significant amount. This illustrates
that our modular approach cannot compete with the optimised code generated by
SPIN with respect to time.
It is not clearcut which parts of the framework significantly contribute to the slow
verification times of the PROM

+. It is the combination of using reference count-
ing pointers, a modular search module which requires a lot of function calls, and
also the use of state graphs proves to be expensive. Not only encoding and de-
coding state graphs to and from bitvectors is expensive, also copying the states
before applying a statement is expensive. For instance, each Instance in a the
SoftwareState is a c++-object that needs to be allocated on the heap, which takes
time.
It should be noted that the framework is not fully optimised, and it is not unreason-
able to assume that some performance enhancements could still be made. However,
to be competitive with SPIN would require a massive improvement.

• The memory usage of the PROM
+ tool is competitive with SPIN. Although our state

store is a hash table that has an overhead in of approximately 50 bytes per element
(compared to SPIN’s 8 bytes), and our stack is extremely inefficient as it stores all
states, the average size of the state vector provides some opportunities. Given an
implementation of the stack and the state store with SPIN’s efficiency, the PROM

+

tool should have a smaller overhead.
Additionally, the current linearisation procedures do not implement the optimisa-
tion presented in section 4.2.3, nor have the settings of the verification runs been
optimised. For instance, for most models it would have been sufficient to use just
2 bits for the process identifier instead of the default 8. This would result in even
smaller bitvectors. However, before any optimisations in state vectors is noticeable,
a more efficient implementation of the stack and state store would be required.

• The thread symmetry reductions of our ‘symmetric’ PROM
+ models also are a reason

for discussion. The results of the verification runs show a 35%, 42% and 47%
reduction in the number of visited states of the Peterson, Dekker and Dijkstra mutex
models, respectively. The dining philosophers model resulted in a 57% and 60%
reduction in the number of visited states, for scenarios with 3 and 4 philosophers
respectively.
In the most ideal case a mutex model for two processes could achieve a 50% reduc-
tion, and for the dining philosophers this would be 67% and 75%, respectively.
The reason why our symmetry reduction does not achieve this ideal reduction is
two-fold. Firstly, in order to exploit symmetry reduction we need an initiating pro-
cess, during the execution of this process no symmetry reduction can be applied.

Conclusion – 76

Secondly, our representatives are not canonical. The heuristics we use to find repre-
sentatives, namely by process type and by control-flow state, is not always sufficient
to achieve a good reduction. For instance, consider the specification in listing 7.1.
There are 5 independent processes of the same type in this model, and one would
expect a symmetry reduction to reduce the number of visited states significantly. For
the current implementation of symmetry reduction this is not the case. The heuris-
tics cannot distinguish between the process instances as they all have the same type
type and also are always in the same control-flow state, because there is only one
reachable control-flow state. Verifying this model in PROM

+ with thread-symmetry
enabled does not result in any reduction.
In the mutex model we can see that as the state spaces grow larger, a more efficient
reduction is achieved. This can be ascribed to the fact that the overhead of the
initiating process is relatively smaller for larger state spaces. However, it should be
noted that the nature of the models also has an influence. It could be argued that
for mutex models less likely that the process instances are not distinguishable by
means of their control-flow state. For example, if the mutual exclusion is enforced
then the two process instances can never be in a control-flow state in the critical
section at the same time.
Finally, thread-symmetry might not always preserve correctness of the verification
result. If the semantics of are dependent on the process identifiers then it is possible
that certain error states are omitted. For instance, the ‘ pid’ variable in PROMELA

might introduce problems. Also, the order in which processes die depends on the
process identifiers. In our mutex and dining philosophers models we have processes
that never terminate, and therefore this is not an issue.

Chapter 5 shows how certain features, that were originally introduced in section 1.2.5, are
related to the framework. These features are included on different levels of abstraction, therefore
they see fit in respectively the generic or abstract layer. Although some of these features will
require extensive effort to add to the current implementation fo the framework, such as for instance
symbolic model checking, they are a logical and natural extension of the framework. Only the
inclusion of external storage and distributed verification do not seamlessly extend the philosophy
of the search functionality in our generic layer, due to their need for specialised search strategies.

7.2 Evaluation

We argue that the principle of using a layered architecture in combination with type abstraction
to provide generic algorithms for explicit-state verification is the primary new concept that was
presented in this thesis. This concept realises the objectives presented in section 1.3, at least to
some extend. Firstly, the division in layers provides the ability to use the same code-base in multiple
tools. Not only can the algorithms in the generic layer be reused for different implementations
of abstract layers, the abstract layer could, at least in theory, be used for multiple specification
languages.

However, in order to really accomplish the objectives, the framework would have to be applied
in several tools. For this to be realistic, the framework would have to be competitive in terms
of its performance. We argue that the type abstraction used in the generic layer is not the cause

Listing 7.1 – A worst-case PROM
+ model for thread-symmetry reduction.�

active [5] proctype A() {

byte x;

do

:: x = x + 1;

od;

}

� �

77 – Related Work

of the performance issues. For instance, the standard c++ libraries such as std::vector and
std::map are also based on type abstraction, but are very competitive in terms of performance.
The performance issues are a result of design decisions made in both the generic layer and the
abstract layer. These decisions provide flexibility in terms of the flexibility of the framework, but
compromise on performance.

In hindsight, the trade-off between modularity and performance is perhaps too biased towards
modularity. Some decisions, such as the decision to use reference counting pointers, and the
decision to use a flexible search module rather than a dedicated solution, might have been taken
differently if the performance of the tool was known at the time the decision was taken.

Also, the current abstract layer might be slightly too complex to really get across the essential
message of our conceptual architecture. Perhaps the concept of reuse of algorithms should have
been illustrated with two less complex abstract layers. For example, an abstract layer for process
algebras might have suited the scope of this project better.

7.3 Related Work

Compared to other verification frameworks, and particulary the model checking kit (section 2.2.3)
and the IF toolkit (section 2.2.4), the conceptual architecture of this framework is not essentially
different. All frameworks feature a layered architecture. The main difference is that our generic
layer uses type abstraction to abstract from the type of states, labels and transitions.

This type abstraction offers some advantages compared to the approach in the other frame-
works. The information kept within the states, labels and transitions is not lost when mapping the
abstract layer on the generic layer. When outputting a counter-example of a verification run this
information can be used to print a more informative trace. Also the abstraction principle allows
specialised implementations of, for instance, state stores.

It terms of the functionality and performance of our framework, it is not yet competitive with
other frameworks. In order to be more competitive, more time would have to be spend optimising
the performance of the framework, possibly by sacrificing some modularity in both the generic
and abstract layer. Also, it would be beneficial to provide a wider range of functionality, such as
additional search strategies, stores, etc. Compared to other frameworks, the functionality that is
offered is very limited.

7.4 Future Work

Future work on the framework would elaborate on the conceptual architecture presented in chap-
ter 2, and can be very diverse.

• Firstly, a different group of model types could be supported by means of a new generic layer.
For instance, by developing a layer for symbolic or bounded model checking.

• Secondly, one could develop a new abstract layer that uses the current generic layer for
explicit-state model checking.

• Thirdly, new the current generic and abstract layer could be extended with additional search
strategies, stores, or even transformations of state spaces to support LTL model checking as
well as data types, statements, etc.

• Also, the current abstract layer could be extended to support new language features, such
as atomic constructs or data inheritance. Also, one could implement function types and in-
stances which were discussed in chapter 4, but were not included in the implementation of
the framework, or change the pointer variable representation such that pointers are repre-
sented as types.

• A more basic continuation of the framework would be to investigate methods to improve
the performance of the framework. This could include reconsidering some design decisions
that were made during the creation of the current framework, such as the use of reference
counting pointers as well as redesigning the verification functionality in the generic layer.

Conclusion – 78

• Finally, it would be interesting to considering alternative ‘abstract layers’, and to compare
their performance to the current graph-based implementation. This would give more insight
into which layer is mostly responsible for the slow verification times.

Bibliography

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[3] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-checking
continuous-time Markov chains. ACM Transactions on Computational Logic, 1(1):162–170,
2000.

[4] J. Barnat, L. Brim, and J. Chaloupka. Parallel breadth-first search LTL model-checking. In
Proceedings of the 18th IEEE International Conference on Automated Software Engineering,
pages 106–115. IEEE Computer Society, 2003.

[5] Jiri Barnat, Lubos Brim, and Jakub Chaloupka. From distributed memory cycle detection to
parallel LTL model checking. Electronic Notes in Theoretical Computer Science, 133:21–39,
2005.

[6] Jiri Barnat, Lubos Brim, and Jitka Stribrná. Distributed LTL model-checking in SPIN. In
Proceedings of the 8th International SPIN Workshop on Model Checking of Software, pages
200–216, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[7] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen, Paul Pettersson, and
Wang Yi. UPPAAL implementation secrets. In Proceedings of 7th International Symposium on

Formal Techniques in Real-Time and Fault Tolerant Systems, 2002.

[8] M. Ben-Ari. Principles of concurrent and distributed programming. Prentice Hall international
series in computer science. Prentice Hall, 1990.

[9] Johan Bengtsson and Wang Yi. Timed automata: semantics, algorithms and tools. In
W. Reisig and G. Rozenberg, editors, In Lecture Notes on Concurrency and Petri Nets, volume
3098 of Lecture Notes in Computer Science. Springer–Verlag, 2004.

[10] Dragan Bosnacki. A light-weight algorithm for model checking with symmetry reduction and
weak fairness. In Thomas Ball and Sriram K. Rajamani, editors, SPIN, volume 2648 of Lecture

Notes in Computer Science, pages 89–103. Springer, 2003.

[11] Dragan Bosnacki, Dennis Dams, and Leszek Holenderski. Symmetric SPIN. In Proceedings of

the 7th International SPIN Workshop on SPIN Model Checking and Software Verification, pages
1–19, London, UK, 2000. Springer-Verlag.

[12] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. Tools and ap-
plications: the IF toolset. In M. Bernanrdo and F. Corradini, editors, Proceedings of the 4th

International School on Formal Methods for the Design of Computer, Communication and Soft-

ware Systems: Real Time, volume 3185 of LNCS. Springer, 2004.

[13] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a BDD
package. In Proceedings of the 27th ACM/IEEE conference on Design Automation, pages 40–45,
New York, NY, USA, 1990. ACM Press.

Bibliography – 80

[14] Lubos Brim, Ivana Cerná, Pavel Krcál, and Radek Pelánek. Distributed LTL model checking
based on negative cycle detection. In Proceedings of the 21st conference on Foundations of

Software Technology and Theoretical Computer Science, pages 96–107, London, UK, 2001.
Springer-Verlag.

[15] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NUSMV: a
new symbolic model verifier. In Proceedings of the 11th International Conference on Computer

Aided Verification, pages 495–499, London, UK, 1999. Springer-Verlag.

[16] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages

and Systems, 8(2):244–263, 1986.

[17] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking
using satisfiability solvings. Formal Methods in System Design, 19(1):7–34, 2001.

[18] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress on
the state explosion problem in model checking. In Informatics - 10 Years Back. 10 Years

Ahead., pages 176–194, London, UK, 2001. Springer-Verlag.

[19] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT Press, Cam-
bridge, MA, USA, 1999.

[20] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and future
directions. ACM Computing Surveys, 28(4):626–643, 1996.

[21] R. Cleaveland and S. Sims. Generic tools for verifying concurrent systems. In I. Lovrek,
editor, Second International Workshop on Applied Formal Methods in System Design, pages 3–
8, Zagreb, Croatia, June 1997. University of Zagreb, Faculty of Electrical Engineering and
Computing. 953-184-004-0.

[22] Patrick Cousot. Abstract interpretation based formal methods and future challenges. In
Reinhard Wilhelm, editor, Informatics. 10 Years Back. 10 Years Ahead, volume 2000 of Lecture

Notes in Computer Science, pages 138–156. Springer-Verlag, 2001.

[23] Patrick Cousot and Radhia Cousot. Refining model checking by abstract interpretation. Au-

tomated Software Engineering, 6(1):69–95, 1999.

[24] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. MoDeST - a
modelling and description language for stochastic timed systems. In Proceedings of the Joint

International Workshop on Process Algebra and Probabilistic Methods, Performance Modeling

and Verification, pages 87–104, London, UK, 2001. Springer-Verlag.

[25] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the specification
of stochastic systems (extended abstract). In Proceedings of the IFIP Working conference on

Programming Concepts and Methods, pages 126–147.

[26] Claudio Demartini, Radu Iosif, and Riccardo Sisto. dSPIN: a dynamic extension of SPIN.
In Proceedings of the 5th and 6th International SPIN Workshops on Theoretical and Practical

Aspects of SPIN Model Checking, pages 261–276, London, UK, 1999. Springer-Verlag.

[27] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby. Building your own software
model checker using the bogor extensible model checking framework. In Computer Aided

Verification: 17th International Conference, volume 3576 of Lecture Notes in Computer Science,
pages 148–152. Springer-Verlag, 2005.

[28] S. Edelkamp, S. Leue, and A. Lafuente. Partial-order reduction and trail improvement in
directed model checking. International Journal on Software Tools for Technology Transfer,
6(4):277–301, 2004.

81 – Bibliography

[29] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Directed explicit model checking
with HSF-SPIN. In Proceedings of the 8th International SPIN Workshop on Model Checking of

Software, pages 57–79, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[30] Javier Esparza. Model checking using net unfoldings. Science of Computer Programming,
23(2-3):151–195, 1994.

[31] Joseph A. Gallian. Contemporary abstract algebra. Houghton Mifflin Company, fifth edition,
2002.

[32] Patrice Godefroid. Partial-order methods for the verification of concurrent systems. PhD thesis,
University of Liège, Liège, 1995.

[33] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. State-space caching revisited.
Formal Methods in System Design, 7(3):227–241, 1995.

[34] Keijo Heljanko and Ilkka Niemelä. Bounded LTL model checking with stable models. Theory

and Practice of Logic Programming, 3(4&5):519–550, 2003.

[35] Gerard J. Holzmann. State compression in SPIN: Recursive indexing and compression train-
ing runs. In Proceedings of the 3th International SPIN Workshop, 1997.

[36] Gerard J. Holzmann. The SPIN model checker. Addison-Wesley, 2004.

[37] Gerard J. Holzmann and Anuj Puri. A minimized automaton representation of reachable
states. International Journal on Software Tools for Technology Transfer, 2(3):270–278, 1999.

[38] G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In The SPIN

Verification System, pages 23–32. American Mathematical Society, 1996. Proceedings of the
2nd Spin Workshop.

[39] G.J. Holzmann and Doron Peled. An improvement in formal verification. In Proceedings of

Formal Description Techniques, pages 197–211, Berne, Switzerland, October 1994. Chapman
& Hall.

[40] Michael Huth and Mark Ryan. Logic in computer science. Cambridge University Press, 2004.

[41] Radu Iosif. The dSPIN user manual.
http://www-verimag.imag.fr/~iosif/dspin/.

[42] C. Norris Ip and David L. Dill. Efficient verification of symmetric concurrent systems. In
International Conference on Computer Design, pages 230–234, 1993.

[43] C. Norris Ip and David L. Dill. Better verification through symmetry. Formal Methods in

System Design, 9(1-2):41–75, 1996.

[44] C. Norris Ip and David L. Dill. State reduction using reversible rules. In Proceedings of the

33rd annual conference on Design Automation, pages 564–567, New York, NY, USA, 1996.
ACM Press.

[45] ISO 12207. International standard, information technology software life cycle process. ISO

12207, 1995.

[46] Harmen Kastenberg, Anneke Kleppe, and Arend Rensink. Engineering object-oriented se-
mantics using graph transformations. CTIT Technical Report 06-12, University of Twente,
2006.

[47] Harmen Kastenberg and Arend Rensink. Model checking dynamic states in GROOVE. In
Antti Valmari, editor, Proceedings of the 13th International SPIN Workshop on Software Model

Checking, volume 3925 of Lecture Notes in Computer Science, pages 299–305. Springer-Verlag,
2006.

http://www-verimag.imag.fr/~iosif/dspin/

Bibliography – 82

[48] Matthias Kuntz and Kai Lampka. Probabilistic methods in state space analysis. In Validation

of Stochastic Systems, volume 2925 of Lecture Notes in Computer Science, pages 339–383.
Springer-Verlag, 2004.

[49] Robert P. Kurshan, Vladdimir Levin, Marius Minea, Doron Peled, and H. Yenigün. Static
partial order reduction. In TACAS ’98: Proceedings of the 4th International Conference on Tools

and Algorithms for Construction and Analysis of Systems, pages 345–357, London, UK, 1998.
Springer-Verlag.

[50] Marta Kwiatkowska. Model checking for probability and time: from theory to practice. In
Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, pages 351–360,
Washington, DC, USA, 2003. IEEE Computer Society.

[51] Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with SPIN. In Proceed-

ings of the 5th and 6th International SPIN Workshops on Theoretical and Practical Aspects of

SPIN Model Checking, pages 22–39, London, UK, 1999. Springer-Verlag.

[52] A. Lluch-Lafuente. Symmetry reduction and heuristic search for error detection in model
checking. In 2nd Workshop on Model Checking and Artificial Intelligence, 2003.

[53] Rémi Morin and Brigitte Rozoy. On the semantics of place/transition nets. In Proceedings of

the 10th International Conference on Concurrency Theory, pages 447–462, London, UK, 1999.
Springer-Verlag.

[54] University of Stuttgart. Model-checking kit.
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/.

[55] Doron Peled. Combining partial order reductions with on-the-fly model-checking. In Pro-

ceedings of the 6th International Conference on Computer Aided Verification, pages 377–390,
London, UK, 1994. Springer-Verlag.

[56] Gary L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters,
12(3):115–116, 1981.

[57] Arend Rensink. Towards model checking graph grammars. In M. Leuschel, S. Gruner, and
S. Lo Presti, editors, Workshop on Automated Verification of Critical Systems, Technical Report
DSSE–TR–2003–2, pages 150–160. University of Southampton, 2003.

[58] Arend Rensink. The GROOVE simulator: a tool for state space generation. In J. Pfalz,
M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations with Industrial Rele-

vance, volume 3062 of Lecture Notes in Computer Science, pages 479–485. Springer-Verlag,
2004.

[59] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and highly-modular soft-
ware model checking framework. In Proceedings of the 9th European Software Engineering

Conference held jointly with 11th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pages 267–276, New York, NY, USA, 2003. ACM Press.

[60] Robby, Matthew B. Dwyer, John Hatcliff, and Radu Iosif. State-space reduction strategies for
model checking dynamic software. Electronic Notes in Theoretical Computer Science, 89:499–
517, 2003.

[61] Ulrich Stern and David L. Dill. Parallelizing the murphi verifier. In Proceedings of the 9th

International Conference on Computer Aided Verification, pages 256–278, London, UK, 1997.
Springer-Verlag.

[62] Ulrich Stern and David L. Dill. Using magnatic disk instead of main memory in the murphi
verifier. In Proceedings of the 10th International Conference on Computer Aided Verification,
pages 172–183, London, UK, 1998. Springer-Verlag.

[63] J. Tretmans. A formal approach to conformance testing. PhD thesis, University of Twente,
Enschede, The Netherlands, 1992.

http://www.fmi.uni-stuttgart.de/szs/tools/mckit/

83

[64] J. Tretmans and E. Brinksma. Côte de resyste – automated model based testing. In
M. Schweizer, editor, 3rd Workshop on Embedded Systems, pages 246–255, Utrecht, The
Netherlands, October 2002. STW Technology Foundation.

[65] Edward C. Turner and Karen F. Gold. Rubik’s groups. The American Mathematical Monthly,
92(9):617–629, 1985.

[66] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the 1st IEEE Symposium on Logic in Computer Science, pages
322–331, 1986.

[67] Carsten Weise. An incremental formal semantics for PROMELA. In Proceedings of the 3rd

SPIN workshop, 1997.

[68] Sergio Yovine. Model-checking timed automata. In G. Rozenberg and F. Vaandrager, editors,
Lectures on Embedded Systems, volume 1494 of Lecture Notes in Computer Science, pages 114–
152. Springer-Verlag, 1998.

Appendix A

Notation

The notation throughout this document is supposed to be intuitively clear. This appendix is meant
as a quick reference only.

Concept Notation Example(s)

Set Starts with capital letter S, L or Domain
Element Starts with small letter s, l or d
Powerset P(. . .) P(S)
Cartesian product Set1 × . . .× Setn S × S
Tuple 〈Element1, . . . , Elementn〉 〈S,L,R〉
Interface definition NAME STATESPACE

Interface implementation [[Name]] [[Stack]]
Function definition Function : (Dom1 × . . .×Domn) −→ Range F : (R) −→ S
Function call var ← Function(param1, ..., paramn) s′ ← F (r1)
Bitarray encode(Name) encode(State)
Bitarray concatenation encode(Name)encode(Name) encode(Type)encode(ObjectId)

Sometimes this report applies a slightly lazy notation. For instance, consider the functions. If
omitting the parenthesis around the domain does not introduce ambiguity, then they are omitted.
Also in some cases, a function does not have a real range (return type), instead of denoting this
with a dummy range, it is simply omitted (e.g. Push : (R)). Note that in this case the parenthesis
are useful, as it is also possible to ommit the domain (e.g. InitialState : S). Sometimes it is also
useful to omit both domain and range (e.g. SimulationStarted : ()).

85

Appendix B

Dedicated Solution for Depth-First Search

This appendix introduces a dedicated design for exhaustive depth-first searches over state spaces.
Initially a recursive algorithm is presented, which is similar to the pseudo algorithms often pre-
sented in literature [38, 39, 10, 19]. However, for a more practical solution an iterative version is
presented as well.

Required Interfaces for Recursive Depth-First Search

To provide a recursive search over the state space we require some additional functionality, namely
a GOAL function and a STORE.

In a search we are almost always looking for a particular subset of states, such as an accepting
states or a deadlock states. We could provide information about goal states by means of an interface
GOAL. This interface allows the search algorithm to be oblivious to the type of states it is looking
for.

Goal : S −→ {TRUE, FALSE}

Interface B.1 – GOAL.

Besides goal states, it is desirable for the search algorithm to avoid visiting states more often
than is strictly necessary. For this purpose we define an interface that is supposed to keep track of
the states we have visited, namely the STORE interface.

Add : (S)

Contains : S −→ {TRUE, FALSE}

Interface B.2 – STORE.

There could be a lot of different implementations for stores, such as bit-state hashing stores
[36], minimised automata [37], or stores that only store a canonical representation of a state,
which would in effect would accomplish a symmetry reduction.

Recursive Depth-First Search Algorithm

The most intuitive way of denoting an exhaustive depth-first search algorithm is by means of
recursion. For example, see algorithm B.1, which is similar to how the depth-first search algorithm
is denoted in literature in the context of explicit-state model checking [38, 39, 10, 19], except for
that these are usually nested depth-first search algorithms.

There are a few issues with algorithm B.1, which arise from the fact that a recursive function
is used to formalise the algorithm. Actual implementations implementations of this algorithm

87

Algorithm B.1: Explore(s′ ∈ S) −→ {TRUE, FALSE}

Require: [[StateSpace]], [[Goal]], [[Store]].

1: if ([[StateStore]].Contains(s′)) then
2: return FALSE

3: else
4: [[Store]].Add(s′)
5: if ([[Goal]].Goal(s′)) then
6: return TRUE

7: else
8: tmp←[[StateSpace]].F irstTransition(s′)
9: while (tmp 6= ǫ) do

10: if (Explore([[StateSpace]].Target(tmp))) then
11: . . .
12: return TRUE

13: end if
14: tmp←[[StateSpace]].NextTransition(tmp)
15: end while
16: return FALSE

17: end if
18: end if

in model checkers such as SPIN do not use function recursion, and use an equivalent iterative
algorithm.

• The call stack used to realise function recursion can be the bottleneck of the verification
process. For each transition on a path of the model, the call stack would need to maintain
a stack frame. As models can become very large, the number of stack frames that can fit on
the call stack can be a serious limitation on most systems.

• The path to the counter-example is not explicitly present in algorithm B.1, but is implicit in
the call stack.

In the rest of this appendix the iterative version of algorithm B.1 is introduced. But in order to
omit the use of the call stack, this algorithm requires the use of a stack, which is introduced in the
next section.

Additional Interfaces for the Iterative Depth-First Search

Interface B.3 introduces the functionality of stack. This is a stack of transitions rather than states,
which might be intuitively confusing. Consider a situation where the search uses the stack for back
tracking. If the algorithm uses a stack of states, without any other information, the algorithm has
no means of finding out which path it just back-tracked from. Also if we end up with a stack of
states as a counter-example, then it is unclear which transitions led to this sequence of states. A
stack of transitions avoids these issues. The STACK interface consists of a Push procedure and a
Pop function. The Pop function returns an ǫ if the stack is empty.

Push : (R)

Pop : R ∪ {ǫ}

Interface B.3 – STACK.

Some model checkers do not physically maintain the complete stack of transitions, implicitly
storing all the states on the current path (because the STATESPACE requires the ability to retrieve
the source and target state of a transition). However, another strategy would be to only remember

Dedicated Solution for Depth-First Search – 88

Algorithm B.2: TryTransition(r ∈ R)

1: target←[[StateSpace]].Target(r)
2:

3: if (¬[[Store]].Contains(target) then
4: s′ ←[[StateSpace]].Target(r)
5: [[Stack]].Push(r)
6: foundNewState← TRUE

7: end if

the change in states, or to employ reversible transitions [44]. This kind of optimisation can be
realised by implementations of STACK.

Iterative Depth-First Search Algorithm

The iterative version of algorithm B.1 is shown in algorithm B.3. The general idea of this algorithm
is that in each iteration s′ is a newly discovered state. While there are new states to be found in
the successors of s′, the algorithm keeps exploring. When the algorithm cannot explore further, it
starts to back-track. It pops a transition of the stack and attempts to find previously undiscovered
states.

A common operation in this algorithm is to test a transition to see whether it leads to a new
state. This is shown in algorithm B.2. This function be seen as a local function which has access to
all variables and interfaces as algorithm B.3 does, and should just be seen a way of denoting the
algorithm in a more compact fashion.

StateSpace

DepthFirstSearch

-stateSpace: StateSpace *

-goal: Goal *

-store: Store *

-stack: Stack *

+startSearch()

State:typename

Transition:typename

Label:typename

Goal

Store

...

...

Stack

...

...

Figure B.1 – Design of a generic depth-first search algorithm using an

[[StateSpace]], [[Stack]], [[Store]] and [[Goal]] interface.

In figure B.1 an overview of the depth-first solution is presented in an UML diagram.

89

Algorithm B.3: Iterative depth-first search algorithm

Require: [[StateSpace]], [[Goal]], [[Store]], [[Stack]].

1: foundTarget← FALSE

2: foundNewTarget← FALSE

3:

4: s′ ← [[StateSpace]].InitialState()
5:

6: while (s′ 6= ǫ ∧ ¬foundTarget) do
7: {* Invariant: State s′ is always a newly discovered state. *}
8: [[StateStore]].AddState(s′)
9: if ([[Goal]].Goal(s′)) then

10: foundTarget← TRUE

11: else
12: foundNewState← FALSE

13:

14: r′ ←[[StateSpace]].F irstTransition(s′)
15: while (¬foundNewState ∧ r′ 6= ǫ) do
16: {* Iterate over outgoing transitions of s′. *}
17: TryTransition(r′)
18: if (¬foundNewState) then
19: r′ ←[[StateSpace]].NextTransition(r′)
20: end if
21: end while
22:

23: if (¬foundNewState) then
24: r′ ←[[Stack]].Pop()
25: while (¬foundNewState ∧ r′ 6= ǫ) do
26: {* Iterate over stack. *}
27: alt←[[StateSpace]].NextTransition(r′)
28: while (¬foundNewState ∧ alt 6= ǫ) do
29: {* Iterate over alternative outgoing transitions of r′. *}
30: TryTransition(alt)
31: if (¬foundNewState) then
32: alt←[[StateSpace]].NextTransition(alt)
33: end if
34: end while
35: if (¬foundNewState) then
36: r′ ←[[Stack]].Pop()
37: end if
38: end while
39: end if
40:

41: if (¬foundNewState) then
42: s′ ← ǫ
43: end if
44: end if
45: end while

Appendix C

Alternative Abstract Layers

The abstract layer defined in chapter 4 is only one possible interpretation of the explicit-state state
space. Alternative abstractly layers are presented graphically in this appendix.

x = x.next
A

B

x

y
’H’

’I’

 next

A

B

x

y
’H’

’I’

 next

State StateLabel

(Process A:)

Figure C.1 – In this software-based model it is obvious that the states

of the state space have some internal structure. Threads are denoted by

circles, whereas heap objects are denoted by squares [60].

State StateLabel

empty

empty

empty

prev

prev

prev

first

last

empty
empty

empty

prev

prev

first

last

prev

 val

insert

Figure C.2 – Another abstraction that can be seen as a state space is a

graph transition system. Its states are graphs, and the transitions are graph

morphism. The concept of graph transition systems in the context of model

checking is explained in [57], including this example in its entirety. In this

figure the specification of the morphism insert is omitted for the sake of

brevity.

91

State StateLabel

Ack

Ack Ack

Figure C.3 – Petri nets could be considered as an abstract way of defining

state spaces. Each state consists of a certain marking of tokens, whereas

each transition is the firing of a transition in the actual Petri net. The initial

state is some initial marking of tokens [30].

State StateLabel

F+

Figure C.4 – One could consider a Rubik’s puzzle a state space too. Tran-

sitions are rotations of the (B)ottom, (T)op, (L)eft, (R)ight, (F)ront or

(P)osterior face, in a (+) clockwise or (-) counter-clockwise fashion. The

number of states in this state space is approximately 4.3 · 10
19 [65].

Appendix D

Example Prom+ Models

Peterson’s Mutex Algorithm

Listing D.1 – A PROMELA and PROM
+ model of Peterson’s mutex algo-

rithm.�
byte mutex;
bit flag_a , flag_b , turn;

active [1] proctype Property () { assert(mutex < 2); }

active [1] proctype Process_A ()
{

do
:: flag_a = 1;

turn = 0;
(flag_b == 0 || turn != 0);

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

flag_a = 0;
od;

}

active [1] proctype Process_B ()
{

do
:: flag_b = 1;

turn = 1;
(flag_a == 0 || turn != 1);

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

flag_b = 0;
od;

}

� �

93

Listing D.2 – A PROM
+ model of Peterson’s mutex algorithm suitable for

symmetry reduction.�
byte mutex;
bit * flag_1 , * flag_2;
bit * turn;
bit * turn_1 , * turn_2;
bool startGuard;

active [1] proctype Property () { assert(mutex < 2); }

active [0] proctype Process(
bit * my_flag;
bit * other_flag;
bit * turn_value)

{
startGuard;
do
:: *my_flag = 1;

turn = turn_value;
(* other_flag == 0 || turn != turn_value);

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

*my_flag = 0;
od;

}

active [1] proctype Init()
{

mutex = 0;
startGuard = false;

flag_1 = new bit; *flag_1 = 0;
flag_2 = new bit; *flag_2 = 0;

turn_1 = new bit; turn = turn_1;
turn_2 = new bit;

run Process(flag_1 , flag_2 , turn_1);
run Process(flag_2 , flag_1 , turn_2);

/* Ensure this process (Init) does not cause symmetry to break. */
reset flag_1;
reset flag_2;

reset turn_1;
reset turn_2;

/* Now start! */
startGuard = true;

}

� �

Example Prom+ Models – 94

Dekker’s Mutex Algorithm

Listing D.3 – A PROMELA and PROM
+ model of Dekker’s mutex algorithm.�

byte mutex;
bit flag_a , flag_b ,turn;

active [1] proctype Property () { assert(mutex < 2); }

active [1] proctype Process_A () {
do :: flag_a = 1;

do :: (flag_b == 0) -> break;
:: (flag_b == 1) ->
if :: (turn == 1) -> flag_a = 0;

turn == 0;
flag_a = 1;

:: (turn == 0) -> skip;
fi;

od;

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

turn = 1;
flag_a = 0;

od;
}

active [1] proctype Process_B () {
do :: flag_b = 1;

do :: (flag_a == 0) -> break;
:: (flag_a == 1) ->
if :: (turn == 0) -> flag_b = 0;

turn == 1;
flag_b = 1;

:: (turn == 1) -> skip;
fi;

od;

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

turn = 0;
flag_b = 0;

od;
}

� �

95

Listing D.4 – A PROM
+ model of Dekker’s mutex algorithm suitable for

symmetry reduction.�
byte mutex; bool startGuard;
bit * flag_1 , * flag_2 , * turn_1 , * turn_2 , * turn;

active [1] proctype Property () { assert(mutex < 2); }

active [0] proctype Process(
bit * my_flag; bit * other_flag;
bit * my_turn_value; bit * other_turn_value)

{
startGuard;
do
:: *my_flag = 1;

do
:: (* other_flag == 0) -> break;
:: (* other_flag == 1) ->

if
:: (turn == other_turn_value) -> *my_flag = 0;

(turn == my_turn_value); *my_flag = 1;
:: (turn == my_turn_value) -> skip;
fi;

od;

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

turn = other_turn_value;
*my_flag = 0;

od;
}

active [1] proctype Init()
{

startGuard = false; mutex = 0;
flag_1 = new bit; *flag_1 = 0;
flag_2 = new bit; *flag_2 = 0;
turn_1 = new bit; turn = turn_1;
turn_2 = new bit;

run Process(flag_1 , flag_2 , turn_1 , turn_2);
run Process(flag_2 , flag_1 , turn_2 , turn_1);

reset flag_1; reset turn_1;
reset flag_2; reset turn_2;

startGuard = true;
}

� �

Example Prom+ Models – 96

Dijkstra’s Mutex Algorithm

Listing D.5 – A PROMELA and PROM
+ model of Dijkstra’s mutex algo-

rithm.�
byte mutex , status_a , status_b;
bit turn; bool startGuard;

active [1] proctype Property () { assert(mutex < 2); }

active [1] proctype Process_A () {
do :: status_a = 1;

do :: skip;
do :: (turn != 0) -> status_a = 0;

(turn != 0 && status_b == 0) -> turn = 0;
:: (turn == 0) -> break;

od;
status_a = 2;
if :: (status_b != 2) -> break;

:: else -> skip;
fi;

od;

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */
status_a = 0;

od;
}

active [1] proctype Process_B () {
do :: status_b = 1;

do :: skip;
do :: (turn != 1) -> status_b = 0;

(turn != 1 && status_a == 0) -> turn = 1;
:: (turn == 1) -> break;

od;
status_b = 2;
if :: (status_a != 2) -> break;

:: else -> skip;
fi;

od;

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */
status_b = 0;

od;
}

� �

97

Listing D.6 – A PROM
+ model of Dijkstra’s mutex algorithm suitable for

symmetry reduction.�
byte mutex , * status_1 , * status_2;
bit * turn , * turn_1 , * turn_2;
bool startGuard;

active [1] proctype Property () { assert(mutex < 2); }

active [0] proctype Process(byte *my_status; byte *other_status; bit *turn_value)
{

startGuard;
do
:: *my_status = 1;

do
:: skip;

do
:: (turn != turn_value) -> *my_status = 0;

(turn != turn_value && *other_status == 0) -> turn = turn_value;
:: (turn == turn_value) -> break;
od;

*my_status = 2;

if
:: (* other_status != 2) -> break;
:: else -> skip;
fi;

od;

/* BEGIN CRITICAL SECTION. */
mutex = mutex + 1;
mutex = mutex - 1;
/* END CRITICAL SECTION. */

*my_status = 0;
od;

}

active [1] proctype Init()
{

startGuard = false;
mutex = 0;

status_1 = new byte; *status_1 = 0;
status_2 = new byte; *status_2 = 0;

turn_1 = new bit;
turn_2 = new bit;

turn = turn_1;

run Process(status_1 , status_2 , turn_1);
run Process(status_2 , status_1 , turn_2);

reset turn_1; reset status_1;
reset turn_2; reset status_2;
startGuard = true;

}

� �

Example Prom+ Models – 98

Dining Philosophers in Prom+

Listing D.7 – A PROMELA and PROM
+ model of two dining philosophers.�

bool f1, f2;

active [1] proctype Philosopher1 () {
do ::

!f1 -> f1 = true;
!f2 -> f2 = true;
f2 = false;
f1 = false;

od;
}

active [1] proctype Philosopher2 () {
do ::

!f2 -> f2 = true;
!f1 -> f1 = true;
f1 = false;
f2 = false;

od;
}

� �

99

Listing D.8 – A thread-symmetrical version of the dining philosophers in

PROM
+.�

bool * f1, * f2; bool startGuard;

active [0] proctype Philosopher(bool * left; bool * right) {
startGuard;

do ::
!*left -> *left = true;
!*right -> *right = true;
*right = false;
*left = false;

od;
}

active [1] proctype Init() {
startGuard = false;

f1 = new bool;
f2 = new bool;

*f1 = false;
*f2 = false;

run Philosopher(f1, f2);
run Philosopher(f2, f1);

/* Ensure this process (Init) does not cause symmetry to break. */

reset f1;
reset f2;

/* Now start! */

startGuard = true;
}

� �

	Introduction
	Formal Methods
	Simulation
	Formal testing
	Formal verification

	Model Checking Domain
	Property Specification
	Model Specification
	Comparison of High-Level Model Specification Languages
	Overview of Tools
	Comparison of Verification Tools

	Problem Statement

	Conceptual Architecture
	Unification of the Model Checking Domain
	The Black-Box Approach
	The Layered Approach

	Related Work
	Bogor
	Concurrency Workbench
	Model Checking Kit
	IF Toolkit

	The Generic Layer
	State Space Interface
	Formal Interface of a State Space
	Programmatic Interface of a State Space
	Providing Generic Functionality

	Generic Simulation
	Simulation Strategy
	Simulation Observer
	Simulation Algorithm

	Generic Search
	Search Feedback
	Search Strategies
	Search Adapter

	Transformations of State Spaces
	Examples of State Space Transformations
	Enabling Reuse for Transformations

	The Abstract Layer
	Design of Software Models
	Formal Description of the Model-Wide Type Graph
	Design to Support Typing Information
	Formal Description of the State Graphs
	Design of State Representation
	Formal Description of Transitions and Labels
	Design of Transition and Label Representation

	Transformation to Linearised Representation
	Linearising Rooted Deterministic Typed Graphs
	Linearising State Graphs
	Optimisation of State Linearisation
	Functionality to Support Bitvector Representation

	Including Features
	Change of Generic Layer
	Symbolic Model Checking
	Bounded Model Checking

	Search Strategies
	Breadth-First Search Strategy
	Directed Search Strategy

	Specialised Stores
	State Compression
	State Caching
	State Collapsing
	Minimised Automata
	Bit-State Hashing and Hash Compaction

	Reduction Methods
	Partial-Order Reduction
	Symmetry Reduction

	Additional Resources
	Use of External Storage
	Distributed Verification

	The Tool Layer: Model Checking Prom+
	The Modelling Language Prom+
	Syntax
	Pointer Variables and Dynamic Object Creation
	Semantics
	Prom+'s Language Features in Comparison

	The Tool
	Tool lmplementation
	Performance

	Conclusion
	Summary
	Evaluation
	Related Work
	Future Work

	Notation
	Dedicated Solution for Depth-First Search
	Alternative Abstract Layers
	Example Prom+ Models

