A JAVA BRIDGE FOR
LTSMIN

Ruben Oostinga

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER

SCIENCE (EEMCS)
FORMAL METHODS AND TOOLS (FMT) RESEARCH GROUP

EXAMINATION COMMITTEE

prof.dr. J.C. van de Pol (1st supervisor)
prof.dr.ir. A. Rensink

dr.ing. C.M. Bockisch

UNIVERSITY OF TWENTE. 18 JULI 2012

A Java Bridge for LTSMIN

CONTENTS CONTENTS
Contents
1 Introductionl 3
I1.1 Background| e 3
L27TTSmInl -« o o o e e e e e e 4
L3 A JavaTInterface 6
[1.4 Project overview| 7
[2__Evaluation approach| 9
I Performancd. o oo 9
2.2 Fase of usel e 9
2.3 Maintainability] 10
B_LTSMIN 11
BI_Runfimel oo oo oo 11
8.2 Transition types| e 12
8.3 Typesystem| e 13
... 14
[4 Java Bridge| 15
4.1 Bridging technique| Lo 15
.2 Design| 16
E3 Tmplementation] 23
4.4 End user experience] Lo e e e 24
6_Results] 25
b.1 Performance measuring setup| Lo 25
b.2 Performance improvements made| Lo o L 26
b.3 Benchmarks 31
0.4 Fase of usel e 36
5.5 Maintainability] L 38
[6_Conclusion| 41
6.1 Performance]. L 41
6.2 FEase ofuse 41
6.3 Maintainability] L 41
... 42
[7__Future workl 43
[A Class Diagram| 45
[B Invocation examples| 46
[C_Performance tests| 47

A Java Bridge for LTSMIN

1 INTRODUCTION

1 Introduction

1.1 Background

With today’s advancing technology we become more and more dependent on automated systems. We
even trust our lives to those systems functioning properly. Think of the fly-by-wire system of a modern
airliner. The system makes sure that the instructions of the pilot are translated into the correct movement
of the plane. A fly-by-wire system is a lot more complicated than a mechanical system, therefore there
is more opportunity for things to go wrong. To use such complicated systems it must be certain that it
will function properly or otherwise it could have fatal consequences. Other systems, although lives may
not depend on them as directly, should also function properly at all times.

To ensure this the system must be tested. Systems are tested on various situations to verify they
behave as expected. However, the problem with this is that of the sheer number of possible situations it
is often impossible to test for every situation that could be encountered. Besides this it can also be very
labour-intensive to test every situation even if tests are automated. Automated model checking attempts
to solve this problem. A system will be abstracted to a model which behaves in the same way as the
system. This model will be checked by looking at every situation and state the model can find itself
in. This will then confirm that the system also behaves as intended. The intended behavior is specified
as a certain property. There are two property types, safety properties and liveness properties. Safety
properties specify that nothing “bad” will happen and liveness property specify something “good” will
eventually happen.

Although model checking looks like the solution to finding errors in automated systems it also has
limits. The more complicated the model, the more states it can reach. The total number of states will
rise exponentially with each new state variable. For example, when a variable is added which can have
2 values, the total number of states will double. Variables that can have more values with will increase
the total number of states even more. Because in order to prove that a property holds, every state has
to be visited, it can take too long to visit every state. In other words exponential growth in execution
time does not scale well.

Model checking is a powerful technique to verify models of, for example, integrated circuits or com-
puter algorithms / protocols. The circuit or computer algorithm is called the system of which a model is
made which is validated. A system is modelled as a state-transition graph. Nodes of the graph represent
the state of the system, the edges of the graph represent transitions. One state is designated as the initial
state. The collection of the states of the system is called the statespace. Some model specifications allow
labels to be added to the transitions and / or to the states.

An example of a state-transition graph is shown in figure [I] It shows a simplified communication
protocol. The labels on the nodes representing the states, show the state label above the state vector.
The transitions also have labels describing the action that takes place. The arrow labelled “start” points
to the initial state.

send
start

receive

Figure 1: A model a of simplified communication protocol

Liveness and safety properties can be specified using temporal logic. Temporal logic can specify
properties qualified in terms of time. It can reason about terms like next, eventually and always. A
property or a specification made in temporal logic can be verified by exploring the various states of the
system [2]. Verification by visiting the states one at a time is called enumerative verification.

As described previously, model checking is often limited by the exponentially growing amount of
states with increasing complexity of the model. This problem is called the statespace explosion problem
and techniques have been developed to alleviate this problem. One of the techniques is called symbolic
model checking [I2]. This makes it possible to consider multiple states and transitions at once. There
is also multi-core and distributed model checking. They can be used to perform enumerative model

A Java Bridge for LTSMIN

1.2 LTSmin 1 INTRODUCTION

checking. Both attempt to use parallel processing to speed up the statespace exploration. Multi-core
model checking uses parallel processing on the same machine. Distributed model checking performs
processing on multiple machines. Another technique is partial order reduction and symmetry reduction
that try to avoid having to visit the entire statespace. They exploit instances where when a property
holds for certain states, it will also hold for other similar states.

This makes it clear that although model checking is useful there are limitations that have to be taken
into account. Research in model checking has tried to resolve the limitations by inventing new techniques
and optimizing existing techniques. This project is targeted towards making research in model checking
tools easier and more flexible. We made a Java implementation of LTSMIN which is easier to use and to
extend. It allows to interface with LTSMIN and make additions to LTSMIN using Java while the existing
features are still available.

1.2 LTSmin

LTSMIN is a modular model checking toolset. It has modules to provide multi-core, distributed, enumer-
ative and symbolic model checking. It can also perform partial order reduction and verify specifications
in temporal logic. It is modular in the sense that it has language modules which can read varying types
of models and analysis algorithms which can validate models provided by the language modules [I]. The
advantage of this modular design is that new types of models and analysis algorithms can be added
while not having to build an entirely new tool. This allows new techniques to be implemented and tested
faster. Now we will provide a more detailed description of the various modules.

Process algebra
(mCRL2)

State based algebra

Language Modules (Promela / NIPS-VM)

Sequential BFS
exploration

Distributed BFS

Reachability exploration

Symbolic Reachability

Figure 2: Architectural overview of LTSMIN tools (some paths are omitted for clarity)

1.2.1 Language modules

Figure [2]shows the architecture of the LTSMIN toolset. The top row shows the various language modules.
Each module can read its own modelling language. These languages can be used to model any transitions
systems like for example software, electronic circuits, puzzles and board games. LTSMIN can read models
which are specified for the following existing tools: muCRL [9], mcrl2 [8], DiVinE [?], SPIN [10], NIPS [15]
and CADP [4]. Each of these modules provide the same interface which can be used by the analysis
algorithms.

A language model is initialized when it is given a file containing the specification of the model. This
file is then parsed and interpreted by the code of the existing tool. The language module of LTSMIN will
then act as a translator of the interface offered by the existing tool to the generic PINS interface each
language module offers. The PINS interface is used by the various modules of LTSMIN to communicate.
In figure [2] this interface is represented by the dotted horizontal lines. PINS will be explained in more
detail in section It is also possible to implement new language modules which are only defined for
LTSMIN.

The language module must provide information about what the model looks like. Using this infor-
mation it is possible to request states and transitions which are part of the model. When this is done

A Java Bridge for LTSMIN

1.2 LTSmin 1 INTRODUCTION
int x=1; int y=1; int z=1;
process pl () { process p2 () { process p3 (){
do do do
::ratomic{x>0 -> x-—; y++} ::ratomic{y>0 -> y——; x++} ::atomic{z>0 -> z——; x++}
::atomic{x>0 -> x-—; z++} ::atomic{y>0 -> y——; z++} :ratomic{z>0 -> z-—; y++}
od } od } od }

Figure 3: Promela specification of three processes

repeatedly it is possible to explore the full state space of the model.

1.2.2 Analysis algorithms

The bottom row of Figure[2]shows some analysis algorithms. Analysis algorithms use the PINS interface to
retrieve information about the model as well as the states and transitions of the model itself. These states
are then used to explore the model and to prove certain properties. Reachability tools in particular try
to determine whether certain states are reachable. This proves the safety property that is being checked
for. Examples are checking for deadlocks or proving properties specified in temporal logic.

The statespace can for example be explored in a breadth first search (BFS) or depth first search (DFS)
order. The visited states can then be stored in an enumerative way or a symbolic way. Exploration can
also take place distributed on multiple machines. There are also multi-core reachability modules to take
advantage of parallel execution in multi-core systems.

1.2.3 PiINs

Model checking uses the states of the model to verify whether a property holds for these states. A model
can transition from one state to the next. In the world of enumerative model checking the next-state
function is commonly used. It returns the successor states of a given state. In LTSMIN the language
module provides the intitial state. This state can be used to call the next-state function to discover
new states. By requesting the next-state repeatedly using the newly discovered state it is possible to
explore the full statespace. LTSMIN also uses this next-state function. It does this by providing the
PINs interface. PINS is an Interface based on a Partitioned Next-State function [I]. In figure [2| the PINS
interface is represented by the horizontal dotted lines. The communication between the different modules
takes place via PINs.

The goal of this interface is to provide access to the states and transitions of a model while exploiting
what is known as event locality. Fvent locality refers to the fact that not the entire state is required to
perform a transition. Only certain variables are accessed and modified. To make use of this, LTSMIN
provides a way for analysis algorithms to know which variables are read and which are written.

For example, when transitions from one state to another state are stored, it is possible to only store
the values of the variables that are changed during this transition for the destination state. The values
that were not stored can be taken from the preceding state which is stored fully. This is allowed because
the values that were not stored did not change.

Another example is a caching layer where it is possible to only store the variables that are read to
determine whether a cache hit is found. This will limit the amount of transitions that are stored in the
cache. It also makes caching of transitions easier because only the variables that are read have to be
checked in order to find a cache hit. Caching will be discussed in more detail in section

To provide the information about which variables are used, a structure called the dependency matrix
is introduced. The dependency matrix is a binary matrix in which the columns represent the variables
and the row represents a group of transitions. The dependency matrix is part of the LTSMIN specific
information which must be provided by language modules described in section [1.2.1

We use the example from [I]. It has three processes communicating with a shared variable. The
processes are specified using the Promela modelling language [10] in Figure These processes share
three global variables. When we group each atomic transaction as a transaction group we get the
dependency matrix in Table [[] The three variables are represented in the three columns and each
process has two rows representing the two atomic transitions. As can be seen from this diagram there
are only two variables used for each atomic transaction.

A Java Bridge for LTSMIN

1.3 A Java Interface 1 INTRODUCTION

X |y |z
pl.l1|{1]1]0
pl2 |10 |1
p21 | 1]1]0
p22 0|11
p31 1101
p32 |0 [1]1

Table 1: Dependency matrix of three processes

Because the dependency matrix is part of the PINS interface, this matrix will be available for any
model. Analysis algorithms can use this information to provide an optimized statespace exploration.

1.2.4 PINs2PINs Wrappers

PiNs2PiINs wrappers are layers between the language module and the analysis algorithm. They provide
the same PINS interface to the analysis algorithm as the language modules while they are a wrapper
around a language module or another wrapper. The user can determine which wrappers will be used
and all wrappers are optional. The purpose of wrappers is, for example, optimization or new features.
Figure [2] shows two PINS2PINS wrappers which we will use as examples of the features a wrapper can
offer.

e The local transition caching wrapper can store transitions in a data structure called a cache. When
a request is made for a transition that has been requested before and is stored in its cache, the
wrapper can retrieve the stored transition. The advantage of this is that the language module does
not have to provide the transition. This can be faster when determining the transitions by the
language module takes long enough and there are enough cache hits. However, it does not have to
be faster because caching itself does take some time. It could be that the language module is fast
enough or there might not be enough cache hits. We will discuss the performance of this caching
algorithm in section [5.3.1}

e The regrouping wrapper attempts to optimize the dependency matrix. It does this for example by
combining identical rows or columns and changing the order of the variables. Changing the order of
the variables may greatly optimize the data structures and thereby the performance of the symbolic
reachability tools. The regrouping wrapper has various strategies which can be picked by the user.
When the dependency matrix is optimized, the regrouping layer will ensure the transitions that
are presented to the analysis algorithm match the changed dependency matrix.

1.3 A Java Interface

Currently LTSMIN is written in C. This is because the language modules it currently supports are also
programmed in C or C++, which is easy to link to from C. However C is a low level programming
language which requires memory management and does not feature object oriented programming. This
makes it difficult to work with for newcomers, especially if they are used to a higher level programming
language.

An object oriented programming interface in a modern programming language would make it easier
to work with. Interestingly LTSMIN already has data structures which looks very similar to objects
as used in object oriented programming languages. LTSMIN features various implementations of the
same functions. This is implemented by using structures with function pointers which can point to the
various implementations. This looks very similar to an object oriented approach with interfaces and
implementations. Therefore an object orientated interface is a natural fit to LTSMIN.

LTSwMIN links to existing model checking tools to make their models available via the PINS interface.
It makes sense to continue this when an object oriented programming language is used. Therefore the
language that is picked to provide an object oriented interface should be able to access the code of
existing model checking tools. Many tools are developed in Java. The Formal Methods and Tools group
at the University of Twente is working on three Java model checking tools and there also other tools

A Java Bridge for LTSMIN

1.4 Project overview 1 INTRODUCTION

developed in Java. Therefore it makes sense to make a Java PINS interface. There are also many libraries
implemented in Java which can be used.

In the preliminary research we looked at what this interface should look like and what should happen
with the existing tool. We discuss this on more detail in section

1.4 Project overview

The goal of this research project is to make it easier to add new modules by adding a new, easier to use
interface. A higher level of abstraction provided by a high level programming language would allow more
rapid development. This, in turn, will lower the barrier of making an implementation as well as decrease
the time it takes to do this, which will speed up research in model checking. However an important
condition to this is that the performance of the resulting tool is adequate, otherwise the time saved
during implementation will be lost during testing and execution.

In the preliminary study we decided to make a Java bridge to LTSMIN and we picked the ideal
technique to make the bridge as well as a tool to help to develop it. This thesis will describe the design,
implementation and evaluation of the Java interface.

Now we will discuss the research questions this project will try to answer in more detail. The goal of
this project is to implement new features of an existing software project. This means the main research
questions ask what the ideal way would be to implement these new features.

1.4.1 Preliminary research

As preparation of this final project we performed some preliminary research [I3]. In this preliminary study
it was decided to make a bridge from Java to the existing tool. It was not an option to only reimplement
the whole tool in Java because it has many C / C++ based dependencies. These dependencies include
the original interpreters for various modelling tools. Without these dependencies the tool would not
be able to interpret any modelling language. Of course, interpreters could be implemented in Java as
well, but reusing the implementation in the existing tool avoids a lot of extra work. Especially when the
maintenance of the interpreters is also considered part of the work.

Another research question that was answered is: Which techniques should be used to implement the
Java bridge? We picked JNI [I1I] as the bridging technique that will be used and Jace as the tool to
generating the bridge [3]. We did this by defining various criteria and evaluating various techniques
and tools. One of the criteria was performance and we evaluated this by running performance tests. It
became clear that language bridging calls can be very expensive in terms of performance. The more
language bridging calls can be avoided the better.

1.4.2 How to design and implement the bridging architecture?

The research for this question will focus on which features will be on the Java side and what will be on
the native side. Besides this, a technical design will be made describing how the Java bridge should be
implemented. The result of this research will be a class diagram and a description of the design.

This design also has criteria and requirements which it must meet. These will be taken into account
during the design and implementation. Whether these criteria and requirements are met sufficiently has
to be answered after the implementation is completed. The criteria are similar to the ones which the
bridging technique had to meet. However, in this context they have different stakeholders. Instead of
the developers that are working on the Java bridge, the stakeholders this time are the researchers which
will add new modules to LTSMIN using the Java interface. The criteria are the following.

1. Performance

Because model checking is often limited by the time it takes to complete, performance is an im-
portant concern. The implementation will not increase the order of complexity of the tool because
there are no fundamental changes in the way the algorithms work. Therefore only a linear increase
in time of completion is acceptable. How much of a decrease in performance would be acceptable
is hard to determine because it is up to the user of the tool to define which amount of time is
acceptable. It should at least be possible to prototype new analysis algorithms or language mod-
ules and compare these prototypes to existing algorithms. This means the Java bridge should not

A Java Bridge for LTSMIN

1.4 Project overview 1 INTRODUCTION

be so slow that is impossible to test new techniques properly. This can be the case when even a
model with a small statespace takes days to validate. How to measure whether the performance is
sufficient will be discussed in section 21

2. Ease of use

Ease of use is also one of the criteria of the final implementation. This refers to the ease of use
for the developers using the Java interface. The native side of the new LTSmin tool should be
invisible to the Java developer. The same should be true for C developers who should not have to
deal with calls to the Java side.

3. Maintainability

Maintainability is also a criterion shared by both the bridging technique and the final implemen-
tation of the bridge itself. Assuming changes have to be made to either the Java side or the
native side, the question is: “How much work is it to integrate these changes into the other side?”
Section [2 describes how to evaluate whether the criteria are met.

1.4.3 How to implement Local transition caching?

As explained in section LTSMIN has a wrapper which caches transitions. Because bridging calls
are costly, it is interesting to also have such a caching wrapper in Java. When a transition is cached on
the Java side, a bridging call is not needed anymore to retrieve the transition. When there are enough
cache hits, the amount of bridging calls could decrease drastically.

The performance improvement of this Java caching layer will be measured. When a C analysis
algorithm is using a Java language module, the existing LTSMIN caching layer will also avoid making
bridging calls. The performance improvement of this existing layer to language bridging runs will also
be measured.

A Java Bridge for LTSMIN

2 EVALUATION APPROACH

2 Evaluation approach

This section will describe the approach to measuring and evaluating the criteria discussed above. The
measurements will also be used to perform optimizations during the implementation. The goal is to
make an implementation which scores as well as possible on the proposed criteria. This will also help to
gain insight of which parts of the implementation influence the criteria the most.

2.1 Performance

Measuring performance is only useful when there are two or more measurements which can be compared.
The goal is to compare the performance of exploring state spaces of models when the Java bridge is being
used to when the bridge is not used. To do this in a fair way for real world cases, we need to compare
the same model using the same algorithm but in either Java or C. This will give an indication of the
performance penalty of using the Java bridge.

There are various performance measurements which can be made: Startup time, time of a single
transition and overall runtime.

e The interesting part of the startup time is the time it takes to parse and to interpret a model and
the initialization that is required to do this. The time it takes to load the Java virtual machine
or the C executable is less interesting because it is a constant time. Because there is no language
module which is implemented in both Java and C, it is not possible to compare the time it takes
to parse a model. Making this would require writing a language parser and interpreter which is
beyond the scope of this project. Therefore measuring startup time is not very interesting. Also,
the startup time is only a small portion of the overall runtime, which means it is not a limiting
factor and therefore not that important because only the model has to be parsed and the interpreter
has to be initialized. Generating the statespace takes many times longer. Typically the startup
time will be less than 1% of the overall runtime.

e Measuring the time it takes to perform a single transition is very difficult. The Java virtual machine
and the CPU perform optimizations during runtime which make it impossible to make meaningful
and accurate measurements [7]. Therefore the time it takes to perform a single transition is also
not what is going to be measured.

e The performance measurement that will be measured is the overall runtime of the reachability check
in seconds. With a complex model which has a large statespace the time it takes to verify it is
often a limiting factor. A model will be loaded and a full statespace exploration will be performed.
The time it takes to do this will be measured.

e Of course the overall runtime is also affected by the non-deterministic nature of Java program
execution. This is because of the same optimizations that make it impossible to make meaningful
measurements of a single transition. To avoid making conclusions based on erroneous data we
will apply a statistically rigorous methodology [6]. In this case it means we run each benchmark
multiple times and calculate the 95% confidence interval. Conclusions will be made based on this
interval instead of a single measurement.

Now it is clear what will be measured and how the results will be used, we need to determine which
results can be compared fairly. The easiest two ways of execution which can be compared is a standard
LTSMIN run compared to a run of a Java analysis algorithm using a C language module. The analysis
algorithm must be the same and the statespace should also be stored in a similar way. The difference
between the two measurements will show the performance of the Java analysis algorithm as well as the
overhead caused by the language bridging calls. Section [5.I] will discuss the measurement setup in more
detail.

2.2 Ease of use

Ease of use is subjective by definition, but to give a guideline of the usability we can measure the lines of
code needed to add an analysis algorithm or a language module. As stated in the introduction adding a

A Java Bridge for LTSMIN

2.3 Maintainability 2 EVALUATION APPROACH

language module to the native LTSMIN code currently requires 200-500 lines of code. This amount will
be compared to the required lines of code when the Java interface is used.

Another way to measure usability is to look at the number of steps that have to be taken when a
new module is added. This can be number of methods that have to be implemented or the amount of
values that have to be defined. Using the number of steps and lines of code as a measurement of ease
of use, we can say the Java interface is easier to use when it takes fewer steps and fewer lines of code to
implement a language module.

Because BF'S and DF'S algorithms already have to be made in order to test the performance they can
also be used to measure the lines of code and required steps. The caching layer itself will be used as an
example of a language module. This is because, just like a language module, a caching layer allows the
retrieval of transitions. To allow the analysis algorithms to make the same calls when the caching layer
is used, it will support the same interface as regular language modules. Therefore it can be used as an
example of a language module.

2.3 Maintainability

There are various maintenance scenarios. A likely scenario is that a change in the PINS interface is made.
When this occurs it should not be required to change a lot of code to make sure the bridge still functions.
Another scenario would be possible improvements to the Java bridge implementation itself. This also
should be as easy to accomplish as possible.

To judge maintainability, we look at the following:

e The number of steps that are needed to make a change and the amount of work each step takes

To measure which steps are needed to take and how much work this is we will make changes to the
Pins interface and then update the Java bridge to be compatible with these changes. We will look
at the following possible changes that could be made to PINS: A method is added, a parameter is
added, a method is removed and a parameter is removed. After we update the Java bridge we will
list what was changed and evaluate how much work it was to change it.

e Alternative implementations to evaluate whether the chosen solution is ideal.

With alternative implementations we refer to implementations that could have been made when
different design choices were made. We will look at the following alternative implementations: A
reimplementation of LTSMIN in Java which does not bridge to the existing tool, an implementation
of the Java bridge with a different technique for bridging languages or one which bridges directly
to the language module instead of the PINS interface. We will do this by comparing the steps that
would need to be taken in theory to the steps that currently need to be taken. This is possible
because the steps that need to be taken are the same for every implementation using the same
technique.

10

A Java Bridge for LTSMIN

3 LTSMIN

3 LTSMIN

As said in the introduction LTSMIN provides an Interface based on a Partitioned Next-State function.
Practically this means that LTSMIN offers a function to retrieve transitions to following states given a
current state. The next state function is partitioned because it is possible to retrieve following states by
only providing a subset of the current state. These are the values that are read or written during the
transition. This subset of the state is called a short state. The full state refers to the long state.

To be able to provide which variables are accessed during a transition LTSMIN must also distinguish
between transitions. Transitions are grouped together based on which variables of the state they influence.
These groups are given an index. There are functions which produce the next state for a given group.
There is also a function which simply iterates over all groups to find all transitions.

The relation between the transition group and the influenced variables is stored in a dependency
matrix. It is possible to have different dependency matrices for variables that are read and ones that are
written to. The language module determines whether this is the case.

3.1 Runtime

To give an understanding of the inner workings of LTSMIN, a sequence diagram of some of the important
calls is displayed in figure [It shows an example scenario of a reachability analysis of an MCRL2
model. In the LTSMIN the PINS interface is implemented in the greybox module. It is called greybox
because it provides additional information about the model, like the dependency matrix, making it more
transparent than a blackbox interface.

LTSMIN consists of an analysis algorithm and a language module. The analysis algorithm (Reach-
ability in figure [4]) will guide the state space exploration and the language module (mCRL2 greybox)
will load a model and provide its states. LTSMIN has a single PINS interface to the model that is called
from every analysis module. It contains methods to request information about the model and methods
to give the subsequent state vectors based on a given vector. A state vector represents the state of a
model as an array of integers. A transition can change the values in the array to give the state vector of
a subsequent state.

For each combination of an analysis algorithm and language module a different executable is created
by linking the appropriate objects. The analysis algorithm contains the main method which is called to
start the program. Now we will describe the calls in figure [

e 1, 1.1: First the reachability algorithm makes the GBloadFile call to to the greybox. The
file that is given is specified as a commandline parameter. The file is then passed to another
function which is stored in the greybox. Which function this is, is determined by a compilation
flag. This function causes the language module to parse and interpret the file. In this case this is
the MCRL21oadGreyboxModel call.

e 1.1.1: The GBsetContext call allows the language module to store a pointer to information
it might need in the future. This can be a pointer to any structure or function. This allows the
language module to have a state. The context can for example contain the interpreted model. This
context is available to all the subsequent calls from the greybox to the language module.

e 1.1.2: The PINs interface has a function to request subsequent states. To begin the exploration
process an initial state is required. The language module stores this state with a GBsetInitial-
State call in the greybox.

e 1.1.3: The greybox has to know which method to call when subsequent transitions (next states)
are requested. This method is stored in the greybox by a GBsetNextState call.

e 2: The reachability tool begins exploration by requesting the initial state. This can then be used
to request the subsequent states.

e 3, 3.1: Now the reachability tool will repeatedly request successor states until no new states are
found. The first time it requests states following the initial state, after this, states following newly
discovered states will be requested. The greybox translates the generic GBgetTransitions
call to the one that was set by call 1.1.3 GBsetNextState. The language module will then

11

3.2

A Java Bridge for LTSMIN

Transition types 3 LTSMIN

3.2

Reachability greybox mCRL2 greybox

1 GBloadFile(file)

v

1.1 MCRL2loadGreyboxModel(file)
1.1.1 GBsetContext(void *context)

v

loop) Until no new transitions are found

3 GBgetTransitions(int *state, callback)

»

W

3.1 MCRL2get Transitions(int *state, callback)
3.1.1 GBgetContext()

v

loop) For each transition

3.1.2 callback(transition_info, int *nextstate)

Figure 4: Sequence diagram showing LTSMIN operation

determine the next states. For every state a call is made to the callback which was given along
with the getTransitions call. This allows the states to be processed by the analysis algorithm.
This callback mechanism is called internal iteration. This is because the iteration takes place in
the implementation of the collection instead of in the method that initiated the iteration. Instead
of returning an iterator it is required to provide a callback which will be used for iteration.

More on transitions in section [3.21

3.1.1 The language module requests the context that was set by call 1.1.1 GBsetContext.
This contains the interpreted model which can be used to determine the subsequent states.

3.1.2 For each state that is found, the callback, which is a function pointer, will be called with
a new state as a parameter. The reachability algorithm will then process the state by storing it in
some data structure.

Transition types

As explained in section [I.2.3] it is possible to determine which variables are read or modified. States
which only contain values of variables that are read or modified are called short states. Long states
contain the values for all the variables. The PINs interface makes it possible to request transitions which
contain either short or long states.

12

A Java Bridge for LTSMIN

3.3 Type system 3 LTSMIN

{guard done==0
and a[25]
and a/

and al
and al

NN N

35]
42]
371
effect done = 1; }

(a) A DVE transition

[//array a

i, 1, 1, 1, 1, 1, 1, 1,
i, 0, 0, O, 1, 1, 1, 1,
1’ OI ll 0’ 1’ 1’ ll ll
i, 2, 0, 0, 0, 0, O, 1,
1’ OI OI 2’ O’ 2/ OI l’
i, 0, 2, 0, 1, 0, 1, 1,
1/ 1/ l, 0’ O’ O/ l, l’
i, 1, 1, 1, 1, 1, 1, 1,
//done [2, 2, 2, 2, 01
0]

(c) The short state for the
(b) A long sokoban state transition in [5a]

Figure 5: An example showing the different states of a model of a sokoban puzzle

We have an example in figure It shows a transition and a long and short state of a simplified
sokoban model. The array a contains a square playing field. A 0 represents a space, 1 represents a
wall and 2 represents a box. The transition checks whether the value of done is 0 and checks whether
four specific variables in the array a are equal to 2. If this is the case done is assigned 1. In sokoban
terms this means that when the boxes are in the right place the puzzle is done. The short state only
contains the values that are read and written (figure . As can be seen the short state is a lot shorter
than the long state, 65 versus 5 integers. The caching layer of LTSMIN uses these short states. It will
store transitions from one state to various other states. Because the short states are shorter it will use
less memory. Another advantage is that variables which are not accessed are not used to find a cache
hit. This means with short states there are a lot more cache hits. When a cache hit is found it is not
necessary to make calls to language module. This can be a performance benefit.

The PINS interface has method calls to retrieve either short or long states. When an analysis algorithm
benefits from short states it avoids having to translate a long state to a short state. Beside the fact that
this makes the interface easier to use, it can also mean a performance optimization. It allows a language
module to only allocate memory for the short state instead of having to request additional memory for
a short state and freeing the memory for the long state.

In LTSMIN the default implementation of GBgetTransitionsShort will call GBgetTransit—
ionsLong and convert the long states to short states. The default GBgetTransitionsLong method
will call GBgetTransitionsShort and expand the short states to long states. When a language
module is implemented only one of the getTransitions methods has to be implemented. The other
one will work automatically with the default implementation. Of course it is also possible and better
performing to implement both getTransitions methods.

The third getTransitions method is called getTransitionsAll. The default implementation
will call getTransitionsLong for every transition group. This will avoid avoid having to specify a
transition group (represented by a row of the dependency matrix) for the requested transition.

3.3 Type system

LTSMIN keeps type information about the transition system in the 1ts—type module. Each variable
in the state, state label or edge label has a name and a type. Each type has a name and a value which
is the actual type as used in LTSMIN. This means there are variable names which are mapped to type
names which are mapped to actual types.

There are four types in LTSMIN: Direct, range, chunk and enum. Each of these types are converted
to integers in LTSMIN. This is done because of performance benefits. Integers can easily be compared

13

A Java Bridge for LTSMIN

3.4 Code style 3 LTSMIN

for equality and iterated over. Table 2] explains the different types. Note that the range type, like the
direct type, refers to a type which can be mapped to a single integer. The difference between the range
and direct type is that for the range type the maximum and minimum of the integer are known.

] Type \ Description \ Examples ‘
Direct | Any type which can be mapped to an integer directly | 1, 2, 100, 99
Range | A direct type with a known lower and upper bound 10, 1, 100, 255
Chunk | Any type which can be serialized “label”, [0x20, 0xF0, Ox8A]

Enum | A chunk type with a known number of different values | “label”, [0x09, O0xFF, 0xA0]

Table 2: LTSmin type descriptions

To convert the values of chunk and enum types to integers they can be stored in some sort of list. The
resulting integer is the index at which the value is stored. In LTSMIN these lists are called chunkmaps.
The type of list that is used can be decided by the language module.

As an example we consider a model of a puzzle. The transition label has a String value for each
possible move. There are four moves: “up”, “down”, “left” and “right”. The chunkmap will map
these values to integers like this: {up — 0, down — 1,left — 2,right — 3}. Now every time a transition
label is encountered by the language module, it will request the integer the label is mapped to, from
the chunkmap. This integer is returned as the value of the label to the analysis algorithm. The analysis
algorithm could for example use the integer to see whether an identical transition has been encountered
before.

The chunkmaps can also convert the integers back to the original chunks. This can be useful when
the chunks are Strings because this makes it possible to print the String value of a type.

Chunkmaps are filled at runtime when chunktypes are encountered by the language module. Every
time a chunk is encountered it is given to the chunkmap, which will return the integer that was assigned
to it.

3.4 Code style

As explained in section LTSMIN is programmed in C which can be difficult for newcomers. LTSMIN
uses internal iteration by using callbacks. This means that collections will not provide an iterator.
Instead they have a function which takes a callback function as a parameter. This function will call the
callback with each element of the collection as a parameter.

We show an example in figure [6]

It shows a part of a breadth first search algorithm of LTSMIN. What actually happens is that an
iteration over a set is made and a method is called for each element. As can be seen the code is very
difficult to read for people unfamiliar with C. We will attempt to explain the example and with this the
code style of LTSMIN. We assume a certain understanding of pointers and C.

A callback is a pointer to a function which is passed to another function. This function can then
call the callback with certain arguments. When a callback is used to iterate over a set, these arguments
include an element from the set. In the example bfs_vset_foreach_open_enum_cb, which is defined
in line 7, is a callback that is called to iterate over a set. This is done by the vset_enum method which
is called in line 22. It iterates over the current_set which is the queue of the bfs algorithm. The
elements in the set are states, which are integer arrays. The implementation of vset_enum makes a
call to the callback defined in line 7 for every element in the set. In this call the element will then be
the src parameter of the callback. This is a pointer to an array of integers.

Often callbacks need more context than just the element from the set. In LTSMIN this is solved
by giving a callback a pointer to a structure containing the context the callback needs. We can see
in line 7 that the bfs_vset_foreach_open_enum_cb method also has the parameter args. This
parameter points to a structure that is declared in line 1. It contains another callback and a pointer
to the context that callback needs. The args pointed is given to the vset_enum method in line 22.
vset_enum passes it without modification to the callback in line 7 as the first parameter. There the
open_cb function, from the structure that args points to, is called with the src state and the context
meant for the open_cb function. So in summary as explained before, the example shows the code to
call a function for every element in a set.

14

A Java Bridge for LTSMIN

4 JAVA BRIDGE

1 typedef struct bfs_ vset_ arg store {

2 foreach__open_cb open_cb;

3 void *Cctx ;

4 } bfs_vset_arg_store_t;

5

6 static void

7 bfs_vset_foreach_open_enum_cb (bfs_vset_arg_store_t xargs, int xsrc)
s 1

9 gsea__state__t s_open;

10 s_open.state = src;

11 args—>open__cb(&s_open, args—>ctx);
12}

13

14 static void
15 bfs_vset_foreach_ open(foreach open_cb open_cb, void xarg)

16

17 bfs_vset_arg store_t args = { open_cb, arg };

18 while (! vset_is empty(gc.store.vset.next_ set)) {

19 vset__copy(gc.store.vset.current_ set, gc.store.vset.next_set);
20 vset_clear(gc.store.vset.next_ set);

21 global .depth++;

22 vset_enum (gc.store.vset.current_set, (void(*)(voidx*,intx*))
23 bfs__vset__foreach_open_enum_cb, &args);

24 global . max_ depth++;

25 }

2% }

Figure 6: LTSMIN code to iterate over a set and call the open method

4 Java Bridge

4.1 Bridging technique

During the preliminary research Jace was picked as the tool to aid in bridging Java and C. The underlying
technique to make this bridge is JNI. JNT allows methods of Java classes to be implemented in a compiled
shared library. In Java methods can be declared with the native keyword. In C a method with a special
name and JNI type parameters can be implemented. When this C code is compiled in a shared library
it can be loaded into a running JVM. When a call is made to the method with the native keyword it
will execute the compiled code from the shared library.

Jace helps to make such shared libraries by generated the JNI methods in C by interpreting a .class
file. It will also generate a C++ class which represents the Java class. This C++ class is called a peer
class. The only thing that has to be done is to provide an implementation of the methods that were
declared native in Java.

Jace also allows calls to be made to Java objects. This is done by generating so called proxy classes.
Proxy classes represent Java classes as C++ classes. The implementation of the methods however are JNI
calls to a JVM which contains the represented Java objects. Primitive types are automatically converted
to types which can be used by Java. Character arrays and C++ Strings are also automatically
converted to Java Strings.

In figure [7] we show an example of calls from C++ to Java when Jace is used. It is part of the code
that connects a C analysis algorithm to a Java language module. We can see that these calls are normal
C++ calls. However the implementation of these calls will make a JNI call to a JVM. We can also see
that the const char *model_name is converted to a Java String object automatically.

Jace automatically takes care of garbage collection of peer and proxy classes. Java classes which have
a peer class in C++ are changed to add a methods which will ensure destruction of the objects in the
shared library. This works by making a JNI call to a method in the shared library which will free the
memory for that object in the shared library. For proxy classes the JVM is notified of references from
the shared library which makes sure the objects are not garbage collected when there are still references
to them in the shared library.

15

A Java Bridge for LTSMIN

4.2 Design 4 JAVA BRIDGE
1 void JavaloadGreyboxModel (model t m, const char xmodel name)
2 {
3 Greybox g = GreyboxFactory :: create (model name) ;
4 int nvars = g.getDependencyMatrix () .getNVars() ;
5 LTSTypeSignature sig = g.getLTSTypeSignature();
6 DependencyMatrix d = g.getDependencyMatrix () ;
7 d.getRead (0,0);
!

Figure 7: C++ code that makes the connection between a C analysis algorithm and a Java language
module

4.2 Design

This section will describe the runtime execution and design as described in the full class diagram in
Appendix [A] The design is of the Java implementation of the Java bridge. It will interface with the
existing implementation of LTSMIN.

4.2.1 Runtime

Here we will give an overview of the execution of the Java bridge using figure [§] This sequence diagram
is similar to the one in figure [d] However some calls have been omitted to increase the readability. This
diagram shows a Java analysis algorithm using a C language model. Operation of a C analysis algorithm
using a Java language module look very similar. Only the names of the modules would be different.

Java has its own implementation of the PINS API which interacts with the PINS interface of LTSMIN.
This makes sure all the language modules are available at once. Since the interface is very similar it is
easy to translate calls from one interface to another.

The Java analysis algorithm is a normal Java class. The Java NativeGreybox is a Jace peer class.
This means that certain methods are implemented in C++. The calls to these methods are JNI calls.
The C greybox is the same greybox module as in figure @ The C language module can be any
language module depending on how the shared library is linked. There is a shared library for each
language module. Java will choose which one is loaded depending on the extension of the specified file.
Because Jace only allows specifying one shared library per peer class, there is one Nat iveGreybox class
for each LTSMIN language. However, the only difference between them is their name and the shared
library that is loaded.

e 1, 1.1, 1.1.1: The Java analysis algorithm begins by parsing the commandline parame-
ters and requesting the specified file to be loaded. This method call is passed via JNI to the
NativeGreybox class and then to the C greybox and language model which loads the file.

e 2, 2.1, 2.1.1: The getTransitions calls are made in the same way as the 1oadFile call.
Call 2 is a JNI call, this method makes a call to the C greybox. The C greybox will make a
call to a method that is specified by the language module in the 1oadFile method as explained
in section 3.1l

e 2.1.1.1 Because LTSMIN works with callbacks this also has to be supported in the Java bridge.
In the diagram the callback is drawn from C to the Java NativeGreybox class. There the C
transition will be converted to a Java transition. This transition will then be passed to a specified
Java callback. More on how this works in section [£.2.4l

4.2.2 Greybox interface

As said before the greybox interface is the name of the PINS interface in LTSMIN. In the Java bridge
the same naming will be used. Therefore the Java bridge has a Greybox class.

Just as in LTSMIN the language modules provide implementations of the greybox. In the Java bridge
this means that language modules are subclasses of the Greybox class. In figure [§| we already saw the
NativeGreybox subclass. This is the implementation of the Greybox class that makes JNI calls to the
C implementation of the language modules. In the actual implementation there is a NativeGreybox

16

A Java Bridge for LTSMIN

4.2 Design 4 JAVA BRIDGE

Java Analysis Java NativeGreybox C greybox C Language module

1 loadFile(file)

v

1.1 loadFile(file)

1.1.1 loadGreyboxModel(file)
Same as figure[d]. ..

loop) Until no new transitions are found

3 getTransitions(int[] state, callback)
3.1 GBgetTransitions(int*, callback2)
T 311 getTransitions(int*, callback2)

loop) For each transition

3.1.1.1 callback2(transition_info, int* state)

3.1.1.1 callback(transition__info, int[| state)

Figure 8: Sequence diagram showing bridge operation (some calls omitted for clarity)

class for every C language module. The same JNI calls are made but a different shared library is loaded
to ensure a different language module is used.

Note that although Greybox acts as an interface to the model it is not an actual Java interface.
This is because a Java interface refers to a declaration of methods that a class must implement. We
will try to avoid confusion by specifically stating when we are referring to a Java interface.

The Greybox class provides access to the dependency matrix, the type information and the states of
the model. This is provided via methods of the Greybox class. Later sections will describe the design
of the dependency matrix and the type information. Now we will have a look first at the methods for
retrieving the states.

Greybox is actually an abstract class. A class extending Greybox will provide the implementa-
tion. This can be a greybox wrapper or a language module. GetInitialState will do the same as
it does in LTSMIN. It provides the initial state from which subsequent states can be requested.

The Java bridge will provide the same default implementations of the getTransitions meth-
ods in the Greybox class. The language module, which is a subclass of greybox, will override
getTransitionsShort or getTransitionsLong. The default implementation ensures the other
methods work automatically.

A choice had to be made whether to copy the transitions to Java or to interface to the data in
LTSMIN. Because the Java analysis algorithms will always look at and often store a transition, they are

17

A Java Bridge for LTSMIN

4.2 Design 4 JAVA BRIDGE

has

<<abstract>>
Greybox
+Greybox(file : String)
has |+getlinitialState() : int []

1 +getDep ix() : Dep ix
+getLTSTypeSi () : LTST) ¢ e I
+getTransitionsShort(group : int, src : int []) : ILTSminSet
ot F--> +getTransitionsLong(group : int, src : int []) : ILTSminSet
! +getTransitionsAll(src : int []) : ILTSminSet L - - -
L
GreyboxFactory
+create(file : String) : Greybox a JAY o
1 1
1 1 1
1

| GreyboxWrapper |
+GreyboxWrapper(Greybox)
+getParent() : Greybox

[JavaLanguageWodel |

NativeGreybox

CachingWrapper
+getTransitionsShort(group, int, src, parameter []) : LTSminSet<Transition>
+CachingWrapper(file : String)

Figure 9: Class diagram of several Greybox classes

always copied to Java. This will avoid bridging calls every time a transition and its containing state is
inspected by Java. This can occur when is transition is compared with another transition for equality.
When certain storage structures are used a bridging call for every visited state will be needed to compare
it to every newly discovered state. This will drastically decrease the performance. Therefore transitions
are copied to Java. Note that after transitions are copied to Java they can always be removed if they
are not needed. It depends on the analysis algorithm when this is the case. For BFS and DFS only
the destination state of the transitions are stored and the transition label and transition group will be
removed.

In LTSMIN it is possible to make wrappers around the greybox interface. These are the PINS2PINs-
WRAPPERS as described in section [[.:2.4] The Java bridge will also allow such wrappers. An abstract
class is defined called GreyboxWrapper. A GreyboxWrapper itself is a subclass of Greybox. It also
takes a Greybox Object as a parameter in its constructor which is the Greybox that it is going to wrap.
The caching layer that will be implemented as part of this project will extend the GreyboxWrapper
class. User can can use the GreyboxWrapper class to make their own wrappers.

The creation of Greybox objects is performed by the GreyboxFactory class. This class creates
a Greybox when a file with a supported extension is provided. It also takes care of possible Greybox
wrappers. This class also registers the relation between file extensions and Greybox implementations.
Therefore, when a new language module and thus a new Greybox implementation is added, its supported
file extension should be added to this class.

4.2.3 Caching Layer

The caching layer is based on the fact that not every variable is used to determine a transition. We will
demonstrate the caching layer using the example states in table 4] It shows a row in the dependency
matrix for a transition group. Variable 1 and 5 are not read or written for this transition group. Variable
2 is read, variable 3 is written and variable 4 is both written and read. The caching wrapper implements
the getTransitionsShort method. Therefore the long states are translated to short states and then
given to the caching wrapper.

The example shows two different long states 1 and 2 which have the same short state. When the
caching layer is asked the succeeding states for a certain short state for the first time will ask the language
module. The resulting short states are stored. This will happen when the caching layer is given short
state 1. The cache entry that is made in shown in the table. When the succeeding states for the same
short state are requested again, the result is retrieved from cache. This occurs when short state 2 is given
to the caching layer. It will find the cache entry and return the short result state. Using the original long
state it is possible to convert the short result states to long states and then we have a normal transition.

This is the way in which the caching algorithm is implemented in LTSMIN. This is also how one

18

A Java Bridge for LTSMIN

4.2 Design 4 JAVA BRIDGE

Description \ Value ‘

dependency matrix for transition group | —rw+-
long state 1 [
long state 2 [
short state 1 and 2 [
short result state 1 and 2 [
[
[
[

1, 0, 1]

1, 1, 255]

1, 0, 11 —» [1, 1, 255]
0, 1, 1, 255, 2]

255, 1, 1, 255, 0]

cache entry
long result state 1
long result state 2

Table 3: Example states to demonstrate the working of the caching layer

caching algorithm in the Java bridge works. However, there is also an additional algorithm which has
the possibility to have more cache hits.

long result state 2
long result state 3

255, 1, 1, 255, 0]
2, 1, 1, 255, 255]

] Description \ Value ‘
dependency matrix for transition group | —rw+-
long state 3 (2, 1, 3, 1, 255]
short state 3 (1, 3, 1]
read variables state 1, 2 and 3 (1, 11
written variable result state 1, 2 and 3 [1, 255]
cache entry [1, 11 — [1, 255]
short result state 1, 2 and 3 [1, 1, 255]
long result state 1 [0, 1, 1, 255, 2]
[
[

Table 4: Example states to demonstrate the working of the improved Java bridge caching layer using
the same transition as in the table above

This caching algorithm only stores the variables that are read to determine a cache hit. Because only
the 1st and the 3rd variable of the short states are actually read, only those two variables are stored in
the cache entry. Short state 3 has the same read variables as state 1 and 2, namely [1, 1]. This means
that short state 3 which is different to short states 1 and 2 will also use the same cache entry that was
stored for state 1.

The values of the cache entries in this algorithm are only the variables that are written in the
transition. In the example this is the 2nd and 3rd value of the result short state from previous example.
Those are the variables that are only written to. The caching layer will return the same short result
state for state 3. Again using the original long states it is possible to convert this short state back to a
long state.

This will result in more cache hits because variables that are not read and will be overwritten can
be ignored when looking for cache hits. We have seen this for long state 3 where its 3rd variable will be
overwritten without it being looked at. Therefore it can use the same cache entry as state 2 used.

4.2.4 LTSminSet

Because LTSMIN uses internal iteration, as explained in section it is required to provide callbacks
to LTSMIN to work with collections. In Java it is very uncommon to work with internal iteration. Some
sort of Collection object is almost always used. Because one of the goals of this project is to make
the interface easy to use for Java users an alternative to using the callbacks should be provided. However
since callbacks do provide some performance advantages they should also be an option.

The solution to provide both the ease of use of Java Collections and the performance of callbacks is
the interface ILTSminSet<E>. It is an extension of the Java Set interface and provides an additional
method callbackIterate with a callback Object. A call to a getTransitions method of a native
greybox will provide an ILTSminSet<E> Object. Only when callbackIterate is called, will the

19

A Java Bridge for LTSMIN

4.2 Design 4 JAVA BRIDGE

<<Interface>>
Set<Transition>

Ay

<<Interface>>
ILTSminSet
"""" > +callbacklterate(cb : ICallback<Transition>)
+convert(toLong : boolean, group : int, source : State, dm : Dep

A} [
: minSe
LTSmInSol Eattribute
+LT: llection<Transition>)| |-fillCopy()
+callbacklterate(cb : lCaIIback<Transltlon>) +CbLTSminSet(retriever : CallbackMethodsWrapper<Transition>)
+callbacklterate(cb : ICallback<Transition>)
has | . has ’ . has 1
Transition allbackMethodWrapper<E>
-group : int -method : Method
-state : State -args : Object[]
-edgeLabel : intf] b : ICallback<E>)
+Transition(t : Transition)
has | 3

1

State
+State(vector : int [])
+getStateVector() : int []

Figure 10: Class diagram of LTSminSet classes

actual bridging call to the native greybox take place. When another method of the Set interface is
called, every transition will be copied to an internal HashSet. Then the corresponding method on this
set will be called.

When a Java language module and thus a Java greybox is used, it might be cumbersome to im-
plement a callback mechanism. To avoid having to do this it is also possible to convert a Java set to
an ILTSminSet<E>. It will simply act as a wrapper around a provided set. The callbackIterate
method is implemented by a standard iteration over the set and then performing the callback. This does
not have the performance benefits of an actual callback, but it does add some additional ease of use.
The callbackIterate method is always available and when the implementation uses a callback it has
performance benefits.

4.2.5 LTSTypeSignature

LTSTypoSI <<enumeration>>
String, Range> LTSType
-typeMap : Halep<smng LTSType> econsiantepUISTVESHangs
-state : HashMap<String, String> > -LTSTypeDirect
-stateLabel : HashMap<String, String> C -LTSTy

-edgeLabel : HashMap<String, String> <<Constant>> -LTSTypeChunk
+getStateTypes() : List<LTSType>
+gelSta|aTypeNames() List<String> Range

abelTyp () : List<String> TypeRange Ehatn

—] +getsmeLabalTypos() List<LTSType>
+getEdgelabelTypes() : List<LTSType>
+getEdgelLabelTypeNames() : List<String>

: List<String>)
nelsmaLabelTypes(lypes Llsksmng>)
+setEdgelLabelTypes(types : List<String>)
+getRange(typeName : String)
+addType(name : String, type : LTSType)
+addRangeType(name : String, min : int, max : int)
+printState(state : int [])

-max : int

Figure 11: Class diagram of LTSType classes

To make the type information available in Java the class LTSTypeSignature is introduced. It
stores the same information as the 1ts—type module does in LTSMIN (see section . A language
module is required to fill a LTSTypeSignature Object. This ensures the analysis algorithm knows
how to interpret the integers from the state vector.

A choice had to be made to either make a bridging interface to the native 1t s—type module or to
duplicate the type information in Java. Because most type information is initialised at once when a file

20

A Java Bridge for LTSMIN

4.2 Design 4 JAVA BRIDGE

is loaded, we chose to duplicate the type information. This will avoid the need to make bridging calls
when the type information is accessed either in Java or C. Admittedly this would only occur when state
vectors are converted to String which typically occurs when the statespace exploration is completed.
This means there will not be as much calls to the type signature as there would be when it was needed
for statespace exploration. However only having one implementation of LTStypeSignature, which is the
case when it is copied to Java, does simplify the design.

With the introduction of the LTSTypeSignature it was also possible to correct a design flaw (or
missing feature) of LTSMIN. In LTSMIN each analysis algorithm needs to implement its own way of
printing states and labels. The Java bridge will have methods available in LTSTypeSignature which
can convert states, state labels and edge labels to Strings. This can be used to print them when necessary.
More on what should be done by analysis algorithms in section [4.2.8|

4.2.6 Chunkmaps

<<Interface>>

IChunkmap<T>
+getld(chunk : T)
——|[+getChunk(id : int) : T
+addChunk(chunk : T)
+getCount() : int

N N

TypedChunkMap<T> NativeStringChunkMap

Figure 12: Class diagram of Chunkmap classes

As described in section there are a lot of calls made to chunkmaps. Every time a chunk value
is encountered in a state vector or transition label a call will be made to a chunkmap to convert the
chunk to an integer. Therefore it would decrease performance a lot when using chunkmaps would require
language bridging calls. The design takes this into account by having a Java implementation of the
chunkmaps available when a Java language module is used and the native implementation for native
language modules.

However when states or transitions are printed it might be necessary to convert the integers back to
the chunks to make it possible to print them. As stated in the previous section it will be part of the Java
code of LTSTypeSignature to convert LTSTypes to Strings. To allow access to native chunkmaps
from Java the NativeStringChunkmap class is introduced. This will act as an interface to the native
chunkmaps by wrapping the native methods. It converts chunks to Java strings using the methods
provided by LTSMIN. For Java language modules the class TypedChunkmap is provided. It is a generic
class offering the possibility to store any Java type as chunks.

4.2.7 Dependency matrix

DependencyMatrix

+D i 3 I nvars : int, ngroups : int)
+getNGroups() : int
+getNVars() : int BooleanMatrix
+setAccessed(varlx : int, group : int, accessed : boolean) -matrix : BitSet

—]+setRead(varlx : int, group : int, read : boolean) read / write ix(~int, ~int)
+setWrite(varlx : int, group : int, write : boolean) 1.2 |+set(row : int, collumn : int, value : boolean)
+getAccessed(varlx : int, group : int) : boolean - get(sint, - int) : bool
+getRead(varlx : int, group : int) : boolean sonesInRow(rowlx : int) : int
+getWrite(varlx : int, group : int) : boolean

+toShortState(group : int, state : State) : State
+expandState(group : int, state : State) : State

Figure 13: Class diagram of Matrix classes

An important part of LTSMIN is the dependency matrix. It is what turns a model from a black
box to a grey box. The dependency matrix does not change during runtime. As soon as the model is
initialized it is available to the analysis algorithm. The analysis algorithm might use the dependency

21

A Java Bridge for LTSMIN

4.2 Design 4 JAVA BRIDGE

matrix during statespace exploration which means that a lot of calls could be made to it. This mean
that when it is copied to Java a lot of bridging calls can be avoided. Also because the dependency matrix
does not change during runtime and the fact that it not a big data structure, it is copied to the Java
Object after it is initialized in LTSMIN.

The class BooleanMatrix provides a generic boolean matrix. The class DependencyMatrix has
one or two BooleanMatrices depending on whether read and write has a separate matrix. As with
LTSMIN this can be determined by the language module.

4.2.8 Analysis algorithms

<<Interface>>
Result
+toString()

<<Interface>>
[AnalysisAlgorithm

+execute() : Result

JAY

<<abstract>>
SearchAlgorithm

)

1

1

i

1

1 |+SearchAlgorithm(g : Greybox) | ————
1
A A
1

1

1

1

1

1

1

—BFS | [DOFS]
A\ N

AnllynlsAlgorlllhmFaclory
+create(name : String, g : Greybox) : AnalysisAlgorithm

| 1

Figure 14: Class diagram of AnalysisAlgorithm classes

Analysis algorithms can be search algorithms like breadth first search and depth first search or
any other algorithm that wants to interact with a language module. The design incorporates these
algorithms as implementations of the AnalysisAlgorithm interface. This class requires a method
analyse which can be called to begin execution of the algorithm. This method returns objects which
are implementations of the Result interface. There are Result implementations which contain traces,
states or times. Each of these objects can output a String. This allows results of analysis algorithms
to be printed.

AnalysisAlgorithm objects are created by the AnalysisAlgorithmFactory class. Based on
a name of an analysis algorithm, which is specified as a commandline parameter, and a Greybox it will
return an AnalysisAlgorithm object.

4.2.9 Design choices summary

When a Java analysis algorithm is using a C language module there are multiple design choices that are
concerned with whether certain information has to be copied to Java, whether it can be retrieved to from
the existing LTSMIN implementation or whether it should be moved to Java. When some information
is used a lot by the Java analysis algorithm it should be copied or moved to Java. Information that is
accessed a lot by the C language module should remain on the C side. Information that is not accessed
often by either module could be on either side.

Table [l shows what was chosen.

Because a full implementation has to be made in Java every part will already be available in Java.
When a Java analysis algorithm is using a C language model we have to make design choices for every
part of the native language module. The choice is whether to have Java use the native implementation,
have Java use a copy implemented in Java, or make LTSMIN use the Java implementation instead of the
native one.

22

A Java Bridge for LTSMIN

4.3 Implementation 4 JAVA BRIDGE
’ \ Use native implementation \ Copy to java \ Move to java ‘
dependency matrix v
type signature v
chunkmap v
transitions v
statespace storage v

Table 5: Show what was decided to do with various information

To have LTSMIN use a Java implementation would not be too difficult to do for parts which are
designed to have multiple implementations in LTSMIN. Of the language module parts only the chunkmaps
are designed this way. A problem with moving these to Java is that they are called by the C language
module every time a chunk type is encountered. This can be multiple times for each state. Therefore
having chunkmaps implemented in Java would be costly. Because the chunkmaps are not called often
by the Java analysis algorithm they are not copied to Java.

The dependency matrix and the transition information are accessed often by Java. Therefore these
are copied to Java to avoid language bridging calls. The type signature is not accessed as often as the
dependency matrix and the transitions. Therefore the native implementation could be used. However
the type information is not a big data structure and it was easier to implement to have it copied to Java.
Therefore we chose to copy it to Java.

The statespace storage is exclusively used by the analysis algorithm. Therefore it is moved to Java.
Requiring JNT calls to store every state would be costly. Of course when there is a highly efficient states-
pace storage technique implemented in C it could be considered to use this implementation. However
for this project we will use a the built-in Java HashSet class to store states.

4.3 Implementation
4.3.1 NativeGreybox implementation

The NativeGreybox is a Jace peer class. In the Java implementation it has methods which are declared
as native. These methods are not implemented in Java. Jace will generate a C++ peer class which
declares these methods as well. This allows us to implement these methods in C++. Jace will ensure
a call from Java to the native methods will execute the C++ implementation.

There are multiple methods that retrieve transitions. The C implementation works by using a callback
which is called for each transition with the properties of the transition as the parameters of the callback.
In LTSMIN it is possible to provide context along with a callback function. A pointer to this context
can be passed to a function which uses a callback which will pass this pointer unmodified to the callback
function. The pointer can point to any data structure that contains data that is required by the callback
function. This can, for example, be used to define to which collection the transition has to be added or
even allows callbacks to call other callbacks. This makes it possible to convert the C transitions to Java
objects and perform a Java callback.

Java callbacks are similar to C callbacks, but instead of a function pointer, which is a C callback, you
give an object which has a method which takes the Transition object as an argument. In the Java
bridge such an object implements the ICallback<E> interface where E is a Transition. The C++
implementation of NativeGreybox has a callback function which converts native transitions to Java
objects. This function uses a pointer to the Java ICallback object in its context. When this function is
given as a callback to a C function which retrieves the transitions, it will receive native transitions. Then
this function will convert the native transition to Java types and perform the callback. In summary, the
Java callback is wrapped by a C++ callback which performs the conversion to Java types.

4.3.2 LTSMIN to Java

To connect LTSMIN to Java language modules it is needed to connect the PINS interface of LTSMIN to
the Java PINS interface. Because this will operate very similar to the bridge from Java to LTSMIN it is
possible to use the same design choices. This means that the type information and dependency matrices
and transitions are copied to LT SMIN.

23

A Java Bridge for LTSMIN

4.4 End user experience 4 JAVA BRIDGE

To retrieve transitions from Java it is needed to be able to convert a Java callback to a C callback. To
do this the NativeCallback class is used. It implements the ICallback<Transition> interface which
means that it can be used in Java as a callback to retrieve transitions. The NativeCallback class is
a Jace peer class which means it has a method that is implemented in C++. From this C++ method
the goal is to make a call to a C callback passing the transition to LTSMIN. The ideal way to do this is
to have the NativeCallback object store the C callback so it can call it from its C4++ method. This
means we have to store a C function pointer in a Java object. Pointers are essentially integral types.
Depending on the architecture of the machine they can be 32 or 64 bits in size. This means that they
can be stored as a sufficiently long integral type. Java has the 1ong primitive type which is 64 bits long.
We use this type to store the callback in the NativeCallback class. Now when a NativeCallback
object gets a transition passed to it, it will call its C++ method providing the C callback as a long
parameter. The C++ method converts the long back to a function pointers, converts the Java transition
to a C transition and makes the C callback.

To create a Java Greybox a call to the GreyboxFactory is made using Jace. Jace will return a
proxy object which can be used to make JNI calls to the Java Greybox. A pointer to the Greybox
proxy is stored in LTSMIN as the context of the C greybox. When a transition is requested the context
is retrieved so JNI calls can be made to the Java Greybox object.

LTSMIN requires a greybox to register the extensions it supports. These extensions are retrieved from
the GreyboxFactory and then registered in LTSMIN. This means that when a new Java language
module, which supports new extensions, is added, it is only required to specify this extension in Java. It
will automatically be available to LTSMIN.

4.4 End user experience

In LTSMIN the end user can choose varying configurations by executing different executables. There are
two different implementation of the analysis algorithm. Both of these are linked with a specific language
module. This means there are two executables per language module.

To use a Java language module a user must execute another specific executable. However, this one
executable allows access to all the Java language modules. The correct one will be picked based on the
extension of the model that is loaded. In theory it is even possible use a C language module while the
Java bridge is used. However, this will cause an error because two language modules will be defined.
One to bridge the C analysis to the Java bridge and one which loads the actual model.

To use a Java analysis algorithm the user only has to execute one command. Although Java can not
provide executables, there is also only one class needed to use the Java bridge. The correct language
module will be picked based on the extension of the model that is loaded. The analysis algorithm can
be picked using commandline arguments.

Examples of the invocation of the Java tool and LTSMIN with a Java language module are shown in

appendix [B]

24

A Java Bridge for LTSMIN

5 RESULTS

5 Results

We ran performance tests on the initial implementation of the Java bridge. Section describes how the
measurements were made. Using these measurements and profiling we were able to locate parts of the
implementation which could be improved. Which improvements were made are described in section [5.2)
Section [£.3] describes the measurement results of the benchmarks.

5.1 Performance measuring setup

A problem with measuring performance when a language module implemented in Java is used is that
there is no full Java language module available yet. However making a caching layer is part of this
project, see section [I.4] When a Java analysis algorithm is used with a C language module transitions
from the model are stored in the caching layer. This also makes it is possible to store the full statespace
of the model. Using Java serialization it is possible to store this cache to a file which can be reused
in performance tests as if it were a normal model which is loaded by a language module. Note that
using the cache can not be compared to the original language module which filled the cache because the
original model will not be interpreted, this means a lot of operations will not take place.

Figure [I5] shows how to use the caching layer to provide a file with the serialized statespace. It shows
two different executions. In the first run the the model is serialized by the caching layer to the model.dat
file. The second run the caching layer uses this file to imitate a language module implemented in Java.
The curly arrows indicate the locations where the Java bridge is used to bridge between languages.

Jave Java cacl -
ava.] ava cache C language model.dve
analysis layer model

uses outputs
(by serializing)

parses

(bridging)

Legend

loads
(by deserializing)

Java cache
layer

Figure 15: Diagram showing how to imitate a Java language model with 2 runs

— Dependency

Language bridging
dependency

Something else that has to be evaluated is how the Java caching layer will improve the performance.
When transitions are requested which are already cached on the Java side it will avoid having to make
a language bridging call. This could improve performance. To measure this a Java analysis algorithm
using a C language model will be run with and without cache. The existing LTSMIN implementation
also has a caching layer. Its performance benefit will be evaluated when the Java cached statespace is
used.

When we calculate all possible configurations the experiments can run we have analysis algorithms
and language modules in 2 languages. These can have no caching, C caching or Java caching. This gives
us 12 (2 % 2 % 3) possible experiments. Another run has to be made to convert the model to a serialized
statespace for the Java language module. The experiments are shown in table [6] and table [7]

First we will motivate why the experiments in table [7] will not be performed. Experiments 1 and
5 have caching in a different language than the analysis algorithm and the language module. These
experiments would require bridging languages twice to add caching which will not be researched because
the caching adds bridging calls instead of avoiding them. Experiments 2 and 3 have caching in the same
language as the language module. This means that a bridging call is already made before the cache is

25

A Java Bridge for LTSMIN

5.2 Performance improvements made 5 RESULTS
. Language

| Name Analysis | Cache module

1 | LTSmin C C

2 | LTSmin + C Cache C C C

3 | C— Java C Java,

4 | C — Java + C cache C C Java

5 | Java — C Java C

6 | Java — C + Java cache Java Java C

7 | Java — Java Java Java

Table 6: Table describing the experiments that will be performed

. Language
| Name Analysis | Cache module
1 | LTSmin + Java cache C Java C
2 | C — Java + Java cache C Java, Java,
3 | Java — C + C cache Java, C C
4 | Java — Java + Java cache Java Java, Java,
5 | Java — Java + C cache Java C Java

Table 7: Table describing the experiments that will NOT be performed

reached. This will not avoid bridging calls but only avoids interpretation by the language module. This
will not be part of the research. Experiment 4 adds Java caching when a Java language module and
analysis algorithm is used. Because the Java language module will load the entire statespace in a Java
Object the caching will not add any benefit.

We also considered using different Java Virtual Machine implementations to figure out which one
was the best performing. We considered JRockit and IBM J9. However because this project is more
concerned with the performance of the implementation instead of the performance of different Virtual
Machines, this will be outside the scope of the research.

Now we will describe the experiments from table[6]that will be performed. Before the experiments are
started we will first generate the serialized statespace. This will be loaded when a Java language model
is required. Experiment 1 is a normal LTSMIN run. This uses C analysis and a C language module. This
experiment is repeated with caching on. This will act as a baseline for the effectiveness of the caching
algorithm. Then we have experiment 3 which uses C analysis and the Java language module. This will
load the serialized statespace that was generated before. This experiment is repeated with C caching to
see how effective this cache is at avoiding bridging calls. Experiment 5 uses a Java analysis algorithm
with a C language module. This is repeated with the normal Java cache (normal meaning the cache
layer that does not serialize the statespace). We also have a run using Java analysis and a Java language
module. This will give an idea of the overhead of the statespace exploration.

The runtime will be measured by using the linux time utility. This measures the runtime of a
command in seconds, with a hundreds of seconds precision. It can also give the maximum amount of
memory used during the execution. More precisely it gives the resident set size in kilobytes.

Models will be taken from the BEEM database [14]. This database offers models of varying application
areas with statespaces of varying size. Most of the models are well-known examples and case-studies. The
database contains more than 50 models with 300 concrete instances. Every test will be performed on all
of the instances of the models of the database. The accompanying website contains detailed information
about the models which allows us to confirm that the statespace exploration was executed correctly.

5.2 Performance improvements made

Using the design as mentioned in the previous section we implemented the Java bridge. When an initial
working implementation was made, we evaluated its performance. Using profiling tools we determined
performance bottlenecks and eliminated these to increase the performance. We also ran preliminary
benchmarks to find out the results of our improvements. This also provided some outliers which ran

26

A Java Bridge for LTSMIN

5.2 Performance improvements made 5 RESULTS

slower than the rest of the performance tests. We profiled these executions and determined what was
causing them to be outliers. This allowed more performance improvements. This section will describe
what performance limiting factors were encountered and how these issues were resolved.

We ran the preliminary tests on around 200 of the smallest models of the BEEM database. We were
testing the Java bridge by using the Java analysis algorithms with the C language module. The runtime
of a full reachability check was compared to that of an LTSMIN reachability check. The average times
the Java bridge takes longer is shown in table |8 Note that these are preliminary results and are not as
accurate as the final results which will follow.

] Implementation \ Times slower than LTSMIN ‘
LinkedList for BFS queue 284
HashQueue for BFS queue 27
After JNT optimization 22
After array optimization 13

Table 8: Overview of preliminary results of optimizations

5.2.1 Repeating the same getTransitions call

During preliminary performance evaluations we noticed that the breadth first search algorithm was
making the same get Transitions calls multiple times. Because of the way breadth first search works
this should not be the case. The results of every getTransitions call should be stored which would
mean that it should not have to be made again.

It is important that getTransitions calls are made as few times as possible because these calls
can be expensive. For example when a C language module is used a getTransitions call will be a
language bridging call which is slower than normal calls. GetTransitions calls typically already have
to be made for every state in a model when a full reachability check is made. When, for example, every
call is made twice it is likely that the reachability check will also take twice as long to complete.

The problem turned out to be that newly discovered states were added to the queue without checking
whether they already were on the queue. This meant that states were on the queue multiple times which
caused the same getTransitions call to be made. Checking whether the queue contained the state
solved the problem.

Depth first search also turned out to be making the same call multiple times. The solution to this
however was somewhat different. In DFS a node will be visited multiple times because it will backtrack
and look for new transition on a node it has visited before. In the depth first search implementa-
tion of LTSMIN, the algorithm will only request one transition at a time. This is done by making a
getTransitions call for every transition group until a transition is retrieved. In some models this can
result in a lot of get Transitions calls which do not result in a transition. Because getTransitions
calls in the Java bridge take longer to complete, it will decrease performance to make such a call for
every transition group for every state. The solution we implemented is to make getTransitionsAll
calls to retrieve all transitions at once. The resulting transitions are stored in a cache. This way, when
a node is visited for a second time the new transitions can be retrieved from storage instead of from
making a getTransitions call. This way getTransitions calls are not made more than required.

Note that this cache is a different cache from the caching layer. It it part of the DFS algorithm and
it stores long states. When all transitions for a state are visited, they are removed from the cache. This
means that this cache only contains transitions for the states on the DF'S stack.

5.2.2 Slow performing data structures

In the previous section we had to check whether the BFS queue contains a state for every newly discov-
ered state. This did give some performance improvement but not the improvement we expected it to
give. We looked at models which took a particularly long time to complete. When profiling the Java
implementation using one of these models we noticed that more than 90% of the CPU time was spent in
the equals method of the State class. When we looked at the stack trace for this method we found
out it was because of the contains method of the LinkedList class. We were using linked lists at

27

A Java Bridge for LTSMIN

5.2 Performance improvements made 5 RESULTS

an implementation of the Queue interface for the BFS queue. For the contains call every element of
the LinkedList has to be compared to the parameter of the contains call. Because there are many
states that are discovered and many states on the queue this was taking a long time.

The solution to this problem was to use a HashSet as the BFS queue. When the contains call is
made now, a hash of the state is calculated and it is compared to the ones in the set. This is so much
faster that the 90% CPU time it took before is reduced to less than 1%. See table [J] for the methods
which were consuming the most CPU time before and after the solution. The method which does the
actual retrieving of the transitions is the CallbackMethodWrapper .execute method. Therefore this
is the method which should be consuming the most CPU time.

’ LinkedList for Queue ‘

Method Time spent
State.equals(Object) 92.7%
CallbackMethod Wrapper.execute(callback.ICallback) 6.2%
DVE2Greybox.get TransitionsAll(State) 0.6%
Transition.<init>(int, int[], int[]) 0.2%

’ HashSet for Queue ‘

Method Time spent
CallbackMethod Wrapper.execute(callback.ICallback) 95.4%
BreadthFirstSearch.search() 2.4%
Transition. <init>(int, int[], int[]) 0.7%
State.equals(Object) 0.5%

Table 9: Profiling results with different data structures for the BFS queue

We used the schedule_ world.2 model to produce these tables. This model was taking 13.5 hours to
complete before. After the optimization it was only taking 9 minutes. This model was taking a particular
long time to complete because it has 1.6 million states while it only has 17 BFS levels. This means that
the BFS queue was getting very long. On some levels it was longer than 250 thousand states. This was
causing the many state comparisons.

5.2.3 Limiting JNI calls

Because language bridging JNI calls have some overhead which causes them to be slower than normal
calls they should be limited as much as possible. Especially in the getTransitions methods, which
are often called for every state in a model, it is important to have as few JNI calls as possible. The
initialization of the type information and dependency matrix also requires JNI calls. But because this
stage only occurs once and is typically less then a few percent of the total runtime, limiting JNI calls
here will not give big performance enhancements.

We looked where JNI calls were made and where they can be avoided. In the initial implementation
the getTransitions methods of the C++4 peer Greybox classes were receiving State objects. These
classes need to convert the State objects to integer arrays that are used by LTSMIN. However in order
to retrieve the Java integer array from the State object a JNI call had to be made. This can be avoided
by giving the java integer arrays directly to the peer class. This moves the call to extract the integer
array from the State object to the Java side where it is a normal Java call.

When the transitions are calculated they initially were converted to Transition objects and then
given to Java. This required additional JNI calls to make the Transition object. Fortunately this
could be avoided by giving the NativeGreybox class a Java callback which takes Java primitives and
will make the Transition object itself. This means only one JNI call has to be made to hand a
transition over to the Java side.

When looking for JNI calls to limit we discovered an incomplete implementation in Jace. Jace uses
the JArray class as a proxy to Java arrays. In the documentation of Jace we were recommended to use
the iterator of the JArray class to copy arrays from and to Java. This was because it supposedly used a
buffer to store changes before they were sent to Java with a JNI call. This is faster than making a JNI

28

A Java Bridge for LTSMIN

5.2 Performance improvements made 5 RESULTS

call whenever any element of the array is changed. However, upon inspecting the code we discovered
this buffer was not yet implemented. This meant using the iterator was also making a JNI call for every
element that was copied. This is really inefficient because it means making a JNI call for every element
in every state, every time this state crosses languages.

Fortunately the solution was easy. Jace allows to retrieve the JNI objects from proxies. Using this it
is not difficult to make a JNI call manually. This way it is possible to copy an array from and to Java
using a single JNI call. The result of doing this is that the implementation’s average runtime was halved.

After making these improvements we can make the following summary: When a Java analysis algo-
rithm is using a C language module one JNI call will be made to retrieve transitions. The Java state
vector has to be converted to a C integer array with an additional JNI call. For every transition that
is found another JNT call will be made to hand that transition over to Java. To convert the C integer
array from this transition to a Java array requires another JNI call. This means 2 JNI calls to request
the following transitions and 2 JNI calls to give a C transition to Java. The first JNI call is one from
Java to C and the other ones are from C to Java.

For the execution from C to Java there were also opportunities to limit JNI calls. In the initial
implementation a NativeCallback object was constructed for every getTransitions call. This
object converts a Java callback to a C callback. Even worse another JNI call was used to set the
variables of the Nat iveCallback. During profiling it became clear a lot of time was spent constructing
the NativeCallback objects. The solution was to use a single NativeCallback object for all the
getTransitions call. A set method was used to set the variables this class needs. This way a lot of
object constructions were avoided along with a JNI call for every getTansitions call.

GetTransitions calls on the C side return the number of transitions that were returned. At first
the NativeCallback object was counting the amount of transitions that passed through it. To retrieve
the count from the object a JNI call was made. The implementation could be changed to avoid needing
a JNI call to retrieve the count. The solution was to make a callback on the C side which counted the
transitions there. This callback increased the count for every transition that passed through it and then
handed the transition over to the original C callback. It acted like a callback wrapper. This way the
counting takes place on the C side which means no JNI calls are necessary.

5.2.4 Caching layer

When we first looked at the results of performance tests of a Java to C run with caching we noticed
that it was not very fast. Even when a lot of JNI calls were avoided it was running slower than a run
without caching. Using a model where the caching layer avoided a lot of JNI calls we determined what
was limiting the performance. When looking at the profile results as shown in the first table of table
we notice that a lot of time is spent in the inState method of the DependencyMatrix. This method
is used to determine whether a variable should be in a long or a short state. This is needed to convert
between long and short states. It makes sense that it is used a lot when a model that has a lot of cache
hits is used. This is because there are not many JNI calls and most of the time will be spent converting
states to store them in cache or retrieve them from the cache.

However, the stateSize method is also using 7% of the CPU time. This method is used to determine
how many variables short or long states have and it also calls the inState method. The stateSize
method could be a lot faster when its result would be stored instead of calculated using the dependency
matrix. When a result is retrieved from storage no inState calls have to be made. When we did this
we got the profiling results as shown in the second table in table [I0] A lot less time was spent in the
stateSize and inState methods. The stateSize method was only using 0.6% of the CPU time.
The inState method was reduced to using 28% of the CPU time. The reduction of time spent in these
methods meant that relatively more time went to the convertState method. This method also calls
the inState method a lot, which explains why the inState method is still the method where the most
CPU time is spent. The result of storing the results of the stateSize method instead of calculating it
is that the overall runtime decreased on average by 39% for Java — C runs with caching turned on.

Upon examining the number of transitions for every test we discovered that some tests that were
using the cache produced a different number of states and transitions to the other tests. This meant
that the statespace exploration was not performed correctly. Upon examining the caching algorithm in
great detail we found nothing wrong. However we did discover what was causing the problem.

We were using the improved caching layer as explained in section [5.2.4] It was not functioning as

29

A Java Bridge for LTSMIN

5.2 Performance improvements made

5 RESULTS

|

Without storing state size

Method Time spent
DependencyMatrix.inState(StateType, int, int) 35%
BooleanMatrix.get(int, int) 19%
DependencyMatrix.get Accessed (int, int) 17%
DependencyMatrix.convertState(State) 12%
DependencyMatrix.stateSize(StateType, int) ™%
DependencyMatrix.getRead(int, int) 3%

With storing state size

Method Time spent
DependencyMatrix.inState(StateType, int, int) 28%
DependencyMatrix.convertState(State) 21%
BooleanMatrix.get(int, int) 18%
DependencyMatrix.get Accessed (int, int) 16%
DependencyMatrix.getRead(int, int) 2%
CachingWrapper.get TransitionsShort(int, State) 2%
DependencyMatrix.stateSize(StateType, int) \ 0.6%

Table 10: Profile results before and after storing state size

expected. We will demonstrate this by an example. Suppose the language module was given the short
states [0,0] and [0,1]. The dependency matrix for a transition says the first variable is read and
the second variable is written to. Because they both have the same first variable 0 the language module
should not see a difference between the two states. Therefore the second variable should be overwritten
with the same variable. The result state could for example be [0, 255]. However the language module
was giving two different result states for the same transition. This should not be possible because if the
language module was looking only at the variables that it says it is looking at, it would see no difference
between the two states. The only way to see the difference is to look at the seconds variable also. This
would mean the dependency matrix was wrong. Therefore we concluded that there is a bug in the DVE
language module of LTSMIN which cause the dependency matrix to be wrong. The language module is
looking at more states than it says it does.

A solution to this problem would be to find the bug in the language module or to use a caching
algorithm which works the same as the one in LTSMIN. This is possible because LTSMIN was not having
problems when its caching algorithm was used. Because we have not looked at the implementation of the
language module yet and finding the bug might be a time consuming activity we chose to use a caching
algorithm which stores short states. We reported the bug and its solution shall remain out of the scope
of this project. Running the tests again indicated that the problem was resolved. Unfortunately we
were having fewer cache hits, like we expected. The short storing caching layer was making on average
3,6 times more getTransitions calls to the language module. However this is somewhat unreliable
because the statespace exploration did not execute correctly for some models.

5.2.5 Other bugs

When using the caching layer a lot of CPU time was spent in creating a Vector. This Vector was
used to store the cache hits in. The bug was that the Vector that was created was not as big as
the transition that it was supposed to hold but as big as the entire cache. This meant that really big
amounts of memory were requested unnecessarily. The problem was easily resolved by requesting the
right Vector size.

When running performance tests using a C analysis algorithm and C caching with a Java language
module we received an error message. It indicated that we were using a short state which had an invalid
size. We discovered that the C implementation of the getTransitionsShort method was copying
too much integers from the C state to Java. It was using the length of long states instead of that of short

30

A Java Bridge for LTSMIN

5.3 Benchmarks 5 RESULTS

states. This meant that the short states were the length of long states and that some random integers
were copied to Java. This was resolved by using the correct state size.

5.3 Benchmarks

Because the performance tests require a lot of executions we ran the tests on the university’s cluster.
This allowed parallel execution of the tests on multiple machines. During the preliminary performance
tests we ran multiple tests on a single machine. For the final results we do not want the tests to influence
each other and therefore we used a single machine for every test. The machines are equipped with 2
Intel Xeon E5520 CPU’s and 24GB of ram. Both CPU’s have 4 cores and can execute 8 threads because
of Hyper-Threading, this means a total of 16 threads can be executed in parallel. However this is of
limited use because the Java bridge only supports single threaded statespace analysis. The JVM will use
additional threads to perform tasks such as garbage collection.

We ran the tests on the latest JVM that was available on the cluster. This was the Java HotSpot(TM)
64-Bit Server VM build 21.0-b17 of JDK build 1.7.0-b147. We want to avoid garbage collection as much
as possible to ensure the Java bridge performs at its best. To do this, the JVM was given as much
heap space as possible. Using trial and error we determined we could give at most 20GB of heap space.
Giving a 1GB more resulted in an error. 20GB is both the maximum and the initial amount of heap
space given. This is because just setting the maximum would not result in less garbage collection.

The BEEM database has 300 model instances. Unfortunately the models plc and train-gate
with their 11 instances would not compile for use with LTSMIN. This is probably due to a bug in the
translator of divine models for LTSMIN. We could not solve the bug, but we did report it. This leaves
289 instances to be tested, which is sufficient.

To ensure we get reliable results we ran each test 3 times. This allows detection of possible outliers.
We also set a timeout to ensure the benchmarks would complete in a reasonable amount of time. We
set the timeout for 1 hour. If this would not be enough because too many tests would timeout we would
rerun the timed out tests with a longer timeout. But after the measurements completed we saw that
LTSMIN would not time out at all because the execution would run out of memory before it ran out of
time. The execution from Java to C ran out of time for only 9% of the tests. Therefore we decided to
keep the time out at 1 hour.

For each test there are multiple possible outcomes. The normal outcomes are: A runtime measure-
ment, not enough time or not enough memory. Another possible outcome is that the test could not run
because the statespace was not serialized. This can occur for tests which make use of the Java language
module and a Java — C run with caching could not complete. This means that the statespace can not
be serialized and not loaded into the Java language module.

Unfortunately not every tests gave the same type of result 3 times. When this occurs we used the
result which was found 2 out of the 3 runs. This means that when a result does not have enough memory
for 2 runs and not enough time for another run the final result would be not enough memory. Fortunately
3 different types of outcomes for one model did not occur.

Because we run each test 3 times we can detect measurement errors. We define a measurement error
as a results which is more than 10% higher or lower than the average and this difference is more than 1
second. When this occurs the outlier will be ignored and the average of the 2 remaining measurements
will be the final measurement. We found that this detected actual measurement errors and not normal
variance because the 2 remaining measurements were close to each other while the outlier was not. The
outliers are probably caused by some rare circumstances like running system processes that did not occur
with the other 2 measurements.

As explained in section [2.1] it is required to use the same analysis algorithm and statespace storage
in both Java and LTSMIN. Both the Java bridge and LTSMIN have breadth first search and depth first
search implemented. Therefore either of these can be used. Initially we preferred breadth first search
because it gives more useful output for every depth level that is visited. However for the statespace
storage the Java implementation is using hash tables. LTSMIN also has this storage technique, but we
discovered that only depth first search in combination with hash tables is implemented in LTSMIN. An
option would be to use another storage technique, but LTSMIN only has storage techniques which are
not in Java’s default API. Since implementing other storage techniques is not part of this project we
chose to use depth first search in combination with hash tables.

31

A Java Bridge for LTSMIN

5.3 Benchmarks 5 RESULTS

The results of the benchmarks are shown in appendix [C] We will evaluate the results of the various
benchmark by comparing them to a normal LTSMIN run. We do this by dividing the runtime of a
benchmark run by the runtime of an LTSMIN run. We will call this the slowdown of the run. The
average slowdown and the confidence interval of the average slowdown are shown in table

] Benchmark \ Average slowdown \ 95% confidence of slowdown \
LTSMIN with caching 15,4 12,3 - 18,5
Java — C 11,3 10,7 - 11,9
Java — C with caching 38,6 31,8 — 45,5
C — Java 459 38,6 — 53,2
C — Java with caching 26,4 20,9 — 31,9
Java — Java 39,0 32,2 - 458

Table 11: Table showing the 95% confidence interval of the mean of the times slower than LTSMIN of
various benchmarks

5.3.1 LTSMIN caching

The goal of the LTSMIN cache is to limit calls to the language module. When a slow performing
language module is used this will cause a performance improvement. With an average slowdown of
15,4 we determined that the caching layer will most likely make the execution slower. This means that
the divine language module is not slow performing. In that case the caching layer will add additional
overhead which causes the slowdown. The caching layer works by using short states which have to be
converted to long states. There is also additional overhead in storing and retrieving states from the
cache.

5.3.2 Comparing Java — C to LTSMIN

A Java — C run refers to a run using a Java analysis algorithm using a C language module without
caching. We show the slowdown of a Java — C run plotted against the number of transitions of a model
in figure [T6]

We notice that an interesting pattern is shown. Up to 100 thousand transition there is a trend of
an increased slowdown. From 100 thousand until a million transitions the slowdown decreases. From
there on there is an increased slowdown. Note that the plot is made on a logarithmic scale which causes
the increase to look more dramatic than it is. We applied a linear regression analysis and plotted the
resulting trend line in the figure. This calculates a linear trend line using the number of transitions as
an x variable. It starts at a slowdown of 9,7 and has an increase of 0,23 for every million transitions.

The increase of slowdown that occurs with tests before 100 thousand states and from 1 million and
up can be explained by garbage collection. When the memory consumption of the JVM increases it
will spend time freeing memory. Unfortunately this will occur even when the maximal heap space is
available. Because garbage collection does not occur in LTSMIN it will increase the runtime compared
the LTSMIN.

It is difficult to determine what is causing the decrease in the middle of the plot, but we can make
make a suggestion. As shown in [7] it is possible that a JVM can cause shifts in the execution speeds of
functions. This means it is possible that certain functions can suddenly become faster during runtime. If
this were to occur to a function that is used very often during execution and it can result in a decreased
slowdown. When this function remains in this fast execution state and it is called more often, because
more transition are passing through it, it will cause less slowdown when more transition pass through
it. This would explain the decrease in slowdown of tests with between 100 thousand and 1 million
transitions.

The goal of this performance test is to determine the slowdown that can be expected when the Java
bridge is used. We can use the linear regression line to get an idea of what can be expected, but we will
also look at the mean of the performance tests. A Java — C run is on average 11,3 times slower than
LTSMIN. Later we will compare this number to other configurations. To do this fairly we will use the
95% confidence interval of the mean. This is shown in table

32

A Java Bridge for LTSMIN

5.3 Benchmarks 5 RESULTS

Slowdown of a Java — C run

35 T T T L | T T T T T UL | '. T T . T T T
linear regression ----------
30
" /
« /
25 | x L
i X 7
[X X X /
g 20t 20 ok -
C;) X X X * XX * « ><
5] X 7 i
§ 15 | " ><><><>><<>><<§>2< x >§<
= x X X K% X R - X)
10 E X X X X RR T _— X);/%,,X,,,,_}»%f"/ |
% 3 x
X >§><z§><<>><< §<>< e >§<>§< XX ><>><<3§<><>§<>{<< ;%5; S % >§<><>§<>< >§<>< >;<g><>< *
5 L X >z< % x X xx 2 X X % |
0 1 1 1 1 1
1 000 10 000 100 000 le+06 le4-07 1le+4-08

Number of transitions

Figure 16: Plot of the of slowdown of a Java — C run on a logarithmic scale

5.3.3 Explanation of the slowdown

When starting this project we already took a performance loss into account when languages were being
bridged. This was because JNI calls have some overhead which will make them slower than regular calls.
There is also time spent converting between C and Java arrays. This is also considered as part of the
cause of the slowdown.

To make sure the slowdown was not caused by something other than the JNI overhead we measured
the time lost by JNI calls. We did this by measuring the time a JNI call takes in one language. We
also measured the time the same call takes in the other language. When subtracting the latter from the
former we determined the overhead of the JNI call. We also measured the time that was spent converting
arrays. For this we are measuring the total time spent converting arrays, not only the JNI overhead
for the conversion. This is because converting arrays is not performed in LTSMIN. It is considered a
slowdown fundamental to bridging languages.

For the JNT overhead we will measure the overhead of the get Transitions calls and the overhead
of the callback that transfers the transitions from C to Java. We will also look at the time that is spent in
the language module. This is done by measuring the time of the getTransitionsAll to the LTSMIN
greybox and subtracting the time spent by the callback. Note that this refers to the C callback instead
of the Java callback. Therefore the time spent by the language module can be compared between the
Java bridge and the original LTSMIN implementation.

We used the 1ann. 5 model to run the test. It has around a million states and 3.6 million transitions.
The measurements are show in table Because both runs use the same exploration strategy they will
make the same amount of getTransitionsAll calls. This is one getTransitionsAll call for each
state. In the Java bridge every getTransitionsAll call is a JNI calls. The callback and the array
conversion are also JNI calls.

The overall runtime using the Java bridge is 5 times slower than the runtime of LTSMIN. When we
look at the JNI overhead we see that the JNI overhead of the callback takes the most time. Almost
half of the runtime is spent on overhead of this JNI call. When we divide the total amount of overhead
by the number of transitions we can tell that an average of 5,3 us per JNI call is spent. For the
getTransitionAll call this is 3,3 us. When the exploration time is subtracted by the JNI overhead
and the time spent converting arrays we get 9,5 seconds (this calculation was performed before rounding).
This is much closer to the exploration time of LTSMIN which is 6,4 seconds.

33

A Java Bridge for LTSMIN

5.3 Benchmarks 5 RESULTS
\ Java Bridge \ LTSMIN ‘
total runtime 404 s 8,1s
exploration time 37,9 s 6,4 s
runtime - exploration time 24 s 1,7s
JNI overhead getTransitionAll 3,3s
JNI overhead callback 19,2 s
array conversion overhead 6,0 s
total JNI overhead 28,5 s
exploration - JNI overhead 9,58
time in language module 1,3s 0,3 s
exploration not in language module 8,2s 6,1s

Table 12: Measurements to explain the slowdown of the Java bridge

When we compare the time spent in the language module we notice that the Java bridge spends 1
second more than LTSMIN. This is interesting because its language module uses the same code in both
the Java bridge and LTSMIN. However the difference is that in the Java bridge the language module is
inside a shared object and in LTSMIN everything is in the same executable. Calls within shared objects
are slower performing than calls within the same executable. This is because the machine code for a
shared object is different because it can be shared by different processes.

When we also subtract the time spent in the language module from the exploration time, we get a time
of 8,2 seconds for the Java bridge and 6,1 seconds for LTSMIN. There is not as much difference between
these numbers as there was for the original runtimes. This means that the slowdown has almost fully
been explained. The remaining difference can be attributed to the difference in performance of Java and
C. A big part of this might be that Java has a garbage collector that does automatic memory management
and in C the developer programs the memory management. We did give the JVM a sufficient heap space,
but when we profiled a run we noticed that garbage collection was still taking place.

5.3.4 Comparing Java — C with caching to Java — C without cache

Part of the research is to determine whether the caching algorithm lowers the runtime by limiting the
required JNI calls. However a problem is that the caching layer has to use getTransitionsShort
calls instead of getTransitionsAll calls. getTransitionsShort have to be made one transition
group at a time. Therefore the only way that the caching layer could reduce JNI call is when there are so
many cache hits that less getTransitionsShort calls have to be made than getTransitionsAll
calls would be made without caching. This is because when there is a cache hit it is not needed to request
transitions from the C language module because they can be retrieved from the cache instead.

] Result for Java — C with caching |

Test Java — C completed 242
Java — C with caching completed 237
Java — C with and without caching completed 233
tests with less JNI calls 174
Java — C less getTransitions with caching 5%
tests faster 12
average amount slower than Java — C without cache 48%
95% confidence of average slower 52% — 45%

Table 13: Results of Java — C with cache in numbers

34

A Java Bridge for LTSMIN

5.3 Benchmarks 5 RESULTS

The numbers of the results for Java — C with caching benchmarks are shown in table 75% of
the tests have less get Transitions calls when caching was enabled. However only 12 of the tests are
actually faster than the tests without caching. On average a run with caching enabled is 48% slower.

This means that although caching is limiting JNI calls it is rarely beneficial to enable it. To explain
why this is happening we will profile a Java — C run with caching which has few JNI calls but still a
higher runtime than a run without caching. We will use the 1ann.5 model. It only makes 1% of the
getTransitions calls of a run without caching yet it is runs twice as long with caching.

When we profile this test we notice that around 60% of the CPU time is spent in the convertState
method. This explains the increased runtime when caching is used. Although there are fewer JNI calls
made there is a lot more time spent converting between long and short states. This is not something
that can be avoided because it is fundamental to the caching algorithm that it stores short states. We
have already seen that this also occurs in LTSMIN runs with caching.

5.3.5 C — Java

We will compare a C — Java to LTSMIN and a Java — C run. We will also calculate the number of
times that C — Java is slower than LTSMIN. From table [[I] we can see that the confidence interval of
the average slowdown is 38,6 — 53,2. This means that it is slower than a Java — C run and it might be
slower than a Java — C run with caching. The 95% convidence interval of Java — C with caching and
C — Java overlap which means that we can not be certain that it will be slower on average.

It is expected that a C — Java is slower than Java — C because it is both using JNI and the caching
layer as the Java language module. From the previous tests we discussed we noticed that JNI calls and
the caching layer are both causing slowdown.

5.3.6 C — Java with caching

This time the caching layer is on the C side. It has the same goal of eliminating JNI calls. With
the confidence interval of the slowdown being 19,0 — 28,8 we can say that the C caching is making
the tests run faster than without caching. The average slowdown is about half that of a C — Java
run without caching. This means that even though getTransitionsShort calls are used instead of
getTransitionsAll, a lot of JNI calls are being avoided. This is to be expected because the Java
caching layer, which uses the same algorithm, also successfully reduced the number of JNI calls.

5.3.7 Java — Java

Because a Java — Java run is not using any JNI calls it can be used a measurement of what would
happen if every transition is retrieved from cache. The confidence interval of the average slowdown is
32,2 — 45,8 times. This is similar to the interval for a Java — C run with caching, but a bit higher.
Because we already determined that retrieving transitions from cache is actually slower than retrieving
them with a JNI call it is expected that the Java — Java run is slower than a Java — C run with caching.
That is because all transitions are retrieved from cache in a Java — Java run.

5.3.8 Memory usage

An important part of model checking is that it can be limited by memory usage. We measured the
maximum memory usage of the benchmarks. The average ratio of the maximum memory usage between
LTSMIN and the benchmarks is shown in table [[4 It can be seen that using Java will increase the
maximum amount of memory used. An important note is that during the benchmarks the JVM was
given the maximum amount of heap space, therefore it will not perform garbage collection as much. The
result of this is that there is more memory usage.

The converting of states will generate garbage which is unlikely to be collected. We see this in the
memory usage. When the Java caching layer is used in the Java — C run and when it is used as a
a language module in the Java — Java run it is needed to convert the short states from the cache to
long states. The memory usage is the highest for these tests. When the Java caching layer is used as a
language module in the C — Java run without caching it is not needed to convert the short states to
long states on the Java side. We see that this means that less garbage is generated and therefore the
memory usage is lower. When less calls are made to Java cache when C caching is made there is also less

35

A Java Bridge for LTSMIN

5.4 Ease of use 5 RESULTS

memory usage. This is because the caching layer will make a copy of the transition that is in the cache
to retrieve it. This is done to ensure the cache in not edited when the provided transition is edited. This
will also generate garbage. Another cause of high memory usage would be a memory leak, but we did
not find this therefore we will assume that there is no leak.

In summary we can say that the usage of the Java caching layer will generate a lot of garbage which
results in a lot of memory usage. This is due to the copying of the states from the cache and the
converting to and from short states which is required to use the caching layer. The less it is used the
less memory is used.

] Benchmark \ Average times more memory \ 95% confidence ‘
LTSMIN with caching 1,3 1,1-1,5
Java — C 1,6 1,4-19
Java — C with caching 4,6 4,1 -5.2
C — Java 2,5 2,2 - 27
C — Java with caching 1,6 1,4-19
Java — Java 4.6 4,0-5,2

Table 14: Table showing the 95% confidence interval of the mean of the ratio of the memory usage
between LTSMIN and various benchmarks

5.4 FEase of use

To evaluate the ease of use we are looking at the lines of code and number of steps to add certain modules.
We exclude comments and blank lines from the lines of codes we mention. Table [[5] shows the various
modules and the lines of code it takes in LTSMIN and in the Java bridge.

LTSMIN | Java Bridge
language module 200-400 93
caching wrapper 117 78
search algorithms | 800 - 1100 258

Table 15: Table showing the lines of code of various modules

5.4.1 Language modules

For the Java implementation of a language module we are looking at the Java cache layer that retrieves
the statespace from a file. This takes 166 lines of code. Because this caching layer also contains code
to write the statespace to cache, we also made an implementation which can only read the serialized
statespace. This implementation has 93 lines of code. This can be considered as the minimum amount
of code needed to make a language module in Java. This is considerably less than the 200 lines minimum
of a C language module. In practice a Java language module will probably require more than 93 lines of
code because loading a serialized model does not require any translation from one type of model to the
one presented by the Java bridge. However even when it takes more than three times as many lines it
will still be considerably less than the 500 lines LT'SMIN sometimes requires.

Now we will examine the required steps to add a language module. To begin implementing a language
module a class extending the Greybox class has to be made. The first object which it must initialize is the
LTSTypeSignature object. This object contains the type information as discussed in section[£:2.5] The
next object that a language module must provide is a DependencyMatrix as described in section [£:2.7]

Next the methods for retrieving states must be implemented. As a minimum the getInitalState
and either get TransitionsLongor getTransitionsShort hasto be implemented. As explained in
section[3.3]when one of those get Transitions are implemented the other ones will work automatically.

When these methods also have been implemented the Java language module has to be used by the
rest of the implementation. To do this it has to be added to the GreyboxFactory class. There the

36

A Java Bridge for LTSMIN

5.4 Ease of use 5 RESULTS

relation between a file extension and the language module is made. This involves only adding a few lines
of code to make this relation and the language module will be used automatically.

The steps required to add a Java language module are essentially the same as the ones that are
needed in LTSMIN. However in LTSMIN a lot more lines of code are required to achieve the same result.
When we inspect the code we see that a lot of lines are simulating a polymorphism by setting function
pointers in structures. Because Java is object oriented, polymorphism is built-in and thus this code is
not needed.

A big advantage to the Java bridge is that it is much more clear what needs to be done. In LTSMIN
there are various values which must be initialized. For some values this also must occur in a particular
order. When values are not initialized or in the wronger order there will be no compilation errors.
However there will be vague errors at runtime. In the Java bridge when values are not initialized it will
not compile. Also the order of initialization is much less important. If an error would occur at runtime
because of a wrong implementation it is much more clear what went wrong and where the error occurred.

Also, to add a new language module in LTSMIN it is required to link it with the analysis algorithms
to make it available as an additional executable. In Java language modules are used dynamically based
on the file extension of the loaded model.

5.4.2 Pins2Pins wrappers

We have implemented a Java Pins2Pins wrapper in the form of a caching layer. This caching layer is
implemented in 78 lines of code while the C caching in LTSMIN takes 117 lines. Another wrapper that
was implemented was wrapper which counted the amount of getTransitions calls. This wrapper
used 35 lines of code. With the use of Java objects instead of C structures the code is also much easier
to read.

To make a Pins2Pins wrapper the GreyboxWrapper class must be extended. Then any method
which the wrapper changes can be overridden. Other methods will automatically use the implementa-
tion of the wrapped Greybox. The wrapped Greybox is also available to the implementation of the
Pins2Pins wrapper. To make sure the Pins2Pins wrapper is used it also has to be added to the
GreyboxFactory. Because a Pins2Pins wrapper is turned on based on a commandline parameter,
this should also be added.

For adding new Pins2Pins wrappers it is needed to add new commandline parameters. This is done
by adding a value to the Parameter enum. This can then be used as a key to add the parameter to the
CommandlineParameters class. On a single line the parameters character, long name, description
and possible values is added.

To add a commandline parameter to LTSMIN a similar line has to be added describing it.

5.4.3 Analysis algorithms

For the analysis algorithm we implemented breadth first search and depth first search. LTSMIN also
has these algorithms, however LTSMIN also has two other analysis algorithms specifically for LTL model
checking. All of these algorithms are implemented twice. Each of these implementations is specified in
one file. This means that BFS and DFS are implemented in the same file together with other analysis
algorithms. This makes it difficult to compare the lines of code of the two algorithms fairly. One file has
BFS and DFS and two other algorithms and it contains 1300 lines of code. The methods for the LTL
analysis algorithms contain around 500 lines of code. The other file has BFS and DFS together with one
other algorithm and it contains 1208 lines of code. Its other analysis algorithm takes around 60 lines of
code. We will use the total lines of code with the code subtracted with the lines of code of the algorithms
which the Java bridge does not have. The actual lines of code BFS and DFS in LTSMIN require will be
somewhat less because there is still some code of the other algorithms interleaved.

In the Java bridge the code for BFS and DFS has 258 lines of code. This is considerably less than the
800 or 1100 for the LTSMIN implementation when the other algorithms are subtracted. When we inspect
the code we see that a lot of lines of code deal with setting function pointers in structures. Again this is
used to simulate polymorphism. Another big part of the code deals with callback mechanisms as the one
explained in section It is also needed to have different code for every statespace storage technique
that is used. In the Java implementation the storage can just be performed by any Set implementation.
This means that there is no need for changes in the algorithm when the storage technique is changed.

37

A Java Bridge for LTSMIN

5.5 Maintainability 5 RESULTS

Since Java sets also do not use internal iteration, the code for iterating over a set is also much smaller
and easier.

In LTSMIN all analysis algorithms are added to a single file. Because they are all search algorithms
it is possible to reuse some of the code. To add an entirely different implementation of an analysis
algorithm it is needed to compile LTSMIN differently. Every language module has to be compiled with
the new analysis algorithm to make new executables.

In the Java bridge there is the SearchAlgorithm abstract class which can be extended for different
search algorithms. There are 4 methods which have to be implemented by a search algorithm. When this
is done search algorithm should be added to AnalysisAlgorithmFactory. This way it is possible to
select the new search algorithm by setting the —analysis commandline parameter.

To implement an entirely different analysis algorithm a class implementing the AnalysisAlgorithm
interface must me made. This only requires implementing one method which returns a Result. This
AnalysisAlgorithm should also be added to the AnalysisAlgorithmFactory to allow it to be
used.

5.5 Maintainability

To evaluate the maintainability of the Java bridge we look at various scenarios that can occur and require
maintenance of the Java bridge. For each of these scenarios we will look at the number of steps required
to complete the scenario.

5.5.1 Extending the PINS interface

When a method is added to the PINS interface of LTSMIN it should also be added to the PINS interface of
the Java bridge. In LTSMIN the method declaration is added to the greybox header. In the Java bridge
the method declaration should be added to the Greybox abstract class. This means that every class
extending Greybox should implement the new method. The Java language modules have to provide a
Java implementation of the method.

The NativeGreybox class should use the implementation of LTSMIN. It does this by declaring
the method native. Now Jace should also add this method to the NativeGreybox peer class. This
way a C+-+ implemention of the method can be made which can call the original LTSMIN method. To
add the method to the peer class an Apache ANT script has to be executed [5]. This will automatically
generate the appropriate headers and sources for the peer class. Now the C++ implementation of the
method can be added to the peer class. There it is might be needed to perform type conversions. Java
primitives are automatically converted and arrays can be converted using the method that are included
in the Java bridge. Using the converted types the original method of LTSMIN can be called.

In summary the following steps need to be taken:

1. Add the method to the Greybox class

2. Implement the method in Java language modules

3. Declare the method as native in NativeGreybox
4. Run Jace using the ANT script

5. Implement C++ method wrapper

The implementation of the method in Java and the C4++ method wrapper in the NativeGreybox
peer class are the steps that take the most work. The other ones only require adding a declaration or
running a script. How much work adding the method to Java takes precisely depends on how complicated
this method is. When it adds a fundamental feature to LTSMIN it might be needed to add new classes
and methods to various parts of the Java implementation. When it is less complicated only a few lines
of code might be needed to implement the method in Java.

38

A Java Bridge for LTSMIN

5.5 Maintainability 5 RESULTS

5.5.2 Adding a parameter to a PINS interface method

Adding a parameter requires similar steps to adding a method. However instead of adding declaration
it is needed to change existing declarations. Since the method already exists in the NativeGreybox
peer class it is only needed to modify the method by adding the parameter.

The following steps need to be taken:

1. Add the parameter in the Greybox class

2. Add the parameter in Java language modules including NativeGreybox
3. Run Jace using the ANT script

4. Update the implementation of the C++ method wrapper

When the parameter is a primitive type it is easy to add to the different methods. Primitive C types
can be mapped to some Java primitive. When it is a pointer to some structure, there is more work that
needs to be done. It could be needed that a class representing the structure needs to be created. The
C++ implementation of the wrapping peer method will need to convert this class back to a C structure.

5.5.3 Removing a method or parameter

Changing a method from the PINS interface causes the analysis algorithms which use it to not work
anymore. Therefore it is unlikely that methods that are used often are changed. However it could still
occur for example during the development of new features. This would require maintenance of the Java
bridge.

To remove a method or parameter is easier than adding them. It requires the removal from the
Greybox, Java language modules and the NativeGreybox. When the NativeGreybox is changed it
is needed to run Jace. This will update the method declaration for the peer class. Now the implemen-
tation can be updated. The method or parameter can be removed. When a parameter is removed its
accompanying type conversion can also be removed.

1. Remove the parameter /method from the Greybox class
2. Remove the parameter/method from the Java language modules including NativeGreybox
3. Run Jace using the ANT script

4. Update the implementation of the C++ peer class

5.5.4 Comparison to other possible implementations

There are other techniques to make a bridge between Java and C. Because we use Jace we do not need
to write language bridging code manually. Code to make the bridge between a Java method and a
C++ implementation in a peer class is automatically generated. When we would be using a technique
that requires writing JNI code manually there is a lot more work involved with maintaining the bridge.
Implementing Java methods in C manually requires a very specific declaration. When the declaration
is wrong it is hard to tell what is wrong. Therefore it is much easier to use a tool like Jace which can
generate these declarations.

Making JNT calls from C manually is also difficult. Making JNI calls might be needed to perform
type conversions when a parameter is an object. Unfortunately it requires multiple calls to be able to
perform one single JNT call, for example: a call to retrieve the class, a call to retrieve the method, a call
to retrieve an instance and then performing the actual call. When the method call requires arguments,
they too might need multiple calls to retrieve them. Unfortunately these calls are not type safe, which
means errors will display as segmentation violations at runtime [I3]. This means Jace will take away a
lot of work by making it possible to make JNI calls easier. It is possible to make a call to a C++ proxy
class which will result in a JNT call.

Besides using a different language bridging technique there also was the possibility to implement
every language module in Java. However, the problem with this is that there is no generic interface to
make calls to. When a change needs to be implemented in the Pins interface it is needed to make a

39

A Java Bridge for LTSMIN

5.5 Maintainability 5 RESULTS

different implementation of that change for every LTSMIN language module. Bridging from one Pins
interface to another allows every language module behind this interface to work automatically.

Another possible solution would be not to make a bridge at all. We already decided that a bridge
needs to be made to allow support of the existing language modules. If there was no bridge then the
Java version would need new language modules in order to work. But this would make maintenance
much easier. Of course there would be no bridge maintenance at all. However, some maintenance might
be needed to ensure both the Java and C implementation have the same features. When a feature is
added to LTSMIN it only has to be implemented in Java. There is no need to run Jace or to update
C++ method wrappers.

40

A Java Bridge for LTSMIN

6 CONCLUSION

6 Conclusion

6.1 Performance

The goal of the performance tests was to determine whether the Java bridge is fast enough to be useful
for research in model checking. There are many models which complete in under 10 seconds which allows
fast development of new algorithms. Only 47 out of the 300 models from the BEEM database did not
complete in under one hour. This includes models which ran out of memory before an hour. With the
possibility of checking so many models we can conclude that the Java bridge is fast enough to be useful.
Analysis algorithms can be implemented in Java and the models are checked with an average slowdown
of 11,3.

The major cause of the slowdown is the fact that language are bridged using JNI. When new Java
only language modules are added there will be no such slowdown. Then the Java bridge will function as
a full Java implementation of LTSMIN.

The other runs that made use of the Java caching layer were not that quick. This includes the
runs that used the Java caching layer as a language module. We see the same when we look at the
slowdown that is caused in an LTSMIN run with caching. With this information we can conclude that
the caching layer is not effective in increasing performance when the DVE language module is used. It
does not always reduce the amount of JNI calls and when it does it adds so much overhead that it is not
beneficial.

However, when the calls that the caching layer avoids are slow enough, it does have a benefit. The
caching layer for the C — Java run was avoiding both the JNI call and the use of the Java caching
layer as the language module. From the results we can see that these calls are slow enough to make the
caching layer effective. It made the C — Java runs twice as fast.

The memory usage of Java is more than that of LTSMIN. Because we gave the JVM the maximum
amount of heap space we can not make definitive conclusions about its consequences. However, we can
say that this is something that has to be taken into account when working with the Java bridge.

6.2 Ease of use

In the previous section we discussed the differences in the ease of use of LTSMIN and the Java bridge.
Additional modules take less lines of code to program in the Java bridge. This is for a big part because
of the object oriented nature of Java. There is no code needed to simulate polymorphism. Also iteration
using an external iterator also takes less lines of code compared to internal iteration with callback
functions.

In the Java bridge, the language modules need to provide the same types of information as they do
in LTSMIN. This means that the number of steps is not lower. The same goes for analysis algorithms.
In the most basic case only one method has to be implemented in both LTSMIN and the Java bridge.
However, in the Java bridge there is an abstract class or interface which must be implemented before
the it can be compiled. This makes it easy to see what must be implemented. In LTSMIN, there are
methods calls which must be made, but whether this has been done correctly will only become visible
at runtime. Therefore the steps that need to be made are more obvious in the Java bridge compared to
LTSMIN.

Another thing affecting the ease of use are the difference between Java and C. Java will often generate
more and more detailed error messages at compile time. This allows developers to correct errors early
on. Java also takes care of memory management, whereas in C the developer has to take care of this
manually. There is also more functionality built-in Java’s API then there is the standard C library. This
together makes Java easier to use than C for a lot of developers.

In conclusion we can say that the Java bridge will make developing new modules for LTSMIN much
easier. The Java bridge provides an easy to use API to allow rapid development of new features.

6.3 Maintainability

The maintainability of the Java bridge depends greatly on the bridging technique used. Of course not
having a bridge is the easiest to maintain, but then the features of the C implementation of LTSMIN will
be lost. Jace makes maintaining a bridge between C and Java much easier. Changes to the Java side are

41

A Java Bridge for LTSMIN

6.4 Summary 6 CONCLUSION

automatically translated to C++ peer and proxy classes. There is no need to work with difficult JNI
calls. With Jace Java methods can be implemented in C4++ and it makes Java calls from C++ look like
normal C++ calls.

We can conclude that although maintaining the Java bridge requires some work when the Pins
interface changes, it is not overly work intensive. This will make it less likely that the Java bridge will
remain broken after a Pins interface change.

6.4 Summary

The Java bridge makes it possible to add Java analysis algorithms and Java language modules to the
LTSMIN toolset. The Java architecture provides a more structured design of LTSMIN. Developing new
features is a lot easier when the Java bridge is used. Maintenance of the Java bridge is required, but is
not very difficult.

The caching layer is only effective when the calls it avoid are really slow. It will add significant
overhead which will decrease performance. JNI calls are not slow enough to benefit from caching.

42

A Java Bridge for LTSMIN

7 FUTURE WORK

7 Future work

Some features of LTSMIN still have to be implemented in Java. Currently state labels are not imple-
mented and the the trace to a deadlock state is not recorded. These features should not be that difficult
to implement.

Other future work could look at improving the performance of the Java bridge. Currently a JNI call
has to be made to copy an array from C to Java. It might be possible to implement some way of sharing
memory between Java and C to avoid this JNI call. It could even be possible to avoid the need to copy
every state to Java if it is possible for Java to use the native state.

Another area where performance improvement are needed is the caching layer. Currently it is slower
to retrieve a state from cache than to make a JNI call to a C language module. It is likely that this
is just because of the way the caching algorithm works. We also see that the C cache is slower than
the DVE language module. However there is room for improvements. Some performance loss might be
caused by the fact that the BitSet implementation that is used in the DependencyMatrix is not
that fast. Another cause might be that many method calls are made to convert a state. The amount of
garbage generated by the caching layer is also substantial. Either way it is likely that the performance
of the Java bridge can be improved on various areas.

The other way to make caching faster is to make sure that the caching algorithm which only looks
at variables that are read works. It showed that it is capable of having a lot more cache hits than the
algorithm which stores the full short states. To make sure that it works, the possible bug in the DVE
language module has to be resolved.

Other future work can focus on adding additional features. Currently it is not possible to pass
commandline options from Java to the C greybox and the other way around. This would allow the
Java bridge to take advantage of the Pins2Pins wrappers of LTSMIN like regrouping and partial order
reduction. The Java bridge can also implement these Pins2Pins wrappers. Other features than can
be implemented are multi-core and distributed reachability in the Java bridge.

All these features are already implemented in LTSMIN, but there is also room for entirely new features
to be added to the Java bridge. Additional language modules can be added. Especially languages from
Java based model checking tool. New model checking techniques can also be implemented.

In conclusion we can say that the Java bridge is an expandable model checking framework on which
new features can easily be added.

43

A Java Bridge for LTSMIN

REFERENCES REFERENCES
References
[1] Stephan Blom, Jaco van de Pol, and Michael Weber. Bridging the gap between enumerative and

symbolic model checkers. CTIT, University of Twente, Enschede, Technical Report TRCTIT-09-30,
2009.

Edmund Clarke. Model checking. In S. Ramesh and G Sivakumar, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 1346 of Lecture Notes in Computer Science,
pages 54-56. Springer Berlin / Heidelberg, 1997. 10.1007/BFb0058022.

Jace Community. jace - Code-generation framework that makes it incredibly easy to integrate C++
and Java code - Google Project Hosting. http://code.google.com/p/jace/.

Jean Fernandez, Hubert Garavel, Alain Kerbrat, Laurent Mounier, Radu Mateescu, and Mihaela
Sighireanu. CADP a protocol validation and verification toolbox. In Rajeev Alur and Thomas
Henzinger, editors, Computer Aided Verification, volume 1102 of Lecture Notes in Computer Science,
pages 437-440. Springer Berlin / Heidelberg, 1996.

The Appache Software Foundation. Apache ant. http://ant.apache.org/l

Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java performance evalua-
tion. In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA 07, pages 57-76, New York, NY, USA, 2007. ACM.

Joseph Yossi Gil, Keren Lenz, and Yuval Shimron. A microbenchmark case study and lessons learned.
In Proceedings of the compilation of the co-located workshops on DSM’11, TMC’11, AGERE!'11,
AOOPES’11, NEAT’11, 6#38; VMIL’11, SPLASH ’11 Workshops, pages 297-308, New York, NY,
USA, 2011. ACM.

Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck Van Weerdenburg.
The Formal Specification Language mCRL2. In In Proceedings of the Dagstuhl Seminar. MIT Press,
2007.

Jan Friso Groote and Alban Ponse. Proof Theory for muCRL: A Language for Processes with Data.
In Proceedings of the International Workshop on Semantics of Specification Languages (SoSL), pages
232-251, London, UK, UK, 1994. Springer-Verlag.

Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Professional, 1 edition, September 2003.

Sheng Liang. The Java native interface: programmer’s guide and specification. Addison-Wesley
Professional, 1999.

Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state explosion problem.
PhD thesis, Pittsburgh, PA, USA, 1992.

Ruben Oostinga. Research topics: A java bridge for LTSmin. January 2012.

Radek Pelanek. BEEM: Benchmarks for Explicit Model Checkers. In Dragan Bosnacki and Stefan
Edelkamp, editors, Model Checking Software, volume 4595 of Lecture Notes in Computer Science,
pages 263—-267. Springer Berlin / Heidelberg, 2007.

Michael Weber. An embeddable virtual machine for state space generation. In Proceedings of the
14th international SPIN conference on Model checking software, pages 168—186, Berlin, Heidelberg,
2007. Springer-Verlag.

44

http://code.google.com/p/jace/
http://ant.apache.org/

A Java Bridge for LTSMIN

A CLASS DIAGRAM

A Class Diagram

45

A Java Bridge for LTSMIN

B INVOCATION EXAMPLES

B Invocation examples

Show all the commandline options

$./run.sh —--help

Option Description

——analysis Analysis algorithm = dfs | bfs

-c, —-cache Smart cache: Store read variables,
retrieve write variables

——cachetofile Cache all transitions to a specified
file (--cachetofile file.dat)

——countcalls Count number of getTransition calls to
greybox

-d, —--deadlock Find a deadlock

-h, --help Print this message

-m, —--matrix Prints the Dependency Matrix

—-shortcache Cache short transitions

-t, —-—trace Find a trace to deadlock

-—time Measure the analysis time

-v, —-verbosity [Integer] Set the verbosity 0 - 2

View the contents of run.sh

$ cat run.sh
#!/bin/bash
DIR="S$(cd "$(dirname "${BASH_SOURCE[O]}")" && pwd)"

$SDIR/config_local.sh

export LD_LIBRARY_PATH=$DIR/cpp_src/.libs

java —-Xmx2G \

-cp $DIR/bin/enhanced:$DIR/1ib/jopt-simple-4.3.jar:\
$JACE_HOME/core/runtime/target/jace-runtime-1.2.14.jar:\
$SDIR/1lib/guava-11.0.2.jar ltsmin.LTSmin $@

Run a full statespace exploration in BFS order on phils.1.dve

$./run.sh phils.l.dve

Precompiled divine module initialized
INFO: Level 1 has 4 states, explored 1 states 20 transitions
INFO: Level 2 has 10 states, explored 5 states 52 transitions
INFO: Level 3 has 16 states, explored 15 states 92 transitions
INFO: Level 4 has 15 states, explored 31 states 124 transitions
INFO: Level 5 has 12 states, explored 46 states 152 transitions
INFO: Level 6 has 10 states, explored 58 states 176 transitions
INFO: Level 7 has 4 states, explored 68 states 188 transitions
INFO: Level 8 has 4 states, explored 72 states 200 transitions
INFO: Level 9 has 4 states, explored 76 states 212 transitions
INFO: state space has 10 levels 80 states 212 transitions
INFO: Analysis finished

Run a full statespace exploration in DFS order on phils.1.dve

$./run.sh phils.l.dve --analysis dfs

Precompiled divine module initialized
INFO: state space has depth 43, 80 states and 212 transitions
INFO: Analysis finished

Find a deadlock in phils.1.dve

$./run.sh phils.l.dve -d

Precompiled divine module initialized
INFO: Level 1 has 4 states, explored 1 states 20 transitions
INFO: Level 2 has 10 states, explored 5 states 52 transitions
INFO: Level 3 has 16 states, explored 15 states 92 transitions
INFO: Level 4 has 15 states, explored 31 states 124 transitions
INFO: state space has 4 levels 46 states 124 transitions
INFO: State found
INFO: [fork([0]={1}, fork[1l]={1}, fork[2]={1}, fork[3]={1},
phil_O={one}, phil_l={one}, phil_2={one}, phil_3={one}]

Print the dependency matrix of a model

$./run.sh loyd.l.dve --matrix
Precompiled divine module initialized

Dependency matrix:

tHtttttrt—

R

+H++Htrt-

++++Htrt+—

rrrrrr-——+

46

A Java Bridge for LTSMIN

C PERFORMANCE TESTS

C Performance tests

Did not compile

plc.1

plc.2

plc.3

plc.4

train-gate

train-gate

train-gate

train-gate

train-gate

.1
.2
.3
train-gate.4
-5
.6
7

train-gate

Model States | Transitions c—c Saene | Java—c | TR0 C — Java Java — Java G

adding.1 7372 11144 0,08 0,095 0,756667 0,986667 1,10333 1,155 1,15333
adding.2 836838 1289748 0,77 2,92833 13,2633 18,3967 38,5567 18,83 36,3667
adding.3 1894376 2921634 1,29333 6,15833 27,745 38,5567 88,83 43,0533 77,85
adding.4 3370680 5201282 1,93667 11,205 48,0745 68,1033 159,073 74,8767 148,083
adding.5 5271456 8135364 2,82667 19,25 76,08 103,717 260,82 119,243 237,333
adding.6 7609684 11746148 3,91 25,43 111,56 154,387 389,84 177,493 352,627
anderson.1 347039 704302 0,566667 1,79 6,97 6,59667 14,4167 6,90667 5,06
anderson.2 1459 3705 0,0733333 0,0733333 0,486667 0,703333 0,633333 0,706667 0,483333
anderson.3 75573925 388237977 143,897 824,03 3434,03 3354,05 nomem 3360,67 798,097
anderson.4 29641 97516 0,176667 0,481667 1,57 1,72 2,44 1,69 0,96
anderson.5 28143673 nomem nomem timeout timeout notserialized notserialized notserialized
anderson.6 18206917 86996322 41,2433 276,19 643,167 785,507 nomem 745,753 273,17
anderson.7 28558175 nomem nomem nomem timeout notserialized notserialized notserialized
anderson.8 27858852 nomem nomem timeout nomem notserialized notserialized notserialized
at.1 39354 108438 0,19 0,881667 1,74 2,47 3,46 2,54333 1,40333
at.2 49443 146940 0,226667 1,05833 2,02 2,80667 4,01667 2,80667 1,52667
at.3 1711620 6075360 2,49333 27,2833 46,35 76,8433 132,15 74,89 27,41
at.4 6597245 25470140 8,86 132,327 191,89 373,627 587,3 365,503 133,63
at.5 31999440 125231180 45,6867 662,263 930,727 1828,97 nomem 1789,02 645,913
at.6 37412761 nomem nomem timeout timeout notserialized notserialized notserialized
at.7 28881350 nomem nomem timeout timeout notserialized notserialized notserialized
bakery.1 1506 2697 0,0733333 0,11 0,45 0,693333 0,726667 0,75 0,563333
bakery.2 1146 2085 0,07 0,07 0,41 0,696667 0,66 0,72 0,496667
bakery.3 32919 85061 0,17 0,56 1,90333 1,89667 2,73333 1,84333 1,25333
bakery.4 157003 411843 0,496667 1,89333 4,14 5,31667 9,22667 5,43667 2,96667
bakery.5 7866401 27018304 9,85 102,05 206,935 269,597 500,847 263,63 107,257
bakery.6 11845035 40400559 15,05 154,4 306,47 401,523 749,487 402,477 155,83
bakery.7 29047471 100691444 40,8367 395,957 778,563 1002,1 nomem 967,7 396,07
bakery.8 30442698 nomem nomem timeout timeout notserialized notserialized notserialized
blocks.2 7057 18552 0,0866667 0,205 0,806667 1,44667 1,67 1,51667 1,94667
blocks.3 695418 2094753 1,56333 16,95 17,83 61,1067 101,22 60,1333 145,06
blocks.4 23598882 nomem nomem timeout nomem notserialized notserialized notserialized
bopdp. 1 12642 24039 0,103333 0,671667 0,97 2,16333 2,33333 2,21333 1,35
bopdp.2 25685 72968 0,166667 1,16 1,81333 3,30333 3,77 3,36 1,64
bopdp.3 1040953 2747408 2,10333 31,735 23,4767 85,71 110,693 86,2767 31,1567
bridge.1 3186 4565 0,0733333 0,135 0,56 1,01667 1,27667 1,07333 1,03333
bridge.2 96923 191360 0,326667 2,57667 2,50333 7,51667 9,18333 7,14667 4,47667
bridge.3 838864 1896973 1,44333 27,0583 16,7433 63,63 85,0133 61,34 31,7167
brp.1 18928 35772 0,123333 0,516667 1,28 1,68667 2,01333 1,655 1,24
brp.2 29188 58151 0,15 0,671667 1,38 2,02667 2,58333 1,99667 1,31667
brp2.1 42285 60962 0,186667 1,08 1,59 2,88667 3,83 2,93667 2,45333
brp2.2 61464 89007 0,23 1,23667 1,87667 3,64333 1,83333 3,72 2,90667
brp2.3 40184 57966 0,176667 1,03167 1,58 2,92 3,63333 2,78667 2,3
brp2.4 679993 1065222 1,24 10,16 11,4133 29,4667 42,9167 29,2633 20,6
brp2.5 298111 430858 0,71 4,62167 5,54333 14,1267 18,7733 14,1367 9,08667
brp2.6 5742313 9058624 4,08667 77,0533 87,35 220,157 348,367 222,187 139,82
brp.3 996627 2047490 1,55333 14,585 19,13 35,7033 59,5267 34,95 15,59
brp.4 12068447 25085950 9,58 193,437 223,42 450,85 713,457 433,767 201,277
brp.5 17740267 36903290 17,63 289,92 318,783 643,723 1058,37 651,633 290,793
brp.6 42728113 89187437 36,2133 789,757 773,787 1780,53 nomem 1742,39 767,043
cambridge.1 11339 26768 0,106667 0,461667 1,05333 1,79667 2,13667 1,84 1,57667
cambridge.2 15940 60907 0,13 0,671667 1,33 2,08 2,86 2,2 1,72
cambridge.3 18138 45536 0,136667 0,745 1,2 2,27667 2,80333 2,41333 2,16667
cambridge.4 60463 153956 0,286667 1,985 2,16667 5,13333 6,98667 5,63 4,15667
cambridge.5 698912 3199507 2,32667 24,88 23,8633 58,62 87,35 58,7867 39,8633
cambridge.6 3354295 9483191 6,11667 126,903 80,5733 286,137 382,017 289,387 187,277
cambridge.7 11465015 54850496 31,58 564,747 400,563 1255,71 nomem 1324,82 795,27
collision.1 5593 10792 0,0766667 0,148333 0,706667 0,886667 1,03667 0,915 0,516667
collision.2 12661 28144 0,106667 0,265 1,02 1,20333 1,51667 1,22 0,65
collision.3 434530 1018734 1,07667 6,47 9,38333 16,29 25,3267 16,3733 6,79667
collision.4 41465543 113148818 53,5633 756,62 931,57 1787,42 nomem 1772,3 751,34
collision.5 19473613 nomem nomem nomem nomem notserialized notserialized notserialized
collision.6 18845059 nomem nomem nomem timeout notserialized notserialized notserialized
cyclic__scheduler.1 4606 20480 0,09 0,228333 0,823333 1,05333 1,26667 1,04333 0,56
cyclic__scheduler.2 3302 7720 0,0733333 0,125 0,626667 0,836667 0,903333 0,77 0,423333
cyclic__scheduler.3 229374 1597440 1,67667 11,7317 12,56 27,09 37,36 27,2 11,8933
cyclic__scheduler.4 473414 1736712 1,66667 13,1067 14,21 28,67 42,5767 28,5567 12,6
driving__phils.1 14889 28595 0,113333 0,416667 1,09667 1,49667 1,76 1,52333 0,956667
driving__phils.2 33173 81854 0,183333 0,928333 1,64333 2,54667 3,29333 2,61667 1,37667
driving_phils.3 23583477 nomem nomem timeout timeout notserialized notserialized notserialized
driving_ phils.4 21317183 nomem nomem timeout timeout notserialized notserialized notserialized
driving_ phils.5 18601771 nomem nomem timeout timeout notserialized notserialized notserialized
elevator.1 8543 15914 0,09 0,298333 0,86 1,40667 1,72333 1,44667 1,02
elevator.2 2825 5274 0,09 0,13 0,555 0,936667 0,993333 0,953333 0,71
elevator2.1 1728 4768 0,0666667 0,0783333 0,483333 0,765 0,726667 0,746667 0,51
elevator2.2 179200 1036800 0,806667 2,40167 7,81667 8,11667 15,6767 8,14667 3,95
elevator2.3 7667712 55377920 18,02 92,1933 361,81 307,93 695,853 293,433 123,847
elevator.3 416935 1025817 1,43 12,4483 10,1567 35,46 42,7833 34,7067 13,4933
elevator.4 888053 2320984 2,41667 21,79 21,92 61,57 81,9167 60,2933 22,1367
elevator.5 14082548 nomem nomem nomem timeout notserialized notserialized notserialized
elevator__planning.1 27630 163880 0,21 0,593333 2,01333 2,08 3,24 2,09333 1,31
elevator_planning.2 11428767 93278857 38,79 205,61 932,38 2649,7 nomem timeout 231,557
elevator__planning.3 52496 466568 0,373333 1,05 3,87 3,22 6,33 3,3 1,85333
exit.1 3239334 7491035 3,71333 58,8733 64,8467 177,05 247,52 173,727 61,2633
exit.2 33670 88203 0,186667 1,74833 1,97667 4,95 5,54667 4,99 2,54

47

A Java Bridge for LTSMIN

C PERFORMANCE TESTS

Model States | Transitions ‘ c-c ‘ S Cnens ‘ Java — C ‘ e e ‘ C = Java ‘ Java — Java ‘ i

exit.3 2356294 7047332 3,83667 88,99 56,4533 244,727 302,403 247,133 90,75
exit.4 24177544 nomem timeout timeout timeout notserialized notserialized notserialized
exit.5 833226 3194881 2,24333 49,33 24,79 133,027 161,923 132,797 48,9033
extinction.1l 8993 23750 0,103333 0,666667 0,943333 1,85 2,02 1,78667 1,23333
extinction.2 10061 26683 0,126667 0,933333 1,025 2,13 2,24333 2,09667 1,51667
extinction.3 751930 2669267 2,61 50,77 22,5233 106,223 124,42 101,457 47,63
extinction.4 2001372 7116790 5,13 142,93 60,1533 293,233 363,48 294,387 137,517
firewire__link.1 1724 3301 0,113333 0,668333 0,533333 2,38667 2,73 2,45667 2,41333
firewire__link.2 55887 134271 0,3 12,9983 2,18333 32,85 31,8233 33,7033 16,0767
firewire_ link.3 5683833 nomem timeout timeout timeout notserialized notserialized notserialized
firewire_link.4 24330 56219 0,193333 9,79667 1,49333 25,8667 25,3967 26,5133 12,3867
firewire__link.5 3371219 59782059 timeout timeout 489,24 timeout notserialized notserialized notserialized
firewire__link.6 3076225 timeout timeout timeout timeout notserialized notserialized notserialized
firewire__link.7 399598 1096535 1,68333 236,308 11,5567 563,87 594,337 562,14 232,39
firewire__tree.1 272 864 0,07 timeout 0,733333 1,43667 1,8 1,33333 1,41333
firewire__tree.2 2441 5692 0,103333 0,871667 0,61 2,14667 2,23 2,26667 1,81
firewire__tree.3 86556 317063 0,986667 67,9183 4,37667 139,657 138,357 145,647 63,9667
firewire__tree.4 169992 630811 1,91 222,123 8,34 450,02 nomem 477,31 208,553
firewire__tree.5 776538 18225703 nomem nomem 252,683 timeout notserialized notserialized notserialized
fischer.1 634 1395 0,0633333 0,0666667 0,726667 0,716667 0,56 0,596667 0,403333
fischer.2 21733 67590 0,136667 0,343333 1,53 1,41667 2,00333 1,40333 0,77
fischer.3 2896705 12280586 4,38 33 89,2767 95,82 197,173 95,64 34,3633
fischer.4 1272254 4609671 2,33 17,4233 35,2467 50,4567 88,9667 49,48 19,7867
fischer.5 31077246 477823470 171,997 1384,44 3418,05 timeout notserialized notserialized notserialized
fischer.6 8321728 33454191 11,7233 129,463 245,09 377,317 654,187 368,897 138,317
fischer.7 28113001 nomem nomem timeout timeout notserialized notserialized notserialized
frogs.1 5094 5301 0,0733333 0,14 0,65 1,21667 1,55 1,54667 1,77667
frogs.2 18207 33209 0,113333 0,388333 1,18333 2,28333 3,35333 3,04667 4,41333
frogs.3 760789 766119 1,45 15,3383 10,2233 51,26 109,243 75,9133 176,293
frogs.4 17443219 36286061 26,18 nomem 319,815 nomem notserialized notserialized notserialized
frogs.5 20311538 nomem nomem timeout nomem notserialized notserialized notserialized
gear.1 2689 3567 0,0633333 0,13 0,53 1,01667 1,14 1,14 1,13333
gear.2 16689 21767 0,103333 0,53 0,995 2,02 2,33 2,27333 2,03333
hanoi.1 6561 19680 0,0966667 0,198333 0,79 1,44 1,74667 1,60333 1,97667
hanoi.2 531441 1594320 2,03333 9,915 14,2933 42,75 80,9067 50,25 104,533
hanoi.3 14348907 43046718 31,73 timeout 357,24 nomem notserialized notserialized notserialized
hanoi.4 18890396 nomem nomem nomem nomem notserialized notserialized notserialized
iprotocol.1 6814 22512 0,0933333 0,23 0,84 1,02333 1,24667 1,13667 0,69
iprotocol.2 29994 100489 0,183333 0,825 2,03333 2,08333 3,02667 2,235 1,40667
iprotocol.3 1013456 3412754 2,36667 17,8617 26,9967 39,5167 72,4833 39,3733 18,2833
iprotocol.4 3290916 11071177 5,67667 60 85,325 129,93 234,977 127,553 59,22
iprotocol.5 31071582 104572634 59,5667 610,573 819,89 1265,06 nomem 1274,6 nomem
iprotocol.6 41387484 139545158 76,96 820,543 1113,89 1694,67 nomem 1652,65 nomem
iprotocol.7 24673777 200828479 timeout timeout 1665,77 2795,64 nomem 2719,31 nomem
krebs.1 6027 19040 0,0766667 0,135 0,786667 1,11 1,47 1,15 1,18
krebs.2 62476 260542 0,296667 0,97 2,85 3,13 5,43667 3,19333 2,92333
krebs.3 238876 1020147 0,89 2,79667 8,01667 9,13667 17,2833 10,0333 8,28
krebs.4 1047405 5246321 2,58 12,3833 37,0433 37,2733 77,9367 36,1667 19,9933
Tamport.1 29242 77286 0,193333 0,606667 1,56 1,85 2,57333 1,96333 1,03
lamport.2 110920 303058 0,363333 1,83833 3,46667 5,06 7,45667 5,08667 2,18333
lamport.3 38067 102747 0,183333 0,798333 1,73 2,22333 3,15667 2,3 1,21
lamport.5 1066800 3630664 1,87667 16,9883 29,4767 47,3133 75,7133 45,47 17,4167
lamport.6 8717688 31502176 10,7 141,683 227,567 373,483 650,78 362,095 140,747
lamport.7 38717846 160667630 61,3867 833,24 1169,87 2173,4 nomem 2132,03 817,29
lamport.8 62669317 99,6633 1382,06 nomem timeout notserialized notserialized notserialized
Tamport_nonatomic. 1 20434 65534 0,136667 1,365 1,52333 3,84667 1,2 3,01667 2,02
lamport__nonatomic.2 12958 41991 0,106667 0,955 1,06667 2,85667 3,20667 2,89333 1,52
lamport__nonatomic.3 36983 123337 0,21 2,13667 2,21667 6,28 6,73333 6,27667 2,73333
lamport__nonatomic.4 1257304 5360727 3,09667 110,585 42,065 285,733 318,823 284,527 110,407
lamport__nonatomic.5 3488300 nomem nomem nomem timeout notserialized notserialized notserialized
lann.1 18424 39673 0,116667 0,348333 1,25 1,51 1,71 1,43667 0,79
lann.2 12784 34192 0,103333 0,388333 1,01667 1,51667 1,63 1,37667 0,71
lann.3 1832139 8725188 3,85 28,0067 63,58 71,6767 140,9 69,995 27,7867
lann.4 966855 3189852 2,41667 20,79 27,705 50,5633 75,8933 49,9533 20,8
lann.5 993914 3604487 2,71667 27,4017 28,4433 63,9133 92,4967 62,1 25,73
lann.6 57120827 nomem nomem timeout timeout notserialized notserialized notserialized
lann.7 52237514 nomem nomem timeout timeout notserialized notserialized notserialized
lann.8 45091872 nomem nomem timeout timeout notserialized notserialized notserialized
leader__election.1 14252 52944 0,163333 1,72333 1,35 3,19 3,53667 3,32333 2,00333
leader__election.2 28720 98528 0,25 3,01833 1,835 5,65667 6,07667 5,67333 3,30333
leader__election.3 101360 446024 1,01 14,2533 4,91 24,2467 25,2933 24,53 13,71
leader__election.4 746240 3795388 6,53667 145,733 36,0633 215,167 235,403 221,283 132,05
leader__election.5 4803952 28064092 48,9867 1280,04 254,35 1897,9 nomem 1838,96 1137,95
leader__election.6 5672319 timeout timeout nomem timeout notserialized notserialized notserialized
leader_ filters.1 4966 9387 0,0833333 0,165 0,686667 1,09 1,18333 1,08333 0,77
leader_ filters.2 29284 66042 0,183333 0,646 1,42 2,03667 2,76333 2,005 1,30333
leader_ filters.3 91093 223980 0,363333 2,03333 2,67 5,41667 7,53667 5,27333 2,8
leader_ filters.4 50025 126784 0,236667 1,28833 1,97333 3,28333 4,36333 3,305 1,8
leader_ filters.5 1572886 4684565 2,88333 36,71 37,7967 89,9967 132,963 92,4 38,18
leader__filters.6 28480454 nomem nomem timeout timeout notserialized notserialized notserialized
leader_ filters.7 26302351 91692858 47,7133 778,957 688,13 1878,84 nomem 1827,75 nomem
lifts.1 2661 4486 0,09 0,318333 0,616667 1,43667 1,56667 1,53 1,55
lifts.2 2664 4490 0,0733333 0,3 0,596667 1,45 1,49333 1,43 1,39333
lifts.3 30772 53247 0,17 3,475 1,80667 8,86 8,465 8,87333 5,18
lifts.4 112792 242370 0,436667 11,6767 3,285 27,32 27,73 27,03 13,66
lifts.5 191567 409137 0,683333 19,86 5,01667 45,2867 47,0067 43,1333 22,1533
lifts.6 333649 717892 1,14 49,8133 7,85333 108,067 108,38 103,623 51,8433
lifts.7 5126781 13631916 7,81333 764,663 118,207 1599,95 1671,13 1594,31 759,457
lifts.8 9582787 31993172 16,8133 1837,18 272,487 timeout notserialized notserialized notserialized
loyd.1 720 1681 0,06 0,065 0,7 0,67 0,67 0,673333 0,613333
loyd.2 362880 967681 0,95 2,9 8,57 13,97 29,02 16,335 32,8167
loyd.3 30247886 nomem nomem timeout nomem notserialized notserialized notserialized
Tup.1 1404 2484 0,0666667 0,106667 0,435 0,96 1,00667 1,04667 1,32
lup.2 495720 915624 0,913333 32,995 9,40667 138,603 nomem 125,213 nomem
lup.3 1948617 3621672 2,05667 172,145 36,0333 nomem notserialized notserialized notserialized
lup.4 6618725 13974930 6,43333 nomem 133,237 nomem notserialized notserialized notserialized
mcs. 1 7963 21503 0,0966667 0,215 0,9 1,06333 1,40667 1,17333 0,74
mcs.2 1408 3222 0,0633333 0,09 0,436667 0,743333 0,723333 0,73 0,483333
mcs.3 571459 2077384 1,47 10,255 16,75 28,3467 46,5833 28,16 10,93
mcs.4 16384 53248 0,133333 0,496667 1,30333 1,69667 2,22 1,68 0,876667
mcs.5 60556519 120,287 1426,15 nomem timeout notserialized notserialized notserialized
mcs.6 332544 1329920 1,13 7,92833 10,8433 21,4233 32,1 21,5833 8,12667

48

A Java Bridge for LTSMIN

C PERFORMANCE TESTS

Model States | Transitions ‘ c-c ‘ S Cnens ‘ Java — C ‘ e e ‘ C = Java ‘ Java — Java ‘ i

msmie. 1 2334 3097 0,0666667 0,15 0,506667 0,943333 1,05333 1,04 0,763333
msmie.2 10558 11878 0,113333 0,886667 0,873333 2,42333 2,57 2,64 1,45333
msmie.3 134844 200614 0,443333 11,1183 3,02333 28,835 29,5967 28,1933 12,1667
msmie.4 7125441 11056210 6,09667 1274,97 117,26 2937,13 2843,66 2840,03 1221,94
needham.1l 497 753 0,08 0,423333 0,576667 0,763333 0,85 0,88 0,783333
needham.2 54976 136377 0,243333 2,37667 1,93667 6,345 7,75 6,42333 3,17
needham.3 206925 567099 0,73 9,12667 5,73667 23,0033 27,85 23,15 9,98333
needham.4 6525019 22203081 9,94333 382,533 168,807 910,327 1114,64 888,443 375,34
peg_solitaire.1 32181 155814 0,22 2,21167 2,30333 9,7 12,1767 8,70333 28,06
peg__solitaire.2 13264450 timeout nomem timeout nomem notserialized notserialized notserialized
peg_solitaire.3 5439599 timeout nomem timeout nomem notserialized notserialized notserialized
peg__solitaire.4 873326 5473290 3,26333 97,6083 37,6367 319,453 nomem 525,76 nomem
peg__solitaire.5 84191 324648 0,546667 29,3017 3,56 66,8033 95,8367 64,01 231,543
peg__solitaire.6 7330153 nomem nomem timeout nomem notserialized notserialized notserialized
peterson.1 12498 33369 0,103333 0,231667 1,02 1,215 1,64667 1,22333 0,706667
peterson.2 124704 399138 0,456667 1,45 3,935 4,17667 7,47667 3,90333 1,89667
peterson.3 170156 538509 0,603333 1,83333 5,04667 5,23333 9,68 5,095 2,42
peterson.4 1119560 3864896 2,17 13,0633 29,6567 34,9967 70,6533 35,7933 14,23
peterson.5 31656891 241,477 1520,69 timeout timeout notserialized notserialized notserialized
peterson.6 31762156 nomem nomem nomem timeout notserialized notserialized notserialized
peterson.7 29618148 nomem nomem timeout timeout notserialized notserialized notserialized
pgm__protocol.l 10175 17673 0,133333 1,04333 0,98 2,51 1,98667 1,61333 2,94333
pgm__protocol.2 17096 32486 0,176667 2,98 1,35333 6,87667 7,06333 6,92667 3,84333
pgm__protocol.3 200453 386407 1,10667 30,9867 5,45333 68,2033 74,4567 68,0733 30,65
pgm__protocol.4 39832 94166 0,316667 6,785 1,84667 14,3867 15,5533 14,73 7,39667
pgm__protocol.5 382731 894800 1,02 58,0617 10,48 127,527 138,817 128,187 57,41
pgm__protocol.6 2659550 8510552 10,9567 419,51 nomem 901,843 1012,86 904,087 390,183
pgm__protocol.7 322585 831133 1,75 48,805 9,48667 109,687 118,347 106,757 48,7333
pgm__protocol.8 3069390 7125121 10,02 474,412 nomem 1014,93 1166,66 1038,08 472,353
phils.1 80 212 0,113333 0,403333 0,5 0,63 0,366667 0,44 0,353333
phils.2 581 2350 0,0733333 0,0733333 0,746667 0,716667 0,573333 0,61 0,38
phils.3 729 2916 0,0633333 0,075 0,513333 0,646667 0,566667 0,636667 0,356667
phils.4 340789 3123558 1,89333 7,4 21,36 23,8167 44,5633 23,1967 7,93333
phils.5 531440 4251516 2,61667 11,4483 29,6067 34,97 61,8433 34,3333 11,71
phils.6 14348906 143489055 79,0767 426,357 nomem timeout nomem nomem nomem
phils.7 19548203 nomem nomem nomem timeout notserialized notserialized notserialized
phils.8 20328500 nomem nomem nomem timeout notserialized notserialized notserialized
pouring. 1 503 4481 0,106667 1,37444 0,88 3,46667 4,56333 1,44333 7,48667
pouring.2 51624 1232712 0,59 22,6767 8,15667 64,2433 72,08 64,5967 27,1533
production__cell.1 14586 39210 0,11 0,346667 1,13667 1,37333 1,80667 1,37333 0,786667
production__cell.2 9003 21202 0,0866667 0,213333 0,866667 1,13 1,33 1,09333 0,583333
production_ _cell.3 822612 2496342 1,83 15,0383 20,9567 37,8067 60,99 36,9533 15,79
production__cell.4 340685 968176 0,956667 5,12333 8,46 13,69 22,2767 13,9333 5,65333
production__cell.5 4211856 13072120 5,84 88,5017 108,517 222,813 337,58 220,04 85,2167
production__cell.6 14520700 45593810 18,9567 366,92 375,653 917,517 1282,42 926,273 369,72
protocols.1 2430 6480 0,0633333 0,1 0,535 0,77 0,66 0,68 0,38
protocols.2 11286 42255 0,1 0,185 1,13667 1,05 1,47667 1,015 0,476667
protocols.3 2817 7826 0,06 0,095 0,565 0,823333 0,763333 0,78 0,463333
protocols.4 139245 1454834 1,11 3,68167 11,96 11,33 22,5467 10,51 1,17
protocols.5 996345 3272786 1,81667 7,40833 25,7033 23,14 48,0533 21,59 7,93
public__subscribe.1 580 867 0,0733333 0,426667 0,733333 0,826667 0,88 0,84 0,703333
public__subscribe.2 1846603 6087556 3,5 87,5817 48,84 205,093 260,713 209,277 84,9267
public__subscribe.3 1846603 6087556 3,77333 93,6933 50,78 228,123 270,573 223,055 90,5233
public__subscribe.4 1846603 6087556 4,10333 102,755 49,8267 249,253 285,653 249,303 98,9933
public__subscribe.5 16788621 nomem timeout timeout timeout notserialized notserialized notserialized
reader__writer. 1 2666 10658 0,07 0,148333 0,583333 0,93 1,03 0,93 0,51
reader__writer.2 4104 49190 0,09 0,266667 0,98 1,35 1,56 1,37 0,71
reader__writer.3 604498 4125562 2,57 28,225 29,78 83,62 107,623 83,9633 27,57
resistance.1 8183469 32052024 10,57 98,1767 257,267 292,03 636,913 304,807 156,833
resistance.2 51516701 293956164 100,687 846,643 2210,52 2519,24 nomem 2479,24 996,623
rether.1 2458 2755 0,0766667 0,173333 0,523333 0,883333 0,94 0,926667 0,673333
rether.2 9278 10329 0,0966667 0,446667 0,79 1,63 1,77333 1,66333 1,13333
rether.3 305334 334516 0,896667 16,1167 5,07667 38,01 40,68 38,035 16,8067
rether.4 1157052 1535386 2,18667 80,4317 19,3533 186,403 195,71 180,453 78,1433
rether.5 3017044 3302351 3,69333 257,892 43,1233 588,113 591,737 557,817 254,593
rether.6 5919694 7822384 6,25667 546,007 93,93 1243,87 1273,75 1242,24 529,983
rether.7 4789409 5317199 5,27333 543,805 71,78 1273,27 1288,09 1225,18 515,667
rushhour.1 1048 5446 0,0766667 0,113333 0,466667 0,993333 1,08 nomem 1,13
rushhour.2 2242 12603 0,0933333 0,191667 0,606667 1,23 1,31667 1,34 1,64
rushhour.3 156723 1583980 2,32333 16,7767 13,04 56,66 88,1433 66,24 121,71
rushhour.4 327675 3390234 4,43667 35,735 nomem 116,843 nomem 146,7 nomem
schedule__world.1 23061 143130 0,18 0,606667 1,89667 1,92667 3,04 2,00333 1,05333
schedule__world.2 1570340 14308706 6,49333 37,505 94,3633 111,43 201,723 107,86 37,3067
schedule__world.3 14420303 nomem timeout timeout timeout notserialized notserialized notserialized
sokoban.1 91453 228313 0,483333 3,02 3 8,53333 11,8467 8,13333 19,5133
sokoban.2 761633 2012841 2,46333 22,225 18,3533 67,01 100,283 60,0367 169,987
sokoban.3 7034432 nomem nomem nomem nomem notserialized notserialized notserialized
sorter.1 20544 30697 0,12 0,6 1,17667 1,91 2,21 1,96667 1,10333
sorter.2 7592 10490 0,09 0,265 0,793333 1,29 1,42667 1,245 0,783333
sorter.3 1288478 2740540 2,02 30,235 24,5733 75,54 102,67 75,2867 30,2233
sorter.4 12958752 27051822 11,1267 296,643 234,097 771,275 1088,01 789,63 293,99
sorter.5 296148 630246 0,88 7,46167 6,47667 20,0233 24,87 20,5867 8,07333
synapse.1 46756 190843 0,246667 3,255 2,32333 8,6 9,64667 8,65333 5,09667
Synapse.2 61048 125334 0,27 1,30333 2,09 11,0467 11,83 11,96 6,51333
synapse.3 390317 826864 1,03333 29,3733 8,52 69,87 79,2067 68,12 36,42
Synapse.4 2292286 1921830 2,64333 184,067 15,6867 139,707 478, 130,243 214,743
synapse.5 83263 189639 0,36 7,235 2,49 18,9667 19,33 18,895 9,51667
synapse.6 625175 1190486 1,47333 58,4317 12,5433 133,48 140,557 134,98 61,13
synapse.7 6465201 19893297 9,41667 1091,79 187,843 2495,38 2643,96 2419,7 1138,47
szymanski.l 20264 56701 0,14 0,798333 1,44333 2,37333 2,79333 2,42 1,44333
szymanski.2 31875 88521 0,176667 1,16333 1,54 3,18 3,81667 3,10667 1,84
szymanski.3 1128424 4234041 2,25333 39,2033 31,3767 97,1967 125,74 95,8133 39,12
szymanski.4 2313863 8550392 3,59 77,9017 63,3667 199,353 257,33 190,91 76,1
szymanski.5 29555064 375297913 161,75 timeout 2700,83 timeout notserialized notserialized notserialized
telephony.1 1280 3497 0,0766667 0,115 0,446667 0,806667 0,89 0,84 0,7
telephony.2 51826 200322 0,25 1,895 2,32333 5,14333 6,44667 5,25 3,16333
telephony.3 765379 3155026 1,95333 28,11 24,0267 70,9533 96,7833 69,86 31,6533
telephony.4 12291552 64110312 22,59 533,93 426,09 1232 1823,31 1227,3 544,33
telephony.5 21128662 nomem timeout timeout timeout notserialized notserialized notserialized
telephony.6 23825732 nomem timeout timeout timeout notserialized notserialized notserialized
telephony.7 21960308 114070470 48,1033 1069,74 794,247 2566,94 nomem 2574,93 1085,59
telephony.8 22380334 nomem timeout timeout timeout notserialized notserialized notserialized

49

	Introduction
	Background
	LTSmin
	A Java Interface
	Project overview

	Evaluation approach
	Performance
	Ease of use
	Maintainability

	LTSmin
	Runtime
	Transition types
	Type system
	Code style

	Java Bridge
	Bridging technique
	Design
	Implementation
	End user experience

	Results
	Performance measuring setup
	Performance improvements made
	Benchmarks
	Ease of use
	Maintainability

	Conclusion
	Performance
	Ease of use
	Maintainability
	Summary

	Future work
	Class Diagram
	Invocation examples
	Performance tests

