Implementing Parallel Topological Sort in a Java Graph
Library

Jochem Schutte
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

j.jochem.schutte@gmail.com

ABSTRACT

Graphs are a very commonly used representation of many
real-world models, situations and applications. Very large
graphs are commonly analysed by parallel algorithms to
speed up the calculations. Although any highly used pro-
gramming language would certainly benefit from a library
of these shared memory, parallel graph algorithms, Java
still lacks such a library. This study has set out to imple-
ment and verify such a library. This study has extended
the library implemented by De Heus [4] with the parallel
topological sort algorithm and has improved the control
sequences used by the library. The result is an extended,
improved Java implemented library of parallel graph algo-
rithms.

Keywords

Graph algorithm, parallel, correctness verification, Java,
Library

1. INTRODUCTION

Graphs are a commonly used construct in probably ev-
ery aspect of the scientific field, spanning from electri-
cal circuits and computer networks to maps and depen-
dency models. For almost every model or data represen-
tation there exists an abstraction to a suitable graph rep-
resentation. This abstraction makes it possible to subject
many applications to the same set of algorithms. How-
ever, although most of these algorithms have acceptable,
polynomial-time complexity, these algorithms take a lot of
time to run on large graphs.

The solution to this time-consuming problem is parallel
computing. Performance improvements have traditionally
been gained by decreasing the size of computer chips and
increasing the amount of transistors, allowing more calcu-
lations to be run in the same amount of time. However
the performance gained decreases as the size of chips de-
creases, while at the same time complications rise. This
is why many chip makers turn their attention from in-
creasing the transistor count to developing and improving
multi-core chips [7]. The reason why the single-machine,
shared-memory approach is chosen, as opposed to a dis-
tributed memory approach, is that it does not have the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

1 9“” Twente Student Conference on IT June 24th, 2013, Enschede, The
Netherlands.

Copyright 2013, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

overhead accompanying distributed programming and it
also does not require access to a cluster of distributed pro-
cessing units. Taking the ability to run multiple processes
and applying that principle to a parallel, shared-memory
algorithm, we are able to diminish the amount of time
needed to run an algorithm on a very large graph.

Due to the widespread applications of graphs and the
tremendous performance of parallel algorithms, every pop-
ular programming language will benefit from a generic
library of parallel graph algorithms. According to sur-
veys, Java is one of the most commonly used program-
ming languages [5], due to features such as platform in-
dependence, worry-free memory access and its similarity
to the C language [13]. However, although Java is one
of the most popular programming languages, there is no
parallel, shared-memory graph algorithm library for Java
available. Although many libraries approach this sort of
library, none of them contain the important features: par-
allel algorithms and a shared memory approach. There
are libraries concerning the visualization of graphs and
libraries with graph algorithms, but most of these algo-
rithms are sequential [1]. Even the libraries armed with
parallel algorithms take a distributed memory approach
[10], introducing unnecessary overhead when run on a sin-
gle machine.

The goal of this study was to implement a library that does
contain all of the aforementioned features. The offset of
this study has been the research performed by De Heus
[4]. She has developed the necessary structure of classes
and interfaces as well as a selection of parallel algorithms.
The contribution of this study is to prove and improve the
control sequences (termination detection) of the parallel
algorithms and to extend the library with the topological
sort algorithm. The reason why topological sort was cho-
sen is because of its use in applications such as dependency
and task rearrangement. The sequence of actions that was
taken to accomplish this goal is to (1) demonstrate that
the used termination detection algorithm does not oper-
ate properly, (2) to adjust the existing algorithm to a valid
algorithm and to provide a mathematical proof that this
algorithm is correct. (3) The constructed algorithm for
parallel topological sort is an adaptation of the sequential
algorithm first described by Kahn [9].

This paper is divided into four parts.

Firstly, the research that was done will be illustrated. We
will start with a brief description of the background of field
of graph libraries (section 2) and the topics and concepts
that will used in this paper (section 3). Then the pur-
pose of this paper will be explained and illustrated with
research questions (section 4). Finally the methods that
were used to answer these questions will be described (sec-
tion 5).

The second part concerns the termination detection algo-
rithm. In this part the previously implemented termina-
tion detection algorithm will be concluded to be insuffi-
cient and a new algorithm will be devised and proven to
be correct (section 6). In the third part of the paper the
implementation of the parallel topological sort algorithm
will be discussed (section 7). After the implementation
has been discussed, we will list and discuss the results of
the speed comparison tests that were run on the sequential
and parallel topological sort algorithms (section 8).

The final part will interconnect and finalize the different
sections of the paper. The work performed by others and
alternatives that were not used will be explained in the
related work section (section 9). This will be followed by
work that could, and should be, done in the future (section
10). This part, and in fact the entire paper, will end with
a concluding chapter, summarizing the paper (section 11).

2. OTHER GRAPH LIBRARIES

To give a picture of what other graph libraries originally
exist, some other graph libraries are listed below

2.1 Parallel Boost Graph Library

The Parallel Boost Graph Library (PGBL) is an open
source library of parallel, generic graph algorithms. The
work on this project was initialized by the Pervasive Tech-
nology Labs of the University of Indiana, but it is now
licensed under an open source license and being extended
by a community of programmers. The library can han-
dle several graph representations and can be mapped as
shared-memory or distributed-memory [8]. The library is
however programmed in C++ which contradicts the goal
of this study.

2.2 JGraphT

JGraphT is an open source Java-based library of graph
algorithms. The library supports many commonly used
graph representations and uses generics for flexibility. Al-
though powerful, JGraphT uses only sequential algorithms,
instead of the intended concurrent algorithms [1].

2.3 HipG

HipG is a Java-based library of parallel graph algorithms.
This library comes very close to the intended goal of this
study. However the library is not intended for parallel exe-
cution on a single machine. Instead it takes a distributed-
memory approach. Parallel execution of the algorithms
can be simulated by running multiple instances of the pro-
gram on a single machine, but the program will still run
as if it were executed in a distributed memory environ-
ment. This creates a lot of unnecessary overhead and it
requires the graph to be broken up and divided along the
workers, something that is unnecessary when working in
a shared-memory environment [10].

2.4 De Heus

This study has extended the research performed by De
Heus in 2011. She has developed a library of interfaces to
represent any graph representation and has implemented
some parallel graph algorithms (reachability and connected
components) and a termination detection algorithm, based
on research of other graph libraries and the subject of
concurrent programming. She intended to implement the
topological sort algorithm herself, but was unable to due
so due to the limited time for her study. The research
performed to write this paper has set out to extend the
library with the topological sort algorithm and to improve
the aforementioned termination detection and to prove it

to be correct [4].

3. BACKGROUND

This paper will utilize concepts that may require an expla-
nation. For the understanding of the reader these concepts
are explained below.

3.1 Topological sorting

The topological sorting algorithm sorts every node n in a
directed acyclic graph such that all directed edges point in
the same direction. If the algorithm is run on a graph that
contains cycles then the algorithm will return an error,
because then a topological sorting is impossible [3].

An example of the application of such an algorithm is the
sorting of a set of ordered tasks. When represented as
a directed graph, these tasks can be organized in a way
that it is immediately clear which task precedes a certain
task ¢ and thus has to be performed before task t can be
performed. This example demonstrates the importance
of such an algorithm in the planning of many dependent
tasks.

3.2 Termination detection

The algorithms of the developed library run in a multi-
threaded environment. Such an environment requires a
construction that concludes when all tasks have been per-
formed and all processes can terminate. Such a task is
performed by a termination detection algorithm. the ter-
mination detection algorithm can run in the background,
or can be called by a process during the normal execution
of the main task.

3.3 LTL

The proof for correct termination detection uses a rea-
soning method called Linear Temporal Logic (LTL). For
the understanding of the reader the concept of LTL is ex-
plained briefly.

LTL is built on top of the basic logical reasoning so the
basic operators (V, 3, A, V, <) can be used in combination
with the LTL operators. LTL has the following operators.

e [1: Always. Oa means that proposition a will always
hold.

e O: Eventually. $a means that eventually proposi-
tion a will hold.

e (O: Next. (Oa means that in the next state proposi-
tion a will hold.

e U: Until. a Ub means that proposition a will hold
until proposition b holds.

3.4 Atomic operations

This paper uses the concepts of atomic methods as imple-
mented in the Java language by the java.util.concurrent.
atomic package. The following description of this package
is extracted from the Sun Oracle website for a brief un-
derstanding of the concept of atomic operations.

A small toolkit of classes that support lock-free
thread-safe programming on single variables. In
essence, the classes in this package extend the no-
tion of volatile values, fields, and array elements
to those that also provide an atomic conditional
update operation of the form:

boolean compareAndSet(expected,update);

This method (which varies in argument types
across different classes) atomically sets a variable to
the updateValue if it currently holds the expected-
Value, reporting true on success. The classes in this
package also contain methods to get and uncondi-
tionally set values, as well as a weaker conditional
atomic update operation weakCompareAndSet de-
scribed below.

]

get has the memory effects of reading a volatile
variable.

set has the memory effects of writing (assigning)
a volatile variable.

]

compareAndSet and all other read-and-update
operations such as get AndIncrement have the
memory effects of both reading and writing
volatile variables. [11]

4. PURPOSE OF THIS RESEARCH

4.1 Goal

The problem addressed by this research is that there did
not exist a complete shared-memory parallel graph algo-
rithm library in Java, despite the many applications of
graphs and the fact that Java is one of the most commonly
used programming languages. The goal of this study was
to extend, prove and improve the library implemented by
De Heus in her bachelor thesis paper [4]. More specifically,
proving and improving the algorithm used to detect ter-
mination and extending the library by implementing the
topological sort algorithm. This will work towards a Java
library of shared memory, parallel graph algorithms.

To reach this goal, the following research questions were
composed.

Are the control sequences of the library correct?
The control sequence this relates to is the already im-
plemented termination detection. The correctness of the
termination detection translates to whether the algorithm
terminates when the task is completed and does not ter-
minate when the task has not yet been completed. This
algorithm is a crucial part of the library and is used by
multiple graph algorithms, including the parallel topolog-
ical sort algorithm. This is why it is important to prove
that the termination detection is correct.

Is a parallel version of the topological sort algo-
rithm possible?

This explores the possibility of a parallel topological sort
algorithm. The reason why this may not exist is that topo-
logical sort requires extra restrictions on the traversal of a
directed graph. These restrictions may not be taken into
account for parallel depth-first search or parallel breadth-
first search.

How do the parallel algorithms perform when com-
pared to their sequential counterparts? This ex-
plores the performance (in terms of speed) of the parallel
algorithms compared to the sequential version of the algo-
rithm. This will be a comparison of both the real world
speed and the theoretical order of complexity.

S. RESEARCH METHOD

To resolve the aforementioned problem and answer the
research questions, the following methodology has been
set up.

5.1 Correcting termination detection

In this part of the study the previously implemented ter-
mination detection was proven to be incorrect. This was
done by translating the termination detection algorithm
to Promela and using the validation tool Spin [2]. With
the use of the Spin tool a specific path of interleaving was
followed, demonstrating that the termination detection al-
gorithm can terminate while it should not.

Following the conclusion that the old termination detec-
tion algorithm is incorrect, the old algorithm was altered
by making the necessary executions more atomically. This
new algorithm was then proven to be correct by formulat-
ing a formal, mathematical proof for the correctness of the
algorithm, answering the first research question.

5.2 Library development

The second part of the study will involve extending the li-
brary with the parallel topological sort algorithm and the
corresponding graph representation. While the sequential
topological sort algorithm is a fairly simple adaptation of
the depth-first search (DFS) algorithm, the parallel algo-
rithm involves a little more consideration. This is due to
the fact most of the known shared memory, parallel depth-
first search algorithms are a mix of depth-first search and
breadth-first search. This mix would allow the topologi-
cal sorting algorithm to insert a parent node into the list
before the children of that node, because multiple nodes
might be evaluated at once in a breadth-first search fash-
ion. This will result in an incorrect sorting of the nodes.
Therefore a different algorithm must be used. The used
solution is an adaptation of an early algorithm first de-
scribed by Kahn [9]. This will work towards the goal of
the study: a concurrent graph algorithms library in Java.

5.3 Speed tests

In this final section the developed library will be tested
according to the last criteria set in the research questions:
speed. The speed will be tested by a combination of com-
plexity reasoning and speed benchmark tests on some ran-
domly generated, large graphs. The complexity reasoning
will supply us with the formal speed comparison, while the
benchmark tests will provide a real-world runtime compar-
ison.

6. TERMINATION DETECTION

In this section the old termination detection used by De
Heus is proven to be incomplete, answering the first re-
search question: Are the control sequences of the library
correct? It is important to validate that the termination
detection algorithm is correct because we will use it for
our implementation of topological sort.

6.1 Disproving old termination detection

The termination detection algorithm devised by De Heus
works as follows, as listed in listing 1: every thread has
a value in the arrays load (line 1) and waiting (line 2).

O 00O UL WN —

= e
U W N = O

[—y—
(Ol @)

The value in the load array is the amount of tasks left at
the moment of the last return from the call process(), the
value in the waiting array is used to keep a thread waiting
when there is a temporary absence of work (line 12-14)
and to release a waiting tread after more work becomes
available (lines 15-16). After every call of process() (line
6) the thread will loop over all loads of all threads (lines
7-10). If all loads are zero, then the boolean done is set
to true and the algorithm will terminate.

AtomicInteger [numberProcessors] load;
AtomicBoolean [numberProcessors| waiting;
AtomicBoolean done;
while (! done){
load [threadNumber] = process();
for(int i = 1; load[i—-1]==0 & i <
numberProcessors; i++){
if (i= (numberProcessors—1) &&
load [1]==0)
done = true;
}
if (load [threadNumber]==0)
waiting [threadNumber]=true;
else
for(int i = 0; i <
numberProcessors; i++)

waiting [i]=false;
while (waiting [threadNumber]|&&!done) ;

Listing 1. Old termination detection algorithm

The termination detection algorithm devised by De Heus
[4] has not been validated to be correct, even though cor-
rectness is a very important requirement for a concurrent
program. The important correctness property of a termi-
nation detection algorithm is that the program terminates
if and only if there is no more work left to do. For this par-
ticular implementation this translates to that the boolean
done is only set to false when and only when all work is
done and every current and future call to process() yields
Z€ro.

The main concern with this termination detection algo-
rithm is the situation in which a thread t is checking for
termination (lines 6-11), while another thread, not yet
checked, wakes up a thread concluded to be idle (line 16).
In that case the thread waking up another thread may af-
terwards go idle while the recently woken up thread con-
tinues to work, making it possible for thread ¢ to conclude
termination while the graph is still being processed. This
may occur because the termination check is not performed
atomically and the data in the load array may change dur-
ing the termination check.

This flaw was exposed by translating the pseudo code al-
gorithm to Promela and carefully manipulating the inter-
leaving of the threads using the tool Spin. The used imple-
mentation of the method process is a breadth-first explo-
ration of a graph. The used graph is a chain of 10 nodes.
The first result of the validation test of the ”old” termina-
tion detection algorithm was that the algorithm contains
at least one flaw. The algorithm has the flaw that when
a thread is in the method call of process(), then the value
of load[processI D] is still that of the last call of process
(possibly zero). This causes a thread to evaluate outdated
data and leads to a conclusion that a thread is waiting,
when it is in fact processing. This can cause problems due
to the non-atomic nature of the execution of the method
process.

Luckily, the aforementioned problem can easily be over-

== e
WN R OO0 U WN -

14

come by setting the value of load[processID] to a non-zero
value before calling process() or after the wait loop. How-
ever the algorithm also contains the flaw that was men-
tioned earlier in this section. It is indeed possible for a
thread that has been evaluated to be waiting to wake up
and keep processing, while the other threads are evalu-
ated to be waiting. This can indeed cause the algorithm
to conclude termination while in fact the graph has not
been fully explored.

The problem with the non-atomic termination check, con-
trary to the problem concerning outdated information, is
far harder to solve. That is why it was decided to imple-
ment a new termination detection algorithm.

6.2 New termination detection

In this section the adapted termination detection algo-
rithm is illustrated.

AtomicInteger working = 0;
AtomicBoolean done = false;
AtomicBoolean waiting = false;

termdet () {
working . getAndIncrement () ;
while (! done) {
int temp = process();
if (temp =— 0){
waiting.set (true);
working . getAndDecrement () ;
done .CAS(false ,working = 0);
while (waiting && !done){
// spinning

working . getAndIncrement () ;
telse{

waiting .set (false);
}

Listing 2. New termination detection algorithm

The new termination detection algorithm (listing 2) is very
much the same as the old algorithm. In the new ver-
sion, however, the problem with the non-atomic termina-
tion check has been solved by making it atomic. A single
atomic integer is used instead of an array with boolean
values (line 1). A thread that is waiting is represented by
decreasing the value of that integer (line 11). When the
value of working is evaluated to be zero (line 12), then
all threads have concluded that there are no more tasks
to perform, indicating that the calculations have finished.
(the next section will elaborate on these implications)

Every thread running the algorithm loops over the follow-
ing sequence:

A call to (an implementation of) process() is performed.
This returns an integer representation of the amount of
tasks currently available (line 8). If there are still tasks
left then the thread will set waiting to false, waking up all
threads currently waiting (line 18).

When there are currently no tasks available then the fol-
lowing section of the algorithm is executed.

e The boolean waiting is set to true to keep threads
waiting until more tasks become available. (line 10)

e The value of working is decreased by one to indicate
that the thread is waiting. (line 11)

e working is evaluated. If it is equal to zero, then done
is atomically set to true, indicating that the program
should terminate, else it is left unchanged. (line 12)

e The thread will keep spinning until done is true or
another thread sets waiting to false. (lines 13-15)

e When the thread exits the spinning loop it incre-
ments the value of working to indicate that the thread
is no longer waiting. (line 16)

6.3 Termination detection proof

In this section the newly implemented termination detec-
tion will be proven to be correct. The properties to be
validated are that the algorithm is deadlock-free and that
termination is detected properly. The way this will be
done is by first setting up requirements for the implemen-
tation of process(). Then some observations about the
algorithm will be made and explained. Using these re-
quirements and invariants, the deadlock-free property and
correct termination detection can be deduced.

6.3.1 Definitions

The following definitions are made to shorten the proofs
and make them easier to read.

finished The entire graph has been processed, there are
no more tasks to perform. Note that this only marks
that the processing has finished, not that the algo-
rithm has concluded that it is finished. This is what
will be proven later.

p-hold Process p is on hold, which means that its execu-
tion is between lines 12 and 15 (listing 2).

p-spinning process p is spinning, which means that its
execution is looping over lines 13-15 (listing 2)

p-lastProcess() The result of the last call to process()
made by process p.

process() The result of a call to process() if it were per-
formed at this state. Which process makes a call is
not important for this statement.

P The set of all processes.
W The set of processes which are on hold.

6.3.2 Requirements for process()

The implementation of process() needs to satisfy the fol-
lowing requirements in order to guarantee a correct exe-
cution of the program.

e process() needs to be deadlock free

e New tasks cannot arise without a cause, only during
the execution of process()

e finished < Oprocess() = 0. When the calculations
have finished then a call to process() will always yield
zero. The inverse means that when a call to process()
will always yield zero, then the calculations must
have finished.

6.3.3 Observations

The following observations can be made. Note that some
of the invariants only hold while =done. When done is
true then the rest is trivial, because then the program will
terminate.

p.hold = p.last Process() = 0

If a process is on hold, then the result of its last call to
process was zero. This is due to the structure of the if-
statement.

working = |P| — |W|

The value of the integer working is the amount of all pro-
cesses minus the amount of processes on hold. This is due
to the fact that the code segment hold is located between
decrementing and incrementing the value of working

Vp € P : p.lastProcess() = 0 = Oprocess() = 0

When all calls to process() yield zero, the calculations are
finished and the system should terminate. This means
that if every call, from every process, to the method pro-
cess() yields zero then every current and future call will
yield zero. This proposition holds because tasks can only
arise from a call to process(). When all last calls return
zero, then there are, and will be, no more tasks.

Oprocess() =0 = OVp € P : p.hold

OVp € P:p.hold = OP=W

OSP =W = Qworking =0
When process() always returns zero, then eventually all
processes will be on hold, so eventually the set of processes
will be equal to the set of processes on hold, so eventually
working will be zero. This follows from the algorithm and
the definitions. This statement is valid up to and includ-
ing the moment done becomes true.

From the statements above the following statements are
deducible (up until and including the moment when done
becomes true).

P=W=0P=W
working = 0 =0working = 0

working = 0 = Odone

When working = 0, then Uworking = 0. This means that
eventually the execution of working == 0 yields true and
done will be set to true. Note that for this to be true,
deadlock-freeness must first be proven.

6.3.4 Deadlock-free

In this section it is proven that the algorithm is deadlock-
free. It is a requirement for the implementation of process
that it is free of any deadlocks, so we need to prove that
the termination detection algorithm is also deadlock-free.
This means that a thread should always eventually exit the
wait loop, meaning that always eventually waiting should
be false or done should be true. This statement is proven
by induction.

To prove: OO (—waiting V done)

Base step

The base step is trivial because at the start of the while
loop (line 8) waiting is false, so O(—~waitingVdone) is true.

Induction step.

What we need to prove is that if in this state eventually
—waiting V done is true, then this is also true in the next
situation: O (—waiting V done) = OO (—waiting V done)
This is trivial for the cases where OQ(—waiting V done) is
true, for then OO (—waiting V done) = OO (~waiting V
done) is also true. The first interesting case is (—waitingV
done) AN(O—(~waitingVdone)). When —(—~waitingVdone)
gets set to false, then waiting.set(true) was executed. This
means that there is at least one thread not spinning, for it
just executed line 10. This leads to the following scenarios.

Scenario 1: finished = Oprocess() =0

Oprocess() =0 = OVp € P : p.hold
OVp € P:p.hold = OP =W
OP =W = Qworking =0
Quworking = 0 = Odone
Odone = O(—~waiting V done)

Note that the implication working = 0 = < done is only
valid when The system is not in a deadlock state.. The
reason why this implication is however valid is that there
is at least one process that is on hold but not spinning
(process p), meaning that the system is not in a deadlock
state and that there is at least one process that has to
execute done = working == 0 (line 12).

Scenario 2: = finished = —Oprocess() =0

—Oprocess() =0 = 3q € P : Og.lastProcess() # 0
Then for process ¢:
q € P: OglastProcess() # 0 = Og.temp £ 0
Og.temp # 0 = Oq.waiting.set(false)
Oq.waiting.set(false) = O—waiting
O—waiting = < (~waiting V done)

If not all current and future calls to process() yield zero,
then eventually a thread ¢ will yield non-zero, meaning
that ¢.temp is non-zero (line 8). This means that thread ¢
will eventually set waiting to false, because it will execute
the else-case of the if-statement (line 18). So eventually
—waiting V done will be true.

What is left to prove is (=(—waiting V done)) A

(O~ (~waitingV done) = O(—waitingV done). The state-
ment O(—waitingV done) stays true until ~waitingV done
becomes true. So:

(O(~waiting V done)) A (=(—~waiting V done))A
(O~ (~waiting V done)) = O < (~waiting V done)

In conclusion, for every combination of the variables in
the current and next state, it follows that if &(—waiting V
done) holds, then it also holds in the next state. When
combining this with the base step then this forms the in-
ductive proof for OO (—waiting V done), proving that the
algorithm is deadlock-free

6.3.5 Termination detection

What needs to be proven is that if, and only if, the pro-
cessing has finished, then the system will terminate. This
is illustrated by the fact that eventually the value of the
boolean done will be true. This section will use the def-
initions, requirements and observations of sections 6.3.1,
6.3.2 and 6.3.3 and will chain them to conclude the re-
quired relations.

The relation to be proven is as follows:
Odone) A (done = finished).

(finished =

To prove: finished = Odone

finished = Oprocess() =0
Oprocess() =0 = OVp € P : p.hold
OVp € P:p.hold= OP =W
OP =W = Quworking =0
Qworking = 0 = Odone

The second part can be proven by contradiction. Assume
that done is true, but the processing has not yet finished:

done A — finished
Then:

done = working = 0
working=0= P =W
P=W =Vpe P:phold
Vp € P : p.hold = V¥p € P : p.lastProcess() =0
Vp € P : p.lastProcess() =0 = Oprocess() =0

And:
- finished = —Oprocess() = 0
In summation:
done A = finished = Oprocess() = 0 A =Oprocess() = 0

This contradiction proves the relation done = finished

7. TOPOLOGICAL SORT

Now that the new termination detection algorithm is proven
to be correct we can direct our attention to the topologi-
cal sort algorithm. In this section the implemented parallel
topological sort algorithm will be displayed and described.

7.1 The algorithm

The sequential topological sort algorithm is a fairly sim-
ple adaptation of a depth-first search traversal of a graph
[12] (examined in the related work section). However, the
parallel counterpart of the algorithm requires some more
thought[8][10]. This is because the traversals of many par-
allel depth-first search algorithms are not in accordance
with the topological order of graphs. This is why another
approach was taken.

The chosen sequential algorithm was first described by
Kahn[9] (listing 3).

kahnTopSort (Graph g){
Stack result = new Stack();
Stack queue = new Stack();
for (v in g.vertices){
if (v has no incoming edges){
queue . push (queue) ;

while (! queue . empty) {

Vertex v = queue.pop();

result .push(v);

for (e in v.outgoingEdges){
g.removeEdge(e);
Vertex endV = e.endVertex;
if (v has no incoming edges){

queue . push (endV) ;

}

}

if (g has edges){
return error;

}

return result ;

Listing 3. Sequential topological sort by Kahn

The algorithm works by adding every vertex that has no
incoming edges to a queue (lines 4-8). Then for every
vertex (line 10) in the queue the following code is executed.

Firstly, the vertex is added to the resulting stack (line 11).
Then every edge from v to vEnd is removed (line 13) and if
vEnd has no more incoming edges it is added to the queue
(lines 15-17). This process is repeated until the queue is
empty (line 9). This means that every vertex that is not
part of a cycle has been processed. Then a final check
is performed to conclude that every vertex and edge has
been visited and removed. When this is not the case, then
the graph was not a directed, acyclic graph and null is
returned (line 21). Otherwise the algorithm will return a
topological ordering of the graph (line 23). An alternative
algorithm will be discussed in the related work section.

This algorithm can easily be transformed to a parallel al-
gorithm by placing the code in while(!queue.empty) in the
method process of the termination detection algorithm.
This does however pose a problem when two vertices, both
having an edge to the same node, execute the code re-
sult.push(endV) (line 16) simultaneously. This causes the
vertex to be pushed to the queue multiple times. For this
the construct listed in listing 4 has been devised.

f//AtomicBoolean[] visited ;
2| boolean vis = visited [endV.id]. getAndSet (

true);

30 if (Ivis){

4

5‘}

OO0~ UL W —

queue . push (endV)

Listing 4. Adaptation for topological sort

With this construct multiple threads executing the code
visited[endV.id]getAndSet(true) will only yield false once
and only one thread will push endV to the queue.

The resulting algorithm is listed in listing 5.

Graph g;

Stack result = new Stack();
Stack queue = new Stack () ;
AtomicBoolean [] visited;

void init (Graph graph){
g = graph;
for(v in g.vertices){
if (v has no incoming edges){
visited [v.id]. set (true)
queue . push(v);

}
for(t in threadPool){

t.start () ;
)

for(t in threadPool){
t.join () ;

}
for (b in visited){
if (!b.get()){
//a vertex is not wvisited so
not a DAG
result = null;

}

void doTopSortProcess(){
Vertex v = queue.pop();
int result = 0;
if (v !'= null){
result .push(v);
for (edge in v.outgoingEdges){
graph .removeEdge (edge) ;
Vertex endv = edge.endVertex
if (endv has other no other
incoming edges){

boolean vis = visited |
endv.id]. getAndSet (
true) ;

if (1vis){
queue . push (endV)

}

}

result = queue.size ();

return result ;

Listing 5. Parallel topological sort

This algorithm works very much the same as the sequential
version. However, now all threads operate on the shared
queue and result stacks and the aforementioned control
sequence is inserted to ensure that a vertex is not added
multiple times. The code t.start() (line 15) will result in
that thread calling the termination detection algorithms,
which will repeatedly call doTopSortProcess() (line 28).
After the processing has finished the threads will join (lines
16-18) and a check if the graph was acyclic (lines 20-24)

7.2 Correctness

The important properties of a parallel topological sort al-
gorithm are that a vertex is added to the list once (and
only once) and that the resulting list retains the topolog-
ical order of the graph. The first property is guaranteed
by the earlier discussed modification, displayed in listing
4. The second property also holds. This is because a ver-
tex cannot be added to the list as long as it has incoming
edges and the algorithm ensures that a vertex is added to
the list before its edges are removed and the connected
vertices can be inserted into the list (listing 5, lines 32,
33-42).

This implementation also satisfies the requirements for an
implementation of process(), set in section 7.2. A vertex
has only a limited amount of outgoing edges, so the for-
loop (line 33) will eventually break. The algorithm has
no infinite loops and a thread running the algorithm is
never paused, which means that the algorithm is dead-
lock free. The other two requirements are also met. Tasks
are represented by a vertex in the queue, which can only
be added by the execution of doTopSortProcess(). This
means that when the entire graph has been processed (or
at least the vertices that are not part of a cycle), then ev-
ery call to doTopSortProcess() will return the value zero,
because then the queue is empty and queue.size() will re-
turn zero (line 43). The inverse of this rule is also true.
New vertices can only be added by evaluating a vertex,
thus when the queue is empty it will stay empty, indicat-
ing that the calculation has finished.

7.3 Graph structure

For this algorithm to work however, certain information
should be retrievable from a graph, vertex or edge. For
this the following structure of interfaces has been created.
The structure exists of four graph interfaces.

e Graph contains the most basic graph functions, for
example: getting the vertices and edges of a graph,
retrieving the vertices of an edge and getting all
edges of a vertex. This interface has earlier been
devised by De Heus [4].

e DirectedGraph contains basically the same func-
tions as Graph, but extended with the functionality
of a directed graph and retrieving vertices and edges

in a certain direction. This interface has been de-
vised by De Heus [4].

e VertexIdGraph contains the functionality to as-
sign every vertex a unique identifier and retrieving
the identifier of a vertex or the vertex with a certain
identifier. This is a newly created interface.

e TopologicalSortGraph is an interface containing
methods that are needed for the implemented topo-
logical sort algorithms. Mainly, removing an edge
from a graph and telling whether a vertex has in-
coming edges.

Figure 1 provides an outline of how these interfaces extend
each other.

<<Graph>>

Set<E> : edgesOfVertex(V)
V : otherEndOfEdge(E,V)
Set<V>: getVertexSet()

Int getNumberEdges()

int getNumberVertices()

<<DirectedGraph>>
Set<E> : incomingEdges(V) <<VertexldGraph>>
Set<E> : outgingEdges(V) int: getld(V)
V : startVertex(E) V: getVertex(int)
V : endVertex(E) q

<<TopologicalSortGraph>>

bool : hasincomingEdges(V)
void : removeEdge(E)

void : removeEdge(V, V)

int : highestVertexId()

Figure 1. Interface structure

8. SPEED TEST

In this section the results of the speed tests of the se-
quential and parallel topological sort algorithms will be
presented.

8.1 Setup

The speed tests were run by submitting the sequential and
parallel algorithms to some (pseudo-)randomly generated
graphs. The graphs were generated by repeatedly adding
a vertex to the graph and, with certain possibility, adding
an edge from every other vertex to that vertex. Whether
an edge was actually added to the graph was decided by
comparing a randomly generated value to a specified pos-
sibility threshold. The generated graphs each had a size
of 500, 1000, 2000, 5000 or 10000 vertices and had a prob-
ability threshold. The probabilities that were used where
0.001, 0.005 and 0.01. The algorithms were run five times
on each of the graphs and the average time, measured us-
ing the Java System.nanotime() method, was calculated.

The machine used for the tests had the following specifi-
cations:

e Processor: Intel Core i7-3770 CPU at 3.40GHz (4
cores)

e Memory: 4x 8192 MB DDRS3 at 1333 MHz
e Chipset: MSI Z77A-GD65
8.2 Results

Table 1 displays the average run times for the algorithms
to run on different graphs. The numbers on the top repre-
sent the complexity of the graph represented as the likeli-
hood of an edge being added to the graph upon creation,
the numbers on the left are size of the graphs expressed in
the amount of vertices in the graph. For every complexity
and size there are three values: The time (in milliseconds)
it took the sequential DFS algorithm, the time it took the
parallel algorithm with one thread and the time it took the
parallel algorithm with four threads to solve the graph.

| size/complex][0,001 [0,006 [0,01 |
500 DFS 2968 1225 803
1 core 2907 3499 14988

4 cores || 102303 | 10177 101361
1000 DFS 665 401 980

1 core 1032 1700 2427

4 cores || 101520 | 101914 | 102474
2000 DFS 580 2291 6117

1 core 2121 5543 10072

4 cores || 830775 | 104574 | 107741

5000 DFS 13215 12252 23562
1 core 17798 33051 74445
4 cores || 110676 | 120437 | 132351

10000 DFS 14660 48473 105947
1 core 25591 129034 | 263600
4 cores || 114401 | 148720 | 205740

Table 1. Results of speed tests

8.3 Discussion

The complexity of the topological sort algorithm devised
by Kahn, which was used for the parallel implementation
has complexity O(|V'|+ |E|). This complexity is the same
as the complexity of the depth-first search topological sort
algorithm. When the parallel part of the parallel algo-
rithm is run in parallel it should have an approximate
complexity of O(%)7 where n stands for the number
of processors, a complexity lower than that of the DFS
topological sort algorithm.

However the results of the speed tests contradict this premise.

The runtime of every sequential DFS run on a graph was
faster than the parallel version with four threads on four
cores. This can be caused by a combination of factors:

Overhead. The termination detection used to control the
parallel algorithm may introduce overhead that can
cause the algorithm to run slower. The introduced
overhead may be investigated by comparing the run
times of the parallel algorithm, using one thread,
with the pure, sequential implementation of Kahn’s
algorithm.

Different algorithms. The parallel algorithm is not an
adaptation of the sequential DFS algorithm. It is a
possibility that the algorithm devised by Kahn natu-
rally runs slower than the DF'S topological sort. This
difference may be explored by comparing the run

O 00O Ul W —

times of the sequential implementation of Khan’s al-
gorithm with the run times of the depth-first search
topological sort algorithm.

Shared resources. The parallel algorithm uses a shared
queue and result stack. These structures form criti-
cal points. These critical points can cause a serious
impact on the performance when accessed by multi-
ple threads at the same time. This may be solved by
devising a solution that has separate stacks for every
thread.

Low task parallelism. When new tasks (in this case ver-
tices) become available at a slow rate, then most of
the threads will mostly be waiting. This diminishes
the capacity to run in parallel and impacts the per-
formance. This may be addressed by further paral-
lelizing sub-tasks performed within the doTopSort-

Process() method.

The performed tests conclude that the sequential algo-
rithm is the superior algorithm for all the tested graphs.
However they do show that as the graph becomes bigger,
the proportional difference becomes smaller, as displayed
in table 2. The displayed ratios are calculated by dividing
the runtime of the parallel algorithm executed with four
threads by runtime of the sequential algorithm.

size/complex | 0,001 0,005 | 0,01
500 346 | 1571 | 1267
1000 153,8 254.,8 | 104,6
2000 1432,4 | 45,7 17,6
5000 84 98 |56
10000 7.8 3,0 1,9

Table 2. Speed ratios (4 cores/DF'S)

With the exception of graph of size 1000 with complex-
ity of 0,001 and 0,005, all proportional speed differences
become smaller as the graph becomes bigger or more com-
plex. This leads to believe that for a large enough graph,
the parallel algorithm may be faster then the sequential
one.

9. RELATED WORK
9.1 DFS topological sort

This algorithm is used as the sequential implementation
of the topological sort algorithm, so that it might be com-
pared in terms of speed. For understanding of the reader,
the DF'S topological sort algorithm is described below.

The sequential topological sort algorithm is a fairly plain
adaptation of the depth-first search traversal of a graph.
The nodes are visited via a post-order traversal. This algo-
rithm was first described by Tarjan [12]. The pseudocode
algorithm of the implemented sequential topological sort
algorithm is listed below in listing 6.

bool nDAG = false;

bool[] tempmark = bool[nrVertices];
bool [| permmark = bool|[nrVertices|;
Stack result = new Stack () ;

Stack topSort(Graph g){
for(v in g.vertices){
if (!permmark[v.id]){
v)

processVertex (v);

if (nDAG) {

return null;
else
return result;

}

void processVertex (Vertex v){
nDAG = tempmark [v.id];
if (InDAG && !permmark|[v.id]) {
tempmark [v.id] = true;
for (e in v.outgoingEdges){
processVertex (e.endVertex);

result .push(v);
tempmark [v.id]=false;
permmark [v.id|=true;

Listing 6. Depth-first-search topological sort

The main method of the algorithm is the topSort(Graph
g) method. It takes the graph to be sorted as an argu-
ment and the result is a stack containing the sorted graph
or null when the graph is not a directed, acyclic graph.
The processing algorithm is the processVertex(Vertez v)
method. It works as follows.

e [t takes a vertex as argument and recursively calls
the processVertex method on its child vertices (lines
22-24), before adding v to the resulting stack (line
25). This results in a post-order ordering of the tree
with v as root.

e Along the way the algorithm sets the values of temp-
mark and permmark, to mark a vertex as temporar-
ily or permanently visited (lines 21-27).

e The tempmark array is used to detect a cycle in the
graph (line 20), detecting that the graph is not a
directed, acyclic graph and sets the value of nDAG
to true.

e The permmark array is used to detect that the calcu-
lations on a vertex and its subtrees has already been
completed, so the algorithm can skip that node.

When the processing has finished, the thread in the main
method checks if the nDAG flag has been set. When it has
not, it returns a stack containing the topological ordering
of the graph. When it does it returns null. [3]

9.2 M.C.Er

An alternative algorithm for topological sort was devised
by M.C. Er [6]. The algorithm relies on value iteration to
deduce a correct topological ordering of a graph. The algo-
rithm starts at the nodes that have no incoming edges and
then follows the edges, assigning every encountered vertex
an integer value. With every vertex the integer value as-
signed is the value of the vertex visited before incremented
by one. When a thread encounters a vertex that has al-
ready been assigned a higher value than the thread wants
to assign to it, the value of the vertex is left unaltered.
However, when a thread wants to assign a value higher
then the current value of a vertex, the value is updated
and the thread will continue along the paths originating
in that node, updating the values of the nodes accordingly.

Er argues that the time complexity of this algorithm is the
maximum number of edges between any of the start and
end nodes. This however requires the amount of proces-
sors to be equal to the maximum amount of nodes being

processed in parallel. The problem is that this will proba-
bly not be the case with large graphs. When the amount
of processors is not large enough, then the time complex-
ity is O(|V|?). This is due to the fact that it may be
necessary for a path to be evaluated multiple times. This
is the reason why this algorithm was not chosen for the
implementation of the parallel topological sort algorithm.

10. FUTURE WORK

Here some topics will be discussed to suggest contributions
that can be made in the future.

10.1 Improving the parallel topological sort
The parallel topological sort algorithm has been concluded
to run very slowly compared to the sequential DFS topo-
logical sort. Research could be performed to examine the
weak points of the algorithm and improve it. As men-
tioned before in section 8.3 the algorithms may have some
weak points regarding the speed when run. The algorithm
may contain code segments that do not run in parallel or
have multiple threads that depend on a single critical point
or resource. Measures might be taken to reduce the im-
pact these factors have on the runtime efficiency of the
algorithms.

10.2 Extending the library

This paper has extended and improved the existing library.
However, still many graph algorithms, both simple and
more complex algorithms, need an implementation in the
library. Well known examples of these algorithms are:

e Prim’s minimum spanning tree
e Dijkstra’s shortest paths

e Graph colouring

The computer science community may benefit from such
parallel algorithms implemented in Java.

11. CONCLUSIONS

In this section the advancement to reaching the final goal
of this research area will be discussed. This will be done
by answering the research questions this research set out
out to answer.

Are the control sequences of the library correct?
During this research the termination detection was dis-
covered to be deficient. The algorithm did in fact permit
the program to terminate when it should not. However,
a new termination detection algorithm was devised. This
algorithm used the concepts of the previous termination
detection algorithm, but has improved it by making the
necessary code segments more atomically. These adjust-
ments resulted in a termination detection algorithm that
does correctly detect termination. This was proven by for-
mulating a formal proof, demonstrating the correct proce-
dures of the algorithm. In conclusion: yes, the control
sequences of the library are now correct.

Is a parallel version of the topological sort algo-
rithm possible?

The primary solution for the topological sort problem is
the depth-first search algorithm, resulting in a correct,
post-order traversal of the graph. However most parallel
depth-first search algorithms do not guarantee a correct,
post-order traversal. Therefore a different algorithm was
used. This algorithm operates by placing a vertex in the

list when it has no more incoming edges. This algorithm
needed a few adjustments to make the necessary steps ex-
ecute atomically and to ensure that a vertex was not in-
serted multiple times, but did eventually result in a correct
parallel algorithm for topological sorting. In conclusion:
yes, a parallel version of the topological sort algorithm is
in fact possible.

How do the parallel algorithms perform when com-
pared to their sequential counterparts?

The parallel algorithm is correct and should theoretically
be faster then the sequential version, because the complex-
ity of of the parallel algorithm is lower (O(W)) than
that of the sequential algorithm (O(|V|+ |E])). However
the parallel algorithm was not able to exceed the execution
time of the sequential depth-first search topological sort al-
gorithm. There were too many factors slowing down the
algorithm in order to process a graph in reasonable time.
Therefore more research should be performed to improve
the algorithm or to investigate if there are conditions in
which the parallel algorithm does perform better then the
sequential algorithm. In conclusion: the implementation
of the parallel topological sort algorithm is not efficient
enough to exceed the sequential depth-first search algo-
rithm.

12. REFERENCES

[1] Barak Naveh and Contributors. JGraphT.
http://jgrapht.org/. 2012.

[2] Bell Labs. On-the-fly, LTL model checking with
Spin. http://spinroot.com/spin/whatispin.html.
2012.

[3] Charles E. Leiserson & Thomas H. Cormen.
Introduction to Algorithms, page 612. MIT Press,
third edition, 2009.

[4] de Heus, Marije. Towards a Library of Parallel
Graph Algorithms in Java. In 14th Twente Student
conference on IT January 21st, 2011.

[5] DedaSys. Programming Language Popularity.
http://wuw.langpop.com/. 2011.

[6] Er, M.C. A parallel computation approach to
topological sorting. The Computer Journal,
26(4):293-295, 1983.

[7] David Geer. Chip makers turn to multicore
processors. Computer, 38(5):11-13, 2005.

[8] Douglas Gregor and Andrew Lumsdaine. The
Parallel BGL: A generic library for distributed
graph computations. Parallel Object-Oriented
Scientific Computing (POOSC), 2005.

[9] Arthur B Kahn. Topological sorting of large
networks. Communications of the ACM,
5(11):558-562, 1962.

[10] Elzbieta Krepska, Thilo Kielmann, Wan Fokkink,
and Henri Bal. HipG: Parallel processing of
large-scale graphs. ACM SIGOPS Operating Systems
Review, 45(2):3-13, 2011.

[11] Oracle and/or its affiliates. Package java.util.concur-
rent.atomic. http:
//docs.oracle.com/javase/6/docs/api/java/
util/concurrent/atomic/package-summary.html.
2011.

[12] Tarjan, Robert Endre. Edge-disjoint spanning trees
and depth-first search. Acta Informatica,
6(2):171-185, 1976.

[13] Paul Tyma. Why are we using Java again?
Communications of the ACM, 41(6):38-42, 1998.

