
 
 
 
  

Saturation for LTSmin 
Master Thesis 
 

Final project (course code 192199978) 

Course year 2011 – 2012 

 

Tien Loong Siaw (s0045217) 

 

 

 

Master Computer Science 

Track Software Engineering 

 

Graduation committee: 

■ prof. dr. J.C. van de Pol 

■ dr. J. Ketema 

■ prof. dr. ir. A. Rensink 

 

Department of Formal Methods and Tools (FMT) 

University of Twente 

 
 
  

 
          Enschede,  Wednesday 15th of February 2012 



2 
 

  



3 
 

Abstract 

State space generation or reachability analysis plays an important role in model checking, but a 
disadvantage of current techniques lies in the fact that they require quite a lot of time and memory to 
come up with a result when using real-life system models. Symbolic state space generation using known 
traversal techniques as breadth-first search and chaining are quite common practice, but their 
performance on real-life system models with a large transition relation remains an issue to be tackled. 
In the past decade a relatively new traversal technique has emerged, named Saturation. This traversal 
technique has proven itself to be a good competitor to traditional symbolic state space generation 
techniques for handling models with extremely large state spaces. It originates from the research group of 
professor Gianfranco Ciardo (University of California at Riverside, USA). 
 
The main goal of this Master project is to design and implement the aforementioned Saturation-based 
approach in the LTSmin toolset, which is a set of verification tools developed by the Formal Methods and 
Tools group (FMT) at the University of Twente. The main features of this toolset is its setup in 
architectural layers to separate language-specific details from verification algorithms and the use of an 
interface for presenting the (partitioned) transition relation of the model, called PINS. 
The goal includes making adjustments to the LTSmin architecture for Saturation to work properly and 
comparing the implemented Saturation algorithm with other available symbolic reachability techniques in 
the LTSmin toolset. 
 
An analysis of the Saturation-based approaches by G. Ciardo and the architecture of the LTSmin toolset is 
performed to choose the Saturation approach which fits best into the LTSmin toolset. The chosen (stand-
alone) Saturation algorithm is then adjusted for implementation. The first version of this adjusted 
algorithm takes a different approach when updating the partitioned transition relation of the model 
compared to the algorithm proposed by G. Ciardo and reuses available functionality from the LTSmin 
toolset. An evaluation of this first version of the Saturation algorithm is performed comparing it to the 
other available reachability methods breadth-first search, chaining and an LTSmin version of a Saturation-
like approach. 
 
The evaluation reveals that the update process of the partitioned transition relation does not perform 
well for complex models resulting in bad time performance. Therefore the update process of the 
partitioned transition relation is revised. Hereby inspiration is taken from the update process used by G. 
Ciardo. This has resulted in a Saturation algorithm that outperforms the previous version of this 
Saturation algorithm and comes out on top of the traditional traversal techniques breadth-first search and 
chaining with regard to time performance. Compared to the LTSmin version of a Saturation-like algorithm 
it performs competitively well too. 
 
Furthermore an existing reachability option of the LTSmin toolset which basically computes fix-points has 
been readjusted to make use of Saturation, where updates to the partitioned transition relation is done 
outside Saturation. This algorithm turns out to perform as good as well compared to breadth-first search 
and chaining, but not as great as the revised version of the stand-alone Saturation algorithm. A similar 
result is obtained as with the stand-alone Saturation algorithm when compared to the LTSmin version of a 
Saturation-like algorithm. 
 
  



4 
 

  



5 
 

Preface 

Initially I began my life as a student at the University of Twente in the autumn of 2002 by studying 
Industrial Design, but after fours years I realised this is not what I wanted to continue later in my career. 
So a year after I obtained my Bachelor degree in Industrial Design (in the autumn of 2005) I took the 
decision to switch over to Computer Science (in the autumn of 2006) where I hoped to find the career 
path that I was looking for. My interests in the field of Computer Science were initially in software design 
and especially in providing the graphical user interface of a software program. In numerous study projects 
and assignments throughout the years I was mainly responsible for the creative and user-oriented side of 
the project. Being creative and creating things was and still is one of the things I cherish in my life.  
In the last few years of studying Computer Science I discovered other interests in this field, namely 
software verification and algorithmic design challenges. The latter is due to a number of individual 
projects that I performed, such as designing and implementing an algorithm to detect rip currents in 
images of a shoreline (as part of the minor at the ITC in the winter of 2009), displaying UML diagrams 
more user-friendly on a screen (in my traineeship at Novulo in the second half of 2010) and adapting the 
Saturation algorithm as new state space generation technique for the LTSmin toolset, which is the subject 
of my graduation project. 
In all these individual projects concerning an algorithmic design and implementation, I was initially quite 
hesitant about the assignments themselves, because the descriptions of the assignments were very 
technical and it is hard to imagine what challenges you have to face. But in all these cases it turned out 
that my initial hesitation was unnecessary. It was interesting to work on such challenging projects, 
together with the good support that was provided by my supervisors. 
 
For my graduation project I came into contact with Jaco van de Pol at the end of 2010 and he suggested 
me to work on the Saturation algorithm as state space generation technique. Since then I worked on this 
subject for a year now which started with a better understanding in the new technique in Research 
Topics, followed by the graduation project in July 2011. Next to my main supervisor Jaco van de Pol, my 
weekly supervisor used to be Michael Weber. He was of great assistance when I faced difficulties, but 
nearing the end of Research Topics I noticed that Michael was busy preparing himself moving to the USA. 
After his departure and the completion of Research Topics, I was assigned a new weekly supervisor, 
namely Jeroen Ketema. With him as supervisor, I had regular weekly meetings to discuss my progress and 
to provide me with useful feedback. Although there were times he could get agitated slightly for my lack 
of clarity in some of my e-mail correspondences with him, he also helped me out at times when I was 
stuck when working with the LTSmin toolset. Next to the weekly meetings with Jeroen, I also had monthly 
meetings with both Jeroen and Jaco, which mainly focused on my progress. With their guidance and 
feedback I can finally present to you this report. 
 
After studying for almost ten years at the University of Twente, my life as student comes to an end. First 
of all I want to thank my supervisors Jaco and Jeroen for their guidance, structural feedback and good 
response on my work. Secondly I would also like to thank Michael for being my initial supervisor on this 
subject and for his help on my initial work. Furthermore I would also like to thank my study advisor for 
supporting me throughout the years and give a helping hand from time to time. My final thanks go to my 
friends and family, especially my parents for having the patience to let me finish my studies. Although 
they did not show their support explicitly, they gave me the strength to persist in my studies. 
 
Tien Loong Siaw 
Enschede, 15th of February 2012  



6 
 

  



7 
 

Table of contents 

1 Introduction ........................................................................................................................................... 15 

1.1 Goal statement .............................................................................................................................. 17 

1.2 Document structure ...................................................................................................................... 17 

2 Overview of Saturation approaches ...................................................................................................... 19 

2.1 Definitions and encodings for state space and next-state function ............................................. 19 

2.2 Saturation approaches for Kronecker-consistent models ............................................................. 21 

2.2.1 Kronecker Prebuilt Saturation approach ............................................................................... 23 

2.2.2 Kronecker On-the-fly Saturation approach ........................................................................... 27 

2.3 Saturation approaches for general models ................................................................................... 30 

2.3.1 General Prebuilt Saturation approach .................................................................................. 31 

2.3.2 General On-the-fly Saturation approach ............................................................................... 34 

2.3.3 General Saturation approach using Matrix Diagrams ........................................................... 35 

2.4 Summary of Saturation approaches .............................................................................................. 36 

2.4.1 Similarities and differences among Saturation approaches .................................................. 36 

2.4.2 Evolution of Saturation approach ......................................................................................... 36 

3 Architecture of LTSmin toolset .............................................................................................................. 39 

3.1 High-level architecture of LTSmin toolset ..................................................................................... 39 

3.2 LTSmin toolset – PINS .................................................................................................................... 41 

3.2.1 Semantic model of Labelled Transition Systems ................................................................... 41 

3.2.2 Access to model through PINS .............................................................................................. 41 

3.3 LTSmin toolset – MDD encodings .................................................................................................. 44 

3.3.1 Available MDD libraries ......................................................................................................... 44 

3.3.2 Access to MDD operations .................................................................................................... 46 

3.4 Symbolic reachability analysis in LTSmin toolset .......................................................................... 48 

3.5 Summary of LTSmin toolset........................................................................................................... 50 

4 Design & implementation of Saturation for LTSmin toolset ................................................................. 53 

4.1 Requirements analysis for design of Saturation ........................................................................... 53 

4.1.1 LTSmin-related requirements & design choices .................................................................... 53 

4.1.2 Saturation-related requirements & design solutions ............................................................ 54 

4.1.3 Summary of design choices & solutions ................................................................................ 56 



8 
 

4.2 Algorithmic-dependent design challenges .................................................................................... 56 

4.2.1 Design-specific adjustments to Saturation algorithm ........................................................... 59 

4.2.2 Design-specific adjustments for LTSmin - General Prebuilt Saturation ................................ 62 

4.2.3 Design-specific adjustments for LTSmin - General On-the-fly Saturation ............................. 64 

4.3 Implementation of Saturation in LTSmin toolset .......................................................................... 66 

4.3.1 Implementation-specific adjustments for Saturation ........................................................... 66 

4.3.2 Implementation-specific adjustments for LTSmin toolset .................................................... 68 

4.4 Summary of design & implementation of Saturation ................................................................... 70 

5 Evaluation of Saturation in LTSmin toolset ........................................................................................... 73 

5.1 Experiments on Saturation in LTSmin toolset ............................................................................... 73 

5.1.1 Experimental setup using reachability tools from LTSmin .................................................... 73 

5.1.2 Experimental results of symbolic reachability algorithms from LTSmin ............................... 76 

5.2 Analysis of Saturation performance .............................................................................................. 88 

5.2.1 Time performance of Saturation ........................................................................................... 88 

5.2.2 State space evolution of Saturation ...................................................................................... 93 

5.2.3 Memory performance of Saturation ..................................................................................... 94 

5.3 Summary of evaluation of Saturation ........................................................................................... 94 

6 Improvement on Saturation in LTSmin toolset ..................................................................................... 97 

6.1 Design & implementation of improvement of Saturation ............................................................ 97 

6.2 Evaluation of improvement on Saturation .................................................................................. 100 

6.2.1 Experiments on improved Saturation ................................................................................. 100 

6.2.2 Analysis of improved Saturation algorithm ......................................................................... 106 

6.3 Summary of improvement on Saturation ................................................................................... 107 

7 Conclusion & recommendations for Saturation in LTSmin ................................................................. 109 

7.1 Final conclusion on Saturation in LTSmin .................................................................................... 109 

7.2 Final discussion on Saturation in LTSmin .................................................................................... 110 

7.3 Future directions for Saturation in LTSmin ................................................................................. 111 

Bibliography ................................................................................................................................................. 113 

A Saturation test results regarding memory performance .................................................................... 117 

B Saturation evolution plots ................................................................................................................... 129 

C Results regarding MDD projections made .......................................................................................... 153 

 



9 
 

List of figures 

Figure 2.1: Example of a model represented as a decomposition (left) and as a function (right)................ 20 

Figure 2.2: Example MDDs which store every state (left) and only reachable states (right). ....................... 20 

Figure 2.3: Example of Kronecker product for a 1 × 3 matrix A and a 2 × 3 matrix B. .................................. 21 

Figure 2.4: Kronecker product of next-state function in matrix form for example model 1. ....................... 23 

Figure 2.5: Pictorial overview of Saturation process in a nutshell. ............................................................... 25 

Figure 2.6: Visualizing the term (topmost) working MDD level, when entering the MDD from above. ...... 25 

Figure 2.7: Fictitious Kronecker matrix of next-state function for example model 1 after confirming all 

initial state values. ......................................................................................................................................... 28 

Figure 2.8: Visualization of confirmation process for local state value 1 at level 3 (which only affect matrix 

cells at level 3) for example model 1. ............................................................................................................ 29 

Figure 2.9: MDDs of partitioned next-state function per event for example model 2. ................................ 32 

Figure 2.10: Matrix Diagrams of partitioned next-state function per event for example model 2. ............. 35 

Figure 3.1: Layered architecture of LTSmin toolset with PINS. ..................................................................... 40 

Figure 3.2: PINS dependency matrix for example model 2. .......................................................................... 42 

Figure 3.3: LDD (left) corresponding to MDD of event 1 of example model 2. ............................................ 45 

Figure 3.4: Reachable state space of example model 1 using LDD (left) and MDD (right). .......................... 45 

Figure 3.5: Reachable state space of example model 2 using LDD (left) and MDD (right). .......................... 46 

Figure 3.6: Pictorial overview of parts of layered architecture of LTSmin toolset concerning symbolic 

reachability tools. .......................................................................................................................................... 51 

Figure 4.1: Low-level MDD operations used in original pseudo code of General Saturation algorithm in 

Listing 2.4. ...................................................................................................................................................... 59 

Figure 4.2: Visualization of inefficient MDD node traversals with quadratic time complexity..................... 61 

Figure 4.3: Visualization of efficient MDD node traversals with linear time complexity. ............................. 62 

Figure 4.4: Pictorial overview of update process for transition group i with topmost level l (line numbers in 

figure refer to corresponding line numbers in Listing 4.3). .......................................................................... 65 

Figure 4.5: Different local state values located in different subtrees of reachable state space. .................. 65 

Figure 4.6: Visualization of the key and value used in the lookup table from the relational product.......... 66 

Figure 4.7: Pictorial overview of using a bad key for the lookup table from the relational product. ........... 67 

Figure 4.8: Passing on calls of vset_least_fixpoint in spec-reach.c to atermdd.c. ........................................ 68 

Figure 4.9: Passing on calls related to update process of  transition groups between spec-reach.c and 

atermdd.c. ..................................................................................................................................................... 69 

Figure 5.1: Plot comparing time values between options no-sat and sat-ciardo. ........................................ 79 

Figure 5.2: Plot comparing time values between options sat-like and sat-ciardo. ....................................... 80 

Figure 5.3: Plot comparing time values between options no-sat and sat-ddd. ............................................ 81 

Figure 5.4: Plot comparing time values between options sat-like and sat-ddd. ........................................... 82 

Figure 5.5: Plot comparing time values between options sat-ddd and sat-ciardo. ...................................... 83 

Figure 5.6: Bar charts of peak MDD node values for each reachability option per DVE model. .................. 84 

Figure 5.7: Visualization of state and MDD count process used in option sat-ciardo. ................................. 85 

Figure 5.8: Visualization of state and MDD count process used in option sat-ddd. ..................................... 85 



10 
 

Figure 5.9: State space evolution plots of DVE model anderson.6. .............................................................. 86 

Figure 5.10: State space evolution plots of DVE model cambridge.7. .......................................................... 87 

Figure 5.11: State space evolution plots of DVE model iprotocol.7. ............................................................. 88 

Figure 5.12: Bar charts showing the contribution of useful and useless MDD projections using the 

reachability tools from LTSmin for 3 DVE model. ......................................................................................... 91 

Figure 6.1: Pictorial overview of update process for all affected transition groups (line numbers in figure 

refer to corresponding line numbers in Listing 6.1). ..................................................................................... 99 

Figure 6.2: Plots comparing time values between options no-sat and new sat-ciardo (left), and between 

options sat-like and new sat-ciardo (right). ................................................................................................ 104 

Figure 6.3: Plots comparing time values between options sat-ddd and new sat-ciardo (left), and between 

options sat-ciardo and new sat-ciardo (right). ............................................................................................ 105 

 
Figure A. 1: Plot comparing maximum memory values between options no-sat and sat-ciardo. .............. 119 

Figure A. 2: Plot comparing maximum memory values between options sat-like and sat-ciardo. ............ 120 

Figure A. 3: Plot comparing maximum memory values between options sat-ddd and sat-ciardo. ............ 121 

Figure A. 4: Plot comparing maximum memory values between options no-sat and sat-ddd. .................. 122 

Figure A. 5: Plot comparing maximum memory values between options sat-like and sat-ddd. ................ 123 

Figure A. 6: Plot comparing maximum memory values between options no-sat and new sat-ciardo. ...... 124 

Figure A. 7: Plot comparing maximum memory values between options sat-like and new sat-ciardo. ..... 125 

Figure A. 8: Plot comparing maximum memory values between options sat-ddd and new sat-ciardo. .... 126 

Figure A. 9: Plot comparing maximum memory values between options sat-ciardo and new sat-ciardo. 127 

 
Figure B. 1: State space evolution plots of DVE model at.5. ....................................................................... 129 

Figure B. 2: State space evolution plots of DVE model at.6. ....................................................................... 130 

Figure B. 3: State space evolution plots of DVE model bakery.6. ............................................................... 131 

Figure B. 4: State space evolution plots of DVE model brp.5. ..................................................................... 132 

Figure B. 5: State space evolution plots of DVE model brp.6. ..................................................................... 133 

Figure B. 6: State space evolution plots of DVE model collision.4. ............................................................. 134 

Figure B. 7: State space evolution plots of DVE model elevator_planning.2. ............................................. 135 

Figure B. 8: State space evolution plots of DVE model firewire_link.5. ...................................................... 136 

Figure B. 9: State space evolution plots of DVE model iprotocol.6. ............................................................ 137 

Figure B. 10: State space evolution plots of DVE model lamport.7. ........................................................... 138 

Figure B. 11: State space evolution plots of DVE model lamport.8. ........................................................... 139 

Figure B. 12: State space evolution plots of DVE model lamport_nonatomic.5. ........................................ 140 

Figure B. 13: State space evolution plots of DVE model lann.6. ................................................................. 141 

Figure B. 14: State space evolution plots of DVE model lann.7. ................................................................. 142 

Figure B. 15: State space evolution plots of DVE model leader_election.6. ............................................... 143 

Figure B. 16: State space evolution plots of DVE model leader_filters.7. ................................................... 144 

Figure B. 17: State space evolution plots of DVE model peterson.6. .......................................................... 145 

Figure B. 18: State space evolution plots of DVE model peterson.7. .......................................................... 146 

Figure B. 19: State space evolution plots of DVE model phils.6. ................................................................. 147 

Figure B. 20: State space evolution plots of DVE model phils.8. ................................................................. 148 



11 
 

Figure B. 21: State space evolution plots of DVE model schedule_world.3. .............................................. 149 

Figure B. 22: State space evolution plots of DVE model szymanski.5. ........................................................ 150 

Figure B. 23: State space evolution plots of DVE model telephony.4. ........................................................ 151 

Figure B. 24: State space evolution plots of DVE model telephony.7. ........................................................ 152 

 
Figure C. 1: Bar charts showing the contribution of useful and useless MDD projections using the 

reachability tools from LTSmin for 8 DVE model (1). .................................................................................. 153 

Figure C. 2: Bar charts showing the contribution of useful and useless MDD projections using the 

reachability tools from LTSmin for 8 DVE model (2). .................................................................................. 154 

Figure C. 3: Bar charts showing the contribution of useful and useless MDD projections using the 

reachability tools from LTSmin for 8 DVE model (3). .................................................................................. 155 

 
 
 

List of listings 

Listing 1.1: Pseudo code of breadth-first search algorithm using newly unexplored states only (left) or all 

states (right). ................................................................................................................................................. 16 

Listing 1.2: Pseudo code of chaining algorithm using newly unexplored states only (left) or all states (right).

 ....................................................................................................................................................................... 16 

Listing 1.3: Variables and function definitions for pseudo code in previous two listings. ............................ 16 

Listing 2.1: Pseudo code of Kronecker Prebuilt Saturation algorithm with additional code for On-the-fly 

version highlighted in light-blue [10]. ........................................................................................................... 26 

Listing 2.2: Function definitions used in pseudo code of Kronecker Saturation algorithms. ........................ 27 

Listing 2.3: Pseudo code of confirmation process for updating events in Kronecker On-the-fly Saturation 

algorithm [10]. ............................................................................................................................................... 29 

Listing 2.4: Pseudo code of General Prebuilt Saturation algorithm with additional code for On-the-fly 

version highlighted in light-blue [23]. ........................................................................................................... 33 

Listing 2.5: Pseudo code of confirmation process for updating events in General On-the-fly Saturation 

algorithm [23]. ............................................................................................................................................... 34 

Listing 3.1: Pseudo code of basic sat-like algorithm and accompanying function definitions. ..................... 49 

Listing 3.2: Pseudo code of sat-ddd algorithm. ............................................................................................. 50 

Listing 4.1: Pseudo code of implemented General Prebuilt Saturation algorithm with additional code for 

On-the-fly version highlighted in light-blue and for revised On-the-fly version in dark-blue (which is 

discussed in chapter 6). ................................................................................................................................. 58 

Listing 4.2: Function definitions used in pseudo code of implemented General Saturation algorithm. ...... 59 

Listing 4.3: Pseudo code of update process for updating a single transition group in implementation of 

General On-the-fly Saturation algorithm. ..................................................................................................... 64 

Listing 6.1: Pseudo code of update process for updating all affected transition groups in redesign of 

implementation of General On-the-fly Saturation algorithm. ...................................................................... 99 

 
 



12 
 

List of tables 

Table 2.1: Kronecker product of next-state function in matrix form. ........................................................... 22 

Table 2.2: Subcategories of Kronecker Saturation approaches. ................................................................... 22 

Table 2.3: Example model 1 with a Kronecker-consistent next-state function. ........................................... 22 

Table 2.4: Bottom- and topmost levels for each event e of example model 1. ............................................ 24 

Table 2.5: Differences in implementation details between Kronecker Prebuilt and Kronecker On-the-fly 

Saturation. ..................................................................................................................................................... 30 

Table 2.6: Subcategories of General Saturation approaches. ....................................................................... 30 

Table 2.7: Example model 2 with a general next-state function. ................................................................. 31 

Table 2.8: Partitioning of events in enabling and updating conjuncts for example model 2. ...................... 31 

Table 2.9: Differences in implementation details for General Prebuilt and General On-the-fly Saturation. 35 

Table 3.1: Selection of command pre- and suffixes of state space exploration tools of LTSmin toolset. .... 40 

Table 3.2: Some PINS operations and their arguments as defined in header file greybox.h (simplified). ... 43 

Table 3.3: Example evaluation of PINS operations for example model 2. .................................................... 43 

Table 3.4: Available MDD data encodings in the LTSmin toolset. ................................................................. 45 

Table 3.5: Some high-level MDD operations and their arguments as defined in header file vector_set.h 

(simplified). .................................................................................................................................................... 47 

Table 3.6: Some high-level MDD operations and their arguments for transition groups as defined in header 

file vector_set.h (simplified). ......................................................................................................................... 47 

Table 3.7: Some global variables used by reachability tools as defined in file spec-reach.c (simplified). .... 48 

Table 3.8: Operation used by reachability tools as defined in file spec-reach.c (simplified). ....................... 48 

Table 4.1: LTSmin-related requirements. ...................................................................................................... 53 

Table 4.2: Saturation-related requirements. ................................................................................................ 54 

Table 5.1: Input arguments used with dve2-reach tool for experiments. .................................................... 74 

Table 5.2: DVE models used for experiments (with descriptions from BEEM database [20]). ..................... 75 

Table 5.3: Overview of data that is being collected in the experiments using reachability tools from 

LTSmin. .......................................................................................................................................................... 75 

Table 5.4: Experimental time results using the reachability tools from LTSmin on the 27 DVE models. ..... 77 

Table 5.5: Summary of the best and worst performing reachability options regarding time performance. 78 

Table 5.6: Statistics showing the number of useful and total MDD projections made using the reachability 

tools from LTSmin on the 27 DVE models. .................................................................................................... 90 

Table 5.7: Summary of the average percentage of useful MDD projections made per reachability option. 90 

Table 5.8: Statistics from profiling using option sat-ciardo........................................................................... 91 

Table 5.9: Most demanding function for DVE models from Table 5.8. ......................................................... 91 

Table 5.10: PINS dependency matrices for DVE models iprotocols.6 and iprotocols.7. ............................... 92 

Table 6.1: Assumptions made for redesign of update process of General On-the-fly Saturation algorithm.

 ....................................................................................................................................................................... 97 

Table 6.2: Experimental time results using the reachability tools from LTSmin on the 27 DVE models, 

including option new sat-ciardo. ................................................................................................................. 101 

file:///D:/Saturation_MasterThesis_TLSiaw.docx%23_Toc317088082


13 
 

Table 6.3: Summary of the best and worst performing reachability options regarding time performance, 

including option new sat-ciardo. ................................................................................................................. 101 

Table 6.4: Statistics showing the difference in state space evolution of option new sat-ciardo compared to 

the previous version of option sat-ciardo (only for DVE models where a difference is noticed). .............. 102 

Table 6.5: Part of state space evolution of DVE model anderson.6 per iteration of Saturation at topmost 

working MDD level. ..................................................................................................................................... 103 

Table 6.6: Statistics showing the minimum and maximum growth of transition groups of 24 DVE models 

for option new sat-ciardo compared to previous version of option sat-ciardo. ......................................... 106 

 
Table A. 1: Experimental maximum memory results using the reachability tools from LTSmin on the 27 

DVE models, including option new sat-ciardo............................................................................................. 117 

Table A. 2: Summary of the best and worst performing reachability options regarding maximum memory 

performance, including option new sat-ciardo. .......................................................................................... 117 

  



14 
 

  



15 
 

1 Introduction 

Real-life critical software systems are developed with reliability and correctness in mind. During the 
development of such systems formal verification can play an important role. In formal verification the 
system under development is abstracted into a model which is checked against the given specifications to 
assess any errors and design flaws that may occur. One of such formal verification techniques is model 
checking and tools exist which are capable of automatically performing such verification on formal 
properties (which are the formalizations of the given specifications). Such tools basically assess these 
properties by considering all states of the model reachable from the initial state(s), which is referred to as 
state space generation or reachability analysis. The tool exhaustively searches all possible reachable states 
of the model using a transition relation or next-state function of the model. The latter indicates how a 
model can undergo a transition from one state to another. A major hurdle here is the inability to deal with 
large complex models containing billions of states. 
Traditionally two approaches have been used for state space generation [7]: 
■ Explicit state space generation: states are found individually and stored explicitly one-by-one. 
■ Implicit or symbolic state space generation: multiple states are found and stored together in sets. 

 

Unfortunately, both approaches suffer from the state space explosion problem in which case it becomes 
infeasible in both time and memory to compute the reachable state space when the system model 
becomes larger and more complex. The number of states that can be handled with the explicit approach 
lies roughly around 107 states [7] and this is mainly due to the problem that time and space complexity 
increase linearly with increasing reachable state space (when considering the fact that the exploration 
happens in a sequential manner). The symbolic approach can handle reachable state spaces up to 
approximately 1020 states [7] when the sets of states are stored using Binary Decision Diagrams (BDDs). 
This encoding is also used for storing the transition relations, so operations on BDDs are mainly affected 
by the number of nodes in the BDDs. The main challenges of the symbolic approach [7] are as follows: 
■ The maximum number of BDD nodes handled and stored, is called the peak BDD size and may require 

an excessive amount of memory that is not available, although the final BDD size can be quite 
compact. 

■ Handling BDDs as one rigid structure can be infeasible when they are very large and complex. 
Partitioning techniques can be used that partition the transition relation in more manageable 
subrelations or events. Conjunctive partitioning is used for synchronous system models, since the 
transition relation TR can be viewed as a conjunction of N individual events Ei, denoted as TR = E1 ∧ E2 
∧ … ∧ EN. Similarly disjunctive partitioning is used for asynchronous system models, where the 
transition relation TR is a disjunction of N individual events Ei, denoted as TR = E1 ∨ E2 ∨ … ∨ EN. Also 
combinations of these partitioning techniques occur. The main challenge is to find a suitable and 
manageable partitioning for the transition relation. 

 

For finding the reachable state space using the symbolic approach, breadth-first search traversal is the 
basic technique [10], which can come in the form of applying the transition relation on the set of newly 
discovered unexplored states or on the set of all discovered states so far as shown in Listing 1.1. A variant 
to this approach is chaining, in which each kind of event is fired separately on the set of newly discovered 
unexplored states. This set of states is updated immediately after firing each individual event and grows 
like a ‘chain’ during these firings. Instead of working with newly discovered unexplored states, it is also 
possible to use the set of all discovered states so far, which is actually the standard version of this 
approach. Both variations on chaining are shown in Listing 1.2. Some common variables and functions in 
these pseudo code algorithms are shortly mentioned in Listing 1.3. 



16 
 

When comparing breadth-first search and chaining, the latter appears to be a better traversal approach 
[10]. But for real-life complex system models, both approaches are still unable to handle extremely large 
state spaces. Next to these two approaches, a relatively new technique for traversing a state space of a 
system model has emerged to tackle this problem. This approach is called Saturation, which is developed 
by G. Ciardo [8]. It has proven itself as a good competitor to traditional symbolic state space generation 
techniques for handling models with extremely large state spaces and different versions of the approach 
have been devised. 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

set<state> visited := { init } 

set<state> current := visited 

set<state> next_set := { } 

set<state> tmp := { } 

 
while (current != { }) : 

  next_set := { } 

  foreach (int i in 1..evts.length() : 

    tmp := next(current, evts[i]) 

    tmp := tmp - visited 

    next_set := next_set + tmp 

  visited := visited + next_set   

  current := next_set 

1 

2 

3 

4 

5 

6 

7 

8 

9 

set<state> visited := { init } 

set<state> old_vis := { } 

set<state> tmp := { } 

 
while (visited != old_vis) : 

  old_vis := visited 

  foreach (int i in 1..evts.length) : 

    tmp := next(old_vis, evts[i]) 

    visited := visited + tmp 
 

Listing 1.1: Pseudo code of breadth-first search algorithm using newly unexplored states only (left) or all states (right). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

set<state> visited := { init } 

set<state> new_set := visited 

set<state> tmp := { } 

 
while (new_set != { }) : 

  foreach (int i in 1..evts.length) : 

    tmp := next(new_set, evts[i]) 

    tmp := tmp - visited 

    new_set := new_set + tmp 

  visited := visited + new_set 

  new_set := new_set – visited 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

set<state> visited := { init } 

set<state> old_vis := { } 

set<state> tmp := { } 

 
while (visited != old_vis) : 

  old_vis := visited 

  foreach (int i in 1..evts.length) : 

    tmp := next(visited, evts[i]) 

    visited := visited + tmp 
 

Listing 1.2: Pseudo code of chaining algorithm using newly unexplored states only (left) or all states (right). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

// Variables: 

// Initial state of model. 

state init 

 

// List containing all events (partitioned transition relations). 

array<event> evts 

 

// Function: 

// Compute next (successor) states starting from from_states using event evt. 

set<state> next(set<state> from_states, event evt) 

Listing 1.3: Variables and function definitions for pseudo code in previous two listings. 

  

The indices of arrays are numbered from 

1 to length. 

‘set + set’ = set union 

‘set – set’ = set difference 

‘set + set’ = set union 

‘set – set’ = set difference 



17 
 

1.1 Goal statement 

The Formal Methods and Tools (FMT) research group at the University of Twente has developed its own 
verification toolset called LTSmin which is the result from years of research and includes a tool for 
symbolic model checking [5]. It contains a clean medium for representing the states of a model in a 
uniform way where an interface, called PINS is used [4]. Using this interface the LTSmin toolset is capable 
of separating the language specific details of modelling languages, from the model checking algorithms 
used for verification. The tool implements several symbolic reachability algorithms, such as breadth-first 
search and chaining. Also LTSmin versions of Saturation-like algorithms are implemented, but these have 
not yet been compared with those by G. Ciardo. 
 
The aim is to extend the symbolic reachability algorithms in the LTSmin toolset with the Saturation-based 
approach by G. Ciardo. The approach should be incorporated in the tool with its architecture and PINS 
interface in mind, and should maintain the benefits of keeping the algorithm independent from any 
language module. Basically the tool should eventually be capable of using Saturation as reachability 
technique for state space generation of any model that the tool can handle. 
 
The main goal of this project is summarized as follows: 
“Design and assess a Saturation-based approach as devised by G. Ciardo for the LTSmin toolset.” 
 
To achieve the given goal, the following research questions provide guidance in this project: 
■ “Different versions of the Saturation approach exist and which one of these is a good candidate for 

extending the symbolic reachability techniques of the LTSmin toolset?” 
■ ”How can the chosen version of the Saturation approach be implemented in the LTSmin toolset and 

what are the consequences for the tool’s architecture?” 
■ “How does the chosen Saturation approach perform in the LTSmin toolset compared to other symbolic 

reachability techniques in the tool?” 

1.2 Document structure 

The report follows the research questions to reach the main goal of this project. Chapter 2 gives an 
overview of the different Saturation approaches that exist and how they evolved over time. It will provide 
a basis for the first research question. Chapter 3 explains the architecture of the LTSmin toolset and the 
main focus lies with parts of the toolset that deal with reachability analysis. This will provide a basic 
understanding of how the LTSmin toolset is set up for answering the second research question. Chapter 4 
gives an answer to the first two research questions by discussing the underlying choice of the Saturation 
approach to implement and how the algorithm can be incorporated in the LTSmin toolset. It also 
continues with discussing the issues that arise during actual implementation in the LTSmin toolset and 
how these are solved (relating to the second research question as well). Chapter 5 finalizes the 
implementation of the chosen Saturation approach by evaluating its performance, as indicated in the third 
research question. But the report does not end here and continues with an improvement on the 
implemented Saturation approach in chapter 6. This chapter discusses the design, implementation and 
evaluation of an improved version of the implemented Saturation approach and will therefore also 
contribute to the third research question. The report ends in chapter 7 with how the main goal of 
implementing a Saturation approach into the LTSmin toolset is reached and what future directions can be 
taken to make the approach a viable alternative next to the available reachability options of the LTSmin 
toolset.  



18 
 

  



19 
 

2 Overview of Saturation approaches 

This chapter starts with basic definitions of state spaces and next-state functions (or transition relations) 
of system models. Section 2.2 and 2.3 each give an overview of one of the two main categories of the 
Saturation approaches as devised by G. Ciardo. 

2.1 Definitions and encodings for state space and next-state function 

A discrete-state model is used for encoding a model of the system under consideration [10][7]. 
 

Definition 2.1. A discrete-state model is a tuple (Ŝ, N, Sinit) [7], where 

■ Ŝ is the set of all possible states i  of the system (reachable or not); 

■ N: Ŝ → 2Ŝ  is the next-state function, N(i)  consists of all states reachable in one step from i; 

■ Sinit ⊆ Ŝ is the set of initial states. 
 

For discussing the Saturation approaches, the set Sinit
 will only contain a single initial state and the 

approaches can be extended to multiple initial states. The set of reachable states of the system is 

denoted by S ⊆ Ŝ. 

 
The model is usually decomposed into a number of K components and a model’s state i is a vector written 

as a K -tuple (iK, …, i1)  with Ŝ = SK × … × S1 and  il ∊ Sl for all 1 ≤ l ≤ K. Each state slot il in the state 

vector corresponds to a local state of the corresponding component l. For convenience, the local states of 

a component l are assumed to be integer values ranging from 0 to nl – 1, with nl the size of the local state 

space of component l  [10]. 

When the discrete-state model uses K variables in its specification and a model’s state consists of 

enumerating the values of these K  variables (corresponding to the Cartesian product SK × … × S1), then a 

state slot in a state vector corresponds to one of these K variables (one of the elements of the Cartesian 

product). The variables are ordered in a predefined way (mostly as part of the model’s specification) and 
the local state space sizes correspond to the domains of these variables. 
 
For every Saturation approach the state space is stored as a quasi-reduced K-level Multi-valued Decision 

Diagram [10]. They are almost similar to BDDs, but instead of 2 outgoing arcs per node, each node 
contains nl outgoing arcs. Each level l corresponds to the accompanying component l of the model. 

The next-state function is stored in different ways for different Saturation approaches and is discussed 
later. Mostly it is not stored in a single rigid data structure, but split into smaller manageable parts. 
 
Definition 2.2. A quasi-reduced K-level Multi-valued Decision Diagram (abbreviated to MDD) is a 

directed acyclic edge-labelled multi-graph [7], where: 
■ Nodes are put into levels ranging from K to 0 (i.e. K + 1 levels). 

■ Level K contains a single non-terminal root node r and one or more non-terminal nodes are 

situated at levels K – 1 to 1. 

■ Level 0 only has two terminal nodes, namely F and T (False and True MDD nodes, respectively). 

■ A non-terminal node p at level l contains nl arcs pointing to nodes at the lower level l – 1. 

■ Duplicate nodes (with same node values and same set of incoming and outgoing arcs) are not 
allowed, but redundant (non-terminal) nodes at level l where all arcs of the node point to the same 
node at level l – 1 are (hence quasi-reduced). 



20 
 

A path starting from the root node of an MDD and ending in the True node indicates a reachable state of 
the model. The MDD as defined above is not used as such, since this would also store the MDD nodes of 
unreachable states and the False MDD node. In practice, a reduced version of this MDD is stored, 
containing only the reachable states. That redundant MDD nodes are stored, is an artefact of building the 
MDD level by level from the bottom-up by the Saturation algorithm (more about this in section 2.2.1). 
 
■ From model to MDD example 
To give a sense what an MDD of a reachable state space looks like, consider one has a model specification 
and that the entire model itself can be decomposed into 5 smaller components which interact with each 
other in a certain way (so K = 5), as shown on the left in Figure 2.1. Another representation is that the 

model is specified using 5 variables and each is defined by a (mathematical) function, as shown on the 
right in Figure 2.1. A state vector of this model is written as a 5-tuple (i5, i4, i3, i2, i1) with Ŝ = S5 × S4 × S3 × 
S2 × S1. Each component has its own local state space size nl  and the values of the local state spaces are 

given on the right in Figure 2.2 (and likewise for the domain of the 5 variables of the model). 
Furthermore imagine the model can have a set of reachable states S as given on the left in Figure 2.2 and 

this set is stored in an MDD, as depicted in the two MDDs. The left MDD stores every single state of the 
model and each MDD node has nl outgoing arcs (according to Definition 2.2), while the right MDD only 

stores the reachable states of the model. 
A path starting from the root node at level 5 to the True MDD node at level 0 represents a reachable state 
of the model. So for state (0, 3, 1, 0, 1) one would start at the root node (at level 5) and take the arc 
pointing out of entry value 0. Arriving at the MDD node at level 4, one needs to take the arc heading out 
of entry value 3 to the next MDD node at level 3, and so on until the True MDD node at level 0. 
The MDDs do not contain duplicate nodes, since there are no two MDD nodes with the same entry values 
and that have the same set of incoming and outgoing arcs (pointing to the same set of MDD nodes). 
 

 
Figure 2.1: Example of a model represented as a decomposition (left) and as a function (right). 

 
Figure 2.2: Example MDDs which store every state (left) and only reachable states (right). 



21 
 

2.2 Saturation approaches for Kronecker-consistent models 

The first group of Saturation approaches require that the decomposition of the next-state function is 
Kronecker consistent, meaning that the effect of an event e on component l only depends on its 

corresponding local state space. Thus, it is possible to find K ∙ |E| subfunctions Nl,e, where E denotes the 

set of events. Some modelling formalisms such as basic Petri Nets satisfy this property automatically, but 
this is not always the case. In these other cases, one can still obtain a Kronecker-consistent decomposition 
of the next-state function by splitting and/or combining events, or performing these operations on the 
model components. This needs to be done manually before providing the model to the Saturation 
algorithm, because currently there is no technique available that can handle this automatically for every 
general type of model (it can for certain types of Petri Nets as implemented in the research tool SMART by 
G. Ciardo [7][6]). 
 
The next-state function is represented as a Kronecker product on Boolean adjacency matrices. A 
Kronecker product on two matrices is defined below. 
 
Definition 2.3. Kronecker product (or matrix direct product) of two matrices [25]. 
 
■ Given: m × n matrix A and p × q matrix B 

■ Result: (mp) × (nq) matrix C with elements cxy = aijbkl, where x ≡ p(i – 1) + k and y ≡ q(j – 1) + l. 

■ Notation: C = A ⊗ B 
 
Basically, the Kronecker product on two matrices is a form of matrix multiplication, where intuitively 
each value of matrix A is multiplied with the entire matrix B. Take for example the Kronecker product of 
a 1 × 3 matrix A and a 2 × 3 matrix B, which results in a 2 × 9 matrix C, as shown in Figure 2.3. 
 

 
Figure 2.3: Example of Kronecker product for a 1 × 3 matrix A and a 2 × 3 matrix B. 

Each row and column of the Boolean adjacency matrix Nl,e specifies the local state values for a particular 

component l and a matrix cell simply indicates if a local state value (row) can go to another local state 

value (column). These Boolean adjacency matrices Nl,e are sorted per event e and component l. The 

Kronecker product of all these submatrices Nl,e then forms the next-state function. So a decomposition of 

the next-state function is: N = ⋃e∊ENe and each Ne represents the following Kronecker product: Ne = NK,e 

⊗ … ⊗ N1,e, where each submatrix Nl,e represents a part of the next-state function for component l and 

event e. Table 2.1 visualizes this product in matrix form. 

 
 
 
 
 
 
 



22 
 

 Events 
1 2 … e … n 

  

Le
ve

ls
 

K NK,1 NK,2 … NK,e … NK,n 
K – 1 NK – 1,1 NK – 1,2  NK – 1,e  NK – 1,n 

 ...
  

…
      

…
 

l Nl,1 Nl,2  Nl,e  Nl,n 

 
…

 

 
…

      
…

 

2 N2,1 N2,2  N2,e  N2,n 
1 N1,1 N1,2 … N1,e … N1,n 

Table 2.1: Kronecker product of next-state function in matrix form.  

An advantage of storing the next-state function in this manner, is that the submatrices Nl,e are quite 

sparse. Moreover, if the occurrence of certain events do not affect the local state space of a component l, 
then the submatrix Nl,e is simply the identity matrix and can be stored more efficiently [10]. 

 
In the following subsections two variants of this group of Saturation approaches will be discussed in detail, 
as summarized in Table 2.2. For convenience, they will be denoted as Kronecker Saturation approaches 
from now on.  
 
 Kronecker Saturation approaches 

Name Kronecker Prebuilt Saturation Kronecker On-the-fly Saturation 

Explanation Next-state function is Kronecker consistent and 
is built in advance (prebuilt) before starting the 
Saturation process. 
(Local state space sizes nl are known.) 

Next-state function is Kronecker consistent and 
built on-the-fly during the Saturation process. 
 
(Local state space sizes nl are unknown.) 

Table 2.2: Subcategories of Kronecker Saturation approaches. 

 
■ Running example 1 – Model description 
As a running example for Kronecker Saturation throughout this report, a simple program model is used 
which consists of three (interleaving) parallel processes and three global variables x, y and z. To obtain a 
Kronecker-consistent next-state function, the individual updating statements (not conditions) of the 
processes can only rely on at most a single variable, namely their own variable. Each process is considered 
to consist of a single event and the three variables x, y and z correspond to level 3, 2 and 1 of the MDD, 
respectively. An overview of the program model is given below in Table 2.3. 
 
Level Variable Initial value Local state space  Event Process of program 

3 x 0 S3 = {0, 1, 2}  0 if x < 2 and y < 3 then 
{ x = x + 1 ; y = y + 2 ; } 

2 y 0 S2 = {0, 1, 2, 3, 4}  1 if y > 0 and z > 0 then 
{ y = y – 1 ; z = z – 1 ; } 

1 z 1 S1 = {0, 1}  2 if x < 2 and z > 0 then 
{ x = x + 1 ; z = z – 1 ; } 

Table 2.3: Example model 1 with a Kronecker-consistent next-state function. 

 
 



23 
 

■ Running example 1 – Kronecker matrix of next-state function 
Following example model 1, the submatrices Nl,e per level and event of the entire next-state function can 

be determined, which is shown in (Kronecker) matrix form in Figure 2.4. So the entire matrix depicted 
forms the Kronecker product of the complete next-state function N and each (large) matrix cell contains a 

Boolean adjacency matrix Nl,e (for readability reasons crosses are used to indicate the value True and 

empty cells indicate the value False). 

 
Figure 2.4: Kronecker product of next-state function in matrix form for example model 1. 

2.2.1 Kronecker Prebuilt Saturation approach 

The most basic version of the Kronecker Saturation approach is first presented in [8] and later more 
extensively discussed in [10] and [7]. Next to the requirement of Kronecker consistency of the next-state 
function, this version of the Saturation algorithm also requires that nl, the local state space size of 

component l, is known in advance. With this knowledge, it is easier to map local states to their 

corresponding local state values (ranging from 0 to nl – 1). And with the known local state space sizes, the 

next-state function can be prebuilt as a Kronecker product of Boolean adjacency matrices Nl,e before 

generating the reachable state space using Saturation. Therefore this variant of the Kronecker Saturation 
approach will be denoted as Kronecker Prebuilt Saturation. 
 
The Kronecker Prebuilt Saturation approach makes use of the notion of node saturation, which basically 
means that an MDD node at a certain level is only saturated if this node and all nodes at lower levels do 
not change anymore with regard to the firing of events that only affect these levels. Hereby the concept 
of event locality comes into play, where certain events only affect certain MDD levels. For each event, the 



24 
 

range of levels can be determined in which the local states of the corresponding levels undergo a 
transition to another local state and these are indicated with the top- and bottommost levels per event e, 

respectively Top(e) and Bot(e). Levels above and below this range are not affected by event e, since these 

only contain identity transitions. For the Saturation algorithm, this means that in a level l an event e is only 

fired when it falls within the range between Top(e) and Bot(e), avoiding unnecessary firings where the local 

state space remains the same. Hereby the entire set of events E is partitioned into event sets per level l, 

namely ℰl = { e ∊ ℰ: Top(e) = l  }. 
In the traditional symbolic approach the unsaturated BDD nodes found, are mostly immediately replaced 
by (a number of) new BDD nodes that encode a larger set of states [7]. The number of unsaturated nodes 
is very unpredictable and changes all the time, which contributes largely to the peak BDD size. This is 
avoided in the Saturation algorithm by getting rid of unsaturated nodes as early as possible. 
 
■ Running example 1 – Bot(e)  and Top(e) 
In Table 2.4 Bot(e) and Top(e) of the three events are shown for example model 1. So for example the 

bottommost level for event 0 is level 2 and this means that every submatrix Nl,e below level 2 of event 0 

are just identity matrices (containing only identity transitions). And 
this is similar for the topmost level, but then for submatrices Nl,e 

above the topmost level. 
The submatrices within the range of Bot(e) and Top(e) for a certain 

event e can still contain identity submatrices, as is the case with 

event 3, as can be seen in Figure 2.4. 
 
The resulting Kronecker Prebuilt Saturation algorithm is described in [8], [10] and [7] (although these 
papers show some minor differences in the pseudo code, the basic structure of the algorithm is the same). 
The Saturation algorithm consists of three main functions, namely generate, saturate and fire. 
The function generate has as main purpose to create an empty MDD node for a state slot at level l of the 

initial state vector and saturate it by calling the function saturate. After this MDD node has been 
saturated, the next state slot of the initial state vector is handled until no more state slots are left. 
The function saturate is used to saturate an MDD node on a certain level l. It tries to fire every possible 

event from the set El (iterating over this event set), where MDD nodes on lower levels are turned into 

saturated ones per event. Hereby the current MDD node is only updated in-place if new (local) states are 
discovered. In this case every event from the set El needs to be iterated over and fired again to check if it 

is possible to discover more reachable states. Finally the updated MDD node is placed in the unique 
(lookup) table. 
The function fire is almost similar to the previous function, but only saturates lower-level MDD nodes 
for a particular event e and this function is called only with an MDD node on levels lower than Top(e). It 
traverses down the MDD until Bot(e) is reached, if a certain MDD node and event combination has been 

handled before, or if no more successors are found. Before unwinding out of the recursive calls of fire, 
any newly found states are saturated as well with the function saturate. Basically function fire 
calculates the next (local) states or relational product for a certain MDD. 
 
So for a given model, after creating an empty MDD node for a state slot (at level l) of the initial state 

vector, this MDD node is saturated by considering all events from the set El. It then fires each event 

separately by traversing the MDD downwards (by calculating the relational product) and saturating it on 
the way from the bottom-up when returning back to the MDD node it started with. Saturation is then 
repeated for the same events if new (local) states are found. Otherwise the whole process is repeated for 

Event e Bot(e) Top(e) 

0 Level 2 Level 3 

1 Level 1 Level 2 

2 Level 1 Level 3 
Table 2.4: Bottom- and topmost levels for 
each event e of example model 1. 



25 
 

the next state slot of the initial state vector until the last state slot of the initial state vector is saturated 
and the result is the reachable state space of the given model. 
The pseudo code of the described functions can be found in Listing 2.1 (for now the highlighted parts can 
be safely ignored). Furthermore Listing 2.2 provides some explanations for a couple of operations on MDD 
nodes. Figure 2.5 gives a pictorial overview of the described Saturation process, and some definitions 
regarding the working MDD level are explained in Figure 2.6, which indicates the current working level for 
which a Saturation process is started for events that start at a topmost level. 
 

 
Figure 2.5: Pictorial overview of Saturation process in a nutshell. 

 

 
Figure 2.6: Visualizing the term (topmost) working MDD level, when entering the MDD from above. 



26 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

// Generate MDD tree of reachable state space, starting from initial state. 

MDDnode generate(array<int> init_vector) : 

    MDDnode p := getMDDTrue() 

    for (int level in 1 .. init_vector.length()) : 

        i := getAllStateValsOfLevel(level).add(init_vector[level]) 

        confirm(level, i) 

        MDDnode r := createEmptyMDD(level) 

        r.setArc(init_vector[level], p)   // On-the-fly: r.setArc(i, p) 

        p := saturate(level, r) 

    return p 

 

// Saturate MDD subtree in a certain level. 

MDDnode saturate(int l, MDDnode p) : 

    set<event> topLvlEvts := getEventsOnTopLevel(l) 

    while (! topLvlEvts.empty() ) : 

        event evt := topLvlEvts.pickEvent() 

        foreach (int i in getLocalStateVals(evt, l, p)) : 

            MDDnode f := fire(evt, l - 1, p.getArc(i)) 

            foreach (int j in getNextStates(evt, l, i)) : 

                MDDnode u := unionMDDs(l - 1, f, p.getArc(j)) 

                if (u != p.getArc(j)) : 

                    if (! getAllStateValsOfLevel(l).contains(j)) : 

                        confirm(l, j) 

                    p.setArc(j, u) 

                    topLvlEvts := getEventsOnTopLevel(l) 

    return checkMDDnode(UT[l], p) 

 

// Fire event on MDD subtree in a certain level 

// for finding new MDD subtrees to saturate. 

MDDnode fire(event evt, int l, MDDnode q) : 

    if (l < getBottomLevelForEvent(evt)) : 

        return q 

    MDDnode s := findInLookupTable(FC[l], (q, evt)) 

    if (s != null) : 

        return s 

    s := createEmptyMDD(l) 

    foreach (int i in getLocalStateVals(evt, l, q)) : 

        MDDnode f := fire(evt, l - 1, q.getArc(i)) 

        foreach (int j in getNextStates(evt, l, i)) : 

            if (! getAllStateValsOfLevel(l).contains(j)) : 

                confirm(l, j) 

            s.setArc(j, unionMDDs(l - 1, f, s.getArc(j))) 

    s := saturate(l, s) 

    insertInLookupTable(FC[l], (q, evt), s) 

    return s 

 

// Return set of (local) state slot values for which a certain event can fire 

// in a certain level for MDD subtree. 

set<int> getLocalStateVals(event evt, int l, MDDnode p) : 

    set<int> localStateVals 

    foreach (int i in getAllStateValsOfLevel(l)) : 

        if (p.getArc(i) != getMDDFalse() && ! getNextStates(evt, l, i).empty()) : 

            localStateVals.add(i) 

    return localStateVals 

Listing 2.1: Pseudo code of Kronecker Prebuilt Saturation algorithm with additional code for On-the-fly version highlighted in 
light-blue [10]. 

 

Function in pseudo code Notation 
getEventsOnTopLevel(l) El

 

getNextStates(alpha, l, i) Nl,α(i) 
getBottomLevelForEvent(alpha) Bot(α)  

getAllStateValsOfLevel(l) Sl
 

 

The indices of arrays are numbered from 

1 to length(). 

Global lookup tables (per level) 
■ FC : Fire Cache 
■ UT : Unique Table 



27 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

// Create a new empty MDD node at the given level. 

MDDnode createEmptyMDD(int level) 

 

// Check if the given MDD tree is already stored in the given lookup table. If so, 

// the value from the lookup table is returned, otherwise the given MDD tree is 

// inserted into the lookup table and returned. 

MDDnode checkMDDnode(array<MDDnode> lookup_table, MDDnode set) 

 

// Return MDD node pointed to by arc belonging to the given local state value. 

// If current MDD node does not contain the given local state value, then the False 

// MDD node is returned. 

MDDnode getArc(int value) 

 

// Set arc (belonging to the given local state value) to point to the given MDD 

// node. If current MDD node does not contain the given local state value, then 

// insert a new entry with this local state value and set the arc to the given MDD 

// node. 

void setArc(int value, MDDnode set) 

 

// Return the True MDD node. 

MDDnode getMDDTrue() 

 

// Return MDD tree of given state vector (consisting of integer state values). 

MDDnode getInitMDD(array<int> state_vector) 

Listing 2.2: Function definitions used in pseudo code of Kronecker Saturation algorithms. 

2.2.2 Kronecker On-the-fly Saturation approach 

In [9] an extension to the Kronecker Prebuilt Saturation approach is described which lifts the requirement 
that the local state space sizes nl are known in advance. It turns out that when nl is determined for each 

component l beforehand, one can encounter either an infinite value for the local state space or spurious 

states (in which case nl may be larger than necessary). Manually manipulating the model in advance to 

cope with this issue is not a good solution, due to newly introduced (human) errors. 
 
The next version of the Saturation algorithm deals with two issues in parallel, namely determining the 
smallest size of each local state space and generating the reachable state space of the model. In this 
algorithm new locally reachable states are discovered and only those that are also globally reachable are 
stored by indicating that they are confirmed to occur in the reachable state space. So it is only viable to 
consider transitions originating from confirmed local states, and ignoring the ones starting from 
unconfirmed local states. For this to work, the algorithm needs to keep track of the possible firings of 
events starting from these confirmed states (and this also explains the name On-the-fly Saturation, since it 
discovers (local) transitions on-the-fly). This is done by incrementally building the next-state function (as 
before as Boolean adjacency matrices Nl,e) to keep track of which firings of events are possible. In the 

Prebuilt version of the Saturation algorithm the submatrices Nl,e are prebuilt and are always square-

shaped. But now they are generated on-the-fly, these submatrices mostly have a rectangular size during 
its evolution with the rows corresponding to confirmed local state values and the columns to both 
confirmed and unconfirmed local state values (these local state values are discovered with the confirm 
function, as will be explained below). At the end of its evolution some submatrices Nl,e can end up in a 

square shape, meaning that all available local state values are globally reachable. 
So when there is a transition from local state value i to local state value j in a submatrix and j is confirmed, 

than there also exists a row j in this submatrix. When j is unconfirmed, this row does not exist (meaning 

that j is locally reachable, but not (yet) globally reachable). And j can become confirmed if it is discovered 

to be globally reachable later during saturation.  



28 
 

 
■ Running example 1 – Fictitious on-the-fly confirmation of next-state function 
The initial state values are confirmed one by one, but if all initial state values would be confirmed at the 
beginning, then the Kronecker product of the next-state function would look in (Kronecker) matrix form 
like the one as depicted in Figure 2.7. Only one row of each adjacency submatrix has been discovered here 
and the cells in the row until the local state transitions (indicated by crosses) are stored (so the adjacency 
submatrices have a rectangular shape). 
When one of the local state transitions to an unconfirmed local state is taken (cross located in a yellow 
cell), confirm is called first to confirm the row in all submatrices at the same level corresponding to the 
local state to which it is going to by the local transition. So take for example the submatrix N3,0 for level 3 

and event 0. Before a transition is performed from local state value 0 to local state value 1 (indicated by 
cross), the row for local state value 1 needs to be confirmed first in all submatrices at level 3. During the 
confirmation, the rectangular shape of the submatrices is maintained. In this case the number of columns 
of the submatrix is increased from 2 to 3 as is shown in Figure 2.8. 
 

 
Figure 2.7: Fictitious Kronecker matrix of next-state function for example model 1 after confirming all initial state values. 



29 
 

 
Figure 2.8: Visualization of confirmation process for local state value 1 at level 3 (which only affect matrix cells at level 3) for 
example model 1. 

The resulting Kronecker On-the-fly Saturation algorithm has basically the same structure as the Kronecker 
Prebuilt Saturation algorithm, but a new function confirm is added which is confirming newly found 
local state values [9][10]. This function basically looks for every Boolean adjacency matrix Nl,e where l 
corresponds to the current level. While iterating over each event e, for each submatrix Nl,e that is not 

equal to an identity transition (except when it lies in the range of Bot(e) and Top(e)), it adds a new row to 

this submatrix for the newly discovered local ‘from’ state value and extracts the local ‘to’ state values it 
heads to in this row. The local ‘to’ state values can contain both confirmed as unconfirmed local state 
values. 
In practice the local state values are not discovered in numerical order from 0 to nl  – 1. A more efficient 

way to add new rows to the submatrix Nl,e is to map the real local state value to the row index of the first 

occurring empty row in the submatrix. In this way new rows are added adjacently to the existing rows in 
submatrix Nl,e and the algorithm uses the mapped local state values in the algorithm. 

The corresponding pseudo code of this function clarifies this in Listing 2.3, where the highlighted code 
segments indicate the use of mappings for the real local state values. 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

// Constant integer indicating that a certain mapping (for a key) does not exist. 

constant int NULL_MAPPING := MIN_INTEGER 

 

// Confirm the newly found (‘from’ local state) value at the given level and update 

// affected events by inserting new transitions using model specifications. 

void confirm (int level, int from_value) : 

  int real_from_value := getInvMapping(from_value) 

  foreach (event evt with getNextStates(evt, level) != getIDMatrix(level)) : 

    foreach (real_to_value in getNextStatesFromModel(evt, level, real_from_value)) : 

      int to_value := getMapping(real_to_value) 

      if (to_value != NULL_MAPPING) : 

        to_value := createMapping() 

      setNextStates(evt, level, from_value, to_value) 

  getAllStateValsOfLevel(level).add(from_value) 

Listing 2.3: Pseudo code of confirmation process for updating events in Kronecker On-the-fly Saturation algorithm [10]. 



30 
 

 
In the algorithm some additional function calls to confirm are added (see highlighted code in Listing 2.1). 
The confirmation in the function generate is obvious, because it needs to confirm the initial local state 
value at each level. The other two confirm functions are located at points when it is certain that a new 
local state value is globally reachable. 
 
The difference between Kronecker Prebuilt and Kronecker On-the-fly Saturation algorithms in terms of 
implementation details of the next-state function is given in Table 2.5. 
 
 Kronecker Saturation algorithm 

Prebuilt On-the-fly 

Next-state 
function 

Static and partitioned into Boolean 
matrices in advance. They are only read. 

Dynamic and partitioned into Boolean matrices. 
They are created incrementally (during saturation) 
from a high-level transition spec and read. 

Table 2.5: Differences in implementation details between Kronecker Prebuilt and Kronecker On-the-fly Saturation. 

2.3 Saturation approaches for general models 

In [11] and [23] the Saturation approach is further extended, by handling decompositions of the next-state 
function that are not Kronecker consistent and this gives us the second group of Saturation approaches. 
To handle these, the next-state function is partitioned using disjuncts over each occurring event and 
conjuncts representing the transitions that synchronously update several (local) states at once [11]. The 
conjuncts are divided to handle the following two cases: 
■ A set of enabling conjuncts indicating when an event e can occur. 

■ A set of updating conjuncts indicating how each local state can transition to another local state when 
event e occurs. 

 
In [11] this distinction within conjuncts is made explicitly, but is not necessary when using this group of 
Saturation algorithms as explained in [23]. 
Now for the encoding of the next-state function, variants of MDDs are used which will be discussed per 
approach in the following subsections. 
 
Just as the Kronecker Saturation approaches, two variants exist which will be discussed in the following 
subsections, as summarized in Table 2.6. For convenience, they will be denoted as General Saturation 
approaches from now on.  
 
 General Saturation approaches 

Name General Prebuilt Saturation General On-the-fly Saturation 

Explanation Next-state function from general types of 
models is built in advance (prebuilt) before 
starting the Saturation process. 
(Local state space sizes nl are known.) 

Next-state function from general types of 
models is built on-the-fly during the Saturation 
process. 
(Local state space sizes nl are unknown.) 

Table 2.6: Subcategories of General Saturation approaches. 

 
 
 
 
 



31 
 

■ Running example 2 – Model description 
As a running example for general Saturation throughout this report, a simple program model is used 
which consists of three (interleaving) parallel processes and three global variables x, y and z. The next-
state function does not need to be Kronecker-consistently decomposable and so the individual statements 
of the processes can rely on multiple variables (in this example at most two variables). Each process is 
considered to be an event and the three variables x, y and z correspond to level 3, 2 and 1 of the MDD, 
respectively. The program model is summarized below in Table 2.7. 
 
Level Variable Initial values Local state space  Event Process of program 

3 x 0 S3 = {0, 1, 2}  0 if x < y then { x = x + 1 ; } 

2 y 0 S2 = {0, 1, 2}  1 if y < 2 then { y = y + 1 ; } 

1 z 0 S1 = {0, 1, 2}  2 z = x ; 

Table 2.7: Example model 2 with a general next-state function. 

■ Running example 2 – Disjunctive & conjunctive partitioning 
The disjunctive partitioning of the transition relation of example model 2 is already given above: each 
event represents a disjunct. The conjuncts for each of these disjuncts would be as given in Table 2.8. 
 
Event Enabling conjunct Updating conjunct 

0 x < y x = x + 1 

1 y < 2 y = y + 1 

2 True z = x 

Table 2.8: Partitioning of events in enabling and updating conjuncts for example model 2. 

2.3.1 General Prebuilt Saturation approach 

The General Prebuilt Saturation algorithm needs to know the local state space sizes (or variable domains) 
and the partitioned next-state function prior to running the Saturation algorithm, just as is the case with 
the Kronecker Prebuilt Saturation algorithm. Also the notions of node saturation, event locality and in-
place updates are present in the General version of the algorithm. Compared to the Kronecker Saturation 
algorithms, the pseudo code of the General version of the algorithm is set up slightly different, but the 
main structure is still visible [23] (in [11] the pseudo code of the algorithm is given as well, but is written 
more abstractly). The General Saturation algorithm now consists of four main functions, namely 
generate, saturate, doFixPoint and relProd. 
The function generate is different from the one in the Kronecker Prebuilt Saturation algorithm in the 
sense that it creates the entire MDD of the initial state at once (for all initial state values), before starting 
the saturation process by calling saturate. 
The function saturate looks for successor MDD nodes of a given MDD node to saturate and to perform a 
fix-point computation on them, which is then stored in a unique (lookup) table. Prior to looking for 
successor MDD nodes, it first checks if the given MDD node has been handled before. 
The main work of saturating MDD nodes now lies with the function doFixPoint.  Just as is the case in 
the function saturate of the Kronecker Prebuilt Saturation algorithm, it tries to saturate a given MDD 
node on a certain level l. 

And the function relProd is now handling the work of performing saturation on lower-level MDD nodes 
for a particular event e, similar to fire in the Kronecker Prebuilt Saturation algorithm (calculating the 

next (local) states or relational product for an MDD). And before returning the updated MDD on the given 
level (with newly found next (local) states), it performs a saturation process on the current and lower-
level MDD nodes to saturate any newly found (local) states. 



32 
 

For the pseudo code of these functions, one can take a look in Listing 2.4 (using the same MDD operations 
as explained in Listing 2.2) and for now ignore the highlighted parts. 
 
The given algorithm in [23] partitions the next-state function by event and stores each of these as quasi-
reduced 2K-level MDDs. The levels of such partitioned MDDs indicate if it concerns an unprimed level 

from which a transition is performed (local ‘from’ state value) or a primed level to which a transition is 
going (local ‘to’ state value). The partitioning using conjuncts and disjuncts is as follows: the disjuncts are 
actually the MDDs for each event separately and each of these MDDs are built up from the intersection of 
individual MDDs representing the conjuncts. The algorithm does not require that the individual conjuncts 
are stored explicitly and works just as well with storing only the disjuncts (as MDDs for each event). But in 
Listing 2.4 it is assumed that the conjuncts of the entire next-state function are stored (indicated by the 
function buildTransitionMDDFromConjuncts in line 25 of pseudo code). 
The next-state function can also be partitioned by level (or by variable), but this is basically a variation on 
the disjunctive partitioning scheme. In this case, for each level l a transition relation is constructed by 

taking the union over the partitioned transition relations per event e with Top(e) = l. 
 
The original pseudo code of the algorithm in [23] does not use the range of levels bounded by Top(e) and 
Bot(e). This is only done for clarity reasons to avoid clutter in the pseudo code and is as such very time-

consuming. This is due to the fact that every level of the partitioned MDD of the next-state function needs 
to be traversed, including identity transitions at upper and lower levels of the MDD. But the given 
algorithm can be easily adjusted to take into account the range of levels between Top(e) and Bot(e), so that 

only the levels of the MDD for the next-state function that matter are traversed (as indicated in line 37 in 
Listing 2.4, where Bot(e) is taken into account). By making use of this, the partitioned MDDs of the next-

state function can be reduced further by storing only MDD nodes on levels within this range. 
With this setup the partitioned MDDs of the next-state function contain nodes at every level within the 
mentioned range, even if identity transitions exist at certain intermediate levels (which will be denoted as 
intermediate identity transitions from now on). The given pseudo code in Listing 2.4 assumes that such 
intermediate identity transitions are stored in the MDDs of the next-state function. 
 
■ Running example 2 – Partitioning of next-state function per event 
For each of the three events of example model 2 an MDD is constructed in advance and these are 
depicted in Figure 2.9, which are equivalent to the disjunctive partitioning of the next-state function (the 
individual conjuncts are not visible). 
Storing these disjuncts is enough for 
the algorithm to work. As described 
above, only MDD nodes within the 
range of levels bounded by Top(e) and 

Bot(e) are stored, also for 

intermediate identity transitions 
(which are highlighted in grey in the 
figure). 
 
 
Figure 2.9: MDDs of partitioned next-state 
function per event for example model 2. 



33 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

// Generate MDD tree of reachable state space, starting from initial state. 

// On-the-fly: confirmation of initial state values in getInitMDD(init). 

MDDnode generate(array<int> init_vector) : 

    return saturate(init_vector.length(), getInitMDD(init_vector)) 

 

// Saturate MDD subtree in a certain level. 

MDDnode saturate(int l, MDDnode p) : 

    MDDnode t := findInLookupTable(SC[l], p) 

    if (t != null) : 

        return t 

    t := createEmptyMDD(l) 

    foreach (int i in getLocalStateVals(l, p)) : 

        t.setArc(i, saturate(l - 1, p.getArc(i))) 

    t := checkMDDnode(UT[l], doFixPoint(l, t)) 

    insertInLookupTable(SC[l], p, t) 

    return t 

 

// Do fix-point computation on MDD subtree for every event in given topmost level. 

MDDnode doFixPoint(int l, MDDnode t) : 

   MDDnode old_t := createEmptyMDD(l) 

   while (old_t != t) : 

      old_t := t 

      foreach (event evt in getEventsOnTopLevel(l)) : 

         confirm(foundNewStateVals) 

         MDDnode r := buildTransitionMDDFromConjuncts(evt) 

         foreach (int i in getLocalStateVals(l, t)) : 

            foreach (int j in getLocalStateVals(l, r.getArc(i))) : 

               if (! getAllStateValsOfLevel(l).contains(j)) : 

                  foundNewStateVals.add(l, j) 

               MDDnode u := relProd(l - 1, t.getArc(i), r.getArc(i).getArc(j), evt) 

               t.setArc(j, unionMDDs(l - 1, t.getArc(j), u)) 

   return t 

 

// Perform relational product on MDD subtree in a certain level under a given event 

// for finding new MDD subtrees to saturate. 

MDDnode relProd(int l, MDDnode s, MDDnode r, event evt) : 

    if (l < getBottomLevelForEvent(evt)) : 

        return s 

    MDDnode t := findInLookupTable(RC[l], (s, r)) 

    if (t != null) : 

        return t 

    t := createEmptyMDD(l) 

    foreach (int i in getLocalStateVals(l, s, r)) : 

        foreach (int j in getLocalStateVals(l, r.getArc(i))) : 

            if (! getAllStateValsOfLevel(l).contains(j)) : 

                  foundNewStateVals.add(l, j) 

            MDDnode u := rel_prod(l - 1, s.getArc(i), r.getArc(i).getArc(j), evt) 

            t.setArc(j, unionMDDs(l - 1, t.getArc(j), u)) 

    t := saturate(l, checkMDDnode(UT[l], t)) 

    insertInLookupTable(RC[l], (s, r), t) 

    return t 

 

// Get set of (local) state slot values in a certain level for MDD subtree 

// (for which transition can occur). 

set<int> getLocalStateVals(int l, MDDnode p) : // Version with parameter MDDnode r 

    set<int> localStateVals 

    foreach (int i in getAllStateValsOfLevel(l)) : 

        // Extra condition for version: && r.getArc(i) != getMDDFalse() 

        if (p.getArc(i) != getMDDFalse()) : 

            localStateVals.add(i) 

    return localStateVals 

Listing 2.4: Pseudo code of General Prebuilt Saturation algorithm with additional code for On-the-fly version highlighted in light-
blue [23]. 

Function in pseudo code Notation 
getEventsOnTopLevel(l) El

 

getBottomLevelForEvent(alpha) Bot(α)  

getAllStateValsOfLevel(l) Sl
 

 

The indices of arrays are numbered from 

1 to length(). 

Global lookup tables (per level) 
■ SC : Saturation Cache 
■ RC : Rel-prod Cache 
■ UT : Unique Table 



34 
 

2.3.2 General On-the-fly Saturation approach 

Just as is the case with the Kronecker On-the-fly Saturation algorithm, the restriction of having to know 
the local state space sizes in advance can be lifted. The resulting algorithm also has to deal with updating 
the next-state function in parallel to generating the reachable state space, where newly discovered local 
state values need to be confirmed as globally reachable. The algorithm as described for the General 
Prebuilt Saturation algorithm can be used with the addition of confirmation for newly found local state 
values. 
The confirmation function works differently from the one in Kronecker On-the-fly Saturation, which is due 
to the data structure used for storing the entire next-state function. When a new local state value is 
encountered inside the function doFixpoint, this new value is not immediately confirmed. Newly found 
values are put on hold (highlighted in lines 28 – 29 and 45 – 46 in Listing 2.4) and are confirmed in the 
next iteration in the while-loop of the function doFixpoint by calling the function confirm (highlighted 
in line 24 in Listing 2.4). During the confirmation process, only the MDDs representing the conjuncts with 
the affected level are updated (confirmed) with the new local state value. And when function 
buildTransitionMDDFromConjuncts is called, it rebuilds the MDD for the given event by performing 
the intersection over the MDDs of the conjuncts. Listing 2.5 gives the pseudo code of function confirm 
for updating all affected MDD conjuncts. 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

// Confirm new local state values corresponding to a certain level by updating all 

// affected conjuncts which involve the given level. 

void confirm(array<(int, int)> foundNewStateVals) : 

  foreach ((int level, int new_value) in foundNewStateVals) : 

    getAllStateValsOfLevel(level).add(new_value) 

    // Assume that MDD conjuncts can be identified with a unique ID (conjID) and 

    // the top level of an MDD conjunct can be retrieved with getTopLevel(). 

    foreach ((event evt, int conjID) in getMDDConjunctsWithLevel(level)) : 

      MDDnode newConj := buildMDDConjunctFromModel(evt, conjID, level, new_value) 

      MDDnode oldConj := getMDDConjunct(evt, conjID) 

      MDDnode unitedConjs := unionMDDs(oldConj.getTopLevel(), oldConj, newConj) 

      storeMDDConjunct(evt, conjID, unitedConjs) 

Listing 2.5: Pseudo code of confirmation process for updating events in General On-the-fly Saturation algorithm [23]. 

In [11] and [23] a proposal has been given for the storage of the next-state function, which still partitions 
the MDDs per event (or level). Instead of using quasi-reduced 2K-level MDDs, the next-state function is 

partitioned into fully-identity reduced 2K-level MDDs where an arc can skip a level (the usual MDD 

operations used for quasi-reduced MDDs cannot be applied here, because they assume that intermediate 
identity transitions are stored as well). The point of using such an MDD structure is the fact that 
intermediate identity transitions are not stored explicitly while still maintaining an efficient encoding for 
the next-state function. But the disadvantage lies in updating the MDDs when a new local state value is 
found and building larger MDDs from the partitioned MDDs. [23] has come up with a solution by 
introducing extensible MDDs, where the reduction technique for MDD nodes differs per level in the MDD. 
Performing operations on such MDDs as union and intersection now becomes more complex. Since the 
proposed solutions are mostly an implementation solution to the MDD data structure, they will not be 
discussed further in this report. 
 
An overview of the differences between the General Prebuilt and the General On-the-fly Saturation 
algorithms in terms of implementation details of the next-state function is given in Table 2.9. Although 
General Saturation does not pose a restriction on the next-state function of a model, it is in principle 
capable of using models with a Kronecker-consistent decomposable next-state function. However, storing 
such next-state functions using MDDs is not as efficient as storing those using Boolean matrices. 



35 
 

 General Saturation algorithm 

Prebuilt On-the-fly 

Next-state 
function 

Static and partitioned into transition 
MDDs per event in advance. They are 
only read. 

Dynamic and partitioned into transition MDDs per 
event. They are created incrementally (during 
saturation) from a high-level transition spec and read. 

Table 2.9: Differences in implementation details for General Prebuilt and General On-the-fly Saturation. 

2.3.3 General Saturation approach using Matrix Diagrams 

In this report the main focus will be on using MDDs as data structure for storing sets of states and the 
next-state function. For completeness a reference to another Saturation approach is given to show how 
versatile it is regarding data structure. 
 
In [18] another approach is presented by A. Miner for dealing with general models with transition 
relations which are not Kronecker consistent. Here a variation on MDDs, called Matrix Diagrams 
(abbreviated to MxDs) is used for storing the next-state function. They are similar to MDDs, but each non-
terminal node is a matrix of size nl × nl. These contain pointers to other (matrix) nodes. Furthermore 

identity transitions are not stored, so it is in fully-identity reduced form. 
Transition relations are partitioned per event as well, but the underlying decomposition into smaller 
manageable parts is different. When in an event of the model certain levels are dependent on each other 
(e.g. certain model components interact with each other), they are grouped together into one MxD, called 
a Group. If a Group only depends on one level, it is either an identity transition or a transition that only 
relies on itself and/or some constant value. A transition relation MxD belonging to a certain event is 
basically the cross product of these Groups. 
So when dealing with conjuncts that have overlapping variables, one has to group these conjuncts 
together in one MxD. This is not necessary when working with the approach as presented by G. Ciardo 
and each conjunct is stored individually. 
Here also Prebuilt and On-the-fly versions of the Saturation algorithm exist and the difference with that of 
G. Ciardo is mainly due to implementation details of handling MxDs instead of MDDs. 
 
■ Running example 2 – Matrix diagrams of next-state function per event 
The partitioning of the next-state function into MDDs for example model 2, as shown in Figure 2.9, can 
also be depicted using MxDs as shown in Figure 2.10. Each matrix node indicates how a local transition 
occurs with the row indicating the ‘from’ local state value and the column indicating the ‘to’ local state 
value. The matrix cell corresponding to 
this local transition is marked with a 
pointer to the next matrix node on a 
lower level. The difference with MDDs 
is that the levels are not duplicated and 
that each non-terminal node is a matrix 
node (in this case of size 3 × 3, because 
the local state space sizes nl are the 

same for all three variables in this 
example model). Identity transitions 
(also intermediate ones) are not stored. 
 
Figure 2.10: Matrix Diagrams of partitioned next-
state function per event for example model 2. 



36 
 

2.4 Summary of Saturation approaches 

To summarize this chapter, an overview is given of the similarities and differences among the Saturation 
approaches. This is followed by an overview of how the Saturation approach evolved over time. 

2.4.1 Similarities and differences among Saturation approaches 

The basic idea of the Saturation approach is the same for all its different versions, where the reachable 
state space is stored as a quasi-reduced K-level MDD. The algorithm performs a fix-point computation 

when saturating MDD nodes and this starts from the top of the MDD heading down the MDD tree 
structure. Starting from a topmost working level for certain events, the fix-point computation is 
performed for each of these events separately after each other, which involves calculating the relational 
product of the MDD so far. When unwinding out of the recursive calls back to the top of the MDD, newly 
updated MDD nodes are saturated on the way. So basically MDD nodes are saturated from the bottom to 
the top of the MDD and one can only head one level up when all MDD nodes on the current and lower 
levels are saturated. This process continues until the root of the MDD is saturated and this gives the 
reachable state space of the model under investigation. 
 
The differences between the Saturation approaches can be found in the prerequisites and the data 
structures used for the next-state function. The Saturation algorithms can be divided into Prebuilt and 
On-the-fly versions, which differ only in the requirement that the local state space sizes (or domain of the 
model variables) nl  are known respectively in advance or not. For Prebuilt Saturation the next-state 

function can be calculated in advance of the Saturation process; for On-the-fly Saturation it is updated in 
parallel with generating the reachable state space. Another division is made in the type of models the 
algorithms can handle: the Kronecker version of the algorithms can only handle models with a Kronecker-
consistent decomposable next-state function, while for the general version this restriction is not 
necessary. 
These differences in requirements give rise to the different data structures used for encoding the next-
state function. In the Kronecker versions of the algorithms it is more efficient to partition and store the 
next-state function in a matrix-like structure per level and event, storing each of these as Boolean 
adjacency matrices. But for the general versions of the algorithm this is no longer possible and one has to 
switch to MDDs. Here the next-state function is partitioned into 2K-level MDDs per event, where the 

unprimed levels represent the local ‘from’ states and the primed levels the local ‘to’ states. 

2.4.2 Evolution of Saturation approach 

The Saturation approach started out with the Kronecker Prebuilt Saturation algorithm in [8] and is 
covered more extensively in [10] and [7]. Here it is required that the local state space sizes (or domain of 
model variables) nl are known in advance and that the partitioning of the next-state function is Kronecker 

consistent. The knowledge of the local state space sizes nl in advance posed some issues, such as spurious 

or infinite values for nl. To overcome this, [9] (and later [10]) presented the Kronecker On-the-fly 

Saturation algorithm which lifts the requirement that nl is known in advance. But now the next-state 

function and local state space sizes nl need to be updated in parallel with generating the reachable state 

space. In both algorithms the next-state function is partitioned per level and event into Boolean adjacency 
matrices Nl,e. 



37 
 

The prerequisite that the next-state function needs to be partitioned in a Kronecker-consistent manner 
posed a large problem for using Saturation for general types of models. Although one can still try to 
decompose the next-state function in a Kronecker-consistent way by hand, it is not always feasible and 
practical to do this. So another approach has been developed to deal with this issue: General Prebuilt and 
General On-the-fly Saturation [11] [23]. For the Prebuilt version the local state space sizes nl still need to 

be known in advance, but this is no longer the case for the On-the-fly version. However, handling general 
types of models also means that the matrix-like data structure for the next-state function cannot be used 
anymore. The next-state function is now conjunctively and disjunctively partitioned using MDDs. The 
disjuncts are formed by the MDDs per event and within these MDDs the conjuncts can be found. For the 
algorithms the disjunctive partitioning into MDDs per event is enough to be able to work with it. 
 
  



38 
 

  



39 
 

3 Architecture of LTSmin toolset 

The FMT research group has developed the LTSmin toolset with the idea of having a unifying framework 
that combines the power of a variety of existing modelling languages and different kinds of verification 
techniques. It turns out that the verification techniques do not rely on a specific modelling language and 
with this in mind one has come up with an intermediate interface, called PINS. 
This chapter first gives a global architectural overview of the LTSmin toolset, after which the attention is 
focused on the relevant parts of the LTSmin toolset for implementing the Saturation approach. These are 
PINS and its dependency matrix, the available MDD data structures and the symbolic reachability 
algorithms currently implemented in the LTSmin toolset. 

3.1 High-level architecture of LTSmin toolset 

The LTSmin toolset [4] is a model checker built in a modular fashion in the C programming language, 
where language-specific details for specifying models are split from the model checking algorithms which 
are used in the verification analysis. This is achieved using a layered architecture where the interface 
between two layers is provided by PINS: an Interface based on a Partitioned Next-State function. The tool 
consists of three layers, which are the language module front-end, the PINS2PINS wrappers and the 
reachability algorithmic back-end. 
 
The front-end side of the LTSmin toolset handles the next-state function of a model written in a certain 
model specification language, and through the usage of PINS one does not have to deal with these 
language-specific (implementation) details. An advantage of providing such a front-end is the ability to 
work with different model specification languages; multiple types of such languages are in use in the field 
of model verification. The following languages are currently supported by the LTSmin toolset: 
■ The in-house developed in- and output language for the LTSmin toolset, called ETF, which stands for 

Enumerated Table Format [5]. 
■ The state-based specification languages DVE and subsets of PROMELA [16]. The former is a 

specification language for the verification tool DiVinE [1], the latter are supported by the SpinJa 
model checker (a Java version of SPIN) [12] and the NIPS-VM (a virtual machine for state space 
generation) [24]. 

■ The process algebraic languages µCRL [2] and mCRL2 [14]. Both are used for the specification and 
behavioural analysis of communicating processes (such as in distributed systems and protocols). 

 
The back-end side of the LTSmin toolset contains algorithms for state space exploration, which also 
includes capabilities to check certain properties. The two main categories of reachability analysis are: 
■ Explicit reachability: exploring a state space by discovering individual states. 
■ Symbolic reachability: exploring a state space by discovering sets of states. 
 
The reachability analysis of the first category can be performed in three different ways, which are: 
■ Enumerative/sequential reachability: using one processor core of a computer. 
■ Multi-core reachability: using multiple processor cores of a computer. 
■ Distributed reachability: using multiple computers in a network. 

 
Between the front- and back-end layers an intermediate layer containing PINS2PINS wrappers is situated. 
These wrappers are able to perform transformations for optimizing the reachability process (only the 
wrapper for regrouping will be touched upon in section 3.2.2 and the rest will not be discussed any 



40 
 

further). In Figure 3.1 an overview of the three layers of the LTSmin toolset is given and it also explains 
how the different layers communicate with each other through PINS. 
 

 
Figure 3.1: Layered architecture of LTSmin toolset with PINS. 

When using the LTSmin toolset, the user can indicate which kind of tool and language to use, which is 
encoded in the command name. For example, calling the command etf-reach means using the in-house 
developed language ETF and the symbolic reachability tool. A selection of possible language and 
reachability tool combinations (only for state space exploration) is summarized in Table 3.1. 
 

Modelling 
language 

LTSmin command 
prefix 

ETF etf 

DVE dve2 

µCRL lpo 

mCRL2 lps 

NIPS-VM nips 

 

 LTSmin command 
suffix 

Reachability analysis 

-reach Symbolic reachability tool using decision 
diagrams for manipulating sets of states. 

2lts-grey Sequential state space enumeration tools that 
can either use decision diagrams or hash 
tables for sets of states. 

2lts-mpi Distributed state space enumeration tools 
that use distributed hash tables for sets of 
states. 

 

Table 3.1: Selection of command pre- and suffixes of state space exploration tools of LTSmin toolset. 

Before delving into the symbolic reachability tools of the LTSmin toolset, section 3.2 will give an overview 
of the most relevant aspects of PINS and section 3.3 will go into the underlying MDD data structure used 
for storing the reachable state space and the transition relation. 
 
 



41 
 

3.2 LTSmin toolset – PINS 

This section will first provide a semantic model used to describe Labelled Transition Systems, which forms 
the basis for describing PINS and its dependency matrix to store information about the transition relation 
of the model. 

3.2.1 Semantic model of Labelled Transition Systems 

The LTSmin toolset works with Labelled Transition Systems (abbreviated to LTSs) as the underlying 
semantic model for describing a certain model of a system. The transition system is able to handle labels 
on its edges and states, but this is not needed for our purposes and will not be discussed further in this 
report. The definition of an LTS (without labels on edges and states) is similar to a discrete-state model, as 
given in Definition 2.1. 
Working with such a monolithic transition system is not very useful and in most situations the transition 
system is based on a model consisting of multiple smaller components, which all contribute to a global 
state. There are also situations where only a subset of these components contributes to a certain 
transition, which is known as event locality. This results in a fine-grained version of a transition system 
where sets of states are represented using a Cartesian product and the transition relation is partitioned 
into a number of transition groups. 
 
Definition 3.1. A Partitioned Transition System (abbreviated to PTS) is a structure P = <<S1, … , SK>, 

<→1, … , →M>, <s0
1, … , s0

K>> [4], where: 
■ The set of local state sets S1, … , SK define the set of (all possible) states SP = S1 × … × SK. 

■ The transition groups →i ⊆ SP × SP, (1 ≤ i ≤ M) define the transition relation →=⋃i=1
M→i. 

■ The initial state is s0 := <s0
1, … , s0

K> ∊ SP. 
 
The defined Transition System (TS) of P is denoted as <SP, →, s0>. 

 
Thus a global state of a system is basically a state vector consisting of K slots, corresponding to the K 
components that the model is partitioned into. A state slot is also denoted as a local state value. For 
convenience, the state vectors are implemented in the tool as vectors of integers, meaning that each local 
state value is given an integer value to identify with. So when handling state vectors, these are converted 
from a state vector sl = <si0, si1, …, siK> into a vector of integers sl = <i0, i1, …, iK>. 
 
A transition relation of the model is partitioned into a number of M transition groups and these are 
equivalent to the aforementioned partitions of the next-state function, denoted as Ne. And the set of 

transition group names (or events) is equivalent to E, with M = |E|. For convenience, the transition 

group names are identified in the tool by an integer in the range of 0 to M – 1 and these integers will from 
now on be called transition group IDs. 

3.2.2 Access to model through PINS 

For access to the model PINS is used, which provides specific functionality for retrieving certain types of 
data from the model without having to deal with the underlying language used. The user can choose to 
start a verification process using a certain language module, after which it is selected as underlying 



42 
 

module for handling the transition relation of the model. As indicated earlier, the available language 
modules are ETF, DVE, SpinJa, NIPS, µCRL and mCRL2. 
Access to language-specific operations of reading states and performing transitions from a certain 
language module is done via the header file spec-greybox.h. 
 
A core feature of PINS is the dependency matrix of the model. This matrix consists of M rows and K 
columns, where the rows correspond to the transition groups and the columns to the state slots of the 
state vector. A matrix cell can be marked with the following symbols: 
■ Letter ‘r’: the state slot of the transition group is only read. 
■ Letter ‘w’: the state slot of the transition group is only written. 
■ Symbol ‘+’: the state slot of the transition group is both read as written. 
■ Symbol ‘–’: the state slot of the transition group is not taken into account. 

 
A cell in the matrix which is marked with one of the first three symbols means that a transition group 
depends on a state slot, so the firing of an event needs to take into account the value of a certain local 
state value. A cell in the matrix which is marked with a ‘–’ symbol means that a transition group is 
independent from a certain state slot, where independent means [4]: 
■ The affected state slot is not modified when the transition of the given transition group occurs (e.g. 

no write occurs to this state slot). 
■ It does not matter what value the affected state slot has when the transition of the given transition 

group occurs (e.g. no read occurs from this state slot). 
 
Also the notion of a projected state vector plays a role here and this means that for a given transition 
group, from a state vector only those state slots are taken into consideration if the corresponding cell in 
the dependency matrix is marked with a ‘+’, ‘r’ or ‘w’ symbol. So a projected state vector returns a 
subvector of the state slots of the given state vector for a given transition group. In the implementation 
each transition group is associated with a certain projection on the state vector (see section 3.3.2). 
 
■ Running example 2 – PINS dependency matrix & projections 
The three transition groups of example model 2 are already given in Figure 2.9 and when taking the model 
description into account, the PINS dependency matrix will be as shown in Figure 3.2. 
For each transition group, one can derive the following projected state vectors: 
■ Transition group 0: subvector consisting of state slots 1 and 2. 
■ Transition group 1: subvector consisting of only state slot 2. 
■ Transition group 2: subvector consisting of state slots 1 and 3. 

 
Figure 3.2: PINS dependency matrix for example model 2. 



43 
 

The PINS interface contains a number of functions related to the dependency matrix and the transition 
relation, and the most relevant are given in Table 3.2. These operations are available in the header file 
greybox.h (with concrete implementation in file greybox.c) and their names are simplified for readability 
reasons. Concerning the next-state operations, they require a call back function and context information. 
With this construct one can provide own implementations of how to handle the list of successor states. 
 
PINS operation Input arguments Return value 

get_dependency_matrix - model Dependency matrix from given model. 

get_initial_state - model Indexed state vector of initial state from 
given model. 

get_next_states_short - model 
- transition group ID 
- source state (as projected indexed 
state vector) 
- call back function 
- context information 

For a given model, enumerate the 
transitions of the given transition group ID 
starting from the source state. The call back 
function together with the context 
information is used to return a list of 
successor states (as a list of projected 
indexed state vectors). 

get_next_states_long - model 
- transition group ID 
- source state (as indexed state vector) 
- call back function 
- context information 

Idem, but now using normal indexed state 
vectors for the states. 

get_next_states_all - model 
- source state (as indexed state vector) 
- call back function 
- context information 

Idem, but it enumerates the transitions of 
every transition group. 

Table 3.2: Some PINS operations and their arguments as defined in header file greybox.h (simplified). 

 
■ Running example 2 – PINS operations 
Imagine that we are at the current source state (1, 2, 0) for vector (x, y, z) of example model 2 and for the 
next-state operations the transition group with ID number 0 is taken. Then the outcomes are as given 
below in Table 3.3, where the input arguments for the call back function and context information of the 
last three operations have been neglected. 
 
PINS operation Input arguments Return value 

get_dependency_matrix - example model 2 See Figure 3.2. 

get_initial_state - example model 2 (0, 0, 0) 

get_next_states_short - example model 2 
- transition group ID no. 0 
- projected source state (1, 2) 

(2, 2) 

get_next_states_long - example model 2 
- transition group ID no. 0 
- source state (1, 2, 0) 

(2, 2, 0) 

get_next_states_all - example model 2 
- source state (1, 2, 0) 

(2, 2, 0) with transition group 0 
(1, 2, 1) with transition group 2 

Table 3.3: Example evaluation of PINS operations for example model 2. 

 
 
 



44 
 

■ PINS wrapper: Regrouping 
The PINS dependency matrix is obtained from the model specification which has a predetermined variable 
ordering. In most cases this would result in a PINS dependency matrix where transition groups span 
multiple state slots it depends on, and with possibly lots of state slots in between it does not depend on 
(the latter are also denoted as intermediate identity transitions). The PINS wrapper dealing with 
regrouping is capable of reordering the transition groups and the state slots in such a way that it attempts 
to minimize the distance between the lowest and highest state slots it depends on for the transition 
groups, where a cost function is used. This wrapper is not capable of finding the most optimal variable 
ordering, since this is an NP-complete problem [21]. It tries to find a suitable ordering with the lowest cost 
function it can manage. 

3.3 LTSmin toolset – MDD encodings 

First this section provides an overview of the available MDD data encodings in the LTSmin toolset, after 
which it goes into detail how MDD operations are accessed. 

3.3.1 Available MDD libraries 

In the reachability algorithms of the LTSmin toolset a number of available MDD data structure 
implementations can be used. The back-end layer of the LTSmin toolset currently contains five different 
types of such implementations using four different libraries, resulting in different underlying implemented 
encodings. The libraries used (which all contain a form of garbage collection) are: 
■ ATermDD library (vset_atermdd.c) [22]: a C library that uses an abstract data type (ATerm) for 

handling graph-like data structures and is capable of maximal subterm sharing (common subterms 
are shared to prevent storing duplicate subterms, which reduces memory usage). 

■ BuDDy library (vset_buddy.c) [17]: a fully-fledged BDD library written in C containing all standard BDD 
operations. 

■ libDDD library (vset_ddd.cpp) [15]: a C++ library which uses Data (which only stores integers) or Set 
Decision Diagrams with functions that represent relations, and with support for Saturation-type 
algorithms. 

■ listDD library (vset_listdd.c): an in-house developed MDD library written in C. 
 
The underlying implementation structure of an MDD can be one of the following: 
■ In a graph-like data structure for MDDs (just as given in Definition 2.2), where MDD nodes contain 

local state values and from each one of them, an arc points to another MDD node. 
■ In a linked-list data structure for MDDs, where MDD nodes are represented as a linked list and each 

entry of the linked list contains a local state value, a link to another linked list and a link to the next 
entry of the linked list (if any). This data structure is also referred to as a List Decision Diagram 
(abbreviated to LDD) [3]. 

 
With the given descriptions of the four libraries and the implementation structure used for storing MDDs, 
Table 3.4 gives an overview of the concrete encodings of the MDD data structure available in the LTSmin 
toolset. 
 
 
 
 



45 
 

Option Library used Data structure Explanation 

list ATermDD Graph using 
linked-lists 

Full-fledged implementation of LDDs with integer as node value and 
building on ATerm objects. 

tree ATermDD Graph Full-fledged implementation of MDDs with integer as node value 
and building on ATerm objects. 

fdd BuDDy Graph Wrapper around BuDDy library. 

ddd libDDD Graph Wrapper around libDDD library. 

ldd listDD Graph using 
linked-list 

Full-fledged implementation of LDDs with integer as node value. 

Table 3.4: Available MDD data encodings in the LTSmin toolset. 

■ Running example 2 – Next-state function as LDD 
The LDD of event 1 of the second example model is given in Figure 3.3. A node is a linked list which is 
stretched out horizontally in a level. The three components in an entry of a linked list are given in the 
order as pointed out above (local state value, pointer to other linked list and pointer to next entry of 
linked list). And also the memory usage is optimized: instead of storing the redundant LDD node in level 4 
(node with dashed borders), part of the linked list on the left is reused. 

 
Figure 3.3: LDD (left) corresponding to MDD of event 1 of example model 2. 

■ Running example 1 & 2 – Reachable state space as LDD 
The LDD data structure can also be used for storing the reachable state space of the example models. In 
Figure 3.4 the reachable state space of example model 1 using an LDD and an MDD are depicted next to 
each other, and likewise for example model 2 in Figure 3.5. 
 

 
Figure 3.4: Reachable state space of example model 1 using LDD (left) and MDD (right). 



46 
 

 
Figure 3.5: Reachable state space of example model 2 using LDD (left) and MDD (right). 

3.3.2 Access to MDD operations 

To be able to work with the MDD data structure implementations in the tool, the back-end layer is 
structured to distinguish among the data structure encodings and its concrete uses. It makes use of the 
following three types of data objects: 
■ Vector domain (vdom_t): this refers to the type of MDD data structure encoding to be used, namely 

the five mentioned earlier in Table 3.4 (list, tree, fdd, ddd and ldd). It then makes a correct reference 
to the actual MDD operations belonging to a specific encoding. 

■ Vector set (vset_t): this refers to the MDD implementation structure that is used for maintaining sets 
of state vectors and auxiliary data, e.g. it is used for storing the reachable state space. 

■ Vector relation (vrel_t): this refers to the MDD implementation structure that is used for maintaining 
(transition) relations and auxiliary data, e.g. it is used for storing the next-state function of a model. 

 
The most crucial auxiliary data that is being stored in the vector set and vector relation is the projection 
on the state vector. This makes it possible to do operations on a subvector of the state vector, when 
certain state slots do count. 
 
When considering the use of MDD operations, the current exploration algorithms only have access to 
high-level operations via the vector domain, for example union of, intersection of and equality matching 
between two MDD. The concrete (low-level) implementations depend on the type of MDD data structure 
encoding selected by the user. 
 
In Table 3.5 and Table 3.6 an overview of the most relevant high-level MDD operations is given in 
simplified form. All these operations are defined in the header file vector_set.h (with concrete 
implementation in file vector_set.c). 
 
Before starting a symbolic reachability analysis, the user is able to choose which vector domain (or MDD 
data structure encoding) is used, after which the appropriate vector set and vector relations and 
references to the high-level MDD operators are constructed. Hereby the header file vdom_object.h comes 
into play, which defines the possible high-level MDD operators for which a connection can be established 
with a particular associated MDD operator that is implemented in the chosen MDD data structure 
encoding. 
 
 
 
 



47 
 

High-level MDD 
operation 

Input arguments Return value 

vset_create - vector domain (as vdom_t) 
- length of state vector 
- projections of state vectors 

New empty instance of MDD (as vset_t) with the 
number of levels corresponding to length of state 
vector and containing projections as auxiliary data. 

vset_add - MDD (as vset_t) 
- state (as indexed state vector) 

MDD (as vset_t) with the given state added. 

vset_is_empty - MDD (as vset_t) True if given MDD is empty and otherwise False. 

vset_equal - 2 MDDs (as vset_t) True if the given MDDs are equal and otherwise 
False. 

vset_copy - MDD (as vset_t) Copy of MDD (as vset_t). 

vset_project - source MDD (as vset_t) 
- projection list 

Projected MDD (as vset_t) of source MDD using the 
given projection list. 

vset_union - 2 MDDs (as vset_t) Union of given MDDs (as vset_t). 

vset_intersect - 2 MDDs (as vset_t) Intersection of given MDDs (as vset_t). 

vset_minus - 2 MDDs (as vset_t) Difference of given MDDs (as vset_t). 

vset_enum - MDD (as vset_t) 
- call back function 
- context information 

Enumerate every (sub) state of given MDD and use 
call back function and context information to 
perform operations on these (sub) states. 

vset_least_fixpoint - source MDD (as vset_t) 
- list of relation MDDs (as vrel_t) 
- number of relation MDDs in list 

MDD (as vset_t) that is the result of performing a 
least fix-point computation on the source MDD 
using the relation MDDs (for which there number is 
given). 
 

vset_next - source MDD (as vset_t) 
- relation MDD (as vrel_t) 

Return an MDD (as vset_t) containing all successors 
that can be reached in one step from (sub) states in 
the given source MDD using the given relation MDD. 

vset_prev - source MDD (as vset_t) 
- relation MDD (as vrel_t) 

Return an MDD (as vset_t) containing all 
predecessors that can reach (sub) states in the given 
source MDD in one step using the given relation 
MDD. 

Table 3.5: Some high-level MDD operations and their arguments as defined in header file vector_set.h (simplified). 

 
High-level MDD 
operation for transition 
groups 

Input arguments Return value 

vrel_create - vector domain (as vdom_t) 
- length of state vector 
- projections of state vectors 

New empty instance of MDD (as vrel_t) 
with the number of levels corresponding to 
2 × length of state vector (representing 
unprimed and primed levels) and 
containing projections as auxiliary data. 

vrel_add - relation MDD (as vrel_t) 
- source state (as indexed state vector) 
- successor state (as indexed state 
vector) 

Relation MDD (as vrel_t) with the given 
source and successor states added 
(corresponding to the ‘from’ and ‘to’ states, 
respectively). 

Table 3.6: Some high-level MDD operations and their arguments for transition groups as defined in header file vector_set.h 
(simplified). 

 



48 
 

3.4 Symbolic reachability analysis in LTSmin toolset 

In the LTSmin toolset [4] one can use transition relations from general types of models, and a state is 
described by a vector consisting of state slots. The transition relation is split into so-called transition 
groups. The state slots of a state vector correspond to the partitioning into levels/components, and the 
transition group IDs to the events for the Saturation approaches. In the LTSmin toolset it is not required 
that the transition relation is decomposed into a Kronecker-consistent way. Furthermore the tool does 
not build the transition groups (of the transition relation) in advance, but in parallel next to generating the 
reachable state space as the domain of the state slots may be infinite in size. The transition groups are 
updated with new (sub) transitions by retrieving the newly found (sub) states from the reachable state 
space so far during an iteration of the reachability analysis and use these to calculate their successor (sub) 
states. 
 
The symbolic exploration algorithms reside in spec-reach.c and some useful variables and operations are 
summarized in Table 3.7 and Table 3.8. 
 
Global variable Explanation 

int N The length of a state vector. 

int nGrps The total number of transition groups of the model. 

proj_info *proj Array variable storing information about the projections of the state vector per 
transition group. 

vrel_t *group_next Array variable storing the transition relation in individual transition groups. 

vset_t *group_explored Array variable storing the currently discovered set of states (of reachable state 
space) per transition group. 

vdom_t domain The type of MDD data structure encoding currently being used. 
Table 3.7: Some global variables used by reachability tools as defined in file spec-reach.c (simplified). 

 
High-level operation Input arguments Explanation 

expand_group_next - transition group ID 
- MDD (as vset_t) 

Updates the transition group with given ID using the 
given MDD of reachable states discovered so far. 

Table 3.8: Operation used by reachability tools as defined in file spec-reach.c (simplified). 

Currently the LTSmin toolset contains the following symbolic reachability techniques: 
■ Variants of breadth first search (bfs-prev & bfs, as given in Listing 1.1 left and right, respectively); 
■ Variants of chaining (chain-prev & chain, as given in Listing 1.2 left and right, respectively); 
■ Variants of tool-specific Saturation-like approaches which use the previous two techniques as 

supporting traversal technique (sat-like & sat-loop); 
■ A tool-specific Saturation-like approach which performs least fix-point computations (sat-ddd). 

 
The following text boxes will go into some of the Saturation-like approaches which will be used for the 
experiments (in chapter 5), namely the search techniques sat-like and sat-ddd. 
  



49 
 

■ Basic LTSmin version of Saturation-like search technique sat-like 
The LTSmin toolset contains a traversal technique with the option name sat-like which is inspired by the 
Saturation approach as devised by G. Ciardo, but operates in a completely different way and the pseudo 
code of the basic version of this algorithm is given in Listing 3.1. Basically this algorithm starts at the 
terminal MDD nodes and works up the MDD tree until the root level at nLvls – 1. While the root level is 
not yet reached (line 19 in Listing 3.1), it will perform a state space search using a predetermined auxiliary 
traversal technique and a list of transition groups that start at the current working MDD level k (line 20 in 
Listing 3.1). The function reach_proc basically performs a traditional state space search, either breadth-
first search or chaining over the transition groups that start at level k. If the resulting MDD from this state 
space search is the same as the one at the start of this search (line 21 in Listing 3.1), then the working 
MDD level k is increased by 1, indicating that the MDD tree until level k is ‘saturated’. If the MDD has 
changed (line 23 in Listing 3.1), then the working MDD level k is set to a lower MDD level to see if more 
new states can be discovered using transition groups that start at lower topmost MDD levels. This is an 
attempt to ‘saturate’ lower levels of the MDD tree before continuing further up the MDD tree. 
 
This algorithm is using an auxiliary traversal technique to ‘saturate’ the state space for a certain MDD level 
first before heading down the MDD to ‘saturate’ lower levels (using the auxiliary traversal technique) in 
case of an updated state space so far. This is different from the Saturation algorithm by G. Ciardo, where 
Saturation goes down the MDD immediately to start saturating the MDD from the bottom-up instead of 
sticking to a particular MDD level. 

 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

// Total number of MDD levels. 

int nLvls 

 

// List (of length nLvls) containing list of transition groups that start at  

// the topmost MDD level, which is indicated by the index of the list. 

// E.g. index 1 of list corresponds to topmost MDD level 1, index 2 to topmost MDD 

// level 2, and so on. At index 2 of this list, a list of transition groups is  

// stored that start at topmost level 2. 

array<array<vrel_t>> topmostlevelGroups 

 

// MDD tree of initial state. 

vset_t init 

 

// Auxiliary traversal technique used (either breadth-first search or chaining). 

exploreStrategy order 

 

int k := 0 

vset_t visited := init 

while (k != nLvls) : 

  vset_t new_vis := reach_proc(order, visited, topmostlevelGroups[k]) 

  if (visited == new_vis) : 

    k := k + 1 

  else : 

    k := go_to_lower_level(k) 

  visited := new_vis 

1 

2 

3 

4 

5 

6 

7 

8 

// Start a state space search using the given exploration strategy (breadth-first 

// search or chaining), the (initial) set of states and list of 

// transition groups. 

vset_t reach_proc(exploreStrategy order, vset_t set, array<vrel_t> trans_groups) 

 

// For a given MDD level number, return a lower MDD level number for ‘saturating’ 

// lower MDD levels of state space. 

int go_to_lower_level(int level) 

Listing 3.1: Pseudo code of basic sat-like algorithm and accompanying function definitions. 



50 
 

■ Fix-point computational search technique sat-ddd 
The option sat-ddd (for which its algorithm is given in Listing 3.2) calculates the fix-point on the currently 
discovered reachable state space using the incomplete transition groups. It repeats the fix-point 
computation (line 16 in Listing 3.2) multiple times in which the transition groups are updated with the 
latest version of the reachable state space outside the fix-point computation (lines 14 – 15 in Listing 3.2), 
until no more new states are discovered. 

 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

// Total number of transition groups. 

int nGrps 

 

// List of transition groups. 

array<vrel_t> group_next 

 

// MDD tree of initial state. 

vset_t init 

 

vset_t visited := init 

vset_t old_vis := { } 

while (visited != old_vis) : 

  old_vis := visited 

  foreach (int i in 1 .. nGrps) : 

    expand_group_next(i, visited) 

  visited := vset_least_fixpoint(visited, group_next, nGrps) 

Listing 3.2: Pseudo code of sat-ddd algorithm. 

3.5 Summary of LTSmin toolset 

The LTSmin toolset contains a layered architecture, separating language specific details from the actual 
verification techniques. The relations among the discussed parts of the LTSmin toolset with the MDD data 
structure encodings and access to the model through PINS, are given in Figure 3.6. 
 
The most crucial part of the LTSmin toolset is the PINS interface, which defines a transition relation of a 
model in a unified way. The transition relation is partitioned into a number of transition groups to account 
for the different events that can occur in the model. The model itself is partitioned in a number of 
components. States are described using vectors with a size equal to the number of components of the 
model. The individual slots of these state vectors contain a local state value that a certain component of 
the model can assume. The transition groups affect certain components of the model and these are 
captured in the PINS dependency matrix. 
 
Regarding the MDD data encodings, the LTSmin toolset provides access to four MDD libraries, namely 
ATermDD, BuDDy, LibDDD and ListDD. Next to the conventional MDD data structure as a graph-like 
structure, the linked list structure has been introduced which considers an MDD node as a linked list and 
the entries of the node are entries of this list. Each of these entries contains a pointer to an MDD node 
(another linked list) at a lower MDD level. 
To have access to the functionality of the MDD libraries, data objects have been introduced for storing an 
MDD tree of the reachable state space, an MDD tree of a transition group and a domain object to point to 
the right MDD operations of a certain chosen MDD library. 
 
The symbolic reachability algorithms in the LTSmin toolset are implemented in one file called spec-reach.c 
and the algorithms make use of the high-level MDD operations. Individual access to MDD nodes on a low 
level of the tool is not possible as to hide the implementation details of the different MDD libraries. The 

General Prebuilt Saturation is performed 

inside the function vset_least_fixpoint 

(which will be discussed in section 4.2.2). 

The indices of arrays are numbered from 

1 to length. 



51 
 

toolset contains a variety of symbolic reachability algorithms containing the traditional symbolic 
approaches as breadth-first search and chaining, and LTSmin versions of Saturation-like approaches. 
 

 
Figure 3.6: Pictorial overview of parts of layered architecture of LTSmin toolset concerning symbolic reachability tools. 

  



52 
 

  



53 
 

4 Design & implementation of Saturation for LTSmin toolset 

The design of Saturation for the LTSmin toolset is based on the analysis in chapters 2 and 3: the analysis 
from chapter 2 provides an overview of the different versions of the Saturation algorithm, and the 
analysis from chapter 3 gives an overview of the current possibilities of the LTSmin toolset, especially for 
the implementation of symbolic reachability tools. In this chapter both are taken into consideration when 
deciding: 
■ which Saturation approach to implement in the LTSmin toolset and 
■ how to implement the chosen algorithm in the LTSmin toolset. 

 
First section 4.1 presents a requirements analysis for the design of Saturation. In section 4.2 some design 
challenges derived from the Saturation pseudo code are described with their implementation solutions. 
The design of the Saturation algorithm for the LTSmin toolset then needs to be implemented and during 
implementation some issues occurred which need to be tackled. These issues are discussed in section 4.3. 

4.1 Requirements analysis for design of Saturation 

The requirements analysis is split into two parts: section 4.1.1 gives the choice of the Saturation approach 
and the arguments leading to this choice, and section 4.1.2 gives solutions to issues regarding 
implementation of the chosen algorithm into the LTSmin toolset. 

4.1.1 LTSmin-related requirements & design choices 

To be able to make a choice of the Saturation approach to use, a small requirements analysis is performed 
to assess the needs of incorporating the Saturation algorithm into the LTSmin toolset. When taking the 
goal description and the LTSmin toolset into consideration a number of requirements can be inferred 
which need to be adhered to when incorporating the Saturation algorithm into the toolset. The 
requirements concerning the LTSmin toolset are given in Table 4.1. 
 
R1.1 The use of PINS as intermediate interface to the language modules should be respected. 

R1.2 The algorithm should be available as a reachability option next to the currently available symbolic 
reachability options of the LTSmin toolset. 

R1.3 No restrictions should be imposed on the structure of the model and/or its transition relation. 

R1.4 The transition relation (split into transition groups) is not known in advance and the algorithm should be 
able to compute it in parallel to state space generation. 

Table 4.1: LTSmin-related requirements. 

Requirement R1.1 is directly derived from the goal description and needs to be respected, because the 
PINS interface is the main feature of the toolset which separates language features from algorithm-
specific details. Requirement R1.2 has a practical reason behind it; the user of the LTSmin toolset should 
be given the opportunity to choose the newly implemented reachability option as one of the possible 
options for generating the reachable state space. The last two requirements result from the analysis of 
the symbolic reachability algorithms currently available in the LTSmin toolset (as described in section 3.4). 
 
The first three requirements dictate how the Saturation algorithm should be incorporated in the LTSmin 
toolset. The Saturation algorithm itself does not have any special needs regarding how the model is 
abstracted into a specification and/or language and can be implemented inside the existing architecture 



54 
 

of the LTSmin toolset, just like other available symbolic traversal techniques. But the last two 
requirements do have an impact on the choice of Saturation approach to pick for implementation in the 
LTSmin toolset. 
 
With the requirements clarified the choice of which Saturation algorithm to take for implementation can 
now be explained into two steps. 
 
First the transition relation of a model is specified using a modelling language for which the LTSmin toolset 
has a front-end available and where PINS acts as the interface to the transition relation without having to 
deal with language-specific details. Although the transition relation is specified in a certain modelling 
language, this is abstracted away by PINS and this interface poses no restriction how the transition 
relation of a model is structured and/or partitioned. When considering the Saturation approaches, two 
main categories are discussed, namely the Kronecker and the General Saturation approaches. The former 
requires that the transition relation is decomposable in a Kronecker-consistent way, while the latter lifts 
this restriction. When considering requirement R1.3, it is obvious that the Kronecker Saturation 
approaches cannot be selected for implementation into the LTSmin toolset. 
Although the Kronecker partitioning of the transition relation seems to resemble the partitioning in the 
PINS dependency matrix, they are in fact quite different. The Kronecker partitioning makes sure that the 
transition relation is decomposed in local transitions per MDD level and event, and each of these local 
transitions is independent of any other. Just like the PINS dependency matrix, it gives information about 
which state slots or MDD levels are affected by transition groups or events and this is the only aspect that 
they have in common. 
 
Second the transition relation of a model is not known in advance when starting a reachability analysis in 
the LTSmin toolset. It is also not possible to prebuilt it before starting a reachability analysis and with this 
the local state space sizes (or variable domains) per MDD level can also not be calculated. This is due to 
the fact that the range of values from model variables is mostly not specified in the model and their range 
can therefore contain an infinite number of values. When considering requirement R1.4 and the fact that 
only General Saturation approaches are possible (due to requirement R1.3), it becomes clear that the only 
viable option that is left for implementation is the General Saturation approach that builds the transition 
relation during state space generation, namely General On-the-fly Saturation. 

4.1.2 Saturation-related requirements & design solutions 

Now the choice has fallen on General On-the-fly Saturation, there are still some issues that need to be 
tackled before it can be implemented in the LTSmin toolset. 
From the analysis of the Saturation approaches it has become clear that the Saturation algorithm itself 
requires some special attention before it can be incorporated into the LTSmin toolset. These algorithm-
specific requirements are given in Table 4.2. 
 
R2.1 The algorithm needs to be able to access low-level MDD operations. 

R2.2 The algorithm needs to have access to the individual transition groups. 

R2.3 The algorithm needs to be able to detect the boundaries of the transition groups (namely the top- and 
bottommost level) for performing fix-point computations. 

R2.4 The computation of the relational product of an MDD is part of the algorithm and needs to be incorporated 
(and adjusted) inside it. 

R2.5 The algorithm needs to be able to store intermediate calculated results in different parts of the algorithm. 
Table 4.2: Saturation-related requirements. 



55 
 

Requirement R2.1 is due to the fact that the Saturation algorithm needs to change individual MDD nodes 
and access the appropriate arcs pointing to other MDD nodes. Requirements R2.2 and R2.3 are important 
for performing the fix-point computations and their boundaries make sure the algorithm does not have to 
go through levels of the MDD which do not change. It gives an indication at which topmost level to start 
the process and at which bottommost level to stop the recursive calls to the relational product. Regarding 
the relational product, requirement R2.4 indicates that it needs to be able to use and adjust this function 
if any exist in the LTSmin toolset (otherwise it can be implemented from scratch with the call to the 
topmost Saturation function inside it). And finally the use of lookup tables is stressed in requirement R2.5, 
to prevent recalculations of intermediate calculated results. 
 
With the second set of requirements ready, the design decisions for implementation of the algorithm in 
the LTSmin toolset are now the main focus. 
 
The Saturation algorithm has a main structure in which multiple recursive calls are made, but it is 
impossible to implement this whole structure on a high level in the tool (e.g. in spec-reach.c). This is due 
to the fact that the algorithm requires operations on individual MDD nodes which are not accessible from 
a high level. Implementation on a high level would result in introducing low-level MDD functions to be 
incorporated in the vector domain, and it is more suitable to make use of the available architectural 
structure as it is. Also to be able to adhere to requirement R2.1 it is decided to implement the entire 
Saturation algorithm in an MDD library, but this has a downside as well. It requires re-implementing the 
whole algorithmic structure in every MDD library. For libraries with full-fledged implementations of MDD 
operations (as ATermDD and listDD) this would result in variations of the algorithmic structure. This is still 
manageable since an implementation in a particular library can function as example for implementation in 
other such libraries. The problem lies in implementing the algorithm inside wrapper libraries with a 
foreign source (as BuDDy and libDDD) that have a different structure than own (in-house developed) full-
fledged implementations. It depends per wrapper library how easy changes can be made to incorporate a 
whole new algorithm in it. 
Furthermore when implementing inside libraries with full-fledged implementations of MDD operations, it 
is possible to reuse and make adjustments to currently available functions in the LTSmin toolset. This is 
especially so for adjusting the functions that are used for calculating the relational product, which are part 
of the Saturation algorithm. 
The initial focus of the implementation will lie on implementation of the Saturation algorithm inside 
libraries as ATermDD and listDD, which contain full-fledged implementations of MDD operations. The 
focus will also be on using the LDD data structure (where nodes are stored in a linked list structure), 
because of flexibility of switching between the ATermDD and listDD libraries. A major factor that 
contributed to this choice is the capability of accessing low-level MDD operations more easily, also by 
reusing and adjusting currently available functionality. 
 
From a high-level perspective there still needs to be a way to access the Saturation algorithm (from spec-
reach.c) and a suitable candidate is implementing the algorithm inside the function for performing fix-
point computations (via the function vset_least_fixpoint from the domain object). When 
considering the structure of the Saturation algorithm, it is basically another version of a fix-point 
computation on an MDD, so the choice for implementing it inside this function is clear. Furthermore one 
of the parameters of this function is the list of transition groups and so the algorithm has access to them 
(as required by requirement R2.2). Now the transition groups are accessible for the Saturation algorithm, 
the boundaries (top- and bottommost levels) of these relations still need to be extracted, as stated by 
requirement R2.3. As explained in section 3.3.2, each transition group keeps a projection on the state 
vector which is a list of state slot values (MDD levels) that are affected by this transition group. From this 



56 
 

projection the boundaries are easily extracted, which are basically the first and last entry of the projection 
list. 
 
The final two requirements R2.4 and R2.5 are mainly affected by the location where the Saturation 
algorithm is going to be implemented. As indicated above, this will be done inside libraries with full-
fledged implementations of MDD operations. In these libraries a function for calculating the relational 
product for an MDD is present, so it can be changed slightly to cope with the Saturation algorithm. Also 
implementing in such libraries gives access to other available features such as lookup tables. 

4.1.3 Summary of design choices & solutions 

Before discussing the design challenges, a summary of the design choices and solutions made to meet the 
requirements is given. 
 
The requirements R1.1 and R1.2 are basic requirements that are only adhered to when starting to 
implement the Saturation algorithm into the LTSmin toolset. 
To adhere to requirement R1.3, the choice is made to only take the General Saturation approaches into 
account. This is due to the fact that they do not pose any restriction on the (partitioning of the) transition 
relation, which is required by the Kronecker Saturation approaches. The latter requires that the transition 
relation is partitioned per MDD level and event that are independent from each other. 
With the choice made for General Saturation approaches, the focus turned to adhering to requirement 
R1.4. The only viable choice here is to take the On-the-fly version of the General Saturation approaches, 
since this algorithm builds the transition relation in parallel with the reachable state space of the model. 
Building the transition relation in advance is not possible in the LTSmin toolset due to the possibility of 
encountering local state space sizes with spurious and infinite values. 
 
When considering the requirements of the Saturation algorithm itself, requirement R2.1 is met by 
implementing the Saturation algorithm inside a full-fledged MDD library as ATermDD and listDD. This also 
affects requirements R2.4 and R2.5, because implementation on a low level makes it possible to reuse 
functions that deal with the relational product and make use of the possibilities in regard to memoization. 
For implementation purposes, the choice is further reduced to implementation in one of these MDD 
libraries, namely ATermDD. 
To meet requirements R2.2 and R2.3, a solution is found by accessing the Saturation algorithm from a 
high level via the function vset_least_fixpoint (in spec-reach.c). This is due to the fact that 
Saturation is a fix-point computation. Furthermore this function also provides access to the transition 
groups, from which the bottom- and topmost levels can be calculated. 

4.2 Algorithmic-dependent design challenges 

The pseudo code of the Saturation algorithm as such needs a couple of adjustments before it can be used 
in the LTSmin toolset. Some of the constructs used in Saturation are being adjusted for efficiency reasons 
and for making it suitable to incorporate it into the toolset. The issues and challenges that are going to be 
discussed, are mainly related to the ATermDD library. Section 4.2.1 gives an overview of the adjustments 
made to the Saturation algorithm to let it work inside the LTSmin toolset. 
From the pseudo code of the Saturation algorithm it is also noticeable that the structural difference 
between the General Prebuilt and General On-the-fly Saturation algorithm is quite minimal, namely the 
presence or absence of the confirm function. Since this difference is quite minimal, the decision is made 



57 
 

to provide both General Saturation approaches as symbolic reachability tools to the user. However, since 
General Prebuilt Saturation on its own is not usable in the LTSmin toolset (because the transition relations 
cannot be computed in advance), it is incorporated as part of an LTSmin version of a Saturation-like option 
in the LTSmin toolset, and section 4.2.2 goes into detail here. The General On-the-fly Saturation approach 
is the newly implemented option which is the subject of section 4.2.3. 
 
To give a sense how the pseudo code of the Saturation algorithm has been altered to fit inside the LTSmin 
toolset, an updated version of this pseudo code is presented in Listing 4.1, and Listing 4.2 explains some of 
the new MDD operations used here. The changes are discussed in the following subsections. 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

// Start saturating MDD subtree in a certain level. 

MDDnode saturate(int l, MDDnode p) : 

  MDDnode t := findInLookupTable(SC[l], p) 

  if (t != null) : 

    return t 

  t := saturateLocals(l, p) 

  t := startFixPoint(l, t) 

  insertInLookupTable(SC[l], p, t) 

  return t 

 

// Traverse entries of an MDD node and saturate each one. 

MDDnode saturateLocals(int l, MDDnode p) : 

  if (p == getMDDFalse() || p == getMDDTrue()) : 

    return p 

  MDDnode sat_p := saturate(l – 1, p.getCurrentArc()) 

  MDDnode next_p := saturateLocals(l, p.getNextMDDEntry()) 

  return constructMDD(p.getValue(), sat_p, next_p) 

 

// Start fix-point computation on MDD subtree for every event that starts at 

// the given topmost level. 

MDDnode startFixPoint(int l, MDDnode t) : 

  if (t == getMDDFalse() || t == getMDDTrue()) : 

    return t 

  MDDnode old_t := getMDDFalse() 

  while (old_t != t) : 

    old_t := t 

    foreach (int grp in getGroupIDsOnTopLevel(l)) : 

      expand_group_next(grp, t) // Update used by On-the-fly version 

      expand_group_next()       // Update used by revised On-the-fly version 

      MDDnode r := getTransitionGroupMDD(grp) 

      projection proj := getTransitionGroupProjection(grp) 

      t := applyFixpoint(t, r, grp, proj, l) 

  return t 

 

// Applying fix-point computation on MDD node using transition group MDD. 

MDDnode applyFixpoint(MDDnode s, MDDnode r, int grp, projection prj, int l) : 

  MDDnode t := s; 

  while (s != getMDDFalse() && r != getMDDFalse()) : 

    if (s.getValue() < r.getValue()) : 

      s := s.getNextMDDEntry() 

    elif (s.getValue() > r.getValue()) : 

      r := r.getNextMDDEntry() 

    else : 

      MDDnode new_t := t 

      while (new_t.getValue() != r.getValue()) : 

        new_t := new_t.getNextMDDEntry() 

      MDDnode u := transLevel(new_t.getCurrentArc(), r.getCurrentArc(), grp, prj, l) 

      t := unionMDDs(l, t, u) 

      s := s.getNextMDDEntry() 

      r := r.getNextMDDEntry() 

 return t 

Global lookup table (per level) 
■ SC : Saturation Cache 
 

Global lookup tables (per level & group) 
■ RC : Rel-prod Cache 



58 
 

 
52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

// Start performing relational product on MDD subtree in a given level for 

// finding new MDD subtree to saturate with. 

MDDnode startRelProd(MDDnode s, MDDnode r, int grp, projection prj, int l) : 

  if (prj.isProjEmpty()) : 

    return s 

  else : 

    MDDnode t := findInLookupTable(RC[l][grp], (s, r)) 

    if (t != null) : 

      return t 

    if (proj.getCurrentProjLevel() == l) : 

      t := applyRelProd(s, r, grp, prj, l) 

    else : 

      t := copyLevel(s, r, grp, prj, l) 

    t := saturate(l, t) 

    insertInLookupTable(RC[l][grp], (s, r), t) 

    return t 

 

// Applying the relational product operation on MDD node using transition group 

// MDD. 

MDDnode applyRelProd(MDDnode s, MDDnode r, int grp, projection proj, int l) : 

  MDDnode t := getMDDFalse() 

  while (s != getMDDFalse() && r != getMDDFalse()) : 

    if (s.getValue() < r.getValue()) : 

      s := s.getNextMDDEntry() 

    elif (s.getValue() > r.getValue()) : 

      r := r.getNextMDDEntry() 

    else : 

      MDDnode u := transLevel(t.getCurrentArc(), r.getCurrentArc(), grp, proj, l) 

      t := unionMDDs(l, t, u) 

      s := s.getNextMDDEntry() 

      r := r.getNextMDDEntry() 

  return t 

 

// Construct new MDD node with entries of transition group MDD node (finalizing 

// the relational product operation). 

MDDnode transLevel(MDDnode s, MDDnode r, int grp, projection proj, int l) : 

  if (r == getMDDFalse()) : 

    return getMDDFalse() 

  else : 

    addNewValue(l, r.getValue()) // Used by revised On-the-fly version 

    projection projNext := proj 

    projNext.setProjToNextLevel() 

    MDDnode newArc := startRelProd(s, r.getCurrentArc(), grp, projNext, l - 1) 

    MDDnode newEntry := transLevel(s, r.getNextMDDEntry(), grp, proj, l) 

    return constructMDD(r.getValue(), newArc, newEntry) 

 

// Copy MDD node at current level, because the transition group MDD has 

// no transitions stored at this level (they are identity transitions, which are 

// not stored). 

MDDnode copyLevel(MDDnode s, MDDnode r, int grp, projection proj, int l) : 

  if (s == getMDDFalse()) : 

    return getMDDFalse() 

  else : 

    MDDnode newArc := startRelProd(s.getCurrentArc(), r, grp, proj, l - 1) 

    MDDnode newEntry := copyLevel(s.getNextMDDEntry(), r, grp, proj, l) 

    return constructMDD(s.getValue(), newArc, newEntry) 

Listing 4.1: Pseudo code of implemented General Prebuilt Saturation algorithm with additional code for On-the-fly version 
highlighted in light-blue and for revised On-the-fly version in dark-blue (which is discussed in chapter 6). 

 
 



59 
 

 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

// Entries of an MDD node are stored in a linked list structure. 

 

// Construct a new entry node with the given local state value, pointing to the 

// given lower MDD node and the next entry of the current MDD node. 

MDDnode constructMDD (int value, MDDnode lowerMDDNode, MDDnode nextEntryNode) 

 

// Return local state value of the current entry of the MDD node. 

int getValue() 

 

// Return (lower) MDD node pointed to by arc at the current entry of the MDD node. 

MDDnode getCurrentArc() 

 

// Return next entry of MDD node starting from the current entry. 

// If current entry is the final one, then it returns the False MDD node. 

MDDnode getNextMDDEntry() 
Listing 4.2: Function definitions used in pseudo code of implemented General Saturation algorithm. 

4.2.1 Design-specific adjustments to Saturation algorithm 

The original pseudo code in Listing 2.4 assumes the use of in-place updates for updating the MDD of the 
reachable state space and this makes it possible to create new empty MDD nodes, which grow during the 
Saturation process when new MDD nodes are created and pointed to. In Figure 4.1 the MDD operations 
for retrieving and (in-place) updating an entry of an MDD node are visualized to give a sense how they 
would operate when using the LDD data structure. In LTSmin no in-place updates are used and the 
creation of new MDD nodes involves constructing a new MDD node with a specific local state value and a 
link to another MDD node (on a lower level). In case of using the LDD data structure, one would also 
indicate a link to the next entry of the current MDD node. 

 
Figure 4.1: Low-level MDD operations used in original pseudo code of General Saturation algorithm in Listing 2.4. 



60 
 

Basically this means that in the original pseudo code the function calls for creating a new MDD node (the 
function createEmptyMDD as shown in Listing 2.2) can be removed and in-place updates of an arc inside 
an MDD node (the function setArc) is replaced by the function constructMDD (as shown in Listing 4.2) 
that constructs a new MDD node with the specified arguments (which also entails the introduction of 
recursive functions, more about this later in this section). And to prevent creating MDD nodes with a link 
to a False MDD node on a lower level, a check is performed before each construction process to see if the 
lower MDD node is not equal to the False MDD node (in case it is, no new MDD node is constructed). This 
feature is already present in the ATermDD library when constructing a new MDD node. 
 
The functionality of calculating the relational product (function relProd in Listing 2.4) is part of the 
Saturation algorithm. It turns out that similar functionality is already present in the ATermDD library, but 
instead recursive functions are used and give a better time complexity than what is achieved when 
implementing these functions according to the original pseudo code of the Saturation algorithm in Listing 
2.4 (as is explained in the text box below). There are also some other functions in the algorithm, which 
suffer from a bad time complexity and these are tackled as well using recursion. This has resulted in the 
following changes: 
■ The function saturate given in Listing 2.4 is split into the entry function saturate and the 

recursive function saturateLocals in Listing 4.1. 
(That is lines 12 – 13 of function saturate in Listing 2.4 are replaced by function saturateLocals 
in Listing 4.1.) 

■ The function doFixPoint given in Listing 2.4 is split into the entry function startFixPoint and 
the recursive functions applyFixPoint and transLevel in Listing 4.1. 
(That is lines 26 – 31 of function doFixPoint in Listing 2.4 are replaced by functions 
applyFixPoint and transLevel in Listing 4.1.) 

■ The function relProd given in Listing 2.4 is split into the entry function startRelProd and the 
recursive functions applyRelProd, transLevel and copyLevel in Listing 4.1. 
(That is lines 42 – 48 of function relProd in Listing 2.4 are replaced by functions applyRelProd, 
transLevel and copyLevel in Listing 4.1.) 

 
In most cases of these recursive functions, the next entry of an MDD node is passed on into the next 
recursion until the end of the MDD node is reached and this is indicated by a False MDD node (see 
explanation in Figure 3.3). 
 
Since the MDD encodings of the ATermDD library use fully-reduced MDDs for the transition relations, the 
Saturation algorithm also has to deal with the issue if there are skipped levels in the MDD tree, which are 
caused by intermediate identity transitions. For each transition group MDD a projection list is stored, 
indicating on which state slots (or MDD levels) a local transition occurs. To handle this issue, a 
modification inside the function dealing with the relational product is performed. Since the functionality 
dealing with the relational product is reused from the MDD library, the issue is dealt with by copying the 
current MDD node of the reachable state space for the skipped level and head to the next MDD nodes at 
lower levels. This is the function copyLevel, which is called within the function startRelProd (in line 
64 in Listing 4.1). 
 
The original pseudo code also contains checks in the function checkMDDnode (as explained in Listing 2.2 
and shown in lines 14 and 49 in Listing 2.4). These checks are performed to see if a similar MDD subtree 
has been constructed before and are no longer required, because the ATermDD library uses subterm 
sharing (of common nodes) and so this issue is dealt automatically inside the library. 



61 
 

Also the transition group MDDs used in the LTSmin toolset are not further split into smaller conjunct 
MDDs and that is not required for the Saturation algorithm. So the function 
buildTransitionMDDFromConjuncts as used in line 25 in Listing 2.4 is replaced by the function 
getTransitionGroupMDD as used in line 30 in Listing 4.1. 
 
■ Time complexity analysis of Saturation pseudo code 
When the MDD node is represented as a linked list structure, the pseudo code assumes that a reference 
to an MDD node is kept by pointing to the first entry of this linked list. Every time a specific local state 
value of the MDD node needs to be retrieved, it searches by starting from the first entry through the 
linked list until the entry is found (this is the getArc function in Figure 4.1). Updating an arc for a certain 
local state value in the MDD node also has to search for the correct entry in the linked list (this is the 
previously mentioned setArc function in Figure 4.1). So every time when one of these operations is 
performed, it starts its search from the first entry of the MDD node. 
 
To assess how inefficient this is, the worst-case time complexity is evaluated at points in the original 
pseudo code algorithm in Listing 2.4 where such search iterations are taking place over entries in the 
linked list structure of the MDDs.  When considering a domain of n local state values, it turns out that in 
the worst-case scenario an MDD node has all these n entries present (otherwise there are less than n 
iterations through the MDD node). 
Consider the worst-case time complexity for the call to function getLocalStateVals in Listing 2.4. This 
occurs when the MDD node has all n entries present and needs to traverse each of them from the first 
entry of the linked list. So in the for-loop it first calls getArc(1),  getArc(2), getArc(3), until getArc(n). 
So in total the first entry of the linked list is traversed n times, the second entry n – 1 times, the third entry 

n – 2 times, and so on (see Figure 4.2). This will result in n + (n-1) + (n - 2) + … 3 + 2 + 1 = ½n(n + 1) iterations, 
so a worst-case time complexity of O(n2). 

 
Figure 4.2: Visualization of inefficient MDD node traversals with quadratic time complexity. 



62 
 

 
The for-loops iterating over n entries (as worst-case) in functions where getArc is called, have similar 
time complexity of O(n2). This accounts only for the point when one looks at finding and updating an entry 
in a linked list, without considering other function calls that may interfere. This accounts for lines 12 – 13 
in function saturate, lines 27 – 31 in function doFixPoint and lines 44 – 48 in function relProd in 
Listing 2.4. In the latter two functions another outer for-loop is present, which gives rise to a worst-case 
time complexity of O(n3) (when not considering the inner-calls to relProd). 
 
The recursive functions used in the MDD library are constructed in such a way that the entries of a linked 
list are traversed only once and this results in a worst-case time complexity of O(n), as can be seen in 
Figure 4.3. Inside the functions where the fix-point computation is started (line 32 in Listing 4.1) and inside 
the computation of the relational product (line 62 in Listing 4.1), this results in a worst-case time-
complexity of O(n2). 

 
Figure 4.3: Visualization of efficient MDD node traversals with linear time complexity. 

4.2.2 Design-specific adjustments for LTSmin - General Prebuilt Saturation 

For General Prebuilt Saturation to work inside the LTSmin toolset some additional functionality needs to 
be added to the ATermDD library where the algorithm is going to be implemented (inside the function 
that starts performing a fix-point computation in ATermDD library, namely the function called 
set_least_fixpoint_list). 
 
In the initialization phase of the algorithm, the projection lists belonging to the transition groups are used 
to determine the transition group IDs per topmost level. These are used to determine which transition 
group starts at a certain topmost level when starting the fix-point computation. For this purpose a new 
global (array) variable is added in the MDD library, which stores a newly introduced structure type 
containing transition group IDs per topmost level. In the pseudo code in Listing 4.1 this is simplified to the 
function getGroupIDsOnTopLevel (line 27 in Listing 4.1) which returns a list of transition group IDs for 



63 
 

a certain level. The transition group ID is then used to obtain other data, such as the transition group 
MDD. 
On the other hand, the bottommost levels per event (used to indicate when to stop the recursive calls to 
the relational product) are no longer needed, because this is solved in a different manner when reusing 
the relational product from the MDD libraries. Hereby it relies on the projection list for which a pointer is 
kept indicating at which entry of the projection list it currently is (the current level it is pointing to, is 
achieved with the function getCurrentProjLevel in line 61 in Listing 4.1). This pointer is increased 
each time it enters another level during the computation of the relational product (as mimicked with the 
function setProjToNextLevel in line 93 in Listing 4.1). When the end of the projection list is reached 
(the function isProjEmpty in line 55 in Listing 4.1), it knows it has reached the bottommost level of the 
transition group. 
 
The functions saturate and doFixPoint from the original pseudo code in Listing 2.4 are revised into 
entry and recursive functions as shown in Listing 4.1 and these are the only new additional functions 
which need to be implemented in the ATermDD library; the rest can be reused with some slight 
adjustments. 
Furthermore it is noticeable in the original pseudo code algorithm in Listing 2.4 that the two innermost 
for-loops in the function doFixPoint (lines 26 – 31 in Listing 2.4) are almost similar to the two for-loops 
in the function relProd (lines 43 – 48 in Listing 2.4). The difference lies in the following: 
■ In the function doFixPoint it reuses the state space computed so far from the start (referring to 

parameter t in line 19 in Listing 2.4), while in the function relProd an empty MDD is constructed for 
t (in line 42 in Listing 2.4). 

■ Inside the second for-loop of the function doFixPoint it uses the latest updated version of the 
computed state space (t.getArc(i) in line 30 in Listing 2.4), while the function relProd uses a 
fixed MDD (parameter s for s.getArc(i) in line 47 in Listing 2.4). 

 
In the MDD library a similar function to applyRelProd from Listing 4.1 is already present and this is also 
the location where the issues mentioned above need to be tackled. The function applyRelProd (in 
Listing 4.1) is similar in functionality as the one in the original pseudo code inside the function relProd in 
Listing 2.4 and can be kept. But for doFixPoint from Listing 2.4 the function applyRelProd is copied 
and altered with the aforementioned issues in mind, resulting in function applyFixPoint in Listing 4.1. 
 
To be able to work with General Prebuilt Saturation in the LTSmin toolset, a call needs to be made to the 
function vset_least_fixpoint in spec-reach.c with the MDD of the initial state, a complete set of the 
transition groups and the total number of these transition groups. But it is not possible to use this 
algorithm on its own in the LTSmin toolset, because the transition groups are not known in advance. This 
algorithm will be available as part of the option sat-ddd in the LTSmin toolset and results in an own 
variation on the Saturation algorithm. 
When using this option with Saturation as fix-point computation, the Saturation process will build the 
reachable state space with the incomplete set of transition groups. Then the newly discovered states are 
retrieved from the intermediate resulting state space, which are used to update the transition groups. The 
Saturation process continues in a next iteration with the reachable state space so far and the updated set 
of transition groups, until no more new states are discovered and the final reachable state space is 
achieved. The pseudo code of this option is given in Listing 3.2. 



64 
 

4.2.3 Design-specific adjustments for LTSmin - General On-the-fly Saturation 

To be able to let General On-the-fly Saturation work inside the LTSmin toolset, the following adjustments 
need to be incorporated on top of the changes made to General Prebuilt Saturation as discussed in 
section 4.2.2. 
 
The difference with the Prebuilt version of the Saturation algorithm is the update process which is done in 
parallel to generating the reachable state space. In the function startFixPoint (that starts the fix-point 
computations as shown in Listing 4.1) additional functionality needs to be added to handle the updates of 
the transition groups. Unfortunately the update process from G. Ciardo [23] requires functionality for 
keeping track of the local state values that are discovered so far per MDD level. This is currently not 
available in the LTSmin toolset and the initial focus lies in devising an update process that fits with the 
LTSmin architecture, reusing available functionality as much as possible. 
Every time when the latest version of lower parts of the reachable state space is changed (the condition in 
the while-loop in line 25 in Listing 4.1 evaluates to True), an update process is performed (highlighted in 
light-blue in line 28 in Listing 4.1) prior to calling the function applyFixPoint and the relational product 
inside it. In the update process the latest version of lower parts of the reachable state space is used to 
extract the new local states which are used to update one of the affected transition groups that start at 
the current topmost level. The updated transition group is then used in the next iteration of calling the 
function applyFixPoint . The pseudo code is given in Listing 4.3 and a visualization of this update 
process is presented in Figure 4.4. 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

// Storing MDD trees containing already visited states per transition group. 

array<vset_t> group_explored 

 

// Update transition group with given transition group ID and partial MDD tree. 

void expand_group_next(int grpID, vset_t set) : 

  context ctx := createContext(grpID, set) 

  vset_t group_tmp := vset_project(set) 

  vset_t old_group_explored := group_explored[grpID] 

  group_explored[grpID] := vset_union(old_group_explored, group_tmp) 

  group_tmp := vset_minus(group_tmp, old_group_explored) 

  // Symbol * indicates a function pointer. 

  vset_enum(group_tmp, * exploreModelAndUpdate, ctx) 

Listing 4.3: Pseudo code of update process for updating a single transition group in implementation of General On-the-fly 
Saturation algorithm. 



65 
 

 
Figure 4.4: Pictorial overview of update process for transition group i with topmost level l (line numbers in figure refer to 
corresponding line numbers in Listing 4.3). 

In the update process described by G. Ciardo all affected MDD conjuncts are updated with this newly 
found local state value and after the update, one is certain that all partitioned transition relations know 
what (local) transitions are possible with the newly found local state value under consideration. 
In the version of the update process introduced here, it is not always certain that after one iteration of 
calling the relational product inside the function startFixPoint (in Listing 4.1), all new (sub) state 
vectors are discovered which involve a certain newly discovered local state value at a certain level. This is 
because certain (sub) state vectors can only be discovered via other transitions or via other parts of the 
reachable state space, as shown in Figure 4.5. 

 
Figure 4.5: Different local state values located in different subtrees of reachable state space. 

To work with General On-the-fly Saturation one needs to call the function vset_least_fixpoint in 
spec-reach.c with an MDD of the initial state, an empty set of transition groups and the total number of 
these transition groups. In the LTSmin toolset a new option will be introduced that will call the function 
vset_least_fixpoint once and is named sat-ciardo. Every time when it enters the while-loop in the 
function startFixPoint and begins to start this process for a certain transition group that starts at the 
current topmost level, the update process is initiated for the transition group before it heads into the 
function applyFixPoint and the recursive calls of the relational product. 



66 
 

4.3 Implementation of Saturation in LTSmin toolset 

The design of Saturation for the LTSmin toolset as presented in the previous section is implemented in the 
tool, but in practice the presented design has to address some implementation-specific details as well. 
These issues will be discussed for the algorithm itself and for the LTSmin toolset in sections 4.3.1 and 
4.3.2, respectively. When dealing with issues inside MDD libraries, the focus lies on the ATermDD library. 

4.3.1 Implementation-specific adjustments for Saturation 

In addition to the design of the Saturation algorithm, some issues related to the LTSmin toolset and 
especially inside the ATermDD library need to be addressed to be able to let the algorithm function 
properly. 
 
In the LTSmin toolset the level numbers of an MDD tree are traversed in reverse order: the level with the 
root node is considered as level 0 and when traversing down the MDD tree, the level number increases 
until the terminal nodes, which occurs at level number K + 1. The algorithm can be easily adjusted to cope 

with this issue, simply by starting the Saturation process at level number 0 and every time when the level 
number is decreased by 1 in the original algorithm, one can change it into an increase by 1. 
 
Another issue for consideration is the usage of the global lookup table for storing intermediate state space 
results during computation of the relational product. This lookup table uses an (MDD tree, MDD tree)-
tuple as key and a single MDD tree as value. Storing a tuple of MDD trees as key is not possible, but this 
issue can be resolved quite easily by constructing a new data object containing the level number, the 
transition group ID, and furthermore two links pointing to the two separate MDD trees (see Figure 4.6 
below). The newly constructed MDD tree will now function as the key for the lookup table. 
In this case it is important to store both the level number and transition group ID in an MDD node, 
because one of the MDD trees being stored as part of the composite key is the MDD tree for parts of a 
particular transition group. Since the MDD encodings use fully-reduced MDDs for the transition groups, 
this can cause mismatches in the lookup table when for another event and same level number, a value is 
retrieved. When only using the level number in the composite key, there is the possibility that a match is 
found in the lookup table because of similar MDD parts for different transition groups (and causes the 
algorithm to think it has computed this partial result before). This issue is visualized in Figure 4.7. 
Further consequences of using the transition 
group ID for the lookup table belonging to the 
relational product computations, is that the 
transition group ID itself needs to be known 
during these computations. Unfortunately the 
available functions in the MDD library do not 
keep up which transition group ID is currently 
being used and this has been resolved by 
introducing an extra parameter to the affected 
functions to keep a reference to the transition 
group ID (e.g. parameter grp in function 
startRelProd). 
 
Figure 4.6: Visualization of the key and value used in the 
lookup table from the relational product.  



67 
 

 
Figure 4.7: Pictorial overview of using a bad key for the lookup table from the relational product. 

When using the lookup tables as they are now, for the General Prebuilt Saturation algorithm inside the 
option sat-ddd it is important that the lookup tables are reset when the Saturation loop (in 
vset_least_fixpoint in spec-reach.c) is re-entered. This is due to the chance that parts of the state 
space so far have already been stored in the lookup table (and also due to the usage of incomplete keys). 
The algorithm thinks it has encountered a certain part of the state space before and will not revisit it, 
although its transition groups may have been updated with new transitions (outside the Saturation loop). 
 
Finally some initialization and clean-up operations need to be added before and after the Saturation 
process in the MDD library. For the initialization a number of global lookup tables need to be created 
which are empty at the beginning. Also references to the transition groups that are passed to the function 
vset_least_fixpoint (in spec-reach.c) need to be stored and hereby a global variable is used. It is 
possible to pass it as a parameter when calling the functions related to the Saturation algorithm and use it 
inside the function performing the start of the fix-point computation, but this does not make the functions 
better readable. 
And after the Saturation process is finished, some clean-up operations are performed by freeing allocated 
memory (which does not happen automatically in C). 
 
A summary of the initialization and clean-up operations inside the MDD library is depicted using pseudo 
code in Figure 4.8. The functions reach_sat_ddd and reach_sat_ciardo represent the concrete 
implementation of options sat-ddd and sat-ciardo, respectively (more about this in the next section). 



68 
 

 
Figure 4.8: Passing on calls of vset_least_fixpoint in spec-reach.c to atermdd.c. 

4.3.2 Implementation-specific adjustments for LTSmin toolset 

The LTSmin toolset itself cannot cope with the Saturation algorithm unless some additional 
implementation-specific issues are resolved. 
 
First of all a new reachability option should be introduced in spec-reach.c and for this purpose the option 
is given the name sat-ciardo. The available reachability options of the LTSmin toolset are extended with 
this new option to make sure it considers the option as legitimate when the user provides it. 
Also a new high-level reachability function is added in spec-reach.c, named reach_sat_ciardo. 
Basically it has a simplified version of the function reach_sat_ddd, in which it calls the function 
vset_least_fixpoint only once, because the update process of the transition groups is handled 
within this function (also see Figure 4.8). 
 
Another major issue is dealing with the update process of the transition groups. At a high level in spec-
reach.c there already exists a function which is capable of updating the transition groups, namely 
expand_group_next. Unfortunately this function can only handle MDD sets in which all levels are 
present, but this is not the case when using the Saturation process in which transition groups are updated 
using the latest MDD tree that can start at a certain intermediate level. To be able to reuse the function 
expand_group_next and leave it intact as it is, some modifications have been made in the projection 
function inside the MDD library itself. An additional global variable is introduced indicating at which MDD 
level to start projecting and this variable is set at the point just before the expand_group_next function 
is called (this would happen between lines 27 and 28 in Listing 4.1, which is not shown in the pseudo 
code). When the projection function inside expand_group_next is called, it will use the set global 
variable to start projecting from a certain MDD level. This global variable is reset to 0 (indicating top level 
of MDD tree) at the end of the projection function to prevent miscomputations with the projection later 
on. The advantage of using such a construct is that spec-reach.c is left unchanged. But a disadvantage is 
that between the call to expand_group_next and the first call to the projection function, no calls to this 
projection function can be made. Currently this is not the case in expand_group_next, but in future 
modifications of this function it may become a problem if it involves the projection function. 



69 
 

To be able to call the function expand_group_next from within Saturation inside the MDD library, a 
function pointer to this function type is added in the vector relation structure. Together with this 
adjustment, a new vector set operation called vrel_set_expand_relation is introduced which 
initializes this function pointer for a certain transition group (for which also the vector domain is 
adjusted). The initialization of this function pointer occurs during the initialization phase of calling the 
reachability tool (in spec-reach.c). 
Storage of the function pointer per transition group creates the possibility of storing different types of 
update functions per transition group, allowing more flexibility in future extensions of the tool. 
Also since both option sat-ddd and sat-ciardo use the same Saturation algorithm implemented in the MDD 
library, additional checks inside the Saturation algorithm are inserted that check if the aforementioned 
function pointer for the transition groups is set. If this is the case, then the algorithm knows that option 
sat-ciardo is currently performing (where transition groups are updated within Saturation) and otherwise 
it is certain that option sat-ddd is running (where transition groups are updated outside Saturation). 
A visualization of the discussed issues using pseudo code is depicted in Figure 4.9. 
 

 
Figure 4.9: Passing on calls related to update process of  transition groups between spec-reach.c and atermdd.c. 

Most low-level MDD operations in the ATermDD library depend on a single global lookup table for storing 
intermediate calculated results. This global lookup table is immediately reset after performing one of such 
MDD operations to prevent causing mismatches when using other MDD operations that rely on the same 
global lookup table as well. One such MDD operation is the union operator for taking the union of two 
MDDs (at a certain level). For General Prebuilt Saturation the usage of the global lookup table is not 
interrupted by other MDD operations which use this lookup table too. But for General On-the-fly 
Saturation this does happen, due to the usage of the update process of the transition groups, where for 
instance the projection operator comes into play. To cope with this issue, the union operator has been 
copied and renamed and this copy is only used by the Saturation process. Inside the copy of the union 



70 
 

operator, it uses a newly introduced lookup table, especially for the purpose of storing intermediate 
calculated results obtained during the union operation. Although this solution is far from perfect (due to 
copying a function), this avoids tampering with the original union operator which is called by other 
functions in the MDD library. 

4.4 Summary of design & implementation of Saturation 

This chapter provides answers to the first two research questions of the project, concerning the 
Saturation approach to choose for implementation and the consequences for implementing it inside the 
LTSmin toolset. 
 
“Different versions of the Saturation approach exist and which one of these is a good candidate for 
extending the symbolic reachability techniques of the LTSmin toolset?” 
 
The deciding factors for choosing a suitable Saturation algorithm to implement are the requirements that 
indicate that no restrictions should be imposed on the structure of the model and/or its transition relation 
and that the transition relation should not be known in advance. It is obvious that the Kronecker 
Saturation algorithms do not fit into this picture, since they require that the transition relation is 
partitioned into a Kronecker matrix form. From the General Prebuilt and General On-the-fly Saturation 
algorithms the former still needs to be able to know the transition relation of the model beforehand, so 
the only choice left is the General On-the-fly Saturation algorithm. 
 
”How can the chosen version of the Saturation approach be implemented in the LTSmin toolset and what 
are the consequences for the tool’s architecture?” 
 
The General On-the-fly Saturation algorithm does have certain requirements before it can function 
properly in the LTSmin toolset. The most important ones are the ability to access low-level MDD 
operations and the MDD levels when traversing the MDDs of the transition groups. And related to the use 
of MDDs is its necessity to store computed parts of the MDD tree of the reachable state space. Although 
there is the possibility to implement the entire structure of the Saturation algorithm on a high level (e.g. in 
spec-reach.c), the choice is made to implement the algorithm in the MDD library itself. This prevents 
introducing extra high-level access to MDD operations, which can cause much clutter in the code. 
For now, the implementation is done inside MDD libraries with full-fledged implementations of MDD 
operations, and the initial focus lies on using ATermDD. This library contains MDD operations which can 
be easily reused within the framework of the Saturation algorithm. 
 
Before the actual implementation it turns out that some issues need to be resolved related to the 
Saturation algorithm. From the original pseudo code it turns out that the algorithm makes use of in-place 
updates to update pointers that point to lower-level MDD nodes. In the LTSmin toolset no in-place 
updates are used and instead entirely new MDD nodes are constructed with the new node pointers. To 
incorporate this into the algorithm, an additional adjustment is introduced, namely replacing the iterative 
function calls with recursive function calls. This makes it possible to construct new MDD nodes at the level 
of the MDD node entries. Another advantage is a better time complexity. Fortunately the algorithm does 
not need to be redesigned from scratch with recursive function calls and parts of the algorithm’s design 
are based on code already present in the MDD library. This code also takes into account the intermediate 
identity transitions that can occur in MDDs of the transition groups, since the MDD library makes use of 
fully-reduced MDDs. 
 



71 
 

For the implementation of the Saturation algorithm it turns out that the difference between the Prebuilt 
and On-the-fly version of the algorithm is small and therefore both versions are implemented in the 
LTSmin toolset. 
The General Prebuilt Saturation algorithm cannot be used on its own (transition relation should be known 
in advance) and is now part of the option sat-ddd, which basically performs fix-point computations to 
compute the reachable state space interleaved with extension of the transition groups. The Saturation 
algorithm replaces the standard fix-point function in this reachability option and updates to the transition 
groups are performed outside the iteration of this fix-point computation. 
For the General On-the-fly Saturation algorithm a new reachability option is added to the LTSmin toolset, 
named sat-ciardo. An issue to be dealt with here is that the update process of the transition groups as 
described by G. Ciardo [23] does not fit well inside the LTSmin architecture, since it requires additional 
changes. Therefore an own version of the update process of transition groups is devised, which makes use 
of the state space so far to update one of the affected transition groups that start at the current working 
MDD level. 
 
Next to these design issues, during implementation some other issues occurred which need to be 
addressed and they are either related to the algorithmic structure of the Saturation algorithm or related 
to the LTSmin framework. The issues discussed also address the second research question. 
 
Implementation-specific adjustments to the Saturation algorithm are not quite extensive and are easily 
dealt with. These involve handling the reverse numbering of the MDD levels used in the MDD library, and 
making use of another data object to be used as key for the lookup table involved in the relational product 
for purposes in regard to memoization. 
 
Implementation-specific adjustments to the affected parts of the LTSmin toolset are also not too severe 
and mostly concern making changes to existing functionality. This is trivial for incorporating the new 
reachability option sat-ciardo as legitimate option and use the General Prebuilt Saturation algorithm as 
fix-point computation inside the option sat-ddd. 
Furthermore the projection operation for projecting an MDD on a given projection list of MDD levels 
needs to be adjusted slightly, by making it possible to start the projection at a certain intermediate MDD 
level (and not only for the root MDD level as was the case). Also access to the function that performs the 
update process of the transition groups needs to be made available from inside the MDD library, which is 
done by adding an extra pointer reference to this function in the data object that encodes the transition 
group. Additionally, this pointer reference indicates if transition groups should be updated during 
Saturation (which is the case when the pointer reference is set). 
 
Finally the usage of a single global lookup table in the ATermDD library for usage by different MDD 
operations to store intermediate calculated results is not a very good choice due to interference with 
what the General On-the-fly Saturation algorithm is doing. Although a crude solution has been given by 
copying the union operation of two MDDs, it is better to devise a more elaborate solution in the future. 
  



72 
 

  



73 
 

5 Evaluation of Saturation in LTSmin toolset 

With the implementation of the Saturation algorithm inside the LTSmin toolset, it is now possible to 
assess how the Saturation algorithms operate. Section 5.1 explains the setup of the experiments where 
different available reachability options are used and presents the results next to each other for 
comparison. Section 5.2 evaluates how the different reachability options perform and tries to explain why 
these perform as they do. 

5.1 Experiments on Saturation in LTSmin toolset 

The experimental setup for performing the experiments with the LTSmin toolset is the subject of the first 
part of this section, followed by the obtained experimental results. 

5.1.1 Experimental setup using reachability tools from LTSmin 

The implemented versions of the Saturation algorithms are compared with other available symbolic 
reachability options inside the LTSmin toolset. For testing purposes the reachability tool using the state-
based specification language DVE is taken, for which a broad range of models are publicly available as part 
of the BEEM database [20]. The symbolic reachability tool using the DVE specification language comes in 
two versions: 
■ dve-reach tool: uses an interpreter to read the DiVinE models. 
■ dve2-reach tool: uses a compiled version of the DiVinE models (and pre-compiles DiVinE models if 

necessary). 
 
For our purposes the dve2-reach tool is used, since using compiled versions of the DiVinE models works 
faster than interpreting them. 
 
When calling a reachability tool a number of additional input arguments can be provided for which the 
user can specify a number of possibilities of how to perform the reachability analysis and under which 
conditions. For the experiments the following input arguments suffice: 
■ [--saturation]: the top-level saturation-like traversal technique to be used for generating the state 

space. For our purposes it suffices to look at the following possibilities: none, sat-like, sat-ddd and 
sat-ciardo. The first two options require a secondary auxiliary exploration technique to work with and 
the default option is none (no saturation-like strategy is used). 

■ [--order]: exploration strategy to be used as part of the saturation-like traversal technique that uses 
an auxiliary exploration technique. For our purposes a variation of breadth-first search (bfs-prev) and 
chaining (chain-prev) is used, since they only use the newest states in the next iteration of the 
exploration. Also with the set save-levels option (explained below) these are more likely to perform 
better in time than their counterparts bfs and chain. The default option is bfs-prev. 

■ [--save-levels]: saving discovered states which are found in the previous iteration of state space 
exploration. This option is only used in conjunction with the saturation option sat-like accompanied 
with order options bfs-prev or chain-prev, in which previously discovered states are not taken into 
account in next iterations of the exploration. 

■ [--regroup]: enabling reordering optimization on the PINS dependency matrix to improve variable 
ordering. For our purposes it suffices to take the option gs, which stands for Group Safely and is for 
most cases the most effective reordering option (for the full list of regrouping options, see [13]). 



74 
 

■ [--vset]: type of vector set (or MDD data encoding) to be used for storing the reachable state space. 
Possible options are list, tree, fdd, ddd and ldd (as explained in Table 3.4). Since our main focus lies 
on design and implementation in the full-fledged MDD library ATermDD (the General Saturation 
algorithms are currently only implemented here) and especially the LDD data structure, option list is 
taken (which is also the default option). 

 
For doing experiments it is important to keep the provided input arguments to the reachability tool 
consistent for all traversal techniques used. The input arguments provided to the dve2-reach tool are 
given in Table 5.1 (input argument [--vset] is not given, because the default option list is used for our 
experiments for which one does not have to explicitly provide it in the command). In the next few 
sections, the none-saturation options will be abbreviated to the no-sat options. 
(Refer back to Listing 3.1 and Listing 3.2 for the pseudo code algorithms of the options sat-like and sat-
ddd, respectively.) 
 
Traversal technique description Input arguments used for dve2-reach tool 

--saturation= --order= --save-levels --regroup= 

Bread-first search with previously seen new 
states 

none bfs-prev  gs 

Chaining with previously seen new states none chain-prev  gs 

Saturation-like strategy with breadth-first search 
as auxiliary exploration technique 

sat-like bfs-prev × gs 

Saturation-like strategy with chaining as auxiliary 
exploration technique 

sat-like chain-prev × gs 

Fix-point computation strategy with 
implemented General Prebuilt Saturation 

sat-ddd   gs 

Implemented General On-the-fly Saturation sat-ciardo   gs 
Table 5.1: Input arguments used with dve2-reach tool for experiments. 

The testing environment under which the experiments are performed, is a cluster machine from the FMT 
lab, with dual Intel E5335 CPUs and 24 GB RAM. By the time of testing, version 1.7 of the LTSmin toolset 
(with addition of Saturation) is used together with the tool memtime (version 1.3), which is capable of 
keeping track of total execution times of and total amounts of memory being used by software programs. 
 
The models for the experiments are retrieved from the BEEM database [20] and a broad selection of 27 
DiVinE models is taken into consideration with a state space of at least 10 million states (to challenge the 
capabilities of the traversal techniques). An overview of these DiVinE models and the size of their 
reachable state space is given in Table 5.2. When performing the experiments it is not always possible that 
the tool comes up with a result because of memory limitations or it simply takes too long to compute the 
reachable state space. The following limits are imposed when performing the experiments: 
■ Use a time limit of 9000 seconds (i.e. 2½ hours). 
■ No exact memory limit is imposed, but the available working memory of 24 GB on the cluster 

machine is considered as final memory limit. 
 
The 27 DiVinE models chosen are only a subset of the DiVinE models found in the BEEM database. Lots of 
models have a state space with a size smaller than 10 million states and do not provide much effort for 
the traversal techniques, while there are also models which simply take too much time to come up with a 
result. From a first impression of the model’s state space size as given by the BEEM database and 
estimated effort to come up with a result, these 27 models have been taken as starting point for the 
experiments. 



75 
 

Name Abbrev. Short description Size of 
reachable 
state space 

Communication protocols 

brp.5.dve brp.5 Bounded retransmission protocol 17740267 

brp.6.dve brp.6 42728113 

cambridge.7.dve cam.7 Cambridge ring protocol 11465015 

collision.4.dve col.4 Collision avoidance protocol 41465543 

firewire_link.5.dve fir.5 Layer link protocol of the IEEE-1394 18553032 

iprotocol.6.dve ipr.6 Optimized sliding window protocol 41387484 

iprotocol.7.dve ipr.7 59794192 

Mutual exclusion algorithms 

anderson.6.dve and.6 Anderson’s queue lock mutual exclusion algorithm 18206917 

at.5.dve at.5 Alur-Taubenfeld mutual exclusion algorithm 31999440 

at.6.dve at.6 160589600 

bakery.6.dve bak.6 Bakery mutual exclusion algorithm 11845035 

lamport.7.dve lam.7 Lamport's fast mutual exclusion algorithm 38717846 

lamport.8.dve lam.8 62669317 

lamport_nonatomic.5.dve lna.5 Lamport mutual exclusion protocol with non-atomic 
operations 

95118524 

lann.6.dve lann.6 Lann leader election algorithm for token ring 144151628 

lann.7.dve lann.7 160025986 

peterson.6.dve pet.6 Peterson's mutual exclusion protocol for N processes 174495861 

peterson.7.dve pet.7 142471098 

phils.6.dve phi.6 Dining philosophers problem 14348906 

phils.8.dve phi.8 43046720 

szymanski.5.dve szy.5 Szymanski mutual exclusion protocol 79518740 

Leader election algorithms 

leader_election.6.dve le.6 Leader election algorithm on unidirectional ring 35777100 

leader_filters.7.dve lf.7 Leader election algorithm based on filters 26302351 

Other protocols 

telephony.4.dve tel.4 Telecommunication service 12291552 

telephony.7.dve tel.7 21960308 

Planning & scheduling 

elevator_planning.2.dve ele.2 Planning of elevator strategy under several constraints 11428767 

schedule_world.3.dve sch.3 Scheduling of machines for production 166649331 
Table 5.2: DVE models used for experiments (with descriptions from BEEM database [20]). 

 
Data collection Unit Data obtained from 

Size of reachable state space Number LTSmin toolset 

Final MDD nodes Number LTSmin toolset 

Peak MDD nodes Number LTSmin toolset 

Time stamp of intermediate state space count Seconds (sec) LTSmin toolset 

State space size so far per intermediate state space count Number LTSmin toolset 

MDD nodes so far per intermediate state space count Number LTSmin toolset 

Reachability time (of algorithm only) Seconds (sec) LTSmin toolset 

Total execution time (of reachability tool) Seconds (sec) Tool memtime 

Maximum memory usage (of reachability tool) KiloBytes (KB) Tool memtime 

Useful and useless MDD projections done Number LTSmin toolset 

Time contribution of functions in option sat-ciardo Percentage (%) Tool GNU gprof 
Table 5.3: Overview of data that is being collected in the experiments using reachability tools from LTSmin. 



76 
 

Table 5.3 gives an overview of the types of data being gathered and which tools are used in this regard. 
 
The experiments are performed in a structured way in which the reachable state space is computed for 
the 27 DiVinE models. Each model is run 3 times for each of the 6 traversal techniques as given in Table 
5.1. This is necessary due to small fluctuations in resulting time and memory values for which the median 
value is taken over the 3 runs. Hereby the original implementation of the options sat-ddd and sat-ciardo is 
used. 
Also for obtaining data related to the reachable state space and the number of MDD nodes (also during 
the state space search), some functionality regarding statistical analysis needs to be incorporated into the 
code of the implemented options sat-ddd and sat-ciardo (this is already present for the other chosen 
reachability options), for which some quick fixes were introduced by reusing some statistical analysis 
functionality from spec-reach.c and calling them at the right locations during Saturation. This adjusted 
implementation of the options sat-ddd and sat-ciardo is only used to gather the additional data and 
therefore each model is also run again once with these adjusted options. Because the algorithms are 
deterministic, it is not necessary to run these tests 3 times. 
For the number of MDD projections performed in each of the reachability options, some additional 
counters are introduced in the code (that affects each reachability option). Furthermore profiling is 
performed using GNU gprof (version 2.19), for which auxiliary data is gathered to see how certain 
functions in the reachability tool contribute to the total execution time (which is only performed for 
option sat-ciardo, as will be explained in section 5.2.1). 
The test runs are performed on the cluster machine from the FMT lab and to perform these sequentially 
in an automatic way, a Bash script has been constructed that is provided to the cluster machine to 
perform the test runs in the background. 

5.1.2 Experimental results of symbolic reachability algorithms from LTSmin 

The raw data from the test runs contain much clutter and therefore the right data is extracted first and 
put in a Comma Separated Values (CSV) file for further data manipulation. The median of the time and 
memory values are taken, while the other data is not manipulated any further. For better visualizations 
and comparisons of the measurements, the results are put into plots. 
In this section the main focus lies on presenting measurements regarding time, the peak and final MDD 
nodes and how the state space and its corresponding MDD size evolve during the reachability analysis. 
Furthermore this section will only give some observations that can be extracted from the results and 
explanations of these observations will be given in the next section. 
 
The measurements regarding the maximum memory usage will not be presented prominently here and 
one is referred to appendix A for details. It turns out that the memory usage is highly dependent on the 
MDD library being used (in this case ATermDD library) and how intermediate results are stored, which can 
differ when using other MDD packages and/or techniques in regard to memoization. Still the next section 
will go briefly into the memory measurements. 
A short summary of these results are as follows: 
■ The results reveal that both implemented options sat-ddd and sat-ciardo obtain a much higher 

maximum memory than the options no-sat and sat-like in the vast majority of the tested models. In 
such cases it can run to almost 200 times the amount of memory being used by the options no-sat or 
sat-like. 

■ Between the options sat-ddd and sat-ciardo the results reveal that the maximum memory usage 
seems to keep pace with each other for the vast majority of the tested models. 

 



77 
 

The results of the total execution times are given in Table 5.4, since this gives the user a sense how long a 
complete computation takes using a reachability tool with DVE models. For the majority of the models the 
reachability time is just a few seconds less than the total execution time and only for those few models 
where the total execution times do differ significantly from the reachability times, as is indicated in the 
table (with * and **). These are mainly caused by heavy computations during pre-processing of the tool, 
such as pre-compiling the DVE models and computing the PINS dependency matrix for large models 
(which will become clear in the next section). Additionally, Table 5.5 gives an overview how much each of 
the reachability options perform as best or as worst (with lowest or highest total execution time, 
respectively). From these results one can observe that options sat-like with chain-prev and sat-ddd are the 
ones that perform the best for one out of three models, and option bfs-prev is the one that performs 
worst for almost one out of two models. But for option sat-ciardo the results are quite mixed. 
 
Model State space 

size 
Total execution time (median values in sec) 

bfs-prev chain-prev sat-like 
bfs-prev 

sat-like 
chain-prev 

sat-ddd sat-ciardo 

and.6 18206917 35.42 94.07 33.02 33.03 143.92 196.64 

at.5 31999440 99.75 79.66 66.57 62.26 55.54 261.68 

at.6 160589600 460.18 295.73 563.32 438.96 292.38 6937.73 

bak.6 11845035 259.35 103.69 195.41 65.14 1259.2 2692.94 

brp.5 17740267 260.04 107.18 208.12 188.38 32.72 29.12 

brp.6 42728113 620.36 231.38 503.09 411.86 125.19 75.15 

cam.7 11465015 1699.6 823.41 1546.39 1420.16 629.4 8989.21 

col.4 41465543 514.4 383.19 45.43 49.83 3.1** 9.11 

ele.2 11428767 69.54 32.52 1.7 1.7 1.6** 1.5** 

fir.5 18553032 616.46* 175.3* 123.07* 108.27* 85.06* 151.65* 

ipr.6 41387484 1694.09 305.54 271.21 222.69 82.06 15.51 

ipr.7 59794192 2155.44 632.58 453.37 378.02 293.4 65.27 

lam.7 38717846 397.22 150.93 29.42 21.72 77.86 92.97 

lam.8 62669317 511.58 426.25 69.44 52.53 189.83 225.76 

lna.5 95118524 81.04* 57.07* 17.41* 13.21* 18.41* 42.24* 

lann.6 144151628 2032.26 757.77 581.13 378.94 124.08 2280.5 

lann.7 160025986 316.68 138.41 41.54 38.12 4.8 15.11 

le.6 35777100 496.47* 14.21* 12.61* 12.41* 16.51* 9.21* 

lf.7 26302351 218.42 83.16 82.85 82.15 2464.58 2379.49 

pet.6 174495861 169.19 293.12 48.53 23.71 74.65 151.91 

pet.7 142471098 851.89 344.26 347 267.45 1894.09 3768.49 

phi.6 14348906 1.9** 1.4** 1.1** 1** 1** 1** 

phi.8 43046720 2.3** 1.6** 1.2** 1.1** 1.1** 1.1** 

sch.3 166649331 274.75 30.24 3 2.3** 3.4 13.51 

szy.5 79518740 534.79 239.08 117.77 64.44 1041.64 1729.29 

tel.4 12291552 59.93 37.33 43.92 21.91 115.5 239.85 

tel.7 21960308 150.25 89.61 36.92 30.02 269.58 699.88 

Legend of symbols 

* Given total execution times (for all options) is larger than reachability time with: 

± 15 seconds for fir.5 ± 6 seconds for lna.5 ± 10 seconds for le.6 

** Reachability time is 1.5 to 2 times smaller than given total execution time. 

red Worst performing option for a certain model. 

green Best performing option for a certain model. 
Table 5.4: Experimental time results using the reachability tools from LTSmin on the 27 DVE models. 

 



78 
 

 bfs-prev chain-prev sat-like 
bfs-prev 

sat-like 
chain-prev 

sat-ddd sat-ciardo 

# times as fastest  0 0 1 11 9 6 

# times as slowest 15 1 0 0 1 10 
Table 5.5: Summary of the best and worst performing reachability options regarding time performance. 

To give an impression how the newly implemented Saturation algorithms in the options sat-ddd and sat-
ciardo perform, the time measurements have been plotted against one of the other options, namely the 
options no-sat and sat-like. First the time results of option sat-ciardo is plotted out against the options no-
sat and sat-like in Figure 5.1 and Figure 5.2 respectively, followed by the time results of option sat-ddd 
against the options no-sat and sat-like in Figure 5.3 and Figure 5.4 respectively. Then option sat-ciardo is 
plotted against option sat-ddd in Figure 5.5. 
 
In all these plots, the plot on the left gives a sense where every result is located in a larger picture. The 
plot in the upper right corner is a magnification of a small part of the leftmost plot and the plot on the 
lower right corner is on its turn a magnification of the plot on the upper right corner. One should be aware 
that with these magnifications the horizontal and vertical axes scale as well. 
Furthermore a diagonal is added in these plots to show that the two reachability options under 
comparison have the same time result. When a time result falls beneath the diagonal line in Figure 5.1, 
Figure 5.2 and Figure 5.5, then this means that option sat-ciardo computes faster than the other 
reachability option. Likewise for time results in Figure 5.3 and Figure 5.4, in which case option sat-ddd is 
performing faster than the other reachability option. 
 
 
 
  



79 
 

 
Figure 5.1: Plot comparing time values between options no-sat and sat-ciardo. 

7
9

 



80 
 

 
Figure 5.2: Plot comparing time values between options sat-like and sat-ciardo. 

8
0

 



81 
 

 
Figure 5.3: Plot comparing time values between options no-sat and sat-ddd. 

8
1

 



82 
 

 
Figure 5.4: Plot comparing time values between options sat-like and sat-ddd. 

8
2

 



83 
 

 
Figure 5.5: Plot comparing time values between options sat-ddd and sat-ciardo. 

8
3

 



84 
 

 
Figure 5.6: Bar charts of peak MDD node values for each reachability option per DVE model.

8
4

 



85 
 

For the results of the peak MDD nodes, the results are plotted in bar charts (with the final MDD nodes 
given as the rightmost column per model) and this provides a better overview of how the different 
reachability options perform next to each other, as shown in Figure 5.6. To give an impression how the 
reachable state space and the size of the MDD evolve over time, the evolution plots of a selection of DVE 
models are given for each reachability option in Figure 5.9 until Figure 5.11. One should be aware that the 
horizontal time axis differs per reachability option and in these plots the reachability times are shown (not 
the total execution times). In appendix B the evolution plots of the other DVE models can be found. 
 
Counting the MDD nodes and the state space size happens at the start of each main loop of the 
reachability algorithms no-sat, sat-like and sat-ddd. But for the option sat-ciardo this counting process is 
slightly different and this is due to how this algorithm builds the MDD. The MDD up to a certain level is 
built and levels above this level until the root level do not contain any processed MDD nodes. To account 
for this fact, the counting process is done at the point when the algorithm is starting to saturate by 
(re)entering the topmost working MDD level and this is visualized in Figure 5.7. Hereby the count of the 
state space size actually counts the number of substates found in the MDD starting at the current topmost 
working level. 
For option sat-ddd the counting process takes place when it starts saturating by (re)entering root level 0 
of the MDD tree. This is due to re-entering the Saturation algorithm a number of times (after updating the 
transition groups), for which all MDD levels contain processed MDD nodes. A visualization of this process 
is shown in Figure 5.8. 

 
Figure 5.7: Visualization of state and MDD count process used in option sat-ciardo. 

 
Figure 5.8: Visualization of state and MDD count process used in option sat-ddd. 



86 
 

 

 
Final state space size Final MDD node size Fastest reachability option 
18206917 38225 sat-like bfs-prev 
Figure 5.9: State space evolution plots of DVE model anderson.6. 

 



87 
 

 
Final state space size Final MDD node size Fastest reachability option 
11465015 161219 sat-ddd 
Figure 5.10: State space evolution plots of DVE model cambridge.7. 



88 
 

 
Final state space size Final MDD node size Fastest reachability option 
59794192 218779 sat-ciardo 
Figure 5.11: State space evolution plots of DVE model iprotocol.7. 

5.2 Analysis of Saturation performance 

This section will discuss the obtained results by going into the different aspects of time performance, state 
space evolution and memory performance separately. 

5.2.1 Time performance of Saturation 

The time performance of the options sat-ddd and sat-ciardo seems to show some mixed results when 
compared to the options no-sat and sat-like. Both option sat-ciardo and sat-ddd are more likely to 
outperform the option no-sat than the option sat-like. This is especially noticeable for models which are 
not very time-demanding to come up with a result. 



89 
 

When comparing the time results between options sat-ddd and sat-ciardo, it turns out that in every two 
out of three tested models option sat-ddd performs faster in time than option sat-ciardo. 
 
The main causes behind these results in relation to other reachability options seem to lie in the following: 
■ option sat-ciardo is suffering from updating transition groups slowly and performing lots of 

unnecessary MDD projections, and 
■ option sat-ddd is suffering from a gradual decrease in progress over time, but keeps the number of 

MDD projections as small as possible. 
 
Option sat-ciardo tries to update the transition group at the current working MDD level during the 
Saturation process. Taking a closer look in the progression of the algorithm it turns out that it only looks 
for new (sub) states locally in the MDD and therefore can only find a few new (sub) states at a time, if any 
is found. Also each time when trying to update the affected transition group, it performs the projection 
operation on the MDD of the (sub) state space seen so far, which is a large burden on the time 
performance and unnecessary when the affected transition group is not updated at all. Performing such 
projections where the affected transition group is updated with new (sub) transitions, will be denoted as 
useful projections. In Table 5.6 one can compare the number of useful and total projection operations 
made per reachability option, and it is obvious that option sat-ciardo has a high percentage of useless 
projections (also compared to other options as summarized in Table 5.7). Also a visualization of this for 
three models is given in the bar charts in Figure 5.12 (for the other models, see appendix C). This problem 
is one of the reasons why for certain models option sat-ciardo is always performing slower compared to 
options no-sat and sat-like. For the models where the option sat-ciardo is always performing faster, it 
turns out that the options no-sat and sat-like need to overcome a high peak MDD node value, where also 
lots of iterations in the algorithm are needed to find all reachable states. 
These findings are also supported by using profiling on the reachability option sat-ciardo for a couple of 
models which do not require much effort (in time) to compute a result, as shown in Table 5.8 and Table 
5.9. In Table 5.8, for three types of functions the percentage of total execution time is given used by the 
function and next to it the rank of the function in the list of all time-demanding functions recorded by 
profiling (for projection and construction of MDD nodes, the results of multiple accompanying functions 
are accumulated). The projection operations take a high rank in the function list, in most cases it turns out 
that emptying the lookup tables is the most demanding operation, which is one of the operations being 
performed at the end of the projection operation. For completeness the final two columns of Table 5.8 
also indicate how time-demanding it is for the algorithm to construct new MDD nodes. 
 
On the other hand, option sat-ddd only updates the transition groups outside the Saturation algorithm. 
This turns out to be more efficient, because newly found (sub) states are discovered globally taking into 
account every level of the MDD tree of the state space seen so far. This also makes sure that the number 
of useless projections made (while trying to update a certain transition group) is kept to a minimum, as is 
also noticeable in Table 5.6, Table 5.7 and the bar charts in Figure 5.12. But there is a downside to 
performing updates outside the Saturation loop, as noted for some models where option sat-ddd is 
always performing slower than the options no-sat and sat-like: it may start well at the beginning by 
discovery lots of new states, but the number of new states found diminishes over time and nearing the 
end only a small number of new states are found per iteration of the Saturation process, while re-
computing and storing partial results again. But the positive side to this aspect is that the peak MDD node 
value lies closer to the final MDD node value and it might be the main aspect why option sat-ddd is always 
performing faster for some models compared to options no-sat and sat-like.  



90 
 

Model bfs-prev chain-prev sat-like bfs-prev sat-like chain-prev sat-ddd sat-ciardo 

useful 
projs 

total 
projs 

% of 
total 
projs 

useful 
projs 

total 
projs 

% of 
total 
projs 

useful 
projs 

total 
projs 

% of 
total 
projs 

useful 
projs 

total 
projs 

% of 
total 
projs 

useful 
projs 

total 
projs 

% of 
total 
projs 

useful 
projs 

total 
projs 

% of 
total 
projs 

and.6 774 3258 23.76 396 1602 24.72 474 3074 15.42 335 2088 16.04 384 396 96.97 1058 1236389 0.09 

at.5 481 1326 36.27 283 702 40.31 422 3514 12.01 278 2288 12.15 281 312 90.06 652 2049081 0.03 

at.6 531 2470 21.50 320 1482 21.59 455 5664 8.03 309 3630 8.51 260 286 90.91 747 13098248 0.01 

bak.6 1447 3668 39.45 636 1428 44.54 2106 9036 23.31 905 3588 25.22 583 756 77.12 2343 7988570 0.03 

brp.5 2811 11902 23.62 1527 5940 25.71 2868 20490 14.00 2183 14178 15.40 779 1408 55.33 4574 228266 2.00 

brp.6 3697 14498 25.50 1996 7238 27.58 3765 24712 15.24 2825 16836 16.78 945 1848 51.14 8659 346009 2.50 

cam.7 2509 6102 41.12 925 2304 40.15 6548 16216 40.38 5644 13676 41.27 783 864 90.63 29010 591443 4.90 

col.4 764 4872 15.68 388 2581 15.03 508 5924 8.58 356 4350 8.18 401 609 65.85 723 118126 0.61 

ele.2 131 243 53.91 72 126 57.14 102 265 38.49 85 195 43.59 43 45 95.56 100 1518 6.59 

fir.5 18349 43188 42.49 8270 17700 46.72 20673 111744 18.50 15400 82575 18.65 7307 9381 77.89 41221 1014049 4.06 

ipr.6 3348 11804 28.36 1544 6630 23.29 8244 82653 9.97 6471 63430 10.20 989 1352 73.15 7384 180573 4.09 

ipr.7 3286 7306 44.98 1418 3978 35.65 11636 85723 13.57 9417 69089 13.63 1028 1430 71.89 13802 526027 2.62 

lam.7 655 3465 18.90 375 1435 26.13 575 5686 10.11 382 3250 11.75 370 455 81.32 431 1392076 0.03 

lam.8 750 6480 11.57 434 2920 14.86 680 12940 5.26 436 8104 5.38 425 560 75.89 512 2886762 0.02 

lna.5 1429 6400 22.33 776 1920 40.42 1435 12109 11.85 960 6967 13.78 1152 1200 96.00 1210 904992 0.13 

lann.6 538 5656 9.51 137 2324 5.90 353 9329 3.78 202 4781 4.23 288 420 68.57 560 8674697 0.01 

lann.7 427 10890 3.92 137 3300 4.15 310 12176 2.55 223 7888 2.83 228 540 42.22 288 256483 0.11 

le.6 4973 21978 22.63 1413 2574 54.90 2025 3804 53.23 1513 3083 49.08 2249 4851 46.36 1412 9883 14.29 

lf.7 1194 1728 69.10 448 672 66.67 959 3432 27.94 603 1959 30.78 522 624 83.65 4458 4856870 0.09 

pet.6 517 1620 31.91 235 700 33.57 548 3380 16.21 325 1866 17.42 275 320 85.94 550 814164 0.07 

pet.7 1395 4425 31.53 745 2275 32.75 1496 13375 11.19 1052 9356 11.24 539 800 67.38 5997 9187070 0.07 

phi.6 135 1290 10.47 76 870 8.74 135 800 16.88 79 648 12.19 120 120 100.00 118 508 23.23 

phi.8 144 1472 9.78 81 992 8.17 144 803 17.93 85 661 12.86 128 128 100.00 126 546 23.08 

sch.3 239 782 30.56 135 272 49.63 241 1192 20.22 181 698 25.93 130 136 95.59 411 94497 0.43 

szy.5 3025 9480 31.91 1511 3780 39.97 1762 20387 8.64 1359 13683 9.93 1719 2040 84.26 2082 9907129 0.02 

tel.4 460 1224 37.58 275 672 40.92 1146 4436 25.83 674 2532 26.62 300 432 69.44 2574 911409 0.28 

tel.7 728 2100 34.67 413 980 42.14 1807 9414 19.19 1100 5464 20.13 396 504 78.57 4042 1914874 0.21 

Table 5.6: Statistics showing the number of useful and total MDD projections made using the reachability tools from LTSmin on the 27 DVE models. 

 
 bfs-prev chain-prev sat-like bfs-prev sat-like chain-prev sat-ddd sat-ciardo 

Average % of useful projs 28.63 32.27 17.35 17.92 78.21 3.32 
Table 5.7: Summary of the average percentage of useful MDD projections made per reachability option. 

9
0

 



91 
 

 
Figure 5.12: Bar charts showing the contribution of useful and useless MDD projections using the reachability tools from LTSmin 
for 3 DVE model. 

Model MDD projection functions 
(vset_project, set_projection_list, 
set_project_2) 

Function for emptying a 
lookup table 
(ATtableReset) 

Functions for constructing an 
ATerm (MDD) node (ATmakeAppl 
functions) 

Accumulated % 
of total time 
used 

1
st

 occurring 
rank in function 
list 

% of total 
time used 

Rank in 
function list 

Accumulated % 
of total time 
used 

1
st

 occurring 
rank in function 
list 

brp.5 4.35 3
rd

 58.49 1
st

 15.89 2
nd

 

col.4 11.57 2
nd

 41.94 1
st

 20.25 3
rd

 

ele.2 < 0.01 56
th

 - - 0.30* 21
st

 

ipr.6 6.33 4
th

 13.61 2
nd

 35.82 1
st

 

lann.7 7.38 2
nd

 46.55 1
st

 17.62 3
rd

 

le.6 0.11 18
th

 0.50 12
th

 0.26 19
th

 

phi.6 < 0.01 45
th

 - - - - 

phi.8 < 0.01 46
th

 14.29 6
th

 - - 

sch.3 5.34 6
th

 22.95 1
st

 24.23 3
rd

 

Legend of symbols 

- No data available from profiling * Only 1 ATmakeAppl function recorded by profiling 
Table 5.8: Statistics from profiling using option sat-ciardo. 

Model Explanation most demanding function (at 1
st

 rank in list) % of time affected 

ele.2 Function used to check if PINS dependency matrix is set. 25.00 

le.6 Function used to check if PINS dependency matrix is set. 34.90 

phi.6 Function used to check if a bit vector is set. 50.00 

phi.8 Function used to check if PINS dependency matrix is set. 28.57 
Table 5.9: Most demanding function for DVE models from Table 5.8. 



92 
 

Also Table 5.9 explains why the total execution time for some models differs much from the reachability 
time and is as expected, caused by the initialization of the model for the reachability analysis. 
 
Other aspects that influence the time performance of options sat-ddd and sat-ciardo are the variable 
ordering used in the PINS dependency matrix and the number of (reachable) transitions found for certain 
transition groups for some models. It should be noted that this issue also applies to other reachability 
options from the LTSmin toolset. 
A bad variable ordering results in transition groups that affect levels which are located far apart from each 
other, meaning that the Saturation algorithm still has to go through the intermediate identity transitions 
(and possibly starting to saturate with transition groups that start at this level). 
And transition groups with a large number of reachable transitions can cause an explosion of new (sub) 
states that need to be added to the state space and traversed. 
 
From the time plots between sat-ddd and sat-ciardo (as given in Figure 5.5) it is also noticeable that for 
the DVE models iprotocol.6.dve, iprotocol.7.dve and leader_election.6.dve, option sat-ciardo performs 
faster than option sat-ddd. There seems to be a pattern here underlying these results: in the PINS 
dependency matrices the transition groups are put here in such a way that the affected MDD levels are 
grouped together in blocks that together resemble a staircase pattern. This is clearly visible for the PINS 
dependency matrices of the DVE models iprotocol.6.dve and iprotocol.7.dve in Table 5.10 (the PINS 
dependency matrix for the DVE model leader_election.6.dve contains 99 transition groups and 235 MDD 
levels and is too large to be shown here). 
 
DVE model iprotocol.6 DVE model iprotocol.7 

26 transition groups (rows) 26 transition groups (rows) 

37 MDD levels (columns) 41 MDD levels (columns) 
w+++++++++++r+-+--------------------- 

w+----------++r+--------------------- 

-+----------------------------------- 

--rrrrrrrrrrrr-+--------------------- 

--wwwwwwwwww-r++w-------------------- 

------------+r-+-----------w+w------- 

-------------r-+rwwwwwwwwww-+w------- 

--------------r++++++++++++-+w------- 

--------------r++rrrrrrrrrr---------- 

--------------r+r-------------------- 

--------------r+-rrrrrrrrrr-+w------- 

--------------r+-rrrrrrrrrr---------- 

--------------w+------------+r------- 

---------------++wwwwwwwwww---------- 

---------------+w-------------+------ 

---------------+-----------r+w------- 

----------------------------+w-+rrr-- 

----------------------------+w-+rr--- 

----------------------------+w-++---- 

----------------------------+r-+--w-- 

----------------------------+-------- 

------------------------------++----- 

-------------------------------+rrw++ 

-------------------------------+r+r-- 

-------------------------------+rr--- 

-----------------------------------+- 

w+++++++++++++r+-+----------------------- 

w+------------++r+----------------------- 

-+--------------------------------------- 

--rrrrrrrrrrrrrr-+----------------------- 

--wwwwwwwwwwww-r++w---------------------- 

--------------+r-+-------------w+w------- 

---------------r-+rwwwwwwwwwwww-+w------- 

----------------r++++++++++++++-+w------- 

----------------r++rrrrrrrrrrrr---------- 

----------------r+r---------------------- 

----------------r+-rrrrrrrrrrrr-+w------- 

----------------r+-rrrrrrrrrrrr---------- 

----------------w+--------------+r------- 

-----------------++wwwwwwwwwwww---------- 

-----------------+w---------------+------ 

-----------------+-------------r+w------- 

--------------------------------+w-+rrr-- 

--------------------------------+w-+rr--- 

--------------------------------+w-++---- 

--------------------------------+r-+--w-- 

--------------------------------+-------- 

----------------------------------++----- 

-----------------------------------+rrw++ 

-----------------------------------+r+r-- 

-----------------------------------+rr--- 

---------------------------------------+- 

Table 5.10: PINS dependency matrices for DVE models iprotocols.6 and iprotocols.7. 

The reason why option sat-ciardo performs well with such dependency matrices is likely due to its ability 
to saturate MDD nodes at the lower levels in their final form by updating transition groups with new (sub) 
states which are locally found. This makes sure that the algorithm does not have to traverse these lower 
levels again, since it knows they will remain unchanged (with partial results stored in lookup tables). 



93 
 

Option sat-ddd is struggling with this since new states for the update process is only found outside the 
Saturation process at a global view of the MDD. 

5.2.2 State space evolution of Saturation 

For one thing the Saturation algorithm is true to its name and this can be seen from the results regarding 
the state space evolution over time. 
The bar charts in Figure 5.6 reveal a trend across the reachability options taken into consideration. For 
more than two thirds of the models the largest peaks occur with option no-sat, where breadth-first search 
mostly obtains a higher peak than chaining. The second-largest peaks are obtained by the option sat-like 
for almost two thirds of the models, where the auxiliary traversal technique breadth-first search also 
seems to be the one which obtains a higher peak than chaining. Finally the options sat-ddd and sat-ciardo 
are the ones with the lowest peak values which also lie closest to the final number of MDD nodes for 
almost every model. 
Looking at the evolution plots, it turns out that for options sat-ddd and sat-ciardo the peak occurs more in 
the second half of the state space computation time, while this fluctuates more around the middle of the 
computation time for options no-sat and sat-like. It is also visible that the option sat-ddd seems to be 
resembling the results of the option sat-like, which is characterised by the occurrences of multiple (sharp) 
peaks during state space generation. But unlike option sat-like, the peak values in option sat-ddd are not 
as extreme. 
 
The results confirm the fact that the Saturation algorithm attempts to bring the MDD nodes in their final 
form as early as possible. This happens by saturating MDD nodes at lower levels first before continuing 
one level up until the root level and this has resulted in the relatively low peak MDD node value which lie 
close to the final MDD node value. And the fact that the peak value is not always equal to the final value is 
due to characteristics of the model under consideration. Certain transition groups that start at a certain 
level can cause an explosion of newly found states and to cope with this issue, extra unsaturated MDD 
nodes are inserted to keep pace with it. 
 
For the option sat-ciardo, in the ideal situation the number of MDD nodes grows steadily when starting to 
saturate at a new higher level. Sometimes this causes (small) local peaks and/or sharp rises, but steady 
growth is maintained until the final MDD size is reached. In the worst situation it just starts to find lots of 
new MDD nodes at the uppermost or root level. This is accompanied with a sharp rise to a peak lying way 
off the final MDD size. The MDD size then decreases until the final MDD size is reached at a lower value. 
The latter is mainly caused by the variable ordering being used for the PINS dependency matrix in which 
certain transition groups span lots of levels and/or by the nature of certain transition groups of the model 
that contain lots of transitions for which lots of new states can be discovered. 
 
But still there are models where options sat-ddd and/or sat-ciardo perform badly with regard to peak 
values of MDD nodes. 
For the model cambridge.7.dve the evolution plot of option sat-ciardo resembles the plots of options no-
sat and sat-like, with a flat rounded peak and for all these reachability options the peak values lie quite 
close to each other. Only option sat-ddd has a plot that almost shows the ideal situation of an increasing 
line with a peak value lying closer to the final value. For this model it turns out that the PINS dependency 
matrix is not in a very optimal shape, where lots of intermediate identity transitions occur and lots of 
(adjacent) levels are affected. The transition groups also contain lots of transitions (some have 100000 
transitions), causing the algorithm to start discovering new states and accompanying transitions to be 
added to the transition groups. 



94 
 

For the model schedule_world.3.dve the peak values in the evolution plots for options sat-ddd and sat-
ciardo are higher than option sat-like. The cause lies in the transition group which starts at a particular 
level high in the MDD tree, which spans lots of levels in the PINS dependency matrix and causes an 
explosion of new states to be found. 

5.2.3 Memory performance of Saturation 

When looking at the memory performance, the options sat-ddd and sat-ciardo perform quite badly 
compared to the available options no-sat and sat-like in the LTSmin toolset. Also compared to each other, 
they almost seem to use equal amounts of memory, in which some results deviate much from each other: 
it turns out that when the maximum memory value is lower for option sat-ciardo, then its peak MDD value 
is also lower compared to sat-ddd and vice versa (more MDD nodes means more memory is needed to 
store them in the lookup tables and vice versa). 
 
For option sat-ciardo the fact is that it keeps lookup tables throughout the computation of the state space 
without emptying them in between due to memoization (the lookup tables always grow in size). Also 
when the state space grows over time, new entries are inserted in the lookup tables which cause the 
memory usage to accumulate. 
For option sat-ddd the lookup tables are emptied every time it exits the call to the General Prebuilt 
Saturation algorithm and therefore needs to recalculate and store partial results again when entering this 
algorithm. The combination of storing (parts of) previous partial results again and newly built parts of the 
state space (computed with the updated transition groups) can therefore result in the same amount of 
memory as achieved by option sat-ciardo. 
 
It should be remarked that these findings are also caused by the type of MDD library used and in this case 
the ATermDD library and its capabilities in regard to memoization. Using other MDD libraries may result in 
other (hopefully better) findings. 

5.3 Summary of evaluation of Saturation 

Using the dve2-reach tool from the LTSmin toolset, experiments have been conducted on a selection of 27 
DVE models from the BEEM database. Hereby the implemented General Prebuilt and General On-the-fly 
Saturation algorithms inside the options sat-ddd and sat-ciardo respectively, have been compared with 
the other available reachability options from the LTSmin toolset. These consist of the traditional traversal 
techniques breadth-first search and chaining, and an LTSmin version of a Saturation-like algorithm which 
uses the traditional traversal techniques as secondary technique, namely option sat-like. From the 
experiments results are gathered regarding time and memory performance, but also how the state space 
evolves over time. These results provide an answer to the third research question: 
 
“How does the chosen Saturation approach perform in the LTSmin toolset compared to other symbolic 
reachability techniques in the tool?” 
 
The implemented General Saturation algorithms in the options sat-ddd and sat-ciardo are true to their 
name. The results regarding the evolution plots and the peak MDD node size reveal that the peaks are 
situated more in the second half of the computation time and compared to the options no-sat and sat-
like, the peak values are reduced dramatically for the majority of the tested models. This is due to the 
nature of how the Saturation algorithms build up the entire state space, by saturating lower MDD levels as 



95 
 

soon as possible before continuing with upper MDD levels until the root level. Although the evolution 
plots do occasionally show peaks for options sat-ddd and sat-ciardo, these mostly depend on the model 
and the variable ordering being used in the PINS dependency matrix. 
But this turns out to have a downside to the memory performance, which shows a dramatic increase 
compared to the other tested reachability options (when using the ATermDD library). This is caused by the 
extensive use of storing intermediate results of the state space  and due to the fact that lookup tables are 
not emptied during the Saturation process (caused by memoization). 
 
A disappointing fact that is visible from the results is the bad performance in time for more complex 
models when compared to the other tested reachability options. The main cause seems to lie in the 
update process for option sat-ciardo and the gradual decrease in progress for option sat-ddd. In option 
sat-ciardo the algorithm only has a local view on the parts of the state space it works on, resulting in 
discovering only a small number of new (sub) states when attempting to start the update process of the 
affected transition groups. In this update process it already starts performing the projection operation on 
the state space so far, which is quite inefficient in time (especially when the transition group is not 
updated with new (sub) transitions). With the option sat-ddd the algorithm has a more global view of the 
state space so far resulting in a more accurate update process of the transition groups with less useless 
projections. But every time it re-enters the General Prebuilt Saturation algorithm it needs to recalculate 
previous intermediate results again together with constructing new parts of the state space. This can 
cause the algorithm to discover new states at the beginning of the process, but nearing the final size of 
the state space it starts to require more effort to find new states. 
 
Between options sat-ciardo and sat-ddd it seems that the latter seems to be a more promising algorithm 
to go on with when looking at the time performance. With regard to memory performance there is no real 
significant difference between these two options. Comparing these two options also revealed the 
importance of the structure of the PINS dependency matrix to their time performance. It turns out that 
when the PINS dependency matrix reveals a blocked staircase pattern (of MDD levels affected by 
transition groups), then option sat-ciardo is a better alternative than option sat-ddd.  A possible 
explanation is that option sat-ciardo can saturate lower MDD levels earlier into their final form, resulting 
in processing upper MDD levels only (caused by the local view on parts of the state space so far). Option 
sat-ddd only has a global view on the state space so far when starting the update process of the transition 
groups, which causes it to revisit every state again because of resetting the lookup tables. 
 
  



96 
 

  



97 
 

6 Improvement on Saturation in LTSmin toolset 

The implemented version of General On-the-fly Saturation in the option sat-ciardo shows mixed results. 
Especially its time performance is not as promising as hoped for and therefore an improvement is given to 
this algorithm by tackling its update process of the transition groups. This chapter first goes into the 
design and implementation of a new version of option sat-ciardo, which is followed by an evaluation, 
including comparisons with the results obtained previously. 

6.1 Design & implementation of improvement of Saturation 

The problem with the implemented version of the General On-the-fly Saturation algorithm lies in the 
update process of the transition groups, as indicated in section 5.2.1. The algorithm tries to update 
transition groups as soon as possible, and results in only having a localized view of parts of the state space 
so far (and therefore resulting in finding new (sub) states sparingly). To improve this update process, it is 
of great importance to reduce the number of times it attempts to start an update process for a certain 
transition group (and therefore reducing the number of useless MDD projections). 
 
One possibility to tackle this issue can be found in the update process being used in the Saturation 
algorithm by G. Ciardo [23]. That version of the General On-the-fly Saturation algorithm collects newly 
found values per level during Saturation. When the algorithm starts to perform the fix-point computations 
with an event, it first takes every new value found (if any) and uses this to update every event that affects 
the level at which the value is found. After updating every event with the new value at a given level, every 
affected event has knowledge of this value and no successive updates for the same value at the given 
level are needed. Furthermore the known values that each level can possess are stored (per level) and 
after each update process, the new value together with the level number where it was found, are stored. 
Although in the papers of G. Ciardo no concrete implementation details are given on this update process, 
the procedure assumed to take place is visualized in Figure 6.1 (which describes it from an 
implementation perspective inside the LTSmin toolset). It turns out that using this update process one can 
encounter unreachable (sub) states for which also (sub) transitions are computed that are used to update 
the transition groups. 
 
For the design of the improved version of the Saturation algorithm, the previously defined requirements 
as given in Table 4.1 and Table 4.2 still apply. But now the update process of the transition groups is being 
tackled, some additional assumptions are taken into consideration and are shown in Table 6.1. 
 
A1.1 The algorithm can produce unreachable (sub) states for the update process of the transition groups and they 

are recognized as valid (sub) state vectors by the language modules used in the LTSmin toolset. 

A1.2 The language modules used in the LTSmin toolset are able to calculate successor (sub) states from 
unreachable (sub) states. 

A1.3 The data object used for storing the transition groups (vrel_t) is able to store unreachable (sub) states. 
Table 6.1: Assumptions made for redesign of update process of General On-the-fly Saturation algorithm. 

With these assumptions in mind the design of the algorithm is further improved, without actually checking 
that they are valid. 
 



98 
 

For the implementation in the LTSmin toolset the structure of the Saturation algorithm is left unchanged 
and only some adjustments need to be incorporated in the affected MDD library. An overview of the 
adjustments in pseudo code is given in Listing 6.1. 
First, two new global array variables are introduced to store the known values per MDD level and the 
newly found values with the MDD level number where it was found. These are the arrays knownValues 
and valuesToBeUpdated in lines 2 and 6 in Listing 6.1, respectively. 
Second, a function addNewValue (line 10 in Listing 6.1) is introduced to check if a certain value and level 
pair has been encountered before. If it does not, then it concerns a new value and the value and its 
associated level number are appended into the array valuesToBeUpdated. This function is called during 
the recursive calls of the relational product and more precisely inside the function transLevel as 
highlighted in dark-blue in line 91 in Listing 4.1 (at the moment it starts to head one MDD level down with 
the new value). 
Third, the function expand_group_next inside the function startFixPoint needs to be replaced with 
a function that enumerates all possible (sub) states with a certain fixed new value and associated MDD 
level number (highlighted in dark-blue in line 29 in Listing 4.1). This is used to compute new successor 
(sub) states for updating transition groups with the given MDD level number. Iterating over the newly 
found values and affected transition groups to be updated, is done in the revised function 
expand_group_next in line 17 in Listing 6.1. The enumeration of all possible (sub) states with the values 
from the array knownValues, a fixed value and associated MDD level number is performed inside 
function enumStateVectors in line 30 in Listing 6.1. The actual update of the transition group by finding 
a successor (sub) state and adding the transition to it, is performed inside function explore_cb (line 33 
in Listing 6.1), which is an existing function located in spec-reach.c. To be able to access this function from 
within the MDD library, a function pointer to this function is introduction in the structure of the vector 
relation and is set during the initialisation phase for each transition group. 
 
When looking at the revised version of the update process of the transition groups, it is noticeable that it 
does not use the calculated state space so far for the update process. This also means that no projections 
need to be done on the MDD of the calculated state space so far, resulting in a projection-free update 
process of the transition groups. 
 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

// All discovered valid values per level. 

array<array<int>> knownValues 

 

// Newly discovered (level, value)-tuples that still need to be used to update 

// transition groups. 

array<(int, int)> valuesToBeUpdated 

 

// If value found at certain level has not been discovered before, then append to 

// list of values that still need to be updated (for updating transition groups). 

void addNewValue (int level, int value) : 

  if (!(value in knownValues[level] || (level, value) in valuesToBeUpdated)) : 

    valuesToBeUpdated.append((level, value)) 

 

// For all newly found values, update only those transition groups that contains 

// affected level by enumerating all possible (sub) states with at level the given 

// value. 

void expand_group_next() : 

  foreach ((int level, int value) in valuesToBeUpdated) : 

    foreach (int grp in 0 .. nGrps) : 

      projection proj := getTransitionGroupProjection(grp) 

      if (level in proj) : 

        array<int> srcState[proj.length] 

        contextInfo ctx := constructNewContextInfo() 

        enumStateVectors(ctx, level, value, srcState, 0, proj) 

    knownValues[level].append(value) 

  valuesToBeUpdated.clear() 

 



99 
 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

// Enumerate all possible substates with given value at level and for each (sub) 

// state, call callback function explore_cb to update certain transition group. 

void enumStateVectors(contextInfo ctx, int level, int value, array<int> src, 

                      int idx, projection prj) : 

  if (prj.isProjEmpty()) : 

    explore_cb(ctx, src) 

  elif (prj.getCurrentProjLevel() == level) : 

    src[idx] := value 

    projection projNext := proj 

    projNext.setProjToNextLevel() 

    enumStateVectors(ctx, level, value, src, idx + 1, projNext) 

  else : 

    foreach (int val in knownValues[prj.getCurrentProjLevel()]) : 

      src[idx] := val 

      projection projNext := proj 

      projNext.setProjToNextLevel() 

      enumStateVectors(ctx, level, value, src, idx + 1, projNext) 

 

// Callback function for finding successor of given source state and update  

// transition group with the computed transition from source state to successor. 

void explore_cb(contextInfo ctx, array<int> src) 

Listing 6.1: Pseudo code of update process for updating all affected transition groups in redesign of implementation of General 
On-the-fly Saturation algorithm. 

 
Figure 6.1: Pictorial overview of update process for all affected transition groups (line numbers in figure refer to corresponding 
line numbers in Listing 6.1). 



100 
 

6.2 Evaluation of improvement on Saturation 

First the setup of the experiments and the obtained results using the revised version of the General On-
the-fly Saturation algorithm are presented. This is then followed by an analysis of the obtained results. 

6.2.1 Experiments on improved Saturation 

The changes to the adjusted Saturation algorithm have only affected the option sat-ciardo from the 
LTSmin toolset and therefore only this reachability option is re-run with the same arguments as before. 
The other algorithms are not affected by the changes made and their results are reused for comparison. 
For the experiments the same setup is used as described in section 5.1.1 and is briefly summarized here: 
■ The dve2-reach tool of the LTSmin toolset is used to read DVE models. 
■ The input arguments are --saturation=sat-ciardo --regroup=gs. 
■ Experiments are performed on a cluster machine with dual Intel E5335 CPUs and 24 GB RAM. 
■ The same set of 27 DVE models is taken from the BEEM database (see Table 5.2). 
■ A time limit of 9000 seconds (i.e. 2½ hours) and a memory limit of 24 GB are used. 
■ The same set of data regarding time, memory, (intermediate) state space count is collected, except 

the number of MDD projections done and profiling (see Table 5.3). 
■ Each model is run 3 times and the median value of the time and memory values are taken. A Bash 

script is constructed to perform the test runs automatically in a sequential way. 
■ Each model is run once again for gathering statistical data regarding state space evolution. 

 
The raw data is converted into CSV files for further data manipulation and the main focus lies on 
presenting measurements regarding time, and how other data differ from the previous version of the 
option sat-ciardo and the other reachability options. From now on the revised version of option sat-ciardo 
is called option new sat-ciardo. 
 
During experimentation of option new sat-ciardo, it turns out that for three DVE models no result can be 
computed due to occurring errors (e.g. segmentation faults) or infinite loops. Assumption A1.1 does not 
hold for the DVE language module. The problem is that the code generated by DiVinE, does not contain 
checks on the bounds of arrays, which is actually being prescribed by the language semantics of DVE. By 
passing on combinations of state vector values to the language module that normally do not occur in the 
model (such as unreachable states), array-out-of-bounds errors occur. This causes parts of the call-stack 
being overwritten, resulting in segmentation faults and infinite loops. 
This error may have consequences for the obtained results regarding the time and memory performance: 
the resulting time and memory values do not have to be accurate and may be affected by the error. For 
the three affected DVE models no results will be presented in the tables and plots that follow. 
 
In appendix A the measurements regarding the maximum memory usage can be found, which will not be 
presented prominently here. Just as before, the memory usage is highly dependent on the MDD package 
being used and how memoization is performed. A short summary of these results are as follows: 
■ The results reveal that option new sat-ciardo obtains a much higher maximum memory than the 

options no-sat and sat-like in the vast majority of the tested models. In such cases it can run to over 
150 times the amount of memory being used by the options no-sat or sat-like. 

■ Between the options new sat-ciardo and sat-ddd the results reveal that the maximum memory usage 
seems to keep pace with each other for the vast majority of the tested models. This also accounts 
when comparing option new sat-ciardo and the previous version of option sat-ciardo. 



101 
 

The time measurements can be found in the final column of Table 6.2 (for which previous time results are 
copied for convenience reasons) and a summary of the number of best and worst performance is given in 
Table 6.3. 
 
Model State space 

size 
Total execution time (median values in sec) 

bfs-prev chain-
prev 

sat-like 
bfs-prev 

sat-like 
chain-prev 

sat-ddd sat-ciardo new sat-
ciardo 

and.6 18206917 35.42 94.07 33.02 33.03 143.92 196.64 36.62 

at.5 31999440 99.75 79.66 66.57 62.26 55.54 261.68 36.62 

at.6 160589600 460.18 295.73 563.32 438.96 292.38 6937.73 327.11 

bak.6 11845035 259.35 103.69 195.41 65.14 1259.2 2692.94 319.8 

brp.5 17740267 260.04 107.18 208.12 188.38 32.72 29.12 4.2 

brp.6 42728113 620.36 231.38 503.09 411.86 125.19 75.15 9.71 

cam.7 11465015 1699.6 823.41 1546.39 1420.16 629.4 8989.21 × 

col.4 41465543 514.4 383.19 45.43 49.83 3.1** 9.11 2.7** 

ele.2 11428767 69.54 32.52 1.7 1.7 1.6** 1.5** 3 

fir.5 18553032 616.46* 175.3* 123.07* 108.27* 85.06* 151.65* 77.95* 

ipr.6 41387484 1694.09 305.54 271.21 222.69 82.06 15.51 68.94 

ipr.7 59794192 2155.44 632.58 453.37 378.02 293.4 65.27 513.77 

lam.7 38717846 397.22 150.93 29.42 21.72 77.86 92.97 19.22 

lam.8 62669317 511.58 426.25 69.44 52.53 189.83 225.76 42.93 

lna.5 95118524 81.04* 57.07* 17.41* 13.21* 18.41* 42.24* 9.61* 

lann.6 144151628 2032.26 757.77 581.13 378.94 124.08 2280.5 96.06 

lann.7 160025986 316.68 138.41 41.54 38.12 4.8 15.11 4 

le.6 35777100 496.47* 14.21* 12.61* 12.41* 16.51* 9.21* 455.03* 

lf.7 26302351 218.42 83.16 82.85 82.15 2464.58 2379.49 231.56 

pet.6 174495861 169.19 293.12 48.53 23.71 74.65 151.91 32.02 

pet.7 142471098 851.89 344.26 347 267.45 1894.09 3768.49 328.51 

phi.6 14348906 1.9** 1.4** 1.1** 1** 1** 1** 1** 

phi.8 43046720 2.3** 1.6** 1.2** 1.1** 1.1** 1.1** 1** 

sch.3 166649331 274.75 30.24 3 2.3** 3.4 13.51 4.4 

szy.5 79518740 534.79 239.08 117.77 64.44 1041.64 1729.29 132.68 

tel.4 12291552 59.93 37.33 43.92 21.91 115.5 239.85 ×× 

tel.7 21960308 150.25 89.61 36.92 30.02 269.58 699.88 ×× 

Legend of symbols 

* Given total execution times (for all options) is larger than reachability time with: 

± 15 seconds for fir.5 ± 6 seconds for lna.5 ± 10 seconds for le.6 

** Reachability time is 1.5 to 2 times smaller than given total execution time. 

× No data due to (possible) infinite looping. 

×× No data due to error (e.g. segmentation fault). 

red Worst performing option for a certain model. 

green Best performing option for a certain model. 
Table 6.2: Experimental time results using the reachability tools from LTSmin on the 27 DVE models, including option new sat-
ciardo. 

 bfs-prev chain-prev sat-like 
bfs-prev 

sat-like 
chain-prev 

sat-ddd sat-ciardo new sat-
ciardo 

# times as fastest  0 0 1 8 2 4 12 

# times as slowest 15 1 0 0 1 10 0 
Table 6.3: Summary of the best and worst performing reachability options regarding time performance, including option new sat-
ciardo. 



102 
 

Also, in Table 6.4 an overview of differences with the previous version of option sat-ciardo regarding the 
MDD nodes and state space evolution is given, only for models where changes occur (in the other models 
the evolution of the state space size and MDD nodes are unaffected). The third and fourth columns 
indicate the difference in peak MDD node value with the previous version of option sat-ciardo, for which 
the absolute and relative difference (in percentage) is given, respectively. The fifth column indicates the 
difference in number of iterations at the topmost working MDD level with the previous version of option 
sat-ciardo. Finally the MDD level at which a difference is noticeable in node and/or state space count is 
given in the final column. 
To get a sense how the data in Table 6.4 is extracted, part of the state and node count per iteration is 
given for DVE model anderson.6.dve in Table 6.5. Here only the state and node count is presented for the 
iterations that start at the topmost working MDD level 0, since the state and node count in lower MDD 
levels show no difference between both options of sat-ciardo. One can notice that the peak MDD node 
value is decreased with –7.37 % when using option new sat-ciardo (which is reached after the 4th iteration 
in both options). The number of iterations at topmost working MDD level 0 is one less for option new sat-
ciardo and the difference in state and node count are only found in this topmost working MDD level (as 
indicated with the symbol +). 
 
Regarding the evolution of the state space and MDD tree, it turns out that in the majority of the DVE 
models this remains unchanged compared to the previous version of the option sat-ciardo (apart from the 
time it spends on the models). In those cases where it does change (mostly indicated by the decrease of 
the number of iterations as shown in Table 6.4), the differences compared to the previous version of 
option sat-ciardo is quite small in terms of percentage. 
 
Model State space 

size 
Difference with previous version of sat-ciardo regarding 

peak MDD node value number of iterations at topmost 
working MDD level 

level where node / 
state count differs 

and.6 18206917 –3108 nodes –7.37 % –1 iteration at level 0  At level 0 

bak.6 11845035 –34 nodes –0.03 % - At level 0 

ipr.7 59794192 - - –2 iterations at level 0 At level 0 

lf.7 26302351 - - –4 iterations each at levels 0 & 2 - 

pet.6 174495861 –212 nodes –0.83 % –1 iteration at level 0 At level 0 

pet.7 142471098 –126 nodes –0.24 % –12 iterations at level 0 At level 0 

szy.5 79518740 +3640 nodes 11.13 % –13 iterations at level 0 At level 0 

Legend of symbols 

- No change. 
Table 6.4: Statistics showing the difference in state space evolution of option new sat-ciardo compared to the previous version of 
option sat-ciardo (only for DVE models where a difference is noticed). 

 
 
 
 
 
 
 
 
 
 
 



103 
 

Using option sat-ciardo Using option new sat-ciardo 

Topmost 
working 

MDD level 

Iteration 
number 

State space 
size 

Number of 
MDD nodes 

Topmost 
working 

MDD level 

Iteration 
number 

State space 
size 

Number of 
MDD nodes 

0 0 1094632 10042 0 0 1094632 10042 

1 9337366 36064 1 9337366 36064 

2 10626838 37203 2 10626838 37203 

3
+
 11305510 37590 3

+
 11455361 37624 

4
+
 16795175 42187* 4

+
 18150989 39079* 

5
+
 18183714 38901 5

+
 18190259 38938 

6
+
 18201234 38766 6

+
 18203429 38789 

7
+
 18206004 38633 7

+
 18206519 38661 

8
+
 18206842 38380 8

+
 18206907 38367 

9
+
 18206915 38255 9 18206917 38225 

10 18206917 38225    

Legend of symbols 

* Peak MDD node value. 
+
 At these iterations the state and node count differs between both options. 

Table 6.5: Part of state space evolution of DVE model anderson.6 per iteration of Saturation at topmost working MDD level. 

Furthermore Figure 6.2  shows plots where the time values of option new sat-ciardo is plotted against the 
time values from option no-sat and option sat-like (left and right plots, respectively). In Figure 6.3 the 
plots are shown against the time values from option sat-ddd and the previous version of option sat-ciardo. 
 
In these plots, the plot on top gives a sense where every result is located in a larger picture. The plots on 
the bottom are magnifications of a small part of the upper plots. One should be aware that with these 
magnifications the horizontal and vertical axes scale with it as well. 
Furthermore a diagonal line is added in these plots to show that the two reachability options under 
comparison have the same time result. When a time result falls beneath the diagonal line, then this 
means that option new sat-ciardo computes faster than the other reachability option. 
 



104 
 

 
Figure 6.2: Plots comparing time values between options no-sat and new sat-ciardo (left), and between options sat-like and new sat-ciardo (right). 

1
0

4
 



105 
 

 
Figure 6.3: Plots comparing time values between options sat-ddd and new sat-ciardo (left), and between options sat-ciardo and new sat-ciardo (right).  

1
0

5
 



106 
 

6.2.2 Analysis of improved Saturation algorithm 

When considering time performance, the results now clearly show that option new sat-ciardo is a good 
competitor to all the other reachability options, especially the previous version of option sat-ciardo. This is 
thanks to eliminating the MDD projection operations during updates of the transition groups. The number 
of updates to be performed is now kept to a minimum by only starting it when a new value is discovered 
at a certain level and updating every affected transition group immediately. A downside to this update 
process is that transition groups now also store lots more unreachable (sub) transitions and (sub) states, 
but it seems that these do not affect time performance in a bad way. Table 6.6 shows the minimum and 
maximum growth in MDD size and number of transitions that can occur per model (focused on absolute 
growth for which relative growth in percentage is calculated), relatively to the MDD size and number of 
transitions as recorded using the other reachability options and the previous version of option sat-ciardo. 
What can be observed from these results is that when an absolute maximum growth is seen that in terms 
of percentage is quite large as well, then one is almost certain that option new sat-ciardo will require 
more effort in time to calculate the reachable state space (as is especially noticeable for DVE models 
iprotocol.7.dve and leader_election.6.dve compared to options sat-like, sat-ddd and the previous version 
of sat-ciardo (see Table 6.2 for exact times, and Figure 6.2 and Figure 6.3 for comparisons)). 
 
Model Number of 

transition 
groups (using 

safe 
regrouping) 

Number 
of MDD 
levels 

Number of MDD nodes growth for 
transition groups in new sat-ciardo 

(relative to previous sat-ciardo) 

Number of transitions growth for 
transition groups in new sat-ciardo 

(relative to previous sat-ciardo) 

Minimum (abs.) 
growth 

Maximum (abs.) 
growth 

Minimum (abs.) 
growth 

Maximum (abs.) 
growth 

abs. % abs. % abs. % abs. % 

and.6 18 19 0 0 790 467.46 0 0 1582 8788.89 

at.5 26 14 -26 -28.89 22 42.31 0 0 243 3.23 

at.6 26 14 -24 -27.27 17 29.82 0 0 86 96.63 

bak.6 28 20 -127 -28.10 5622 333.65 0 0 28258 992.90 

brp.5 22 18 -354 -26.70 8 44.44 0 0 8651 1418.20 

brp.6 22 18 -834 -28.90 8 44.44 0 0 28426 2082.49 

col.4 29 22 -1 -2.33 45 409.09 -4* -20* 214 10700 

ele.2 9 35 -2 -1.35 217 59.94 0 0 1134 1157.14 

fir.5 177 50 -88 -48.35 222 1009.09 0 0 13315 6370.81 

ipr.6 26 37 -4583 -86.42 5156 433.28 0 0 432753 18360.33 

ipr.7 26 41 -10991 -91.94 26265 1157.56 0 0 3161747 37227.68 

lam.7 35 17 -1 -9.09 75 51.02 0 0 52 650 

lam.8 40 17 -1 -9.09 75 51.02 0 0 52 650 

lna.5 80 30 -4 -20 19 146.15 0 0 22 1100 

lann.6 28 20 -14 -26.92 0 0 0 0 15 100 

lann.7 30 25 -10 -27.78 0 0 0 0 8 100 

le.6 99 235 0 0 77943 34795.98 0 0 2147026 15335900 

lf.7 24 30 -422 -44.75 246 106.49 0 0 75819 3906.18 

pet.6 20 20 3 27.27 798 170.88 3 100 7328 587.18 

pet.7 25 25 -883 -76.58 9293 636.07 4 133.33 53589 2013.87 

phi.6 30 30 1 10 1 10 1 50 1 50 

phi.8 32 32 1 10 5 83.33 1 50 2 200 

sch.3 34 34 -117 -73.58 3 14.29 0 0 3602 729.15 

szy.5 60 25 1 5 1231 265.30 1 100 5583 352.24 

Legend of symbols 

* Not known why number of transitions decreases. 

Table 6.6: Statistics showing the minimum and maximum growth of transition groups of 24 DVE models for option new sat-ciardo 
compared to previous version of option sat-ciardo. 



107 
 

For the evolution of the state space no large differences can be detected and this is due to the fact that 
the Saturation algorithm is not changed with regard to its structure and therefore builds the state space in 
exactly the same way up for seven out of ten models (when only considering the non-error models). But 
for seven DVE models the number of iterations at the topmost working MDD level and/or the peak MDD 
nodes value does decrease in number. This is probably thanks to the update process of the transition 
groups. The transition groups are now updated with new (sub) transitions and (sub) states that have not 
been discovered yet (or will not be discovered because they are unreachable) and this makes sure that the 
Saturation algorithm can use these new transitions when it heads into the relational product that follow. 
For seven models this has resulted in building up the state space slightly more efficiently with a lower 
peak MDD node value and/or with an accompanying lower number of iterations (as already visualized 
with an example in Table 6.5). 
 
When looking at the memory performance, the algorithm still performs quite badly with regard to options 
no-sat and sat-like. This is due to the fact that the lookup tables are still not cleared during Saturation. 
Also the results reveal that no real difference in memory results exist with option sat-ddd and the 
previous version of option sat-ciardo. This is not so surprising, because the algorithm computes the state 
space in (almost) exactly the same way. 

6.3 Summary of improvement on Saturation 

The previous version of option sat-ciardo has a bad time performance for more complex models and the 
problem lies in the update process of the transition groups. With inspiration from the update process 
used by G. Ciardo [23] the option sat-ciardo is revised in this respect. 
In the improved version of the update process, the known values that can occur per MDD level are stored. 
During Saturation newly discovered values (and the MDD level where it was found) are collected and they 
are updated when a new fix-point computation is entered. For every transition group that contains the 
affected MDD level, all possible enumerations of (sub) states are taken with the new fixed value at the 
associated MDD level. Hereby the list of known values per level is used to construct all enumerations of 
(sub) state values. 
 
Changes in this improved version of the Saturation algorithm only occur at the function that performs the 
update process of the transition groups, which now includes a function to enumerate all possible (sub) 
states. Also during the recursive calls to the relational product inside the Saturation process, a check is 
performed to find out if a certain value at its associated MDD level is new. If so, then it is added to the list 
of newly found values to be used in the update process. Furthermore these changes mainly occur inside 
the MDD library. 
 
The improved implementation of option sat-ciardo has undergone the same tests using the dve2-reach 
tool and the 27 models from the BEEM database. Also the same results regarding time and memory 
performance and state space evolution are collected for analysis. But due to an error caused by 
generating code with DiVinE, three models cannot come up with a result and it is uncertain if (some) 
results obtained using the other models are accurate. 
 
The results from the improved version of option sat-ciardo reveal no large changes in state space 
evolution and peak MDD node values. They are for seven out of ten tested models unchanged (when only 
considering the non-error models). For some models where this state space evolution has changed, the 
algorithm requires less iterations at the topmost working MDD level and/or it achieves a lower peak MDD 



108 
 

value. This is due to finding reachable transitions ahead of time during updates of the transition groups 
causing the algorithm to traverse the MDD of the state space so far slightly differently. 
The memory performance of the algorithm remains bad and this is still caused by the lookup tables that 
are kept throughout the Saturation process. 
 
The time performance of the General On-the-fly Saturation algorithm has now improved significantly for 
almost every model and also compared to the other tested reachability options. The absence of projection 
operations on MDDs has benefitted the algorithm greatly and reduced the number of updates for the 
transition groups. Although unreachable (sub) states and (sub) transitions are now stored in the transition 
groups, causing some transition group MDDs to grow largely in size, this has no significant effect on the 
time performance. 
 
  



109 
 

7 Conclusion & recommendations for Saturation in LTSmin 

In the final chapter the main conclusions, discussions and recommendations for future work are given for 
the Saturation algorithm in the LTSmin toolset. 

7.1 Final conclusion on Saturation in LTSmin 

An adaptation and implementation of Saturation as devised by G. Ciardo, is provided in the LTSmin toolset 
as traversal technique for computing the reachable state space of a system’s model. The improved version 
of the General On-the-fly Saturation algorithm (in option sat-ciardo) and the fix-point computation using 
the General Prebuilt Saturation algorithm (in option sat-ddd) turn out to be the best choice to traditional 
traversal techniques as breadth-first search and chaining. Especially the former algorithm is performing 
much better than the latter. Furthermore they are keeping up nicely with the LTSmin version of a 
Saturation-like algorithm (the option sat-like). A bottleneck undermining the performance of the General 
Saturation algorithms is either the update process of the transition groups for the first version of option 
sat-ciardo, or the gradual decrease in progress for option sat-ddd. 
Updating a transition group as soon as possible during General On-the-fly Saturation as implemented in 
the first version of option sat-ciardo, results in entering the update process too often where in the 
majority of the cases no actual update of the transition group is performed. With inspiration from the 
update process by G. Ciardo an improved version of the General On-the-fly Saturation algorithm is 
provided which is only altered in its update process of the transition groups. The improved version of the 
algorithm uses the discovered domain values per MDD level to enumerate possible state values to be 
used for updating all affected transition groups. This version of the algorithm gives much better 
performance in time. 
For the Prebuilt version of the algorithm as implemented as part of option sat-ddd where the update 
process occurs outside the Saturation process, the slow progress nearing the end of the final state space 
size is due to rediscovering visited parts of the state space again (since lookup tables containing 
intermediate results are deleted at the end of the Saturation process). This is becoming problematic for 
time-demanding models. 
One aspect of Saturation is definitely confirmed: the ability of the Saturation algorithm to reduce the peak 
MDD node value drastically compared to the mentioned traversal techniques in the LTSmin toolset. But 
unfortunately this has come with a price of a high memory usage, which is blamed by the type of MDD 
library used here. 
 
From the results of using option sat-ddd and the improved version of option sat-ciardo it is clearly 
noticeable that the Saturation approach is one of the best choices for calculating the reachable state 
space of a model compared to the traditional traversal techniques breadth-first search and chaining. This 
is visible in the better time performance and lower values achieved for the peak MDD node. Compared to 
the option sat-like, the results of both options sat-ddd and new sat-ciardo do not give a clear winner 
regarding time performance. This depends very much on the transition system of the model and how the 
accompanying PINS dependency matrix and variable ordering is set up. The final aspects actually apply for 
every traversal technique being used within the LTSmin toolset and are therefore next to the traversal 
technique a major contributor to the performance of a reachability analysis. 
Furthermore the original Saturation approach as devised by G. Ciardo was originally meant for Petri-Net 
models, but by implementing it into the LTSmin toolset it proved itself as a reliable traversal technique for 
models written with explicit model checking in mind, as is the case for the DVE models from the BEEM 
database. 



110 
 

7.2 Final discussion on Saturation in LTSmin 

Some issues from the project deserve special attention for future adaptations of the implemented 
Saturation algorithms. 
 
During the design phase of the project, the choice was made to provide an implementation in one of the 
available fully-fledged MDD libraries and this gives the possibility to access low-level MDD operations, 
which are necessary for the Saturation algorithm. For future extensions of the algorithm using other MDD 
libraries, this means re-implementing it again in these other MDD libraries. This is not very practical and 
requires re-adapting the algorithm for each MDD library. Also the improved version of the General On-
the-fly Saturation algorithm (option sat-ciardo) is the only traversal technique without an algorithmic 
structure implemented on a high level as is the case for other available traversal techniques in the LTSmin 
toolset (which have a high-level structure in the file spec-reach.c). 
Looking back at the current implementation inside the ATermDD library, no real difficulties were 
encountered. Parts of the Saturation algorithm did not have to be implemented from scratch and parts of 
its functionalities can reuse existing functionality from the MDD library, which is the case for the union 
operator and the relational product for MDDs. There were also some minor issues with access to 
functionality which lie outside the scope of the MDD library. But thanks to the setup of the LTSmin 
architecture and the domain object (indicating which MDD library is being used as underlying MDD data 
structure), it is not too hard to provide access to functions at a high level (located in spec-reach.c). 
A more suitable solution for the Saturation algorithm is to provide an implementation of the algorithm on 
a high level, and calling low-level MDD operations via the domain object. This also requires special 
attention to what extra operations need to be provided on a high level to support the Saturation 
algorithm (and those that need to be accessible from spec-reach.c). From the Saturation algorithm this 
would mean providing direct access to low-level MDD operations as creating individual MDD nodes from a 
high level and it remains a question if such direct access from a high level is desirable. 
 
An issue that arose from the evaluation is a problem in the code generator of DiVinE, when using the 
improved version of option sat-ciardo with unreachable state values (as assumed for the redesign of the 
update process of the transition groups). The code generated by DiVinE, does not contain checks on the 
bounds of arrays, which is actually being prescribed by the language semantics of DVE. Invalid or 
unreachable state values can cause errors by overwriting the call-stack, resulting in segmentation faults or 
infinite loops. 
Although this code generator is being used by the LTSmin toolset, the problem should be addressed by 
the developers of DiVinE. From the improved results with the improved version of option sat-ciardo, this 
version is more promising for incorporation into the LTSmin toolset. This is because it does not need to 
use the computed reachable state space so far for updating transition groups, which limits the use of 
heavy MDD operations drastically when performing a reachability analysis. So all language modules in use 
by the LTSmin toolset need to be assessed further with a stronger assumption on using unreachable state 
values and might lead to readjusting the interface with the language modules to deal with this issue. 
 
Another issue resulting from the evaluation is that in the first version of option sat-ciardo, it was 
noticeable that it performs best when the PINS dependency matrix of a model resembles a staircase 
pattern for certain tested models (namely for the DVE models iprotocol.6.dve, iprotocol.7.dve and 
leader_election.6.dve). But with the improved version of option sat-ciardo it turns out that for these same 
set of models the time performance actually becomes worse. A first clue to this issue is given when 
looking at the maximum MDD growth of transition groups of these models, which suddenly increase 
dramatically compared to the first version of option sat-ciardo. Probably updating the transition groups 



111 
 

with lots of unnecessary (sub) transitions is a major issue here, which is no problem for the first version of 
option sat-ciardo where only reachable (sub) transitions are stored. It still remains an issue to be 
investigated further with more models that have their PINS dependency matrix put in a staircase pattern. 
Also it remains to be investigated if this issue correlates with the problem found in the code generator of 
DiVinE, as indicated above. 
 
Finally it should be remarked that during evaluation of the Saturation algorithms, the most striking issue is 
the occurring “memory explosion” due to memoization. Although no high importance is given to memory 
performance, this can still pose a problem when attempting to calculate the reachable state space of a 
large and complex model. One can think of using intelligent versions of “lossy” lookup tables, where 
invalid intermediate MDD results are thrown away, because it is no longer possible to retrieve it in the 
MDD of the reachable state space being built. 

7.3 Future directions for Saturation in LTSmin 

The current implementation of the General Saturation algorithms provides a good starting point for 
possible future improvements. Apart from the issues discussed above, this section will go into new 
possibilities which are worth investigating for improving the performance of the Saturation algorithm and 
possibly future releases of the algorithm in the LTSmin toolset. 
 
For the General Prebuilt Saturation algorithm which is part of the option sat-ddd, the main issue is re-
entering the Saturation process with the calculated state space so far and revisiting it again, due to 
emptying the lookup tables of intermediate results of the state space at the end of a Saturation process. 
To prevent it to revisit same parts of the state space over and over again, it is an idea to re-enter each 
iteration of the Saturation process only with the newest states of the calculated state space so far. This 
reduces the revisits of same states, since they are already handled and hopefully this saves time. It is 
worth investigating this solution, since the evaluation revealed that option sat-ddd is the only reachability 
option that has a relatively high average percentage of useful MDD projections performed, namely 
approximately 78 %, compared to all other reachability options. 
 
For the General On-the-fly Saturation algorithm as implemented in option sat-ciardo, the improved 
version already provides a much better time performance. During the project a completely different 
direction for the Saturation process has been mentioned and arose from work done in a previous Master 
project that introduced “guards” into the LTSmin toolset [19]. The point is to incorporate conjunctive 
partitioning into the transition groups which is capable of distinguishing between enabling and updating 
conjuncts within a transition group or event (as briefly explained in section 2.3). The “guards” come into 
play when trying to assess if enabling conjuncts of a particular transition group is evaluated positively (e.g. 
to true). If this is the case, then the transition is taken by evaluating the updating conjuncts of the 
transition group. For this to work, one needs to readjust the data objects dealing with the transition 
groups, namely the vector relation and make adjustments in the functions dealing with the relational 
product of the Saturation process. 
 
The final three directions for improvement can be implemented for both General Saturation algorithms. 
 
The first direction is the order in which a transition group is taken from the list of transition groups that 
start at a certain topmost MDD level when starting a fix-point computation (e.g. line 27 in Listing 4.1). 
Currently the algorithm simply takes the transition groups in the order given as they are inserted in this 
list. The number of MDD levels that each transition group affects, differs individually and the question 



112 
 

arises if this has influence on the performance of the algorithm. A suggestion is that it might be 
convenient to order the transition groups in the list in decreasing number of MDD levels that it affects. In 
addition to this, another way is to sort the rows of the PINS dependency matrices (which correspond to 
the transition groups) in decreasing number of MDD levels that it affects. The fix-point computation will 
then be started with transition groups that run over lots of MDD levels first and it is assumed that this will 
cause lower parts of the reachable state space to become saturated earlier, and therefore reducing effort 
in calculating it. This is still a hypothesis and needs further investigation. 
 
The second direction is to look at the possibility of making use of the information stored in the PINS 
dependency matrix of a certain model. As explained in section 3.2.2 each matrix cell can contain symbols 
indicating if a certain state slot of a transition group is only read, only written, both read and written or 
none of these actions. Currently the Saturation algorithms do not make a distinction among the first three 
types of symbols (it does not take into account if a certain state slot is only read or only written). It might 
be worthwhile to investigate the possibilities to distinguish these types of symbols in the PINS 
dependency matrix, which might result in handling MDD levels more efficiently. 
This direction should also be seen in light of the aforementioned proposal to use “guards”, because 
enabling conjuncts are represented by state slots that are only read and updating conjuncts are those 
state slots that can either be only written or both read and written. 
 
The third direction lies in adjusting the metric that is being used for calculating the best variable ordering 
resulting in a PINS dependency matrix where affected MDD levels lie more closely together. This prevents 
transition groups to run over a large range of MDD levels with intermediate identity transitions in 
between, which results in a bad performance of the Saturation algorithm. Generally, the metric function 
tries different variable orderings and for each a value is calculated that indicates how closely located the 
affected MDD levels lie next to each other in the PINS dependency matrix. A low value indicates a good 
variable ordering and the computation is performed multiple times until it assumes that it has found the 
lowest value with accompanying variable ordering. 
For this purpose it is possible to change the metric to the one devised by G. Ciardo in [21]. In this case the 
Saturation algorithms are left unchanged and one only has to change the metric function that is being 
used for computing the best variable ordering. 
 
  



113 
 

Bibliography 

[1] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, P. Šimeček. DIVINE – A tool for distributed 
verification. In Proc. 18th International Conference on Computer Aided Verification (CAV 2006), 
August 2006, Seattle, Washington, USA. pp. 278-281 (Lecture Notes in Computer Science, vol. 
4144), 2006. 

[2] S.C.C. Blom, J.R. Calamé, B. Lisser, S. Orzan, J. Pang, J.C. van de Pol, M.T. Dashti and A.J. Wijs. 
Distributed Analysis with μCRL: a Compendium of Case Studies. In Proc. 13th International 
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 
2007), March – April 2007, Braga, Portugal. pp. 683-689 (Lecture Notes in Computer Science, 
vol. 4424), 2007. 

[3] S.C.C. Blom and J.C. van de Pol. Symbolic Reachability for Process Algebras with Recursive Data 
Types. In Proc. 5th International Colloquium on Theoretical Aspects of Computing - ICTAC 2008, 
September 2008, Istanbul, Turkey. pp. 81-95 (Lecture Notes in Computer Science, vol. 5160), 
2008. 

[4] S.C.C. Blom, J.C. van de Pol and M. Weber. Bridging the Gap between Enumerative and 
Symbolic Model Checkers. Technical Report TR-CTIT-09-30, Centre for Telematics and 
Information Technology (CTIT), University of Twente, Enschede, The Netherlands, 2009. 

[5] S.C.C. Blom, J.C. van de Pol and M. Weber. LTSmin: Distributed and Symbolic Reachability. In 
Proc. 22nd International Conference on Computer Aided Verification (CAV 2010), July 2010, 
Edinburgh, UK. pp. 354-359 (Lecture Notes in Computer Science, vol. 6174), 2010. 

[6] M.Y. Chung, G. Ciardo, R.L. Jones III, R.M. Marmorstein, A.S. Miner, R.I. Siminiceanu and A. Yu. 
SMART, Stochastic Model checking Analyzer for Reliability and Timing, Version 1.1. User 
manual, Department of Computer Science and Engineering, University of California, Riverside, 
California, USA, 2006. Website of manual (retrieved in March 2011): 
http://www.cs.ucr.edu/~ciardo/SMART/SMARTman.pdf. 

[7] G. Ciardo, G. Luettgen and A.S. Miner. Exploiting interleaving semantics in symbolic state-
space generation. Formal Methods in System Design, vol. 31(1). pp. 63-100, 2007. 

[8] G. Ciardo, G. Luettgen and R. Siminiceanu. Saturation: an efficient iteration strategy for 
symbolic state-space generation. In Proc. 7th International Conference on Tools and Algorithms 
for the Construction and Analysis of Systems (TACAS 2001), April 2001, Genova, Italy. pp. 328-
342 (Lecture Notes in Computer Science, vol. 2031), 2001.  

[9] G. Ciardo, R. Marmorstein and R. Siminiceanu. Saturation unbound. In Proc. 9th International 
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 
2003), April 2003, Warsaw, Poland. pp. 379-393 (Lecture Notes in Computer Science, vol. 
2619), 2003. 

[10] G. Ciardo, R. Marmorstein and R. Siminiceanu. The saturation algorithm for symbolic state 
space exploration.  International Journal on Software Tools for Technology Transfer (STTT), vol. 
8(1). pp. 4-25, 2006. 

[11] G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis using conjunctive and 
disjunctive partitioning. In Proc. 13th IFIP WG 10.5 Advanced Research Working Conference on 
Correct Hardware Design and Verification Methods (CHARME 2005), October 2005, 
Saarbrücken, Germany. pp. 146-161 (Lecture Notes in Computer Science, vol. 3725), 2005. 

[12] M. de Jonge and T.C. Ruys. The SpinJa model checker. In Proc. 17th International SPIN 
Workshop on Model Checking Software (SPIN 2010), September 2010, Enschede, The 
Netherlands. pp. 124-128 (Lecture Notes in Computer Science, vol. 6349), 2010. 
 

http://www.cs.ucr.edu/~ciardo/SMART/SMARTman.pdf


114 
 

[13] Formal Methods and Tools (FMT). dve2-reach(1) Manual Page. Website (retrieved in 
December 2011): http://fmt.cs.utwente.nl/tools/ltsmin/dve2-reach.html 

[14] J.F. Groote, J.J.A. Keiren, A.H.J. Mathijssen, B. Ploeger, F.P.M. Stappers, C. Tankink, Y.S. 
Usenko, M.J. van Weerdenburg, J.W. Wesselink, T.A.C. Willemse and J. van der Wulp. The 
mCRL2 Toolset. In Proc. 1st International Workshop on Advanced Software Development Tools 
and Techniques (WASDeTT 2008), July 2008, Paphos, Cyprus, 2008. 

[15] A. Hamez, Y. Thierry-Mieg and F. Kordon. Hierarchical Set decision Diagrams and Automatic 
Saturation. In Proc. 29th International Conference on Applications and Theory of Petri Nets 
(PETRI NETS 2008), June 2008, Xi’an, China. pp. 211-230 (Lecture Notes in Computer Science, 
vol. 5062), 2008. Website of library package (retrieved in September 2011): 
http://move.lip6.fr/software/DDD/. 

[16] G.J. Holzmann and D. Peled. An improvement in formal verification. In Proc. 7th IFIP WG6.1 
International Conference on Formal Description Techniques (FORTE 1994), October 1994, 
Berne, Switzerland. pp. 197-211, 1995. 

[17] J. Lind-Nielsen. BuDDy – A Binary decision Diagram Package. Website of library package 
(retrieved in September 2011): http://sourceforge.net/projects/buddy/. 

[18] A.S. Miner. Saturation for a General Class of Models. IEEE Transactions on Software 
Engineering, vol. 32(8). pp. 559-570, 2006. 

[19] E. Pater. Partial Order Reduction for PINS. Master thesis, Formal Methods and Tools (FMT), 
University of Twente, Enschede, The Netherlands, 2011. Website of thesis (retrieved in January 
2012): http://fmt.cs.utwente.nl/education/master/17/ 

[20] R. Pelánek. BEEM: BEnchmarks for Explicit Model Checkers. In Proc. 14th International SPIN 
Workshop on Model Checking Software (SPIN 2007), July 2007, Berlin, Germany. pp. 263-267 
(Lecture Notes in Computer Science, vol. 4595), 2007. Website (retrieved in August 2011): 
http://anna.fi.muni.cz/models/. 

[21] R. Siminiceanu and G. Ciardo. New metrics for static variable ordering in decision diagrams. In 
Proc. 12th International Conference on Tools and Algorithms for the Construction and Analysis 
of Systems (TACAS 2006), March – April 2006, Vienna, Austria. pp. 90-104 (Lecture Notes in 
Computer Science, vol. 3920), 2006. 

[22] M.G.J. van den Brand and P. Klint. ATerms for manipulation and exchange of structured data: 
It’s all about sharing. Information and Software Technology, vol. 49(1). pp. 55-64, 2007. 
Website of library package (retrieved in September 2011): 
http://www.meta-environment.org/Meta-Environment/ATerms. 

[23] M. Wan and G. Ciardo. Symbolic state-space generation of asynchronous systems using 
extensible decision diagrams. In Proc. 35th International Conference on Current Trends in 
Theory and Practice of Computer Science (SOFSEM 2009), February 2009, Spindleruv Mlyn, 
Czech Republic. pp. 582-594, 2009. 

[24] M. Weber. An embedded virtual machine for state space generation. In Proc. 14th International 
SPIN Workshop on Model Checking Software (SPIN 2007), July 2007, Berlin, Germany. pp. 168-
186 (Lecture Notes in Computer Science, vol. 4595), 2007. 

[25] E.W. Weisstein. Kronecker Product. MathWorld – A Wolfram Web Resource. Website 
(retrieved in October 2011): http://mathworld.wolfram.com/KroneckerProduct.html. 

 
  

http://fmt.cs.utwente.nl/tools/ltsmin/dve2-reach.html
http://move.lip6.fr/software/DDD/
http://sourceforge.net/projects/buddy/
http://fmt.cs.utwente.nl/education/master/17/
http://anna.fi.muni.cz/models/
http://www.meta-environment.org/Meta-Environment/ATerms
http://mathworld.wolfram.com/KroneckerProduct.html


115 
 

 
 
 
  

Saturation for LTSmin 
Appendices 
 

Final project (course code 192199978) 

Course year 2011 – 2012 

 

Tien Loong Siaw (s0045217) 

 

 

 

Master Computer Science 

Track Software Engineering 

 

Graduation committee: 

■ prof. dr. J.C. van de Pol 

■ dr. J. Ketema 

■ prof. dr. ir. A. Rensink 

 

Department of Formal Methods and Tools (FMT) 

University of Twente 

 
 
  

 
          Enschede,  Wednesday 15th of February 2012 



116 
 

  



117 
 

A Saturation test results regarding memory performance 

In this appendix the test results regarding memory performance is presented. In Table A. 1 the results are 
given showing the maximum memory values for each of the 27 DVE models per tested reachability option. 
A summary of these memory result are given in Table A. 2. It should be remarked that the maximum 
memory results are dependent on the MDD library being used, in this case the ATermDD library. 
 
Model State space 

size 
Maximum memory usage (median values in KB) 

bfs-prev chain-
prev 

sat-like 
bfs-prev 

sat-like 
chain-prev 

sat-ddd sat-ciardo new 
sat-ciardo 

and.6 18206917 31916 79564 55128 71840 2381472 1036392 1274584 

at.5 31999440 113360 135444 100516 103768 784740 1318980 1186712 

at.6 160589600 315660 377732 1010848 1224884 4537800 9588340 8671452 

bak.6 11845035 168308 159564 135772 78680 11350580 8384260 11342784 

brp.5 17740267 92632 46840 80272 62592 142900 176260 154680 

brp.6 42728113 186872 63844 152792 99708 358636 398032 362080 

cam.7 11465015 1147344 584592 958592 579312 3170760 8391940 × 

col.4 41465543 431772 424604 56348 59868 46796 57044 84156 

ele.2 11428767 265232 185884 15336 15628 11656 10276 13924 

fir.5 18553032 136396 65624 34924 34860 197388 223080 183744 

ipr.6 41387484 438432 99852 36276 36912 455344 198412 227800 

ipr.7 59794192 1833592 319048 65156 64068 1346752 650256 955748 

lam.7 38717846 177128 201680 41008 37552 1426404 738132 643172 

lam.8 62669317 190952 990836 53188 45200 3314664 1495296 1338596 

lna.5 95118524 29312 52004 20604 20784 217668 274752 213788 

lann.6 144151628 4501196 1083116 327228 499764 2399748 3657652 3021900 

lann.7 160025986 76060 70536 30224 29168 114644 131172 114288 

le.6 35777100 57384 21440 20820 21528 33944 23372 2060788 

lf.7 26302351 175368 158548 95944 97560 10865808 7731500 8147268 

pet.6 174495861 100888 869128 52380 34608 1218972 993480 1143568 

pet.7 142471098 225672 190944 131656 96400 13277304 10494116 10330492 

phi.6 14348906 15632 18688 8372 5064 5060 5064 5048 

phi.8 43046720 15708 18824 7896 6956 6536 6756 4340 

sch.3 166649331 1793212 92104 19028 18840 98468 195572 184748 

szy.5 79518740 129300 132076 53388 34844 6540184 5991024 5417616 

tel.4 12291552 73476 52404 42248 28672 799316 741352 ×× 

tel.7 21960308 103272 105744 31196 30628 1562928 1718724 ×× 

Legend of symbols 

× No data due to (possible) infinite looping. red Worst performing option for a certain model. 

×× No data due to error (e.g. segmentation fault). green Best performing option for a certain model. 
Table A. 1: Experimental maximum memory results using the reachability tools from LTSmin on the 27 DVE models, including 
option new sat-ciardo. 

 bfs-prev chain-prev sat-like 
bfs-prev 

sat-like 
chain-prev 

sat-ddd sat-ciardo new sat-
ciardo 

# times as best  2 2 6 13 1 1 2 

# times as worst 5 2 0 0 10 9 1 
Table A. 2: Summary of the best and worst performing reachability options regarding maximum memory performance, including 
option new sat-ciardo. 



118 
 

On the following pages some plots are presented where reachability options are compared with each 
other. In Figure A. 1 till Figure A. 3 option sat-ciardo (at vertical axis) is compared with the options no-sat, 
sat-like and sat-ddd, respectively. In Figure A. 4 and Figure A. 5 this is done for option sat-ddd (vertical 
axis) versus options no-sat and sat-like. Finally in Figure A. 6 till Figure A. 9 plots are presented, comparing 
option new sat-ciardo with options no-sat, sat-like, sat-ddd and the previous version of sat-ciardo, 
respectively. 
 
In all these plots, the plot on the left gives a sense where every result is located in a larger picture. The 
plot in the upper right corner is a magnification of a small part of the leftmost plot and the plot on the 
lower right corner is on its turn a magnification of the plot on the upper right corner. One should be aware 
that with these magnifications the horizontal and vertical axes scale as well. 
Furthermore a diagonal is added in these plots to show that the two reachability options under 
comparison have the same time result. When a time result falls beneath the diagonal line in Figure A. 1 
until Figure A. 3, then this means that option sat-ciardo computes with less maximum memory than the 
other reachability option. Likewise for memory results in Figure A. 4 and Figure A. 5, in which case option 
sat-ddd is performing better than the other reachability option and for memory results in Figure A. 6 until 
Figure A. 9 for option new sat-ciardo. 
 
 



119 
 

 
Figure A. 1: Plot comparing maximum memory values between options no-sat and sat-ciardo. 

1
1

9
 



120 
 

 
Figure A. 2: Plot comparing maximum memory values between options sat-like and sat-ciardo. 

1
2

0
 



121 
 

 
Figure A. 3: Plot comparing maximum memory values between options sat-ddd and sat-ciardo. 

1
2

1
 



122 
 

 
Figure A. 4: Plot comparing maximum memory values between options no-sat and sat-ddd. 

1
2

2
 



123 
 

 
Figure A. 5: Plot comparing maximum memory values between options sat-like and sat-ddd. 

1
2

3
 



124 
 

 
Figure A. 6: Plot comparing maximum memory values between options no-sat and new sat-ciardo. 

1
2

4
 



125 
 

 
Figure A. 7: Plot comparing maximum memory values between options sat-like and new sat-ciardo. 

1
2

5
 



126 
 

 
Figure A. 8: Plot comparing maximum memory values between options sat-ddd and new sat-ciardo. 

1
2

6
 



127 
 

 
Figure A. 9: Plot comparing maximum memory values between options sat-ciardo and new sat-ciardo.

1
2

7
 



128 
 

  



129 
 

B Saturation evolution plots 

In this appendix the rest of the evolution plots are shown per DVE model, to give an impression how the 
number of MDD nodes and the state space size evolves over time. In some plots one should be aware that 
the vertical axis for the number of MDD nodes can differ (this is done for visibility reasons). And also the 
horizontal time axis differs for each reachability option in the set of evolution plots of a certain model. 
 

 
Final state space size Final MDD node size Fastest reachability option 
31999440 46751 sat-ddd 
Figure B. 1: State space evolution plots of DVE model at.5. 

 



130 
 

 
Final state space size Final MDD node size Fastest reachability option 
160589600 138937 sat-ddd 
Figure B. 2: State space evolution plots of DVE model at.6. 



131 
 

 
Final tate space size Final MDD node size Fastest reachability option 
11845035 103954 sat-like chain-prev 
Figure B. 3: State space evolution plots of DVE model bakery.6. 



132 
 

 
Final state space size Final MDD node size Fastest reachability option 
17740267 28500 sat-ciardo 
Figure B. 4: State space evolution plots of DVE model brp.5. 



133 
 

 
Final state space size Final MDD node size Fastest reachability option 
42728113 59465 sat-ciardo 
Figure B. 5: State space evolution plots of DVE model brp.6. 



134 
 

 
Final state space size Final MDD node size Fastest reachability option 
41465543 5013 sat-ddd 
Figure B. 6: State space evolution plots of DVE model collision.4. 



135 
 

 
Final state space size Final MDD node size Fastest reachability option 
11428767 352 sat-ciardo 
Figure B. 7: State space evolution plots of DVE model elevator_planning.2. 



136 
 

 
Final state space size Final MDD node size Fastest reachability option 
18553032 71247 sat-ddd 
Figure B. 8: State space evolution plots of DVE model firewire_link.5. 



137 
 

 
Final state space size Final MDD node size Fastest reachability option 
41387484 63877 sat-ciardo 
Figure B. 9: State space evolution plots of DVE model iprotocol.6. 

 



138 
 

 
Final state space size Final MDD node size Fastest reachability option 
38717846 3511 sat-like chain-prev 
Figure B. 10: State space evolution plots of DVE model lamport.7. 



139 
 

 
Final state space size Final MDD node size Fastest reachability option 
62669317 5273 sat-like chain-prev 
Figure B. 11: State space evolution plots of DVE model lamport.8. 



140 
 

 
Final state space size Final MDD node size Fastest reachability option 
95118524 1659 sat-like chain-prev 
Figure B. 12: State space evolution plots of DVE model lamport_nonatomic.5. 



141 
 

 
Final state space size Final MDD node size Fastest reachability option 
144151628 127219 sat-ddd 
Figure B. 13: State space evolution plots of DVE model lann.6. 



142 
 

 
Final state space size Final MDD node size Fastest reachability option 
160025986 6502 sat-ddd 
Figure B. 14: State space evolution plots of DVE model lann.7. 



143 
 

 
Final state space size Final MDD node size Fastest reachability option 
35777100 16276 sat-ciardo 
Figure B. 15: State space evolution plots of DVE model leader_election.6. 



144 
 

 
Final state space size Final MDD node size Fastest reachability option 
26302351 119714 sat-like chain-prev 
Figure B. 16: State space evolution plots of DVE model leader_filters.7. 



145 
 

 
Final state space size Final MDD node size Fastest reachability option 
174495861 24839 sat-like chain-prev 
Figure B. 17: State space evolution plots of DVE model peterson.6. 



146 
 

 
Final state space size Final MDD node size Fastest reachability option 
142471098 41405 sat-like chain-prev 
Figure B. 18: State space evolution plots of DVE model peterson.7. 



147 
 

 
Final state space size Final MDD node size Fastest reachability option 
14348906 241 sat-ddd 
Figure B. 19: State space evolution plots of DVE model phils.6. 



148 
 

 
Final state space size Final MDD node size Fastest reachability option 
43046720 258 sat-ddd 
Figure B. 20: State space evolution plots of DVE model phils.8. 



149 
 

 
Final state space size Final MDD node size Fastest reachability option 
166649331 5305 sat-like chain-prev 
Figure B. 21: State space evolution plots of DVE model schedule_world.3. 



150 
 

 
Final state space size Final MDD node size Fastest reachability option 
79518740 32657 sat-like chain-prev 
Figure B. 22: State space evolution plots of DVE model szymanski.5. 



151 
 

 
Final state space size Final MDD node size Fastest reachability option 
12291552 23180 sat-like chain-prev 
Figure B. 23: State space evolution plots of DVE model telephony.4. 



152 
 

 
Final state space size Final MDD node size Fastest reachability option 
21960308 22604 sat-like chain-prev 
Figure B. 24: State space evolution plots of DVE model telephony.7. 

  



153 
 

C Results regarding MDD projections made 

In this appendix the results from Table 5.6 are visualized for each of the remaining 24 DVE models 
individually, showing the contribution of useful MDD projections made in the total number of MDD 
projections during the update process of the transition groups for each of the tested reachability options. 

 
Figure C. 1: Bar charts showing the contribution of useful and useless MDD projections using the reachability tools from LTSmin 
for 8 DVE model (1). 



154 
 

 
Figure C. 2: Bar charts showing the contribution of useful and useless MDD projections using the reachability tools from LTSmin 
for 8 DVE model (2). 



155 
 

 
Figure C. 3: Bar charts showing the contribution of useful and useless MDD projections using the reachability tools from LTSmin 
for 8 DVE model (3). 

 


