
Formal Specification of LinkedBlockingQueue Using
Concurrent Separation Logic

Jeroen Meijer
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

j.j.g.meijer@student.utwente.nl

ABSTRACT
Proving the correctness of multi-threaded programs is a
challenge. To meet this challenge Hurlin recently designed
a method based on separation logic to specify concurrent
Java-like programs with fork, join and re-entrant locks. In
this study we evaluate the usability of Hurlin’s method.
This is done by developing a formal specification for Java’s
library class LinkedBlockingQueue and arguing why Link-
edBlockingQueue respects this specification. In our project
we also inspect the Java Synchronizer Framework. We
conclude that Hurlin’s program logic is very useful for
specifying a Java library class, however we need to in-
troduce some additional language constructs in order to
be able to specify LinkedBlockingQueue’s safety proper-
ties. We are able to specify if threads have permission
to change the head and tail of the queue. To be able to
specify the blocking properties of LinkedBlockingQueue
we need to introduce a new specification formula spec lock
to specify which Lock protects a ConditionObject in Java’s
Synchronizer Framework.

1. INTRODUCTION
Since multi-threaded programs become more popular ev-
eryday their safety properties have to be guaranteed by a
program specification. A program specification is a de-
scription of a program’s behaviour. If an implementa-
tion respects this specification, we say the implementa-
tion is correct. The Java Modeling Language (JML) is
a method widely used for showing the correctness of se-
quential Java programs. Showing the correctness of con-
current programs however, is much more of a challenge.
Hurlin introduces a method for showing the correctness
of multi-threaded Java-like programs in his PhD thesis
[9]. Hurlin’s method to reason about concurrent programs
is a huge step forward towards a practically usable pro-
gram logic. This thesis focuses on the soundness of the
method rather than on its practical use. Therefore we
will evaluate Hurlin’s method in a practical example. We
provide a specification for Java’s concurrent library class
LinkedBlockingQueue together with an argumentation of
why the implementation of LinkedBlockingQueue respects
this specification. During our study we found it very use-
ful to combine JML with Hurlin’s program logic. There is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
15th Twente Student Conference on IT June 20th, 2011, Enschede, The
Netherlands.
Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

however not a formal syntax on how these languages are
combined. Defining such a formal syntax is not part of
this study due to time constraints. The VerCors project
[5] – which is supported by an ERC starting grant [2] –
will address this issue, see also Section 4 for related work.
The result of this project is a specification for Linked-
BlockingQueue. We use this specification to show to what
extent it is possible to specify LinkedBlockingQueue, not
to show that LinkedBlockingQueue is correct, we assume
LinkedBlockingQueue is correct.

2. BACKGROUND INFORMATION
A program specification can be used to show the correct-
ness of a program’s behaviour. For sequential programs
there is a widely known method, namely the Java Mod-
eling Language (JML). There has been at least one at-
tempt [14, 3] to add multi-threading functionality to JML,
but this study has not advanced enough to be used in a
practical example. In a multi-threaded program, multi-
ple threads have the ability to write to a memory location
concurrently. These – often unwanted – data races can be
guaranteed not to occur by using separation logic as a ba-
sis for a program specification. In this study we use such
a program specification method for the Java library class
LinkedBlockingQueue.

2.1 Concurrent separation logic
Concurrent separation logic (CSL) is an extension of Hoare
logic which logically enforces correct synchronization of
heap access [7]. CSL was introduced by O’Hearn [12] in the
year 2007. Separation logic has the ability to reason about
the contents of the memory. The heap – opposed to a stack
– is shared between threads (within one JVM). Memory
locations in a heap can be referred to with pointers and
thus shared between threads. Separation logic comes with
operations to manipulate and compare parts of the heap.
These operations allow the heap to be split into disjoint
parts in the specification. Reasoning about disjoint parts
of the memory allows one not only to determine which
parts are shared locations and which are not, it also allows
one to determine which pointers are aliases [6]. Aliases are
object references – or variables – that point to the same
location on the heap.

The most important features of separation logic are access
tickets and local reasoning. x.f 7→ v is called the points-to
predicate and has a dual meaning. Firstly it asserts that
object field x.f contains the value v. Secondly it represents
a permission to access the field x.f [7]. Local reasoning is
supported by the operator ∗ and is called the resource
conjunction. The formula F ∗ G means that the formula
F holds for a part of the heap, while formula G holds
for a different part of the heap. The following example



Figure 1. Illustration of a linked list

illustrates the use of the points-to predicate.

{x.f 7→ 1}x.f = x.f + 4{x.f 7→ 5}

In the example above the precondition not only indicates
that x.f has the value 1, it also expresses ownership of x.f .
The program assigns x.f+4 to x.f . The postcondition in-
dicates that x.f has the value 5 and it grants a ticket to
access x.f . The separation logic we use in our study is
described in Hurlin’s PhD thesis. His thesis introduces a
method to reason about a concurrent Java-like language
containing specific Java constructs, such as fork, join and
re-entrant locks. Hurlin introduced the ASCII represen-
tation of the points-to predicate PointsTo(x.f,π,v). The
predicate expresses ownership by means of an access ticket
π. The access ticket must be a fraction 1

2n
in the inter-

val (0, 1]. In the example above we have an access ticket
π = 1 for x.f , because π = 1 grants write access to a
class’ field. Every access ticket smaller than 1 grants read
access. Permissions can be exchanged when threads fork
or join.

Two important specification formula’s of Hurlin’s research
are LockSet(S), S contains e and quantifiers. LockSet(S)
can be used to introduce a multiset of locks (S) that a
thread holds. This multiset can be empty. The expression
S contains e is used to express that multiset S contains
object e. Two quantifiers that we use in our research are
exists (ex) and for all (fa). They are identical to the JML
keywords \exists and \forall. Furthermore we use the JML
keyword \old. Every expression inside the parentheses of
\old() is evaluated in the pre-state.

2.2 LinkedBlockingQueue
In our study applied Hurlin’s method on LinkedBlock-
ingQueue. Michael et al. [11] recommend the class Linked-
BlockingQueue to be used in a situation where dedicated
multiprocessors run under high contention. LinkedBlock-
ingQueue is a Java library class which contains two impor-
tant properties. The first property is that the head and
tail can be locked independently. The second property of
LinkedBlockingQueue is that threads can block when the
queue is empty or full. Figure 1 [1] is an illustration of a
linked list with pointers to the head and tail. Remind that
LinkedBlockingQueue uses last as a pointer to the tail of
the queue.

In addition to this concept of a linked list, LinkedBlock-
ingQueue provides methods to put elements to the tail of
the queue or take elements from the head of the queue.
Furthermore LinkedBlockingQueue uses a blocking mech-
anism which will be covered later on. In Java’s implemen-
tation of LinkedBlockingQueue the tail pointer is called
last. A Node is defined as an element together with a
pointer to the next Node, hence it is linked. The class is
blocking and it uses a two-lock concurrent algorithm to
enqueue and dequeue elements. For both the locking and
blocking concepts we can provide some safety properties
which should hold during the execution of a program.

Figure 2. Illustration of a data race

Blocking algorithms allow a slow or delayed process to
prevent faster processes from completing operations on a
shared data structure indefinitely. When a blocking queue
reaches its capacity a process which is trying to enqueue
an element is blocked until another element is dequeued
by another process. When a blocking queue has no ele-
ments a process trying to dequeue an element is blocked
until another process enqueues an element. Two safety
properties that should always hold for a blocking queue
are as follows:

• no reads from an empty queue will occur,

• no writes into a queue which has reached its capacity
occur.

In a LinkedBlockingQueue two locks are used to restrict
access to both the tail and the head of the queue, thus
making it possible to simultaneously enqueue and dequeue
– two different – elements. The head lock disallows two el-
ements from being concurrently removed from the queue,
while the tail lock disallows two elements from being con-
currently added to the queue. The two locks together
prevent data races. A simplified situation of a data race
is illustrated in Figure 2. Assume that for both threads
it holds that the capacity of LinkedBlockingQueue is 10.
This means that a thread may put an element into the
queue if the size is less than 10. So if the threads are
scheduled as illustrated a data race will occur, namely on
getting the size of the queue. Access to the size of the
queue should be synchronised.

For the two-lock algorithm [11] Michael et al. state that
the following safety properties should hold:

• the linked list is always connected,

• nodes are only inserted after the last node in the
linked list,

• nodes are only deleted from the beginning of the
linked list,

• the pointer head always points to the first node in
the linked list,



• the pointer tail always points to a node in the linked
list.

In Section 6 one can find a formal specification of the afore
mentioned seven safety properties.

2.3 The Implementation
LinkedBlockingQueue is available as a Java Library class
since the introduction of Java Second Edition. In this
project we specify the constructors and the methods put
and take. One constructor of LinkedBlockingQueue ini-
tialises the queue with a default capacity of Integer.MAX-
VALUE. The other constructor initialises the queue with

a given capacity. As in each class that implements a
Queue, LinkedBlockingQueue also implements the meth-
ods offer and remove. These both entail the same func-
tionality as the methods put and take. However, offer and
remove do not block if the queue reaches its capacity or
become empty. These two methods are less suitable for
specification, because we want to specify blocking prop-
erties with Hurlin’s program logic. We therefore omit a
specification for methods offer and remove.

2.4 The Synchronizer Framework
Many concurrent Java library classes such as LinkedBlock-
ingQueue depend heavily on the Java Synchronizer Frame-
work [10]. One essential class in this library is the Ab-
stractQueuedSynchronizer class. This class is abstract so
it is possible to write many different user implementa-
tions for this synchronizer. Also, there exist some stan-
dard subclasses of which one is ReentrantLock and is used
in LinkedBlockingQueue. For a list of other synchronizer
implementations we refer to the paper by Lea [10].

ReentrantLock – just like any other Lock – has one method
lock to acquire the lock and one method to release the lock;
unlock. Also one variant of method lock exist, namely lock-
Interruptibly, which throws an InterruptedException if the
current thread is interrupted. For the purpose of blocking
and unblocking of threads ReentrantLock employs a class
named ConditionObject which implements the Condition
interface. Lea [10] states the following.

A Condition object replaces the use of the Object monitor
methods (e.g. Object.wait). a ConditionObject attached
to a ReentrantLock acts in the same way as do built-in
monitors (via Object.wait etc.), differing only in method
names, extra functionality, and the fact that users can de-
clare multiple conditions per lock.

So in our specification we are going to make use of the fact
that every Lock is backed by a AbstractQueuedSynchro-
nizer and every AbstractQueuedSynchronizer.Condition-
Object by a Condition interface.

3. PROBLEM STATEMENT AND
RESEARCH QUESTIONS

Hurlin’s method to reason about concurrent programs is
a huge step forward towards a practically usable program
logic. The focus of Hurlin’s work was on introducing and
proving the soundness of a method, rather than on testing
this method in practice. In the process towards an au-
tomated validation tool for concurrent programs, Hurlin’s
work has to be applied in practice to determine its usabil-
ity. The following study questions will help us attaining
this goal.

1. To what extent is it possible to specify a Linked-
BlockingQueue with Hurlin’s program logic?

2. To what extent is the specification of LinkedBlock-
ingQueue useful?

3. Why does the implementation of LinkedBlocking-
Queue respect its specification?

4. RELATED WORK
The work closest related to Hurlin’s – which will be used
in our study – is from Parkinson [13]. Parkinson’s thesis
provides verification for Java-like programs with separa-
tion logic. Hurlin reuses most of Parkinson’s ideas but
differs on some points. Middleweight Java (MJ) together
with an adaptation of separation logic is used for local
reasoning. To the best of our knowledge no Java library
classes were specified with MJ. The Bandera tool set [8] is
a model checker to model-check properties of concurrent
Java software.

Our study is a case study in which the work by Hurlin [7] is
used in practice to specify a concurrent Java library class.
We will not be the first to test Hurlin’s work in practice.
Burgman already compared [6] Hurlin’s variant of sepa-
ration logic with JML. Burgman provided a specification
with separation logic and a specification with JML for a se-
quential mergesort and a concurrent mergesort algorithm
for a linked list. He concluded that separation logic and
JML both have their advantages and disadvantages and
that they mainly support each other, but not replace each
other. Current study done at the VerCors project (see [5])
focuses on integrating JML and separation logic.

5. METHOD OF RESEARCH
The study is done in two phases. In the first phase of the
study we specified the class LinkedBlockingQueue. This
class can be found in the Java package java.util.concurrent.
Of the class LinkedBlockingQueue the most interesting
methods are specified, namely put and take. Proving the
correctness of the specification is omitted in this study due
to time constraints. In the second phase we informally ar-
gue why the implementation of LinkedBlockingQueue re-
spects this specification.

We have chosen to specify LinkedBlockingQueue, because
it has some interesting safety properties to prove (see sub-
section 2.2). Furthermore LinkedBlockingQueue inherits
interesting concepts like re-entrant locks, conditions.

6. THE SPECIFICATION
Remember that we want to specify five locking properties
and two blocking properties, see Section 2.2. We divide the
specification in two parts. The first part specifies the lock-
ing properties of the queue. The second part specifies the
blocking properties of the queue. We provide inline code
listings as fragments of LinkedBlockingQueue’s specifica-
tion but the complete specification can be found online [4].
In general, constructors of classes are specified with post-
conditions ensuring that locks are initialized and can be
obtained. In this section we do not show how the construc-
tors are specified, because in both Hurlin’s and Burgman’s
thesis it has already been shown how constructors can be
specified. Our specification of the constructors can also be
found online. Along with the inline code listings we argue
why LinkedBlockingQueue respects its specification.

6.1 The Locks
We first introduce an issue. Consider the last lines of code
from the method put.

...



putLock.unlock(); // Release the lock protecting the tail.
}
if (c == 0) { // c is the amount of elements before enqueueing

.
signalNotEmpty();

}
} // End of put().

Between the execution of the line where a thread un-
locks putLock and the line where the put method returns,
other threads can also put elements in the LinkedBlock-
ingQueue. Similarly for the method take:

...
takeLock.unlock(); //Release the lock protecting the head.

}
if (c == capacity) { // c is the amount of elements before

enqueueing and capacity is the capacity of the queue.
signalNotFull();

}
return x;

} // End of take().

Between the execution of the line where a thread un-
locks takeLock and the line were the take method returns,
other threads can also take elements from the Linked-
BlockingQueue. Because of these two similar issues we
can only specify a short postcondition for both methods.
For the method put the contract looks as follows:

/*
*@ requires LockSet(S) * putLock.initialized
*@ ensures \old(last) != last
*/

public void put(E e) throws InterruptedException

The method requires a LockSet with an arbitrary set of
elements S and that the putLock is initialized. The post-
condition only guarantees that there is another Node at
the tail of the queue then there was in the pre-state i.e.,
\old(last) != last. Similarly for the method take we define
a contract.

/*
* @requires LockSet(S) * takeLock.initialized
* @ensures \old(head) != head
*/

public E take() throws InterruptedException

Again we require a LockSet with an arbitrary set of ele-
ments S and that the takeLock is initialized. The postcon-
dition can only guarantee that there is a different Node at
the head of the queue then there was in the pre-state. Note
that in both cases a thread does not need permissions on
the tail or head to obtain such postconditions. The idea of
this postcondition is obtained from the work of Vafeiadis
et al. [15]. To strengthen our contract for LinkedBlock-
ingQueue we use an invariant and a constraint. Invariants
are properties that have to hold in all visible states. A
constraint is used to constrain the way values change over
time. However, for LinkedBlockingQueue, it is the case
that properties about the head and tail can only be guar-
anteed if a thread has permission to access them. We have
specified the following invariant for LinkedBlockingQueue.
(Note that we use numbers to identify parts of the invari-
ant and later on also for the constraint.)

/*
*@ invariant perm(head, 1) * perm(last, 1) −*
* (1) ((fa Node m . m.next != head) *

* (2) (ex Node n . n == last) *

* (3) (fa Node o . ex Node p . o.next == p);
*/

Each part of the invariant is true if a thread holds the
putLock and the tailLock. Part (1) ensures ”The pointer
head always points to the first node in the linked list.”
We ensure this the other way around. We say that if for
all Nodes its next Node does not point to the head Node
then the head node is the first Node in the linked list.
(2) ensures the safety property ”The pointer tail always
points to a node in the linked list.” The third (3) part
ensures that ”the linked list is always connected.” This
holds even for the tail of the queue and therefore, for a
LinkedBlockingQueue which size is less than two. This
holds, because last.next always points to last. This is a
design choice by the authors of LinkedBlockingQueue and
is useful, because it indicates the end of the queue.

Consider the constraint for LinkedBlockingQueue.

/*
*@ constraint perm(head, 1) * perm(last, 1) −*
* (4) head.retainOrderState<\old(last)>;
*/

We constructed a state predicate in the class Node which
is ensured by LinkedBlockingQueue’s constraint.

/*
*@ public pred retainOrderState<Node oldLast> =
* exOld Node n . (this == n && n != last) ==>
* this.next == n.next && this.next.retainorderState<last>;
*/

Part (4) strengthens the two safety properties ”Nodes are
only inserted after the last node in the linked list” and
”Nodes are only deleted from the beginning of the linked
list”. For the methods put and take we have only pro-
vided a postcondition which says that the head and the
tail are different in the post-state. But we also want to
guarantee that nodes remain in the same order after a put
or a take. Or, in other words, every Node which exists in
both the pre-state and post-state point to the same next
element. The predicate retainOrderState is called on the
head Node and then iterates over the next node until the
last Node in the pre-state. While iterating over the Nodes
it guarantees that a Node’s next Node is equal to the same
Node’s next Node in the pre-state. Two major issues we
have encountered while specifying with retainOrderState
is that we have no way to reason about the pre-state of
the entire heap. We use the quantifier exOld which is actu-
ally the same as \exists in JML or ex in Hurlin’s program
logic, but it allows us to reason about the pre-state of the
heap. Furthermore in our definition of retainOrderState
one must read n.next as a reference in which next points
to an address in the pre-state of the heap. We have not
found another more elegant way to specify the constraint
for LinkedBlockingQueue.

6.2 Blocking
Specifying the blocking part of LinkedBlockingQueue is
easier then specifying the locking part. In our specification
we have to specify that a lock must be held by a thread
in order to block. This means that we have to introduce a
specification formula which does not already exist in either
Hurlin’s program logic or JML. Every Lock uses a method
newCondition to obtain a new Condition. A Condition can
be used to block threads. Although LinkedBlockingQueue
uses a ReentrantLock – which implements the interface
Lock – we choose to specify Lock and not ReentrantLock
so that every Lock – including ReentrantLock – inherits
this specification. The specification formula we introduce
is spec_lock L in which L is a Java variable of the type
Lock. Consider the following specification for Condition.



//@ spec lock lock
public interface Condition

This specifies that a new Condition object must have a
Lock object to which it belongs. The specification for the
interface Lock.newCondition() is as follows.

/*@ spec lock this */ Condition newCondition();

Note that we use spec_lock twice, first as a declaration
and second as an invocation. The above specification
states that the Condition returned by the method new-
Condition has a Lock which is an instance of this. A
thread can only obtain a lock if it invokes the method
Lock.lockInterruptibly. Therefore the postcondition en-
sures a thread holds the lock.

//@ requires LockSet(S)
//@ ensures LockSet(S . this);
void lockInterruptibly() throws InterruptedException;

Note that lockInterruptibly() returns immediately.

Finally the contract for the method Condition.await looks
as follows.

//@ requires LockSet(S) * S contains lock;
//@ ensures LockSet(S) * S contains lock;
void await() throws InterruptedException;

Clearly the specification of LinkedBlockingQueue is incor-
rect if a Lock is not held before calling Condition.await()
i.e. Lock.lock() is not invoked before calling Condition.a-
wait().

7. FUTURE WORK
As mentioned in Section 2.4, LinkedBlockingQueue re-
quires an abstract class and an interface of the Java syn-
chronizer framework. It requires the abstract class Ab-
stractQueuedSynchronizer and the interface Condition for
obtaining locks and blocking threads. LinkedBlocking-
Queue requires method contracts from both AbstractQueu-
edSynchronizer and Condition, namely for the methods
unlock, lockInteruptably and await. A useful topic for fu-
ture research is to specify these two classes, because it can
– like this study – evaluate Hurlin’s program logic and pro-
vide a contract for two important classes within the Java
synchronizer framework. Depending on the available time
one could also provide contracts for the classes that imple-
ment AbstractQueuedSynchronizer and Condition like in
ReentrantLock and ConditionObject to further evaluate
Hurlin’s program logic. We have already shown how one
could specify which lock must be held in order to block
a thread with Condition.await(), but it has to be defined
formally.

In our study we have not investigated how the specification
should deal with exceptions. One can imagine that an
Exception might trigger different behaviour such that a
lock is still held or not obtained. study has to be done on
how JML’s signals clause can be extended to deal with
concurrent separation logic.

8. CONCLUSION
In this paper we have shown how Hurlin’s program logic
can be applied to Java’s library class LinkedBlockingQueue
with some additional constructs. So, to a large extent we
were able to specify LinkedBlockingQueue with Hurlin’s
program logic. One hard aspect of applying separation

logic for a contract for a Java class is that one has to care-
fully examine where an instance variable can be altered
by a thread when a lock guarding this instance variable is
not held in the body of a method. The contract of method
put (see Section 6) only says the instance variable last is
changed with respect to the pre-state. It does not say how
it has changed and what happened to all other nodes in
the LinkedBlockingQueue. We therefore conclude that the
focus of programming by contract moves from method con-
tracts to constraints and invariants. As a result it is mostly
possible to ensure something about a class’ state and only
when a thread holds the necessary locks. A method con-
tract is not relevant if it in the post-state does not hold a
lock required for the postcondition.

Burgman concludes in his work that JML and SL support
each other. We agree with his conclusion, but furthermore,
we think they should be combined. Separation logic is a
very good addition to the validation of Java code. For our
study we found the use of \old and \result very useful.
Those variables already exists in JML and the VerCors
project should think about how to use them in their au-
tomated validation tool.

A specification formula has to be introduced much like
the \old variable to make it possible to reason about the
pre-state of the heap. Also, a minor note is that some con-
structs like exists written as ’ex T α’ in Hurlin’s Java like
language already exist in JML. They should be combined
somehow. Another minor issue is that the character for
resource conjunction ’*’ is already reserved for JavaDoc.

In short we have found Hurlin’s program logic in combi-
nation with JML very useful for specifying LinkedBlock-
ingQueue, but we found the following important issues.

• To the best of our knowledge a specification in sep-
aration logic does not exist for Java’s synchronizer
framework. We have only provided a short specifica-
tion, it has to be completed for the entire synchro-
nizer framework.

• Most postconditions can only be guaranteed if the
necessary locks are held, therefore invariants and
constraints are far more useful then method con-
tracts.

• With neither Hurlin’s program logic, nor with JML
it is possible to reason about the pre-state of the
heap.

• We have shown a way to specify which lock must be
held in order to block a thread, but a formal defini-
tion for this has to be developed.

The specification of LinkedBlockingQueue is useful in the
sense that it shows that Hurlin’s program logic is an essen-
tial step towards the verification of concurrent Java pro-
grams.

9. REFERENCES
[1] Linked Lists. https://wiki.cs.auckland.ac.nz-

/compsci105ss/images/8/8c/Tail-linked-list.PNG,
2008. [Online; accessed 04/22/2011].

[2] ERC Starting Independent Researcher Grant.
http://erc.europa.eu/index.cfm?-
fuseaction=page.display&topicID=65, 2011. [Online;
accessed 06/05/2011].

[3] JML Level C. http://www.eecs.ucf.edu/˜leavens/-
JML/jmlrefman/jmlrefman 2.html#SEC22, 2011.
[Online; accessed 06/06/2011].



[4] LinkedBlockingQueue Specification.
http://home.student.utwente.nl/j.j.g.meijer/-
bachelorthesis, 2011. [Online; accessed
06/06/2011].

[5] VerCors project.
http://fmt.ewi.utwente.nl/-projects/VerCors, 2011.
[Online; accessed 06/06/2011].

[6] R. Burgman. Specifying Multi-Threaded Java
Programs: A Comparison Between JML And
Separation Logic. In 12th Twente Student
Conference on IT, 2010.

[7] C. Haack, M. Huisman, and C. Hurlin.
Permission-Based Separation Logic for
Multithreaded Java Programs. 2011. Manuscript.

[8] J. Hatcliff and M. Dwyer. Using the Bandera tool
set to model-check properties of concurrent Java
software. CONCUR 2001–Concurrency Theory,
pages 39–58, 2001.

[9] C. Hurlin. Specification and Verification of
Multithreaded Object-Oriented Programs with
Separation Logic. PhD thesis, Université de Nice
Sophia Antipolis, 2009.

[10] D. Lea. The java. util. concurrent synchronizer
framework. Science of Computer Programming,
58(3):293–309, 2005.

[11] M. Michael and M. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue
algorithms. In Proceedings of the fifteenth annual
ACM symposium on Principles of distributed
computing, pages 267–275. ACM, 1996.

[12] P. O’Hearn. Resources, concurrency, and local
reasoning. Theoretical Computer Science,
375(1-3):271–307, 2007.

[13] M. Parkinson. Local reasoning for Java. PhD in
Computer Science, University of Cambridge, 2005.

[14] E. Rodriguez, M. Dwyer, C. Flanagan, J. Hatcliff,
and G. Leavens. Extending JML for modular
specification and verification of multi-threaded
programs. ECOOP 2005-Object-Oriented
Programming, pages 551–576, 2005.

[15] V. Vafeiadis and M. Parkinson. A marriage of
rely/guarantee and separation logic. CONCUR
2007–Concurrency Theory, pages 256–271, 2007.


