
ToLERo: TorX-Tested Lego Robots
Arjan Snippe

University of Twente

a.snippe@student.utwente.nl

ABSTRACT
Model-based software testing is done by generating test-cases

from a model that represents the workings of a System Under Test

(SUT). Then the tool runs those tests and compares the results

with the actual SUT. One of the issues here is the synchronization

of the communications between the tool and the SUT. In the

testing tool TorX this is the task of the Adaptor. For this paper

we’ve developed an Adaptor for a simple Lego Mindstorms robot.

The goal behind this is to obtain a generic Adaptor from this

specific Adaptor.

Keywords

Model-based Testing, Adaptor, TorX, Reactive Systems

1. INTRODUCTION
Testing is an integral part of the Software Engineering process,

finding out whether or not a system works according to the

specifications. There are several ways to check if a system meets

the requirements, black-box and white-box testing will be

discussed. With black-box testing we check to see if the system

works according to the specification by looking at its inputs and

outputs. Here we are not concerned with the inner workings and

structure. In white-box testing on the other hand, we do take the

inner structure into account.

One way to perform a black-box test is to use model-based

testing. With this method we describe the behavior of the SUT

using a model. Then we apply a tool such as TorX to generate test

cases bases upon that model. Using TorX we verify if the SUT

responds according to the expectations specified in the model.

The testing tool keeps a record of the current state the SUT is in

and reports any errors it finds.

In this paper we want to look at one specific part of TorX: the

Adaptor. The task of the Adaptor is to provide the

communications between the SUT and TorX; this is done by

correctly translating the messages into something the SUT can

understand, and then passing them on to the SUT. The main

problem with the Adaptor at the moment is that each time one

needs an Adaptor, one needs to write a new one. This can be a

time-consuming effort.

We propose to first write a specific Adaptor for a Lego robot we

also want to build. The goal for this Adaptor is not only to

correctly facilitate the testing of our Lego robot, but also to serve

as a basis for a more generic Adaptor.

Then we will separate the parts of the specific Adaptor that are

actually specific for this Adaptor and the parts that can be reused

for other Lego robots. The end product will then be an Adaptor

that can easily be modified to support different Lego robots.

2. TORX
The model based testing tool TorX was developed to test systems

with respect to model based specifications. TorX is based on the

ioco test-theory [1]. This means that a SUT is correct if and only

if the outputs it gives are correct according to the model that

specifies the SUT. An important output that should not be

forgotten here is quiescence, which is the absence of any output.

TorX has been used to test several different systems in both

academic and industrial environments [6]. The goal in developing

TorX was to have a flexible and open system. As specified in

Figure 1, TorX has 4 main components: the Explorer and the

Primer who translate and prepare the model for testing, the

Adaptor that provides the communications between the SUT and

the rest of TorX, and the Driver which is the main component that

makes most of the testing decisions.[6]

2.1 The Adaptor
The tasks the Adaptor has to fulfill can be split into two basic

tasks. First of all the Adaptor needs to translate all the messages

used in the model into stimuli for the SUT, it also needs to

translate the outputs generated by the SUT into observations the

driver can use to verify the behavior of the SUT.

The second task the Adaptor needs to fulfill is to send the

translated messages form the driver to the SUT, or vice versa. It is

important that all the messages are sent as fast as possible, and

that none of the messages are lost during the process, otherwise

the Adaptor might generate errors that do not actually exist,

violating the “no false positives” principle.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

13thTwente Student Conference on IT, June 21st, 2010, Enschede, The

Netherlands.

Copyright 2010, University of Twente, Faculty of Electrical Engineering,

Mathematics and Computer Science.

E
x

p
lo

rer

In
terp

reter

P
rim

er

T
est D

eriver

D
riv

er

M
a

in
 u

n
it

A
d

ap
to

r

C
o

m
m

u
n

ica
to

r

M
o

d
el

S
U

T

Figure 1: The basic architecture of TorX

3. PROBLEM STATEMENT
Although the job of the Adaptor is important, there is no

systematic method of obtaining one. This means that for each

SUT one would need to develop a new Adaptor to be able to

communicate with it. The goal of this paper is to find a more

generic Adaptor and thereby making it easier to support

communication with a new SUT in the future.

3.1 Research Questions
The main problem we want to tackle is the lack of a generic

Adaptor which one can easily use for a SUT. We will begin

developing a specific Adaptor for a Lego robot. Therefore the first

question we want to answer is:

How is it possible to write a specific Adaptor for a Lego

robot?

We will use this as a proof of concept. From there we can try to

obtain a more generic Adaptor for Lego Mindstorms, this leads us

to the more significant question:

Which parts of the specific Adaptor can be generalized for all

Lego Robots?

Such an Adaptor would of course need to be able to handle every

input and output from any Lego Mindstorms motor and sensor. It

needs to be robust and adaptable to be able to handle any Lego

Robot.

Because of the fact that Lego Mindstorms isn’t the only desired

application for this Adaptor, it would be useful to have a more

formal procedure for obtaining Adaptors for any combination of

SUT. Therefore we also want to answer the following question:

To what extent is the Lego Adaptor applicable to other types

of reactive systems other than Lego systems?

4. REQUIREMENTS
As described above, the Adaptor has two main tasks. The Adaptor

we want to build needs to handle those jobs correctly.

The first task for the Adaptor is to translate the messages from the

driver into stimuli for the robot, and to translate the output from

the robot into observations. Because we are going to test a Lego

robot, this means we need to translate the stimuli into actions

performed by one or more Lego Mindstorms motors. The

observations will be a bit more difficult. The sensors provided by

Lego Mindstorms do not always generate the expected results.

Because we are performing a black-box test we will not be using

the motors or sensors used by the SUT itself. Therefore we will be

using a second NXT microcomputer.

The second task for the Adaptor is to correctly pass all the

messages from and to the SUT. This is important because the

Driver needs to know if the sequence in which the messages arrive

at the Adaptor are as good as possible. The problem here occurs

when both the stimulus and the observation are sent at about the

same time. In this case TorX might think the system is in a

different state then the actual state. This might lead to errors that

don’t exist.

The synchronization problem occurs because the communication

between the Adaptor and the Driver needs to be synchronized,

while the communication between the Adaptor and the SUT can’t

be synchronized.

Another problem that might occur is a buffer-overflow.

Sometimes the SUT sends out a burst of observations at the same

time, first of all, none of these observations may get lost at any

point, all of these must be sent to the Driver as soon as possible.

The generic Adaptor will also need to fulfill these requirements.

But it will also need to be as generic as possible, so it can be used

for other SUTs as well.

5. EXISTING SOLUTIONS
TorX currently has a working Adaptor; this Adaptor works by

passing the messages given in the model to the standard-in and

standard-out of the computer or by using a TCP socket. The

current Adaptor is capable of correctly buffering the messages

from the system to be processed later by the driver or the SUT.

Most of this code is still useful and we propose to use this

Adaptor as a basis for the new generic Adaptor.

Next to TorX, several other model-based testing tools were

developed [2], amongst these at least TGV [4] and Gotcha [3]

have been successfully applied in industrial environments [5].

Unfortunately most papers concerning these tools don’t elaborate

on the communication problems we want to research; instead they

choose to elaborate on the mathematics behind the tools [4] or the

differences between the tools [2]. The paper on TGV does

discuss on the communication, and does describe the interface in

a similar manner as TorX [4]; however it doesn’t elaborate on any

communication problems.

6. IMPLEMENTATION
First of all, we needed an SUT we could test. For our SUT, we

decided to use a ball-sorter. We will provide a number of black

and/or white marbles one at a time to a cross shaped sorter, once

the marble lands in the sorter, a sensor will decide if t is either a

black or a white marble. According to the input provided by the

sensor, the sorter will either turn clockwise for a white marble, or

counter-clockwise for a black marble. After all marbles have been

sorted, one would end up with lines of the same color. Figure 2

gives a basic idea of the sorter itself

After we built the sorter, we added a few extra motors and sensors

to the robot, these motors and sensors would be used by a second

NXT microcomputer. These additions will allow TorX to provide

either a black or a white marble to the sorter, and also later on see

if the marble did get sorted correctly. Here it doesn’t matter what

Figure 2: The basic structure for the robot to be used as

the SUT

Input marbles

Sorting engine

White output Black output

the color is of the sorted marble because a black marble in the

white output bin will always generate an error.

Figure 3 provides the overview of the Adaptor and its relation to

TorX. On the right side of the figure we see the SUT and built

around it, the TorX NXT Adaptor. These are the two parts we’ve

discussed above.

Also important for testing a system is the model that describes the

behavior of the system. The model for our sorter provided in

figure 4. In the starting state it can decide to either feed a white

marble to the sorter or a black marble, after that it will wait for the

response from the system.

The last two pieces needed to test if the SUT works are the two

pieces of the Adaptor. We need to divide the system into two

separate pieces because there is no direct communication possible

between TorX and a Lego Mindstorms microcomputer.

The first piece will be the TorX PC Adaptor; its job is to provide

the communications between TorX and the NXT microcomputer.

Communications between TorX and the PC Adaptor will be done

using a TCP Socket. Communications between the PC Adaptor

and the NXT Microcomputer go through a USB connection.

The second part is the TorX NXT Adaptor; this part will translate

the messages from TorX into actions, and will report any

observations back to TorX.

All the different parts within the NXT Adaptor and the PC

Adaptor have also been displayed in Figure 5.

6.1 TorX PC Adaptor
The TorX PC Adaptor is subdivided into two parts, the Stimuli

Handler and the Observation handler.

First of all, the PC Adaptor will set up both the connections with

the NXT micro computer and with TorX. After that it will start

two different threads, one for the observation handler, and one for

the stimuli handler. These set-up tasks are completely generic, and

can be re-used for other Adaptors.

The job of the Stimuli Handler is to translate the messages from

TorX into integers and send them to the NXT microcomputer. The

job of the Observation Handler is the same, just vice versa. For

other Adaptors, these parts will need new translation rules, other

than that, these parts can be reused as well.

When modifying this part of the Adaptor, please note that the end-

of-line characters after the return messages are a necessity,

otherwise TorX will not recognize these messages as the same as

the ones in the model.

6.2 TorX NXT Adaptor
The NXT Adaptor is subdivided into three different parts; similar

to the PC Adaptor we have both a Stimuli Handler and an

Observation Hander. There is however a new part added to this

system: The LCD handler.

Similar to the PC Adaptor, the NXT Adaptor begins with setting

up the connection between the PC Adaptor and the NXT Adaptor

and then setting up the three threads. This part of the Adaptor is

generic as well.

The Stimuli Handler then proceeds to translate any messages from

TorX into actions performed by the Adaptor. The translation part

of the Stimuli Handler will need to be modified for other

Adaptors. The actual functions for controlling the Lego motors

will need to be rewritten for other Adaptors.

The Observation Handler translates any input from the two light

sensors connected to it into observations for TorX. The

 B?

R!

W?

L?

Figure 4: Model of the Sorter

Stimuli Handler

Observation Handler

LCD Handler

Stimuli Handler

Observation Handler

Figure 5: Message flow between the Adaptor parts

TorX PC Adaptor TorX NXT Adaptor

SUT

Model

TorX

TCP

connection

T
o

rX
 P

C
 A

d
ap

to
r

USB

connection

T
o

rX
 N

X
T

 A
d

ap
to

r

Figure 3: Overview of the final product and its relation to other systems

functionality for this part will need to be rewritten as well for any

other Adaptor.

The LCD handler displays some useful numbers on the screen,

this mostly for de-bugging. It can probably be left out in other

Adaptors, should a Software Engineer decide he doesn’t need it.

Because the de-bugging data is very specific to this system, this

part is also not very re-useable for other Adaptors.

7. GENERIC ADAPTOR
Due to time constraints we haven’t been able to set up any kind of

interface for a generic Adaptor, however the structure used for the

generic Adaptor, as described above, can be applied to many more

Lego Mindstorms Robots. All one needs to change are the

messages the PC Adaptor expects from both sides and correctly

translate them into new messages for the next application.

The same goes for the NXT Adaptor. One will need to modify the

expected messages it receives and change them into their own

desired actions. One will also need to set up their own sensors to

check the outputs.

One of the things we wanted to do is write a specific class for

handling the light sensors in the way this system is using it. In that

case the re-use of this specific part could very well be

implemented with a single function call in the Adaptor.

8. CONCLUSIONS
To answer our first research question we’ve built a specific

Adaptor for a specific Lego Robot, the biggest issue with writing

this specific Adaptor was to setting up the communications

between TorX and the PC Adaptor and between the PC Adaptor

and the NXT Adaptor.

As for writing a generic for Lego Mindstorms robots, even though

we didn’t have the time to write one ourselves, a lot of parts

written for the specific Adaptor can be reused for the any other

Lego Mindstorms Adaptor.

As for our last question on a completely generic Adaptor; the

current Adaptor TorX is using is well capable of communicating

with different kinds of systems. Other than the ability to

communicate using TCP Sockets, it can also communicate more

directly using the standard-in and standard-out from the

command-line. The main issue then remains the fact that the

messages need to match the messages TorX is expecting perfectly.

9. REFERENCES

[1] Belinfante, A. JTorX: a Tool for On-line Model-Driven Test

Derivation and Excecution, In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), (2010) pp

266-270

[2] Belinfante, A.F.E. and Frantzen, L. and Schallhart, C. (2005)

Tools for Test Case Generation. In: Model-Based Testing of

Reactive Systems: Advanced Lectures. Lecture Notes in

Computer Science 3472. Springer Verlag, pp. 391-438

[3] Benjamin, M. Geist, D. Hartman, G. Mas, Smeets, R. and

Wolfsthal, Y. (1999) A study in coverage-driven

test generation. In: Proceedings of the 36th ACM/IEEE

Conference on Design Automation (DAC’99). pp. 970-975

[4] Jard, C. and Jeron, T. (2004) TGV: theory, principles and

algorithms, a tool for the automatic synthesis of

conformance test cases for non-deterministic reactive

systems. In: Software Tools for Technology Transfer

(STTT). pp. 297-315

[5] Jeron, T (2009) Symbolic Model-based Test Selection In:

Electronic Notes in Theoretical Computer Science 240

(2009). pp. 167-184

[6] Tretmans, G.J. and Brinksma, H. (2003) TorX: Automated

Model-Based Testing. In: First European Conference on

Model-Driven Software Engineering, December 11-12,

2003, Nuremberg, Germany. pp. 31-43

http://www.scopus.com/source/sourceInfo.url?sourceId=25674&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=25674&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=25674&origin=recordpage

