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1
Introduction

In this modern era humanity surrounds itself by technology impossible to be fully understood
even by its own designers. This may lead to serious problems, when it becomes impossible to
guarantee that a power plant will function properly, that the traffic lights prevent accidents
rather than causing them, that aircrafts stay in the air in all foreseeable conditions and that the
television actually responds to the button pressed on the remote control.

Paradoxically, technology partially alleviates this problem. By creating an abstraction of the
systems that surround us we can use computers to verify that complex systems function properly
according to certain properties. This is called model checking. In model checking, systems such
as power plants, aircrafts, traffic lights and televisions, are modeled as a set of possible states
the system can be in and a set of transitions between these states. In addition there are one or
more initial states that describe the states the system could be in initially. States and transitions
form a transition system that describes system behavior. Formal logics like Computational Tree
Logic (CTL) and Linear Temporal Logic (LTL) can then be used to formally specify properties
as formulae, e.g., the property that a system is free of deadlocks and that no forbidden states
can be reached.

At the core of model checking sits the reachability algorithm, which calculates all possible
states a system can be in based on the initial states and the transitions. Adaptations of this
algorithm can calculate all states with certain properties that are reachable from states with
certain properties, in order to determine whether a system obeys the CTL or LTL formulae.
One of the problems with model checking is the size of the transition system. Even with small
systems, the computational power and memory required to store all explored states is enormous.
One way to deal with this problem is to not store every state individually, but to represent all
states using Boolean functions. This is called symbolic model checking [14].

Boolean functions are generally stored in memory using Binary Decision Diagrams (BDDs) [5,
12, 13] that are usually stored in memory using a hashtable. In order to manipulate Boolean
functions stored using BDDs there are several BDD operations. To calculate the reachable states,
only four operations are necessary: calculating ∧, calculating ∃, calculating a substititution and
calculating ∨. In common BDD implementations there is a special algorithm to calculate the
relational product which combines ∧ and ∃.

In this report we present a new algorithm that combines this relational product with the
substitution. This algorithm is more efficient than calculating the two operations separately.

Since model checking already has huge computational and memory requirements, techniques
that increase the performance of model checking tools are constantly being developed. Recent de-
velopments in hardware and software development focus on using multi-core and multi-processor
architectures. In order to use the computational power of all cores we need to parallelize our
software, i.e., divide our algorithms into smaller parts that can be executed in parallel by mul-
tiple workers (usually one worker per processor core), in such a way that there is maximum
speedup. To maximize speedup we need to minimize overhead caused by memory transactions
and communication between workers. This means we need to develop data structures and al-
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2 Introduction

gorithms to manipulate these data structures that have good scalability, i.e., they perform well
even when heavily used by many workers.

In this report we discuss two data structures that we developed with scalability in mind.
These data structures are based on the lockless paradigm, which avoids mutual exclusion and
depends on atomic operations instead. We also present two approaches to parallelize BDD
algorithms. One approach uses the framework for task-based parallelism Wool [19]. The other
approach uses a framework for result sharing we developed. In result sharing, all workers perform
the same calculation, but share results of subcalculations. This approach is similar to the Swarm
Verification of Holzmann et al. [26]

We have performed experiments with several models from the BEEM database [37] using the
LTSmin toolset [9] extended to support our experimental BDD package Sylvan. We compared
the results to the performance of the same toolset using the BDD package BuDDy as the backend
for symbolic model checking. The results show that our approach gives a significant speedup
compared to BuDDy and that even better speedups should be possible in the future.

This report is structured as follows. Chapter 2 introduces binary decision diagrams. The
implementation of BDDs and the BDD algorithms ITE, RelProd, RelProdS and RRelProdS
are discussed and proven to be correct in Chapter 3. Chapter 4 introduces parallelism and
presents theoretical approaches to parallelism, including our extension of Amdahl’s Law as a
qualitative performance model that can be used to understand limited performance. The two
approaches to parallalization that we studied as well as our design of two data structures, a
lockless lossy memoization cache and a lockless hashtable that supports lazy garbage collection
by reference counting, are presented in Chapter 5. The experiments and results are presented in
Chapter 6. Chapter 7 discusses related work and Chapter 8 concludes the report and contains
ideas for future work.



2
Preliminaries of Binary Decision Diagrams

The current chapter explains the relation between model checking and binary decision diagrams
(BDDs). We also discuss some properties of BDDs that are relevant for our research.

2.1 Model checking

Model checking is a method to verify properties of systems, protocols, programs, et cetera, by
manually specifying or automatically generating an abstract model of the system. This abstract
model can then be used to verify that certain properties hold in all reachable states of the system
or over all paths in the state graph. See also below.

First we define what a model is. A model is a triple (X,Sinitial, R) where X is a set of variable
names, Sinitial ⊆ S is the set of initial states and R is a transition relation defining all possible
transitions in the system.

We assume some setX = {x1, . . . , xn} of variable names. A state s : X → Bool is a valuation
of all variables in X. For instance, s(x1) = true and s(x2) = false. We denote such a state
by x1x2. Let S be the set of all states, i.e., all possible valuations of the variables in X. A
subset V ⊆ S can be denoted by a Boolean function F : S → Bool, indicating which states are
in the set. For example, we can define F = {s | ¬s(x1)}, which is the set of all states that assign
false to the variable x1. For ease of notation, we denote such a function by F (s) = x1.

A transition relation is a relation R ⊆ S × S. We can again denote it by a Boolean function
T : S × S → Bool. For instance, T (s, s′) = {(s, s′) | s(x1) ∧ ¬s(x2) ∧ s′(x2)}. This relation
defines two transitions: one between the state x1x2 and x1x2, and one between x1x2 and x1x2.
For ease of notation, we will again abbreviate s(xi) by xi and ¬s(xi) by xi. Also, we abbreviate
s′(xi) by x′i and ¬s′(xi) by x′i. So, for the example above we have T (s, s′) = x0x1x

′
1.

As an example of a model we consider a stack that can contain two Booleans. There is one
initial state, which is the state where the stack is empty.

Stack Stack0

Stack0,0

Stack0,1

Stack1

Stack1,0

Stack1,1

This model of the stack has 7 states. There are various ways to create an abstract model
using Boolean variables. As an example, we simply assign a number to each state:

3



4 Preliminaries of Binary Decision Diagrams

0 1

2

3

4

5

6

Instead of decimal numbers, we could use binary numbers:

000 001

010

011

100

101

110

Now we can simply use Boolean variables x0, x1 and x2:

x0x1x2 x0x1x2

x0x1x2

x0x1x2

x0x1x2

x0x1x2

x0x1x2

We have encoded the states using three Boolean variables. The model consists of one initial
state (state s = x0x1x2) and it has 12 transitions.

The set of reachable states consists of all states s that are in Sinitial or for which there is a
sequence of states s0, ..., sn such that

1) s0 ∈ Sinitial
2) (si−1, si) ∈ R, for i ∈ {1, . . . , n}
3) sn = s

Based on the initial states and the transitions, all reachable states can be calculated using a
reachability algorithm (see Section 3.4). This is an algorithm that iteratively calculates all states
that are reachable from the current set of reachable states, starting with the set of initial states,
until no new reachable states are found. In the example model, states x0x1x2 and x0x1x2 will be
found in the first iteration of the algorithm and the last four states will be found in the second
iteration of the algorithm. In the third iteration, no new states are found and the algorithm
terminates.

In our simple example we already knew the reachable states in advance. In many models,
this is not the case and often only the initial states and the transition relation are known. For
example, many models are compositions of smaller models with known transition relations.

Testing properties Model checking can be used to calculate all reachable states of algorithms
and to verify that certain properties hold. Examples are the property that every state has one
or more transitions to other states, and the property that certain states are visited on every
infinite path in the state graph. Properties are often expressed in temporal logics like CTL [28]
and LTL [46].

For example consider Dekker’s algorithm. This is a mutual exclusion algorithm for two
processes:
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Process 1:
1 flag[0] := true
2 while flag[1] = true
3 if turn != 0
4 flag[0] := false
5 while turn != 0 { }
6 flag[0] := true
7 // critical section
8 turn := 1
9 flag[0] := false

Process 2:
1 flag[1] := true
2 while flag[0] = true
3 if turn != 1
4 flag[1] := false
5 while turn != 1 { }
6 flag[1] := true
7 // critical section
8 turn := 0
9 flag[1] := false

The goal of mutual exclusion is that it is impossible for processes to be in the critical section
at the same time. Therefore there must not be a reachable state where both processes are at
line 9.

This algorithm can be modeled using 5 variables: the three Boolean variables f0 (flag[0]), f1
(flag[1]) and t (turn), plus program counters p1 and p2. Since the program counter can have 9
different values, 4 Boolean variables are required to represent the program counter. This results
in a total of 11 Boolean variables.

The transitions follow from the algorithm. For example, line 1 of process 1 will be translated
to the transitions with p1 = 1, p′1 = 2, f ′0 = 1, p′2 = p2, f ′1 = f1 and t′ = t, i.e., all transitions from
states where p1 = 1 to states where p1 = 2 and f0 = 1, and all other variables are unchanged.
There are 44 such transitions, because there are 11 values for p2, 2 values for f1 and 2 values for
t. Line 2 of process 1 will be translated to two sets of transitions, one for the case where f1 = 1
(go to line 3) and one for the case where f0 = 0 (go to line 7).

By calculating the transitions of process 1 and process 2, we get transition relations R1 and
R2. The set of transitions of the entire model is R = R1∪R2 and the set of initial states consists
of all states where p1 = 1 and p2 = 1.

We can now calculate all reachable states and verify whether or not there is a reachable
state where both processes are in the critical section, i.e., p1 = 7 and p2 = 7, in which case the
algorithm can lead to a forbidden state. We could also verify whether there are any deadlocks
and whether on infinite paths both processes can enter their critical section infinitely often.

2.2 Storing states and transitions in memory
In general, there are two methods to store the set of visited states.

1) Explicit model checking, in which every state is stored individually in a hash table or similar
data structure.

2) Symbolic model checking [14], in which the set of visited states is represented by a Boolean
function.

In this thesis we are only interested in symbolic model checking. Symbolic model checking
has several advantages. First of all, small Boolean functions can represent a large number of
states. Because of this property some models require much less memory with symbolic model
checking. Also, as we will see in Section 2.3, testing whether two sets are equal (for example
in the reachability algorithm, to see if there are any new states) is trivial in symbolic model
checking since BDDs are canonical representations of Boolean functions. A disadvantages is
that manipulating BDDs, for example adding a single state, takes more time than in explicit
model checking.

2.3 Binary decision diagrams
Binary decision diagrams were introduced by Akers [5] and developed by Bryant [12, 13]. Because
BDDs represent Boolean functions, they can be used to store sets of states in symbolic model
checking. A BDD is a directed acyclic graph expressing the Shannon decomposition of a Boolean
function.
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x

Fx=1 Fx=0

Figure 2.1: BDD node representing (x ∧ Fx=1) ∨ (x ∧ Fx=0)

Definition of restriction. Let

s[x← v] def= λy. if (x = y) then v else s(y)

be the definition of substitution, then the definition of restriction is

Fx=v(s) def= F (s[x← v]).

An alternative definition is: Let F be a Boolean function on X = {x1, . . . , xn}. The re-
strictions (also called projections or cofactors) Fxi=1 and Fxi=0 are Boolean functions defined
as follows:

Fxi=1(x1, . . . , xi−1, xi, xi+1, . . . , xn) def= F (x1, . . . , xi−1, 1, xi+1, . . . , xn)

Fxi=0(x1, . . . , xi−1, xi, xi+1, . . . , xn) def= F (x1, . . . , xi−1, 0, xi+1, . . . , xn)

Theorem. Let F : S → Bool be a Boolean function on S. Then(
F (s) ∧ x = v

)
↔
(
Fx=v(s) ∧ x = v

)
and from this follows:

F (s) ≡ (xFx=1(s)) ∨ (xFx=0(s))

This identity is called the Shannon expansion or Shannon decomposition of F with respect
to x [41]. For example, given a function F = x1(x2∨x3) we have Fx2=1 = x1 and Fx2=0 = x1x3.
Therefore applying the Shannon decomposition gives F ≡ (x2x1) ∨ (x2x1x3).

A BDD over a set X has internal nodes labeled by a Boolean variable in X and leaves labeled
1 and 0. Every internal node with label x has two outgoing edges, one labeled 1 to the subgraph
representing Fx=1 and one labeled 0 to the subgraph representing Fx=0. See also Figure 2.1.

We use the following convention to draw BDDs. Internal nodes are drawn as circles, sub-
graphs are drawn as triangles and leaves are drawn as boxes with a 1 or a 0. Edges of a node with
variable x to Fx=1 are called 1-edges and are drawn solid. Edges to Fx=0 are called 0-edges and
are drawn dashed. By repeatedly applying the Shannon decomposition, any Boolean function
can be represented by a BDD. Examples of simple BDDs are given in Figure 2.2.

An ordered BDD is a BDD where all variables in all paths from the root to a leaf are
encountered according to a total ordering <.

On every path from the root of an ordered BDD to a leaf, every variable is encountered at
most once. Given a state s, an ordered BDD can be evaluated by following the 1-edges or the
0-edges, depending on the valuation of the variables in X. Every path from the root to leaf 1
represents a subset of F , where every variable on the path is either true or false depending
on which edge was followed. For every variable xi that is not on a specific path from the root
to leaf 1, there are states with xi = true and states with xi = false in the set.

In order for an ordered BDD to be called reduced, no nodes must exist with two identical
child nodes (these nodes are redundant) and no duplicate subgraphs must exist. All examples
in Figure 2.2 are ordered and reduced. Any BDD can be reduced by applying the following two
rules:

1) Eliminate redundant nodes.
2) Eliminate duplicate subgraphs by sharing subgraphs.
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x ¬x x0 ∧ x1 x0 ∨ x1 (x0 ∧ x1) ∨ (x0 ∧ x1)

x

1 0

x

0 1

x0

x1

1 0

x0

x1

1 0

x0

x1

1

x1

0

Figure 2.2: BDDs of simple Boolean functions

Note how the following two BDDs represent the same Boolean function. In a reduced BDD
there are no redundant nodes like node x1 in the left BDD.

x0

x1

A

B

x0

A B

Note how the following three BDDs also represent the same Boolean function. In the left
BDD there is a duplicate subgraph. In the middle BDD this duplication is eliminated, but now
there is a redundant node. The right BDD is a reduced BDD.

x0

x1

1

x1

0

x0

x1

1 0

x1

1 0

Reducing an ordered BDD by applying these two rules eliminates all possibilities to represent
the same Boolean function in multiple ways. Therefore, one of the properties of a reduced ordered
BDD is that it gives a canonical representation of Boolean functions. Because reduced ordered
BDDs are canonical, testing whether two sets represented by BDDs are equal is trivial.

In this thesis we assume every BDD is reduced and ordered.

Complement edges

To decrease memory usage and calculation time, subgraphs can be reused to represent related
Boolean functions by adding attributes to edges in a BDD. Several methods are mentioned in
the literature [35, 11, 32, 33].

Complement edges (also called negated edges) indicate that the leaves 1 and 0 will be
switched, negating the Boolean function represented by the node. Complement edges were
introduced by Minato [35] and Brace, Rudell and Bryant [11].

We use a filled circle to denote a complement edge. For example, the following BDDs all
represent the Boolean function F = x0. In the two rightmost BDDs a subgraph is shared.

We will use the symbol ¬ to denote a complement edge in Boolean functions. For example,
the second BDD represents the function ¬((x0 ∧ ¬1) ∨ (x0 ∧ ¬0)). When evaluating ¬F , where
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Figure 2.3: Reusing subgraphs using complement edges

F = (x ∧G) ∨ (x ∧H), the complement carries over, since cofactors distribute over negation:

(¬F )x=1 = ¬(Fx=1) = ¬G
(¬F )x=0 = ¬(Fx=0) = ¬H

A more complex example that shows how complement edges allow reusing subgraphs is given
in Figure 2.3. The left BDD is the BDD without complement edges. In the middle BDD,
complement edges are used to reuse the subgraph 0. In the right BDD, the subgraph x1 is also
reused.

Using edge attributes breaks the property that BDDs uniquely represent Boolean functions.
The following BDDs represent the same Boolean function:

x

A B

(x ∧A) ∨ (x ∧B)

x

A B

¬(x ∧ ¬A) ∨ (x ∧ ¬B)

To maintain canonicity we need a rule that selects exactly one of the alternatives, like the
rule that forbids redundant nodes and the rule that forbids duplicate subgraphs. Minato [35]
proposes the following constraints:

1) Only 0 is used as the value of a leaf.
Alternative rule 1 : only 1 is used as the value of a leaf.
Alternative rule 2 : do not allow complement edges on leaves.

2) No complement edges are allowed on 0-edges.
Alternative rule: no complement edges are allowed on 1-edges.

An advantage of complement edges is that negation is trivial to implement.
We will use this property in section 3.3 to improve various BDD algorithms.



3
Implementation Techniques of BDDs

The current chapter discusses the implementation of BDDs. First we discuss how BDDs are
usually stored in memory. Then we discuss the most important BDD operations for model
checking. We present the existing algorithm ITE that is used to calculate the application of
all binary Boolean operators. We also present the existing algorithm RelProd that is used to
calculate the relational product of the Boolean function representing the set of states and the
Boolean function representing the transition relation.

After discussing existing material we present our new specialized algorithm for the calculation
of the relational product with substitution, RelProdS, and its dual, ReversedRelProdS. We
suggest these algorithms are more efficient than separately calculating RelProd and applying
substitution on the result.

3.1 BDDs in memory
BDD nodes are stored in memory using memory arrays. Every BDD node represents a BDD. A
reference to a BDD is the index in that memory array [27]. We assign a unique label to every
variable x1, . . . , xn in X. Every BDD node consists of this variable label, the reference to the
1-edge BDD, the reference to the 0-edge BDD and one bit to indicate a complement on the
1-edge.

In addition to the memory array holding the BDD nodes, a Unique Table is necessary to
ensure that there are no duplicate nodes. This Unique Table is usually implemented as a hash
table. In some BDD implementations, the array of BDD nodes is merged with the Unique Table,
such that the hash table stores the nodes, instead of references to the nodes. The advantage is
that the implementation is simpler. The disadvantage is that there is less memory locality, since
nodes in a hash table are not stored together. In this thesis we focus on using a single hash table
to store all BDDs, mainly because the implementation is much simpler.

BDD implementations also require Computed Tables, which are memoization caches for the
operations. See Section 3.2 for more details.

Garbage collection is essential for BDDs. Every modification to a subgraph in a BDD also
implies the modification of all ancestors in that BDD1. Unused BDD nodes should be deleted
to free space for new BDD nodes. However, Somenzi [43] mentions that unused BDD nodes are
often reused and that garbage collection should only be performed when there are enough dead
nodes to justify the cost of garbage collection and recreating nodes that were deleted during
garbage collection. The data structures used to store BDDs should therefore support garbage
collection, for example using reference counting or mark-and-sweep approaches.

In BDD implementations, the method MK is used to create or reuse BDD nodes. This method
uses the rules defined in Section 2.3 to guarantee canonicity. The implementation of MK is given

1While it could be possible to modify nodes rather than creating new nodes in the BDD table, this will also
affect other BDDs that use the modified BDD. Also, modifying nodes usually requires an update in the Unique
Table, so creating a new BDD node is actually less expensive than modifying an existing node.

9
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in Listing 3.1.

BDD MK(int x, BDD Fx=1, BDD Fx=0)
if Fx=0 = Fx=1

return Fx=0
if complemented(Fx=0)

return compl(hashtable.getOrCreate(x, compl(Fx=1), compl(Fx=0)))
return hashtable.getOrCreate(x, Fx=1, Fx=0)

Listing 3.1: Implementation of MK

Theorem 3.1. If x is less than all variables in Fx=1 and Fx=0 according to the ordering <,
and Fx=1 and Fx=0 are reduced ordered BDDs according to <, then MK returns a reduced ordered
BDD according to < representing (x ∧ Fx=1) ∨ (x ∧ Fx=0) according to the rules in Section 2.3.

Proof. In the first case, Fx=0 is returned which is a reduced ordered BDD according to < and
since Fx=1 = Fx=0 the result obeys the specification. In the second and third case, using a
hashtable guarantees that no duplicate subgraphs are created. In the second case, creating
duplicates due to complementation is prevented. Since x is less than Fx=0 and Fx=1, the result
is a reduced ordered BDD according to <.

3.2 Implementation of BDD algorithms
BDD packages implement a number of operations on BDDs. Various basic operations mentioned
by Drechsler and Sieling [18] are:
• evaluation: calculating cofactors, following edges
• equivalence testing: check whether two functions are equivalent
• satisfiability: enumerating and counting one or all satisfying valuations
• synthesis: creating new BDDs, e.g. by applying operators to functions
• substitution: replacing variables by other variables or functions
• quantification: calculating ∀ and ∃

Most BDD operations are recursively defined based on the Shannon decomposition. Such
operations consist of selecting a variable x, recursively calculating the results of the subproblems
where all parameters are restricted to x = 0 or x = 1, and calculating the end result, usually by
creating a BDD node representing (x ∧ Fx=1) ∨ (x ∧ Fx=0).

BDD operations are typically implemented using dynamic programming, which is a method
to solve problems by breaking them down into smaller subproblems [8]. There is a distinction
between top-down dynamic programming and bottom-up dynamic programming. In top-down
dynamic programming, the computation starts at the root problem and subproblems are recurs-
ively calculated. To avoid calculating subproblems multiple times, the results are cached using
a memoization cache. In bottom-up dynamic programming, the smallest subproblems are first
solved and their solutions are used to solve bigger subproblems until the root problem has been
solved.

Bottom-up dynamic programming does not work well for BDD operations, because it is not
known in advance which subproblems need to be solved. The number of possible subproblems is
many times larger than the number of required subproblems to solve the root problem. Therefore
top-down dynamic programming is used to implement BDD operations.

In the following sections we describe four BDD algorithms. We first specify each algorithm,
then prove the correctness of the specification. We give an implementation of the algorithm. We
define rewrite rules to normalize equivalent parameters (e.g. the result of A ∧B is the same as
the result of B ∧A) for every operation.

We assume the following equivalences in the correctness proofs:

F ≡ (x ∧ Fx=1) ∨ (x ∧ Fx=0) Shannon decomposition
(F ∨G)x=v ≡ Fx=v ∨Gx=v distribution of restriction over ∨
(F ∧G)x=v ≡ Fx=v ∧Gx=v distribution of restriction over ∧

(∃xF )y=v ≡ ∃x(Fy=v) commutivity of restriction and ∃ if x 6= y
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∃xF ≡ Fx=1 ∨ Fx=0 definition of ∃
∃x(F ∨G) ≡ (∃xF ) ∨ (∃xG) distribution of ∃ over ∨
(F ∨G)[S] ≡ F [S] ∨G[S] distribution of substitution over ∨
(F ∧G)[S] ≡ F [S] ∧G[S] distribution of substitution over ∧

F [S] ≡ F [S] commutivity of substitution and negation

We also assume the notation ∃X as shorthand for ∃x1 . . . ∃xn.

3.3 Using ITE for synthesis operations
One of the most basic BDD operations is applying a Boolean operator F ‡G, where ‡ is a binary
Boolean operator (see Table 3.1). These operations can be calculated using the If-Then-Else
(ITE) operation, which has the specification

ITE(A,B,C) ≡ (A ∧B) ∨ (A ∧ C).

An alternative but equivalent specification is ITE(A,B,C) ≡ (A→ B) ∧ (A→ C).
Common Boolean operators can be calculated using ITE as described in Table 3.1.

Table 3.1: Boolean operators and their ITE variants.

Boolean operator ITE
F ∧G ITE(F , G, 0)
F ∨G ITE(F , 1, G)
F ⊕G ITE(F , G, G)
¬(F ∧G) ITE(F , G, 1)
¬(F ∨G) ITE(F , 0, G)
F → G ITE(F , G, 1)
F ← G ITE(F , 1, G)
F ↔ G ITE(F , G, G)
F ∧G ITE(F , 0, G)
F ∧G ITE(F , G, 0)

Definition 3.2 (ITE operation). Let ITEx=v be shorthand for ITE(Ax=v, Bx=v, Cx=v) with
v ∈ {0, 1} and let x be the top variable of A, B and C. Then ITE is defined as follows:

ITE(A,B,C) =


B A = 1
C A = 0
MK(x,ITEx=1,ITEx=0) otherwise

Theorem 3.3. ITE(A,B,C) obeys the specification (A ∧B) ∨ (A ∧ C).

Proof. By induction on the size of A, B and C. We assume the induction hypothesis ITEx=v ≡
(Ax=v ∧Bx=v)∨ (Ax=v ∧Cx=v) ≡ ((A∧B)∨ (A∧C))x=v (by distribution of restriction). There
are three cases:

1) If A = 1, then B = (1 ∧B) ∨ (0 ∧ C) = (A ∧B) ∨ (A ∧ C)

2) If A = 0, then C = (0 ∧B) ∨ (1 ∧ C) = (A ∧B) ∨ (A ∧ C)

3) Else, then

MK(x,ITEx=1,ITEx=0) 1= (x ∧ ITEx=1) ∨ (x ∧ ITEx=0)
2= (x ∧ ((A ∧B) ∨ (A ∧ C))x=1) ∨ (x ∧ ((A ∧B) ∨ (A ∧ C))x=0)
3= (A ∧B) ∨ (A ∧ C)

Step 1: by definition. Step 2: by induction hypothesis. Step 3: by Shannon decomposition.
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Furthermore, since x is the top variable of A, B and C, always at least one of the parameters
to ITEx=v is smaller than the original.

Theorem 3.4. The result of ITE(A,B,C) is a reduced ordered BDD according to < if A, B
and C are reduced ordered BDDs according to <.

Proof. This is automatically true in case 1 and case 2, since B and C are reduced ordered BDDs
according to <. In case 3, the result of MK is only a reduced ordered BDD according to < if x is
less than all variables in ITEx=1 and ITEx=0, and if ITEx=1 and ITEx=0 are ordered according
to <. Ax=v, Bx=v and Cx=v can only contain variables greater than x since they are represented
by ordered BDDs and x is the top variable of A, B and C. Since A, B and C are ordered BDDs,
Ax=v, Bx=v and Cx=v are also ordered BDDs. Therefore x is less than all variables in ITEx=1
and ITEx=0 and the result of ITE is a reduced ordered BDD.

Implementation The implementation of ITE is given in Listing 3.2.

BDD ITE(BDD A, BDD B, BDD C)
// (1) Terminating cases
if A = 1 then return B
if A = 0 then return C

// (2) Check cache
if inCache(A, B, C) then return result

// (3) Calculate top variable and cofactors
x := topVariable(xA, xB, xC)
A0 := cofactor0(A, x) B0 := cofactor0(B, x) C0 := cofactor0(C, x)
A1 := cofactor1(A, x) B1 := cofactor1(B, x) C1 := cofactor1(C, x)

// (4) Recursive calls
R0 := ITE(A0, B0, C0)
R1 := ITE(A1, B1, C1)

// (5) Calculate result
result := MK(x, R1, R0)

// (6) Store result in cache
putInCache(A, B, C, result)

// (7) Return result
return result

Listing 3.2: ITE implementation

Use of a memoization cache reduces the number of ITE calls from exponential complexity to
polynomial complexity in the number of nodes in A, B and C.

Efficient use of the computed table can be improved by executing the following normalization
rules in the presented order to form standard triples [11]. These rewrite rules follow from logical
equivalences and they select one of the alternative equivalent computations.

ITE(A,A,C)→ ITE(A, 1, C) (3.1)
ITE(A,¬A,C)→ ITE(A, 0, C) (3.2)
ITE(A,B,A)→ ITE(A,B, 0) (3.3)

ITE(A,B,¬A)→ ITE(A,B, 1) (3.4)
ITE(A,B,B)→ B (3.5)
ITE(1, B,C)→ B (3.6)
ITE(0, B,C)→ C (3.7)
ITE(A, 1, 0)→ A (3.8)
ITE(A, 0, 1)→ ¬A (3.9)
ITE(A, 1, C)→ ITE(C, 1, A) when C<A (3.10)
ITE(A, 0, C)→ ITE(¬C, 0,¬A) when C<A (3.11)
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ITE(A,B, 1)→ ITE(¬B,¬A, 1) when B<A (3.12)
ITE(A,B, 0)→ ITE(B,A, 0) when B<A (3.13)

ITE(A,B,¬B)→ ITE(B,A,¬A) when B<A (3.14)
ITE(A,B,C)→ ITE(¬A,C,B) when A is complemented (3.15)
ITE(A,B,C)→ ¬ITE(A,¬B,¬C) when B is complemented (3.16)

Rules 1 to 5 simplify the tuple (A,B,C) such that none of them are equivalent to internal
BDD nodes (with possibly negated edges). The exception is the case where B = ¬C which
cannot be simplified. Rules 5 to 9 will handle all trivial combinations that do not require further
calculation. Rules 10 to 14 are rewrite rules that use an ordering < to exchange A with B or
C whenever this is possible, such that A is first according to <. A possible ordering < is an
ordering on the memory address of the BDD, or on the index in the BDD array. Rules 15 and
16 remove the negation on A and B, such that only C may be a negated BDD and that possibly
the result of the ITE operation will be negated. Note that rule 16 also negates the result of the
ITE operation.

Rules 1 to 8 are trivial to implement. Rules 9 to 16 require the calculation of negated Boolean
functions, but using complement edges this is also trivial. All rules can therefore be applied in
constant time.

It can be trivially demonstrated that these substitution rules are idempotent.

3.4 Model checking using RelProd

The basic building block for model checking algorithms is the reachability algorithm, which
calculates all reachable states given an initial set of states and a transition relation. In every
iteration of this algorithm, a new set of reachable states is calculated based on the set of currently
reachable states and the transition relation. This algorithm continues until no new states are
found, i.e., the new set of visited states is equivalent to the previous set of visited states.

A popular symbolic algorithm for computing state transitions is based on calculating the
relational product of the set of states and the transition relation [14], where both the set of
states and the transition relation are represented by Boolean functions.

The relational product is defined as ∃X · (A∧B), where A and B are Boolean functions and
X is a set of variables.

The reachability algorithm is typically implemented as in Listing 3.3.

BDD Reachability(BDD Initial, BDD T, Set X, Set X′)
BDD Reachable := Initial, Previous := 0
while Reachable != Previous

BDD Next := (∃X · (Reachable ∧ T ))[X′/X]
Previous := Reachable
Reachable := Reachable ∨ Next

return Reachable

Listing 3.3: Basic reachability algorithm

Given a function V (X) representing a set of states and a function T (X,X ′) representing
the transition relation, symbolic model checking tools like NuSMV [16] calculate the set of next
states V ′(X) by calculating V ′(X ′) first and then substituting with the corresponding variables
in X:

V ′(X ′) = ∃X
(
V (X) ∧ T (X,X ′)

)
V ′(X) = V ′(X ′)[X ′/X]

The relational product can be used to calculate the successors because V (X) ∧ T (X,X ′)
essentially limits the transition relation to transitions from states in the set represented by
V (X). These states are then abstracted from the result using ∃X so only the successors remain.
However, the result uses variables in the setX ′ and all variables must be substituted to get V ′(X)
instead of V ′(X ′). For example, if V (X) = x1 and T (X,X ′) = x1x2x

′
1x
′
2, then V ′(X ′) = x′1x

′
2
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and V ′(X) = x1x2. That means the successors of the states with s(x1) = false are the states
with both s(x1) = true and s(x2) = true.

Definition 3.5 (RelProd operation). Let RPx=v be shorthand for RelProd(Ax=v, Bx=v, X)
with v ∈ {0, 1} and let x be the top variable of A and B. Then RelProd is defined as follows:

RelProd(A,B,X) =


1 A = 1 ∧B = 1
0 A = 0 ∨B = 0
ITE(RPx=0, 1,RPx=1) x ∈ X
MK(x,RPx=1,RPx=0) otherwise

Theorem 3.6. RelProd(A,B,X) obeys the specification ∃X · (A ∧B).

Proof. By induction on the size of A and B. We assume the induction hypothesis RPx=v ≡
∃X · (Ax=v ∧Bx=v). There are four cases:

1) If A = 1 ∧B = 1, then 1 = ∃X · 1 = ∃X · (A ∧B)

2) If A = 0 ∨B = 0, then 0 = ∃X · 0 = ∃X · (A ∧B)

3) If x ∈ X, then

ITE(RPx=0, 1,RPx=1) 1= (RPx=0 ∧ 1) ∨ (RPx=0 ∧ RPx=1)
2= RPx=0 ∨ RPx=1
3=
(
∃X · (Ax=0 ∧Bx=0)

)
∨
(
∃X · (Ax=1 ∧Bx=1)

)
4=
(
∃X · (A ∧B)x=0

)
∨
(
∃X · (A ∧B)x=1

)
5= ∃X ·

(
(A ∧B)x=0 ∨ (A ∧B)x=1

)
6= ∃X∃x · (A ∧B)
7= ∃X · (A ∧B)

Step 1: by definition. Step 2: by logical equivalence. Step 3: by induction hypothesis.
Step 4: by distribution of restriction over ∧. Step 5: by distribution of ∃ over ∨. Step 6:
by definition of ∃. Step 7: x ∈ X.

4) If x /∈ X (otherwise), then

MK(x,RPx=1,RPx=0) 1= (x ∧ RPx=1) ∨ (x ∧ RPx=0)
2=
(
x ∧ ∃X · (Ax=1 ∧Bx=1)

)
∨
(
x ∧ ∃X · (Ax=0 ∧Bx=0)

)
3=
(
x ∧ ∃X · (A ∧B)x=1

)
∨
(
x ∧ ∃X · (A ∧B)x=0

)
4=
(
x ∧ (∃X · (A ∧B))x=1

)
∨
(
x ∧ (∃X · (A ∧B))x=0

)
5= ∃X · (A ∧B)

Step 1: by definition. Step 2: by induction hypothesis. Step 3: by distribution of restriction
over ∧. Step 4: by commutivity of restriction and ∃, since x /∈ X. Step 5: by Shannon
decomposition.

Furthermore, since x is the top variable of A and B, always at least one of the parameters of
RPx=v is smaller than the original.

Theorem 3.7. The result of RelProd(A,B,X) is a reduced ordered BDD according to < if A
and B are reduced ordered BDDs according to <.

Proof. This is automatically true in case 1 and case 2. In case 3, the result of ITE is a reduced
ordered BDD according to <, which we proved earlier, since A and B are reduced ordered BDDs
according to the same <. In case 4, the result of MK is only a reduced ordered BDD according to
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< if x is less than all variables in RPx=1 and RPx=0 and if RPx=1 and RPx=0 are ordered according
to <. Ax=v and Bx=v can only contain variables greater than X since they are represented by
ordered BDDs and x is the top variable of A and B. Since A and B are ordered BDDs, Ax=v

and Bx=v are also ordered BDDs. Therefore, x is less than all variables in RPx=1 and RPx=0
and the result of RelProd is a reduced ordered BDD.

Implementation The RelProd implementation is given in Listing 3.4.

BDD RelProd(BDD A, BDD B, X)
// (1) Terminating cases
if A = 1 ∧B = 1 then return 1
if A = 0 ∨B = 0 then return 0

// (2) Check cache
if inCache(A, B, X) then return result

// (3) Calculate top variable and cofactors
x := topVariable(xA, xB)
A0 := cofactor0(A, x) B0 := cofactor0(B, x)
A1 := cofactor1(A, x) B1 := cofactor1(B, x)

if x ∈ X
// (4) Calculate subproblems and result when x ∈ X
R0 := RelProd(A0, B0, X)
if R0 = 1 then result := 1 // Because 1 ∨R1 = 1
else

R1 := RelProd(A1, B1, X)
result := ITE(R0, 1, R1) // Calculate R0 ∨R1

else
// (5) Calculate subproblems and result when x /∈ X
R0 := RelProd(A0, B0, X)
R1 := RelProd(A1, B1, X)
result := MK(x, R1, R0)

// (6) Store result in cache
putInCache(A, B, X, result)

// (7) Return result
return result

Listing 3.4: RelProd implementation

When x ∈ X and RPx=0 = 1 it is not necessary to calculate RPx=1. Alternatively, RPx=1
could be checked first and when it is 1, calculating RPx=0 could be skipped.

Similar to the normalization rules for ITE we can define the following normalization rules
for RelProd:

RelProd(1, 1, X)→ 1 (3.1)
RelProd(A,¬A,X)→ 0 (3.2)
RelProd(A, 0, X)→ 0 (3.3)
RelProd(0, A,X)→ 0 (3.4)
RelProd(A,A,X)→ RelProd(1, A,X) (3.5)
RelProd(A, 1, X)→ RelProd(1, A,X) (3.6)
RelProd(A,B,X)→ RelProd(B,A,X) when B<A (3.7)

These normalization rules are trivial to implement. Especially rules 5 through 7 are important
to improve the usefulness of the memoization cache.

3.5 Reducing redundancy using RelProdS

In this section we present a new algorithm that calculates the relational product with substitu-
tion.
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As mentioned above, current model checkers, for example NuSMV, first calculate the rela-
tional product and then calculate the substitution of the result. The relational product operation
is insufficient to generate the set of next states, because the result is defined on ’next state’ vari-
ables X ′ instead of ’state’ variables X. When calculating a substitution, new nodes are created
for two reasons. First, modifying existing nodes is potentially harmful due to the sharing of
subgraphs with other BDDs. Secondly, modifying existing nodes requires updating the Unique
Table, so it is easier to create a new node, especially when nodes are stored inside the Unique
Table rather than separately. The consequence is that two BDDs are created: one representing
the set of new states defined on the X ′ variables and one representing the set of new states
defined on the X variables.

We present a new algorithm that combines the relational product and substitution, elimin-
ating the unnecessary creation of the BDD defined on the X ′ variables. Comparing our new
algorithm to the old algorithm is future work.

Let A and B be BDDs representing Boolean functions, X be a set of variables and [S] be a
substitution. Then the specification of RelProdS is:

RelProdS(A,B,X, S) ≡
(
∃X · (A ∧B)

)
[S].

Definition 3.8 (RelProdS operation). Let RPSx=v be shorthand for RelProdS(Ax=v, Bx=v, X, S)
with v ∈ {0, 1} and let x be the top variable of A and B. Then RelProdS is defined as follows:

RelProdS(A,B,X, S) =


1 A = 1 ∧B = 1
0 A = 0 ∨B = 0
ITE(RPSx=0, 1,RPSx=1) x ∈ X
ITE(S(x),RPSx=1,RPSx=0) otherwise

Theorem 3.9. RelProdS(A,B,X, S) obeys the specification
(
∃X · (A ∧B)

)
[S].

Proof. By induction on the size of A and B. We assume the induction hypothesis RPSx=v ≡(
∃X · (Ax=v ∧Bx=v)

)
[S] ≡

(
∃X · (A∧B)x=v

)
[S] (by distribution of restriction). There are four

cases:

1) If A = 1 ∧B = 1, then 1 = (∃X · 1)[S] =
(
∃X · (A ∧B)

)
[S].

2) If A = 0 ∨B = 0, then 0 = (∃X · 0)[S] =
(
∃X · (A ∧B)

)
[S].

3) If x ∈ X then:

ITE(RPSx=0, 1,RPSx=1) 1= (RPSx=0 ∧ 1) ∨ (RPSx=0 ∧ RPSx=1)
2= RPSx=0 ∨ RPSx=1
3=
(
∃X · (Ax=0 ∧Bx=0)

)
[S] ∨

(
∃X · (Ax=1 ∧Bx=1)

)
[S]

4=
(
∃X · (A ∧B)x=0

)
[S] ∨

(
∃X · (A ∧B)x=1

)
[S]

5=
((
∃X · (A ∧B)x=0

)
∨
(
∃X · (A ∧B)x=1

))
[S]

6=
(
∃X ·

(
(A ∧B)x=0 ∨ (A ∧B)x=1

))
[S]

7=
(
∃X∃x · (A ∧B)

)
[S]

8=
(
∃X · (A ∧B)

)
[S]

Step 1: by definition. Step 2: logical equivalence. Step 3: by induction hypothesis. Step 4:
by distribution of restriction over ∧. Step 5: by distribution of substitution over ∨. Step
6: by distribution of ∃ over ∨. Step 7: by definition of ∃. Step 8: x ∈ X.
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4) If x /∈ X then:

ITE(S(x),RPSx=1,RPSx=0) 1= (S(x) ∧ RPSx=1) ∨ (S(x) ∧ RPSx=0)
2= (S(x) ∧ RPSx=1) ∨ (S(x) ∧ RPSx=0)
3=
(
S(x) ∧

(
∃X · (Ax=1 ∧Bx=1)

)
[S]
)
∨(

S(x) ∧
(
∃X · (Ax=0 ∧Bx=0)

)
[S]
)

4=
(
S(x) ∧

(
∃X · (A ∧B)x=1

)
[S]
)
∨(

S(x) ∧
(
∃X · (A ∧B)x=0

)
[S]
)

5=
(
S(x) ∧

(
∃X · (A ∧B)

)
x=1[S]

)
∨(

S(x) ∧
(
∃X · (A ∧B)

)
x=0[S]

)
6=
((
x ∧

(
∃X · (A ∧B)

)
x=1

)
∨
(
x ∧

(
∃X · (A ∧B)

)
x=0

))
[S]

7=
(
∃X · (A ∧B)

)
[S]

Step 1: by definition. Step 2: by commutivity of substitution and negation. Step 3: by
induction hypothesis. Step 4: by distribution of restriction over ∧. Step 5: by commutivity
of restriction and ∃, since x /∈ X. Step 6: by distribution of substitution over ∨. Step 7:
by Shannon decomposition.

Furthermore, since x is the top variable of A and B, always at least one of the parameters of
RPSx=v is smaller than the original.

Theorem 3.10. The result of RelProdS(A,B,X, S) is a reduced ordered BDD according to <
if A and B are reduced ordered BDDs according to <.

Proof. In case 1 and case 2, this is automatically true. In case 3 and case 4, the result of ITE
is a reduced ordered BDD, which we proved earlier, since A and B are reduced ordered BDDs
according to <, therefore Ax=v and Bx=v are reduced ordered BDDs according to <.

Variation The above algorithm can be modified for specific cases. If variables in X and
corresponding (according to S) variables in X ′ are in the same order according to <, for example
by pairing them, we can replace ITE in case 4 by MK(S(x),RPSx=1,RPSx=0). It can easily be
proven that the result is still a reduced ordered BDD since RPSx=1 and RPSx=0 can only contain
variables in X ′ that are greater than S(x) according to <.

Implementation The RelProdS implementation is given in Listing 3.5.
As with RelProd, when x ∈ X and RPSx=0 = 1 it is not necessary to calculate RPSx=1.

Alternatively, RPSx=1 could be checked first and when it is 1, calculating RPSx=0 could be
skipped.

For RelProdS we can use the same normalization rules as for RelProd.

3.6 Reversed RelProdS

In model checking it is often necessary to calculate the set of previous states, that is, calculate
the set of all states that have a transition to states in S. One of the applications is checking for
states that do not have successors, also called deadlocks. We can calculate which states of a set
S do not have successors, by calculating which states do have successors:

Sdeadlock = S \ predecessors(successors(S)).

The successors of a set of states represented by the Boolean function F can be calculated
using RelProdS(F, T,X, [X/X ′]), where T is the Boolean function representing the transition
relation. We can calculate the predecessor of a set of states using RelProdS and the inverse of
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BDD RelProdS(BDD A, BDD B, Set X, Substitution S)
// (1) Terminating cases
if A = 1 ∧B = 1 then return 1
if A = 0 ∨B = 0 then return 0

// (2) Check cache
if inCache(A, B, X, S) then return result

// (3) Calculate top variable and cofactors
x := topVariable(xA, xB)
A0 := cofactor0(A, x) B0 := cofactor0(B, x)
A1 := cofactor1(A, x) B1 := cofactor1(B, x)

if x ∈ X
// (4) Calculate subproblems and result when x ∈ X
R0 := RelProdS(A0, B0, X, S)
if R0 = 1 then result := 1 // Because 1 ∨R1 = 1
else

R1 := RelProdS(A1, B1, X, S)
result := ITE(R0, 1, R1) // Calculate R0 ∨R1

else
// (5) Calculate subproblems and result when x /∈ X
R0 := RelProdS(A0, B0, X, S)
R1 := RelProdS(A1, B1, X, S)
result := ITE(S(x), R1, R0)

// (6) Store result in cache
putInCache(A, B, X, S, result)

// (7) Return result
return result

Listing 3.5: RelProdS implementation

T , but then the inverse of T must be calculated, increasing memory usages. Alternatively, the
predecessors can be calculated directly.

We present the dual of RelProdS which can be used to obtain this set of predecessors. Let
X and X ′ be disjunct sets of variables and [S] be the substitution [X/X ′] and A be a Boolean
function defined on X and B be a Boolean function defined on X ∪ X ′. Then RRelProdS is
specified as follows:

RRelProdS(A,B,X ′, S) = ∃X ′ · (A[S] ∧B).

Definition 3.11 (RelProdS operation). Let S−1 be the inverse of S, i.e., [X ′/X], xA be the
top variable of A, xB be the top variable of B, x be the top variable of S(xA) and xB , RRPSx=v be
shorthand for RRelProdS(AS−1(x)=v, Bx=v, X

′, S), and RRPSB
x=v for RRelProdS(A,Bx=v, X

′, S).
Then RRelProdS is defined as follows:

RRelProdS(A,B,X ′, S) =


1 A = 1 ∧B = 1
0 A = 0 ∨B = 0
ITE(RRPSx=0, 1,RRPSx=1) x ∈ X ′

ITE(x,RRPSB
x=1,RRPS

B
x=0) otherwise (x ∈ X)

Theorem 3.12. RRelProdS(A,B,X ′, S) obeys the specification ∃X ′ · (A[S] ∧B).

Proof. By induction on the size of A and B. We assume the induction hypotheses RRPSx=v ≡
∃X ′ · (AS−1(x)=v[S] ∧Bx=v) and RRPSB

x=v ≡ ∃X ′ · (A[S] ∧Bx=v). There are four cases:

1) If A = 1 ∧B = 1 then 1 = ∃X ′ · 1 = ∃X ′ ·
(
A[S] ∧B

)
.

2) If A = 0 ∨B = 0 then 0 = ∃X ′ · 0 = ∃X ′ ·
(
A[S] ∧B

)
.
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3) If x ∈ X ′ then:

ITE(RRPSx=0, 1,RRPSx=1) 1= (RRPSx=0 ∧ 1) ∨ (RRPSx=0 ∧ RRPSx=1)
2= RRPSx=0 ∨ RRPSx=1
3=
(
∃X ′ ·

(
AS−1(x)=0[S] ∧Bx=0

))
∨(

∃X ′ ·
(
AS−1(x)=1[S] ∧Bx=1

))
4=
(
∃X ′ ·

(
A[S]x=0 ∧Bx=0

))
∨
(
∃X ′ ·

(
A[S]x=1 ∧Bx=1

))
5=
(
∃X ′ ·

(
A[S] ∧B

)
x=0

)
∨
(
∃X ′ ·

(
A[S] ∧B

)
x=1

)
6= ∃X ′ ·

((
A[S] ∧B

)
x=0 ∨

(
A[S] ∧B

)
x=1

)
7= ∃X ′∃x ·

(
A[S] ∧B

)
8= ∃X ′ · (A[S] ∧B)

Step 1: by definition. Step 2: by logical equivalence. Step 3: by induction hypothesis.
Step 4: S(S−1(x)) = x since x ∈ X ′ (If x ∈ X then S−1(x) = x and S(S−1(x)) 6= x). Step
5: by distribution of restriction over ∧. Step 6: by distribution of ∃ over ∨. Step 7: by
definition of ∃. Step 8: x ∈ X ′.

4) If x ∈ X then:

ITE(x,RRPSB
x=1,RRPS

B
x=0) 1= (x ∧ RRPSB

x=1) ∨ (x ∧ RRPSB
x=0)

2= (x ∧ ∃X ′ · (A[S] ∧Bx=1)) ∨ (x ∧ ∃X ′ · (A[S] ∧Bx=0))
3= (x ∧ ∃X ′ · (A[S]x=1 ∧Bx=1)) ∨ (x ∧ ∃X ′ · (A[S]x=0 ∧Bx=0))
4= (x ∧ ∃X ′ · (A[S] ∧B)x=1) ∨ (x ∧ ∃X ′ · (A[S] ∧B)x=0)
5= (x ∧ (∃X ′ · (A[S] ∧B))x=1) ∨ (x ∧ (∃X ′ · (A[S] ∧B))x=0)
6= ∃X ′ · (A[S] ∧B)

Step 1: by definition. Step 2: by induction hypothesis. Step 3: x ∈ X, therefore x is
not a variable in A[S], therefore A[S]x=v = A[S]. Step 4: by distribution of restriction
over ∧. Step 5: by commutivity of restriction and ∃, since x /∈ X ′. Step 6: by Shannon
decomposition.

Furthermore, since x is the top variable of A and B, always at least one of the parameters of
RPSx=v is smaller than the original.

Theorem 3.13. The result of RRelProdS(A,B,X ′, S) is a reduced ordered BDD according to
< if A and B are reduced ordered BDDs according to <.

Proof. In case 1 and case 2, this is automatically true. In case 3 and case 4, the result of ITE
is a reduced ordered BDD, which we proved earlier, since A and B are reduced ordered BDDs
according to <, therefore Ax=v and Bx=v are reduced ordered BDDs according to <.

Implementation : The RRelProdS implementation is given in Listing 3.6.
As with RelProd and RelProdS, when x ∈ X and RRPSx=0 = 1 it is not necessary to

calculate RRPSx=1. Alternatively, RRPSx=1 could be checked first and when it is 1, calculating
RRPSx=0 can be skipped.

For RRelProdS we can use the same standard triples as for RelProd and RelProdS.
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BDD RRelProdS(BDD A, BDD B, Set X′, Substitution S)
// (1) Terminating cases
if A = 1 ∧B = 1 then return 1
if A = 0 ∨B = 0 then return 0

// (2) Check cache
if inCache(A,B,X′,S) then return result

// (3) Calculate top variable and cofactors
x := topVariable(S(xA), xB)
A0 := cofactor0(A, S−1(x)) B0 := cofactor0(B, x)
A1 := cofactor1(A, S−1(x)) B1 := cofactor1(B, x)

if x ∈ X′

// (4) Calculate subproblems and result when x ∈ X′

R0 := RRelProdS(A0, B0, X′, S)
if R0 = 1 then result := 1
else

R1 := RRelProdS(A1, B1, X′, S)
result := ITE(R0, 1, R1)

else
// (5) Calculate subproblems and result when x ∈ X
R0 := RRelProdS(A, B0, X′, S)
R1 := RRelProdS(A, B1, X′, S)
result := MK(x, R0, R1)

// (6) Store result in cache
putInCache(A,B,X′,S,result)

// (7) Resturn result
return result

Listing 3.6: RRelProdS implementation

3.7 Conclusions
In this chapter, we discussed how BDDs are implemented. We also presented a new algorithm,
RelProdS, that removes the creation of unnecessary BDD nodes in the reachability algorithm.
We also proved that the algorithms ITE, RelProd, RelProdS and RRelProdS are correct and
result in a ordered, reduced BDDs. We implement the RelProdS and ITE algorithms for our
experiments. Experiments that show that using RelProdS are more efficient are future work.



4
Preliminaries of parallelism

The current chapter discusses the need to parallelize algorithms in order to keep improving per-
formance. We present a number of existing theoretical approaches to model multicore perform-
ance. We also present our extension to Amdahl’s Law to understand more factors determining
parallel performance.

4.1 Parallelism
In model checking, there is always a need to be able to process larger models in less time.
To do that, more calculations have to be performed faster. Until the last decade, the usual
approach for better performance was to increase CPU frequencies. Algorithms were optimized
for a single processor and processors implemented various hardware optimizations, such as out-
of-order execution and pipelining.

In 2005, Sutter published the famous article The free lunch is over [45] stating that processor
speeds are reaching a physical limit and that software developers will have to develop programs
that are concurrent rather than sequential.

4.2 Architectures
There are many different architectures that allow parallelism. For example, there are multicore
architectures with a hierarchy of memories and many-core systems with hundred of cores and
different types of local memory. There is a distinction between homogeneous and heteregeneous
architectures. In homogeneous architectures the processor cores are similar, while in hetero-
geneous architectures the processor cores are specialized. Some architectures have a caching
hierarchy with a shared bus, others have blocks of memory for every processor core and commu-
nication networks between the processor cores.

In our research, we will focus on multicore architectures, with multiple identical processor
cores and a hierarchy of memories: a private L1 cache for every core, a shared L2 cache and
main memory. In some multicore systems, there are multiple multiprocessors, where each mul-
tiprocessor has identical processor cores. In some multicore systems, the L2 cache is shared by
some cores and there is a L3 cache shared by all cores.

There is a disctinction between Symmetric Multi-Processing (SMP) and Non-UniformMemory
Access (NUMA) architectures. In SMP architectures all memory access is performed using the
same shared memory bus. In NUMA architectures it takes longer to access certain regions of
memory than others, since some regions of memory are on different buses than others. NUMA
alleviates the bottleneck of one shared memory bus by limiting the number of CPUs on any single
memory bus [1]. Our focus will be on NUMA architectures, since we perform our experiments
on a machine with 48 cores.

21



22 Preliminaries of parallelism

4.3 Approaches to parallelization
We will use the following terminology: An algorithm consists of a number of operations, which
can be decomposed into small tasks or suboperations. Tasks are organized according to their
dependencies: most tasks require other tasks to be finished in order to progress. This can be
visualised in a task dependency graph. See also Figure 4.1.

Figure 4.1: Typical task dependency graph

An algorithm is parallelized by dividing the algorithm into smaller parts that can be ex-
ecuted independently by multiple workers. The number of available workers depends on the
implementation and on the hardware. In general, the number of workers is equal to the number
of available hardware threads, which is often equal to the number of available processor cores.
The speedup is a measure for the performance gain of parallelizing an algorithm. If an algorithm
with 20 workers is executed 5 times as fast as with 1 worker, we say the speedup for 20 workers
is 5. The ideal speedup in that case would be 20. In this example, the efficiency is 25%.

We distinguish a low-level approach to parallelization and a high-level approach. The low-
level approach is where the parallelization occurs at task-level. The high-level approach is where
the parallelization occurs at operation-level.

For example, the reachability algorithm consists of a number of Set operations, implemented
using BDDs. The implementation of these operations can be decomposed into small tasks. Using
the high-level approach we can execute operations in parallel, if some operations are independent.
In the normal reachability algorithm all operations depend on the previous operation, but in the
reachability algorithm of LTSmin (see Section 6.1) all RelProdS operations of one level could
be executed in parallel. Using the low-level approach we could use a load balancing algorithm
to distribute tasks over workers. This is the approach we use in our research, partially since the
high-level approach has limited usefulness for model checking.

An advantage of high-level parallelization is that sequential optimizations in the implement-
ation of operations can often still be exploited. A disdvantage of high-level parallelization is
that it may be harder to increase the number of workers, because the number of operations that
can be executed simultaneously may be very limited. An advantage of low-level parallelization
is that the high-level algorithm need not be aware of the parallelization. Assuming that data
structures are handled on the lower level, high-level algorithms do not need to be modified at all.
A disadvantage of low-level parallelization is that they may be more fine-grained: the low-level
algorithm may scale worse because the size of each job may be very small, increasing relative
overhead due to parallelism. In addition, thread safety may introduce extra overhead, for ex-
ample lock contention when using mutual exclusion, or false sharing of cache lines and atomic
restarts when using lockless communication. See also Section 4.4.3.

4.4 Theoretical models of multicore parallelism
When parallelizing an algorithm, the performance speedup is often less than ideal. See also
Figure 4.2. Ideally the speedup is identical to the number of workers. Amdahl’s Law (see
below) already puts an upperbound to the possible speedup. In practice, there is a point where
adding workers decreases the speedup, due to communication costs and memory bandwidth
limitations increasing faster than the extra performance. In order to understand the factors
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that influence the performance of concurrent programs on multicore machines, there are some
theoretical approaches.

Figure 4.2: Typical speedup graph

4.4.1 Amdahl’s Law
One famous approach is Amdahl’s Law, which states that the maximum theoretical speedup by
increasing the number of workers W is limited by the sequential part of a program [6].

Let α be the fraction of the program that cannot be executed in parallel, let TS be the time
required to execute the entire program sequentially and let TW be the time required to execute
the program using W workers.

Then the speedup S(W ) is defined as

S(W ) = TS

TW
= TS

αTS + (1− α)TS/W
= 1
α+ (1− α)/W

with a theoretical upperbound (W → ∞) of 1
α
. This means that even with an infinite amount

of workers, theoretical speedups are limited.

4.4.2 Extending Amdahl’s Law
Amdahl’s Law is a simplification just to show that there is an upperbound to possible speedups.
The model assumes that with an infinite number of workers calculating the parallel part will
cost no time. It also assumes that there is no additional concurrency overhead. To be able to
understand some variables determining parallel performance, we extend Amdahl’s Law.

There is a lower bound to the time consumed by the parallel part. This is the critical path,
the longest path from root to leaf in the task dependency graph, where the length of a path is
the sum of the duration of every task on that path.

In addition, there is an overhead mainly due to communication costs (lock contention, false
sharing, atomic restarts, work distribution). These costs often increase monotonically with the
number of workers. For example, if an algorithm has to communicate with all workers, adding
workers will increase the amount of communication quadratically.

Let β be the size of the critical path relative to TS , limiting (1 − α)/W . Let C(W ) be the
overhead with W workers relative to TS . Then we get for TW the equation

TW = αTS + max
(
β, (1− α)/W

)
TS + C(W )TS .

For the speedup S(W ) we get

S(W ) = 1
α+ max

(
β, (1− α)/W

)
+ C(W )

.

Assuming C(W ) is monotonically increasing, we can calculate the number of workers to get
the best speedup:

Wmax = b(1− α)/βc.
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Therefore, if C(W ) monotonically increases, there is a theoretical upperbound of

Smax = 1
α+ β + C(b(1− α)/βc) .

This model suggests that there is a number of workers, beyond which no performance gains
are possible, given certain values of α, β and C(W ).

To increase speedup and upperbound, α (sequential fraction) and β (critical path fraction)
should be as low as possible. In some cases, it may be possible to decrease the absolute size
of the sequential part at the cost of more work and still get a better speedup relative to the
program. In all cases, even problems with very low values for α and β are limited by overhead
C(W ). The speedup will already decrease when C(W ) increases more than (1−α)/W decreases.

Values of α and β also depend on the input data. For example, more data may result in
a lower α, without affecting β. This implies that in these cases using a larger input data will
improve the speedup of the algorithm. Gustafson showed that the speedup S(W ) could be
increased by increasing the size of the problems [23]. Since more work could be done in the same
amount of time when using more workers, α would be lower and the speedup would be much
higher.

Grouping tasks together also influences these variables. This essentially increases the size of
tasks and decreases the number of tasks. This results in a decreased C(W ), since less commu-
nication is necessary to manage tasks, while increasing the length of the critical path β, due to
the larger duration of each task.

4.4.3 Communication bottlenecks
A number of papers have been published discussing bottlenecks in multicore architectures. The
most relevant models are the Roofline model of Williams et al. [47] and the computational model
of Bader et al. [7].

The Roofline model is based on the concept of operational intensity, which is defined as the
number of operations per byte of DRAM (main memory) traffic. The execution of a program is
limited by the processor performance and the memory bandwidth (see Figure 4.3). Depending
on the operational intensity either the processor performance or the memory bandwidth is the
limiting factor. The Roofline model is used to determine the highest possible performance of a
system.

Figure 4.3: Roofline model

Bader et al. suggest that the complexity of a parallel algorithm depends not only on the
complexity of the algorithm, but also on the bandwidth between the processor caches and main
memory and on the time required for synchronization. Performance on multicore systems is
mainly affected by the number of workers, caching, memory bandwidth and synchronization.
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Traffic between processor caches and main memory occurs in blocks called cache lines. On
most modern processors, cache lines are blocks of 64 bytes. Whenever data is requested from
main memory to a processor cache, all cache lines that contain this data are transferred. When
one of the processor cores writes to a memory address, all processor caches that contain the
same cache line must be updated.

Efficient use of cache lines is important to reduce the impact of limited memory bandwidth.
We note the following effects in particular:

1) Locality of data can improve performance. When data is accessed, the entire cache line is
transferred. When different data on the same cache line is accessed, no additional memory
transfers are neccessary since it will already be available in the processor cache. Reusing
cache lines, such as the program stack, also decreases memory bandwidth usage, especially
when these cache lines are not shared by other processor cores and caches.

2) False sharing occurs when multiple processor cores access different data that share the
same cache line. When one worker writes data, all caches must be updated. If this could
be avoided by storing data on different cache lines, the unnecessary transfer is called false
sharing.

3) Alignment of data is important as well. If data is improperly aligned, i.e. a block of data is
stored on more cache lines than is necessary, then there are also more data transfers than
is necessary.

4) Atomic restarts occur when using atomic processor instructions like compare_and_swap
to modify data. When atomic operations fail algorithm usually restart the operation,
which is called an atomic restart.

5) Lock contention is an effect due to using mutual exclusion in communication between
workers. When a worker attempt to get a lock held by another worker, it has to wait until
the other worker releases the lock. This increases the communication overhead.

6) Limited memory bandwidth increases the average time required to perform memory trans-
fers.

We model these effects as increases in C(W ). These effects all limit the possible speedup.
False sharing and bad alignments also reduce the performance when only using one worker, but
they also cause the bandwidth limit to be reached using less workers. Increasing the operational
intensity or decreasing bandwidth requirements, by reducing false sharing, increasing locality and
considering data alignment, speedups that are limited by memory bandwidth can be improved.

4.5 Conclusions
In conclusion, from a theoretical perspective, speedups are limited by the sequential part of the
system, by the length of the critical path, by increasing communication costs and by limited
memory bandwidth. Note that increasing communication costs from atomic restarts and lock
contention and limited memory bandwidth are two different but related mechanisms that increase
communication overhead. The above models are qualitative models providing insight in possible
causes of limited speedup. In Chapter 6 we shall discuss some of these causes.





5
Implementation of parallelization

The current chapter discusses the implementation of parallelism for dynamic programming prob-
lems. We discuss an approach using Wool for task distribution and an approach based on result
sharing. We also present two lockless data structures.

5.1 Task distribution and result sharing

The primary goal of parallelizing an algorithm is speedup. Ideally, all work is distributed evenly
among workers and a speedup is obtained equal to the amount of workers. The problem of
distributing work evenly is called load balancing. There are several ways to solve this problem.

The first approach is distributing tasks to workers. When a task is executed, subtasks are
created. These subtasks can be assigned to workers, or added to one or more task queues.
Workers either execute their assigned tasks or steal tasks from the queue(s). The result of the
subtasks is stored in memory (for example, the task structure could contain a field for the result)
and the task status is updated. Examples of load balancing strategies include work stealing
algorithms such as Asynchronous Random Polling [4], the Scalable Locality-aware Adaptive
Work-stealing Scheduler [22], and CAB, a cache-aware task-stealing algorithm designed for multi-
socket multicore architectures [15].

Several frameworks have been developed to make creating task-based implementations easier.
Some approaches, such as Cilk [10], OpenMP [17] and Gossamer [39] are compiler-based: they
compile the program to a different form, usually by adding code, translating from an extended
version of C to normal C. Others, such as SWARM [7] and Wool [19, 38] are library-based. These
frameworks support creating tasks (fork, spawn) and waiting for their completion (join,
sync) in order to use the results.

When parallelizing a dynamic programming problem using task distribution it is possible
that identical tasks are performed multiple times (redundant work). See also Section 3.2. To
reduce the amount of redundant work, a memoization cache is used. Workers share results of
subtasks using this memoization cache.

The second approach to parallelizing an algorithm is not based on distributing subtasks, but
purely on sharing results of subtasks. All workers calculate the same tasks and communicate
results of subtasks using a memoization cache. By calculating the subtasks of a task in a random
order, the chances that subtasks are calculated multiple times by different workers are reduced.
For example, if a task has two subtasks, there is a 50% chance that two workers will select a
different subtask to calculate first. When both tasks have been calculated, both workers share
the result using the memoization cache. With a sufficiently large number of tasks and choices,
the expected number of tasks per worker will approach T

N
.

This approach is similar to the Swarm Verification of Holzmann et al. [26]

27
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5.2 Implementing task distribution using Wool

To implement task distribution, we selected the Wool framework [19]. Wool is a work stealing
framework especially developed for fine-grained task-based parallelism..

There are several reasons for this selection. The first reason is that according to [38] the
framework offers superior scalability in fine-grained task-based parallelism. The second reason is
that there is earlier work parallelizing the BDD package BuDDy using Cilk [24] and using Wool
we should expect similar results. Finally, it is fairly straightforward to implement parallellism
using the Wool framework. Wool is conceptually similar to Cilk, but offers slightly better
performance [38].

Wool is a framework for fine-grained parallelism implemented in C. Subtasks are created
using the SPAWN macro. Every SPAWN has a matching SYNC macro. A CALL macro is used
when a SPAWN would immediately be followed by a SYNC.

As an example, consider the following recursive program and how it is parallelized in two
different ways using Wool.

// Original function
fib(n)

if n < 2 then return n
return fib(n-1) + fib(n-2)

// Parallel task using only SPAWN and SYNC
TASK(fib1, n)

if n < 2 then return n
SPAWN(fib1, n-1)
SPAWN(fib1, n-2)
m = SYNC // matches n-2
return m + SYNC // matches n-1

// Parallel task using SPAWN, SYNC and CALL
TASK(fib2, n)

if n < 2 then return n
SPAWN(fib2, n-1)
m = CALL(fib2, n-2)
return m + SYNC

// Function using Wool, depends on fib1 or fib2
fib(n)

return CALL(fib2, n) // or fib1.

Wool is implemented using local task stacks. Every worker has a local task stack. The macro
SPAWN adds the task to this stack, where it can be stolen by other workers. When SYNC is used,
it will execute the task on top of the stack, unless it has been stolen. If this task has been stolen,
the worker will execute other tasks until the task is complete, for example by stealing tasks from
other workers. When SYNC is done, it returns the result value of the task that was on top of the
thread-local stack. In the implementation, the CALL macro will actually not add tasks to the
stack but immediately execute the task. This means that only actual parallelism is exposed to
other workers via the task stacks.

For example, in the above example, while the first worker is calculating fib2(n-2), other
workers can steal fib2(n-1).

An important limitation of Wool in the context of this research is that there is no support
for task sharing. When a task is created, only the creator can wait for that task to complete.
The framework does not expose methods to detect existing identical tasks and wait for their
completion rather than starting a duplicate calculation. Using a memoization cache aleviates
this problem, but cannot solve it completely. A memoization cache only prevents redundant
calculations after the result has been calculated. If multiple workers start the same calculation,
the result is not yet available in the cache. This prevents proper dynamic programming. In order
to implement dynamic programming, the memoization cache could be used to store a dummy
result and the framework must somehow offer a method to steal other work until some condition
has been satisfied, e.g., the actual result is in the cache.
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5.3 Implementing result sharing
We implemented result sharing using our own set of macros in C. Every worker has its own
random number generator with different seeds on different cache lines, minimizing unnecessary
memory transfers.

int fibr(int n)
if n < 2 then return n
if inResultCache(n) then return result
if random() % 2

n1 := fibr(n-1)
n2 := fibr(n-2)

else
n2 := fibr(n-2)
n1 := fibr(n-1)

result := n1 + n2
putResultCache(n, result)
return result

int fib(int n)
return fibr(n) || fibr(n) || ... || fibr(n)

All fibr(n) operations return the same result. The parallel operation || starts all workers
and returns the result of any fibr(n) operation after all workers are done.

If the calculation is not trivial (n < 2), the memoization cache is consulted to see if the result
has already been calculated. If it has not been calculated yet, based on the result of the random
number generator, either fibr(n-1) or fibr(n-2) is calculated first. Finally, the end result
is calculated and put in the memoization cache.

5.4 Lockless data structures
Calculating BDD operations requires two data structures: the hashtable containing all BDD
nodes and the memoization cache to store results of operations, which is used both in the
approach using Wool and in the approach using result sharing.

Recent research has been dedicated to developing data structures and algorithms that re-
quire no explicit locking, using atomic processor instructions like compare_and_swap and
fetch_and_add for communication rather than mutexes, which can be slow. Locking can have
severe consequences for the parallel performance of the algorithm. Herlihy and Shavit [25] dis-
tinguish lock-free algorithms, wait-free algorithms and lockless algorithms. Lock-free algorithms
are algorithms without mutual exclusion that guarantee system-wide progress, i.e., always some
worker can continue. Wait-free algorithms (also called non-blocking algorithms) are algorithms
that guarantee per-worker progress, i.e. always all workers can continue. Lockless algorithms
are algorithms that only statistically provide progress guarantees but avoid explicit locks by
using similar techniques as used in lock-free solutions.

First we discuss our implementation of a lockless memoization cache and then we discuss our
implementation of a lockless hashtable that supports garbage collection.

5.4.1 Lockless memoization cache
The lockless memoization cache is based on a hash table with two arrays, one array of hash
values and one array with the corresponding data [29]. We use the same algorithm as in [29]
but we only use the first cache line. The data consists of the key (a canonical representation of
the parameters of each task) and the value (the result of the operation), both of a fixed size.
We use the names keylength for the size of the key and datalength for the combined size
of the key and the value.

When inserting a value in the cache, the hash array is consulted to see whether there already
is a key with the same hash in the table. Only if the hashes match, the larger data array is read.
If the target bucket is empty, then that bucket will be used to store the data. If the hashes do
not match or if the keys do not match, the other buckets in the same processor cache line in the
hash array as the initial bucket will be checked.
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The most important requirement for the memoization cache is that there is a put and a get
method and that using the get will never give a result that was not entered into the memoization
cache using put.

The memoization cache is allowed to overwrite existing results, i.e., the cache is a lossy cache.
The advantage is that lossy caches are easier to implement and faster. A disadvantage is the
possibility of losing results when they are overwritten. The consequence of losing one result is
that one subtask needs to be recalculated, which is not expensive for BDD operations, since the
subtasks of that subtask are also stored in the memoization cache. We therefore expect that the
cost of recalculating lost data is smaller than the cost of bookkeeping whether results must be
kept or can be discarded.

In addition, since we use garbage collection with reference counting on the BDD nodes, we
need to ensure that the reference counts are increased when results are put in the cache and
decrease when results are overwritten. The put algorithm returns 0 when nothing was added to
the memoization cache, 1 when the data was added and 2 when the data was added and existing
results were overwritten. The overwritten results are exchanged with the data in the parameter,
so the caller can update the reference counts afterwards.

In our implementation, hash values are 4 bytes and since processor cache lines are 64 bytes
in most multicore architectures there are 16 buckets per processor cache line in the hash array.

For example, if a key hashes to the 14th bucket in a cache line and this bucket does not
match, the algorithm will then check the 15th, the 16th and then the 1st bucket in the cache
line, until all buckets have been checked. If one of them is empty, that bucket is used to store
the data. If all buckets are filled and there are no matches, the initial bucket is overwritten.
Unless another worker is by chance manipulating the same cache line, checking all buckets only
requires a single memory transfer.

This method minimalizes the number of memory transfers necessary, while decreasing the
chance that results are overwritten when there are hash collissions, i.e., when multiple keys have
the same hash value.

In order to allow multiple workers to safely use the data structure, we use local short-lived
locks. The highest bit of each hash in the hash array is used as a lock. It is set to 0 by default
and set to 1 using the compare_and_swap instruction to set the lock. The owner of the lock
then accesses the data array and releases the lock by setting the bit to 0 again.

The algorithm for put is given in Listing 5.1, using pseudocode with pointers and C-like
bitwise operators to manipulate locks.

Note that reading the value of bucket will only involve memory transfers when the cache
line is not yet in the processor cache, i.e., it will only involve memory transfers the first time
and whenever the value has been changed elsewhere. Depending on the value of the bucket, a
different action is taken. If the lock bit is set, the worker will wait until the lock is removed. If
the lock bit is not set and the current value is EMPTY, the worker will try to acquire the lock
using the compare_and_swap operation and write the data when it is succesful. If the lock
bit is not set and the current value matches the hash of our data, the worker will try to acquire
the lock and then compare the keys. Acquiring the lock is important since it may be possible
that another worker modifies the cache while we are reading the data.

The get algorithm in Listing 5.2 is similar to the put algorithm.
This is the algorithm that we used for our experiments. It could be further improved in

future work. For example, the algorithm currently waits for all locks, including locks on buckets
it is not interested in. We can also relax certain requirements. The above algorithm assume that
it is not allowed to have duplicate entries in the cache. This requirement can be relaxed. The
algorithm can be simplified while maintaining the requirement that the result obtained using
get is always a result entered into the cache using put. See Listing 5.3 and Listing 5.4.

5.4.2 Lockless hashtable with reference counting
As explained in Section 3.1, to store the BDD nodes we use a hash table and we need garbage
collection.

We use reference counting, which is a common method to implement garbage collection. The
number of references to a BDD node (or other object in the hash table) is recorded and when
there are no more references, the node can be freed. Since we want to delay freeing the node
as long as possible [43], we use a buffer implemented using a lockless memoization cache to store
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put(data)
hash := calculateHash(data, keylength) // calculate hash of key
firstIndex := hash % tablesize // get index of first bucket
for index ∈ cacheLineIndices(firstIndex)

bucket := &hasharray[index]
// if a worker has locked this bucket, wait for it
await ! *bucket & LOCK
// check if the bucket is empty
if *bucket = EMPTY

if compare_and_swap(bucket, EMPTY, hash|LOCK)
write data to data array
bucket := hash // unlock
return 1 // added

// check if the bucket matches hash
while (*bucket&~LOCK) = hash

if compare_and_swap(bucket, hash, hash|LOCK)
if key matches key in data array

bucket := hash // unlock
return 0 // not added

else
bucket := hash // unlock
break // escape while loop

// if here, it is a different value and we can ignore it
// No match and no empty spot...
bucket := &hasharray[firstIndex]
// acquire lock
while ! compare_and_swap(bucket, (*bucket&~LOCK), hash|LOCK)

await ! *bucket & LOCK
exchange data with existing data in data array
bucket := hash // unlock
return 2 // overwritten

Listing 5.1: put algorithm

get(data)
hash := calculateHash(data, keylength) // calculate hash of key
firstIndex := hash % tableSize // get index of first bucket
for index ∈ cacheLineIndices(firstIndex)

bucket := &hasharray[index]
// if a worker has locked this bucket, wait for it
await ! *bucket & LOCK
// check if the bucket is empty
if *bucket = EMPTY return 0 // not in cache
// check if the bucket matches hash
while (*bucket & ~LOCK) = hash

if compare_and_swap(bucket, hash, hash|LOCK)
if key matches key in data array

copy data to buffer
bucket := hash // unlock
return 1 // in cache

else
bucket := hash // unlock
break // escape while loop

// If there is no match, maybe it has been added in the first bucket
bucket := &hasharray[firstIndex]
while (*bucket & ~LOCK) = hash

if compare_and_swap(bucket, hash, hash|LOCK)
if key matches key in data array

copy data to buffer
bucket := hash; // unlock
return 1 // in cache

else
bucket := hash // unlock
return 0 // not in cache

await ! *bucket & LOCK
return 0 // not in cache

Listing 5.2: get algorithm
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put(data)
hash := calculateHash(data, keylength) // calculate hash of key
firstIndex := hash % tablesize // get index of first bucket
for index ∈ cacheLineIndices(firstIndex)

bucket := &hasharray[index]
// check if the bucket is empty
if *bucket = EMPTY

if compare_and_swap(bucket, EMPTY, hash|LOCK)
write data to data array
bucket := hash // unlock
return 1 // added

// check if the bucket matches hash
if (*bucket&~LOCK) = hash

if key matches key in data array
return 0 // did not add

// if here, it is a different value and we can ignore it
// No match and no empty spot...
bucket := &hasharray[firstIndex]
// acquire lock
if compare_and_swap(bucket, (*bucket&~LOCK), hash|LOCK)

exchange data with existing data in data array
bucket := hash // unlock
return 2 // overwritten

else
return 0 // did not add

Listing 5.3: relaxed put algorithm

get(data)
hash := calculateHash(data, keylength) // calculate hash of key
firstIndex := hash % tableSize // get index of first bucket
for index ∈ cacheLineIndices(firstIndex)

bucket := &hasharray[index]
// check if the bucket is empty
if *bucket = EMPTY return 0 // not in cache
// check if the bucket matches hash
if (*bucket & ~LOCK) = hash

if compare_and_swap(bucket, hash, hash|LOCK)
if key matches key in data array

copy data from data array
bucket := hash // unlock
return 1 // in cache

else
bucket := hash // unlock

// If there is no match, never mind
return 0 // not in cache

Listing 5.4: relaxed get algorithm
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nodes that are dead, i.e., that are not referenced to anywhere. Nodes in this buffer are nodes
that may in the future be garbage collected. Whenever an index in this buffer is overwritten, the
corresponding BDD node is deleted from the hash table if the reference count is still 0. When
the BDD is full, we empty the buffer and deleted every BDD in the buffer with the reference
count set to 0.

As a hashtable, we use a data structure similar to [29] but modified to allow deleting nodes
and to store the reference count. The hashtable consists of two arrays of equal size: the data
array and the hash array. We use the lower bits of the hashes in the hash array to store the
reference counter. This is expected to have low impact on hash collisions, since the low bits are
often similar in hash collisions, while the high bits are different, due to the lower bits being used
to determine the position in the hash table.

When an entry in the hash table is about to be deleted, we use a reserved value in the
reference count field (DELETING) that indicates that the entry is being deleted. We also use a
reserved value (SATURATED) to indicate that the reference count is saturated, which is a common
technique to prevent integer overflows. When the reference count reaches the saturation value,
it will no longer increase or decrease. When an entry has been deleted, the hash will be set to
the reserved value TOMBSTONE.

Like the lockless cache, we use compare_and_swap and local short-lived locks to allow
multiple workers to use the data structure safely.

Every bucket in the hash array is 4 bytes long. The highest bit is the LOCK bit. The low 16
bits are the reference count. The other 15 bits are the hash value.

The algorithm to increase the reference count is as follows:

incref(bucket)
hash := *bucket
rc := hash & RC_MASK // keep only the bits used for reference counting
if rc = SATURATED then return SUCCESS // do not increase when saturated
if rc = DELETING then return DELETING // contains DELETING value
if compare_and_swap(bucket, hash, hash+1) then return SUCCESS
return NOCAS // CAS failed, please retry

Listing 5.5: Algorithm to increase reference count

The algorithm to decrease the reference count is as follows:

decref(bucket)
hash := *bucket
rc := hash & RC_MASK // keep only the bits used for reference counting
if rc = SATURATED then return SUCCESS // do not decrease when saturated
assert rc != DELETING // impossible if you only decref after incref
if compare_and_swap(bucket, hash, hash-1)

if rc = 1 // original value was 1, so it is now 0
// delegate NOWZERO event to GC handler (add to buffer)
handleGCzero(bucket)

return SUCCESS
return NOCAS // CAS failed, please retry

Listing 5.6: Algorithm to decrease reference count

If incref or decref return NOCAS, they should be called again until either SUCCESS or
DELETING (for incref) is the result. The return value DELETING means that the node should
not be used anymore and a new node should be created.

We only need an algorithm getOrCreate to create unique BDD nodes. This algorithm is
slightly more complicated than the algorithm for the lockless hash table by Laarman et al. [29]
since we use tombstones for deleted values. The requirement of this algorithm is that it should
either return a bucket that contains the input data or the reserved value TABLE_FULL. The
returned bucket is either a newly created bucket or an existing bucket. In either case, the
reference count must be increased by 1. The algorithm must guarantee that no duplicate nodes
exist, i.e., there are no multiple buckets with the same data.

Similar to [29], there is a probe sequence of buckets that are checked in a predetermined order
given the data to be entered into the hash table, which is calculated using the hash function. This
probe sequence is based on using every processor cache line fully. The first bucket is calculated
based on the result of the hash function and the cache line of this bucket is fully explored. Then
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a new hash is calculated for a new bucket, and the cache line of that bucket is explored. This
continues until a predetermined threshold that indicates the hash table is full.

In the original algorithm of Laarman [29], only the final bucket that will contain the data is
locked while the data is copied to the data array. In our algorithm, it is possible to delete nodes,
replacing them with tombstones, and reuse these nodes. It is therefore possible that another
worker deletes an node and that a third worker uses this bucket to store the data the first worker
also wants to add. To prevent this, we do not lock on the final bucket, but on the first bucket.
Workers that want to add data with the same first bucket will wait until the first worker has
completed the algorithm.

The first encountered tombstone is also locked to reserve it for possible use. When an empty
bucket is found, this means that the data is not yet in the hashtable.

See Listing 5.7 for the result.
This is the algorithm that we used for our experiments. It could be improved further, for

example by overwriting existing BDD nodes when their reference count is 0.

5.5 Conclusions
In this chapter, we discussed the two approaches that we will use in our experiments. We
presented an overview of how Wool works and how result sharing works. We also presented our
extensions of the lockless hashtable by Laarman et al. [29]: a lockless memoization cache and a
lockless hashtable with garbage collection implemented using reference counting. These lockless
data structures form the basis of our solution to parallelizing BDD operations.
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getOrCreate(data)
hash := calculateHash(data, keylength) // calculate hash of key
// calculateHash never returns TOMBSTONE or EMPTY
firstIndex := hash % tableSize // get index of first bucket
firstBucket := &hasharray[firstIndex]
hash &= 0xFFFF0000 // Set lower bits to 0 for reference count

// lock firstBucket
while ! compare_and_swap(firstBucket,*firstBucket&~LOCK,*firstBucket|LOCK)

await ! *firstBucket & LOCK

for index ∈ cacheLineIndices(firstIndex)
bucket := &hasharray[index]
if HASHPART(*bucket) = EMPTY

// data not yet in table... write somewhere
if we reserved a tomb bucket

write data to tomb bucket data array

*tombBucket := hash + 1 // unlock and set reference count to 1
if tombBucket != firstBucket then *firstBucket &= ~LOCK // unlock
return tombBucket

if bucket = firstBucket // already locked
write data to data array

*bucket := hash + 1 // unlock and set reference count to 1
return bucket

// lock it
if compare_and_swap(bucket, EMPTY, hash|LOCK)

write data to data array

*bucket := hash + 1 // unlock and set reference count to 1

*firstBucket &= ~LOCK // unlock first bucket
return bucket

// CAS failed, wait until other worker is done

*firstBucket &= ~LOCK // unlock first bucket, to prevent deadlocks
await ! *bucket & LOCK // wait until lock is released
// restart algorithm because we lost our lock on the first bucket
return getOrCreate(data)

if HASHPART(*bucket) = hash
await incref(bucket) = SUCCESS
if data matches data array

if we reserved a tomb bucket then *tombBucket &= ~LOCK // unlock
if tombBucket != firstBucket then *firstBucket &= ~LOCK // unlock
return bucket_index

await decref(bucket) != NOCAS
if no reserved tomb bucket and HASHPART(*bucket) = TOMBSTONE

if bucket = firstBucket // already locked
tombBucket := firstBucket

else if compare_and_swap(bucket, TOMBSTONE, TOMBSTONE|LOCK)
tombBucket := bucket

// if compare_and_swap failed, never mind...
// If we are here, there was no empty bucket...
if we reserved a tomb bucket

write data to data array

*tombBucket := hash + 1 // unlock and set reference count to 1
if tombBucket != firstBucket then *firstBucket &= ~LOCK // unlock
return tombBucket

firstBucket &= ~LOCK // unlock
return TABLE_FULL

Listing 5.7: getOrCreate algorithm
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Experiments

The current chapter discusses our experiments. First we explain the design of our experiments.
We then present and discuss the results of experimenting using the framework Wool. After this,
we present and discuss the results of our experiments with the result sharing approach. Then
we compare the results to the performance of using the BuDDy library for BDD operations. We
conclude this chapter with conclusions.

6.1 Experimental setup
The goal of our experiments is to assess the efficiency of parallelization techniques that increase
the performance of BDD operations frequently used in model checking tools.

We performed our experiments using a model checker (dve2-reach from the LTSmin tool-
set [9])), our own implementation of a BDD library (Sylvan) and a parallellization framework,
either Wool or result sharing.

We measured the execution time of each run. We also gathered some other data, for example
the number of calculations, how much work each worker did, etc. We determined that the
influence of data gathering on the result of the experiments is negligible, so we did not perform
the experiments and the data gathering separately. In addition, we used the statistical profiler
gperftools [2] for CPU profiling, measuring the runtime behavior of our program.

We expected some random noise, due to environmental influences such as temperatures.
After running several small experiments, we found the random variations in our measurements
to be small enough not to influence our observations and conclusions.

We also compared our results with the performance of a sequential BDD package.
A list of performed experiments can be found in Table 6.1.

Table 6.1: Performed experiments on all selected models using 1-48 workers

experiment name experiment description
wool Basic parallelization using Wool
wool.n Same as wool, but using the NUMA interleaving memory allocator
rs Basic parallelization using result sharing
rs.s Same as rs but using a kill flag
rs.ns Same as rs.s, but using the NUMA interleaving memory allocator
rs.nas Same as rs.ns, but setting the CPU affinity of each worker
wool.2 Same as wool, but using the cache strategy N = 2
wool.3 Same as wool, but using the cache strategy N = 3
wool.4 Same as wool, but using the cache strategy N = 4
rs.2 Same as rs, but using the cache strategy N = 2
rs.3 Same as rs, but using the cache strategy N = 3
rs.4 Same as rs, but using the cache strategy N = 4

37
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Reachability in LTSmin We used the tool dve2-reach from the LTSmin toolset [9] to run
the experiments. The dve2-reach tool explores all reachable states for models expressed in
the DiVinE-2 language. The tool implements a number of reachability algorithms.

The basic reachability algorithm (Listing 3.3 in Section 3.4), modified to use the RelProdS
algorithm introduced in Section 3.5, is given in Listing 6.1.

Set Reach(Set start, Set T)
Set Visited := start, Previous := ∅
while Visited != Previous

Previous := Visited
Set Next := RelProdS(Visited, T)
Visited := Visited ∪ Next

return Visited

Listing 6.1: Basic reachability algorithm

In the LTSmin toolset, this algorithm is slightly more complicated, because the transition
relation is calculated on-the-fly. After every iteration in the reachability algorithm, the transition
relation is updated with new transitions. In addition, the transition relation is split into multiple
transition groups. The number of transition groups depends on the model. See Listing 6.2 for
the implementation of reachability in LTSmin.

Set reach_bfs(Set start, Set[] group_next)
Set visited := start, old_vis := ∅
while visited != old_vis

old_vis := visited
for i ∈ {1, . . . ,number of groups}

expand_group_next(i, visited)
for i ∈ {1, . . . ,number of groups}

visited := visited ∪ RelProdS(old_vis, group_next[i])
return visited;

Listing 6.2: Reachability algorithm reach_bfs in LTSmin

In our experiment, we precompute the full transition relation first, so we can focus on
the reachability algorithm instead of on efficiently updating of the transition relation. If we
do not precompute the transition relation, we would also measure the performance of the
expand_group_next function, in which we are not interested.

To prevent the BDD calculations from reusing cached results from the first loop, the memo-
ization caches are emptied first. See Listing 6.3 for the final algorithm.

Set reach_bfs(Set start, Set[] group_next)
Set visited := start, old_vis := ∅
while visited != old_vis

old_vis := visited
for i ∈ {1, . . . ,number of groups}

expand_group_next(i, visited)
for i ∈ {1, . . . ,number of groups}

visited := visited ∪ RelProdS(old_vis, group_next[i])
Empty memoization caches, start timer.
visited := start
old_vis := ∅
while visited != old_vis

old_vis := visited
for i ∈ {1, . . . ,number of groups}

visited := visited ∪ RelProdS(old_vis, group_next[i])
Stop timer and report results.
return visited

Listing 6.3: Modified version of reach_bfs

Note that the implementation of reachability is oblivious of the parallelization, since this is
implemented in the actual BDD operations.
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To run our experiments we call LTSmin with the parameter -rgs. This parameter enables
static reordering of variables at the start of the reachability algorithm. We used this parameter
for our experiments with BuDDy and with Sylvan.

Implementation of Sylvan Sylvan is our experimental BDD library. We implemented BDD
operations as explained in Chapter 3 using the frameworks and data structures presented in
Chapter 5.

We extended the LTSmin toolset to use Sylvan as a backend for symbolic model checking.
Version 1.9 of LTSmin [3] and the development branch (next) of LTSmin contain this extension.
We used the parameters --sylvan-cachesize=29 and --sylvan-datasize=29 to use the
largest possible hash tables (256*1024*1024 entries).

The full command is: dve2-reach -rgs --vset=sylvan --sylvan-threads=...
--sylvan-cachesize=29 --sylvan-datasize=29 --sylvan-bits=... model.dve2C

The parameter sylvan-bits is a model-specific parameters for the number of bits per state
integer in LTSmin, similar to the fdd-bits parameter for the BuDDy backend in LTSmin.

The performance of Sylvan may not be as good as optimized libraries like BuDDy and
CuDD, but this is unlikely to have a significant impact on the experimental results, since we are
interested in the speedups due to parallelization.

Models Since we want to measure the performance of symbolic model checking, we executed
the reachability algorithm on various different models. We performed our experiments using
several models from the BEEM database [37] as input database. The BEEM database is a
database for explicit model checking. We selected models from this database at random and
removed some of the smaller variations from our selection. See Table 6.2 for some data on the
models we selected. In this table, depth is the number of iterations in the reachability algorithm
until all reachable states have been found. Groups is the number of transition groups in LTSmin.
States is the total number of reachable states and nodes is the number of BDD nodes required
to store the BDD representing the final set of reachable states in memory. RelProdS and ITE
operations consist of a large number of small tasks. Work is the actual number of non-trivial
RelProdS and ITE subcalculations performed during reachability using a single worker.

Note that the depth and the number of groups determine the number of calls from the
reachability algorithm to RelProdS and ITE. We only included the number of reachable states
and the number of BDD nodes required for the set of reachable states for completeness. The
size and shape of the BDDs during the reachability operation is much more important for the
number of operations to be executed.

Architecture We performed our experiments on a NUMA machine with 4 AMD OpteronTM

6168 processors, each with 12 cores, a total of 48 cores. There is 128GB total memory and each
core has 64KB L1 cache. Each processor has 512KB L2 cache and 5118KB L3 cache.

6.2 Results using Wool
The first experiment we performed was simply the reachability algorithm discussed above using
the Wool framework. The speedups obtained in this experiment are shown in Figure 6.1. The
speedup is calculated relative to 1 worker.

It is obvious from Figure 6.1 that there is a strong relation between the size of the input
model in number of operations and the obtained speedup. See again Table 6.2 for the size of
the models. See also Figure 6.2 for a plot of the best speedup of each model and the number of
operations per model.

Ideally, we would want to see a linear speedup graph where the speedup is equal to the
number of workers, i.e., when we have 48 workers we would like to see a speedup of 48. Lacking
that, we would like a speedup graph where the speedup never decreases with increasing number
of workers. The speedup we obtained was in the best case 20, for the collision.5 model
using 36 workers. In all cases, the speedup decreases after usually about 36 workers. While this
is certainly a good result, we are interested in investigating why the speedup is limited. We
would like to know why there is a peak around 36 workers.
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Figure 6.1: Wool results (1-48 workers, all models)
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Figure 6.2: Best speedup for Wool compared to work per model
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Table 6.2: Model data

Model Depth Groups States Nodes Work
bakery.4 103 21 157,003 12,009 6,003,764
bakery.5 288 28 7,866,401 156,771 198,664,965
bakery.6 129 28 11,845,035 148,119 130,645,221
bakery.7 448 28 29,047,471 681,012 1,018,315,634
bakery.8 293 35 253,131,202 582,463 1,452,973,233
collision.5 179 29 431,965,993 29,537 1,747,001,660
iprotocol.4 166 26 3,290,916 113,774 97,854,082
iprotocol.5 232 26 31,071,582 545,578 665,267,682
iprotocol.6 452 26 41,387,484 190,427 314,269,205
iprotocol.7 279 26 59,794,192 676,092 1,000,748,636
leader_election.5 159 88 4,803,952 62,682 109,241,755
leader_election.6 220 99 35,777,100 106,124 250,620,273
leader_filters.6 84 20 220,913,716 466,178 286,035,694
leader_filters.7 70 24 26,302,351 326,990 203,210,754
lifts.4 115 69 112,792 118,212 44,359,194
lifts.5 115 69 191,567 173,495 88,308,709
lifts.6 214 91 333,649 392,470 115,905,084
lifts.7 218 91 5,126,781 569,314 573,845,199
peterson.6 79 20 174,495,861 38,169 57,614,947
peterson.7 175 25 142,471,098 72,275 286,336,555
schedule_world.2 16 26 1,570,340 18,779 18,376,072
schedule_world.3 21 34 166,649,331 28,500 265,204,724

There are a number of possible explanations. We investigated these explanations and describe
how we examined them.

1) The amount of redundant work increases with the number of workers, due to multiple work-
ers starting the same calculation before the result has been calculated, which is caused by
subgraph sharing. Therefore, if input BDDs of the model checking suboperations feature
heavy subgraph sharing, redundancy is more likely. The relative increase of work is shown
in Figure 6.3. Work in Figure 6.3 is the sum of all non-trivial ITE and RelProdS opera-
tions. It is clear that the increase of work is very small (highest was 7%) and not sufficient
to explain the limited speedups.

2) There may be a significant overhead from Wool to distribute work. We can partially test
this hypothesis by comparing with the speedup graph of the Fibonacci algorithm. See
Listing 6.4 for the algorithm. We use the Fibonacci algorithm because it is a very tiny
example of a similar problem: compute two subproblems and return the sum. We did not
use any memoization caches for the calculation.
See Figure 6.4 for the result. Each point was measured at least 3 times and the average
was taken. From Figure 6.4 it appears there is indeed a significant overhead in Wool
which limits the possible speedup. This overhead may also be due to the architecture
of the system we performed our experiments on. Note that the actual calculation of the
Fibonacci algorithm takes almost no time compared to the overhead from Wool, so what
we are measuring is how well Wool scales on our machine.
When parallelizing model checking the scalability of Wool only partially determines the
scalability of parallel model checking, since the tasks are not nearly empty as with the
Fibonacci algorithm, but consist of consulting the memoization cache, creating a BDD node
(or increasing the reference count of an existing BDD node) and updating the memoization
cache.
An interesting feature of Figure 6.4 is the sudden performance drop from 31 to 32 workers.
We do not see a similar drop in our experiments. A second interesting feature is the slightly
improved performance around 40 workers. We believe these two features may be related
somehow to our particular architecture, although we do not understand exactly how. This
is something that could be investigated in future work.
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Figure 6.3: Wool relative work with increased workers

TASK(fib, n)
if n < 2 then return n
SPAWN(fib, n-1)
m := CALL(fib, n-2)
return m + SYNC

fib(n)
return CALL(fib, n)

Listing 6.4: Fibonacci algorithm parallelized using Wool
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Figure 6.4: Result of parallelizing Fibonacci using Wool

3) Maybe the models are not large enough to obtain good scalability. This is related to the
notion of the critical path from Chapter 4. A large critical path (β) implies that there
is limited parallelism. If there is limited parallelism, we should be able to measure how
often workers are waiting for work using statistical profiling. By measuring how often
the program is in the do_work and steal functions of Wool, we may be able to judge
whether this is an issue.

Table 6.3: CPU profile of bakery.4 with 48 workers

function percentage additional information
steal 50.8% waiting for work plus overhead

do_work 28.5% waiting for work plus overhead
try_ref 4.6% increasing reference count

ticketlock_trylock 3.2% locking primitive in Wool (overhead)
myrand 2.3% random function called for work stealing in Wool

Table 6.3 and Table 6.4 show the percentage of time spent in a certain function during the
experiment. Table 6.3 shows the top 5 functions when executing the experiment on the
bakery.4 model using 48 workers and table 6.4 shows the top 14 functions for the larger
bakery.8 model with 48 workers. It is clear that in the smaller model at least 84.8% of
the time is spent inside Wool functions. In the larger model this number is much smaller:
only at least 22.5% of the time is spent inside Wool functions. Based on these numbers
we believe it very likely that with bakery.4 there is too little work to parallelize with 48
workers. This is less clear with the bakery.8 model. It may be possible that not every
operation in bakery.8 is sufficiently large, since the reachability algorithm consists of a
large number of smaller operations.
We should take into account that the reachability consists of a large number of operations
and that we are really measuring the average scalability of these operations. Our data
suggests that the bakery.4 model largely consists of operations that do not scale well.
With the bakery.8 model, it is less clear how often the workers were waiting for work,
but it is less than with the bakery.4 model.

4) Since we performed our experiments on a NUMA architecture, it might be possible that
memory allocation over different memory banks cause or worsen memory bandwidth prob-
lems. We ran an experiment where the hash tables were allocated interleaved using the
NUMA library, function numa_alloc_interleaved. The result of this experiment
(showing only with 32-48 workers) compared to using the default allocator (posix_memalign)
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Table 6.4: CPU profile of bakery.8 with 48 workers

function percentage additional information
steal 17.6% waiting for work plus overhead

llcache_get_and_hold 16.2% retrieving from memoization cache
try_ref 16.1% increasing reference count

try_deref 10.6% decreasing reference count
lock 6.5% locking in LL hash table

relprods 4.4% calculating RelProdS
llcache_put_and_hold 3.8% putting in memoization cache

get_thread_id 3.5% auxiliary function
ite 3.4% calculating ITE

memxchg 2.7% called when overwriting in memoization cache
llgcset_lookup_hash 2.1% creating nodes in LL hash table

wool_sync 1.9% implementation of SYNC macro
do_work 1.8% waiting for work plus overhead

ticketlock_trylock 1.2% locking primitive in Wool (overhead)

is presented in Figure 6.5. The plot compares the time in seconds of every experiment per-
formed using interleaved allocated memory and using normal allocated memory. It is clear
that there is little or no improvement.
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Figure 6.5: Results of using interleaved memory allocation (36-48 workers, all models)

5) Thread migration may cause performance degradation. The Linux kernel may sometimes
move workers to different processor cores. In addition, migrating a worker also implies
moving local data. To prevent this, the processor affinity can be set manually rather than
automatic assignment by the Linux kernel. We checked this hypothesis for the experiments
using result sharing. See below for the results. We found that there was no improvement
when processor affinity was set manually. In fact, on some models setting the processor
affinity would result in severely worse performance. We expect that thread migration is
not an issue.

In conclusion, we found that redundant work, memory allocation on the NUMA architecture
and possible thread migration are not significant in limiting the speedups of our algorithm and
that Wool overhead and limited parallelism are both factors in limiting speedups.

After exploring the above explanations, we now formulate the hypothesis, based on the model
in Chapter 4, that limited memory bandwidth and limited scalability of the data structures are
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a major cause of limited speedups.
Creating or reusing a new BDD node involves first setting a lock on the first bucket, then

either setting a lock on the target bucket, writing data, and releasing all locks, or increasing the
reference count, comparing data and optionally decreasing the reference count when the data
doesn’t match. Of these, setting locks and manipulating the reference counts involves the atomic
primitive compare_and_swap. Writing entries into the memoization cache involves atomically
incrementing the reference counts of all parameters and of the result BDD, as well as setting
and releasing a local lock on the target bucket. With the exception of releasing locks, these
operations are all implemented using compare_and_swap.

BDD operations mainly consist of calculating new BDD nodes, testing whether or not these
nodes already exist, and putting results of operations in the memoization cache. Therefore,
BDD operations are dominated by compare_and_swap operations. Creating a new BDD
node and adding a new entry to the memoization cache involves at least 6 compare_and_swap
operations for ITE and 7 for RelProdS. When these compare_and_swap operations fail, there
is an additional cost to reload the value in processor cache and locally restart the procedure.

In Figure 6.1 we can see that the highest speedup is obtained around 36 workers. From the
discussion in Chapter 4 we expect that such peaks occur at points where the added communica-
tion overhead in relation to limited memory bandwidth is more expensive than the performance
benefits of adding a worker. From Figure 6.4 we know that the added communication overhead
in Wool even with 48 workers does not decrease performance, so we must attribute this behavior
to communication overhead in the data structures (atomic restarts due to concurrent modific-
ations of the same memory location) and to memory bandwidth limitations. Of these two, it
is much more likely that memory bandwidth is limited, since concurrent modifications of the
same memory location are unlikely to strongly influence our results since the hash tables are
very large.

We ran an experiment in which N workers performed 500,000,000 CAS operations on random
locations in a preallocated array of 100,000 32-bit integers. We extrapolated the measurements to
expected speedup in Figure 6.6. This figure suggests there is limited speedup due to bandwidth
limitations, but we do not see a peak like in Figure 6.1. This is probably due to the fact that
our benchmark of compare_and_swap uses a fully randomized access pattern, which is not
the case in actual BDD operations.
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Figure 6.6: Expected speedup graph with compare_and_swap

Finally, after every operation, there is some sequential execution between operations. Accord-
ing to Amdahl’s Law, this limits possible speedups. We expect the influence from this sequential
code to be very small in our case, since this sequential part only consists of immediately calling
the next parallel operation.
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Conclusions The limited scalability of the reachability algorithm may be due to the com-
bination of limited parallelism, limited bandwidth, and overhead from Wool. It appears that
redundant work does not significantly decrease performance. We excluded several other explan-
ations.

We think the shape of the speedup graph, with a peak around 36 workers, is the result of
the memory bandwidth requirements of the BDD operations when there is sufficient work to
parallelize, which consist mainly of memory transfers of which most are the atomic primitive
compare_and_swap, plus the overhead from Wool.

The reachability algorithm consists of a number of smaller BDD operations. Some of these
scale well and others scale worse. The height of the speedup graph, i.e., whether the highest
speedup is 20 or perhaps 5, is determined by the average scalability of these smaller BDD
operations.

In order to improve the scalability, we should look at the number of memory transfers required
per BDD node, especially compare_and_swap operations. Less use of the memoization cache
could be an option to reduce the number of memory transfers on average, at the cost of more
redundant operations. See Section 6.5. Another option would be removing updates to the
reference counts when using the memoization cache. Changing to an architecture with a larger
memory bandwidth would also increase the scalability, for obvious reasons. Finally, if it is
possible to merge small transition groups in LTSmin, for example using the parameter -rga, to
increase the scalability of individual BDD operations without significantly increasing the total
amount of work, the speedups may improve without compromising overall performance.

6.3 Results using result sharing
The second experiment we performed uses result sharing for parallelism rather than Wool. The
speedups obtained in this experiment are shown in Figure 6.7. If we compare Figure 6.7 to
Figure 6.1 we see similar results, except that most speedup lines are smoother in Figure 6.7. See
Section 6.4 for a more detailed comparison of these results with the results using Wool.

Similarly to our experiments using Wool, we can explore various explanations for lower
speedup.

1) The amount of redundant work increases with the number of workers, due to multiple
workers starting the same calculation before any worker has calculated the result. The
relative increase of work is shown in Figure 6.8. Comparing Figure 6.8 to Figure 6.3 it
is obvious that there is much more redundanct work than with Wool. Where using Wool
the worst case was 7% increased work, with result sharing we get at least 20% and at
worst over 600% increased work. This may be explained from limited parallelism, which
using Wool is expressed by excessive time spent in steal and do_work. With Wool
there is only redundant work when there is subgraph sharing, but in the approach with
result sharing every calculation is performed by every worker unless the result has been
calculated already.
If we compensate for the redundant work, by dividing the measured time by the amount of
work relative to 1 worker, we would get a speedup graph as in Figure 6.9. As is shown by
Figure 6.9, merely calculating more work is insufficient to explain limited speedup. Still,
Figure 6.10 suggests a correlation between the amount of redundant work and less speedup.
That does not mean that calculating redundant work causes less speedup beyond what we
compensated for in Figure 6.9. Another explanation is that redundant work is not the only
consequence of limited parallelism. For example, with limited parallelism it is more likely
that multiple workers are competing to calculate the same suboperation, resulting in extra
memory transfers between processor caches and main memory. Figure 6.11 suggests there
may be a relation between the amount of work and the amount of redundant work, but
the leader_election models are a clear exception. This is an area that may require
additional future investigation.

2) There may be overhead from the framework that causes limited speedup. The framework
for result sharing is much lighter than Wool, since it only involves some communication at
the start of each root operation and waiting for all workers to be finished at the end of each
root operation. We expect the overhead at the start of the operation to be insignificant.
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Figure 6.7: Results of using result sharing
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Figure 6.8: Relative work with result sharing
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Figure 6.9: Results compensated for redundant work
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Figure 6.10: Speedup versus relative work using result sharing (only best result)
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Figure 6.11: Relative work versus work
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However, it is possible that some workers finish the calculation much earlier than other
workers. Since the caller waits until all workers have finished the calculation, this may cause
performance loss. In theory, once any worker has finished the calculation, it is expected
that all results of the operation and suboperations are in the memoization cache and all
workers should be able to finish quickly. Depending on the depth of the calculation, this
may still require a significant amount of time.
Experimenting on the schedule_world.3model selecting the most expensive RelProdS
operation, we measured the elapsed time between starting and finishing the operation for
each worker. Then, we used a flag as a signal for each worker to abort when one worker
has finished the operation. This flag was checked at the start of every RelProdS and
ITE call and after every call to RelProdS and ITE. Using this flag comes at essentially
no cost [31]. The results of this small experiment are in Table 6.5. For example, using
8 workers, the first worker was finished after 1359 time units, and the last worker after
1820 time units. The exact times can be different for every execution, since the workers
execute suboperations in a random order. This randomness is significant when looking at
one single operation, but is less significant when looking at reachability as a whole. What
is clear from Table 6.5 is that without the flag, there is a significant random performance
loss. With the flag, all operations finish at the same time.

Table 6.5: Results of using a kill flag for a single operation

Workers Time to calculate Time using flag
4 1889 - 1889
8 1359 - 1820 (+34%) 1559 - 1559
24 900 - 1150 (+28%) 901 - 901
36 972 - 1065 (+9.5%) 959 - 959
48 1728 - 2069 (+21%) 1127 - 1127

Based on these results, we investigated whether using a kill flag improves performance.
When looking at the times of the reachability operations on the collision.5 model, we
get the results of Table 6.6. These results are disappointing, since there is little difference
between the times with multiple workers, where we would expect benefit. The small
differences in times are expected measurement deviations.

Table 6.6: Results of using a kill flag for model collision.5

Workers Time without kill flag (seconds) Time with kill flag (seconds)
1 2306 2252
2 1271 1308
4 730 793
8 410 414
16 236 237
24 175 176
28 160 158
32 148 150
36 146 147
40 143 142
44 146 143
48 150 149

We compared all the results of using the kill flag for all models to the original result without
the kill flag. See Figure 6.12. It appears that there is no significant benefit from using the
kill flag, despite the expected improvement based on Table 6.5. This means that either
only few operations exhibit the performance loss due to workers not finishing at the same
time, or using a kill flag causes a performance loss negating the benefits. This could be
investigated in the future using CPU profiling tools.

3) Similar to the experiment with Wool, memory alignment on the NUMA system may in-
fluence the performance of our algorithm. To see if memory alignment on the NUMA
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Figure 6.12: Results of using the kill flag (36-48 workers, all models)

system influences performance, we ran an experiment where the hash tables were allocated
interleaved using the function numa_alloc_interleaved from the NUMA library.

The results (with at least 32 workers) are presented in Figure 6.13. From Figure 6.13 it is
clear that there is no significant benefit of using the NUMA library instead of the standard
allocator.
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Figure 6.13: Results of using interleaved memory allocation (36-48 workers, all models)

4) Thread migration due to the Linux kernel sometimes allocating workers to different CPU
cores during the experiment may cause performance degradation. In addition, migrating a
worker also implies moving local data. This can be prevented by setting the CPU affinity
of each worker. We tested this and the result is in Figure 6.14. It appears there is no
benefit. Instead of a benefit, there is a significant performance loss on one model. We do
not know what may cause this loss and since there seems to be no benefit in the other
cases, we did not pursue this further.
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Figure 6.14: Results of setting CPU affinity (only 48 workers, all models)

Conclusions In conclusion, we found that memory allocation on the NUMA architecture,
possible thread migration, and the overhead from the framework are not significant in limiting
the speedups of our algorithm. There is a significant amount of redundant work (20-500%)
that we believe is a result from limited parallelism. When parallelizing using result sharing
limited parallelism results in redundant work. However, the redundant work caused by limited
parallelism is not sufficient to explain lower speedups on smaller models. We need to investigate
other mechanisms that cause reduced speedups due to limited parallelism. Figure 6.15 suggests
a relation between highest speedup and the amount of work of each model. Figure 6.15 also
suggests there are other factors influencing highest speedup.

As with Wool, we believe that the shape of the speedup graph is a result of the memory
bandwidth requirements of the BDD operations when there is sufficient work to parallelize.

6.4 Comparing using result sharing to using Wool

Both approaches give similar results, as suggested by the results in Figure 6.7 and the results
obtained using Wool in Figure 6.1. Conceptually, the approach using result sharing is based on
all workers performing the same operations and reducing redundant work using result sharing
and by calculating suboperations in a random order. The approach using Wool also uses res-
ult sharing, but eliminates all redundant work (except those caused by subgraph sharing) by
explicitly distributing tasks among workers.

We also compared the results of using result sharing and using Wool directly. See Figures 6.16
to 6.19. Figures 6.16 to 6.19 show the comparison of the best result for each model using Wool
and using result sharing and the comparison with 1 worker, 36 workers and 48 workers. As could
be expected, the results with 1 worker are nearly identical, slightly in favor of result sharing since
it lacks the overhead of Wool. We can conclude that the performance using Wool is up to 150%
better (for the lifts.6 model, see also Table 6.8) compared to the performance using result
sharing in this experiment.

Compared to result sharing, Wool reduces the amount of redundant work while adding some
overhead for task distribution. We can conclude that the benefit of reduced work is greater than
the cost of the overhead. Although using Wool results in better performance, the results are
similar. It may be possible to optimize the result sharing approach as well as optimize Wool for
better results.
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Figure 6.15: Best speedup for result sharing compared to work per model
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Figure 6.16: Result sharing vs Wool (best)
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Figure 6.17: Result sharing vs Wool (1)
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Figure 6.18: Result sharing vs Wool (36)
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Figure 6.19: Result sharing vs Wool (48)

6.5 Changing memoization cache strategies
Using the memoization cache is expensive, since for every added entry, several compare_and_swap
operations are necessary for getting locks and increasing reference counts. The memoization
cache is necessary to prevent redundant calculations. However, the cost of performing a cal-
culation twice may be less than the cost of using the memoization cache. If we don’t use a
memoization cache at all, the calculation and all subcalculation are recalculated, but if we only
use the memoization cache when a certain property holds, for example when x ∈ {x0, x2, x4, . . . },
this may result in a performance gain. In addition to the reduced cost of locking and manipulat-
ing reference counts, the size requirements for the memoization cache are significantly reduced.

We tested this hypothesis using a fairly straightforward algorithm. In this experiment, we
use the memoization cache only when x ∈ {x0, xN , x2N , x3N , . . . } where N ∈ {2, 3, 4}. See
Figures 6.20 to 6.25 for the results using 1-4 workers and Figures 6.26 to 6.31 for the results
using 32-48 workers. From these plots it is clear that there is some benefit for performance, but
that scalability is not increased. The benefit is the same for a few workers as for many workers.
See also Figure 6.32 for a speedup graph with N = 4. The calculation is performed faster, but
it does not scale better.

We also compared the amount of work between N=1 and N=4. See Table 6.7. See also
Figures 6.33 and 6.34. It is clear that there is some extra work, but this amount is small: from
0.9% up to 22.6% extra work.

6.6 Comparison to using BuDDy
Our goal is to use parallelism to improve the performance of BDD algorithms. It may be possible
that our solution is inefficient with a single worker, resulting in possibly impressive speedups
that are still slower than an optimized sequential algorithm. It is therefore useful to compare
our results to the performance of other BDD implementations. We compared our results to the
performance of BuDDy, which is one of the existing backends for symbolic model checking in
the LTSmin toolset. The results (execution time in seconds) are in Table 6.8. In this table we
used the data without a different cache strategy.

From these numbers we can see that BuDDy is 2 to 4 times faster than Sylvan for all
models when using a single worker. One of the reasons for this is that BuDDy uses a mark-
and-sweep garbage collection algorithm, instead of reference counting as in Sylvan. Since the
memoization cache is cleared during garbage collection, there is no need to update reference
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Figure 6.20: Wool with N=2 (1-4 workers)
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Figure 6.21: Result sharing with N=2 (1-4
workers)
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Figure 6.22: Wool with N=3 (1-4 workers)
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Figure 6.23: Result sharing with N=3 (1-4
workers)
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Figure 6.24: Wool with N=4 (1-4 workers)
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Figure 6.25: Result sharing with N=4 (1-4
workers)
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Figure 6.26: Wool with N=2 (36-48 workers)
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Figure 6.27: Result sharing with N=2 (36-48
workers)
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Figure 6.28: Wool with N=3 (36-48 workers)
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Figure 6.29: Result sharing with N=3 (36-48
workers)
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Figure 6.30: Wool with N=4 (36-48 workers)
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Figure 6.31: Result sharing with N=4 (36-48
workers)
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Figure 6.32: Wool speedup with N=4 (36-48 workers)
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Figure 6.34: Result sharing extra work (N=4)
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Table 6.7: Extra work for N = 4

Model Wool extra work N=4 Result sharing extra work N=4
bakery.4 17.0% 19.7%
bakery.5 14.4% 17.5%
bakery.6 13.9% 15.9%
bakery.7 15.8% 16.1%
bakery.8 15.3% 15.6%
collision.5 5.5% 5.6%
iprotocol.4 8.1% 8.6%
iprotocol.5 8.0% 8.1%
iprotocol.6 8.3% 9.7%
iprotocol.7 7.6% 7.7%
leader_election.5 0.9% 1.1%
leader_election.6 0.9% 1.4%
leader_filters.6 13.1% 13.7%
leader_filters.7 10.4% 11.0%
lifts.4 3.1% 3.4%
lifts.5 2.9% 3.2%
lifts.6 3.4% 3.6%
lifts.7 3.2% 3.2%
peterson.6 21.6% 22.6%
peterson.7 15.8% 17.6%
schedule_world.2 3.8% 4.3%
schedule_world.3 5.5% 5.7%

Table 6.8: Results using BuDDy, Wool, result sharing

Model BuDDy Wool-1 Wool-best RS-1 RS-best
bakery.4 1.87 10.48 4.03 (24) 10.45 3.98 (16)
bakery.5 73.71 155.34 19.05 (32) 152.92 20.84 (32)
bakery.6 44.77 106.71 11.69 (36) 105.28 13.54 (32)
bakery.7 319.83 992.61 77.91 (40) 976.26 83.59 (36)
bakery.8 517.66 1583.83 91.96 (36) 2051.18 97.71 (44)
collision.5 623.31 2443.36 122.58 (36) 2305.75 142.94 (40)
iprotocol.4 - 86.87 10.29 (32) 86.97 13.79 (36)
iprotocol.5 305.89 689.25 43.52 (36) 676.47 54.03 (36)
iprotocol.6 107.75 285.69 25.23 (36) 279.71 35.80 (32)
iprotocol.7 351.87 1182.47 69.24 (36) 1176.05 87.21 (36)
leader_election.5 - 107.22 30.96 (32) 96.00 40.10 (32)
leader_election.6 - 231.84 60.57 (32) 258.94 81.24 (32)
leader_filters.6 92.62 227.78 16.32 (32) 225.88 19.44 (36)
leader_filters.7 71.58 165.95 13.40 (36) 164.11 15.46 (36)
lifts.4 12.37 34.13 6.07 (36) 32.49 8.56 (28)
lifts.5 24.76 65.21 9.38 (36) 63.22 12.99 (32)
lifts.6 40.51 95.85 13.85 (36) 83.64 21.41 (32)
lifts.7 194.60 502.00 38.46 (26) 495.51 55.00 (40)
peterson.6 21.74 52.54 6.66 (36) 51.41 7.85 (32)
peterson.7 131.75 239.35 21.20 (36) 235.83 23.03 (36)
schedule_world.2 6.49 16.97 2.70 (28) 16.80 3.25 (36)
schedule_world.3 114.26 239.13 15.57 (36) 235.54 18.61 (40)
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counts in BuDDy. Our current implementation of reference counting garbage collection requires
that reference counts of BDD nodes are increased when results are added to the memoization
cache. Therefore using the memoization cache is much cheaper in BuDDy. However, Sylvan uses
a more optimal RelProdS algorithm. Also, Sylvan uses complement edges to reuse subgraphs,
while BuDDy does not. On the other hand, BuDDy has been optimized for several years.

Table 6.8 also shows that for all models except bakery.4 the parallel versions with sufficient
workers are faster than BuDDy, showing that parallelizing BDD operations with both approaches
results in better performance than the existing optimized BDD library BuDDy.

6.7 Conclusions
Both the approach using Wool and the approach using result sharing give promising results.
The speedups using Wool are slightly better than the speedups using result sharing, but both
methods are viable for the parallelization of BDD operations.

We partially understand the causes of limited speedups. We get the best performance in most
cases with about 36 workers. With more than 36 workers the performance decreases. After ex-
cluding several possible explanations, we hypothesise that this is due to the memory bandwidth
requirements of the BDD algorithms and lockless data structures. Improving the lockless data
structures by reducing the number of compare_and_swap operations may reduce the band-
width requirements of the algorithm as well as reduced the number of compare_and_swap
operations compared to other memory transfers, and thus improve scalability in the future.

The actual scalability of the reachability algorithm greatly depends on the specific model.
The reachability algorithm consists of a large number of smaller BDD operations, partially due
to the division of the transition relation into multiple transition groups in LTSmin. The average
scalability of these operations determines the scalability of the reachability algorithm. In future
work, merging transition relations to increase scalability could be investigated.

We investigated the relation between the size of the models in terms of the number of non-
trivial RelProdS and ITE suboperations and the scalability. Smaller operations often exhibit
insufficient parallelism for all workers. Limited parallelism results in worker idling in steal
and do_work functions when using Wool and in a higher amount of redundant work when
using result sharing. With result sharing, the higher amount of redundant work is not sufficient
to explain limited scalability. When we compensate the speedup plots for the extra work (see
Figure 6.9), there is still a significant difference between models. We believe there are more
mechanisms that cause worse performance due to limited parallelism or model features such as
the size or shapes of involved BDDs. This could be investigated in the future.

We investigated whether bad memory allocation and thread migration could cause worse
performance and determined that this is not the case.

We determined that when using Wool, redundant work due to subgraph sharing is not sig-
nificant (only 7% in the worst case) in the models we used. With result sharing it is harder
to establish how much redundant work was due to subgraph sharing. Subgraph sharing can be
detected by using a magic value in the memoization cache indicating that a worker has started
the subcalculation. In future work, we may be able to modify Wool to do other work when
subgraph sharing is detected. We could also investigate methods to improve the performance of
result sharing, for example backtracking when subgraph sharing is detected.

We found that using a flag to abort calculations when one worker has finished the calculation
with result sharing did not improve the performance.

We studied the effects of selectively disabling the use of the memoization cache to improve
performance and determined that in our experiments, while the overall performance improved,
there was no effect on scalability.

Compared to BuDDy we have better performance when using multiple workers and lower
performance when using one worker. In future work this could be improved by removing reference
counting for entries in the memoization cache.
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There are many different implementations of BDDs. Two well-known packages are BuDDy [30],
which is used in the symbolic model checker NuSMV and in LTSmin, and CuDD [42] from
Colorado University.

In the past (1995-1998) there have been several publications regarding the parallelization
of BDD operations, for example [20, 44, 49, 34]. They used different architectures, such as
massively parallel SIMD or distributed architectures. They had mixed results that are hard
to translate to modern machines, because of the huge differences in design and processor and
memory speeds.

Some of the research in that time was directed at using breadth-first approaches to improve
memory locality during BDD traversal, which might be interesting to study as well. In a perform-
ance study of BDD-based model checking, Yang at al. [48] found that breadth-first expansion (in
which sub-operations of the same variables are processed together) has performance drawbacks
in two studied packages (CAL and PBF) such as increased memory overhead. In their study,
they found no evidence that the breadth-first based packages are better than the depth-first
based packages when the computation fits in main memory.

There have been at least three different initiatives in literature to implement parallel BDDs
on modern multicore machines.

In an article published in 2009 on the website of Cilk and on the website of Intel, Yuxiong He
presented the result of using the multicore framework Cilk++ to parallelize the apply operator
in BuDDy [24]. See Figure 7.1(source: [24]). Their results are promising, but they did not
provide a speedup graph relative to the single-threaded version. They only parallelized BuDDy
as a proof of concept and only provided a small number of results. They suggest that limited
linear speedup is due to memory constraints.

In his thesis in 2010, Jörn Ossowski presented the parallel BDD package JINC [36]. In JINC,
the operations are not parallelized. Parallelism is only exploited on the high-level operator view.
Each worker in JINC has its own computed tables and memory pools, eliminating communication
overhead. To address the issue that this results in more lookup misses in the computed table,
JINC implements a multi-operand Apply that reduces the need of computed tables, because it
eliminates the need for temporary BDD nodes. Garbage collection and variable reordering are
also implemented in parallel. JINC uses a worker pool with a limited number of workers, to
reduce the amount of context switches. Workers request tasks from a shared queue and sleep
until new tasks are available. The shared queue is implemented using mutual exclusion, based
on the boost framework for C++.

Ossowski mentions that he did not investigate parallelizing the BDD operators for a number
of reasons. The primary reason Ossowski states is that the unique tables and computed tables
are the major obstacle to implement an efficient parallel BDD library and that Cilk’s approach
is based on independent calculations with few or no shared memory [36]. As we demonstrated,
a lockless data structure helps solve this issue. Our lockless data structures may also remove
the need to create a different computed table for every worker.
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Figure 7.1: Speedup graph of 13-bit Multiplier Construction using Cilk

Finally, Sahoo et al. presented a multithreaded solution that used partitioned BDDs [40].
They partition the BDDs into smaller BDDs and calculate the individual operations. Grumberg
et al. [21] use a similar method to partition BDDs to distribute the operations between multiple
machines, but their results cannot be compared since their solution is tailored towards distributed
architectures while ours targets multicore architectures.
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Conclusions and Future Work

In this chapter we present the conclusions of our work and some ideas for future work.

8.1 Conclusions
In Chapter 3, we designed and implemented a new specialized algorithm RelProdS to calculate
the successors of a set of states and an algorithm RRelProdS that calculates the predecessors
of a set of states, given a transition relation. We proved that these operations are correct.
These algorithms reduce the number of BDD nodes created to calculate the successors and
predecessors compared to the use of the individual algorithms RelProd and Substitute as
in implementations of model checkers using BDD packages BuDDy [30] and CuDD [42].

In Chapter 4, we extended Amdahl’s Law as a qualitative theoretical approach to parallel
performance, to include the critical path of the calculation and to include the communication
overhead due to adding workers. Our theoretical model suggests that there is a peak in speedup
graphs when the communication overhead of adding a worker is equal to the performance gain
of adding a worker, after which the speedup decreases.

In Chapter 5, we implemented a lockless lossy memoization cache. We also implemented a
lockless hashtable with garbage collection using reference counting. Every bucket also stores a
reference count and when a reference count is decreased to 0, the bucket index is inserted into
a buffer (implemented using the lockless cache) that facilitates lazy garbage collection. Both
data structures use the compare_and_swap atomic processor instruction to manipulate local
short-lived locks.

We implemented a framework for result sharing.
In Chapter 6, we parallelized the BDD operations ITE and RelProdS using the framework

Wool and using our result sharing framework. We measured the performance of both parallelized
algorithms by performing reachability calculations on a number of models from the BEEM
database [37] using the LTSmin toolset [9] on a NUMA architecture with 48 processor cores.
Both approaches give promising results and are viable methods to parallelize BDD operations.
With sufficient workers, we get a speedup of up to 20 using Wool and 17 using result sharing,
depending on the input model. Compared to BuDDy we have higher performance when using
multiple workers and lower performance when using one worker. The speedup using Wool is in
almost all models better than the speedup using result sharing. We get the best performance in
most cases with about 36 workers. With more than 36 workers the performance decreases.

We explored several explanations for the differences in speedup and the decrease in speedup
after 36 workers. We found that in smaller models there is limited parallelization, which is
expressed in the approach using Wool as more time spent in Wool functions do_work and
steal, and in the approach using result sharing as more redundant work.

After excluding several possible explanations, we hypothesise that a major factor is the
memory bandwidth requirements of the BDD algorithms and lockless data structures.
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The actual scalability of the reachability algorithm greatly depends on the specific model.
The reachability algorithm consists of hundreds of smaller BDD operations, partially due to
the division of the transition relation into multiple transition groups in LTSmin. The average
scalability of these operations determines the scalability of the reachability algorithm.

There is some redundant work due to subgraph sharing when multiple workers calculate the
same suboperation before any worker has calculated the result, but we found that the amount
of redundant work is negligible in our experiments.

We studied the effects of using different result memoization strategies and found that the
performance improves for all number of workers if we sometimes do not use the memoization
cache, but that there is little effect on scalability. We measured a speedup of up to 1.8 by
reducing the use of the memoization cache by 25%.

8.2 Future Work
We have several ideas for future investigations:

1) Both lockless data structures can be improved. Improving the lockless data structures
by reducing the number of compare_and_swap operations may reduce the bandwidth
requirements of the algorithm as well as reduced the number of compare_and_swap
operations compared to other memory transfers, and thus improve scalability.

2) We could modify our implementation of garbage collection such that the memoization
cache is completely emptied prior to garbage collection. This removes the need to update
reference counts when using the memoization cache.

3) It would be useful to study the speedup of the individual BDD operations in the reachab-
ility operation rather than the full reachability algorithm. More theoretical analysis, for
example the critical path length of the individual BDD operations, may also provide more
insight, especially for models like leader_election.

4) We do not fully understand the exact mechanisms how certain models only give low spee-
dups. This should also be further investigated. For example, using CPU profiling we could
find out which operations are relative bottlenecks during the execution of the experiments.

5) We could merge transition groups in LTSmin to increase the size of BDD operations and
thus hopefully improve the scalability.

6) We could calculate the RelProdS operations of the different transition groups in LTSmin
in parallel, for example for 6 transition groups using 8 workers per operation.

7) We should investigate why using a kill flag with the result sharing approach has limited
benefit, despite our initial research on an isolated BDD operation suggesting that there
would be a benefit.

8) We may be able to modify Wool to do other work when there is subgraph sharing. We
could also investigate methods to improve the performance of result sharing, for example
backtracking when subgraph sharing is detected.

9) We should implement RelProd and Substitute in Sylvan and measure the effect of
using RelProdS instead of using RelProd and Substitute separately when calculating
the set of next states in model checking. We should also extend LTSmin to support CuDD,
so the parallel performance of Sylvan can be compared to an additional BDD library.
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