
coffee machine beverages

coffee tea

coffee machine$makes

Brand
Douwe Egberts
Kanis Gunnink
Pickwick

beverages$brand

coffee$strength
val: int

tea$flavour
val: string

val

next

val

strength flavour

makes brand

Connecting GROOVE to
the world using XMI

Master thesis

Author:
Stefan Teijgeler

Supervisors:
Dr. Maarten de Mol

Dr. Ir. Arend Rensink
Dr. Ivan Kurtev

August 25, 2010

iii

Preface

It has been a long road of almost 10 years to get to the point of graduation. The
road was a tough one, and there have been many obstacles along the way. It
has not been easy with, for example, the major changes to the study program,
my lack of motivation after Inter-Actief and my unsuccessful first graduation
project. However, I did get here, and I am proud to present my graduation
thesis that now lies in front of you.

First of all I would like to thank my parents. These last few years have been
a real trial for you, probably more so than for myself, the exception perhaps
being the last few months. You have always supported me, even though I have
not always given you reason to continue doing so. Thanks for everything, your
ordeal is finally over!

Żabka, thanks for taking care of me! I would haved lived even more un-
healthy, especially the last months, if it weren’t for you. I know you would have
liked to help me more, but that I have been keeping my work to myself. Still,
thanks for the gestures. Now that I finally have some spare time again, it will
be my turn for the long journey by train.

Next I would like to thank my supervisors. Maarten, for reading most of my
written work and your constructive feedback. Arend, for your quick replies and
fixes to GROOVE. Ivan, for your help on Ecore modelling and getting started
with the EMF API. And all of you, thanks for working on such a tight schedule
for me these last few weeks and the weeks before your holidays.

Finally, thanks to all of my friends. I have not been fun to be around
with lately and I have not spent enough time with you. Now that I am finally
graduating and this extremely busy period is over, it is time to make up for lost
times. Prepare to go out for movies, games and drinks a lot!

The next step will be hunting for a job, but first a week or two of well
deserved rest! That’s all I have to say here. Happy reading!

iv Preface

v

Contents

Summary ix

1 Introduction 1

2 XMI compatibility of modelling tools 5

2.1 Introduction . 5

2.2 Researched tools . 6

2.3 Actual exchangeability of models 10

2.4 Conclusion . 14

3 GROOVE 17

3.1 Introduction . 17

3.2 Graphs . 17

3.3 Type and instance graphs . 18

3.4 Transformation rules . 20

3.5 Graph grammars . 23

4 Representing Ecore models as graphs 25

4.1 Introduction . 25

4.2 The Ecore metamodel . 26

4.2.1 EObject . 34

4.2.2 EModelElement . 34

4.2.3 EFactory . 34

4.2.4 ENamedElement . 34

vi Contents

4.2.5 EClassifier . 36

4.2.6 ETypedElement . 36

4.2.7 EStructuralFeature . 37

4.2.8 EClass . 38

4.2.9 EPackage . 40

4.2.10 EReference . 40

4.2.11 EAttribute . 42

4.2.12 EDataType . 42

4.2.13 EEnum and EEnumLiteral 44

4.2.14 EAnnotation and EStringToStringMapEntry 45

4.2.15 EOperation and EParameter 45

4.2.16 EGenericType and ETypeParameter 46

4.3 Ecore models and representation examples 47

4.3.1 EClass . 49

4.3.2 EReference . 50

4.3.3 EPackage . 56

4.3.4 EAttribute and EDataType 57

4.3.5 EEnum and EEnumLiterals 60

4.4 Constraints . 62

4.4.1 ETypedElement . 64

4.4.2 EClass . 68

4.4.3 EReference . 72

4.4.4 EAttribute . 75

4.4.5 EDataType . 78

4.4.6 EEnum . 79

4.5 Conclusion . 81

vii

5 Ecore2groove transformation tool 85

5.1 Tool usage . 86

5.2 Tool implementation . 87

5.2.1 Ecore model to type graph 90

5.2.2 Ecore instance models to instance graphs 93

5.2.3 Instance graphs to Ecore instance models 95

5.3 Tool demonstration . 98

5.3.1 Ecore model and graph representation 98

5.3.2 Transformations in instance graphs 100

5.3.3 Other features . 107

6 Related work 111

7 Conclusion and future work 117

Bibliography 123

viii Contents

ix

Summary

Model driven engineering has become an important part of software design,
allowing engineers to design more complex systems on a higher, abstract level
with a visual notation. Model transformation is an important aspect of model
driven engineering. Model-to-text transformations are used to generate code
from a model, model-to-model transformations are used for model refactoring or
refining, or combining parts of a system. Many approaches exist for modelling,
like the standards set by MOF or EMF, and many approaches exist for model
transformation. Some use a standard like QVT to define transformations, many
use a custom approach that is often inspired by graph transformation.

GROOVE is a graph transformation, simulation and verification tool. In
this work we made it possible to use GROOVE as a model transformation tool
for Ecore models. Ecore models are imported as type graphs and instances
of Ecore models as instance graphs. Instance graphs can be transformed to
other instance graphs within GROOVE, and resulting instance graphs can be
exported back to Ecore instance models. XMI was used as a standard to per-
form model exchange. Online experiences indicate that model exchange is not
always possible between tools. We performed an extensive XMI compatibility
research of various modelling tools to determine a set of tools for GROOVE to
be compatible with. This resulted in our findings that model exchange between
tools is rarely possible without errors, and that the exchange of Ecore models
led to the best results.

In order to import Ecore models and instance models into GROOVE, we
defined a mapping from elements of Ecore modelling to a graph representa-
tion. Other work has been done to represent UML or Ecore models as graphs,
but approaches are often not complete or are not targetted to a specific graph
transformation tool. We discussed all features of the Ecore metamodel, and
our mapping to graphs for GROOVE supports all available elements that are
relevant for instance models. We implemented a Java program as a package of
the GROOVE project that can transform Ecore models and instance models
to graph grammars for GROOVE with a type graph and instance graphs. It
can also transform instance graphs in a graph grammar back to Ecore instance
models, making GROOVE a model transformation tool for Ecore models with
a formal basis in graph theory.

x Summary

1

Chapter 1

Introduction

Model driven engineering

Model driven engineering has become an important part of software engineering
with software systems that have become more and more complex. Models that
visually describe the design of a system have allowed engineers to design such
software systems on an abstract and intuitive level. One major player in model
driven engineering is Object Management Group (OMG), providing standards
for Model Driven Architecture (MDA) [29], Meta Object Facility (MOF) [28]
and the Unified Modelling Language (UML) [33], which is defined by MOF.
Another large player is the community driven Eclipse Foundation. They pro-
vide the Eclipse Modelling Framework [42] which consists of the metamodelling
standard using Ecore, but also provide tools as part of the Eclipse Framework.

Model transformation is an important aspect of model driven engineering.
Model-to-text transformations transform a model to a textual representation,
usually program code. Model-to-model transformations can be used to define
changes to a design on the abstract level, for example for program refactoring or
refining, or combining parts of a system. There are several approaches for model
transformation. OMG has proposed a standard for model transformations on
MOF models, called Query / View / Transformation (QVT) [32], which is used
by some tools [19, 23]. Other tools use a custom approach to specify model
transformations [37, 8, 45, 24, 27, 44, 2, 20, 16], many of which are inspired by
graph transformation concepts.

Graphs and GROOVE

Graphs are data structures that consist of a collection of objects and a collection
of relations between these objects. Objects in graphs are called nodes, relations
in graphs are called edges. Graphs are often used to model object oriented
systems. Graph transformation tools can then perform graph transformations
and verification of properties of a system by exploring the transition system.

2 Chapter 1. Introduction

Models that describe software systems, like UML class diagrams or Ecore mod-
els, have a strong visual similarity with graphs, consisting basically of boxes
and relations with added features. Modelling standards, at least in the case of
UML and Ecore, are defined textually without formal semantics. Graphs and
graph transformations on the other hand have a strong formal basis, of which
an extensive overview can be found in [14]. Work has been done to formalize
visual modelling languages like UML in terms of graphs [5, 4, 21, 22, 35], but
usually these approaches are incomplete or not targeted to the capabilities of a
specific graph transformation tool. Without tool support, mappings of models
to graphs remain an on-paper idea without practical applications.

GROOVE (GRaph-based Object Oriented VErification) is a tool set for
modelling object oriented systems as graphs [36, 17]. It is being developed at
the formal methods group of the University of Twente, with a first release in
2004. With it, users can create graphs and define graph transformation rules.
GROOVE can then apply the rules in a predefined or arbitrary order, and
explore the resulting labelled transition system. Properties of each state can be
verified, systems can be simulated, and graphs can be transformed into other
graphs which is essentially model transformation.

Interoperability of GROOVE

Even though there is a visual similarity of UML or Ecore models with graphs,
there is no interoperability of GROOVE with modelling tools for these models.
If GROOVE can be connected to UML or Ecore modelling tools and handle
models created in those tools, GROOVE can be used a model transformation
tool with verification and simulation features.

However, UML or Ecore models cannot be imported into GROOVE or ex-
ported from GROOVE, and these models cannot be represented as simple graphs
in a one to one mapping of modelling elements to nodes and relations to edges.
In order to extent GROOVE with interoperability with modelling tools, it must
be possible to exchange models with these tools and to represent their models
as graphs.

The goal of our work is to add interoperability with UML or Ecore modelling
tools to GROOVE. In order to do this, it must be possible to import and export
such models, and represent them as graphs. Mappings of UML or Ecore models
to graph representations exist, but only partial mappings. Furthermore, these
mappings are not targetted to the feature set of GROOVE in particular. Our
goal is to support all features of a modelling standard in a graph representation
of which everything must be supported by GROOVE.

Connecting GROOVE to the world

In order to add interoperability to GROOVE, it must be possible to exchange
UML or Ecore models between modelling tools and GROOVE. We use XML
Metadata Interchange (XMI) [30], which is an OMG standard for model ex-
change. It provides means to exchange any model information between tools,

3

like UML and Ecore models, and is supported by many modelling and model
transformation tools [46, 45, 38, 27, 18, 42, 26, 25, 43, 34, 3, 15, 9]. There is
a difference between models and diagrams: Models contain information about
elements but no visual representation, diagram are visual representations of
models. XMI only supports exchange of models. Diagrams have to be regener-
ated after imported a model using XMI.

With a compatibility experiment we identify which tools are compatible
to each other with regard to model exchangeability. Even though many tools
support XMI, there has not been any published work with an experiment to
determine model exchangeability using XMI. Based on our experiment, we chose
the modelling standard of Ecore to connect GROOVE.

The next step for adding interoperability to GROOVE is to define a complete
mapping of Ecore models and instances of those models to graph representa-
tions that are supported by GROOVE. Ecore models are mapped to a type graph
representation and instance models are mapped to an instance graph represen-
tation. For our mapping of Ecore models to graphs we use several principles as
guidelines, similar to the ones in [21]. Instance graphs should be as simple and
consistent as possible, but they should still support all features of Ecore models.
If some property of a model element requires a larger subgraph to represent it,
this larger subgraph is also used if the property is not enabled to keep a con-
sistent representation. Type graphs should be as close as possible to instance
graphs and the Ecore model it represents, instead of using counterintuitive type
graphs.

To make our work applicable in practice, the mapping of Ecore models to
graph representations must be used by a transformation tool. This tool should
be able to take an Ecore model and instances of that model, and transform
them to a type graph and an instance graph for each instance model. It should
also be able to take a graph grammar from GROOVE and transform all valid
instance graphs of that grammar to instance models.

Results

We compared the UML and Ecore model exchangeability using XMI of of various
tools. The best results are achieved when exchanging Ecore models, therefore
we chose to add interoperability with Ecore models to GROOVE.

We examined all elements that are part of the Ecore metamodel and can
be used in Ecore models. All modelling elements are either supported and are
represented in a graph, or have no impact on instance models and need no
representation. Advanced features often not supported by other approaches,
like multi-valued attributes and ordering of references, are supported by our
approach.

A transformation tool has been developed as a package of the GROOVE
project. It can transform Ecore instance models in both directions, from Ecore
to GROOVE, and back to Ecore. With our mapping and transformation tool,
we have added interoperability with Ecore modelling tools to GROOVE.

4 Chapter 1. Introduction

Structure of the thesis

The remainder of this thesis is structured as follows: chapter 2 contains our
XMI compatibility research, and provides arguments for our choice to connect
GROOVE to the world of Ecore. Then, in chapter 3 we introduce GROOVE
and the features that are relevant for our work. In chapter 4 we present a thor-
ough analysis of the Ecore metamodel and a complete mapping of all modelling
elements to a graph representation. Example Ecore models are used to illustrate
the mapping in actual models. Chapter 5 explains the usage and implementa-
tion of the Ecore to GROOVE transformation tool, provides an example of how
to use GROOVE as a model transformation tool, and describes some features
and strengths of using GROOVE. Finally, in chapter 6 we discuss related work
and in chapter 7 we present our conclusions and discuss possible future work.

5

Chapter 2

XMI compatibility of
modelling tools

2.1 Introduction

Many modelling tools support importing and exporting of models using XMI.
XMI has been developed by OMG as a standard to enable exchangeability of
models between tools. However, performance issues of rebuilding the original
model when importing using XMI have been reported [27], and online experi-
ences indicate that exchanging models is not always possible between tools. It
seems that sometimes models cannot be imported at all, and in other cases they
are imported but with errors. A research towards the compatibility of various
tools for model exchangeability using XMI has not been performed or published.

In this thesis we extend GROOVE to enable importing and exporting XMI
files. The goal of this chapter is to select a tool or a set of tools that we wish to
connect to GROOVE using XMI for exchange of models. We determine which
standards are used by various modelling tools and base an expected compati-
bility between the tools on this. We then present an experiment to verify the
compatibility of these tools, where we will see that compatibility is not what it
should have been in theory, confirming experiences found online.

In this work we use a difference between the notions of models and diagrams.
Models contain the information of for example classes, relations and attributes
but do not contain a visual representation. The diagrams in turn are visual
representations of models or part of models. This difference needs to be made
explicit, since XMI is meant to exchange only model information between tools,
not the visual representation. UML and Ecore are, amongst other things, meant
to visualize designs to improve the readability, making it it easier to understand
and communicate about a design. Since diagrams are the visual representation
of models, they are a crucial part of the modelling process. Diagrams can usually
be regenerated in tools after importing a model, but larger models may lose a
lot of visual expressiveness without the original diagrams. OMG presented a

6 Chapter 2. XMI compatibility of modelling tools

standard to retain diagram information in XMI files, called UML 2.0 Diagram
Interchange. Only one tool supported this, so we could not test the compatibility
of the implementations of this standard between the tools. Ecore supports
diagrams as separate XML files which refer to the associated Ecore models, so
these are more easily exchangeable between tools.

In section 2.2 we show 9 different modelling tools that we considered, some
are open source and free to use, some are licensed for which we used evaluation
editions. In section 2.3 we explain and present the experiment we did, and
finally section 2.4 contains the conclusions of this experiment and our choice
which set of tools we wish to be compatible with.

2.2 Researched tools

As mentioned before, we selected 9 tools to be included in our experiment.
This selection contains various commercial and licensed tools and some open
source tools. They support different modelling standards and export and import
formats. Below we list each of the selected tools and their supported features
and standards, and the editions we used for our experiment. The standards
supported by the different tools are usually found online, but at times the exact
version supported is not mentioned. In these cases we used our own findings by
studying the tool, and the native and exported file contents. A detailed study
whether tools are fully compliant to the claimed standards is outside the scope
of this thesis. Whether or not the standards are correctly implemented will
show from the compatibility experiment.

Rational Software Architect. Rational Software Architect [18], part of Ra-
tional Rose, has been bought by IBM in 2004. It is a tool to model software
architectures using UML 2.1. The tool has been redeveloped by IBM and it is
now based on the Eclipse framework. It can be used either as a plugin to an
existing Eclipse installation, or standalone. The tool supports importing and
exporting of UML 2.1 models using XMI 2.1, and importing and exporting from
and to Ecore models. The analysis of this tool has been done using the trial
version of version 7.5.4 of Rational Software Architect Standard Edition.

Eclipse with EMF. The Eclipse Project is a pluggable development envi-
ronment that comprises tools and runtime environments to model, develop and
maintain software systems. The Eclipse Platform offers frameworks and services
for plugins, which in turn determine how the Eclipse Platform should handle
resources like Java files or UML models. Any resource can be handled by Eclipse
if there is a plugin available for it. The Eclipse Projects were created by IBM in
2001. Since 2004 the project is hosted by the Eclipse Foundation, an indepen-
dent non profit corporation, to allow Eclips to be further developed by a neutral,
transparent and open community, for everyone to use. The Eclipse community
now consists of individuals and companies contributing to the projects. The
Eclipse Foundation employs a staff to provide services to the community, but
does not employ any Eclipse developers.

Section 2.2. Researched tools 7

In this thesis we use the Eclipse Platform Galileo 3.5.1 with the Eclipse
Modelling Framework (EMF) 2.5.0 plugin [42], as well as the Ecore Tools plugin
0.9.0. The Eclipse modelling Framework makes Eclipse understand EMF mo-
dels, and can for example connect Ecore models to Java generators. The Ecore
Tools allow visually developing Ecore models and instance models. Ecore models
are natively stored using XMI 2.0.

Modelio. Modelio is a tool to model software architectures [26]. It is being
developed by Modeliosoft, a company located in France. The tool supports
full UML 2.1 modelling, and supports features like code generation, consistancy
checks, and traceability management. Modelio is based on Objecteering, a tool
developed since 1991 to support object oriented programming and modelling.
Objecteering has now been discontinued, and development by Modeliosoft is now
fully dedicated to Modelio. There are three versions of Modelio available, the
Free, Express and Enterprise Editions. Each of the editons supports importing
of UML 2.1 models using XMI 2.1, but only the Enterprise Edition also supports
exporting models using XMI 2.1. Because we need both XMI import and XMI
export features, we use an evaluation edition of Modelio Enterprise Edition
version 1.1.0.

Visio. Visio is part of the Office Suite developed by Microsoft [25]. It is
a tool to create diagrams like UML diagrams. It is not intended to support
developing software architectures. There is no seperation between the created
diagrams and the underlying models. The goal of Visio is not to support the
development cycles of software development, but only to visualize, explore and
communicate complex data. A XMI export feature has been available for Visio
2007 since Service Pack 2 using Visual Basic code. For this work we used the
latest version of Visio at the time, Visio 2007 Professional Edition with Service
Pack 2. It supports diagrams using UML 1.4 and UML 2.0, and exporting using
an unspecified version of XMI. No XMI import feature seems available for any
edition of Visio.

ArgoUML. ArgoUML is a free and open source UML modelling tool that
was first publicly released in 2002 [43]. It is not funded and is developed by
volunteers, users of the tool are encouraged to contribute in some way. The latest
released version is 0.28.1 and supports modelling using UML 1.4, importing of
UML 1.3 and 1.4 models using XMI 1.0, 1.1 and 1.2, and exporting of UML 1.4
models using XMI 1.2. UML 2 and XMI 2 is not yet supported in the latest
release. Preliminary support for UML 2.0 is being added to 0.29.1, but at the
time of writing this was not yet ready for testing. ArgoUML also has support
for code generation, OCL, exporting to image formats and multiple views, or
diagrams, for a single model. For our work, we use the latest released version
of ArgoUML, 0.28.1.

BoUML. BoUML is a free and open source tool for creating UML 2.1 models
[34]. It is being developed by Bruno Pagès, and funded by voluntary donations

8 Chapter 2. XMI compatibility of modelling tools

from users. It is multiplatform and runs under Windows, Linux and MacOS by
using Qt. The tool is extensible in nature, and functionality can be extended by
so called plug-outs. BoUML supports a wide range of standards and features
using plug-outs, like code generation, reverse engineering and importing of UML
models using XMI 2.0 and XMI 2.1, importing of Rational Rose projects, and
exporting of UML models using XMI 1.2, XMI 2.0 and XMI 2.1. Only importing
from XMI 1.2 is not possible. For our work we use the Windows build of BoUML
4.17.1, released in January 2010.

Artisan Studio. Artisan Studio is a development tool that allows users to
model systems and software using industry standards like UML [3]. Artisan
Studio is one of the software suites being developed by Artisan, founded in 1997
and located in the USA and the UK. It provides support for all phases of a
development lifecycle, and provides consistency checks and traceability between
models, code, documentation and test cases. Artisan Studio supports modelling
using UML 2.1, and importing and exporting of UML models using XMI 2.1.
We use the evaluation version of Artisan Studio 7.1 for our work.

Poseidon. Poseidon for UML is a UML modelling tool created by Gentleware
AG [15]. Gentleware was founded in 2000 in Hamburg. They have a basis in
the open source project ArgoUML described above, and offer free licenses to
non commercial open source projects. The latest version, Poseidon for UML
8 beta, is closely tied together with Eclipse and is built on EMF, but not yet
available for evaulating. There are several editions available of the latest release
of Poseidon for UML, as well as an Eclipse plugin, Apolle for Eclipse, to create
UML class models from Java code and to generate Java code from models.
Poseidon for UML comes in four editions, the community, standard, professional
and embedded edition. Each edition can be evaluated, and the community
edition is freely available for open source projects. It however has limited import
and export capabilities. For this work we use the evaluation edition of Poseidon
for UML Professional 6.02. It supports modelling using an unspecified version
of UML, which after closer inspection turns out to be UML 1.4 with some
features from UML 2.0 added to it. Terms and elements from UML 1.4 and
2.0 are mixed together, for example Poseidon supports 8 diagrams including
the collaboration diagram as defined in UML 1.4, activity diagram elements
like the activity partition from UML 2.0, and supports the UML 2.0 Diagram
Interchange standard which is also part of UML 2.0. Poseidon can import from
Rational Rose projects and XMI 1.2 files, and export to Ecore and XMI 1.2.
Poseidon for UML is also the only tool encountered that supports the UML
2.0 Diagram Interchange standard, which is surprising since this standard is
actually defined for use in conjunction with UML 2.0 and XMI 2.0.

Borland Together. Borland Together is a visual modelling platform devel-
oped by Borland [9]. It is based heavily on the Eclipse platform, and is in fact
a set of plugins for use in Eclipse. It allows modelling using UML 1.4 and UML
2.0, and supports model transformation using OCL and QVT, code generation,
and compliance to other standards. Importing and exporting of models is possi-
ble using XMI 2.0 and XMI 2.1 for UML 2.0 and UML 2.1 models, and possible

Section 2.2. Researched tools 9

using XMI 1.2 for UML 1.4 models. Borland Together can also import projects
created in Rational Rose. Furthermore, Ecore models can be transformed to
UML 2.0 models and vice versa using QVT model transformation. Borland
provides templates for model transformation projects, however these will not
be looked at in this thesis. The standard used for modelling is UML, however
the underlying metamodel used is EMF Ecore. Borland Together also uses and
helps to develop Eclipse plugins that are tied together to EMF, like the Graph-
ical modelling Framework (GMF). For our work we use an evaluation of the
latest version, which is Borland Together 2008 with Service Pack 1, released in
July 2009.

modelling stan-
dards

Import standards Export standards

Rational UML 2.1 XMI 2.1, Ecore XMI 2.1, Ecore
Eclipse Ecore Ecore Ecore
Modelio UML 2.1 XMI 2.1 XMI 2.1
Visio UML 1.4, UML 2.1 - XMI
ArgoUML UML 1.4 XMI 1.0, XMI 1.1,

XMI 1.2
XMI 1.2

BoUML UML 2.1 XMI 2.0, XMI 2.1 XMI 1.2, XMI 2.0,
XMI 2.1

Artisan UML 2.1 XMI 2.1 XMI 2.1
Poseidon UML 1.4 (some 2.0

features)
XMI 1.2 XMI 1.2, Ecore

Borland UML 1.4, UML 2.1 XMI 1.2, XMI 2.0,
XMI 2.1, Ecore

XMI 1.2, XMI 2.0,
XMI 2.1, Ecore

Table 2.1: Features of UML / Ecore modelling tools

Export
Import

R
at

io
n

al

E
cl

ip
se

M
o
d

el
io

V
is

io

A
rg

oU
M

L

B
oU

M
L

A
rt

is
an

P
os

ei
d

on

B
or

la
n

d

Rational
Eclipse
Modelio
Visio
ArgoUML
BoUML
Artisan
Poseidon
Borland

Table 2.2: Expected export / import compatibility between tools. White cells
indicate an expected incompatibility, grey cells indicate an expected compati-
bility, dark grey cells were not examined.

10 Chapter 2. XMI compatibility of modelling tools

Table 2.1 summarizes the standards that are supported by the tools. For
each tool the modelling standards that are used within the tool are listed, as
well as the standards that can be used for exporting and importing models. The
Ecore export and import standard is actually XMI 2.0, but it contains an Ecore
model instead of a UML model. To make this more clear in the table, we named
it Ecore instead of XMI 2.0.

We attempted to predict the exchangeability of models between tools by
looking at the supported standards. Exchange of models from tool A to tool
B in the case of UML models should be possible when two constraints are
satisfied. First, tool A must use the same standard for exporting that B uses
for importing. Secondly, both tools A and B must use the same standard for
modelling. This is because tool B must know the model type and version of
the model it wants to import. This is the case when both tools use the same
standard for modelling. Ecore export and import formats are treated a little
differently, we predict that whenever tool A can export using Ecore, and tool
B can import using Ecore, it should be possible to exchange models from A to
B, regardless of the used modelling standards of both tools. This is because
whenever a tool supports exporting or importing to or from Ecore it transforms
a UML model to or from an Ecore model. The used modelling standard by
the tool thus becomes irrelevant. The exception of course is Eclipse which uses
Ecore as the modelling standard. Table 2.2 contains our predictions. Vertically
the tools that export a model are listed, horizontally the tools that import a
model. The grey cells indicate that it should be possible to exchange a model
from the vertical listed tool to the horizontal listed tool. It is clear that this
table is not transitive, some tools do not support the same export and import
standards, and Visio cannot import anything at all. In section 2.3 we extend
this table with our actual findings.

2.3 Actual exchangeability of models

We performed an experiment to determine the exchangeability of models be-
tween tools, and to confirm the negative reports of XMI as the standard for
model exchange. We created a simple coffee machine model (class diagram in
UML terms or Ecore model in Ecore terms) in each tool. Figure 2.1 shows
the model we created in Eclipse, but we created the same model in each tool.
The model contains basic classes, an abstract class, inheritance, operations,
attributes, an enumeration, composition relations and an association relation.
In our opinion it is a fair set of the possible elements, and we can determine
the exchangeability between tools based on this model to a reasonable extent.
At the very least we can state that if this model cannot be exchanged, more
complicated models can also not be exchanged.

The next step was to export the model in each tool using each version of XMI
and Ecore the tool supports. Some tools offer various options and standards for
exporting, so we ended up with at least one XMI or Ecore file for each tool we
looked at. We then went through the tools in order, and attempted to import
the exported files from each of the other tools in a new and empty project.
Our results are ordered by the importing tool, so whether or not models can

Section 2.3. Actual exchangeability of models 11

be exchanged from tool A and B can be found at tool B in the sections below.
Table 2.3 contains a summary of the results. As before, the grey cells indicate
that we expect the tools to be compatible, but this time a check mark indicates
that models can actually be exchanged. A cross indicates that the tools are not
compatible and that we received some error after attempting to import. A ques-
tion mark means we were unable to determine compatibility. Footnotes in the
table provide some additional information about the compatibilities we found,
like the used standards and whether models lose information after importing.

Export
Import

R
at

io
n

a
l

E
cl

ip
se

M
o
d

el
io

V
is

io

A
rg

o
U

M
L

B
o
U

M
L

A
rt

is
an

P
o
se

id
o
n

B
o
rl

a
n

d

Rational X1 X3 7 7 7 X35 7 7

Eclipse X1 7 7 7 7 7 7 ?
Modelio X3 7 7 7 X34 X35 7 7

Visio ? 7 ? ? ? ? ? ?
ArgoUML 7 7 7 7 7 7 X24 X25

BoUML X3 7 7 7 7 X34 7 X25

Artisan X3 7 7 7 7 7 7 7

Poseidon X146 X16 7 7 7 7 7 X25

Borland X34 ? X34 7 X24 7 X34 X25

Table 2.3: Actual export / import compatability between tools. 1) Ecore export.
2) XMI 1.x export. 3) XMI 2.x export. 4) Some model information is lost. 5)
Some model information is changed. 6) Only seperate packages instead of entire
models.

Figure 2.1: Simple model of a coffee machine that contains basic classes, an
abstract class, inheritance, operations, attributes, an enumeration, composition
relations and an association relation.

12 Chapter 2. XMI compatibility of modelling tools

Rational Software Architect. Rational Software Architect can import mod-
els that were exported in Eclipse, Modelio, BoUML, Artisan, Poseidon and Bor-
land Together. UML 2 models exported in Borland can be imported, however
only models that were exported using the option XMI for UML 2.1, and labels on
associations are missing in this case. UML 2 models exported using any other
option cannot be imported, including the option to create XMI for UML 2.0
compliant to the OMG standard. This gives the impression that only XMI files
that are not compliant to the OMG specification can be used to import models
from Borland Together. It is not clear what the difference is between XMI files
that are OMG compliant and XMI files that are not OMG compliant. Models
from Poseidon can be imported by using the Ecore file format. However, much
information is lost like association relations and operations. Also, Poseidon only
supports exporting packages to Ecore, not entire models. So everything not in
the exported package is lost, and this even includes subpackages. Entire models
can still be exchanged by exporting and importing each package seperately.

Eclipse with EMF. Eclipse with EMF does not have an option to import
or export models using XMI. The native storage format for Ecore models in
Eclipse is XMI 2.0. However, Eclipse does not understand the XMI file formats
that are exported by the other tools, so those files simply cannot be opened as
models in Eclipse. This is because they contain UML models and not Ecore
models. Rational Software Architect, Poseidon and Borland Together have the
possibility to export models to the Ecore file format. The Ecore files created
with Rational Software Architect can be opened in Eclipse and all model data
is present. Poseidon can only export packages as Ecore, and subpackages are
not included. So model data can be exchanged from Poseidon to Eclipse, but
only partially. The model transformation that Borland Together offers to obtain
Ecore files has not been tested in this work. It only provides a framework to
define Ecore to UML transformations in, and it does not work out of the box.

Modelio. Modelio can import models that were exported in Rational Software
Architect and Borland Together. XMI files from Borland can only be imported
if they are created with the XMI for UML 2.1 option, and again labels on
associations are missing. XMI files created in Borland using the other options
are again not recognized. Models from BoUML cannot be imported, because
of a data type conflict with the predefined data type ”integer”. Since basic
datatypes will usually be used in UML models, we say that BoUML XMI files
are not compatible. Interestingly, whenever Modelio cannot import an XMI file,
it mentions that the file is not recognized as an Ecore file. This does not make
sense, since Modelio should be looking for UML data within the XMI file, not
Ecore data. Even when attempting to import an Ecore file created in Eclipse it
says that it is not recognized as an Ecore file.

Visio. Visio 2007 SP2 has a VBA command that allows users to export UML
models using XMI. However, we could not get it to work within our time frame.
Reports online however indicate that the obtained XMI files are not compatible
with many UML tools without tempering with the file. Further testing might

Section 2.3. Actual exchangeability of models 13

show that certain tools can import Visio XMI files, either with or without loss
of information of the model, but we cannot be sure until this has been done.

ArgoUML. ArgoUML uses UML 1.4 as a modelling standard, and therefore
cannot import any UML 2 models, regardless the version of XMI used. UML
1.4 models created in Borland and exported using the XMI for UML 1.4 options
can be imported, but much information is lost, like labels and multiplicities
on associations. None of the other models could be imported in ArgoUML.
As a special note, BoUML and Poseidon do use XMI 1.2 which is supported
by ArgoUML, but since the models themselves are UML 2 or contain some
elements of UML 2 they cannot be imported. These results are expected, since
ArgoUML is the only tool tested that only supports modelling using UML 1.4
and not UML 2.

BoUML. BoUML can only import XMI files created with Modelio. UML
2 models from Modelio can be imported, however all association relations are
lost. Generalization and composition relations are still present in the imported
model. BoUML expects XMI 2.1 files, and XMI 2.0 files cannot be imported.
However, even XMI files that are XMI 2.1, from Rational Software Architect,
Artisan Studio and Borland Together, give errors when attempting to import
them.

Artisan Studio. Artisan Studio supports importing of XMI 2.0 files contain-
ing UML 2 models. It can import XMI files created with Rational Software
Architect, Modelio and BoUML. It must be noted that whenever importing an
XMI file into a project, the project must be reloaded for the imported elements
to become visible, probably some bug is causing this. Models from XMI 2.1 files
can be imported as well even though it expects XMI 2.0 files. However, in all
cases problems occur, and models are changed after importing. After importing
a model from Modelio, a class changed into an abstract class. After importing
from BoUML, relations are in the wrong direction, return types of operations
are lost and in some cases the data types of attributes are lost as well. The di-
rection of relations can be solved by choosing to export for Eclipse in BoUML.
The imported models from Borland Together seem most correct, and although
things like association labels and data types are missing, nothing seems wrongly
altered.

Poseidon. Poseidon can import XMI files from ArgoUML and the XMI 1.2
files from the UML 1.4 Borland project. This strengthens our beliefs that Po-
seidon uses UML 1.4 for modelling, as the only models that can be imported are
also UML 1.4 models. Even so, some model information is lost after importing
the ArgoUML XMI file in Poseidon. Data types from attributes, return types
from operations, and enumeration literals are lost. Model information is also
lost when importing the Borland UML 1.4 project, such as data types from
attributes. Additionally, the directions of the association relations are reversed.

14 Chapter 2. XMI compatibility of modelling tools

Borland Together. Borland Together offers the most options for exporting
and importing models using XMI. However we have been unsuccessful in im-
porting any XMI 2.0 or XMI 2.1 file into an empty UML 2.1 project. We then
attempted to import an XMI file that was exported from Borland itself, which
did work. We did manage to import XMI 1.x files from ArgoUML, BoUML
using XMI 1.2 and Poseidon in an empty UML 1.4 project. The import from
ArgoUML however did lead to some loss and change of model information; the
return type of the operation is lost, as well as the generalization relations. The
enumerated data type is changed into an empty class called string, and the
data type of an attribute brand is changed from the enumeration to an integer.
The import from BoUML looked slightly better, the generalization relations
were still missing, the association relations are reversed, and the enumeration
is changed into a class called enum, with the literals as attributes. Considering
that Borland Together does not support enumerations in UML 1.4 models, this
last bit seems acceptable. The imported Poseidon model is also changed in sev-
eral ways, the association relation is missing, the custom data type is gone, all
data types of attributes are changed to integer, an operation is added to a class
that already has an operation, and the return type of that operation is missing.

2.4 Conclusion

The exchangeability of models between tools is poor at best. In many cases
a tool fully fails to import models where it was expected to be possible based
on the standards supported, and in many other cases models are only partially
imported and some information from the original model is changed or lost. Our
expectations turned out to be an overapproximation, nowhere did we find a
compatibility that was not expected.

Especially Borland Together has been a disappointment. Of all the tools
we looked at it supports most standards. However, compatibility to other tools
is very poor, nowhere could models successfully be exchanged to or from Bor-
land, it either was not possible at all or the models were changed in some way.
Rational Software Architect on the other hand scored reasonably well, it could
import all models it was expected to and in many cases nothing was lost. It is
hard to say based on our results whether the lack of compatibility between tools
can be contributed to either the exporting or the importing tool. Rational Soft-
ware Architect is exceptionally good at importing models and Artisan Studio
scored reasonable in this regard, Borland Together and Modelio perform better
exporting than importing, but there is no line that can be drawn. It seems to
be a hit and miss whether a model can be exchanged between two tools, and a
compatibility based on the supported standards only provides a chance that it
is possible, not a guarantee.

Most problems occurred when attempting to exchange a UML 2.1 model
between tools using XMI 2.1. Problems with UML 1.4 and XMI 1.2 or with
Ecore were less frequent, although our test set there was a lot smaller. With
UML 1.4 and XMI 1.2, only exchanging models from Poseidon to ArgoUML did
not work, but we contribute this to Poseidon which uses some parts of UML 2.0.
And in the case of Ecore, exchanging models worked everywhere it was expected,

Section 2.4. Conclusion 15

even though not without faults in the case of Poseidon to Rational. We think the
problems that we encountered when exchanging UML 2.1 models using XMI 2.1
can be contributed to two things: the implementation of UML in tools, and the
general and complex nature of XMI 2.1.

UML tools seem to have different interpretations of the UML 2.1 standard.
The UML 2.1 standard is very large and consists of many different diagrams,
more are even added each subversion. Different tools support a different amount
of diagrams, use different names or terms for the same elements and we expect
they interpret the standard of the diagrams as defined by OMG differently.
This might not apparent to a user, but it may be a reason for the lack of
exchangeability of models between tools.

The other reason, the general and complex nature of XMI 2.1, is an even
bigger cause in our opinion. It is a standard that has the goal to allow exchange
of any type of model between tools, not just UML models. It can be used to
exchange any of the UML diagrams, but also anything else. So the type of
model that is being exported using XMI 2.1 has to be present in the file as
well, this includes a reference to the meta model of the encoded model. Since
XMI 2.1 supports any meta model, an XMI 2.1 file can contain any data. In
order to make this general nature possible, the standard is very complex. We
think OMG has put the bar too high by attempting to define a standard that
can do anything, and that this is the main reason why exchangeability of models
between tools using XMI 2.1 is as poor as it is, especially in combination with
UML 2.1, which in itself is a large and complex standard as well. To determine
if there is truth in our claims however, further research into the standards and
implementations of them is needed.

The Ecore standard for modelling is a lot simpler than UML, and it only
supports models that can be compared to the UML class diagrams. The native
file format of Ecore is XMI 2.0. However, since the Ecore standard is simple,
the files are also simple in themselves and even humanly comprehensible, much
unlike UML 2.1 files exported using XMI 2.1. Because model exchange of Ecore
models led to the best results and the simpler XMI files, we choose to connect
GROOVE to the world of Ecore.

The diagrams of Ecore models that are created by Eclipse are also in XML
format in separate files, although not compliant to any official standard. This
makes it possible to use model information as well as diagram information when
importing an Ecore model in another tool than Eclipse. We could use model
information to structure the graph representing the model, and layout this graph
in a similar way as the original diagram of the model. Our work does not include
the use of diagrams for the layout of the graphs, but it could be extended to do
so.

16 Chapter 2. XMI compatibility of modelling tools

17

Chapter 3

GROOVE

3.1 Introduction

GROOVE is a tool set for modelling object oriented systems as graphs, and
perform transformations and verifications on those systems [36, 17]. GROOVE
is the target graph transformation tool for our mapping of Ecore models to
graphs, so graph representation choices must be supported by the current feature
set of GROOVE. In this chapter we discuss the features of GROOVE that are
relevant for our work. A complete list of features and explanations of them can
be found in the GROOVE manual that comes with the tool [17]. We focus on
graphs and graph transformations in GROOVE instead of the general definitions
of graphs and graph transformations. Therefore we do not give formal definitions
of the features we describe, but instead explain how they are used in GROOVE.
However, formal definitions can be found in [14, 21] and other work.

In section 3.2 we explain graphs as they are used in GROOVE. In section
3.3 we explain type and instance graphs. In section 3.4 we explain graph trans-
formations rules, and finally in section 3.5 we explain how type graphs, instance
graphs and transformation rules are combined into graph grammars to be used
in the GROOVE Simulator.

3.2 Graphs

GROOVE uses labelled and directed graphs. Nodes are represented by boxes,
and edges by arrows between them. The edges are directed, from a source node
to a target node, and are labelled. Self edges are edges with the same source
and target node. Labels of these edges are treated as node labels, and we refer
to them as such. They can be displayed either as a node label for a node or as
a labelled self edge, but they are formally the same.

18 Chapter 3. GROOVE

Node labels. There are two methods to indicate that labels must be node
labels: by indicating that labels are types or that labels are flags. A node can
be of at most one node type. Node type labels are displayed in bold. Nodes
can also have flags, which are used to model properties of nodes. Nodes can
have any number of flags. Flag labels are displayed in italics. Figure 3.1 shows
a graph with two nodes. One has a node type label Buffer and one has a node
type label BufferSlot. The BufferSlot also has a flag labelled empty.

BufferSlot
empty

Buffer has

Figure 3.1: Two nodes, one of type Buffer and one of type BufferSlot. The
BufferSlot is flagged to be empty.

Attributes. Nodes in graphs have unique identities, based on an internal nu-
merical identifier. This means that even when labelled the same, two distinct
nodes in a graph have a different identity. Data nodes, used for values of at-
tributes, are an exception to this. Data nodes represent values that can be either
of type string, integer, real or boolean. Data nodes are uniquely identified with
their values. This means that if a graph has two data nodes with the same value,
they formally represent the exact same node. Data nodes must be labelled with
the value and the datatype prefixed to it. Data nodes are displayed as attribute
values of other nodes. The label on the edge from the node to the data node
represents the name of the attribute. Figure 3.2a shows a graph with two Game
nodes. Both have an attribute price with value 49.95. Figures 3.2b and 3.2c
show the same graph in the editor. Since data nodes are uniquely identified by
their value, the two data nodes with the same value are really the same node.
Therefore both figures from the graph editor represent the exact same graph.

Game
price = 49.95

Game
price = 49.95

(a) Display view

real:49.95

real:49.95

type:Game

type:Game

price

price

(b) Editor view

real:49.95type:Game

type:Game

price

price

(c) Editor view

Figure 3.2: Two Game nodes with the same price. The three figures are three
representations of the same graph.

3.3 Type and instance graphs

Graphs in GROOVE can be typed by a type graph. A type graph defines
valid instance graphs. A mapping of the nodes and edges of an instance graph
to the nodes and edges of the type graph must exist in the form of a graph
morphism [14, 21]. This concept is very similar to that of metamodelling, where
a metamodel defines valid instance models. Figure 3.3 shows an instance and
a type graph. The Buffer node in the instance graph is mapped to the Buffer

Section 3.4. Transformation rules 19

node in the type graph, and both BufferSlot nodes in the instance graph are
mapped to the BufferSlot in the type graph. For the mapping of an edge, the
mapping of the source and target node must be the same type graph nodes as
the source and target nodes of the mapping of the edge. For the mapping of
nodes and edges, the labels must be preserved as well.

BufferSlot
filled

Buffer

BufferSlot
empty

next
has

has

(a) Instance graph

BufferSlot
empty
filled

Buffer

next

has

(b) Type graph

Figure 3.3: An instance graph, typed by a type graph.

Node type inheritance. Nodes in type and typed graphs must always have a
type, which means they must have a node type label. GROOVE supports node
type inheritance in type graphs. Node types can be defined as subtypes of other
node types. Subtypes are displayed with an inheritance edge. For an instance
graph to be correctly typed by a type graph with node type inheritance, a clan
morphism must exist from the instance graph to the type graph [4]. Subtypes
inherit all labels and edges from their supertypes. This concept shows a strong
resemblance to class diagrams, where a class can inherit from another class, in
which case it inherits the list of attributes and associations of its supertype.
In the type graph in Figure 3.4, a Cabinet contains Books that can either be
Novels or Comics. The Cabinet in the instance graph only has one Novel, and
is correctly typed by the type graph.

NovelCabinet has

(a) Instance graph

Book

Comic

Cabinet

Novel

has

(b) Type graph

Figure 3.4: An instance graph, typed by a type graph with node inheritance.

Data nodes. Data nodes are used in instance graphs for values of attributes.
Data types are used in type graphs to define the data types of attributes. The
label of the edge to a data type node is the name of the attribute, as in instance
graphs. Data types of attributes are displayed as the attribute name with a
colon, and then the data type. Figure 3.5 shows an instance graph and a type
graph. A Game has a price of data type real. In the instance graph the price
of the Game is 19.95.

20 Chapter 3. GROOVE

Game
price = 19.95

(a) Instance
graph

Game
price: real

(b) Type
graph

Figure 3.5: An instance graph and a type graph that defines the data type of
an attribute.

3.4 Transformation rules

Graph transformation rules consist of a left-hand-side (LHS), a right-hand-side
(RHS) and optionally a negative application condition (NAC). GROOVE uses
a combined view for the LHS, RHS and NAC that consists of reader, eraser,
creator and embargo nodes and edges. When type graphs are enabled in a
graph grammar, transformation rules must also be typed. GROOVE uses the
SPO (single pushout) approach, which in short means that edges that are left
dangling after applying a rule are deleted as well [14].

Reader, eraser, creator and embargo elements. Reader elements are in
both the LHS and the RHS or a rule. Reader elements are matched in a graph,
but do not modify it. They are displayed as ordinary graph nodes and edges
with solid black lines and text. Eraser elements are only in the LHS of a rule.
Nodes and edges that are matched by eraser elements are deleted when a rule
is applied. They are displayed as thin, dotted blue lines and text. Creator
elements are only in the RHS of a rule. When a rule matches, these nodes
and edges are created. Creator elements are displayed with thick, solid green
lines. Embargo elements are only in the NAC of a rule. Embargo elements are
forbidden to exist in a graph for a rule to be applicable. Embargo elements are
displayed with thick, dotted red lines and text.

Figure 3.6 shows an instance graph and two transformation rules. The rule
in Figure 3.6b matches a Cabinet node, and when one does not already exist,
adds a Comic to the Cabinet when it is applied. The rule in Figure 3.6c matches
a Cabinet with a Novel. When a match is found, the Novel is deleted from the
graph when the rule is applied.

NovelCabinet has

(a) Instance graph

Comic

Cabinet

Comic

has

has

(b) New comic

NovelCabinet has

(c) Delete novel

Figure 3.6: An instance graph and a type graph that defines the data type of
an attribute.

Wildcards. Wildcards are special edge labels that stand for any label. They
are denoted with a ?. An edge with a wildcard will match any edge of which

Section 3.4. Transformation rules 21

the source and target node also match. Wildcards can be guarded and named.
Guarded wildcards are followed by a comma separated list between square brack-
ets of allowed or disallowed labels for the wildcard to match. A disallowed list of
labels must be prefixed with a ˆ. Named wildcards have a name that serves as
a label variable. The name immediately follows the ?. When a named wildcard
is matched in a graph, the label that is matched is bound to the label variable.
Different occurrences of wildcards with the same name must all match to the
same labels. Named wildcards can also be used on creator edges as long as the
variable is bound by another occurrence of a wildcard of this name. The rule
in Figure 3.7 shows a rule that uses a bound and named wildcard, named book.
It can only be bound to novel or comic. When applied, a new Book is created
and the matched flag is copied to the new Book.

Book
?book[novel,comic]

Cabinet

Book
?book

has

has

Figure 3.7: A guarded and named wildcard. When the rule is applied, a new
flag is created on the new node that is the same as the flag that was matched
by the wildcard.

Path expressions. GROOVE supports path expressions on edges in trans-
formation rules. They can only be used on reader and embargo edges, not on
eraser or creator edges. Path expressions are matched in a graph by a sequence
of edges of which the labels form a valid work of the path expression. Path
expressions are built from the operators in Table 3.1. Detailed explanations for
all operators can be found in the GROOVE manual [17]. Figure 3.8 shows a rule
with a simple path expression that matches a sequential composition of edges
labelled has and chapter, and deletes a Page of the matched Chapter.

Expression Meaning

label Simple label
= Empty path / equality of nodes
? Wildcard, can be guarded and/or named
R1.R2 Sequential composition of R1 and R2

R1|R2 Choice between R1 and R2

R∗ Zero or more repetitions of R
R+ One ore mode repetitions of R
-R Inversion of R (matches R when followed backwards)
!R Negation of R (absence of a match for R)

Table 3.1: Operators for path expressions (from the GROOVE manual [17]).

Quantification nodes. Quantification nodes can be used to change sets of
subgraphs at the same time, instead of only the direct match of the LHS of

22 Chapter 3. GROOVE

Page

NovelCabinet

Page

Page
Chapter pagehas chapter

page

page

(a) Instance graph

ChapterCabinet Pagehas.chapter page

(b) Rule with a path expressions

Figure 3.8: A rule with a path expression that deletes a Page from a Chapter.

a rule. They are implementations for the universal and existential quantifiers
from predicate logic. Quantification nodes can be nested, which is displayed by
in edges. The top level quantifier must be a universal quantifier, and universal
and existential quantifiers must alternate. Every nesting level can contain a
sub-rule, every node of the sub-rule must have an at edge to the quantification
node of its level. Figure 3.9 has two rules that use quantification nodes. The
rule in Figure 3.9a matches all Chapters and Pages, and deletes all Pages. The
rule in Figure 3.9b also matches all Chapters, but for each Chapters it matches
and deletes only one Page. The universal quantifier also matches a graph if
there are no Chapters to match. More examples and explanation can be found
in the GROOVE manual.

ChapterCabinet

∀

Page

atat

has.chapter page

(a) Rule to delete all Pages from all Chapters

∃

ChapterCabinet

∀

Page

at

in

has.chapter

at

page

(b) Rule to delete one Page from each Chapter

Figure 3.9: Rules with quantifier nodes to delete Pages from Chapters.

Attribute operations. Attribute values can be manipulated with transfor-
mation rules by using operations. Operations consist of product nodes, argu-
ment edges and operator edges. Data nodes to be used in operations can either
be a concrete value, or a data type if the concrete value is not known or has
to be calculated. Figure 3.10 shows a rule that increases the price of a Game
by 10.0. The diamond shaped node is the production node, which has two ar-

Section 3.5. Graph grammars 23

gument edges and an operator edge. The argument edges are displayed as π0
and π1. The operator edge is displayed with an add label. The first argument
of the operation is 10.0, a concrete value of type real. The second argument is
not a concrete value, but the real value of a price attribute of a Game. When
applying the rule, the old value for the attribute is removed and it is set to the
value of 10.0 plus the old value. A full list op operations can be found in the
GROOVE manual [17].

Game
price = 19.95

(a) Instance
graph

real

realGame

10.0

price

price π1

π0add

(b) Increase price

Figure 3.10: A rule that increases the price of a Game by 10.0.

3.5 Graph grammars

Using the GROOVE Simulator, users can load graph grammars that contain
type graphs, instance graphs and transformation rules. Graph transformation,
verification or simulation can then be done by applying the rules manually, by
exploring the complete LTS (labelled transition system) or by using control
programs to control the order in which to apply the rules. Figure 3.11 contains
a screenshot of the GROOVE Simulator. The bottom left panel contains the
graphs of the grammar and the top left panel contains the rules. The central
panel consists of 5 tabs: the first shows the currently select graph, the second
the currently selected rule. The third and fourth show the LTS and the control
program, which are features that are not relevant for our work. The fifth tab
shows the type graphs. Finally, the right panel shows the labels of the graph
that is currently shown in the central panel.

Rule priorization. Graph transformation rules can be prioritized. If rules of
a higher priority are applicable, then rules of lower priorities are blocked. They
provide a simple method to schedule the applicability of rules. Rules are grouped
in the Rules panel by their priority, where higher priority rules are placed above
lower priority rules. Higher priority rules that do no modify a graph can for
example be used to detect error states of a graph transition system.

24 Chapter 3. GROOVE

Figure 3.11: Main window for the GROOVE Simulator showing the Rules,
Graphs, Central and Labels panels.

25

Chapter 4

Representing Ecore models
as graphs

4.1 Introduction

Figure 4.1: Three Ecore layers and
their graph representation.

Ecore modelling uses three layers of mod-
els. The Ecore metamodel is the top
layer, an instance of the Ecore metamodel
is referred to as an Ecore model, and an
instance of an Ecore model is referred to
as an Ecore instance model. This is vi-
sualised in Figure 4.1. Similar to MOF
modelling, the layers can be referred to
as M3 to M1. In this view, the real world
can then be viewed as layer M0, being an
instance of M1. In Ecore modelling, M3
is also sometimes referred to as the Ecore
core model or the Ecore metametamodel,
M2 as the Ecore metamodel and M1 as
the Ecore model. However, we use the
terms Ecore model for M2 and Ecore in-
stance model for M1 because of the anal-
ogy to the terms of type graph and in-
stance graph we map them to.

In order to transform Ecore models to graphs, we need to study the Ecore
metamodel and determine how each modelling element can be represented in
a graph. Our goal in this chapter is to represent Ecore models and instance
models as graphs to be used in GROOVE grammars. More specifically, Ecore
models will be represented as type graphs and Ecore instance models will be
represented as instance graphs. The representation should make it possible
to make changes to the instance graphs while remaining conform to the type

26 Chapter 4. Representing Ecore models as graphs

graph, and then transform the instance graph back to a valid Ecore instance
model which in turn is conform to the Ecore model.

As a first step to determine how Ecore models and instance models can be
represented as graphs, we take a detailed look at the Ecore metamodel in section
4.2. The Ecore metamodel is available as an Ecore model in the EMF package of
Eclipse. Even though it is an Ecore model, it represents the Ecore metamodel.
We inspect the elements of this metamodel which are the building blocks for
Ecore models, the properties that can be set for each element, and the hierarchy
and relations between the elements. For each element and property we explain
what it implies and how it can be represented in a graph.

After looking at the building blocks in the Ecore metamodel, we turn our
focus to actual Ecore models and instance models created in Eclipse. In section
4.3 we show examples of models and instance models created in Eclipse. Our
goal here is to demonstrate the implications of our representation choices from
section 4.2 for Ecore models and instance models. We do this by presenting
graph representations of these example models.

Finally, we cannot enforce the validity of an instance graph as a representa-
tion of an Ecore instance model by just using type graphs. We need some other
method to check the validity of instance graphs before or while transforming an
instance graph to its instance model. We do this by means of constraints, which
will be explained in section 4.4.

4.2 The Ecore metamodel

The Ecore metamodel contains all elements that can be used in Ecore modelling,
and their relations to each other. Figure 4.2 shows the hierarchy of all Ecore
elements. The green or dark grey elements are abstract and cannot be instanti-
ated in Ecore models. They however have properties that are inherited by child
classes. The yellow or light grey classes are elements that can be instantiated
in Ecore models.

Table 4.1 shows an overview of all Ecore metamodel elements from the hi-
erarchy view and their properties. These properties are attributes, operations,
references or annotations. In Ecore models, reference properties refer to other
elements in the model. Attribute properties can be set to for example a string or
boolean value, and are independent of other elements in the model. Both of these
type of properties are examined below, and when relevant for instance models
we discuss how they are represented in graphs. Operation properties however
define how to modify, delete or add elements or properties of instances of Ecore
models, but are not part of instance models themselves. In instance models,
the model editor is used to change the model and the operation properties are
not used. Similarly, in the graph representation graph transformation rules are
used to change the model. Operation properties are never part of the structure
of instance models nor of the graph representation, so they have no graph repre-
sentation and we will not discuss them. Finally, annotation properties are notes
for some elements in the Ecore metamodel. They denote constraints for valid

Section 4.2. The Ecore metamodel 27

Ecore models. However, we only aim to transform Ecore models and instance
models to a graph representation. Whether or not an Ecore model is valid with
regard to the constraints set in the Ecore metamodel is up to the used Ecore
model editor, and we assume Ecore models to be valid. Annotation proper-
ties from the Ecore metamodel have no impact on instance models, so they do
not need a graph representation, and we will not discuss them. However, when
transforming the Ecore metametamodel as an Ecore model to a type graph, and
an Ecore model as an instance model to an instance graph, we cannot guarantee
in the instance graph that no constraints from the Ecore metametamodel are
violated. Constraints in annotations have no semantics defined in the model, so
they cannot be translated into constraints on instance graphs.

Representation examples are given for each element in section 4.3. Table 4.3
contains a list of all supported elements and properties, and which examples
demonstrate them. Some elements or properties are represented by constraints
that enforce valid instance graph. Constraints are discussed in section 4.4. Table
4.3 also lists the constraint examples that demonstrates constraints required for
the listed elements and properties.

Figure 4.2: Ecore metamodel class hierarchy.

28 Chapter 4. Representing Ecore models as graphs

T
ab

le
4.

1:
M

o
d

el
li

n
g

el
em

en
ts

an
d

p
ro

p
er

ti
es

th
a
t

o
cc

u
r

in
th

e
E

co
re

m
et

a
m

o
d
el

al
o
n

g
w

it
h

h
ow

th
ey

a
re

re
p
re

se
n
te

d
in

a
g
ra

p
h

re
p

re
se

n
ta

ti
on

.
T

h
e

fi
rs

t
co

lu
m

n
li

st
s

th
e

el
em

en
ts

fr
o
m

th
e

E
co

re
m

et
a
m

o
d

el
.

T
h

e
se

co
n

d
a
n

d
th

ir
d

co
lu

m
n

s
li

st
th

e
p

ro
p

er
ti

es
a
n

d
th

ei
r

ty
p

es
fo

r
ea

ch
el

em
en

t,
in

th
e

ca
se

of
d

as
h

es
th

is
ro

w
sh

ow
s

re
p
re

se
n
ta

ti
o
n

o
f

th
e

E
co

re
m

et
a
m

o
d

el
el

em
en

t
it

se
lf

.
T

h
e

fo
u

rt
h

a
n

d
fi

ft
h

co
lu

m
n

s
sh

ow
s

h
ow

E
co

re
m

et
am

o
d

el
el

em
en

ts
a
n

d
th

ei
r

p
ro

p
er

ti
es

a
re

re
p

re
se

n
te

d
,

E
co

re
m

o
d

el
a
s

ty
p

e
g
ra

p
h

a
n

d
E

co
re

in
st

a
n

ce
m

o
d

el
as

in
st

an
ce

gr
ap

h
.

In
th

e
ca

se
of

d
as

h
es

th
er

e
is

n
o

g
ra

p
h

re
p

re
se

n
ta

ti
o
n

.

E
c
o
re

m
e
ta

m
o
d

e
l

e
le

m
e
n
t

P
ro

p
e
rt

y
n

a
m

e
P

ro
p

e
rt

y
ty

p
e

T
y
p

e
g
ra

p
h

re
p

.
In

st
a
n

c
e

g
ra

p
h

re
p

.

E
O

b
je

ct
-

-
-

-
E

O
b

je
ct

eC
la

ss
O

p
er

a
ti

o
n

-
-

E
O

b
je

ct
eI

sP
ro

x
y

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eR

es
ou

rc
e

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eC

on
ta

in
er

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eC

on
ta

in
er

F
ea

tu
re

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eC

on
ta

in
m

en
tF

ea
tu

re
O

p
er

a
ti

o
n

-
-

E
O

b
je

ct
eC

on
te

n
ts

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eA

ll
C

on
te

n
ts

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eC

ro
ss

R
ef

er
en

ce
s

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eG

et
O

p
er

a
ti

o
n

-
-

E
O

b
je

ct
eG

et
O

p
er

a
ti

o
n

-
-

E
O

b
je

ct
eS

et
O

p
er

a
ti

o
n

-
-

E
O

b
je

ct
eI

sS
et

O
p

er
a
ti

o
n

-
-

E
O

b
je

ct
eU

n
se

t
O

p
er

a
ti

o
n

-
-

E
M

od
el

E
le

m
en

t
-

-
-

(a
b

st
ra

ct
)

-
E

M
od

el
E

le
m

en
t

ge
tE

A
n

n
ot

at
io

n
O

p
er

a
ti

o
n

-
-

E
M

od
el

E
le

m
en

t
eA

n
n

ot
at

io
n

s
R

ef
er

en
ce

-
-

E
N

a
m

ed
E

le
m

en
t

-
-

n
o
d

e
ty

p
e

n
o
d

e
ty

p
e

E
N

a
m

ed
E

le
m

en
t

n
am

e
A

tt
ri

b
u

te
L

a
b

el
of

n
o
d

e
ty

p
e

L
a
b

el
o
f

n
o
d

e
ty

p
e

C
o
n
ti

n
u

ed
o
n

th
e

n
ex

t
p

a
g
e

Section 4.2. The Ecore metamodel 29
T

a
b

le
4
.1

–
co

n
ti

n
u

ed
fr

o
m

th
e

p
re

v
io

u
s

p
a
g
e

E
c
o
re

m
e
ta

m
o
d

e
l

e
le

m
e
n
t

P
ro

p
e
rt

y
n

a
m

e
P

ro
p

e
rt

y
ty

p
e

T
y
p

e
g
ra

p
h

re
p

.
In

st
a
n

c
e

g
ra

p
h

re
p

.

E
N

a
m

ed
E

le
m

en
t

co
n

st
ra

in
ts

A
n

n
o
ta

ti
o
n

-
-

E
C

la
ss

ifi
er

-
-

-
(a

b
st

ra
ct

)
-

E
C

la
ss

ifi
er

in
st

an
ce

C
la

ss
N

a
m

e
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

C
la

ss
ifi

er
in

st
an

ce
C

la
ss

A
tt

ri
b

u
te

-
(d

er
iv

ed
)

-
E

C
la

ss
ifi

er
d

ef
au

lt
V

al
u

e
A

tt
ri

b
u

te
-

(d
er

iv
ed

)
-

E
C

la
ss

ifi
er

in
st

an
ce

T
y
p

eN
a
m

e
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

C
la

ss
ifi

er
is

In
st

an
ce

O
p

er
a
ti

o
n

-
-

E
C

la
ss

ifi
er

ge
tC

la
ss

ifi
er

ID
O

p
er

a
ti

o
n

-
-

E
C

la
ss

ifi
er

eP
ac

ka
ge

R
ef

er
en

ce
P

re
fi

x
ed

to
n

a
m

es
P

re
fi

x
ed

to
n
a
m

es
E

C
la

ss
ifi

er
eT

y
p

eP
ar

am
et

er
s

R
ef

er
en

ce
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

C
la

ss
ifi

er
co

n
st

ra
in

ts
A

n
n

o
ta

ti
o
n

-
-

E
T

yp
ed

E
le

m
en

t
-

-
-

(a
b

st
ra

ct
)

-
E

T
yp

ed
E

le
m

en
t

or
d

er
ed

A
tt

ri
b

u
te

n
ex

t
ed

g
e

n
ex

t
ed

g
es

+
co

n
st

ra
in

t
E

T
yp

ed
E

le
m

en
t

u
n

iq
u

e
A

tt
ri

b
u

te
-

C
o
n

st
ra

in
t

E
T

yp
ed

E
le

m
en

t
lo

w
er

B
ou

n
d

A
tt

ri
b

u
te

-
C

o
n

st
ra

in
t

E
T

yp
ed

E
le

m
en

t
u

p
p

er
B

ou
n

d
A

tt
ri

b
u

te
-

C
o
n

st
ra

in
t

E
T

yp
ed

E
le

m
en

t
m

an
y

A
tt

ri
b

u
te

-
(d

er
iv

ed
)

-
E

T
yp

ed
E

le
m

en
t

re
q
u

ir
ed

A
tt

ri
b

u
te

-
(d

er
iv

ed
)

-
E

T
yp

ed
E

le
m

en
t

eG
en

er
ic

T
y
p

e
R

ef
er

en
ce

-
(n

o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

T
yp

ed
E

le
m

en
t

eT
y
p

e
R

ef
er

en
ce

va
l

ed
ge

va
l

ed
g
e

+
co

n
st

ra
in

t
E

T
yp

ed
E

le
m

en
t

co
n

st
ra

in
ts

A
n

n
o
ta

ti
o
n

-
-

E
S

tr
u

ct
u

ra
lF

ea
tu

re
-

-
-

(a
b

st
ra

ct
)

-
E

S
tr

u
ct

u
ra

lF
ea

tu
re

ch
an

ge
ab

le
A

tt
ri

b
u

te
-

C
o
n

st
ra

in
t

E
S

tr
u

ct
u

ra
lF

ea
tu

re
vo

la
ti

le
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

S
tr

u
ct

u
ra

lF
ea

tu
re

tr
an

si
en

t
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

S
tr

u
ct

u
ra

lF
ea

tu
re

d
ef

au
lt

L
it

er
al

V
a
lu

e
A

tt
ri

b
u

te
-

C
o
n

st
ra

in
t

C
o
n
ti

n
u

ed
o
n

th
e

n
ex

t
p

a
g
e

30 Chapter 4. Representing Ecore models as graphs

T
a
b

le
4
.1

–
co

n
ti

n
u

ed
fr

o
m

th
e

p
re

v
io

u
s

p
a
g
e

E
c
o
re

m
e
ta

m
o
d

e
l

e
le

m
e
n
t

P
ro

p
e
rt

y
n

a
m

e
P

ro
p

e
rt

y
ty

p
e

T
y
p

e
g
ra

p
h

re
p

.
In

st
a
n

c
e

g
ra

p
h

re
p

.

E
S

tr
u

ct
u

ra
lF

ea
tu

re
d

ef
au

lt
V

al
u
e

A
tt

ri
b

u
te

-
(d

er
iv

ed
)

-
E

S
tr

u
ct

u
ra

lF
ea

tu
re

u
n

se
tt

ab
le

A
tt

ri
b

u
te

-
(n

o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

S
tr

u
ct

u
ra

lF
ea

tu
re

d
er

iv
ed

A
tt

ri
b

u
te

-
(n

o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

S
tr

u
ct

u
ra

lF
ea

tu
re

ge
tF

ea
tu

re
ID

O
p

er
a
ti

o
n

-
-

E
S

tr
u

ct
u

ra
lF

ea
tu

re
ge

tC
on

ta
in

er
C

la
ss

O
p

er
a
ti

o
n

-
-

E
S

tr
u

ct
u

ra
lF

ea
tu

re
eC

on
ta

in
in

gC
la

ss
R

ef
er

en
ce

-
C

o
n

st
ra

in
t

E
S

tr
u

ct
u

ra
lF

ea
tu

re
co

n
st

ra
in

ts
A

n
n

o
ta

ti
o
n

-
-

E
G

en
er

ic
T

y
p

e
-

-
-

(n
o
t

su
p

p
o
rt

ed
)

-
E

G
en

er
ic

T
y
p

e
eC

la
ss

ifi
er

R
ef

er
en

ce
-

-
E

G
en

er
ic

T
y
p

e
eL

ow
er

B
ou

n
d

R
ef

er
en

ce
-

-
E

G
en

er
ic

T
y
p

e
eU

p
p

er
B

ou
n

d
R

ef
er

en
ce

-
-

E
G

en
er

ic
T

y
p

e
eR

aw
T

y
p

e
R

ef
er

en
ce

-
-

E
G

en
er

ic
T

y
p

e
eT

y
p

eA
rg

u
m

en
ts

R
ef

er
en

ce
-

-
E

G
en

er
ic

T
y
p

e
eT

y
p

eP
ar

am
et

er
R

ef
er

en
ce

-
-

E
G

en
er

ic
T

y
p

e
co

n
st

ra
in

ts
A

n
n

o
ta

ti
o
n

-
-

E
F

ac
to

ry
-

-
-

(n
o
t

su
p

p
o
rt

ed
)

-
E

F
ac

to
ry

cr
ea

te
O

p
er

a
ti

o
n

-
-

E
F

ac
to

ry
cr

ea
te

F
ro

m
S

tr
in

g
O

p
er

a
ti

o
n

-
-

E
F

ac
to

ry
co

n
ve

rt
T

oS
tr

in
g

O
p

er
a
ti

o
n

-
-

E
F

ac
to

ry
eP

ac
ka

ge
R

ef
er

en
ce

-
-

E
A

n
n

ot
at

io
n

-
-

-
(n

o
t

su
p

p
o
rt

ed
)

-
E

A
n

n
ot

at
io

n
so

u
rc

e
A

tt
ri

b
u

te
-

-
E

A
n

n
ot

at
io

n
co

n
te

n
ts

R
ef

er
en

ce
-

-
E

A
n

n
ot

at
io

n
d

et
ai

ls
R

ef
er

en
ce

-
-

E
A

n
n

ot
at

io
n

eM
o
d

el
E

le
m

en
t

R
ef

er
en

ce
-

-
E

A
n

n
ot

at
io

n
re

fe
re

n
ce

s
R

ef
er

en
ce

-
-

C
o
n
ti

n
u

ed
o
n

th
e

n
ex

t
p

a
g
e

Section 4.2. The Ecore metamodel 31
T

a
b

le
4
.1

–
co

n
ti

n
u

ed
fr

o
m

th
e

p
re

v
io

u
s

p
a
g
e

E
c
o
re

m
e
ta

m
o
d

e
l

e
le

m
e
n
t

P
ro

p
e
rt

y
n

a
m

e
P

ro
p

e
rt

y
ty

p
e

T
y
p

e
g
ra

p
h

re
p

.
In

st
a
n

c
e

g
ra

p
h

re
p

.

E
A

n
n

ot
at

io
n

co
n

st
ra

in
ts

A
n

n
o
ta

ti
o
n

-
-

E
T

y
p

eP
ar

am
et

er
-

-
-

(n
o
t

su
p

p
o
rt

ed
)

-
E

T
y
p

eP
ar

am
et

er
eB

ou
n

d
s

R
ef

er
en

ce
-

-
E

E
n
u

m
L

it
er

al
-

-
F

la
g

o
n

E
E

n
u

m
F

la
g

o
n

E
E

n
u

m
+

co
n

st
ra

in
t

E
E

n
u

m
L

it
er

al
va

lu
e

A
tt

ri
b

u
te

-
(n

o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

E
n
u

m
L

it
er

al
in

st
an

ce
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

E
n
u

m
L

it
er

al
li

te
ra

l
A

tt
ri

b
u

te
la

b
el

o
f

fl
a
g

la
b

el
o
f

fl
a
g

+
co

n
st

ra
in

t
E

E
n
u

m
L

it
er

al
eE

n
u

m
R

ef
er

en
ce

-
(o

p
p

os
it

e
o
f

eL
it

er
a
ls

)
-

E
P

ac
ka

ge
-

-
p

re
fi

x
ed

to
n

a
m

es
P

re
fi

x
ed

to
n
a
m

es
E

P
ac

ka
ge

n
sU

R
I

A
tt

ri
b

u
te

-
(n

o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

P
ac

ka
ge

n
sP

re
fi

x
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

P
ac

ka
ge

ge
tE

C
la

ss
ifi

er
O

p
er

a
ti

o
n

-
-

E
P

ac
ka

ge
eC

la
ss

ifi
er

s
R

ef
er

en
ce

-
(o

p
p

os
it

e
o
f

eP
a
ck

a
ge

)
-

E
P

ac
ka

ge
eF

ac
to

ry
In

st
an

ce
R

ef
er

en
ce

-
(n

o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

P
ac

ka
ge

eS
u

b
p

ac
ka

ge
s

R
ef

er
en

ce
D

o
n

e
a
u

to
m

a
ti

ca
ll

y
D

o
n

e
a
u

to
m

a
ti

ca
ll

y
E

P
ac

ka
ge

eS
u

p
er

P
ac

ka
ge

R
ef

er
en

ce
D

o
n

e
a
u

to
m

a
ti

ca
ll

y
D

o
n

e
a
u

to
m

a
ti

ca
ll

y
E

P
ac

ka
ge

co
n

st
ra

in
ts

A
n

n
o
ta

ti
o
n

-
-

E
C

la
ss

-
-

n
o
d

e
ty

p
e

N
o
d

e
su

b
ty

p
e

+
co

n
st

ra
in

ts
E

C
la

ss
ab

st
ra

ct
A

tt
ri

b
u

te
-

C
o
n

st
ra

in
t

E
C

la
ss

in
te

rf
ac

e
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

C
la

ss
is

S
u

p
er

T
y
p

eO
f

O
p

er
a
ti

o
n

-
-

E
C

la
ss

ge
tF

ea
tu

re
C

ou
n
t

O
p

er
a
ti

o
n

-
-

E
C

la
ss

ge
tS

tr
u

ct
u

ra
lF

ea
tu

re
O

p
er

a
ti

o
n

-
-

E
C

la
ss

ge
tS

tr
u

ct
u

ra
lF

ea
tu

re
O

p
er

a
ti

o
n

-
-

E
C

la
ss

ge
tF

ea
tu

re
ID

O
p

er
a
ti

o
n

-
-

E
C

la
ss

eA
ll

A
tt

ri
b

u
te

s
R

ef
er

en
ce

-
(d

er
iv

ed
)

-
C

o
n
ti

n
u

ed
o
n

th
e

n
ex

t
p

a
g
e

32 Chapter 4. Representing Ecore models as graphs

T
a
b

le
4
.1

–
co

n
ti

n
u

ed
fr

o
m

th
e

p
re

v
io

u
s

p
a
g
e

E
c
o
re

m
e
ta

m
o
d

e
l

e
le

m
e
n
t

P
ro

p
e
rt

y
n

a
m

e
P

ro
p

e
rt

y
ty

p
e

T
y
p

e
g
ra

p
h

re
p

.
In

st
a
n

c
e

g
ra

p
h

re
p

.

E
C

la
ss

eA
ll

C
on

ta
in

m
en

ts
R

ef
er

en
ce

-
(d

er
iv

ed
)

-
E

C
la

ss
eA

ll
G

en
er

ic
S

u
p

er
T

y
p

es
R

ef
er

en
ce

-
(d

er
iv

ed
)

-
E

C
la

ss
eA

ll
O

p
er

at
io

n
s

R
ef

er
en

ce
-

(d
er

iv
ed

)
-

E
C

la
ss

eA
ll

R
ef

er
en

ce
s

R
ef

er
en

ce
-

(d
er

iv
ed

)
-

E
C

la
ss

eA
ll

S
tr

u
ct

u
ra

lF
ea

tu
re

s
R

ef
er

en
ce

-
(d

er
iv

ed
)

-
E

C
la

ss
eA

ll
S

u
p

er
T

y
p

es
R

ef
er

en
ce

-
(d

er
iv

ed
)

-
E

C
la

ss
eA

tt
ri

b
u

te
s

R
ef

er
en

ce
-

(d
er

iv
ed

)
-

E
C

la
ss

eG
en

er
ic

S
u

p
er

T
y
p

es
R

ef
er

en
ce

-
(n

o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

C
la

ss
eI

D
A

tt
ri

b
u

te
R

ef
er

en
ce

-
(d

er
iv

ed
)

-
E

C
la

ss
eO

p
er

at
io

n
s

R
ef

er
en

ce
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

C
la

ss
eR

ef
er

en
ce

s
R

ef
er

en
ce

-
(d

er
iv

ed
)

-
E

C
la

ss
eS

tr
u

ct
u

ra
lF

ea
tu

re
s

R
ef

er
en

ce
E

d
g
e

to
fe

a
tu

re
E

d
g
e

to
fe

a
tu

re
E

C
la

ss
eS

u
p

er
T

y
p

es
R

ef
er

en
ce

S
u

b
n

o
d

e
ty

p
es

S
u

b
n

o
d

e
ty

p
es

E
C

la
ss

co
n

st
ra

in
ts

A
n

n
o
ta

ti
o
n

-
-

E
D

at
aT

y
p

e
-

-
n

o
d

e
ty

p
e

n
o
d

e
ty

p
e

+
co

n
st

ra
in

t
E

D
at

aT
y
p

e
se

ri
al

iz
ab

le
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

E
n
u

m
-

-
n

o
d

e
ty

p
e

n
o
d

e
ty

p
e

+
co

n
st

ra
in

ts
E

E
n
u

m
ge

tE
E

n
u

m
L

it
er

a
l

O
p

er
a
ti

o
n

-
-

E
E

n
u

m
ge

tE
E

n
u

m
L

it
er

a
l

O
p

er
a
ti

o
n

-
-

E
E

n
u

m
ge

tE
E

n
u

m
L

it
er

a
lB

y
L

it
er

a
l

O
p

er
a
ti

o
n

-
-

E
E

n
u

m
eL

it
er

al
s

R
ef

er
en

ce
-

C
o
n

st
ra

in
t

E
E

n
u

m
co

n
st

ra
in

ts
A

n
n

o
ta

ti
o
n

-
-

E
O

p
er

at
io

n
-

-
-

(n
o
t

su
p

p
o
rt

ed
)

-
E

O
p

er
at

io
n

eC
on

ta
in

in
gC

la
ss

R
ef

er
en

ce
-

-
E

O
p

er
at

io
n

eE
x
ce

p
ti

on
s

R
ef

er
en

ce
-

-
E

O
p

er
at

io
n

eG
en

er
ic

E
x
ce

p
ti

o
n

s
R

ef
er

en
ce

-
-

C
o
n
ti

n
u

ed
o
n

th
e

n
ex

t
p

a
g
e

Section 4.2. The Ecore metamodel 33
T

a
b

le
4
.1

–
co

n
ti

n
u

ed
fr

o
m

th
e

p
re

v
io

u
s

p
a
g
e

E
c
o
re

m
e
ta

m
o
d

e
l

e
le

m
e
n
t

P
ro

p
e
rt

y
n

a
m

e
P

ro
p

e
rt

y
ty

p
e

T
y
p

e
g
ra

p
h

re
p

.
In

st
a
n

c
e

g
ra

p
h

re
p

.

E
O

p
er

at
io

n
eP

ar
am

et
er

s
R

ef
er

en
ce

-
-

E
O

p
er

at
io

n
eT

y
p

eP
ar

am
et

er
s

R
ef

er
en

ce
-

-
E

O
p

er
at

io
n

co
n

st
ra

in
ts

A
n

n
o
ta

ti
o
n

-
-

E
P

ar
am

et
er

-
-

-
(n

o
t

su
p

p
o
rt

ed
)

-
E

P
ar

am
et

er
eO

p
er

at
io

n
R

ef
er

en
ce

-
-

E
R

ef
er

en
ce

-
-

n
o
d

e
ty

p
e

N
o
d

e
su

b
ty

p
e

E
R

ef
er

en
ce

co
n
ta

in
er

A
tt

ri
b

u
te

-
(o

p
p

os
it

e
o
f

eR
ef

er
en

ce
s

-
E

R
ef

er
en

ce
co

n
ta

in
m

en
t

A
tt

ri
b

u
te

-
F

la
g

+
co

n
st

ra
in

ts
E

R
ef

er
en

ce
re

so
lv

eP
ro

x
ie

s
A

tt
ri

b
u

te
-

(n
o
t

u
se

d
in

in
st

a
n

ce
s)

-
E

R
ef

er
en

ce
eK

ey
s

R
ef

er
en

ce
-

C
o
n

st
ra

in
t

E
R

ef
er

en
ce

eO
p

p
os

it
e

R
ef

er
en

ce
o
p
po

si
te

ed
g
e

o
p
po

si
te

ed
g
e

+
co

n
st

ra
in

t
E

R
ef

er
en

ce
eR

ef
er

en
ce

T
y
p

e
R

ef
er

en
ce

va
l

ed
ge

va
l

ed
g
e

+
co

n
st

ra
in

t
E

R
ef

er
en

ce
co

n
st

ra
in

ts
A

n
n

o
ta

ti
o
n

-
-

E
A

tt
ri

b
u

te
-

-
n

o
d

e
ty

p
e

n
o
d

e
ty

p
e

E
A

tt
ri

b
u

te
iD

A
tt

ri
b

u
te

-
C

o
n

st
ra

in
t

E
A

tt
ri

b
u

te
eA

tt
ri

b
u

te
T

y
p

e
R

ef
er

en
ce

va
l

ed
ge

va
l

ed
g
e

+
co

n
st

ra
in

t
E

A
tt

ri
b

u
te

co
n

st
ra

in
ts

A
n

n
o
ta

ti
o
n

-
-

E
S

tr
in

gT
oS

tr
in

gM
ap

E
n
tr

y
-

-
-

(n
o
t

su
p

p
o
rt

ed
)

-
E

S
tr

in
gT

oS
tr

in
gM

ap
E

n
tr

y
ke

y
A

tt
ri

b
u

te
-

-
E

S
tr

in
gT

oS
tr

in
gM

ap
E

n
tr

y
va

lu
e

A
tt

ri
b

u
te

-
-

34 Chapter 4. Representing Ecore models as graphs

4.2.1 EObject

The EObject is the top level element in the Ecore metamodel. It can normally
not be instantiated in Ecore models because there is no modelling element that
can be a container for an EObject. An EObject also cannot be a container for
other elements in an Ecore model. It is possible and allowed to create an Ecore
model with an EObject as root element, however this Ecore model cannot have
any other elements since EObject cannot contain anything, and would therefore
have no meaning. Considering this and that EObjects cannot be contained by
other elements in Ecore models, we can safely say that EObjects will not occur in
any meaningful Ecore models, and therefore do not need a graph representation.

4.2.2 EModelElement

EModelElement is abstract so it cannot be instantiated in Ecore models. It
has two properties, one containment relation eAnnotations, and an operation
that acts as a get-method for all contained EAnnotations. EAnnotations do not
need a graph representation as described in the respective section below, so the
reference that contains them also does not need a graph representation.

4.2.3 EFactory

The EFactory is an element like EObject in the sense that it is not instantiated in
an Ecore model, except in the case of a meaningless model with a single EFactory
root element with no other element. An EFactory cannot be contained by any
other elements, nor can it contain other elements. An EFactory is not used in
Ecore modelling as an element to represent something of the world like other
elements do.

Instead, an EFactory provides operations to create instances of non-abstract
classes for an instance model. A singleton instance of EFactory is generated for
every package in an Ecore model, with operations to create instances of classes
and convert EObjects that represent EDataType values to and from strings.
For example, the generated Ecore model instance editor uses the operations of
this EFactory to create instances of Ecore model elements. Additionally, apart
from using the Ecore model editor in Eclipse, Ecore models can also be created
dynamically in Java programs by using the EFactory of the Ecore metamodel,
since an Ecore model is an instance of the Ecore metamodel.

So EFactories and its operation properties do not need a graph representa-
tion since they will not occur in Ecore models to represent something.

4.2.4 ENamedElement

ENamedElement is an abstract element and has a name property. The name
of an element is a string of characters. All elements that inherit from ENamed-
Element are identified within their container by their name. This container

Section 4.2. The Ecore metamodel 35

is better known as a namespace, which is the context of the element. Many
elements in Ecore modelling can in turn be a container for other elements. This
means that for any given element, its namespace and name combine into the
namespace of contained elements.

Any element of an Ecore model that needs a graph representation will be
represented by a node type in both type graph and instance graph. The label of
this node consists of the name with the namespace prefixed to it. Node types
in type graphs must have unique labels and uniquely represent an element of
an Ecore model. This is achieved by suffixing a $ to the names of EPackages
and prefixing a $ to the names of other ENamedElements.

This is required because EPackages can contain both EClassifiers and EPack-
ages. Both EClassifiers and EPackages can be the namespace of elements. We
use the suffixed and prefixed $ to distinguish namespaces that are EPackages
from namespaces that are EClassifiers. Consider the example Ecore model in
Figure 4.3. We have ClassA containing has twice, one where an EClass con-
tains an EReference, the other where an EPackage contains an EClass. In our
graph representation, the former has is represented by a node type labelled
ClassA$has, the latter is represented by a node type labelled ClassA$$has. The
double $$ distinguishes EPackages containing EClassifiers from other cases,
and this ensures that cases like has in Figure 4.3 get different and unique node
types, which is required in type graphs.

Figure 4.3: Example of an Ecore model with a possible conflict of ClassA con-
taining has.

Ecore models have a root element, which is a container for all other ele-
ments. Since all elements are contained by this root element, its name is part
of the namespace of every element. It does not contribute to the unique identi-
fication of an element and is therefore usually omitted in a representation of a
model. The root element of an Ecore model is the root element of the XML file.
We need this information when transforming an instance graph back to an in-
stance model. However, we use the Ecore model itself to transform an instance
graph to an instance model and have the information available. Therefore this
information does not need a graph representation.

36 Chapter 4. Representing Ecore models as graphs

Finally, if from the earlier example ClassA would be contained only by the
root EPackage, the node type that represents it would be $ClassA. In these
cases we can remove the leading $ from the node type since it does not act as
a seperator anymore.

Examples for the name property of ENamedElements are listed in Table 4.3.

4.2.5 EClassifier

EClassifiers are either EClasses or EDataTypes, which are represented by a node
type as defined for ENamedElement. EClassifier has one relevant property,
namely the ePackage reference. This reference points to the package that
an EClassifier belongs to. The package of an EClassifier is the context or
namespace of this element. This is represented as defined for ENamedElement
by prefixing the namespace to the name in the node type label.

EClassifier has other properties which do not need a graph representation.
instanceClass and defaultValue are derived properties, which means they are
derived from other elements or properties in the model and do not need an ex-
plicit representation. Furthermore there are two operation properties isInstance
and getClassifierID which are not a part of instance models, a reference prop-
erty eTypeParameters referring to ETypeParameters which are not supported as
explained below, and the attribute properties instanceClassName and instance-
TypeName which are only used for Java code generation when EClassifiers in
the Ecore model represent some Java object.

Examples for the ePackage property of EClassifiers are listed in Table 4.3.

4.2.6 ETypedElement

ETypedElement is another abstract class and can either be an EOperation, EPa-
rameter, EReference or EAttribute. Since EOperations and EParameters are not
instantiated in instance models and are therefore not relevant for a graph repre-
sentation, we only need to concern ourselves with EReferences and EAttributes.
There are five properties for ETypedElement that are relevant for instance mod-
els and their graph representation, ordered, unique, lowerBound, upperBound
and eType.

Ordered is a boolean that indicates whether or not the order in which
values occur is of importance. In a graph representation, we can impose an
order by using next edges. Since edges can only link nodes and not other
edges, ETypedElements must be represented by node types in graphs. The
nodes representing ETypedElements can then be ordered by using next edges.
In the type graph, nodes representing ETypedElements have a next self edge to
indicate that nodes of this type can be both source and target of these edges. In
an instance graph, when there are multiple instances of a single ETypedElement,
these instances have next edges between them. By just typing a graph, we
cannot enforce that instances are actually ordered. For example, instances can

Section 4.2. The Ecore metamodel 37

have self edges or there can be loops of next edges. We use constraints to enforce
that the placement of next edges imposes an actual ordering.

Unique is another boolean property, it indicates whether the same value
may occur more than once. This is dependent on the type of the value. For
example for EReferences there may not be multiple references to the same model
element and for EAttributes with a many multiplicity the same integer, string
or other value may not occur more than once. This cannot be represented in a
type and instance graph setting and we use constraints to enforce this.

ETypedElements have a lowerBound and upperBound property for the
multiplicity. These indicate the number of instances of values that are allowed
in the instance model. EReferences often have a zero-or-one or any multiplicity,
and EAttributes usually have just a zero-or-one multiplicity, but any boundaries
are possible. There are ways to represent multiplicity in the type graph setting,
but GROOVE does not support this. We use constraints to make sure the lower
and upper bounds are not violated.

Finally as the name suggests, ETypedElements are elements of a specific
type, the eType . The eType of an ETypedElement refers to the EClassifier that
represents the type of the element. However, not all EClassifiers are valid types
for an ETypeElement. The valid types are bound by the ValidType constraint in
the Ecore metamodel. The eType of an EAttribute must refer to an EDataType
and the eType of an EReference must refer to an EClass. Since the allowed
eTypes are different for each ETypedElement that can be instantiated, we deal
with the representation at the dedicated subsections below.

The other four properties, many, required, eGenericType and constraints,
are not relevant for instance models and their graph representations. Many and
required are derived properties and do not appear in instance models, EGener-
icTypes that eGenericType refers to are not supported in instance models as
explained in section 4.2.16, and the annotation property constraints also has no
influence on instance models.

Examples for the relevant properties of ETypedElements are listed in Table
4.3, as well as examples of constraints on instance models.

4.2.7 EStructuralFeature

These elements are either EReferences or EAttributes. Two properties which are
tied together, changeable and defaultLiteralValue, appear in instance models and
are relevant in the graph representation, as well as the eContainingClass boolean
property. When changeable is set to false, the value of the EStructuralFeature
may not change in the instance model. The target of EReferences may not
change after instantiating a model, and the value of EAttributes can only be the
default value, which is set by the defaultLiteralValue property.

For consistency and applicability of graph transformation rules for the in-
stance graph, we do not want to represent unchangeable EStructuralFeatures
different from changeable EStructuralFeatures. This means that we do not en-
force the values in the type graph. EAttributes are represented as an attribute

38 Chapter 4. Representing Ecore models as graphs

in GROOVE as explained later, and EReferences can target any instance of the
type determined in the metamodel and type graph. To enforce that the value
cannot change in the instance graph we use a constraint. The defaultLiteral-
Value is part of that constraint.

It must be noted that EReferences and EAttributes are represented in graphs
by a node type labelled name with namespace prefixed. Since node types in
type graphs must have unique labels, this could potentially result in a conflict
if an EReference and EAttribute have the same name and are contained by
the same element. However this cannot occur, since only EClasses can contain
EStructuralFeatures, and EClasses have a constraint in the Ecore metamodel
that all their features must have unique names.

An instance of an EStructuralFeature in an Ecore model is always contained
by an EClass through the eContainingClass reference property, which is the
opposite of the eStructuralFeatures reference property of EClasses. For a repre-
sentation of an EStructuralFeature in the instance graph there must always be
exactly one edge from the container EClass. This is enforced by a constraint.

The other properties do not require a graph representation. When set,
volatile and transient have no impact on instance models, and defaultValue is
derived from other properties. When an EStructuralFeature is set to unsettable
methods are generated when generating Java code that support an unset state
of variables, but this has no effect on instance models. The derived property
indicates that values of EStructuralFeatures are derived, however they can still
be set manually in instance models, so they have no impact on instance mod-
els nor their graph representation. The last three properties are two operation
properties, getFeatureID and getContainerClass, and an annotation property,
constraints, and hence are also not part of instance models.

Examples for the changeable, defaultLiteralValue and eContainingClass prop-
erties of EStructuralFeatures are listed in Table 4.3, as well as an example for
constraints that are needed.

4.2.8 EClass

EClasses are the main building blocks of Ecore models. They have three prop-
erties that are relevant for instance models and their graph representation:
abstract, eSuperTypes and eStructuralFeatures, and 19 that are not relevant.
Abstract EClasses cannot be instantiated in instance models, and can only be
inherited from. eSuperTypes is a reference with many multiplicity that refers
to the EClasses an EClass inherits from. Finally, the eStructuralFeatures of an
EClass are itsEReferences and EAttributes.

EClasses are represented in type and instance graphs by node types, as
inherited from ENamedElement. Ecore instance models have a root EClass
element that directly or indirectly contains all other EClasses of the model
through containment EReferences. The root can be any EClass of the Ecore
model. We need to identify this in instance graphs for checking constraint
violations. A singleton node type labelled EClass is added to a second type

Section 4.2. The Ecore metamodel 39

graph, the Ecore type graph, that all EClasses are subtypes of. This node type
has a root flag. In the instance graph only the root EClass must have this flag.
Whether this is true is checked using a constraint.

EClasses have a hierarchy structure where classes inherit the list of attributes
and relations from their supertype. In Ecore, eSuperTypes is a relation with
many multiplicity that refers to the supertypes of an EClass. We use subtypes
of node types to represent inheritance of EClasses in the graph representation.
All features (ETypedElements) that are contained by an EClass are represented
in the type graph at the node type representing this EClass, and can occur for
any nodes that inherit from this node type in the instance graph. This exactly
mimics the behaviour of inheritance in Ecore models. Multiple inheritance is
also supported this way.

Abstract EClasses cannot be flagged as such in the type graph, since any
classes that inherit from it would also inherit the flag that marks it abstract
in GROOVE. Any node in the type graph can occur in the instance graph, so
any nodes that represent abstract EClasses in the type graph, can also occur in
the instance graph. A constraint is used to prevent instantiations of nodes that
represent abstract EClasses in the instance graph.

eStructuralFeatures is a relation with many multiplicity that refers to all
EStructuralFeatures that are contained by an EClass. EStructuralFeatures are
represented in the type and instance graph representation by a node type, as
inherited from ENamedElement, so we use edges from the EClass node type
to each of the contained EStructuralFeatures node types to represent eStruc-
turalFeatures. For node types in the type graph, the labels on outgoing edges
must be uniquely named. EClass has a UniqueFeatureNames constraint, requir-
ing that names of contained EStructuralFeatures are unique. We also use the
names as labels on the edges representing eStructuralFeatures.

Of the properties that are not relevant, the attribute property interface de-
notes an EClass to be an interface. This implies that EOperations defined in an
interface EClass must be implemented in EClasses that implement the inter-
face EClass. Since EOperations do not occur in instance models, this property
has no effect on instance models or graph representations, so it can be omit-
ted. The eOperations and eGenericSuperTypes containment relations contain
EOperations and EGEnericTypes. Both of those are elements not supported
in graph representations, so the relations containing them do not need a graph
representation. The other properties are operation properties, derived reference
properties and an annotation property. All of those are not part of instance
models, so they are not relevant for the graph representation.

Finally, any instance of an EClass must have have exactly one container
EClass, except for one instance which is the root EClass of an instance model.
Also, instances of EClasses may not form cycles with containment EReferences.
These properties are not captured by any properties in the Ecore model, but
must be enforced in an instance model, which is done using constraints. Ex-
amples for the representation and constraints of EClasses and their supported
properties are listed in Table 4.3.

40 Chapter 4. Representing Ecore models as graphs

4.2.9 EPackage

Usually, all EClassifiers in Ecore models belong to an EPackage as explained
above in the section about EClassifiers. Even when not apparently so, they be-
long to the root EPackage which is omitted in visual representations. EPackages
have a name, and two other relevant properties, eSubpackages and eSuperPack-
age, and six that are not relevant.

Since EPackage names are already represented in graphs by prefixing EClas-
sifiers that belong to an EPackage with their namespace, EPackages are not
explicitly represented by node types. EPackages can be nested, an EPack-
age can have several sub-EPackages, and each EPackage apart from the root
EPackage has a super-EPackage. Because the full namespace is part of the
labels of EClassifier node types in the graph representation, all information of
the EPackage and super-EPackages that an EClassifier belongs to is already
encoded in the graph representation.

The NsPrefix and NsURI are not required in the graph representation to
represent instance models. The NsPrefix is a string that indicates how elements
of this EPackage are prefixed in the XMI serialization of an Ecore model, and
the NsURI, usually an absolute URI, universally identifies the package. They
are required to transform an instance graph to a valid instance model. However,
this information can be acquired from the Ecore model when transforming back
to an Ecore instance model and we do not need to represent this.

Examples for the representation of EPackages are listed in Table 4.3.

4.2.10 EReference

EReferences are association links between EClasses. They are always contained
by (or originate from) an EClass, and their type (or target) is also an EClass.
EReferences have a containment boolean property, can have an eOpposite refer-
ence property, always have exactly one eReferenceType and can have an eKeys
reference property. Intuitively we would like to represent EReferences as simple
edges from source to target, as they are represented visually in Ecore models.
However, because EStructuralFeatures can be ordered, EReferences can have
opposites, and we prefer a consistent representation, we need to represent ERef-
erences as node types. These node types can then be ordered or have an edge
that refers to its opposite. A preferred representation would be to use ordered
edges [13] to represent ordering so we can use only edges to represent ERefer-
ences. This is however not supported by GROOVE, and it would still not allow
representation of opposite EReferences. There are three more properties that
do not require a graph representation.

The containment boolean indicates whether or not an EReference repre-
sents a composition relation. When set, this implies that the target EClass of
the EReference is contained by the source EClass. In Ecore models, all EClasses
apart from the root element must have a container EClass, or in other words
have an incoming containment EReference. An EReference is represented by a
node type, and this node type is a subtype of a singleton node type labelled

Section 4.2. The Ecore metamodel 41

EReference in a second Ecore type graph. This EReference node has a contain-
ment flag in the type graph. In instance graphs, any node that represents a
containment EReference must have this flag set, and other instances of ERef-
erences may not have this flag set. This is required for detecting constraint
violations, as explained in section 4.4.

EReferences are unidirectional. However, something that mimics bidirec-
tionality can be achieved by using the eOpposite property. This relation prop-
erty can refer to an EReference in the opposite direction of the former ERef-
erence, making them opposites of each other. Two containment EReferences
cannot be opposites of each other, since that would violate a constraint that
containment EReferences may not form cycles. Also, opposite EReferences in
Ecore models must both have the eOpposite property refer to each other. If
one eOpposite does not refer to the opposite EReference, a constraint of the
Ecore metamodel is violated. eOpposite is represented in the type and instance
graph by opposite edges in both directions between the node types that rep-
resent the EReferences that are opposites. Just a single edge in one direction
would add inconsistency in the direction of the edge for graph transformation
rules. Omitting one the EReferences from an opposite pair is also not possible,
since both EReferences can still have a many-multiplicity and be ordered, as we
will show in an example in section 4.3. When two EReferences are opposites,
then the eOpposite property must be set for both EReferences, and they must
refer to each other. Whether this is true in instance graphs is enforced with a
constraint.

The reference property eKeys refers to EAttributes of the referenced EClass
that uniquely identify a referenced instance. This means that the values of
the set of EAttributes that are referred to must be unique for each instance
of the EClass referred to by this EReference. This cannot be enforced by a
type and instance graph setting and must be enforced with constraints. This is
only possible when the referenced EAttributes are unique, not ordered and of
supported EDataTypes, which are explained in section ??. This property only
puts a constraint on valid instance models, and since this is enforced with a
graph constraint, eKeys needs no graph representation.

The eReferenceType is derived from eType and refers to the type of the
EReference, which must be an EClass. In visual representations of Ecore mod-
els, this is the target of the arrow representing the EReference. In the type and
instance graph representation of an EReference, the eReferenceType is repre-
sented by an edge labelled val from the node type representing the EReference
to the node type representing the EClass. There must be exactly one val edge
to represent the target EClass in an instance graph, and this is enforced by
using a constraint.

Two properties are not relevant for a graph representation. The attribute
property resolveProxies adds certain Java code optimizations and has no im-
pact on instance models, the annotation property also does not impact instance
models.

Examples for EReferences and their supported properties and required con-
straints are listed in Table 4.3.

42 Chapter 4. Representing Ecore models as graphs

4.2.11 EAttribute

EAttributes have an eAttributeType property that refers to the data type of
this element. Furthermore, EAttributes have a boolean property iD that indi-
cates whether an EAttribute uniquely identifies the containing EClass within
its container, and one unsupported annotation property. A singleton node type
labelled EAttribute is added to the Ecore type graph that all EAttributes are
subtypes of.

The eAttributeType refers to the EDatatype of an EAttribute in Ecore
models, and in instance models it refers to a concrete value of this EDatatype if
it is serializable. It is derived from eType defined for ETypedElement, but may
only refer to EDataTypes instead of EClassifiers. The graph representation for
data types and concrete values is explained in section ??. The eAttributeType
reference property is represented in the type and instance graph as an edge
labelled val from the node type representing the EAttribute to the node type
representing the EDataType. If an EDataType is not supported in instance
models and graph representation, the val edge is omitted and values of EAt-
tributes cannot be represented. There must be either zero or one val edge to
represent the target EDataType in an instance graph, this is enforced by using
a constraint.

If iD is set, an EAttribute is used as a unique identifier for an EClass. This
implies that in instance models, the concrete value of an EAttribute is unique for
all EClasses that have the same container EClass. We cannot enforce this in a
type and instance graph setting and must check whether this property holds by
using constraints. This property is similar to eKeys of EReference, however iD
marks an attribute to be the unique identifier for the containment EReference
containing the EClass this EAttribute belongs to. The property eKeys can
also be set for non-containment EReferences. Also, unlike eKeys, only a single
EAttribute can be set to be the identifier. eKeys can refer to more than one
EAttribute of an EClass.

Examples for EAttributes and their supported properties and required con-
straints are listed in Table 4.3.

4.2.12 EDataType

EDataTypes have a different representation in Ecore models and instance mod-
els. In Ecore models, the type of data is defined, in instance models an EData-
Type holds a variable value of this type. The difference in Ecore and instance
models requires a specific representation for EDataTypes, different from EClassi-
fiers. There is one attribute property that has some impact on instance models,
serializable, but only for EDataTypes defined in the Ecore metamodel.

The Ecore metamodel defines a number of EDataTypes that can be used in
Ecore models, for example EString and EInt. EDataTypes can also be defined
by users in Ecore models. The reference property instanceTypeName determines
the actual data type of an EDataType and valid values in instance models. For
example, EString refers to the java.lang.string class and is used to represent

Section 4.2. The Ecore metamodel 43

simple strings. Only EDataTypes that are serializable can be serialized to XML
using XMI. Since the native storage format of Ecore is XML using XMI, only
serializable EDataTypes can have values set in instance models, and therefore
have a graph representation.

Name Serializable Graph representation

EBigInteger yes integer
EByte yes integer
EByteObject yes integer
EIntegerObject yes integer
ELongObject yes integer
EShortObject yes integer
EInt yes integer
ELong yes integer
EShort yes integer
EChar yes integer
ECharObject yes integer
EBigDecimal yes real
EDouble yes real
EDoubleObject yes real
EFloat yes real
EFloatObject yes real
EBoolean yes boolean
EBooleanObject yes boolean
EByteArray yes string
EDate yes string
EString yes string
EJavaClass< T > yes -
EJavaObject yes -
EDiagnosticChain no
EEList< E > no
EEnumerator no
EFeatureMap no
EFeatureMapEntry no
EMap< K,V > no
EResource no
EResourceSet no
ETreeIterator< E > no

Table 4.2: EDataTypes in the Ecore metamodel, whether they are serializable
and how they can be represented in graphs.

The EDataTypes that are defined in the Ecore metamodel and are serializable
can have values in instance models and a graph representation, since serialization
methods are defined for them. However, user defined EDataTypes that are
serializable cannot be supported, since serialization methods must be written in
Java code. From here on we only discuss how to represent EDataTypes defined
in the Ecore metamodel.

GROOVE supports attributes of type string, integer, real or boolean. If an

44 Chapter 4. Representing Ecore models as graphs

EDataType is serializable, it can be represented by either of these four attribute
types, and will be represented in the type graph by a node of this type. The
instance graph can then hold a variable value of this type. Table 4.2 contains a
list of all EDataTypes that are defined in the Ecore metamodel and whether or
not they are serializable. For the serializable EDataTypes, we show with which
attribute type they are represented in GROOVE. There are two serializable
EDataTypes that cannot have values in instance models or have a graph repre-
sentation, EJavaClass and EJavaObject. EJavaObject depends on an EGener-
icType which is not supported. EJavaObject refers to java.lang.Object, which
is a general EDataType that can refer to any Java object which in turn can
be serializable when implementing the Serializable interface. These EDatatypes
are not supported, since serialization methods are available for them in the
Ecore model. When using EDataTypes that support values with a higher pre-
cision than 32 bits, like ELong or EDouble, the algebraFamily of the generated
GROOVE grammar is set to big. GROOVE then supports int values or arbitrary
precision and real values with the same precision as java.math.BigDecimal.

When transforming an instance graph back to an instance model, the Ecore
model is used to determine if values in the instance graph are valid. Because of
this, we do not have to know which EDataType is represented by an attribute
in GROOVE, and the value can just be used. We use constraints to detect
invalid values in the instance graphs. For example, an EByte is represented by
an integer attribute in GROOVE, but valid values must be in range from -128
to 127.

Examples for EDataTypes and their supported properties and required con-
straint are listed in Table 4.3.

4.2.13 EEnum and EEnumLiteral

An EEnum is a specialization of an EDataType. It has an eLiterals containment
relation, and through it contains any number of EEnumLiterals. These are the
literals that are valid for the enumeration.

EEnums are represented by a node type since the val edge from an EAt-
tribute that represents the eType must refer to a node. EEnumLiterals have
just one property that is relevant for instance models and the graph representa-
tion, literal, a string that contains the value of this literal. The EEnumLiterals
that are contained are represented in the type graph as flags, labelled with the
literal string property of the EEnumLiteral. In the instance graph exactly one
flag must be set for an EEnum, which is enforced with a constraint. Addition-
ally, each EEnum in an instance graph must be the value of an EAttribute, so
it must have exactly one incoming val edge.

The other four properties of EEnum are operation and annotation properties
which need no further explanation. EEnumLiteral has three properties that are
not relevant for instance models. The reference property eEnum is the oppo-
site of eLiterals. Since EEnumLiterals are represented as flags on the EEnum
referred to by eEnum, this needs no further representation. The attribute prop-
erty value is the internal integer value used in Java programs to represent the

Section 4.2. The Ecore metamodel 45

literals, but these do not occur in instance models. The other attribute property,
instance, also does not occur in instance models.

Some other options to represent EEnums and EEnumLiterals exist, but are
not preferred for various reasons. Firstly, the node type representing an EEnum
can be omitted and flags representing EEnumLiterals can be added directly to
the EAttributes. However, this introduces an inconsistency since there would
be no val edge anymore from the EAttribute to represent its type. Another
option is to represent EEnumLiterals as singleton node types that are subtypes
of the node representing an EEnum. In instance graphs, the val edge from an
EAttribute can then directly refer to the singleton node representing an EEnum-
Literal. This however leads to dangling parts of a graph if an EEnumLiteral is
not a value of an EAttribute, and in our representation everything must be con-
tained by the root element of the graph. Finally, we could represent EEnums are
string attributes in GROOVE, and enforce with constraints that the value of the
string in the instance graph equals one of the literal strings of the EEnumLiter-
als. This is counter-intuitive since it no longer models EEnums as EDataTypes
with a predefined set of allowed values.

Examples for EEnums and EEnumLiterals and their supported properties
are listed in Table 4.3, as well as the required constraints to enforce correct
instance models.

4.2.14 EAnnotation and EStringToStringMapEntry

EAnnotations are notes for any EModelElements. They can be used to add
some textual information about elements in an Ecore model. An EAnnotation
has a source, which is a string identifier that is typically an URI and uniquely
identifies the type of EAnnotation. Furthermore, EAnnotations can refer to
EObjects from a model, and contain any number of EStringToStringMapEntries,
which are pairs of EStrings, key and value. For example, in the Ecore meta-
model several elements have an EAnnotations with an EStringToStringMapEn-
try 〈key, value〉 pair of 〈”constraints”, 〈string with constraints〉〉. For the
EAnnotation of the EClass element, the value of constraints contains the ”In-
terfaceIsAbstract” substring, which indicates that any interface EClasses must
also be an abstract EClass. However, the semantics of EAnnotations and ES-
tringToStringMapEntries in Ecore models cannot formally be specified within
the model, and is left up to the user. They are not instantiated in instance
models, so they do not need a graph representation.

4.2.15 EOperation and EParameter

EOperations can operate on EParameters that are passed to it and return some
value of type eType. When generating Java code, each EOperation generates
an empty method for which functionality needs to be added. As with operation
properties, EOperations do not operate on instance models, but only function as
methods in generated Java programs. For instance models, the model editor is
used to make modifications, and in instance graphs, graph transformation rules

46 Chapter 4. Representing Ecore models as graphs

are used. Therefore EOperations need no graph representation. EParameters
in turn are only used by EOperations, and hence also do not require a graph
representation either.

4.2.16 EGenericType and ETypeParameter

EGenericTypes are generic types that can be used by ETypedElements or for
eGenericSuperTypes of EClasses when at modelling time the actual type is
unknown. An EGenericType can either refer to an EClassifier from within the
model or from the Ecore metamodel through the eClassifier relation, or it can
refer to an ETypeParameter through the eTypeParameter containment relation.
These are mutually exclusive, so only one reference can be set at a time.

When an EGenericType functions as the supertype of an EClass it always
refers to an EClassifier. When it refers to an EClass of the Ecore model itself it
is a normal supertype, and also referred to by a different property of the former
EClass. In this case the EGenericType needs no graph representation since it is
represented in a different way. An EGenericType contained by an EClass can
also refer to EClassifiers from the Ecore metamodel. EClasses inherit from their
supertypes, but if the supertype is not explicitly defined in the Ecore model there
are no explicit properties to inherit. This means there is no point representing
this in an instance model, nor in the graph representation of the instance model.
The same reasoning is applicable to all cases where EGenericTypes refer to
EClassifiers, so these cases never need a graph representation.

EGenericTypes can instead refer to an ETypeParameter. ETypeParameters
can be declared by EClasses and EOperations, and when set it declares an
EClass or EOperation to be generic. Such EClasses and EOperations require a
type argument passed to it to indicate which type of EObjects it should operate
on. ETypeParameters have an eBounds containment relation to indicate the
bounds of the type arguments that are allowed, in which case the type argument
must be a subtype of the set bound.

As an example of EGenericTypes and ETypeParameters consider Figure 4.4.
In the visual diagram of the Ecore model nothing regarding EGenericTypes or
ETypeParameters is visible, so instead we look at the treeview of the Ecore
model. ClassG is a generic EClass, it declares the ETypeParameter T . The
EAttribute attr is of generic type T , so attr refers to an EGenericType. What-
ever type argument is passed to ClassG upon invoking an instance of it is the
type of attr. In our example, ClassA can contain any number of ClassG through
the containment relation has. The type of has is ClassG, but it also passes a type
argument, EString. In this case any ClassG contained through has will have
attr of type EString. This can in theory be represented, because EAttributes of
type EString can be represented in a graph by using string attributes. However,
in many cases a representation for values is not possible because the type of an
EAttribute cannot be represented. In fact, EAttributes with a generic type can-
not have a value in instance models in Eclipse, not even in our example where in
theory it could be possible. Modelling using EGenericTypes and ETypeParame-
ters is only used for generated Java code. Even when setting aside the instance
model editor of Eclipse, such generic types cannot be serialized to XML using

Section 4.3. Ecore models and representation examples 47

(a) Visual Ecore model (b) Tree of Ecore model

Figure 4.4: Example of a generic EClass ClassG with EAttribute attr.

XMI either, because any value can be of any EJavaObject, which can be an
EClass that cannot be serialized.

Ecore models with generic EDatatypes can still be transformed to a graphs
representation, but as with EDatatypes that are not serializable, they cannot
have values in instance graphs. Other EGenericTypes or EGenericParameters
have no impact on instance models, and do not need a graph representation.

EGenericTypes and ETypeParameters in EOperations have not been dis-
cussed, but the principle is the same, plus that EOperations do not need a graph
representation in any case. In short, EGenericTypes and ETypeParameters are
not supported in instance models, so they do no need a graph representation.
Even if a representation would be possible, it is not possible to exchange values
of generic types in instance models to GROOVE using XMI.

4.3 Ecore models and representation examples

We have examined the Ecore metamodel and identified all elements and prop-
erties that are relevant for instance models. For each of these elements and
properties we described how it is represented in a type and instance graph rep-
resentation of the Ecore and instance model. We now demonstrate how these
representation choices come together in a series of example models and their
graph representations. For each of the concrete classes in the Ecore metamodel
(EClass, EPackage, EDataType, EEnum, EEnumLiteral, EAttribute, ERefer-
ence) we show one or more examples of an Ecore and instance model, along
with their type and instance graph representation. Table 4.3 shows an overview
of all modelling elements and properties we identified in section 4.2, and in
which examples they are shown, together with the constraints in section 4.4 for
these elements and properties.

48 Chapter 4. Representing Ecore models as graphs

E
c
o
re

m
e
ta

m
o
d

e
l

e
le

m
e
n
t

E
le

m
e
n
t

p
ro

p
e
rt

y
R

e
p

re
se

n
ta

ti
o
n

e
x
a
m

p
le

s
E

x
a
m

p
le

c
o
n

st
ra

in
ts

E
N

am
ed

E
le

m
en

t
n

am
e

F
ig

u
re

4
.5

,
4
.6

,
4
.1

1
,

4
.1

2
-

E
C

la
ss

ifi
er

eP
ac

ka
g
e

F
ig

u
re

4
.1

1
-

E
T

y
p

ed
E

le
m

en
t

or
d

er
ed

F
ig

u
re

4
.8

,
4
.1

0
,

4
.1

3
F

ig
u

re
4
.2

1
u

n
iq

u
e

F
ig

u
re

4
.8

,
4
.1

3
F

ig
u

re
4
.1

9
,

4
.1

8
lo

w
er

B
o
u
n

d
F

ig
u

re
4
.6

,
4
.1

3
F

ig
u

re
4
.2

0
u

p
p

er
B

o
u

n
d

F
ig

u
re

4
.6

,
4
.1

3
F

ig
u

re
4
.2

0
eT

y
p

e
F

ig
u

re
4
.5

,
4
.6

,
F

ig
u

re
4
.1

2
F

ig
u

re
4
.1

7
E

S
tr

u
ct

u
ra

lF
ea

tu
re

ch
an

g
ea

b
le

F
ig

u
re

4
.1

4
F

ig
u

re
4
.3

0
d

ef
a
u

lt
L

it
er

a
lV

a
lu

e
F

ig
u

re
4
.1

4
F

ig
u

re
4
.3

0
eC

on
ta

in
in

g
C

la
ss

F
ig

u
re

4
.2

4
E

E
n
u

m
L

it
er

al
-

F
ig

u
re

4
.1

6
-

li
te

ra
l

F
ig

u
re

4
.1

6
-

E
P

ac
ka

ge
-

F
ig

u
re

4
.1

1
-

eS
u

b
P

a
ck

a
g
es

F
ig

u
re

4
.1

1
-

eS
u

p
er

P
a
ck

a
g
e

F
ig

u
re

4
.1

1
-

E
C

la
ss

-
F

ig
u

re
4
.5

F
ig

u
re

4
.2

3
,

4
.2

4
ab

st
ra

ct
F

ig
u

re
4
.5

F
ig

u
re

4
.2

5
eS

tr
u

ct
u

ra
lF

ea
tu

re
s

F
ig

u
re

4
.5

-
eS

u
p

er
T

y
p

es
F

ig
u

re
4
.5

-
E

D
at

aT
y
p

e
-

F
ig

u
re

4
.8

,
4
.1

2
,

4
.1

3
,

4.
1
4
,

4
.1

5
F

ig
u

re
4
.3

1
E

E
n
u

m
-

F
ig

u
re

4
.1

6
F

ig
u

re
4
.3

3
eL

it
er

a
ls

F
ig

u
re

4
.1

6
F

ig
u

re
4
.3

2
E

R
ef

er
en

ce
-

F
ig

u
re

4
.6

,
4
.7

,
4
.8

,
4
.9

-
co

n
ta

in
m

en
t

F
ig

u
re

4
.7

F
ig

u
re

4
.2

4
eK

ey
s

F
ig

u
re

4
.9

F
ig

u
re

4
.2

8
eO

p
p

o
si

te
F

ig
u

re
4
.7

,
4
.1

0
F

ig
u

re
4
.2

7
eR

ef
er

en
ce

T
y
p

e
F

ig
u

re
4
.6

F
ig

u
re

4
.1

7
E

A
tt

ri
b

u
te

-
F

ig
u

re
4
.1

2
,

4
.1

3
,

4
.1

4
,

4
.1

5
-

iD
F

ig
u

re
4
.1

5
F

ig
u

re
4
.2

9
eA

tt
ri

b
u

te
T

y
p

e
F

ig
u

re
4
.1

2
F

ig
u

re
4
.1

7

T
ab

le
4.

3:
M

ap
p

in
g

of
E

co
re

m
o
d

el
li

n
g

el
em

en
ts

a
n

d
p

ro
p

er
ti

es
to

re
p

re
se

n
ta

ti
o
n

ex
a
m

p
le

s
a
n

d
co

n
st

ra
in

ts
.

Section 4.3. Ecore models and representation examples 49

4.3.1 EClass

In total, EClasses have five relevant properties as determined in section 4.2,
name, ePackage, abstract, eStructuralFeatures and eSuperTypes. ePackage refers
to the EPackage that contains an EClass, but this is shown later in the example
for EPackages. The other four properties are demonstrated below.

Figure 4.5 shows an Ecore model with three EClasses. ClassA contains
any number of ClassB, which is abstract. The eSuperType of ClassC is ClassB,
or in other words ClassC inherits from ClassB. In the instance model there is
one ClassA which contains two instances of ClassC.

There are two type graphs in the Figure, one for the representation of
the model itself, and the Ecore type graph to indicate which nodes represent
EClasses and EReferences. GROOVE merges these internally by mapping same
types onto each other. In future examples we only speak of the type graph that
represents the model and omit the Ecore type graph, unless it is relevant for the
example. In the type graph representation of the Ecore model the EClasses are
represented by node types labelled ClassA, ClassB and ClassC, which are the
names of the EClasses. These node types are subtypes of the EClass node type
to be able to match them in constraint rules. ClassB appears in the type graph,
even though it is abstract and may not be instantiated in a valid instance graph.
ClassA contains an EReference that is referred to by eStructuralFeature. The

(a) Ecore model (b) Instance model

ClassA$has

ClassB

ClassA

ClassC

val

has

(c) Type
graph

EReference
containment

ClassAClassB

ClassC

ClassA$has

EClass
root

(d) Ecore type graph

ClassA$has
containment

ClassA
root

ClassA$has
containment

ClassC ClassC

has

val

has

val

(e) Instance graph

Figure 4.5: Example representation of an EClass to demonstrate name, abstract,
eStructuralFeatures and eSupertypes.

50 Chapter 4. Representing Ecore models as graphs

edge representing the eStructuralFeature is labelled the same as the name ES-
tructuralFeature that is being referred to, has in this case. Finally, eSuperType
of ClassC is represented by an inheritance edge, which implies that ClassC is
a subtype of ClassB.

In the instance graph we see one ClassA instance and two ClassC instances.
The instance of ClassA is the root of the model, and therefore is flagged as
such. If a ClassB would be instantiated in the instance graph, it would violate
a constraint described in section 4.4. An example of this is given in Figure 4.25.

Each instance of an EClass in the instance graph, except for one, must
have exactly one container EClass, which is the EClass containing said EClass
through a containment EReference. The exception to this is the root EClass.
This is required because of the XML serialization format of Ecore models and
instance models, which are structured like trees. This is enforced through a
constraint, of which an example is given in Figure 4.24.

Finally, instances of EClasses may not form cycles with containment ERef-
erences in an instance graph, which is enforced by a constraint. An example of
a violation of this is given in Figure 4.23.

4.3.2 EReference

EReference has 10 properties in total that are relevant for instance models. We
show these properties using four examples. The first example shows the usage
of name, eReferenceType, lowerBound and upperBound. The second example
shows the properties eOpposite and containment. The third example shows the
usage of ordered and unique, and the fourth example shows eKeys. Two more
properties, unchangeable and defaultLiteralValue are defined for EStructuralFea-
tures, but are only of relevance to EAttributes. EReferences cannot have literal
values, and hence cannot have a defaultLiteralValue. EReferences that are un-
changeable cannot change what they refer to after they have been initialized,
but this is used at runtime in Java programs and has no meaning in instance
models which are static. Finally we show an additional, more complicated ex-
ample to demonstrate why an EReference with an opposite EReference cannot
be omitted from the graph representation.

Figure 4.6 contains an Ecore model of ClassA which can contain one to five
instances of ClassB through the containment EReference has. The EReference
in this example is not ordered, which means that the order of instances of
ClassB in the instance model is not relevant. In the instance model there are
three instances of ClassB.

There are two type graphs again, one that represents the Ecore model, and
one to denote which elements are EClasses and which are EReferences. The
EReference is represented by a node type labelled the name of the EReference
with $ and the namespace prefixed to it. The namespace of an EReference
is the name of the container EClass and its namespace prefixed to it. The
namespace of ClassA in turn is the root of the Ecore model, so it is omitted
in the representation. The eReferenceType of the EReference is represented

Section 4.3. Ecore models and representation examples 51

(a) Ecore model (b) Instance model

ClassB

ClassA

ClassA$has

val

has

(c) Type
graph

EReference
containment

ClassA ClassB

ClassA$has

EClass
root

(d) Ecore type graph

ClassA$has
containment

ClassA
root

ClassBClassB

ClassA$has
containment

ClassB

ClassA$has
containment

val val

has hashas

val

(e) Instance graph

Figure 4.6: Example of an EReference representation demonstrating the name,
eReferenceType, lowerBound and upperBound.

by an edge labelled val and refers to the target EClass. In the Ecore type
graph we see that both ClassA and ClassB are subtypes of the EClass node
type and therefore represent EClasses. ClassA$has is a subtype of node type
EReference, so therefore represents and EReference. In the graph representation
of the instance model there are three instances of the EReference, one for every
instance of ClassB. They represent containment EReferences, so they have a
containment flag to indicate this. The presence of these flags is enforced by
a constraint. Whether or not the lowerBound and upperBound are violated
cannot be checked by typing a graph and is done using constraints, of which an
example is given in Figure 4.20. Additionally, there are constraints that there
must be exactly one outgoing val edge and exactly one incoming edge from the
container EClass for every instance of ClassA$has in the instance graph. A
violation of these constraints is demonstrated in the example in Figure 4.17.

Figure 4.7 contains another example Ecore model. In this example there are
two EReferences, the containment EReference has, and its opposite EReference
container. The EReference container has a multiplicity of zero or one. It can
be set to any multiplicity like any EReference but this would have no meaning.
An EClass can only have one container, so there is only one valid target for this
EReference. In the instance model there are two instances of ClassB.

In the type graph there are now two node types representing the EReferences.
There is an edge labelled opposite to denote the opposite of an EReference.
There are two opposite edges between each pair of opposite EReferences, one

52 Chapter 4. Representing Ecore models as graphs

(a) Ecore model (b) Instance model

ClassBClassA

ClassB$container

ClassA$has

container

val
oppositeopposite

val

has

(c) Type graph

ClassA$has
containment

ClassA
root

ClassB$container

ClassB

ClassB$container

ClassB

ClassA$has
containment

container

val
opposite

opposite

container

has

val

val

opposite

opposite
has

val

(d) Instance graph

Figure 4.7: Example representation of EReferences demonstrating opposite and
containment.

in each direction. In the instance graph there are four nodes that represent
EReferences, of which the containment EReferences have a containment flag as
inherited in the Ecore type graph. We use a constraint to enforce that opposite
edges properly refer to the opposite EReference. This is demonstrated in Figure
4.27.

Figure 4.8 shows an EReference that is not unique and ordered. There are
two EReferences in this example. ClassA can contain any number of ClassB
through the EReference has, and additionally has an EReference refer that
can refer to any number of ClassB. A single ClassB can be referenced to several
times by refer, and the order is also of importance in instance models. The Ecore
model contains an EAttribute to clarify the order in the graph representation of
this example, but this is explained later. In the instance model there are two
instances of ClassB, and the EReference refer refers to one of these instances
twice.

The type graph represents the EReference refer by adding a next edge to
indicate the order in instance graphs. The non-uniqueness does not need a

Section 4.3. Ecore models and representation examples 53

(a) Ecore model (b) Instance model

ClassB$iD
val: int

ClassBClassA

ClassA$refer

ClassA$has

val

iD

has

next

valrefer

(c) Type graph

ClassA$has
containment

ClassB$iD
val = 3

ClassA
root

ClassA$has
containment

ClassA$refer

ClassB

ClassB

ClassB$iD
val = 1

ClassA$refer ClassA$refer

val

refer

has

val

iD

refer

iD

val
refer

val

val

next next

has

(d) Instance graph

Figure 4.8: Examples representation EReferences that demonstrates ordered
and not-unique.

special representation, but instead to check whether an EReference is unique
requires us to use a constraint, as demonstrated in Figure 4.18. In the instance
model we see three nodes to represent the EReference refer, ordered with next
edges. The EReference first targets the ClassB with iD 3, then iD 1, and then
iD 3 again, as in the instance model.

Figure 4.9 shows an example of eKeys. ClassA contains any number of
ClassB through has, and additionally refers to any number of ClassB through
refer. The eKeys property of refer refers to the EAttribute id of ClassB. In the

54 Chapter 4. Representing Ecore models as graphs

(a) Ecore model (b) Instance model

ClassB$id
val: int

ClassA$refer

ClassBClassA

ClassA$has

val

refer val
id

has

(c) Type graph

ClassA
root

ClassA$refer

ClassB
ClassB$id
val = 1

ClassA$refer

ClassB$id
val = 0

ClassB

ClassA$has
containment

ClassB

ClassA$has
containment

ClassB$id
val = 1ClassA$has

containment

val

has

has

val

val

id

id

refer

val

id

has
val

refer

(d) Instance graph

Figure 4.9: Example representation of an EReference to demonstrate eKeys.

instance model there are three instances of ClassB, one with id 0 and two with
id 1. The instance of ClassA refers to two of these instances of ClassB through
refer. Referring to the third ClassB as well is not allowed, since then the value
of id no longer uniquely identifies a referred instance of ClassB in the case of
id 1.

The graph representation shows nothing new, EReferences are represented
as before. A third instance of refer in the instance graph referring to the third
ClassB is not allowed as described above, but this can not enforced with a type
graphs. Constraints are needed to detect cases that violate the eKeys property,
as shown in the example in Figure 4.28.

Figure 4.10 shows a more complex example. ClassA can contain any num-

Section 4.3. Ecore models and representation examples 55

(a) Ecore model (b) Instance model

ClassC

ClassA$hasC

ClassB$id
val: int

ClassA$hasB

ClassB

ClassB$referC

ClassC$referB

ClassA

ClassC$id
val: int

hasB

opposite

next

id

val

opposite

val

referC

hasC

referBid

val

val

next

(c) Type graph

ClassC$id
val = 0

ClassC$id
val = 1

ClassB$id
val = 0

ClassC$referB

ClassA
root

ClassB
ClassB$referC

ClassC$referB

ClassA$hasC
containment

ClassB$referC

ClassB$id
val = 1

ClassA$hasB
containment

ClassC

ClassC$referB

ClassB

ClassC

ClassA$hasC
containmentClassB$referC

ClassA$hasB
containment

val

opposite

val

val

val

hasB

opposite

id

referB

opposite

id

val

hasC

val

referC

val

next

val referB

opposite

next

id

referB

val

hasC

opposite

id

referC

val

referC

hasB

opposite

(d) Instance graph

Figure 4.10: Example representation showing that opposite EReferences both
need to be represented in graphs.

56 Chapter 4. Representing Ecore models as graphs

ber of ClassB and ClassC, ClassB refers to ClassC with referC, and ClassC
refers to ClassB with referB. The EReferences referB and referC are opposites.
The EAttributes id are used to identify different instances of ClassB and ClassC.
In the instance model, there are two instances of both ClassB and ClassC. The
figure also shows how the instances of ClassB and ClassC refer to each other
with referB and referC, like ClassB 0 refers to both instances of ClassC, and the
opposite EReferences refer back to ClassB 0. The point here is that an opposite
EReference must refer back, but may also refer to other instances; for example
ClassC 1 refers back to ClassB 0, but also refers to ClassB 1. Additionally,
referB and referC are both ordered. ClassB 0 refers to (ClassC 1, ClassC 0)
in that order. ClassC 1 refers to (ClassB 0, ClassB 1) in that order.

The type and instance graph representations introduce nothing new. How-
ever, because referB and referC are both ordered, we cannot omit one of these
EReferences from the graph representation, even though they are opposites. If
referC would be omitted from the representation the order of ClassB 0 referring
to (ClassC 1, ClassC 0) would be lost. The same happens when omitting referB
from the representation, the order of ClassC 1 referring to (ClassB 0, ClassB
1) would be lost.

4.3.3 EPackage

There are three properties of EPackage, name, eSubPackages and eSuperPack-
age. Figure 4.11 shows an example of an EPackage. ClassA can contain any
number of ClassB, which is in a different package, named justAPackage. In the
instance model there are two instances of ClassB.

In the type and instance graph the label of the node type that represents

(a) Ecore model (b) Instance model

ClassA

justAPackage$$ClassB

ClassA$has

val

has

(c) Type graph

ClassA$has
containment

ClassA
root

justAPackage$$ClassB

ClassA$has
containment

justAPackage$$ClassB

hashas

val val

(d) Instance graph

Figure 4.11: Example representation of an EPackage to show representations of
name, eSubPackages and eSuperPackage.

Section 4.3. Ecore models and representation examples 57

ClassB consists of two parts, the namespace part justAPackage$, and the EClass
name part $ClassB. The namespace here consists of the name of the EPackage
with $ suffixed to it. The double $$ shows a distinction between EPackages
and an EClassifier, here ClassB. Any names separated by $ before the $$ are
EPackage names, where for a given EPackage name the name before it in the
string is its eSuperPackage and the name after it is a eSubPackage.

4.3.4 EAttribute and EDataType

EAttributes have 9 properties that are relevant in instance models and the
graph representation, EDataTypes have just two. Because EAttributes and
EDataTypes are usually used together in Ecore modelling we combine them in
our examples. We use four examples to show how EAttributes and EDataTypes
are represented in graphs. The first example shows the name property of both
EAttributes and EDataTypes and the eAttributeType of EAttributes. The second
example shows the ordered, unique, lowerBound and upperBound properties of
EAttributes. The third example shows the changeable and defaultLiteralValue
properties and the final example shows the iD property. EDataTypes also have
the ePackage property for which we do not give a separate example. Represen-
tation of EPackages has been shown in the previous section.

Figure 4.12 contains a single EClass that contains an EAttribute named
attr. This EAttribute is of EDataType EString. In the instance model the value
of the instance of attr has value This is a String.

There are two type graphs. In the Ecore type graph, the Class$attr is a sub-
type of the EAttribute node type to denote this node represents an EAttribute.
In the type graph representation of the Ecore model, the EAttribute is repre-
sented by a node type labelled ClassA$attr, a concatenation of the namespace
and the name of the EAttribute with the leading $ omitted. The name of the
EDataType of attr is EString. In the mapping in Table 4.2 we see that this is

(a) Ecore model (b) Instance model

ClassA

ClassA$attr
val: string

attr

(c) Type graph

EClass
root

ClassA$attr

EAttribute

ClassA

(d) Ecore type graph

ClassA
root

ClassA$attr
val = ”This is a String”

attr

(e) Instance graph

Figure 4.12: Example representation of an EAttribute and an EDataType to
demonstrate their name and the eAttributeType.

58 Chapter 4. Representing Ecore models as graphs

(a) Ecore model (b) Instance model

ClassA

ClassA$attr
val: string

attr

next

(c) Type graph

ClassA
root

ClassA$attr
val = ”This is a String”

ClassA$attr
val = ”And another one”

ClassA$attr
val = ”This is a String”

attr

next

next

attr

attr

(d) Instance graph

Figure 4.13: Example representation of an ordered and non-unique EAttribute
with lowerBound 1 and upperBound 5.

represented in the type graph as a node with type string. This node is then
referred to by a val edge, which represents the eAttributeType property of attr.
In GROOVE attribute nodes are visualized different from regular nodes, as an
attribute of a node instead of as a separate node. There is just one instance
of attr in the instance model, and this is represented by a single node of type
ClassA$attr. The val edge in GROOVE now refers to a string value, This is
a String. Constraints are used to enforce that for each instance of ClassA$attr
there is exactly one incoming edge from its container EClass, as well as no more
than one outgoing val edge. A violation is demonstrated in the example in
Figure 4.17.

The next example in Figure 4.13 shows an Ecore model with an EAttribute
attr with lowerBound 1 and upperBound 5. Additionally, this EAttribute is
ordered and not unique. The instance model has three string instances for attr,
and one string occurs twice. The order of Just a String, And another one, Just a
String is also of relevance in this example. An EAttribute with multiplicity else
than 0 .. 1 behaves like a Collection of values as in java, or more specifically
like in Table 4.4.

EAttribute Java Collection

Not unique and not ordered java.util.Collection
Not unique and ordered java.util.List
Unique and not ordered java.util.Set
Unique and ordered -

Table 4.4: Behaviour of EAttributes with multiplicity other than 0..1

The type graph has the same representation as the previous example, but

Section 4.3. Ecore models and representation examples 59

with an added next edge to represent the order of instances in the instance
graph. The instance graph has three nodes of type ClassA$attr to represent
the three string instances in the instance model. Each of these nodes has a
GROOVE string attribute to represent the value of the string in the instance
model. Multiplicity is not supported by GROOVE, so we need to enforce a
valid number of instances in the instance graph with a constraint, as in Figure
4.20. The string values are ordered by ordering their containers, the nodes
representing instances of the EAttribute, with next edges. We cannot enforce
proper placement of the next edges by typing the graph, so we need a constraint
again, as shown in Figure 4.21. Finally, the values of attr in the instance model
are not unique, but this needs no special representation in the instance graph.
As with the unique property for EReference, we only need to check uniqueness
by use of constraints. This is demonstrated for EAttributes in Figure 4.19.

The third example shows an EAttribute attr with the changeable property
set to false. The defaultLiteralValue of attr is Just a string. This is shown in
Figure 4.14.

We want unchangeable EAttributes to behave the same as ordinary EAt-
tributes in the graph representation. Because of this, the representation is as in
the example of Figure 4.12. In the instance graph the value of this EAttribute
may only take the value of This is a String. This is enforced with a constraint,
as shown by an example in Figure 4.30.

The final example in Figure 4.15 shows the EAttribute attr with iD set to
true. The instance model has two instances of ClassB with different values of
iD, 0 and 1. Unique values of attr are required for every instance of ClassB
contained by the same instance of ClassA, because it is set to be the iD.

The type and instance graph representation introduce nothing new. Whether
or not the values of attr are indeed unique for every ClassB contained by the

(a) Ecore model (b) Instance model

ClassA

ClassA$attr
val: string

attr

(c) Type graph

ClassA

ClassA$attr
val = ”Just a string”

attr

(d) Instance graph

Figure 4.14: Example representation of EAttribute that is not changeable and
defaultValue set to Just a string.

60 Chapter 4. Representing Ecore models as graphs

(a) Ecore model (b) Instance model

ClassB$attr
val: int

ClassA$has

ClassA

ClassB

val

has

attr

(c) Type graph

ClassB$attr
val = 0

ClassB

ClassA$has

ClassB$attr
val = 1

ClassA$has

ClassA

ClassB

val val

attr

has

attr

has

(d) Instance graph

Figure 4.15: Example representation of an EAttribute that is set to be the iD.

same container must be enforced with a constraint, demonstrated by an example
in Figure 4.29.

Figure 4.8 shows another example that shows the use of EDataType, this
time named EInt. It is represented in the type and instance graph the same way
as for an EString, except that the attribute in GROOVE is of type int as found
in Table 4.2. EDataTypes can have a smaller bound of valid values than what
is allowed in GROOVE for integer or real values. Valid values are enforced with
a constraint. A constraint violation with an invalid value for an EDataType is
shown in the example in Figure 4.31.

4.3.5 EEnum and EEnumLiterals

EEnums are special EDataTypes that have a name and ePackage property and
additionally an eLiterals reference property. EEnumLiterals only have a name
and literal property. The ePackage property of EEnums is not shown in an
example here, it has been explained above for EPackage.

Figure 4.16 shows an Ecore model that contains an EEnum EnumA and
has three EEnumLiterals referred to by eLiterals. The EAttribute attr of ClassA
is of type EnumA and can only take the literal values of the literals of EnumA.
In the example instance model, the value of attr is literalB.

Section 4.3. Ecore models and representation examples 61

EEnums are represented in the type and instance graph by a node type
labelled with its namespace and name, just EnumA in this case. Its EEnum-
Literals are represented as flags for this node type, one flag in the type graph
for each EEnumLiteral in the Ecore model. These flags are labelled with the
literal value of the EEnumLiterals. The names of EEnumLiterals are not repre-
sented because EEnumLiterals are referred to in the XMI serialization of Ecore
instance models by their literal value and not their names. In instance graphs,
only a single flag for each instance of an EEnum may be set, and violations are
detected by a constraint, as in the example in Figure 4.32.

(a) Ecore model (b) Instance model

ClassA$attr

ClassA

EnumA
literalA
literalB
literalC

attr

val

(c) Type graph

ClassA
root

EnumA
literalB

ClassA$attr

attr

val

(d) Instance
graph

Figure 4.16: Example representation to demonstrate the name and eLiterals of
an EEnum, and the literal of EEnumLiterals.

62 Chapter 4. Representing Ecore models as graphs

4.4 Constraints

By only typing an instance graph it is not always guaranteed that an instance
graph correctly represents an Ecore instance model. We mentioned several times
in sections 4.2 and 4.3 that constraints are needed to enforce that instance graphs
are valid representations of Ecore instance models. We use graph transformation
rules in GROOVE to detect violations of constraints. We refer to these graph
transformation rules as constraint rules. The constraint rules do not change
anything, but whenever there is a match of a constraint rule in an instance graph,
a constraint is violated and the instance graph does not correctly represent an
instance model. Graph transformation rules to transform an instance graph
defined by users can be blocked by using a higher priority for constraint rules.
This is useful to block a transformation process once an invalid instance graph
is detected. After transforming an instance graph, it must be verified that no
constraint rule has a match in the instance graph to be able to transforming it
back to an instance model.

First, we briefly list the constraint rules we identified previously, and then
we explain them in more detail with examples. In Table 4.3 we have listed for
each Ecore element and property the examples that demonstrate their repre-
sentation, but also which constraint rule examples demonstrate the constraint
rules required for them. The constraint rule examples are not necessarily di-
rectly applicable for the representation examples in the table, but only show
how constraint rules can be constructed.

Several Ecore modelling elements and properties require constraint rules, as
mentioned in sections 4.2 and 4.3. Table 4.5 lists all constraints for represen-
tations of Ecore modelling elements and properties. The constraint rules that
are used to detect violations of these constraints are explained below, using
examples.

Section 4.4. Constraints 63
E

c
o
re

e
le

m
e
n
t

P
ro

p
e
rt

y
C

o
n

st
ra

in
t

in
in

st
a
n

c
e

g
ra

p
h

E
x
a
m

p
le

s

E
T

yp
ed

E
le

m
en

t
eC

on
ta

in
in

gC
la

ss
E

x
a
ct

ly
o
n

e
〈n

a
m

e〉
ed

g
e

fr
o
m

th
e

co
n
ta

in
er

E
C

la
ss

.
F

ig
u

re
4
.1

7
E

T
yp

ed
E

le
m

en
t

eT
y
p

e
≤

1
o
u

tg
o
in

g
va

l
ed

g
es

.
F

ig
u

re
4
.1

7
E

T
yp

ed
E

le
m

en
t

eT
y
p

e
O

n
ly

fo
r

E
R

ef
er

en
ce

:
n

o
t

0
va

l
ed

g
es

.
F

ig
u

re
4
.1

7
E

T
yp

ed
E

le
m

en
t

u
n

iq
u

e
In

st
a
n

ce
s

w
it

h
th

e
sa

m
e

co
n

ta
in

er
E

C
la

ss
m

ay
n

o
t

h
av

e
th

e
sa

m
e

va
l

ed
g
e

ta
rg

et
.

F
ig

u
re

4
.1

8
,

4
.1

9

E
T

yp
ed

E
le

m
en

t
lo

w
er

B
ou

n
d

N
u

m
b

er
o
f

in
st

a
n

ce
s
≥

lo
w

er
B

o
u

n
d
.

F
ig

u
re

4
.2

0
E

T
yp

ed
E

le
m

en
t

u
p

p
er

B
ou

n
d

N
u

m
b

er
o
f

in
st

a
n

ce
s
≤

u
p
pe

rB
o
u

n
d
.

F
ig

u
re

4
.2

0
E

T
yp

ed
E

le
m

en
t

or
d

er
ed

N
ex

t
ed

g
es

co
n

n
ec

t
a
n

d
o
rd

er
a
ll

in
st

a
n

ce
s.

F
ig

u
re

4
.2

1
E

C
la

ss
ro

ot
T

h
er

e
m

u
st

b
e

ex
a
ct

ly
o
n

e
E

C
la

ss
in

st
a
n

ce
th

a
t

is
m

a
rk

ed
ro

o
t.

F
ig

u
re

4
.2

2

E
C

la
ss

cy
cl

ic
it

y
In

st
a
n

ce
s

o
f

E
C

la
ss

es
m

ay
n

o
t

cy
cl

ic
al

ly
co

n
ta

in
ea

ch
o
th

er
.

F
ig

u
re

4
.2

3

E
C

la
ss

co
n
ta

in
er

A
n

in
st

a
n

ce
o
f
a
n

E
C

la
ss

m
u

st
h

av
e

ex
a
ct

ly
o
n

e
co

n
ta

in
er

E
C

la
ss

,
ex

ce
p

t
fo

r
th

e
ro

o
t

E
C

la
ss

w
h

ic
h

m
ay

n
o
t

h
av

e
o
n

e.

F
ig

u
re

4
.2

4

E
C

la
ss

ab
st

ra
ct

a
bs

tr
a
ct

E
C

la
ss

es
m

ay
n

o
t

b
e

in
st

a
n
ti

a
te

d
.

F
ig

u
re

4
.2

5
E

R
ef

er
en

ce
co

n
ta

in
m

en
t

In
st

a
n

ce
s

o
f

co
n

ta
in

m
en

t
E

R
ef

er
en

ce
s

m
u

st
h

av
e

a
co

n
-

ta
in

m
en

t
fl

a
g
,

o
th

er
E

R
ef

er
en

ce
s

m
ay

n
o
t.

F
ig

u
re

4
.2

6

E
R

ef
er

en
ce

op
p

os
it

e
E

R
ef

er
en

ce
s

w
it

h
a
n

o
p
po

si
te

E
R

ef
er

en
ce

m
u

st
h
av

e
a
n

o
u

tg
o
in

g
a
n

d
in

co
m

in
g

o
p
po

si
te

ed
g
e

to
a
n

d
fr

o
m

th
e

o
p

p
o
si

te
E

R
ef

er
en

ce
.

F
ig

u
re

4
.2

7

E
R

ef
er

en
ce

eK
ey

s
R

ef
er

re
d

E
A

tt
ri

bu
te

s
m

u
st

h
av

e
u

n
iq

u
e

co
n

cr
et

e
va

lu
es

.
F

ig
u

re
4
.2

8
E

A
tt

ri
bu

te
iD

C
o
n

cr
et

e
va

lu
es

m
u

st
b

e
u
n

iq
u

e
fo

r
E

A
tt

ri
bu

te
s

o
f

a
n

E
C

la
ss

w
it

h
th

e
sa

m
e

co
n

ta
in

er
E

C
la

ss
.

F
ig

u
re

4
.2

9

E
A

tt
ri

bu
te

u
n

ch
an

ge
ab

le
V

a
lu

e
m

u
st

b
e

eq
u

a
l

to
d
ef

a
u

lt
V

a
lu

e.
F

ig
u

re
4
.3

0
E

D
a
ta

T
yp

e
va

lu
es

S
o
m

e
E

D
a
ta

T
yp

es
m

u
st

b
e

in
a

sp
ec

ifi
c

ra
n

g
e

o
f

va
li

d
va

lu
es

.
F

ig
u

re
4
.3

1

E
E

n
u

m
li

te
ra

ls
E

x
a
ct

ly
o
n

e
li

te
ra

l
fl

a
g

p
er

in
st

a
n

ce
o
f

an
E

E
n

u
m

.
F

ig
u

re
4
.3

2
E

E
n

u
m

va
lu

e
E

E
n

u
m

s
in

in
st

a
n

ce
g
ra

p
h

s
m

u
st

b
e

th
e

va
lu

e
o
f

a
E

A
t-

tr
ib

u
te

a
n

d
h

av
e

ex
a
ct

ly
o
n

e
in

co
m

in
g

va
l

ed
g
e.

F
ig

u
re

4
.3

3

T
ab

le
4.

5:
T

h
e

co
n

st
ra

in
ts

o
f

in
st

a
n

ce
g
ra

p
h

re
p

re
se

n
ta

ti
o
n

o
f

p
ro

p
er

ti
es

o
f

E
co

re
el

em
en

ts
.

64 Chapter 4. Representing Ecore models as graphs

4.4.1 ETypedElement

Even though in the type graph representation there is an outgoing val edge for
each ETypedElement, we cannot enforce in the instance graph that there must
be exactly one outgoing val edge for each instance of an EReference. For the
representation of each instance of an EAttribute in the instance graph, there
must be zero or one outgoing val edges. Zero is allowed for EAttributes because
their EDataType may not be serializable, in which case there is no outgoing
val edge. In Figure 4.17 we show example constraint rules to enforce the
number of val edges. The multiple-val constraint rule matches violations of
the constraint that there may not be more than one outgoing val edge. The
rule matches the instance graph in Figure 4.17d with the ClassA$has node type
that has two outgoing val edges. In this example the multiple-val constraint
rule is demonstrated for representations of EReferences, but for representations
of EAttributes we need the same constraint rule. The no-val constraint rule
matches violations where an instance of an EReference in an instance graph has
no outgoing val edge, as shown in the instance model in Figure 4.17e.

A similar constraint is that each instance of an ETypedElement must have ex-
actly one incoming edge from the node type representing the container EClass,
labelled the name of the ETypedElement. The constraint rules to detect viola-
tions are similar to the constraint rules detecting violations that there must be

ClassA

ClassB

ClassA$has

has

val

(a) Type
graph

ClassA$has

ClassBClassB

val

!=

val

(b) Multiple-val constraint rule

ClassA$has

ClassB

val

(c) No-val
constraint
rule

ClassB

ClassA
root

ClassB

ClassA$has
containment

valval

has

(d) Multiple-val constraint
rule match

ClassA
root

ClassA$has
containment

has

(e) No-val
constraint rule
match

Figure 4.17: Example of a constraint rule detecting an ETypedElement with two
outgoing val edges, and a constraint rule detecting there is no val edge for an
EReference. Constraint rules for the incoming name edge are done in the same
way.

Section 4.4. Constraints 65

ClassB

ClassA

ClassA$has

has

val

(a) Type
graph

ClassB

ClassA$has

ClassA

ClassA$has

hashas

!=

valval

(b) Unique constraint rule

ClassA$has ClassA$has

ClassA
root

ClassB

val

has has

val

(c) Unique constraint rule
match

Figure 4.18: Example of a constraint rule detecting two non unique values of
an EReference, a violation if the EReference has is set to be unique.

EnumA
literalA
literalB

ClassA

ClassA$attr

attr

val

(a) Type
graph

EnumA
?attr

ClassA$attr

ClassA

EnumA
?attr

ClassA$attr

val

attr

!=

val

attr

(b) Unique constraint rule

EnumA
literalA

EnumA
literalA

ClassA
root

ClassA$attrClassA$attr

attrattr

valval

(c) Unique constraint rule match

Figure 4.19: Example of a constraint rule detecting two non unique values of an
EAttribute of type EnumA, a violation if the EAttribute attr is set to be unique.

exactly one outgoing val edge. We do not give another example to demonstrate
this.

When ETypedElements are set to be unique in the Ecore model, then values
in instance models must be unique. Node types representing instances of an
ETypedElement with the same container EClass may not have outgoing val
edges to the same nodes, which can either be a representation of an EClass or
of an EDataType. Consider the example in Figure 4.18 for a unique EReference
has. The constraint rule looks for two distinct node types labelled ClassB$has
with the same container and the same eReferenceType. This rule matches the
violation in the instance graph. For EAttributes with eAttributeType being a
serializable EDataType, the rule looks the same.

However, when an EAttribute is of an EEnum type the constraint rule is
different. When such an EAttribute is set to be unique, the node types that
represent an EEnum value may not have the same flag to represent the same
literal value. An example constraint rule to detect non-unique values of an
EAttribute of EEnum type is given in Figure 4.19. ClassA has an EAttribute
attr of type EnumA. The constraint rule compares the flag of the EnumA values

66 Chapter 4. Representing Ecore models as graphs

ClassA

ClassB

ClassA$has

has

val

(a) Type
graph

ClassA

ClassA$has

ClassA$has ClassA$has

has
has

!=

!=

!=

has

(b) Upper-bound constraint rule

ClassA

ClassA$hasClassA$has

has

!=

has

(c) Lower-bound constraint rule

ClassB

ClassA
root

ClassB

ClassA$has
containment

ClassA$has
containment

ClassA$has
containment

ClassB

valval

hashas

val

has

(d) Upper-bound constraint rule match

ClassB

ClassA
root

ClassA$has
containment

val

has

(e) Lower-
bound con-
straint rule
match

Figure 4.20: Examples of two constraint rules, one detecting violation of the
upperBound and one detecting violation of the lowerBound. The EReference
has has multiplicity 2..2, so one or three instantiations are both violations.

using wildcards. If they are the same, then the rule matches and a violation is
found. The instance graph in this example shows a violation, and the constraint
rule matches it.

The lowerBound and upperBound properties indicate the multiplicity of an
ETypedElement. For each container EClass, a number of instances of an EType-
dElement lower than lowerBound or higher than the upperBound is a violation
of the Ecore model. The number of node types in an instance graph cannot
be enforced by typing a graph, so we need constraint rules to detect an invalid
number of instances. Consider the example in Figure 4.20. The Ecore model
has a multiplicity of 2..2 for the EReference has, but this is not visible in the
type graph representation. Figure 4.20d and 4.20e show two instance graphs,
one with three instances of ClassA$has and the other with just one instance.
Both instance graphs violate the multiplicity of the Ecore model. The upper-
bound constraint rule detects when an instance of ClassA has upperBound+1
distinct instances of ClassA$has (three in the example), and this rule finds the
violation in the instance graph. The lower bound constraint rule detects when
an instance of ClassA does not have at least lowerBound distinct instances of
ClassA$has (two in the example). It matches the instance of ClassA in the
instance graph, which indeed violates the lowerBound since it has only one

Section 4.4. Constraints 67

ClassB

ClassA$has

ClassA

val

has

next

(a) Type graph

ClassA$has

ClassA$has

ClassA

ClassA$has

ClassA$has

!=

has

next

has

has

next

has

(b) Not-two-tail constraint rule

ClassA$has

ClassA$has

ClassA

ClassA$has

ClassA$has

!=

has

has

has

next

next
has

(c) Not-two-head constraint rule

ClassA$has

ClassA$has

ClassA$has

ClassA

next

next

has

has

!=

has

(d) Not-two-in constraint rule

ClassA$has

ClassA$has

ClassA$has

ClassA

nexthas

has

!=

nexthas

(e) Not-two-out constraint rule

ClassA$has

ClassA

next+

has

(f) Not-
circular-
constraint
rule

ClassA$has
containment

ClassA
root

ClassB

ClassB

ClassA$has
containment

ClassA$has
containment

ClassB

val

has

next
val

has val

nexthas

(g) Not-two-out constraint rule match

ClassA$has
containment

ClassA
root

ClassB

ClassB

ClassA$has
containment

ClassA$has
containment

ClassB

val

next

val

next
has

has

next
has

val

(h) Not-circular constraint rule match

Figure 4.21: Example of constraint rules detecting invalid placement of next
edges that represent the order of sibling instances of an ETypedElement.

68 Chapter 4. Representing Ecore models as graphs

instance of ClassA$has.

To represent an order of instances of ETypedElements in an instance graph,
next edges are used. However, it cannot be enforced by typing that next edges
between sibling ETypedElements are placed correctly and represent a determin-
istic ordering of the instances. Correct placement of next edges entails that all
sibling elements must be connected through a sequence of next edges, starting
from the head and ending at the tail, with no additional next edges. To detect
a violation of this constraint, five constraint rules are needed, of which exam-
ples are shown in Figure 4.21. This example has five constraint rules and two
matches of the constraint rules in instance graphs. The constraint is violated if
there is more than one head or tail element, which indicates that next edges are
missing or placed in the wrong direction. The instance graph in Figure 4.21g
shows an example of this; the top and bottom instance of ClassA$has both only
have an incoming next edge and no outgoing next edge, so this graph has two
tail elements which is matched by the not-two-tail constraint rule. Next, the
constraint is also violated if some instance of ClassA$has has two outgoing or
two incoming next edges. The instance graph also is an example of this, since
the middle instance of ClassA$has has two outgoing next edges, and is matched
by the not-two-out constraint rule. An instance graph with three instances of
ClassA$has with an additional next edge from the head to the tail element would
also be matched by the not-two-out and the not-two-in constraint rules. Finally,
next edges must form a non circular sequence of instances of ClassA$has. The
instance graph in 4.21h shows an example of a circular sequence, and the not-
circular constraint rule matches this violation. This constraint rule looks for
instances of ClassA$has that refer to themselves through a sequence of one or
more next edges. Instances of ClassA$has with a next self edge are also matched
by this rule.

4.4.2 EClass

Instance models must have exactly one root EClass element. In instance graphs
the EClass instance that represents the root must have a root flag, which is

ClassB

ClassA

ClassA$has

has

val

(a) Type
graph

EClass
root

EClass
root

!=

(b) Many-
root
constraint
rule

ClassB
root

ClassA
root

ClassA$has

has

val

(c) Many-root
constraint
rule match

EClass
root

(d) No-
root
constraint
rule

ClassB

ClassA

ClassA$has

has

val

(e) No-root
constraint
rule match

Figure 4.22: Example of constraint rules that detect when there is not exactly
one root element in an instance graph .

Section 4.4. Constraints 69

inherited from the EClass node type the EClass is a subtype of. Consider the
example in Figure 4.22, it shows two violations. Figure 4.22c shows an instance
model that has two root EClasses, and the instance model in Figure 4.22e has
no root EClass. The many-root constraint rule matches the former violation,
the no-root constraint matches the latter.

Cyclicity is the phenomenon that an instance of an EClass contains itself
through a series of containment EReferences. This is not allowed, but cannot
be prevented by typing a graph. Figure 4.23 shows an example where in
the type graph ClassA has a containment EReference to ClassB, and ClassB
has a containment EReference to ClassA. In the instance graph both ClassA
and ClassB contain an instance of an EClass that is also its container EClass,
which is a violation. The constraint rule looks for instances of EClasses that
have a (?.flag:containment.val)+ path to themselves. Each step of this path
first matches any edge which will match the <name> edge, then the flag which
matches an instance of a containment EReference, and then a val edge. Each
step can reach an instance of an EClass through a containment EReference, so
if an instance of an EClass can reach itself through one or more of these steps,
it is cyclically contained and the constraint is violated. Finding violations of
this constraint is not possible without being able to match an instance of a
containment EReference, which is the reason the flags are needed.

In Ecore instance models, every instance of an EClass must have exactly one
container EClass, except for the root element of a model which may not have
a container EClass. This constraint can be split in three parts, the first part
being that an instance of an EClass apart from the root EClass must have a
container EClass, the second that no instance of an EClass may have more than
one container EClass, the third that the root EClass may not have a container
EClass. Examples for constraint rules for this constraint are demonstrated in
Figure 4.24.

The first part of the constraint, that an instance of an EClass that is not
root must be contained by a container EClass, is violated in the instance graph
in Figure 4.24c. It shows an instance of ClassB that does not have a container,
since the node type ClassA$refer does not represent a containment EReference.

ClassA

ClassA$has ClassB$has

ClassB

val

has

has

val

(a) Type graph

EClass

(?.flag:containment.val)+

(b) Cyclicity constraint rule

ClassB$has
containment

ClassA$has
containment

ClassA
root

ClassB

val

val

has

has

(c) Cyclicity constraint rule
match

Figure 4.23: Example of a constraint rule that detects instances of ClassB that
are cyclically contained by itself, a violation.

70 Chapter 4. Representing Ecore models as graphs

The no-container constraint rule finds instances of an EClass that are not root
and have no incoming containment EReference. It matches the violation in the
instance graph.

The many-container constraint rule detects violations of the second part of
the constraint. No instance of an EClass may be contained by more than one
container. This property is called the unsharedness property, since an element
may not be shared by more than one container element. The instance graph in
Figure 4.24e has a violation, the instance of ClassB has two container EClasses,
even though this happens to be the same ClassA instance. The constraint rule

ClassA$has

ClassB

ClassA

ClassA$refer

has refer

val val

(a) Type graph

EReference
containment

EClass
! root

val

(b) No-
container
constraint rule

ClassA$refer

ClassB

ClassA
root

refer

val

(c) No-
container
constraint rule
match

EReference EReference

EClass

flag:containment.val

flag:containment.val

!=

(d) Many-container constraint rule

ClassA$has
containment

ClassB

ClassA$has
containment

ClassA
root

val

has

val

has

(e) Many-container constraint rule
match

EReference

EClass
root

flag:containment.val

(f) Root-container
constraint rule

ClassA$has
containment

ClassB
root

ClassA

has

val

(g) Root-
container
constraint rule
match

Figure 4.24: Examples of constraint rules that detect when an instance of an
EClass does not have exactly one container, or in case of the root EClass has
one container.

Section 4.4. Constraints 71

looks for two distinct EReference instances that can reach an EClass through the
path flag:containment and then val. The flag matches containment EReferences
and the val matches the edge connecting the EReference to the EClass. More
intuitively would be to add the flag to the EReference node types and only label
the edges with val. However this is not possible, since in the type graph, there
is no val edge between the types nodes labelled EClass and EReference and the
rule would not be typed correctly. When using a regular expression, this is not
required as long as some subtypes of EClass and EReference have this val edge.

The root-container constraint rule is similar to the many-container con-
straint rule. It now looks for an instance of an EClass that is root, and also
has a container. The regular expression used for this is the same as for the
many-container constraint. The instance graph in Figure 4.24g shows a viola-
tion, since the instance of ClassB is marked to be root, but it is contained by
the instance of ClassA.

There may not be instantiations of abstract EClass in an instance model,
and hence not in the instance graph representation of instance models. However,
node types representing abstract EClasses occur in the type graph and can
therefore also occur in instance graphs. Constraint rules are needed to detect
violations where node types representing abstract EClasses occur in instance
graphs. An example constraint rule is given in Figure 4.25. ClassB represents
an abstract EClass even though this is not visible in the type graph, and ClassC
and ClassD are not abstract and are subtypes of ClassB. The instance graph
shows a violation, since there is an instance of ClassB. Looking for a match
of ClassB is not enough, since such a rule would also match any subtypes of
ClassB. The constraint rule looks for a match of ClassB, but not any of its direct
subtypes. This constraint rule matches the violation in the instance graph, but
would not find a match in an instance graph with an instance of ClassC or
ClassD instead of ClassB.

ClassA

ClassC ClassD

ClassB

ClassA$has

valhas

(a) Type graph

! ClassC
! ClassD
ClassB

(b) Con-
straint
rule

ClassA$has
containment

ClassB

ClassA
root

has

val

(c) Constraint
rule match

Figure 4.25: Example of a constraint rule that detects instantiations of the
abstract EClass ClassB.

72 Chapter 4. Representing Ecore models as graphs

4.4.3 EReference

EReferences are subtypes of the node type labelled EReference. This ERef-
erence node type has a containment flag. Every instance of an EReference
that represents a containment EReference must have this flag in an instance
model, and other EReferences may not. Since all EReferences are subtypes of
EReference in the type graph and therefore can have the containment flag in
an instance graph, we use a constraint to enforce that only representations of
containment EReferences have it. Figure 4.26 demonstrates violations of this
constraint. There are two constraint rules, the has-containment constraint rule
and the no-containment constraint rule. The has-constraint rule is required for
each non containment EReference in the Ecore model, and it finds instances in
the instance graph that do have a containment flag. Figure 4.26e shows such a
violation, and that it is matched by the has-containment constraint rule. The
no-containment constraint rule in the example finds instances of the contain-
ment EReferences has that do not have a containment flag, like the match in
Figure 4.26f.

When an EReference has an opposite EReference in the Ecore model, then

ClassA$has

ClassB

ClassA

ClassA$refer

has refer

valval

(a) Type graph

ClassA$hasClassA ClassB

EReference
containment

EClass
root

ClassA$refer

(b) Ecore type graph

ClassA$refer
containment

(c) Has-
containment
constraint rule

ClassA$has
! containment

(d) No-
containment
constraint rule

ClassA$refer
containment

ClassB

ClassA$has

ClassA
root

val

refer

val

has

(e) Has-containment constraint rule
match

ClassA$refer
containment

ClassB

ClassA$has

ClassA
root

val

refer

val

has

(f) no-containment constraint rule match

Figure 4.26: Example of constraint rules that detect incorrect placement of
containment flags in an instance graph. ClassA$has should have a flag and
ClassA$refer should not.

Section 4.4. Constraints 73

ClassA

ClassA$has

ClassB

ClassB$container

val

opposite

opposite

val

has

container

(a) Type graph

ClassA$has

!opposite.opposite

(b) Opposite con-
straint rule

ClassB$container

ClassB
ClassA
root

ClassA$has
containment

val

opposite

has

val container

(c) Opposite constraint rule match

ClassB$containerClassB$container

ClassA$has

opposite opposite

!=

(d) Multiple-opposites constraint rule

Figure 4.27: Example of constraint rules that detects an instance of the ERef-
erence has without opposite edges or with more than one outgoing opposite
edge.

every instance of this EReference must have an opposite in the instance model.
This means that in the instance graph representation every node type repre-
sentation of an opposite EReference must have an outgoing opposite edge. Ad-
ditionally, since the opposite property is symmetrical, there must be opposite
edges in both directions in the instance graph. Figure 4.27 shows an example
of a violation of this constraint. ClassA$has and ClassB$container represent
opposite EReferences, and there is one instance of each of them in the instance
graph. There must be an opposite edge in both directions, but one is missing.
The constraint rule detects instances of ClassA$has that do not have a sequence
of two opposite edges to itself. Since self edges labelled opposite are not pos-
sible due to typing, the sequence has to be to an instance of ClassB$container
and back. When there is either no outgoing or no incoming opposite edge, this
constraint rule will match, detecting the violation. The multiple-opposites con-
straint rule in Figure 4.27 detects instances of ClassA$has that has two or more
outgoing opposites. There must be exactly one opposite. This constraint rule
detects violations. An example match is not given, but this rule is similar to
the multiple-val constraint rule.

The eKeys property of EReferences can refer to several EAttributes of the
EClass that is the target of the EReference. The combined values of these
referenced EAttributes in an instance model or graph must uniquely identify a
referenced instance of the EReference. Figure 4.28 shows an example; in the
type graph we see that ClassB has two EAttributes, attr1 and attr2. These two
EAttributes are set to be the eKeys of the EReference has, although this is not
apparent in the type graph. In the instance graph, the values of attr1 and attr2
are the same for each instance of ClassB$has. attr1 has many-multiplicity, and

74 Chapter 4. Representing Ecore models as graphs

ClassA$has

ClassA

ClassB

EnumA
literalA
literalB

ClassB$attr2

ClassB$attr1
val: int

has
val

attr2val

attr1

(a) Type graph

ClassB$attr1
val = 3

ClassB$attr1
val = 2

ClassA$has
containment

ClassA$has
containment

ClassB ClassB

ClassB$attr1
val = 3

ClassA
root

ClassB$attr1
val = 2

has

attr1attr1attr1

has

attr1

valval

(b) EKeys constraint rule match

∀

ClassB$attr2

EnumA
?attr2 A

∃∀

ClassB$attr1

∃ ∀∃

EnumA
?attr2 A

ClassA$has

ClassB$attr2

ClassB

EnumA
?attr2 B

∀

ClassA

ClassB

int

ClassA$has

ClassB$attr2

int

ClassB$attr1

ClassB$attr2

∃

EnumA
?attr2 B

ClassB$attr1ClassB$attr1

at

at

val

attr1

val

in

at

attr1

val

has has

val

attr2

attr1

in

val val
at

at

at

at

at

attr2

at

!=

attr1

val

at

at

val

at

attr2

val

attr2

in

at

in

val

at

(c) EKeys constraint rule

Figure 4.28: Example of a constraint rule that detects invalid values of EAt-
tributes attr1 and attr2 that are set to be the eKeys of EReference has. Both
EAttributes are unique and not ordered.

Section 4.4. Constraints 75

its values for both instances is the collection {2,3}. attr2 is of an EEnum type,
and in the instance graph it has no value for both instances of ClassA$has, which
also counts as being the same. For every two distinct target ClassB instances
of sibling EReference has instances, the constraint rule compares the values of
attr1 and attr2. For each EAttribute, the constraint rule checks if all values
of that EAttribute from one instance of ClassB also occur in the collection of
values of that EAttribute for the other instance of ClassB, and vice versa. If this
is the case, then both collections of values for the EAttribute are the same, and
if this is the case for all EAttributes then a violation is found and the constraint
rule matches it. Matching same values of an EEnum is done using wildcards,
as shown before in 4.19.

In order to detect violations with constraint rules, all EAttributes that eKeys
refers to must be serializable, unique and unordered. If either of these properties
is false for any of the EAttributes, then detecting violations is done by the
transformation tool when transforming an instance graph back to an Ecore
instance model. First, when an EAttribute is not serializable, values are not
supported in the graph representation. This means that we cannot compare
values, and cannot determine if this EAttribute is part of a unique identification
of an instance of an EReference. Next, if an EAttribute is not unique, then values
occuring multiple times cannot be identified. If the value of attr1 of one instance
of ClassB would be {2,2} and of another instance {2}, the constraint would still
match it because all values of one collection occur in the other collection, even
though the collections of values are not the same. Finally, it is not possible
in GROOVE to compare ordered lists of values of variable length, so when an
ordered EAttribute is part of the eKeys property, a constraint rule for the eKeys
property is not supported.

4.4.4 EAttribute

When an EAttribute is set to be the iD of an EClass, then values of the EAt-
tribute uniquely identify instances of this EClass within its container EClass.
Consider the example in Figure 4.29. In this case it means that values of
ClassB$attr must be unique for instances of ClassB with the same container
ClassA. The instance graph in the example violates this, because the value of
both instances of ClassB$attr is the collection {1,2}. The constraint rule is very
similar to the constraint rule for eKeys, except that only one EAttribute of an
EClass is set as the iD. It matches the violation in the instance graph. If the
EAttribute would be of an EEnum type, then wildcards would be used as shown
in Figure 4.28 and 4.19. Additionally, as with the constraint rule for eKeys, a
constraint rule is only supported if the EAttribute that is the iD is serializable,
unique and not ordered.

When the changeable property of an EAttribute is set to false, it may not
have a different value as its defaultLiteralValue in an instance model and in-
stance graph representation. An example of a violation is given in Figure 4.30.
Even though not represented in the type graph, attr is set to unchangeable and
its defaultLiteralValue is 12. In the instance graph however the value is 10,
which is a violation. The constraint rule compares the value of the ClassA$attr

76 Chapter 4. Representing Ecore models as graphs

ClassA

ClassB$attr
val: int

ClassB

ClassA$has

has

attr

val

(a) Type
graph

ClassB

ClassA$has
containment

ClassB$attr
val = 2

ClassB$attr
val = 1

ClassA$has
containment

ClassB

ClassB$attr
val = 2

ClassA
root

ClassB$attr
val = 1

val

attr attr

has

attr

has

attr

val

(b) ID constraint rule match

int

ClassA$has

ClassB

int

∃

ClassA$has

ClassB$attr ClassB$attr

∀

ClassB$attr ClassB$attr

ClassA

ClassB

∃∀

valval
at

val val
at

val

at

in

attr

in

attr

has

attrattr

!=

val

has

at at

at

(c) ID constraint rule

Figure 4.29: Example of a constraint rule that detects a violation of the valid
values of ClassB$attr, which is set to be the iD of ClassB and must uniquely
identify an instance of ClassB within its container EClass ClassA. The EAt-
tribute attr has a many-multiplicity.

ClassA$attr
val = 10

ClassA
root

attr

(a) Unchange-
able constraint
rule match

ClassA

ClassA$attr
val: int

attr

(b) Type
graph

ClassA$attr

false

int

12

eq

val

π0

π1

(c) Unchangeable constraint
rule

Figure 4.30: Example of a constraint rule that detects a violation of an invalid
value of the EAttribute attr. It is unchangeable and has a defaultValue 12.

Section 4.4. Constraints 77

to 12, and when they are unequal a violation is found and this instance of
ClassA$attr is matched, as seen in the example.

78 Chapter 4. Representing Ecore models as graphs

4.4.5 EDataType

EDataTypes are represented in the graph representation by attributes in
GROOVE, which can be either an integer, real, boolean or string. However,
the range of valid values in the instance graph can be larger than the range of
valid values in the Ecore model. Constraints are used to enforce that concrete
values in the instance graph are within the range of valid values. Table 4.6 lists
which EDataType representations need constraints to enforce that values in the
instance graph are valid. When the big algebra in GROOVE is required for an
Ecore model, more EDataTypes need constraints for valid values. Now consider
the example in Figure 4.31. The node type ClassA$attr represents an EAt-
tribute of type EByte, which is an 8-bit signed integer. In the instance graph
the value of this ClassA$attr is 224, which exceeds the range of valid values, and
is therefore a violation. The constraint rule consists of three comparisons. The
first tests if the value is higher than the upper limit of the range of valid values,
val > 127 in this example. The second tests if the value is lower than the lower
limit of the range of valid values, val < −128 in this example. If either of these
unequalities is true, checked in the third comparison, then a violation is found
and this constraint rule matches.

For the instance graph representation of an EDate a specific string format is
used with the year, month, day, hours, minutes, seconds, milliseconds and time-
zone. We cannot check in GROOVE if a string value representing an instance of
an EDate is correctly formatted. Additionally, when the big algebra family is en-
abled for a graph grammar, valid values for EFloat and EDouble must be checked

ClassA$attr
val: int

ClassA

attr

(a) Type
graph

ClassA$attr
val = 224

ClassA
root

attr

(b) Values
constraint rule
match

ClassA$attr

bool

bool

trueint

-128

127

lt

π1π0

π1

val
π0

π1

or

π0

gt

(c) Values constraint rule

Figure 4.31: Example of a constraint rule that detects invalid values of an integer
attribute that represents and EByte. Valid values of an EByte are -128 .. 127.

Section 4.4. Constraints 79

since their bounds of values are smaller than that of java.lang.BigDecimal. Be-
cause of the complex nature of minimum and maximum values of decimal values,
this cannot be done with constraint rules. These constraints are instead checked
by the Java program when transforming an instance graph back to an instance
model.

Default algebra family Big algebra family

EByte EByte
EByteObject EByteObject
EShort EShort
EShortObject EShortObject
EChar EChar
ECharObject ECharObject
EDate EDate

EInt
EIntegerObject
ELong
ELongObject
EFloat
EFloatObject
EDouble
EDoubleObject

Table 4.6: EDataTypes for which valued values in the graph representation are
bound by constraints in the cases of the default and big algebra family.

4.4.6 EEnum

EEnums are special EDataTypes that can be the type of EAttributes. A value
is represented by an instance of the node type that represents the EEnum with
a flag that represents the EEnumLiteral value of the EEnum. Each instance of
an EEnum in the instance graph represents one value for an EAttribute, and
must therefore have exactly one flag representing the EEnumLiteral value. We
cannot enforce by typing that there must be exactly one flag for each instance
of an EEnum. The example in Figure 4.32 shows two violation examples. The
instance graph in Figure 4.32c has an instance of EnumA that has no flag to
represent a literal value. The no-literal constraint rule looks for an instance of
an EnumA that has no literal flag, and it matches the violation in the instance
graph. Next, the instance graph in Figure 4.32e shows another violation, since
it has two literal flags literalA and literalC. The many-literals constraint rule
looks for instances of EnumA that has two flags using a regular expression. It
matches when there is a sequence of two different flags on an instance of an
EnumA. When an instance graph has any two or moreflags on an instance of
EnumA, as in the example, the rule matches.

80 Chapter 4. Representing Ecore models as graphs

ClassA$attr

ClassA

EnumA
literalA
literalB
literalC

val

attr

(a) Type
graph

ClassA

EnumA
! literalA
! literalB
! literalC

ClassA$attr

val

attr

(b) No-literal
constraint rule

EnumA

ClassA$attr

ClassA
root

attr

val

(c) No-literal
constraint rule
match

ClassA$attr

EnumA

ClassA

flag:literalA.(flag:literalB|flag:literalC)|flag:literalB.flag:literalC

attr

val

(d) Many-literals constraint rule

EnumA
literalA
literalC

ClassA$attr

ClassA
root

attr

val

(e) Many-
literals con-
straint rule
match

Figure 4.32: Examples of two constraint rules, the first detects a violation that
an EEnum representation has no flag to represent a literal value, the second
that it has two flags that represent literal values.

Section 4.5. Conclusion 81

EEnums are EDataTypes and must the value of exactly one EAttribute.
Therefore, they must have exactly one incoming val edge in instance graphs.
Figure 4.33 shows two constraint rules that detect violations. The no-val
constraint rule matches instances of an EnumA that is not the value of an EAt-
tribute and it matches the violation in Figure 4.33c. The many-val constraint
rule matches instances of EnumA that is the value of more than one EAttribute,
also a violation. A path expression is used to match a val edge from any EAt-
tribute node type, since EAttribute node types themselves have no outgoing val
edge. Without the path expression, this rule would not be typed correctly. It
matches the violation in Figure 4.33e.

ClassA$attr

ClassA

EnumA
literalA
literalB
literalC

val

attr

(a) Type
graph

EAttribute

EnumA

val

(b) No-val
constraint
rule

EnumA
literalC

ClassA
root

(c) No-val
constraint
rule match

EAttribute

EAttribute

EnumA

val.type:EnumA

val.type:EnumA

!=

(d) Many-val constraint rule

EnumA
literalB

ClassA$attr ClassA$attr

ClassA
root

valval

attrattr

(e) Many-val constraint rule match

Figure 4.33: Examples of two constraint rules, that detect violations of EEnums
in instance graphs that do not have exactly one incoming val edge.

4.5 Conclusion

In this chapter we defined a mapping of Ecore models to type graphs and in-
stance models to instance graphs. The graph representations are fully supported
by GROOVE. Instance graphs can be transformed to other instance graphs in
GROOVE, and if the resulting instance graph is typed correctly and does not
violate any constraints, it is guaranteed to validly represent an instance model
of the original Ecore model.

82 Chapter 4. Representing Ecore models as graphs

For our mapping, we examined all modelling elements and their properties
and relations in the Ecore metamodel. These elements are the building blocks
of Ecore models. The validity of an instance graph as a representation of an
instance model can not be enforced by just using type graphs. When type graphs
cannot be used, we defined constraints that must hold for an instance graph to be
a valid representation. Detecting constraint violations is done using constraint
rules. These are graph transformation rules that match constraint violations
in a graph, but do not alter the graph. We have given graph representation
examples and constraint rule examples for all supported modelling elements.

Using our mapping, it is possible to transform instance models to a graph
representation and back to an instance model without losing any information.
Additionally, the graph representations are fully supported by the feature set of
a specific graph transformation tool, GROOVE. This has not been accomplished
before.

There are a few limitations to some supported elements. Values of EDatatypes
can only be supported in instance models when they can be serialized and de-
fined in the Ecore metamodel. Other EDatatypes cannot be serialized using
XMI, therefore the XML file will not contain values for these EDatatypes and
we cannot support them. This is a limitation of the Eclipse Modelling Frame-
work and not of our approach.

Some EDatatype have a smaller bound of valid values than what can be rep-
resented by integer or real attributes in GROOVE. Constraint rules are used to
detect invalid values of these EDatatypes. However, EDate is an EDatatype with
a complex string representation, of which valid values cannot be enforced within
GROOVE. Additionally, when the big algebra family is used in GROOVE, con-
straints are also put on the valid valuesEFloat and EDouble. However, they have
complex range of valid values of which violations cannot be detected with con-
straint rules. For these cases, invalid values are detected by the transformation
tool.

Another limitation is with the iD and eKeys properties. If they target
multi-valued EAttributes that are ordered and/or not unique, we cannot detect
violations in GROOVE using constraint rules or typing. Violations are instead
checked by the transformation tool when transforming an instance graph back
to an instance model.

Three related pairs of elements are not supported, either because they have
no impact on instance models or because they cannot be supported. The un-
supported pairs of elements are EOperations and EParameters, EAnnotations
and EStringToStringMapEntries, and EGenericType and ETypeParameter.

EOperations can operate on EParameters passed to it and optionally return
some value. They are not instantiated in instance models nor do they operate
on instance models, and only function as methods in generated Java programs.
They are not part of the structure of instance models, and therefore do not need
a representation. EParameters are only used by EOperations and therefore also
do not require a representation.

EAnnotations are used to add textual information to elements of a model.
EStringToStringMapEntries are used by EAnnotations as key and value pairs

Section 4.5. Conclusion 83

of strings. They are not instantiated in instance models, and do not require
a graph representation. Using EAnnotations it is possible to add constraints
to an Ecore model to put a bound on valid instance models. However, such
constraints have no semantics, and can therefore not be translated to constraint
rules.

Finally, EGenericTypes and ETypeParameters can define EClasses, EOper-
ations or EAttributes to be generic. Generic EClasses do not impact instance
models, and EOperations are not supported in general, so in those cases they
need no graph representation. For generic EDatatypes, in some cases it could
theoretically be supported, of which we have given an example in section 4.2.
However, serialization of values of generic EAttributes is never possible with
EMF. If serialization using XMI is not possible, it cannot be supported.

84 Chapter 4. Representing Ecore models as graphs

85

Chapter 5

Ecore2groove
transformation tool

In this chapter we describe ecore2groove, a transformation tool to perform the
transformations described in chapter 4. This tool can perform 4 transformation
tasks:

• Transform Ecore models to GROOVE type graphs.

• Transform Ecore models to GROOVE contraint rules.

• Transform Ecore instance models to GROOVE instance graphs.

• Transform GROOVE instance graphs back to Ecore instance models.

Ecore2groove is written in Java and has been tested to work in Windows
and Linux. The EMF plugins for Eclipse and GROOVE are both written in
Java and provide methods to interact with Ecore models and graphs. By using
these we can focus on implementing the transformation itself and do not have to
concern ourselves with the file formats. Ecore models and instance models are
object oriented. Elements like classes can contain other elements like classes or
attributes, or refer to other elements. An in-memory structure to represent this
can efficiently be made using an object oriented programming language, and
then iterating over the elements and the relations between them to transform
a model in a graph representation. Another logical approach would be to use
XSLT [48] to define the transformation of Ecore models to graphs, since both
are stored as XML files, and XSLT is a W3C recommendation to transform
XML documents into other XML documents. However, XSLT is very suited to
transform XML documents with a tree structure, but not models stored as XML
files because of the heavy use of cross references [41]. Model transformations
specified using XSLT would have a very complicated composition of recursion,
and would be very inefficient because of hopping through XML files looking for
values of references.

86 Chapter 5. Ecore2groove transformation tool

Section 5.1 explains how the tool should be used, which arguments it expects
and what output it will generate. Section 5.2 explains the implementation of the
transformation tool and how the four transformations tasks are done. Section
5.3 demonstrates the tool by using an example Ecore and instance model, and
then applying graph transformation rules on the graph representation of the
instance model.

5.1 Tool usage

The transformation tool is created as a subpackage of GROOVE, and available
from the subversion repository of GROOVE [17]. When running the tool with-
out arguments, it outputs a list of arguments it expects to perform a transfor-
mation task. Figure 5.1 shows a diagram of the tool, and which inputs produce
which outputs.

For an Ecore model and a list of zero or more Ecore instance models, it will
generate a GROOVE grammar that contains both type graphs, constraint rules
and one instance graph for each Ecore instance model. This transformation
can be invoked by running the tool with two arguments or more. The first
argument must be an Ecore model and the last argument must be the location
of a GROOVE grammar, which will be created if it does not already exist.
GROOVE requires this directory to end in .gps. There can by any number of
arguments in between, each of which should be the location of an instance model
of the Ecore model. Each of these instance models will be transformed to an
instance graph which will be put in the GROOVE grammar. The name of the
instance graph will be the same as the file name of the instance model. When
a GROOVE grammar already exists, any instance graphs that are created but
were already in the grammar will be overwritten. Other instance graphs are not
touched. All type graphs in the grammar that already exist are deleted, and
new type graphs are created. Furthermore, all constraint rules that were in the
grammar will be deleted and replaced with newly generated constraint rules.
This is to make sure that constraint rules for elements that are no longer in the
model or no longer valid for model elements do not remain in the grammar. Any
graph transformation rules that are not constraint rules, ie. do not start with
”constraint - ”, will not be changed or deleted. The line below shows the Linux
command to transform an Ecore model and instance models to a GROOVE
grammar.

./ecore2groove.jar <Ecore model> <Ecore instance models> <GROOVE grammar>

For a GROOVE grammar and an Ecore model, the tool will generate one
instance model for each graph in the grammar. This transformation is invoked
by running the tool with three arguments. This first argument must be the
GROOVE grammar that serves as input, the second argument must be an
Ecore model and the third argument must be a directory location where the
generated instance models should be stored. The type graph in the GROOVE
grammar must be a representation of the Ecore model, and all instance models

Section 5.2. Tool implementation 87

must be typed correctly and not violate any constraints. If these properties
hold, then for each instance graph in the GROOVE grammar an Ecore instance
model with the same name is generated and stored into the specified directory.
The line below shows the Linux command to transform instance graphs in a
GROOVE grammar to Ecore instance models.

./ecore2groove.jar <GROOVE grammar> <Ecore model> <Instances location>

5.2 Tool implementation

This section will explain the structure of the ecore2groove transformation tool,
and the algorithms for each of the four transformations steps. Figure 5.2 shows
an Ecore model of ecore2groove. This model only shows how the different classes
interact, and not internal behaviour and private methods.

There are six connected classes, and one other class GraphLabels that only
provides static methods used by the other classes. Transform contains the
main method, which decides with transformation has to be done, based on the
command line arguments. This class initializes the ModelHandler and passes
the location of the Ecore model to its constructor. After the ModelHandler
has been initialized and when transforming from Ecore to GROOVE, Trans-
form initializes a TypeGraphRep for the representation of the Ecore model, a
ConstraintRules which will create the constraint rules to put in the GROOVE
grammar, and for each Ecore model an InstanceGraphRep to represent it. These
representations are then written to the GROOVE grammar. When transform-
ing from GROOVE to Ecore, after initializing the ModelHandler, Transform will
only initialize the InstanceModelRep for each graph in the GROOVE grammar.
These will be the Ecore instance model representations of an instance graphs.

The ModelHandler loads the Ecore model that was passed to its constructor
when it is initialized. It then iterates over the elements of this Ecore model, and

Figure 5.1: Diagram of the ecore2groove tool and which inputs and outputs are
supported.

88 Chapter 5. Ecore2groove transformation tool

fills the Vector attributes with the respective elements from the Ecore model.
It provides a method loadInstance to load an instance model, a method cre-
ateModel to create a new instance model and a method saveModel to store an
instance model. When loading an instance model, the ModelHandler iterates
over its elements and fills the iClasses attribute with EObjects that are instances
of EClasses. Finally, there are two string attributes eClassType and eReference-
Type. They default to type:EClass and type:EReference to be used as node type
labels in the Ecore type graph, but when these names are not safe, underscores
are added until they are. They are safe when there is no element in the Ecore
model that has the same name as the string part after type:.

When initialized, the TypeGraphRep retrieves all Ecore model elements from
the ModelHandler that were put in the Vectors. It then generates the typeGraph
and ecoreTypeGraph. The code for doing this is explained in subsection 5.2.1.
The class provides get methods for the type graphs.

ConstraintRules has a set for DefaultGraphs which are the constraint rules,
and a map from DefaultGraphs to EStrings. This map is to add names to con-
straint rules to be used in the GROOVE grammar. When the class is initialized,
it iterates over the Vectors of elements of the Ecore model and creates constraint
rules where needed. Code for this is also shown in section 5.2.1.

Next, and still part of the transformation from Ecore to GROOVE, is the In-
tanceGraphRep. This class is initialized by Transform for every instance model
that a graph representation has to be created for. The ModelHandler is passed
to its constructor after Transform has already loaded an instance model by in-
voking the loadInstance method. InstanceGraphRep can retrieve all elements
from the instance model that represent instances of EClasses, and generate a
DefaultGraph that represents the instance model. The implementation for this
is explained section 5.2.2. The class provides a get method for the graph repre-
sentation.

When transforming from GROOVE to Ecore, an instance of InstanceMod-
elRep is initialized by Transform for every instance graph in the GROOVE
grammar. The ModelHandler as well as the instance graph is passed to its con-
structor. A new instance model is created by invoking the createModel method
of the ModelHandler. The instance graph is parsed and instances of elements
are created by using the Factory methods of the EPackages that the model
elements belong to. The algorithm for this transformation is explained in detail
in section 5.2.3.

Finally, the GraphLabels class provides static methods that generate strings
that are used as labels of node types in graph representations. There is a method
for each type of Ecore element, and two methods that omit the type: part of
the string so it can be used in the name of constraints. The getLabel method
for (EDataType, EObject) generates a label string for a value of an EDataType,
to be used in an instance graph. This is different from generating a label string
for an EDataType itself which is used in a type graph.

Section 5.2. Tool implementation 89

F
ig

u
re

5.
2:

E
co

re
m

o
d

el
o
f

th
e

ec
o
re

2
g
ro

ov
e

tr
a
n

sf
o
rm

a
ti

o
n

to
o
l.

90 Chapter 5. Ecore2groove transformation tool

5.2.1 Ecore model to type graph

In this section we explain the three parts of the transformation process from an
Ecore model to a GROOVE type graph. First, how to load an Ecore model, then
how to create the type graph, and finally how to generate the required constraint
rules. Each time we give a fragment in pseudo code to assist in the explanation.
The pseudo code parts are simplified and human readable representations of
the actual Java code, and are used to illustrate the flow and algorithms of the
ecore2groove tool.

First, lets look at how to load an Ecore model. Listing 5.1 shows in pseudo
code how this is done. All Ecore models and instance models are Resources, and
a ResourceSet is used to contain Resources. We create and empty ResourceSet,
and then a new Resource into which we load the Ecore model. We iterate
over all EPackages of the Resource and register them in the ResourceSet, and
also also find the root element of the Ecore model. EPackages need to be
registered in the ResourceSet, so the ResourceSet can find the EPackage when
loading instance models. For example, when loading an instance model that has
an instance of EClass ClassB from EPackage packageB into the ResourceSet,
the ResourceSet needs to know which Resource contains the specification of
packageB and ClassB. Finally, we create sets containing all EClasses, EEnums,
EEnumLiterals, EReferences, EAttributes and EDataTypes. We will be using
these later.

Listing 5.1: Pseudo code for loading an Ecore model.

1 create new ResourceSet;

2 create new Resource in the ResourceSet;

3 load an Ecore model file into the Resource;

4
5 for all EPackages from the contents of the Resource

6 register the EPackage in the ResourceSet;

7 if EPackage is the root EPackage , mark it;

8 endfor;

9
10 for all elements from the root EPackage

11 add element to a set of EClass , EEnum , EEnumLiteral , EReference ,

EAttribute or EDataType;

12 endfor;

Now that we have loaded an Ecore model, we can transform it to a type
graph. Listing 5.2 shows in pseudo code how this is done. This part continues
from the part in Listing 5.1, so we have sets of Ecore elements from the Ecore
model available to us.

First we create an empty type graph and an Ecore type graph with an EClass,
EReference and EAttribute node type that we can add nodes and edges to. Then
we iterate over the sets in a specific order to add their graph representations
to the type graph. Elements have their own representation, but can also be
connected to other elements. First we add graph representations to the type
graph of elements that can be represented without required connections, then we
add graph representations of elements that are connected to previously added
elements.

Section 5.2. Tool implementation 91

We start by iterating over the set of EClasses. For each EClass, we add a
node type to the type graph to represent it. We then put the pair of the EClass
and the node type in a map, so we can later retrieve the node that represents
this EClass to connect it to other nodes. We also add a node type representing
the EClass to the Ecore type graph as a subtype of the EClass node type.

Next, we iterate over the set of EClasses again. This time, for each EClass
we get the set of its super EClasses, and for each super EClass we add a sub:
edge from the node that represents the EClass to the node that represents the
super EClass. Because we already iterated over all EClasses, we know that all
EClasses already have a node representation. We use the EClass to node map
we mentioned earlier to get the node representations.

EReferences connect EClasses, and now that all EClasses have a node rep-
resentation, we can add representations of EReferences to the type graph. We
iterate over all EReferences, and add a node type to the type graph to represent
each EReference. As with EClasses, we also put a pair of EReference and node
type in a map so we can later retrieve the node representing an EReference.
Then, if an EReference is both ordered and has an upper bound of at least 2,
we add a next selfedge to its node type. If EReference has an opposite ERef-
erence, we check if this opposite EReference is already represented in the type
graph by checking the map of EReferences to node types, and if so add opposite
edges from and to this opposite EReference node type. Finally, we add a node
type to the Ecore type graph as a subtype of the EReference node type.

Then, representations for EEnums and EEnumLiterals are added to the type
graph. First, node types are added to the type graph to represent EEnums, and
again put into a map. Next, flags to represent EEnumLiterals are added to the
node types that represent the EEnums.

Now we iterate over all EDataTypes in the Ecore model. We need to check
if the EDataType is supported, but also if an EDataType that is represented by
the same GROOVE attribute was already added. For example, the EShort and
EInt EDataTypes are both represented by an int: node type, but node types
must be unique in a type graph so we cannot add another node of the same
type. Instead, we must use the node type that is already in the type graph. So
if an EDataType is supported, we add a node type to the type graph only if it
does not already exist. Then, we add a pair of the EDataType and either the
newly created node type or an already existing node type to a map.

Finally, we add representations of EAttributes to the type graph. For each
EAttribute we add a node type to both the type graph and the Ecore type
graph to represent it. Then, an edge from the containing EClass node type,
retrieved from the EClass to node type map, to the EReference node type is
added. As with EReferences, if the EAttribute is ordered and the upper bound
is at least 2, a next selfedge is also added. Finally we need to add an edge to
the EDataType node type. If the EDataType of an EAttribute is supported, an
edge is added from the EAttribute node type to either the EEnum node type
or the EDataType node type. The respective map is used to retrieve this node
type.

92 Chapter 5. Ecore2groove transformation tool

Listing 5.2: Pseudo code for transforming an Ecore model to a type graph.

1 create new TypeGraph;

2 create new EcoreTypeGraph;

3
4 for all EClasses from the set of EClasses

5 add node type to TypeGraph and EcoreTypeGraph to represent EClass

;

6 add EClass and node type to map;

7 endfor;

8
9 for all EClasses from the set of EClasses

10 add sub: edges from EClass node to superEClasses nodes;

11 endfor;

12
13 for all EReferences from the set of EReferences

14 add node type to TypeGraph and EcoreTypeGraph represent

EReference;

15 add EReference and node type to map;

16 add edges from source and to target nodes of EReference;

17 if EReference is ordered and many mult., add next self edge;

18 if EReference has an opposite

19 if opposite EReference already in typegraph , add opposite

edges;

20 endif;

21 endfor;

22
23 for all EEnums from set of EEnums

24 add node type to TypeGraph to represent EEnum;

25 add EEnum and node type to map;

26 endfor;

27
28 for all EEnumLiterals from set of EEnumLiterals

29 add literal flag to EEnum node type;

30 endfor;

31
32 for all EDataTypes from set of EDataTypes

33 if EDataType is supported and not already in TypeGraph

34 add node type to TypeGraph to represent EDataType;

35 endif;

36 add EDataType and node type to map;

37 endfor;

38
39 for all EAttributes from set of EAttributes

40 add node type to TypeGraph and EcoreTypeGraph to represent

EAttribute

41 add edge from container EClass node

42 if EReference is ordered and many mult., add next edge;

43 if EDataType is supported , add edge to EDataType or EEnum node;

44 endfor;

Adding constraint rules is straightforward, as seen in Listing 5.3. We iterate
over all EClasses, EEnums, EReferences and EAttributes, and when required,
create a constraint rule for GROOVE. Each of these rules is then added to the
GROOVE grammar. We do not explain the creation of each constraint rule in
detail, since they have already been described in detail in section 4.4 and creating
an actual constraint rule is done by just adding nodes and edges to a new
graph. This listing is given for completeness, to show that all constraint rules
are generated during transformation, and which conditions must be satisfied for
a constraint rule to be created.

Section 5.2. Tool implementation 93

Listing 5.3: Pseudo code for creating constraint rules from an Ecore model.

1 for all EClasses from set of EClasses

2 if the EClass is abstract , add abstract constraint rule;

3 add cyclicity constraint rule;

4 add one container constraint rule;

5 add root constraint rule;

6 endfor;

7
8 for all EEnums from set of EEnums

9 add no literals constraint rule;

10 add many literals constraint rule;

11 add no incoming val constraint rule;

12 add many incoming val constraint rule;

13 endfor;

14
15 for all EReferences from set of EReferences

16 add no val constraint rule;

17 add many val constraint rule;

18 add no container constraint rule;

19 add many container constraint rule;

20 if EReference is unique and upper bound at least 2, add unique

constraint rule;

21 if EReference has lower bound at least 1, add lower bound

constraint rule;

22 if EReference has upper bound is not unlimited , add upper bound

constraint rule;

23 if EReference has opposite , add opposite constraint rule;

24 if EReference has eKeys , add eKeys constraint rule;

25 if EReference is ordered and upper bound at least 2, add ordered

constraint rules;

26 if EReference is containment , add containment constraint rule;

27 if EReference is not containment , add not containment constraint

rule;

28 endfor;

29
30 for all EAttributes from set of EAttributes

31 add many val constraint rule;

32 if values of EAttribute must be bound more than default int , add

values constraint rule;

33 if EAttribute is unique and upper bound at least 2, add unique

constraint rule;

34 if EAttribute has lower bound at least 1, add lower bound

constraint rule;

35 if EAttribute has upper bound is not unlimited , add upper bound

constraint rule;

36 if EAttribute is unchangeable and has a default value , add

unchangeable constraint rule;

37 if EAttribute is id , add id constraint rule;

38 if EAttribute is ordered and upper bound at least 2, add ordered

constraint rules;

39 endfor;

5.2.2 Ecore instance models to instance graphs

After loading an Ecore model and transforming it to a type graph, we can now
load instance models and transform them to instance graphs. Ecore2groove can
transform several instance models at a time for the same Ecore model. For each

94 Chapter 5. Ecore2groove transformation tool

instance model, an instance graph is created in the GROOVE grammar that
already contains the type graph.

Listing 5.4 contains in pseudo code how an Ecore instance model is trans-
formed into a GROOVE instance graph. First, we load the instance model into
the ResourceSet that already contains the Ecore model. Then a new graph is
created that will be stored in the GROOVE grammar.

Next, we iterate over all EObjects that are instances of EClasses in the
instance model. For each instance, we add a node to the instance graph. Each
time we mention that a node or edge is added to the instance graph to represent
an instance of some element, it is typed by the node type or edge in the type
graph that represents this element. So in this case, the node is typed by the
node type that represents the EClass that the EObject is an instance of. After
adding the node, we also add the EObject and the node to a map.

Now that all instances of EClasses are represented in the instance graph,
we can add representations of instances of EReferences and EAttributes. These
are not EObjects like instances of EClasses are, but values for the instances
of EClasses that contain them. For example, an instance of ClassA contains
through the containment EReference has an instance of ClassB. The target of
this EReference is retrieved by getting the values of has from ClassA. This will
be an EList of EObjects in the case of a many multiplicity, or just an EObject
otherwise. The EObjects are ClassB instances.

We iterate again over all instances of EClasses. For each instance, we iterate
over all EReferences of its EClass in the Ecore model, and then over all values
(or targets) of this EReference in the instance model. This can either be an EList
of target instances, or just one target instance. Each of these targets is already
represented in the instance graph, so we just need to add a node to represent
the EReference, and edges from the containing instance EClass node and to
the target instance EClass node. Next, we need to add this representation to a
map. Since there is no Java Object for an instance of an EReference, we do this
by adding a pair of a Triple(containing instance, EReference, target instance)
and the instance EReference node to a map. Then, we check if the EReference
has an opposite, and if so whether or not it is already in the instance graph
by consulting the map. If it is present, we add opposite edges from and to it.
Finally, if the EReference is ordered, a next edge is added from the previous
instance of this EReference, unless this was the first instance of the list. The list
of values is always ordered the same as how the values occur in the XML file,
so this ensures that the instances are properly ordered in the instance graph.

Adding instances of EAttributes is done in a similar way, except that we
also need to add nodes to represent the values of the EDataType in the instance
graph when supported, and that EAttributes have no opposites. Because they
have no opposites, it is also not necessary to add representations of EAttribute
instances to a map.

Section 5.2. Tool implementation 95

Listing 5.4: Pseudo code for transforming an Ecore instance model to an in-
stance graph.

1 load instance model file into ResourceSet;

2 create new instance graph;

3
4 for all instances of EClasses in the instance model

5 add node type to instance graph to represent instance;

6 add pair of instance and node type to map;

7 endfor;

8
9 for all instances of EClasses in the instance model

10 for all EReferences from the EClass of the instance

11 for all targets of the EReference from the instance EClass

12 add node type to represent EReference instance;

13 add edges from and to source an target EClass instances;

14 add pair of instance of EReference and node type to map;

15 if EReference has opposite

16 if opposite is in instance graph , add opposite edges;

17 endif;

18 if EReference is ordered

19 add next edge from previous node type to node type;

20 endif;

21 endfor;

22 endfor;

23 for all EAttributes from the EClass of the instance

24 for all values of the EAttribute of the instance EClass

25 add node type to represent EAttribute instance

26 add edge from containing EClass instance node type;

27 if EDataType is supported

28 add node type to represent EDataType value

29 add edge from EAttribute to EDataType/EEnum node type;

30 endif;

31 if EAttribute is ordered

32 add next edge from previous node type to node type;

33 endif;

34 endfor;

35 endfor;

36 endfor;

5.2.3 Instance graphs to Ecore instance models

The pseudo code in Listing 5.5 shows how an instance graph is transformed
to an Ecore instance model. First we determine the root EClass element in
the instance graph. Constraints enforce that there should be exactly one node
with a root flag, so we locate it and set this node to be the rootNodeElement.
Next, we create a new Resource in the ResourceSet, and then an instance of the
EClass that the rootNodeElement node represents. Instances of EClasses are
created by getting the EPackage of the EClass from the Ecore model, and then
the Factory of the EPackage. This Factory can create instances of EClasses
and EDataTypes that belong to the EPackage. The created instance of the
EClass is then added to the contents of the Resource. Further elements are not
explicitly added to the contents, since they are contained by the root EClass
instance and already added implicitly. Next, we add the rootNodeElement and
the EClass instance to the nodeToObject map, and finally call the recursive

96 Chapter 5. Ecore2groove transformation tool

function addContainedClasses to add all EClass instances contained by the root
element.

This recursive function is given in lines 9-27. For the eclassNode passed
to it, we iterate over all connected nodes that represent instances of contain-
ment EReferences. If this EReference is not ordered, the node that represents
that target EClass instance is located, and an instance of this EClass is cre-
ated. The target EClass node and the created EClass instance are put into the
nodeToObject map. Then, the EClass instance is added as an EReference value
of the EClass instance represented by the eclassNode, and addContainedClasses
is called for the target EClass node. If the EReference is ordered, we check if
the found instance of the EReference is the first in the list, by checking that it
has no incoming next edge. If so, we do the same procedure as in the case of an
instance of a non ordered EReference, and then continue with the next ERefer-
ence instance in the list by following the outgoing next edge until there are no
more outgoing next edges. The order of values of an EReference or EAttribute
is the same as the order in which they are added, so this way the instance model
will have the values in the correct order.

Lines 29-67 show how values of non containment EReferences and EAt-
tributes are added to the instance model. First, in lines 29-49 values of ERef-
erences are added. We iterate over all nodes eclassNode that represent EClass
instances. Then we iterate over all connected nodes erefNode that represent
non containment EReferences. If this EReference is not ordered, we look up
the target of this EReference instance in the instance graph, and then get the
already created instance EClass from the nodeToObject map. Next, we check if
this value is already in the EList of EReference values of the EClass instance
represented by eclassNode, and if not it is added. It is possible that it is already
added, because values of opposite EReferences are added at the same time when
the value of an EReference is added. If the EReference is ordered, we check if
the found EReference is the first in the list. If so, we do the same again as for
instances of non ordered EReferences but this time if the value is already in the
EList it is not omitted, but instead moved to the last position in the EList.
It is possible that the value of the opposite EReference was already added to
the instance model, which could have put this instance in the wrong positing
in the EList. Since all values of an ordered EReference in the instance graph
are always iterated over in the correct order, just moving any already present
values to the end of the EList ensures that the EList of values is always in the
correct order in the final Ecore instance model. This is repeated for the next
EReference instance in the instance graph until there is no more outgoing next
edge. Finally, in lines 51-71 we add values of EAttributes to the instance model.
The idea for this is the same as for values of EReferences with two differences.
Firstly, we need to create an instance of the EDataType of the EAttribute that
contains the value. This is again done by getting the Factory of the EPackage of
the EClass that the eclassNode represents. Secondly, we do not have to consider
opposites, so we can always create an EDataType value and then add it to the
list of values in the instance model.

Section 5.2. Tool implementation 97

Listing 5.5: Pseudo code for transforming an instance graph to an Ecore instance
model.

1 rootNodeElement = node type with root flag;

2
3 create new Resource in ResourceSet;

4 create instance of EClass represented by rootNodeElement;

5 add this instance to contents of Resource;

6 add a pair of node and EClass instance to nodeToObject map;

7 addContainedClasses(rootNodeElement);

8
9 function addContainedClasses(Node eclassNode)

10 for all nodes erefNode that represent containment EReferences

from eclassNode

11 if EReference is not ordered

12 create instance of EClass represented by target of

erefNode;

13 add node type and new EClass instance to nodeToObject map;

14 add this instance as EReference value to EClass instance

of eclassNode;

15 addContainedClasses(target of erefNode);

16 else

17 if erefNode is first in list

18 while erefNode is not null

19 create instance of EClass represented by target of

erefNode;

20 add node type and new EClass instance to nodeToObject

map;

21 add this instance as EReference value to EClass

instance of eclassNode;

22 addContainedClasses(target of erefNode);

23 erefNode = next erefNode in list;

24 endwhile;

25 endif;

26 endif;

27 endfunction;

28
29 for all node types eclassNode that represent EClasses

30 for all nodes erefNode that represent non -containment

EReferences from eclassNode

31 if erefNode is not ordered

32 get instance of EClass represented by target of erefNode

from nodeToObject map;

33 if instance not present as EReference value for EClass

instance of eclassNode

34 add this instance as EReference value to EClass

instance of eclassNode;

35 endif;

36 else

37 if erefNode is first in list

38 while erefNode is not null

39 get instance of EClass represented by target of

erefNode from nodeToObject map;

40 if instance not present as EReference value for

EClass instance of eclassNode

41 add this instance as EReference value to EClass

instance of eclassNode;

42 else

43 move this instance to last position in list of

values;

44 endif;

45 erefNode = next erefNode in list;

46 endwhile;

98 Chapter 5. Ecore2groove transformation tool

47 endif;

48 endif;

49 endfor;

50
51 for all nodes attrNode that represent EAttributes from

eclassNode

52 if datatype of attrNode is supported

53 if attrNode is not ordered

54 create instance of EDataType represented by target of

attrNode;

55 add instance as EAttribute value to EClass instance of

eclassNode;

56 else

57 if attrNode is first in list

58 while attrNode is not null

59 create instance of EDataType represented by

target of attrNode;

60 add instance as EAttribute value to EClass

instance of eclassNode;

61 attrNode = next attrNode in list;

62 endwhile;

63 endif;

64 endif;

65 endif;

66 endfor;

67 endfor;

5.3 Tool demonstration

To demonstrate the ecore2groove tool and some capabilities of GROOVE as a
model transforming tool, we use an Ecore model of a buffer and an instance
model with two buffer slots. We then use our transformation tool to transform
these models to a GROOVE grammar with the graph representations and con-
straint rules. The models and graph representations will be shown and explained
in section 5.3.1.

The next step is to transform the instance graph in GROOVE using graph
transformation rules. We will show several rules to add and remove slots for the
buffer, and put and get objects from the slots. Additionally we will show how a
new instance graph can be created to represent an instance model. Any resulting
instance graphs that do not violate any constraints can then be transformed to
an instance model using the ecore2groove tool. This is demonstrated in section
5.3.2.

Finally, other features of using GROOVE as a model transforming tool, like
creating a new graph or repairing invalid instance graphs, adding semantics to
custom constraints or deleting large parts of an instance graph, are explained
in section 5.3.3.

5.3.1 Ecore model and graph representation

Figure 5.3 shows an Ecore model of a buffer. The Buffer itself is abstract,
and instances must either be a FiLoBuffer for a first-in-last-out buffer, or a

Section 5.3. Tool demonstration 99

FiFoBuffer for a first-in-first-out buffer.

The Buffer can have zero to four BufferSlots that can hold the objects. This
containment EReference is ordered as indicated in the figure. Each BufferSlot
has an EAttribute status to keep track whether or not a slot is filled with an
object. This EAttribute is of an EEnum type, BufferSlotStatus, which has two
literal values, empty and filled. So a slot of the buffer can either be empty or
filled with an object. Next, a BufferSlot can have a value, which is a JObject
with an identifier id. We want a Buffer to only hold unique instances of JObject,
and we use the EAttribute id to check this. The EReference values refers to all
JObjects and eKeys has been set to the EAttribute id so that this identifier
must uniquely identify a referred instance of values.

An instance model of the buffer is given in Figure 5.4. It represents a
first-in-last-out buffer with two empty slots. It has an instance of a FiLoBuffer
with two instances of BufferSlot with status set to empty.

When running ecore2groove with the Ecore model and instance model as
input, a GROOVE grammar is created with a type graph representation of
the Ecore model, instance graph representation of the instance model, and 39
constraints rules. In this example, the tool spends most time loading the Ecore
model and the GROOVE grammar without doing any transformation. Creating
graphs and constraint rules take far less time. As an indication, on our test
setup with a 3.0Ghz dual core processor running Ubuntu Linux, loading the
Ecore model took 600ms, creating a type graph representation 20 ms, creating
an empty GROOVE grammar 300ms, creating 39 constraint rules 70ms, loading
the instance model 10 ms and creating an instance graph to represent it 2 ms.
When using a graph grammar that already existed, loading it took 700 ms.

Figure 5.3: Diagram of an Ecore model of a buffer that can both be a first-in-
first-out or first-in-last-out buffer.

Figure 5.4: Instance model of the Ecore buffer model. This model represents a
first-in-last-out buffer with two empty slots.

100 Chapter 5. Ecore2groove transformation tool

With a larger Ecore model that contained 211 EClasses, 178 EReferences
and 36 EAttributes, loading the Ecore model took 800 ms, creating the type
graphs 75 ms, creating a graph grammar 300 ms and 1290 constraint rules 650
ms. However, loading an existing graph grammar took almost 2 s. This is
probably because the large amount of constraint rules that need to be loaded
by GROOVE. We did not transform an instance of this larger model, but it
is expected that loading the model will take most time and not creating the
instance graph representation. In general, creating constraint rules and loading
graph grammars with constraint rules are the largest bottleneck of our imple-
mentation. This can only be solved by having fewer constraint rules, but this is
not possible if we want to support all elements and properties of Ecore.

Figure 5.5 shows the type graph representation of the Ecore model of the
buffer. EClasses and EReferences in the Ecore models are represented as node
types, which in turn are subtypes of the node types EClass and EReference
in the Ecore type graph. The ordered EReference contains has a next selfedge
so instances can be ordered in instance graphs. EAttributes are represented
as node types as well, and the EEnum is represented as a node type with
its EEnumLiterals as flags of this node. Finally, EDataTypes are GROOVE
attributes in the type graph. The type graph representation of the Ecore model
is explained in detail in chapter 4.

Figure 5.6 shows the instance graph representation of the instance model of
the first-in-last-out buffer with two slots. The flags to indicate the root element
of the model and the instances of the containment EReference have been set,
and the buffer slots are marked to be empty. None of the constraint rules can
find a match in this graph, so it does not violate any constraints.

5.3.2 Transformations in instance graphs

Since the Ecore model represents a buffer, we want to put and get objects from
slots of this buffer. First we demonstrate transformation rules to change the
size of the buffer by adding and removing slots. Then we show how to put and
get objects into and from the slots. The constraint rules that detect invalid
instance graphs have a priority of 50. Any transformation rules that are created
manually have a priority of 0 by default. This means that whenever a constraint
violation is found by a constraint rule, the transformation rules to transform
instance graphs are disabled.

The buffer supports zero to four slots as defined in the Ecore model, and the
instance model has two. In the instance graph there are two node types for buffer
slots, and we want to be able to change this number. We use two transformation
rules for this, one to add a new slot and one to remove a slot. The containment
EReference containing the BufferSlots is ordered, so the instances of the slots
in the instance graph are ordered with next edges. When adding or removing a
BufferSlot in the instance graph we want to do this at the end of the list, and
we only want to remove a slot if it does not contain an object.

Figure 5.7 shows the graph transformation rule to add a new slot to the
buffer. It matches a Buffer node, which can be either a FiFoBuffer or a

Section 5.3. Tool demonstration 101

EReference
containment

BufferSlot

BufferSlot$status

Buffer$contains
java$$JObject

Buffer$values
BufferSlot$value

FiLoBuffer

Buffer

FiFoBuffer EClass
root

java$$JObject$id

EAttribute

(a) Ecore type graph

Buffer BufferSlot

FiLoBuffer

FiFoBuffer

java$$JObject

Buffer$contains

Buffer$values

BufferSlot$value

BufferSlotStatus
empty
filled

BufferSlot$status

java$$JObject$id
val: int

contains

next status

val

val

val

value

val

values

id

(b) Type graph

Figure 5.5: Type graph representation of the buffer Ecore model. Both type
graphs are merged internally in GROOVE to form one type graph that instance
graphs must be typed by.

102 Chapter 5. Ecore2groove transformation tool

BufferSlotStatus
empty

BufferSlot$statusBuffer$contains
containment

BufferSlot$status

BufferSlot

BufferSlotStatus
empty

FiLoBuffer
root

Buffer$contains
containment BufferSlotval status

next

val

val

val

status

contains

contains

Figure 5.6: Instance graph representation of the buffer instance model. This
first-in-last-out buffer has two slots that can contain an object each.

BufferSlot

Buffer$contains

∀

Buffer

BufferSlot$status

BufferSlotStatus
empty

Buffer$contains

Buffer$contains
containment

next

at

contains

at

status

val

next

contains

val

Figure 5.7: Graph transformation rule to add a new slot to the buffer. This slot
will be placed at the end of the list of slots.

Section 5.3. Tool demonstration 103

FiLoBuffer node because of subtyping. New nodes are created when applying
this rule; a Buffer$contains node with containment flag to represent the con-
tainment EReference, BufferSlot node for the slot itself, and a BufferSlot$status
and BufferSlotStatus with an empty flag for the EAttribute and EEnum to in-
dicate that this slot is empty. Now this slot must be placed at the end of the
list. The last BufferSlot in the list is the one where the EReference represen-
tation containing it does not have an outgoing next edge. The rule matches all
Buffer$contains nodes without outgoing next edges, which can be either one or
zero. From each of these Buffer$contains nodes, a next edge is added that refers
to the new Buffer$contains node. This way the rule is applicable when there
are already slots in the list, but also for the first slot of a buffer.

The graph transformation rule in Figure 5.8 deletes a slot from a buffer. It
matches a Buffer node which can again either be a FiFoBuffer or a FiLoBuffer
node. It then looks for a Buffer$contains node that that does not have an
outgoing next edge, a BufferSlot node that represents a buffer slot, a Buffer-
Slot$status node and a BufferSlotStatus node with an empty flag, and deletes

Buffer$contains

Buffer BufferSlot

BufferSlotStatus
empty

Buffer$contains

BufferSlot$status

val

contains

val

status
next

contains

Figure 5.8: Graph transformation rule to delete a slot from the buffer. The slot
to be removed is at the end of the list and must be empty.

Buffer$contains

BufferSlot

java$$JObject

BufferSlot$value
containment

java$$JObject$id
val = 0

Buffer$values

Buffer Buffer$contains

BufferSlotStatus
− empty
+ filled

value

next

contains

val

values

id

val

val

contains status.val

Figure 5.9: Graph transformation rule to put an object into the first slot of the
buffer. The id attribute of the first object is set to 0

104 Chapter 5. Ecore2groove transformation tool

these nodes and the edges connecting them from the graph when applying the
rule. There can be at most one Buffer$contains node without an outgoing next
edge in an instance graph, namely the instance at the end of the list, so when
this rules finds a match it is for this last buffer slot in the list. The rule also
only matches when the buffer slot to be removed is flagged to be empty, which
indicates in our model that it does not contain an object.

Putting an object into a slot of the buffer is split into two transformation
rules. The first one in Figure 5.9 adds an object to the first slot of the buffer,
and the other one in Figure 5.10 adds an object to any subsequent slot of the
buffer. The first rule matches the first BufferSlot in the list, but only when it
is flagged to be empty. When the rule is applied, the empty flag is deleted from
the BufferSlotStatus and a filled flag is added. We use a path edge labelled
status.val from the Buffer node to match the BufferSlotStatus node connected
to it. The rule also creates nodes that represent an instance of a JObject, the
containment EReference that contains it, the EAttribute id with value 0 and
finally an instance of the EReference values from the Buffer that refers to this
new JObject.

The second rule to put an object into the buffer can only be applied when
there is a slot in the buffer that is filled with an object that has an id integer
value, and also has a next slot that is still empty. The new object then has an
id value of 1 plus the id integer value of the object in the previous slot. The flag
of the BufferSlotStatus node that is matched is again changed from empty to
filled, and nodes to represent the new object are created. The integer attribute

Buffer$contains

BufferSlot

1

java$$JObject

int

Buffer$values

BufferSlotStatus
− empty
+ filled

Buffer

int

BufferSlot$value
containment

java$$JObject$id

Buffer$contains

val

val

status.val

next

π1

value

π0

contains

add

values

contains

val.value.val.id.val

id

val

val

Figure 5.10: Graph transformation rule to put an object into a subsequent slot
of the buffer. The id attribute of this object is set to the id of the previous
object in the list, plus one.

Section 5.3. Tool demonstration 105

that represents the id value of the previous object is matched by the path
edge labelled val.value.val.id.val from the node that represents the EReference
instance containing the previous slot of the buffer. An integer operation is then
used to add 1 and this value to each other, and the result is the value of the id
attribute of the new object.

The final transformation rule is used to get an object from a first-in-last-
out buffer slot, effectively deleting it from the instance graph. The rule in
Figure 5.11 matches the last slot in the buffer that is filled, deletes its object
and references to it, and flags it to be empty again. The last filled buffer slot
is matched by looking for a Buffer$contains node that does not have a next
edge to a Buffer$contains node with a val.status.val path to a BufferSlotStatus
with a filled flag. When the rule is applied, the nodes and connecting edges
representing the JObject, the EReferences to it and its EAttribute are deleted
from the instance graph. The flag of the BufferSlotStatus connected to the
BufferSlot that is made empty is also changed from filled to empty to mark the
buffer slot empty.

With these graph transformation rules we can transform our example in-
stance graph to a graph that represents a different model, for example a first-
in-last-out buffer with 3 slots of which the first 2 slots are filled. To get this
we must apply the rule the put the first object in the buffer, and then the
rule to put a subsequent object into the buffer. Additionally, we need one ex-
tra buffer slot so the rule to create a slot must be applied. We now have the
instance graph from Figure 5.12. We store the state as a new graph after
applying the rules, and then run ecore2groove to transform the instance graphs
back to instance models. Creating each instance model from an instance graph
takes about 20ms. The resulting instance models can be loaded into the Eclipse

BufferSlotFiLoBuffer

BufferSlotStatus
filled

BufferSlotStatus
− filled
+ empty

Buffer$contains

Buffer$values

java$$JObject$id

java$$JObject

BufferSlot$value

Buffer$contains

val

val

val

contains

contains

next

val.status.val

id

value

status.val

values

Figure 5.11: Graph transformation rule to get an object from the last slot of a
first-in-last-out buffer. The slot is flagged to be empty so it can either be filled
again or be deleted.

106 Chapter 5. Ecore2groove transformation tool

BufferSlotStatus
filled

BufferSlot$status

Buffer$contains
containment

BufferSlot$status

BufferSlot

BufferSlotStatus
filled

FiLoBuffer
root

Buffer$contains
containment

BufferSlot

BufferSlotBuffer$contains
containment

BufferSlotStatus
empty

BufferSlot$status

java$$JObject

BufferSlot$value
containment

java$$JObject$id
val = 0Buffer$values

java$$JObject

Buffer$values

BufferSlot$value
containment

java$$JObject$id
val = 1

val

valnext

val

val

status

contains

status

contains

val

contains

status

val

next

values

val

value

id

val

values
val

value

id

val

Figure 5.12: Instance graph representation of the transformed buffer instance
model. This first-in-last-out buffer has three slots of which two are filled with
an object that have a unique id value.

Section 5.3. Tool demonstration 107

Figure 5.13: Instance model of the transformed buffer instance model.

FiLoBuffer
root

Buffer

Figure 5.14: Transformation rule to add a FiLoBuffer node to the graph if there
is not already a Buffer node.

instance model editor, as seen in Figure 5.13.

5.3.3 Other features

When starting with an empty graph to create a new instance of a buffer, we
find that a constraint is immediately violated, since the empty instance graph
has no root element. New graph transformation rules have a priority of 0 by
default. Since the constraint rule has a priority of 50, the transformation rules
are not applicable. The rule that adds a Buffer node to an empty graph like in
Figure 5.14 should have a priority higher than 50 so it can be applied. After
applying it, the instance graph does not violate any constraints anymore so the
normal transformation rules become applicable.

In general, transformation rules that match a violation and transform an
invalid instance graph into a valid one should have a higher priority than the
priority of the constraint rules. Whenever either such a rule or a constraint rule
is applicable, the instance graph violates a constraint and an instance model can-
not be generated from it. These rules can be used when a user knows that an
instance graph violates a constraint, but also takes steps to repair the violation.
This can be done as explained for empty graphs, but also when a transformation
cannot be done in a single step with a single transformation rule, and the inter-
mediate graph between steps violates some constraint. Subsequent steps can be
done with transformation rules that detect this, and also perform the next step
of the transformation. One has to take care that these rules are not applicable
in valid instance graphs, because then the normal transformation rules will be
disabled.

Another feature of using GROOVE as a transformation tool is creating cus-
tom constraint rules. Let us consider the buffer Ecore model again. We men-
tioned that all JObjects in the slots of a buffer should have unique values for

108 Chapter 5. Ecore2groove transformation tool

Buffer java$$JObject

values.val

contains.val.value.val

Figure 5.15: Custom constraint rule that detects JObjects that are contained
by a Buffer, but that are not refered to by the values EReference.

id. The eKeys property of the values EReference refers to the id EAttribute of
JObject, indicating they should be unique for each JObject referred to by values.
However, this does not enforce that the Buffer actually refers to all JObject in-
stances with values, and JObjects that are not referred to can still have an id
value which it the same as another. In Ecore models, we can add a constraint
as an annotation that all JObject instances must be referred to. However, such
a constraint has no semantics, and it cannot be checked by the instance model
editor.

By using GROOVE, it is possible to create custom constraint rules that
detect violations of constraints set by a user, like the one just described. The
constraint rule in Figure 5.15 detects java$$JObject nodes that are indirectly
contained by a Buffer node through the contains.val.value.val path, but do
not have a values.val path to them that represents an instance of the values
EReference to this JObject. These custom constraint rules should have a priority
higher than 0. In our case we set the priority to 40 to keep them separate from
the generated constraint rules. They should not be named with something
starting with ”constraint - ” to prevent them from being deleted when using
the GROOVE grammar as output for the ecore2groove tool.

In short, in Ecore models it is possible to define constraints on an instance
model by using annotations, but semantics cannot be added to the model and
violations in instance models cannot be detected. In GROOVE, semantics can
be added by defining a custom constraint rule that detects violations. These
custom constraint rules cannot be generated, because the semantics are not
known in the Ecore model, and must be created by a user.

Finally, special care has to be taken when when deleting nodes from an
instance graph. In our buffer example, slots can only be removed when they
do not contain an object. If we would not check for this, objects can be left as
dangling nodes that are not connected to the root element of the graph. These
dangling nodes are constraint violations that will be detected by constraint rules.
Dangling nodes can be prevented by specifically checking for the absence of
contained elements when deleting a node, like we did when deleting a buffer slot.
Another option is to also delete any nodes that represent elements contained by
the element which is deleted. Quantifiers can be used to match all nodes that
represent elements contained by the element that is deleted.

For example the rule in Figure 5.16 deletes a Buffer node and also all its
slots and objects contained in those slots. A Buffer node is matched and deleted,
and also all BufferSlots it contains, as well as all JObjects that are contained in
those BufferSlots. After applying this rule, we end up with an empty graph.

Section 5.3. Tool demonstration 109

java$$JObject

Buffer

Buffer$values

Buffer$contains

BufferSlotStatus

BufferSlot

BufferSlot$value∀

∀

BufferSlot$status

∃

java$$JObject$id

status

at

valat

values

at

id

val

at

in
in

at

at

at

value

contains

at

val

val

Figure 5.16: Graph transformation rule that deletes a Buffer node from the
graph, as well as all its BufferSlots and JObjects.

110 Chapter 5. Ecore2groove transformation tool

111

Chapter 6

Related work

Much work has been done in the area of model transformation within the meta
modelling paradigm, and there have been many different approaches. With
our approach it is possible to perform model transformation of Ecore instance
models by using the graph transformation tool GROOVE. In this chapter we
discuss other approaches and compare their interoperability with other tools,
their used modelling standards or non-standards, and their notations to describe
model transformations to our approach.

Tools exist that perform UML, Ecore or other model transformations within
the tool itself, such as EMF Tiger/EMF Henshin [6, 8, 7], Fujaba [47], MOFLON
[2, 1], VIATRA2 [46, 45], VMTS [24], MoTMoT [38, 27], AToM3 [44, 12], me-
diniQVT [19], Tefkat [23] or ATL [20]. Of these tools, some use a graphical
notation for transformation rules with a foundation in graph transformation
[8, 7, 47, 24, 44, 12, 2, 1], others use a textual notation, usually an implemen-
tation of QVT [32] or something based on it, to define transformation rules
[45, 19, 23, 20], or a combination of graphical and textual [38, 27, 44, 12]. EMF
Tiger/Henshin can also be used, like ours, to first transform models to a graph
formalism of a graph transformation tool, in this case AGG [40, 8], so that
graph transformation rules can be applied within an existing graph transforma-
tion tool [6, 8, 7]. Some model transformation approaches use a meta modelling
standard, usually MOF or EMF, as a basis for the models that can be trans-
formed [8, 19, 23, 2, 1, 20], and again others use a custom internal format for
meta models and models [45, 24, 38, 47, 27, 44, 12] but sometimes offer some
import/export capabilities.

Some approaches aim to achieve compatibility with other modelling tools
by using the XMI standard for exchanging models [46, 45, 38, 27]. To our
knowledge, there has been no XMI compatibility research like ours to determine
which tools can exchange models to each other using different version of XMI.
However, approaches that do use the XMI standard often mention the specific
tool it can import models from using XMI [2, 1], issues with importing models
using XMI [27], or only plan on supporting it in the future [46, 45].

EMF Henshin started out as the Tiger EMF project [6, 8], and was renamed
to EMF Henshin as it became an official subproject of EMF [7] as an Eclipse

112 Chapter 6. Related work

plugin. EMF Henshin allows users to specify transformation rules in a graph
transformation like graphical notation to transform Ecore models. The LHS
(left-hand-side) of a transformation rule matches an instance in an Ecore model,
the RHS (right-hand-side) determines the actions of what needs to be deleted or
created, and the NAC (negative application constraint) puts a constraint on the
applicability of the rule. The LHS, RHS and NAC part of a transformation rule
are Ecore models themselves, which makes it possible to define transformation
rules on transformation rules. Furthermore, transformations using EMF Hen-
shin can be either endogenous or exogenous, while our approach currently only
supports endogenous transformations. EMF Henshin also offers functionality
to export models and transformation rules to the graph transformation system
AGG [40, 8], which is an approach similar to ours. However, their mapping of
Ecore models to a graph representation is very basic, and not complete. Sev-
eral features of Ecore models are not supported, like the opposite, ordered, iD or
eKeys properties. They discuss the differences between performing model trans-
formation directly on Ecore models, or on graph representations [8]. In short,
the strength of EMF Henshin is to work with existing Ecore models, while using
AGG has the benefit that it is strong in performing static analysis of properties
of transformation systems, like conflicts, dependencies or the applicability of
rules. Unlike their approach with AGG, our tool can also transform instance
graphs back to Ecore instance models.

The Fujaba Tool Suite, originally developed at the university of Paderborn,
allows a user to create UML class diagrams, and to define model transforma-
tions [47]. Fujaba uses a proprietary model transformation technique called
Story Driven Modelling (SDM). The behaviour of a model is defined in a so
called Story Diagram, which is basically an activity diagram. Each step of the
diagram is refined into a Story Pattern, which describes a transformation of the
model. Using SDM, it is possible to visually describe the full behaviour and
transformations of a UML class diagram. However, without extensions, the tool
does not integrate with other tools and transformations can only be described
on models developed within the tool itself.

MOFLON [2, 1] is an extension to Fujaba to integrate it with other tools. It
extends Fujaba with metamodelling capabilities using the MOF OMG standard,
and provides XMI 2.1 import and export capabilities for models. Compatibility
with Rational Rose for UML 1.3 diagrams is mentioned explicitly, but no further
details about compatibility are given. Based on our own findings we expect that
imported models from other tools will have errors, unless specific importers and
exporters have been written for individual tools. Imported models can be syn-
chronized to each other using triple graph grammars [39] that are translated to
SDM, allowing transformations to one model to be propagated to other models.

MoTMoT [38, 27] is a model transformation tool that is based on Fujaba. It
was originally developed because Fujaba provided no exchangeability of models
with other tools, although it does now through MOFLON. MoTMoT is based on
the SDM technique from Fujaba to define model transformations. It supports
model transformations of UML 1.3 models, and models can be imported using
XMI 1.x. Performance issues in scanning and building a model from XMI have
been mentioned [27], although no further details are given.

113

VIATRA2 [46, 45], a subproject of Eclipse GMT, is a model transformation
tool that works with a non-standard multi-level metamodelling approach, VPM
(Visual and Precise Metamodelling), because they claim that MOF and EMF
are not expressive enough [45]. A textual syntax called VTML (Viatra Textual
Metamodelling Language) is used to specify metamodels and models. Model
transformations are also specified textually, using VTCL (Viatra Textual Com-
mand Language). This is again a non-standard approach, because they argue
that QVT [32] is not suited for unidirectional transformations of models [45].
Rules consist of a precondition and a postcondition, which can be related to LHS
and RHS of graph transformation rules. A unique feature of VTCL is the pos-
sibility to use negative conditions with an arbitrary depth of negation. VTCL,
like EMF Henshin, also supports transformations of transformation rules. A
drawback of VIATRA2 is that non-standards are used for specifying metamod-
els, models, and transformations, and the lack of integration with other tools.
Importers and exporters for XMI models are planned, as well as importers for
QVT transformations, but have been since the original project plan and do not
exist yet [46].

VMTS [24] is a visual modelling and model transformation tool that provides
a non-standard multi-level modelling framework in which (meta)models and
transformations can be specified. Model transformations can be specified in a
way similar to graph transformation rules, with a LHS and a RHS that contain
elements specified in the metamodel. Constraints for transformations can be
defined using OCL [31]. Models are stored in an XML-like way, but not conform
to the standard. VMTS does not offer import or export capabilities, so it cannot
be used on existing models.

AToM3 [44, 12] is a metamodelling and model transformation tool. With
it, it is possible to define a metamodel within the tool, after which an editor
is generated to create and transform instance models of this metamodel. It is
not based on any metamodelling standard and simple ER (Entity-Relation) di-
agrams are used to define metamodels, but it is possible to define metamodels
that simulate the MOF or EMF metamodelling standard. Model transforma-
tions are created in the generated instance editor using graph grammars with
transformation rules that have a LHS and a RHS. Constraints on the applicabil-
ity of rules can be specified in OCL [31] or using Python scripts. Their approach,
like ours, is to provide a means to transform instance models of a metamodel,
although their approach also supports exogenous model transformations. The
drawback of AToM3 is that it provides no integration with existing models and
that metamodelling is not conform to any standard, so it can only be used on
models created within the tool. Future support for exchangeability of models is
mentioned [12], but has not been implemented.

Tefkat [23], developed at the University of Queensland, is a tool that imple-
ments the model transformation language QVT [32]. It is an plugin for Eclipse
and operates on models specified using EMF. QVT is a textual and declarative
transformation language used to define bidirectional transformations of models.
Tefkat does not support in-place transformation of models, and instead pro-
duces a set of target models that are correct with respect to the transformation
specification in a QVT script. As a result of using QVT, all elements that must
be present in the target model, even when unchanged, must be mentioned ex-

114 Chapter 6. Related work

plicitly in the script [16]. This leads to scripts with a size related to the size of
the model and not to the delta of the transformation, so transformations with
a small delta can still lead to large scripts. Another limitation is that trans-
formation rules cannot depend on their own negation, ie. it is not possible to
create an element in the target model, but only if it does not exist yet [23].
Graph grammars are very suited to define such transformations. Because of
QVT, Tefkat is very suited to synchronize different models, but less suited to
perform unidirectional model to model transformations.

ATL [20] stands for ATLAS transformation language. It is a textual trans-
formation language with a declarative part similar to QVT, extended with an
imperative part, and a toolkit which is an based on the Eclipse framework.
It can be applied to QVT transformation scenarios. Models conform to one
metamodel can be transformed to models conform to another metamodel. The
transformation language of ATL is more expressive than QVT, but the tool still
suffers from the same drawback as Tefkat that transformation scripts get very
large. However, a so called refining mode exists, aimed to preserve unchanged
parts of the model. A comparison of ATL to other model transformation ap-
proaches also mentions the large size of transformation scripts and mentions
that the refining mode still has limitations [16].

CGT (Concrete syntax-based Graph Transformations) [16] is a new model
transformation approach by Grønmo et. al. Transformations on models are
specified with a graph transformation-like syntax with a LHS and RHS of a rule.
Rules have been extended with a so called collection operator, which can be used
to match several elements in the LHS of a rule, and combine them in the RHS of
the rule using a concrete syntax. With this approach, complex transformations
on models are shorter and more intuitive than similar implementations using
the graph transformation tool AGG [40, 16] or the model transformation tool
ATL [20, 16]. Their approach is still a proof of concept, and the implementation
is hard coded to only work with activity diagrams.

GReAT is a tool that generates model transformation tools [11]. Given
a source and target metamodel, graph transformation rules and flow control,
the tool generates Java code. This code in turn can be executed to perform
model transformations from models that are instances of the source metamodel
to models that are instances of the target metamodel. Models must be in
XMI format, although no specifics can be found of which tools are compatible.
Transformation rules have to be defined in a custom textual format.

AutoFOCUS [37] is an approach to transform EMF Ecore models that uses
a declarative specification of transformation rules, using a PROLOG rule-based
mechanism. The implementation is a proof of concept that does not work with
all features of EMF Ecore models, advanced features like multi-valued or ordered
attributes are not supported yet.

Other work exists that aim to bring models and metamodels to the world
of graph grammars and graph transformations. Recently, Kleppe and Rensink
described how to formalize UML class diagrams by representing such diagrams
as typed graphs [21]. Their work is rather complete, but some features like
ordered are missing, and it does not fully apply to EMF Ecore models. Like

115

us, they concluded that class diagrams cannot be represented by simply typing
graphs, and that constraints are required. Kuske et. al. describe a graph based
semantics for UML models in general, and how graph transformation principles
can be used to simulate and verify UML models [22]. Only core elements of UML
models have been discussed however, advanced features have been left for future
work. Perez et. al. discusses the suitability to use graph transformation tools
for refactoring of models that represent JAVA programs [35]. They map model
elements to graphs using examples, but no complete mapping is given, and they
provide no real conclusions. Clan morphisms are a formalism for type graphs
introduced to bring the concept of class inheritance to graph transformation
systems [4]. Finally, some older work already mentioned approaches and ideas
to use graph grammars as a visual language for object oriented systems [5]. It
particularly mentions the application of graph transformation to those visual
languages.

116 Chapter 6. Related work

117

Chapter 7

Conclusion and future work

Contribution

The goal of our work was to add interoperability with modelling tools to
GROOVE. We have achieved that GROOVE can import and export Ecore mod-
els and instance models using XMI. Ecore models are represented as graphs, for
which we created a full Ecore to graph mapping. To make our work applicable
in practice, we implemented a transformation tool that can transform Ecore
models and instance models to graphs, and instance graphs back to instance
models.

We use XMI [30] for model exchange to and from GROOVE. We performed
an extensive research with an experiment to determine the compatibility of tools
that support XMI for model exchange. The goal of this was to choose the set
of tools we want GROOVE to exchange models with, and of which modelling
standard these models should be. We conclude that model exchangeability using
XMI is very poor. In some cases models from another tool cannot be imported
at all, and in many cases models are imported with errors. Exchanging UML 2.1
models using XMI 2.1 led to more, and more serious problems than exchanging
UML 1.4 models using XMI 1.2. In our opinion, exchangeability problems when
exchanging UML models using XMI are mostly the result of the complex nature
of UML and the generic nature of XMI. Ecore models have a native serialization
format of XMI 2.0, and the tools that support Ecore models are able to exchange
models without major problems. Based on these results, we chose to connect
GROOVE to Ecore modelling tools.

We defined a complete mapping of Ecore to GROOVE, and discussed every
element and property of the Ecore metamodel. Our mapping supports features
often not supported by other approaches, like multi-valued attributes, ordered
and opposite references and identifiers. We discussed their impact on instance
models and how they should be represented in a graph representation. The
graph representations of Ecore models and instance models are specifically tar-
getted to the feature set of GROOVE. Ecore models are represented by a type
graphs and constraint rules, instance models are represented by instance graphs.

118 Chapter 7. Conclusion and future work

Some properties of instance graphs cannot be enforced by typing and are instead
enforced by constraints. Constraint rules are graph transformations rules that
only detect constraint violations and do not alter the graph. When no constraint
rule has a match in an instance graph, and if the instance graph is correctly
typed, it validly represents an Ecore instance model and can be transformed
back to one.

Finally, we implemented a Java transformation tool as a package in the
GROOVE project to transform Ecore models and instance models to graph
grammars with a type graph, instance graphs and constraint rules. The instance
graphs in the graph grammars can, given also the Ecore model and only when no
constraints are violated, be transformed back to Ecore instance models. With
our mapping from Ecore models to graphs and the transformation tool that
works in both directions, GROOVE can be used as a transformation tool for
instances of Ecore models.

Evaluation of our work

An XMI compatibility research like ours has to our knowledge not been per-
formed and published before, even though the apparent need. Some model
transformation approaches [46, 45, 38, 27] and many modelling tools [18, 42,
26, 25, 43, 34, 3, 15, 9] use XMI to provide compatibility, but fail to report if
and to what degree they are truly compatible. Online experiences indicate that
model exchange is often not possible without errors. With our research, we were
able to confirm that tools can rarely exchange UML models using XMI without
errors and that exchanging Ecore model using XMI 2.0 led to the best results.

However, we only confirmed the poor exchangeability, but we did not deter-
mine the reasons for this. We believe the reasons are the complex nature and
the different versions of UML and the generic nature of XMI. Our beliefs are
based on our results and on examples we found, but we did not perform further
research to confirm them.

Our mapping of Ecore models and instance models to graphs representations
supports all features of Ecore modelling that are of importance for the structure
of Ecore instance models. Furthermore, all choices in our graph representation
are supported by GROOVE. Other work to define graph-based semantics for
UML or Ecore models [21, 22, 35, 8, 5, 4] are often not complete or do not take
the capabilities of a target graph transformations tool into consideration. Only
with our approach is it possible to transform Ecore models to type graphs and
Ecore instance models to instance graphs, and also transform instance graphs
back to Ecore instance models.

We were forced to make some counterintuitive choices to represent Ecore
models and instance models. References and attributes are represented by a
node type with an edge to the target or value. By representing a reference
as an edge, like other approaches [21, 22, 8, 1], it would not be possible to
support ordered or opposite references. Also, by representing an attribute as an
attribute of the node representing the containing class it would not be possible
to support multi-valued and ordered attributes. The additional nodes that

119

represent references in instance graphs are ordered with next edges, imposing
a local ordering of elements for this reference, and the same for attributes.
Additionally, multiplicities of references and attributes are currently enforced
with constraint rules instead of by the type graph, because GROOVE does not
support multiplicities in type graphs. A more intuitive approach would be to
use multiplicities in type graphs to limit the amount of allowed instances of
nodes or edges in instance graphs.

The benefit of our choices is that all features of Ecore modelling that are
part of the structure of instance models are supported. Furthermore, the graph
representations are supported by a graph transformation tool, GROOVE. The
drawback is that the nodification introduced by representing references and at-
tributes as node types is counterintuitive for the graph representations, and this
complicates graph transformation. We however believe that the benefits out-
weigh the drawback, since instance models can now be transformed to instance
graphs, transformed in GROOVE, and transformed back without losing any
information. This is not possible with other approaches.

Two features of Ecore modelling, operations and annotations, are not part of
the structure of instance models. Therefore they are not supported in our graph
representation of instance models. However, they can indirectly still have some
influence on instance models, but it is not possible to support them. Operations
defined in an Ecore model are often used to change instance models, for exam-
ple to change attribute values, instantiate new elements or delete elements. If
an operation changes an instance model, it could be possible to devise a graph
transformation rule, or a set of rules, to achieve the same transformation in the
instance graph representation. However, operations have no semantics specified
for them in Ecore models. Semantics will have to be added in some way, using
Java code or otherwise, to make a translation from operations to graph transfor-
mation rules possible. Annotations of elements are textual comments without
semantics. They are sometimes used to denote constraints for valid instance
models. For example, the Ecore metamodel uses annotations for constraints on
valid Ecore models. Since these constraints have no semantics, it is not possible
to create constraint rules to detect violations.

Generic types are also not supported. Generic classes and generic operations
are not part of the structure of instance models and therefor do not need a
representation. Generic datatypes are not serializable by EMF. Therefore values
of them are not supported in Ecore instance models, and hence also not by our
graph representation. This is a limitation of EMF.

At the moment, our approach can only be used to perform endogenous
model transformations using GROOVE. Ecore instance models imported into
GROOVE can be transformed to other models, but must always be instances of
the same Ecore model. GROOVE supports multi-typing of graphs, where mul-
tiple active type graphs are merged. It could be possible to use GROOVE for
exogenous model transformations by using a source and target Ecore model that
are represented by a source and target type graph. The source instance graph
must then by typed by the source type graph and the target instance graph by
the target type graph. Intermediate instance graphs during the transformation
must then be typed by the merged source and target type graph.

120 Chapter 7. Conclusion and future work

We implemented a Java transformation tool to transform Ecore models and
instance models to graphs and instance graphs back to instance models. Ecore
models and instance models are loaded and created using the API provided by
the Ecore packages of the EMF project [42] so that we did not have to write
our own XMI importer/exporter and could focus on the transformation itself.
This means however that our approach does not easily extend to support XMI
files containing UML models created by other tools. In order to support other
modelling standards in the future, our transformation tool cannot be reused to
import or export models of that standard that were serialized using XMI.

With our mapping from Ecore models to graphs and the transformation tool
that works in both directions, GROOVE can be used as a transformation tool
with verification and simulation features for instances of Ecore models. With
the transformation tool we developed, our approach can be used in practice,
and does not remain an on-paper idea.

Future work

We confirmed that model exchangeability using XMI is poor, and we believe
the reasons for this are the complex nature of UML and the generic nature
of XMI. Whether these are indeed the reasons will have to be investigated.
Whether tools correctly implement the UML version they claim to support
must be determined, and the generated XMI files must be compared to each
other and to the XMI specification. Based on such an investigation, our beliefs
might be confirmed, or other reasons might be found. Suggestions and work to
improve model exchangeability between tools could then be done.

By representing references and attributes as node types instead of edges we
introduced nodification into the graph representation. The reason for this repre-
sentation is to support ordered and opposite references, and ordered and multi-
valued attributes. This nodification could be prevented by extending GROOVE
with a formalism to support ordered edges, for example by using hyper-edges
[13]. Supporting opposite references would still remain an issue this way, so a
solution would have to be found for this as well.

Multiplicities are currently not represented in type graphs, but violations of
multiplicities are detected with constraint rules. Some other graph transforma-
tion tools, like AGG [40] support multiplicities in type graphs, and something
like this could be implemented in GROOVE to more intuitively represent Ecore
models.

Operations can be used to specify changes to instance models. By adding se-
mantics to operations in Ecore models in some way, for example with Java code,
it could be possible to create transformation rules that mimic the behaviour of
operations. A suitable method to add semantics to operations will have to be
investigated. These semantics will then have to be translated to graph transfor-
mation rules for GROOVE. It might not be possible to translate all operations
to graph transformation rules, but what is possible and what is not will have to
be investigated.

121

We discussed textual constraints in annotations. They lack semantics and
cannot be translated to constraint rules for GROOVE that detect violations.
Some model transformation approaches use OCL [31] to define constraints for
valid models [12, 2]. If constraints in Ecore models would be added to annota-
tions in the form of OCL constraints, it might be possible to translate them to
constraints rules that detect violations. The applicability of this approach will
have to be investigated.

In order to extent our approach to handle exogenous model transformations,
multi-typing can be used for a source and target type graph for the source and
target model. These type graphs can then be merged to type intermediate
graphs during the transformation. The suitability of using merged type graphs
to type intermediate instance graphs will have to be investigated, as well as
how to deal with constraint rules to match constraint violations in intermediate
instance graphs.

Currently we import Ecore models and instance models, but do not use
diagram information. Ecore models can have diagrams that have layout infor-
mation of elements of the model. These diagrams can be used to layout type
graphs, instead of using the default forest layout of GROOVE. This way, the
type graph can more resemble the Ecore model it represents. In future work,
type graph layout using an Ecore model diagram could be implemented.

122 Chapter 7. Conclusion and future work

123

Bibliography

[1] Amelunxen, C., Klar, F., Königs, A., Rötschke, T., and Schürr,
A. Metamodel-based Tool Integration with MOFLON. In 30th Interna-
tional Conference on Software Engineering (New York, 05 2008), ACM
Press, ACM Press, pp. 807–810.

[2] Amelunxen, C., Königs, A., Rötschke, T., and Schürr, A.
MOFLON: A Standard-Compliant Metamodeling Framework with Graph
Transformations. In Model Driven Architecture - Foundations and Applica-
tions: Second European Conference (Heidelberg, 2006), vol. 4066 of Lecture
Notes in Computer Science (LNCS), Springer Verlag, pp. 361–375.

[3] Artisan. Artisan Studio. http://www.artisansoftwaretools.com/

products/artisan-studio/, July 2010.

[4] Bardohl, R., Ehrig, H., De Lara, J., and Taentzer, G. Integrating
meta-modelling aspects with graph transformation for efficient visual lan-
guage definition and model manipulation. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 2984 (2004), 214–228.

[5] Bardohl, R., Minas, M., Taentzer, G., and Schürr, A. Application
of graph transformation to visual languages. Handbook of graph grammars
and computing by graph transformation: vol. 2: applications, languages,
and tools (1999), 105–180.

[6] Biermann, E., Ehrig, K., Khler, C., Kuhns, G., Taentzer, G.,
and Weiss, E. Graphical definition of in-place transformations in the
Eclipse Modeling Framework. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 4199 LNCS (2006), 425–439.

[7] Biermann, E., Ermel, C., and Jurack, S. Modeling the ”Ecore to
GenModel” Transformation with EMF Henshin. In Transformation Tool
Contest (Malaga, 2010).

[8] Biermann, E., Ermel, C., Lambers, L., Prange, U., Runge, O.,
and Taentzer, G. Introduction to AGG and EMF Tiger by modeling
a Conference Scheduling System. International Journal on Software Tools
for Technology Transfer 12, 3 (2010), 245–261.

124 Bibliography

[9] Borland. Borland Together. http://www.borland.com/us/products/

together/index.html, July 2010.

[10] Buttner, F., and Gogolla, M. Realizing graph transformations by
pre- and postconditions and command sequences. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 4178 LNCS (2006), 398–413.

[11] Christoph, A. Describing horizontal model transformations with graph
rewriting rules. Lecture Notes in Computer Science 3599 (2005), 93–107.

[12] De Lara Jaramillo, J., Vangheluwe, H., and Moreno, M. A. Using
meta-modelling and graph grammars to create modelling environments.
Electronic Notes in Theoretical Computer Science 72, 3 (2003), 39–53.

[13] de Mol, M., and Rensink, A. On A Graph Formalism for Ordered
Edges. In Preliminary Proceedings of the Ninth International Workshop on
Graph Transformation and Visual Modeling Techniques (2010), pp. 2–13.
(to appear).

[14] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. Fundamentals
of Algebraic Graph Transformation. Springer-Verlag, 2006.

[15] Gentleware AG. Poseidon for UML professional edition. http://www.

gentleware.com/uml-software-pe.html, July 2010.

[16] Grønmo, R., Møller-Pedersen, B., and Olsen, G. K. Comparison
of three model transformation languages. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 5562 LNCS (2009), 2–17.

[17] GROOVE (GRaphs for Object-Oriented VErification). http:

//groove.cs.utwente.nl/, August 2010.

[18] IBM. Rational Software Architect Standard Edition. http://www-01.

ibm.com/software/awdtools/swarchitect/standard/, July 2010.

[19] ikv++ technologies AG. MediniQVT. http://projects.ikv.de/

qvt/, August 2010.

[20] Jouault, F., and Kurtev, I. Transforming models with ATL. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 3844 LNCS (2006), 128–
138.

[21] Kleppe, A., and Rensink, A. A Graph-Based Semantics for UML Class
and Object Diagrams. Centre for Telematics and Information Technology,
University of Twente, Enschede, January 2008.

[22] Kuske, S., Gogolla, M., Kreowski, H., and Ziemann, P. Towards an
integrated graph-based semantics for UML. Software and Systems Modeling
8, 3 (2009), 403–422.

125

[23] Lawley, M., and Steel, J. Practical declarative model transformation
with Tefkat. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
3844 LNCS (2006), 139–150.

[24] Levendovszky, T., Lengyel, L., Mezei, G., and Charaf, H. A sys-
tematic approach to metamodeling environments and model transformation
systems in VMTS. Electronic Notes in Theoretical Computer Science 127,
1 (2005), 65–75.

[25] Microsoft. Microsoft Visio. http://office.microsoft.com/en-us/

visio/, July 2010.

[26] Modeliosoft. Modelio Enterprise Edition. http://www.modeliosoft.

com/en/products/modelio-enterprise-edition.html, July 2010.

[27] Muliawan, O., and Janssens, D. Model refactoring using MoTMoT. In-
ternational Journal on Software Tools for Technology Transfer 12, 3 (2010),
201–209.

[28] Object Management Group. Meta Object Facility. http://www.omg.
org/mof/, August 2010.

[29] Object Management Group. Model Driven Architecture. http://www.
omg.org/mda/, August 2010.

[30] Object Management Group. MOF 2.0 / XMI Mapping Specification,
v2.1.1. http://www.omg.org/technology/documents/formal/xmi.htm,
August 2010.

[31] Object Management Group. Object Constraint Language (OCL).
http://www.omg.org/spec/OCL/2.2/, August 2010.

[32] Object Management Group. Query/View/Transformation (QVT).
http://www.omg.org/spec/QVT/1.1/Beta2/, August 2010.

[33] Object Management Group. Unified Modelling Languag. http://

www.uml.org/, August 2010.

[34] Pagès, B. BoUML. http://bouml.free.fr/, July 2010.

[35] Pérez, J., Crespo, Y., Hoffmann, B., and Mens, T. A case study to
evaluate the suitability of graph transformation tools for program refactor-
ing. International Journal on Software Tools for Technology Transfer 12,
3 (2010), 183–199.

[36] Rensink, A. The GROOVE Simulator: A Tool for State Space Genera-
tion. In Applications of Graph Transformations with Industrial Relevance
(AGTIVE) (Berlin, 2004), vol. 3062 of Lecture Notes in Computer Science,
Springer Verlag, pp. 479–485.

[37] Schätz, B. Formalization and Rule-Based Transformation of EMF Ecore-
Based Models. Software Language Engineering: First International Confer-
ence, SLE 2008, Toulouse, France, September 29-30, 2008. Revised Selected
Papers (2009), 227–244.

126 Bibliography

[38] Schippers, H., Van Gorp, P., and Janssens, D. Leveraging UML
profiles to generate plugins from visual model transformations. Electronic
Notes in Theoretical Computer Science 127, 3 (2005), 5–16.

[39] Schürr, A. Specification of graph translators with triple graph gram-
mars. In Graph-Theoretic Concepts in Computer Science, vol. 903 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1995, pp. 151–
163.

[40] Taentzer, G. AGG: A graph transformation environment for modeling
and validation of software. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 3062 (2004), 446–453.

[41] Taentzer, G., and Carughi, G. T. A graph-based approach to trans-
form XML documents, vol. 3922 LNCS. Springer, 2006.

[42] The Eclipse Foundation. Eclipse Modeling Framework Project. http:
//www.eclipse.org/modeling/emf/, July 2010.

[43] Tigris.org. ArgoUML. http://argouml.tigris.org/, July 2010.

[44] Vangheluwe, H., de Lara, J., and Mosterman, P. An introduction
to multi-paradigm modelling and simulation. In In Proceedings of the 2002
AI, Simulation and Planning in High Autonomy Systems (2002), pp. 9–20.

[45] Varró, D., and Balogh, A. The model transformation language of the
VIATRA2 framework. Science of Computer Programming 68, 3 (2007),
187–207.

[46] Varró,D. and Balogh,A. VIsual Automated model TRAnsforma-
tions. http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/

subprojects/VIATRA2/index.html, August 2010.

[47] Wagner, R. Developing Model Transformations with Fujaba. In Proc. of
the 4th International Fujaba Days 2006, Bayreuth, Germany (2006).

[48] World Wide Web Consortium (W3C). XSL Transformations (XSLT)
Version 1.0. http://www.w3.org/TR/xslt, August 2010.

