
1

Faculty of Science and Technology

Verifying GPGPU
Implementation of

Breadth-First Search
Algorithm

Bachelor Thesis

Jan Smits (s1860704)

Bachelor Assignment Committee
prof. dr. M. Huisman (Chairperson)

M. Safari (Daily Supervisor)
dr. N. Sikkel (External Member)

Faculty of Science and Technology
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

Harish’ Algorithm is the first GPGPU implementation of the Breadth-First Search al-
gorithm for graphs. This thesis focuses on verifying data race freedom and functional
correctness of Harish’ algorithm using VerCors, a tool to verify parallel and distributed
software developed at University of Twente. It was found beforehand that there are two
data race conditions present in Harish’s algorithm, which were resolved first. Method
contracts using pre- and postconditions and permissions for variables were used to im-
plement the fixed algorithm in PVL, the language used for VerCors, to verify data race
freedom successfully. For this a different data structure than used originally in Harish’s
algorithm was developed that focussed on graph edges instead of vertices. This was done
to help VerCors with verifying and also balances the total workload across all threads
for increased efficiency. Then this implementation was used as input for an attempt to
verify functional correctness using first a recursive path finding algorithm, and secondly
operations and ghost variables. Both attempts failed and due to time constraints no
further progress was made. Finishing this by introducing lemmas or a different data
structure is recommended as future work.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Contributions . 3

2 Background 4
2.1 VerCors and PVL . 4
2.2 GPGPU . 6
2.3 Graphs . 7
2.4 Approach . 8
2.5 Glossary . 9

3 The Algorithm 10
3.1 Workings . 10
3.2 Data Race . 12

3.2.1 Condition 1 . 12
3.2.2 Condition 2 . 13

3.3 Correction . 14

4 Data Race Freedom 15
4.1 Initial attempt . 15
4.2 Different Graph Data Structure . 19
4.3 Adding 1 Flag . 21
4.4 Adding 2 Flags . 22
4.5 Adding 3 Flags . 23

5 Functional Correctness 25
5.1 Definitions . 25

5.1.1 Graph . 25
5.1.2 Path . 26
5.1.3 Reachability . 26
5.1.4 Neighbours . 27

5.2 Shortest Path Algorithm . 27
5.2.1 Recursive Algorithm . 27
5.2.2 getMinCost . 29
5.2.3 BFS and Main . 30
5.2.4 Result . 31

5.3 Reverse Strategy . 31
5.3.1 Operations . 31
5.3.2 BFS with Ghost Variables . 34
5.3.3 Initial Results . 34
5.3.4 Using Two Flags . 36

6 Related Work 38

7 Conclusion and Future Work 39
7.1 Conclusion . 39
7.2 Future Work . 40

Bibliography 42

1

Chapter 1

Introduction

1.1 Motivation

Graph theory is the study of graphs, not to be confused with graphs of mathematical
functions. Graphs are depicted as networks of points connected by lines. In the context
of graph theory a point is called a vertex (plural vertices) and the lines edges. A graph
is a simple yet powerful method to describe a wide range of systems. They can represent
complex molecules, at which point isomorphism can be used to prove that two molecules
are the same. When planning the shortest route to your destination your navigation
system uses graph theory.
Many algorithms have been made for analysing graphs. The breadth-first search (BFS)
algorithm defines a source vertex and determines the minimum number of edges to reach
the source from any other vertex in the graph. It does this starting from the source,
and spreads out searching the graph in an even manner, hence the breadth part. Depth-
first search uses the same premise, but searches along a whole chain of vertices first,
before considering other neighbours of the source. These algorithms can be used to, for
example, determine a group of vertices that are all connected or to find the minimum
spanning tree in an unweighted graph.
Graph size can range into millions of vertices. When performing algorithms on such
graphs using conventional hardware on a CPU, the computation time can be exception-
ally long. This is because a sequential implementation of the algorithm is simply not
fast enough, and a conventional CPU is not optimised for parallel computing. Therefore
implementations of algorithms were made on a GPU. GPUs are specialised in parallel
computing since it is required for processing graphics. This can be used to accelerate
the algorithms for large graphs. The use of GPUs for purposes other than graphical
computation is called General Purpose GPU, or GPGPU. This way every vertex in a
graph can have its own dedicated thread, running a vertex-specific computation.
However, because of this parallel nature, special care must be taken when creating such
implementations. The order in which threads execute is not predetermined and thus
it should be verified that the outcome is independent of the order. In other words it
must be verified that there are no data race conditions. Performance of the algorithm

2

must also be considered. Workload imbalance between threads will negatively impact
the performance time [7]. Functional correctness, ensuring the algorithm provides the
correct result, must also be proven afterwards.
This thesis focuses on verifying data race freedom and functional correctness in a breadth-
first search algorithm implemented on Nvidia’s CUDA [1], called Harish’s algorithm. The
research question for this thesis is therefore; Is Harish’s algorithm free of data race
conditions, and is it functionally correct?
The paper in which Harish’s algorithm was published showed one of the first implemen-
tations of GPGPU algorithms. It gave a first look at the potential that GPGPU has
and also contains algorithms for single source shortest path and all pairs shortest path
in graphs.

1.2 Contributions

This project showed that the original BFS algorithm published by Harish et al ([1])
contains two data race conditions. In order to rectify this, a modified algorithm that
uses an atomic operation and an comparison is proposed. It is then verified that this
algorithm does indeed not contain data race conditions. For this purpose an alternative
data structure is created. The work to verify functional correctness was started by for-
mally defining constructs from graphs like paths and neighbours. A recursive algorithm
to find all paths between two vertices is proposed to help verify functional correctness,
but attempts to verify the functionality of this failed. Next ghost variables used with
operations are introduced to the BFS algorithm, but verification failed thus far and is
left unfinished.

In the remainder of this thesis the background of this project is first explained in
chapter 2. Next Harish’s algorithm is described in detail and the two data race conditions
are addressed in chapter 3. Chapter 4 contains all work towards formally proving data
race freedom of the modified algorithm. In chapter 5 an attempt is made to verify
functional correctness. Finally chapter 6 shows related work and chapter 7 contains the
conclusions and describes future work.

3

Chapter 2

Background

2.1 VerCors and PVL

In order to formally verify data race freedom and functional correctness the VerCors
tool is used, developed by the Formal Methods and Tools research group at University
of Twente [2]. VerCors supports verification of software in multiple languages such as
Java, C and PVL. Prototypal Verification Language or PVL is a toy language created
for prototyping new features for VerCors. It is used in this thesis because internally all
code fed to VerCors is translated to PVL before verifying, so it contains all functional-
ity necessary and is more efficient. OpenCL, a commonly used framework for parallel
computing, would fit the requirements for this project, but the functionality necessary
for this project is not supported yet by VerCors.
When verifying programs, every method gets a contract. This contract will state what
is expected of the variables passed to the method and what the method ensures for the
return value. A contract consists of pre- and postconditions which come in the form of a
boolean expression. Preconditions will specify a property of the passed arguments while
postconditions specify properties of the return value.
Another key aspect of verification are resources. With this is meant the permission to
read from and write to variables. In PVL a thread will need permissions in order to
manipulate values. In order to use the value of a variable a thread will first need read
permission. When (re)assigning variables write permission is required. Read permission
for a variable can be given to multiple threads simultaneously, whilst write permission
for a variable can only be granted to one thread at a time. Write permission always
automatically implies read permission. The specifying of permissions is also done in the
method contract using pre- and postconditions, and they can be passed along to other
methods called.
Apart from the primitive data types like int and boolean, PVL supports arrays and
sequences amongst others. Arrays are declared like T[] var, where T is the type the
array uses. Sequences are written seq<T> var. Nested sequences are possible, to cre-
ate the concept of a matrix. While both arrays and sequences are ordered and allow
duplicate values, sequences are immutable where the content of arrays can be reassigned.

4

In PVL, for a thread to read from or write to an array, permission is needed, whilst for
sequences this is not necessary. When VerCors verifies code, it checks the contract of a
method. Based on the preconditions and the operations performed in the method Ver-
Cors will determine whether the postconditions and assertions present are not violated.
If they are, verification fails. Furthermore a thread may not access variables beyond
their permission. Any runtime error such as a negative or out of bounds index will also
cause the verification to fail.
Here follows a list of functions, specifications, constructs and their syntax in PVL used
in this thesis.

� requires expr - Used to state that expr is a precondition for the associated
method. expr must result in a boolean.

� ensures expr - Identical to requires but states a postcondition.

� context expr - Combines requires and ensures into one statement for the
same expression.

� invariant expr - Used before a method. Creates a context for this expression
and also ensures that it holds everywhere inside the associated method, such as
loops by adding the expression as loop_invariant.

� loop_invariant expr - Used before a loop to state that the expression is
preserved by the loop. This means that before and after each iteration of the loop
expr holds. During an iteration the expression does not need to hold.

� assert expr - Can be used in the body of a method to assert that expr is true.

� given T var - Used before a method declaration to state that a ghost parameter
of type T named var is given to the method.

� Perm(var, p) - Used to define the permission for the calling thread for var. p
is the level of permission. When it is 1, write (and read) permission is declared.
Any value between 0 and 1 gives read only permission. Alternatively write and
read can be used instead of numerical values for p.

� (\forall T var; range; expr) - Quantified expression that defines var of
type T, then states the range of var, and uses it in expr. Often used with arrays
or sequences to state a property. \forall* is used in the same way but for the
resource type, like permissions.

� (\exists T var; range; expr) - Quantified expression similar to \forall,
except this evaluates to true only if there exists a value for var in the range spec-
ified such that expr is true.

5

� invariant name(resources) {body} - Invariant block used in combination
with atomic blocks inside the body of the invariant. resources are the per-
missions and statements used during the associated atomic operation, referenced
using the identifier name.

� atomic(inv) {body} - Defines an atomic operation in the body, an operation
that is not interruptible by other threads, i.e. other threads only see the pre- and
post state of the operation. The resources (permissions and expressions) for the
operation are acquired from the invariant block inv.

� par name (iterator) {body} - Parallel block used to execute body in par-
allel. iterator holds an iterator with specified type, identifier and range that de-
fines the number of threads. Every thread will hold one of the values of interator
in the specified range.

� \old(expr) - Keyword that can be used to access the previous value of expr.
When used in a postcondition it refers to the value before calling the method.
When used in a loop it refers to the value of the previous loop iteration.

� \result - Keyword that can be used in postconditions to refer to the output of
a method.

� expr1 ==> expr2 An implication, only false if expr1 is true while expr2 is
false.

� expr ? expr1 : expr2 - Conditional expression. When epxr is true, expr1
is returned, otherwise expr2 is.

� head(seq) - Returns the first element in the given sequence.

� tail(seq) - Returns a sequence containing all elements in the given sequence
except the head, in the same order.

� pure - Used before a method declaration to indicate it is a pure method. This
means that the result of a method only depends on the passed arguments, and
these are not modified in any way, and the method has no side effects.

For loops are relatively new in PVL, and to ensure that no problems arise from using
new features, while loops are used exclusively in this thesis. More detailed information
on the syntax of PVL can be found on GitHub [3].

2.2 GPGPU

GPGPU, or General Purpose Graphics Processing Unit, is the use of GPU’s for general
computing. This is done because of the parallel nature of the hardware of GPU’s, which
consists of hundreds processing cores as compared to the tens of a CPU where general
computing conventionally takes place. In order to create and display graphics, a GPU

6

needs to have high parallel processing capabilities. A GPU can thus support thousands
concurrent threads [4]. Therefore algorithms that require large amounts of computing
can be implemented for parallel computation on a GPU. This way computation times
can be reached that otherwise require supercomputers [1].
GPGPU programs can be created in OpenCL or using Nvidia’s CUDA, which uses the
language C to implement algorithms for execution on GeForce GPU’s [4].
When executing GPGPU programs, the CPU or host will copy all required data to the
memory of the GPU or device. The copying of data and instructions from the host
to the device is a relatively slow process as is indicated in [12]. This is caused by the
hardware connection between the two, the PCI bus. The data includes the kernel, which
consists of the code that will be executed on the device. A kernel usually contains the
code normally found in the body of a loop. Instead of a loop iterator, each thread
executing the kernel has its own ID that is used in the kernel to perform ID specific
operations. In the context of graphs, the kernel can be a vertex specific operation, and
each thread represents one vertex, where the ID refers to the vertex number. When the
kernel terminates the result is copied from the device back to the host, where it can be
stored permanently or used further. A graph algorithm will perform many kernel calls
compared to other algorithms [12].

2.3 Graphs

On a basic level, graphs consist of vertices and edges, depicted as circles and lines
between those respectively. When concerning a directed graph, the edges appear as
arrows, showing a one-directional connection. Weighted edges have a certain cost or
weight associated with them, usually a positive integer. The degree of a vertex is equal
to the number of neighbouring vertices that vertex has.
Breadth-first search is an algorithm to traverse a graph from a starting point, the source
vertex. It is called breadth-first since all neighbours of the starting point are traversed
before the neighbours of the neighbours are, see figure 2.1. This is opposed to depth-first
search, which will traverse an entire branch starting at a neighbour and ending in dead
ends before the next neighbour is considered.
Breadth-first search can have many applications. In unweighted graphs it can find the
shortest path between the starting vertex and any other vertex [5]. It can also be used to
see if two vertices are connected or not, and to find all vertices that are connected to the
source vertex. More practical applications are in finding neighbouring nodes in peer to
peer networks, traversing social networks to find the ’distance’ between two people and
in navigation systems to find all neighbouring locations. In most of these applications
graphs are unweighted, directed and do not contain double edges, meaning there are no
two edges that have the same start and end vertex, or self loops; edges that start and
end at the same vertex. Therefore these properties are used in all graphs in this thesis.
Chapter 3 gives a more in-depth description of the specific breadth-first search algorithm
being verified in this thesis (Harish’s algorithm).

7

Figure 2.1: Order of traversal for BFS, where the top vertex is the source

2.4 Approach

In order to verify data race freedom and functional correctness, Harish’s algorithm must
be implemented in PVL. For this the workings of the algorithm must be understood in
detail first, which is described in chapter 3.
A data structure is needed in order to represent a graph in code. When verifying data
race freedom, this data structure is created with arrays, as opposed to sequences. This
is done because data race freedom is proven using permissions for the data structure.
Every thread will only receive the permissions they need according to the algorithm.
When verifying, the VerCors tool will check that none of the permissions are violated
at any time and that all the specifications hold. If that passes and the algorithm was
correctly implemented, it is proven to be data race free [6].
The approach for verifying functional correctness is very different. Beforehand data race
freedom must be proven. The desired result of the algorithm must first be determined.
Using pure methods, definitions can be created. These will define how for example
a graph or path is contained using the data structure. The implementation used for
verifying data race freedom is augmented with ghost variables. These are used to mimic
the workings of the algorithm using operations. The operations are present in code as
pure methods. Finally the resulting values of the ghost variables are compared to the
results of the algorithm. If they match and VerCors verifies the code, the algorithm
works as intended.

8

2.5 Glossary

Many technical terms or abbreviations are used in this thesis. They are defined here in
the glossary or included to prevent confusion.

CPU - Abbreviation for Central Processing Unit.

GPU - Abbreviation for Graphics Processing Unit.

GPGPU - Abbreviation for General Purpose GPU, the use of GPUs for other pur-
poses than graphics.

BFS - Abbreviation for Breadth-First Search.

VerCors - The tool developed at University of Twente by the Formal Methods and
Tools research group to formally verify programs.

PVL - Prototypal Verification Language, a toy language developed for VerCors.

Kernel - The part of code that runs in parallel on the GPU during GPGPU.

Neighbour - By neighbour of a vertex is meant a vertex that is directly reachable
from the current vertex using a single edge.

Reverse neighbour - A vertex that can be reached from the current vertex by us-
ing a directed edge in the opposite direction. The current vertex is a neighbour of the
reverse neighbour.

Source vertex - The starting point used for BFS.

Flag - A boolean that is used to indicate a binary property for something.

Frontier - In the context of BFS, the vertices that are currently actively traversed.

Cost - In the context of BFS, it is the positive integer associated with a vertex that
indicates the number of edges required to reach that vertex from the source vertex.

Tail - The vertex that an edge is coming from.

Head - The vertex that an edge is going to. Not to be confused with the head of a
sequence, the first element of that sequence.

Definition - In the context of verifying functional correctness, a pure method that re-
turns a boolean stating whether the arguments passed satisfied the theoretical definition.

Operation - A pure method that can perform an operation using variables.

Reverse algorithm - The operations used in chapter 5 to perform a backwards version
of BFS. It considers reverse neighbours instead of normal neighbours.

9

Chapter 3

The Algorithm

3.1 Workings

The algorithm being verified is a breadth-first search algorithm designed for GPGPU
and is also known as Harish’s Algorithm [1]. As input it requires a directed graph G and
a source vertex S. As output all vertices in the graph will have an integer cost, equal to
the minimum number of edges needed to reach that vertex from the source vertex. The
algorithm consists of two parts. The first part runs on the host CPU, while the second
part is called by the first part and runs on the GPU. The second part is the kernel, and
is run for each vertex in parallel in the graph being analysed.

Part 1 of the algorithm; runs on the CPU

1 CUDA BFS(Graph G, Source Vertex S)
2 Create vertex array Va from all vertices and edge Array Ea from all edges in G.
3 Create frontier array Fa, visited array Xa and cost array Ca of size V.
4 Initialize Fa, Xa to false and Ca to ∞.
5 Fa[S] = true, Ca[S] = 0
6 while Fa not Empty do // outer while loop
7 for each vertex V in parallel do
8 Invoke CUDA BFS KERNEL(Va,Ea,Fa,Xa,Ca) on the grid. \\ execute the kernel on

GPU
9 end for

10 end while

Part 2 of the algorithm; the kernel; runs on the GPU

1 CUDA BFS KERNEL(Va,Ea,Fa,Xa,Ca)
2 tid = getThreadID // retrieve ID, which is uniquely linked to a vertex
3 if Fa[tid] then // when frontier flag is true, vertex can perform operation
4 Fa[tid] = false // set own frontier flag to false
5 Xa[tid] = true // current vertex has now been visited
6 for all neighbours nid of tid do // loop over neighbours using identifier nid
7 if NOT Xa[nid] then // if neighbour not yet visited
8 Ca[nid] = Ca[tid] + 1 // update the cost of the neighbour to 1 higher than

current vertex
9 Fa[nid] = true // frontier flag for neighbour enabled, for next iteration

10 end if

10

11 end for
12 end if

The algorithm uses two flags for each vertex, as well as an integer cost. The first flag,
called Fa in the pseudo code, is used to indicate whether a vertex is in the frontier. The
frontier consists of all the vertices that are currently being traversed by the algorithm.
The second flag, called Xa in the pseudo code, is used to indicate whether a vertex has
already been visited before. This flag is there so that the algorithm doesn’t reprocess old
vertices, which is unnecessary. Initially, the visited flag is set to false for all vertices, and
the frontier flag is only set to true for the source vertex, since that needs to be processed
first. The cost of the source vertex is by definition 0, and at first the cost of all other
vertices is set to infinity.
The outer while loop, line 6 of part 1, will run iterations of the kernel. It is not included
in the kernel so that each thread will have to wait until all threads have performed one
iteration before the next one starts. This prevents race conditions. During each iteration
the flags and costs are changed, and the while loop only terminates if there are no more
vertices with the frontier flag set to true.
In the kernel, the thread ID is used as an identifier for the corresponding vertex. First
a check is made to see if the vertex has the frontier flag enabled. If so, the frontier flag
is disabled, and the visited flag enabled. Then a loop checks each neighbouring vertex
to see if it has been visited before. If not, that vertex’ cost is set to one higher than the
cost of the current vertex, and the frontier flag is enabled for that neighbour, so it will
be processed in the same way in the next iteration.
The data structure in [1] to store the graph is an adjacency list and is also used here.
Since this algorithm only deals with directed graphs, every edge is only represented
once in an adjacency list. Memory space is limited on the GPU, so this makes it more
desirable than an adjacency matrix, where every edge is stored twice. The data structure
consists of two arrays Va and Ea. Va has length equal to the number of vertices plus
1, while Ea has length equal to the number of edges. Every index in Va corresponds to
a vertex, and the entry at that index is an index for Ea. Entries in Ea correspond to
vertices. For an example, see figure 3.1. Here all neighbours of vertex 1 can be found
by first looking in Va. The value at index 1 in Va is 2, and the next value is 3. This
means all neighbours of vertex 1 can be found in Ea starting at index 2 up to (but not
including) 3. Consequently vertex 1 has only one neighbour, the value at index 2 in Ea,
vertex 2, which matches the drawn graph. It is required to include an extra value at the
end of Va, so that this process also works for the last vertex. This value must then be
equal to the number of edges so that all the neighbours of the last vertex are the last
values of Ea.

11

Figure 3.1: Example of the adjacency list data structure being used

3.2 Data Race

Unfortunately there are data race conditions present in the previously described algo-
rithm. Since the order of execution of threads is not constant, there are two things that
can go wrong.

3.2.1 Condition 1

Figure 3.2: Example of first data race condition in Harish’s BFS

In figure 3.2 a graph is seen after the first iteration of the kernel. The thread for vertex
S (the source or start vertex) has set the cost and flags of vertices 1 and 2 correctly. In
the upcoming iteration the threads for vertices 1 and 2 will be active. Note that vertex

12

2 is a neighbour of vertex 1. This means that should vertex 1 finish the kernel operation
before vertex 2, the cost for vertex 2 would be set to 2, since the visited flag is still false.
This is incorrect since the cost for vertex 2 should be 1. In the next iteration this fault
would be carried to vertex 3. The problem here is that the algorithm only checks if the
neighbours of a vertex are already visited, and not if they are currently in the frontier
as well.
An easy solution for this problem would then be to not only check that the visited flag
is false, but do the same for the frontier flag. However, with this solution in place the
second data race condition still applies.

3.2.2 Condition 2

Figure 3.3: Example of second data race condition in Harish’s BFS

It is assumed that the first data race condition has now been fixed in the manner de-
scribed above. Figure 3.3 shows an example of the second data race condition. Much
like figure 3.2 only 1 (correct) iteration of BFS has been performed here. This means
that vertices 1 and 2 have the frontier flag set to true. The data race condition will
occur in vertex 4. In the next iteration, vertices 1 and 2 will set the cost and frontier
flag of vertex 3 and 4 respectively. However, the fact that the frontier flag for a vertex
is false does not mean that there is no thread running for that vertex. The only thing
that thread would do then is check for the frontier flag and, since it is false, terminate.
If vertex 1 manages to set the frontier flag for vertex 3 to true before vertex 3 starts
executing, then vertex 3 will also run the full algorithm in this iteration. If this were to
happen then vertex 2 and 3 would contend for vertex 4. Since the cost of vertex 2 and 3
would not be the same, several things can happen. Vertex 3 can set the cost of vertex 4
to the wrong value of 3, and before the frontier flag is set to true vertex 2 can then also
set the cost of vertex 4, since the frontier flag is still false. The final cost value would

13

then be 2, which is correct. However it is also possible for a similar execution where
vertex 3 sets the cost last, which would mean that the value would be 3. The problem
here is that there is nothing stopping threads from interrupting each other when the
same vertex is concerned. Checking whether or not the frontier flag is set to true for the
neighbour vertex does not help in this case, since one thread can pass the check before
the other thread can set the flag correctly. A solution to both data race conditions is
presented in the next section.

3.3 Correction

There are two modifications that are needed to solve the data race conditions. First
a comparison of costs is introduced as extra condition. This states that the cost of a
neighbouring vertex will only be set if the cost of the current vertex plus 1 is lower than
the cost of the neighbour. In other words, the cost value can only decrease, not increase.
This will prevent vertices from setting the costs of their neighbours to an incorrect value.
With this comparison, the visited and frontier flag are no longer a necessity.
However the operation of updating the cost can still be wrongfully interrupted. The
second modification makes the operation atomic, meaning it can never be interrupted.

Modified kernel

1 tid = getThreadID
2 for all neighbors nid of tid do
3 atomic {
4 if Ca[tid] + 1 < Ca[nid] then
5 Ca[nid] = Ca[tid] + 1
6 end if
7 }
8 end for

Although no longer necessary, flags do increase the efficiency of the algorithm. Using the
modified kernel all neighbours will be checked regardless. This means the workload of a
single thread is directly related to the degree of the concerned vertex. Since after each
iteration all threads synchronise again, it can be assumed that the vertex with the highest
degree will take the longest to process and is therefore the bottleneck. Therefore if flags
are introduced again so that only the necessary vertices are processed the workload will
generally decrease, increasing efficiency.
The two above data race conditions are now no longer present. However, it cannot be
assumed that the modified kernel is data race free yet. The data race freedom of this
modified kernel is verified in chapter 4

14

Chapter 4

Data Race Freedom

4.1 Initial attempt

The first attempt of verifying data race freedom uses the modified kernel described at
the end of chapter 3, which does not have the data race conditions that were originally
present. The source code can be found on page 17-18. This section explains the workings
of this code.
In line 29 the method is declared and shows the arguments passed to the algorithm.
Integer V is equal to the number of vertices, while integer E is equal to the number of
edges. Integer arrays vertices and edges together form the adjacency list structure.
Integer array costs holds the cost data for every vertex. Lastly the integer source
represents the vertex number that is the starting vertex.
All preceding lines (lines 1-28) are method specifications for these variables. The require-
ments are used to specify the adjacency list data structure and its limits. The first 8
lines are invariants, which describe fundamental properties. None of the variables can be
null, V and E must be greater than 0 so that the graph is not empty, the source integer
must be a valid vertex number and the lengths of vertices, edges and costs must
match V and E. The length of vertices is 1 longer, since the adjacency list structure
requires that there always be a next value, including the last vertex.
As mentioned in Chapter 2, all edges in a graph are directed, there are no double edges
and no self loops. When these properties are applied to the data structure of arrays the
requirements on lines 20-23 emerge. Nested loops are required to access all the neigh-
bours of a vertex, for all vertices. To ensure there are no double edges, the elements in
edges are first sorted per vertex. Then no two consecutive elements can be the same.
This way no vertex can have another vertex as neighbour twice. When these properties
are combined it means that the vertex number of a neighbour must always be smaller
than the number of the next neighbour.
Lines 24-28 ensure that costs is correctly initialised. A high value of 1 billion is used
to reflect infinity. This number is sufficiently high enough, as it is assumed that the
number of vertices in a graph stays below that number.
In the method contract all permissions that are needed are declared. Since the graph is
not altered in any way in the algorithm, read-only permission is sufficient for vertices
and edges. For costs write permission is required, since in each iteration of the algo-
rithm the costs of vertices will change. In line 16-17 the read permission for edges is
declared. This is done on a neighbour basis using a nested loop, instead of a simple loop
over all the elements in edges, because in the algorithm the data will be accessed in a
similar way, and declaring the permission like that helps the VerCors tool with verifying.
In line 30 the boolean flag continue is initialised to true. In the pseudo-code of the
algorithm the outer while loop that runs on the CPU checks if there are still vertices

15

with the frontier flag set to true. Since this would require a loop to check all vertices
and would not fit in one line of code, this flag is used instead. In line 49, at the start of
each kernel iteration continue is set to false. The only way it can be set to true again
so that the next iteration executes is if a vertex finds a neighbour whose cost can still
be reduced. Then in line 94 continue is set to true again.
Line 31-47 lists all the loop invariants used for the outer while loop. These consist of
repeating the properties and permissions defined before the method, except costs now
is not initialised, but it is stated that the values are in between 0 and infinity.
The body of the outer loop starts by defining the resource invariant that is used in the
atomic operation, line 50-53. All permissions for and properties of costs are needed
for the atomic block and are thus included inside the invariant block. Although a thread
only needs access to a few vertices, permission for the costs of all vertices is used here.
On the GPU, when a thread runs the atomic block it will only use the permission for
the vertices necessary. Meanwhile any other thread can enter the atomic block, if there
is no overlap with another thread for the permissions needed. This way multiple threads
can enter the atomic block, else much of the parallel execution would have been lost.
The body of the invariant block contains the rest of the code.
Line 54 defines the parallel block that ensures the parallel execution of the kernel. An
integer tid is defined in the range from 0 to V, so that there is one thread per vertex. In
line 55-70 the contract for the parallel block is defined. These mainly follow the method
contract, except that these are now vertex specific, instead of graph wide. Every thread
only needs permission to read the current and next element in vertices, as seen in
line 77, since these are necessary to find all the neighbours. In line 85 this is used to get
read permission for all the elements in edges that contain neighbours. This way each
thread has all the permission it needs, and nothing more.
Line 72-98 contains the body of the parallel block. First two integers are defined for the
while loop that will loop over the neighbours of the current vertex. The same properties
and permissions are then declared as loop invariants for this loop. In each iteration of
the loop the atomic operation is performed. This consists of comparing the cost of the
current vertex plus 1 with the cost of the neighbouring vertex. If that is the case the
cost of the neighbour is set to the cost of the current vertex plus 1. Then the flag for
the outer while loop is also set to true. Finally the loop iterator is incremented.

When VerCors tries to verify the above code, the verification process does not terminate.
This is because the tool cannot prove that the algorithm is correct, but cannot find a
counterexample to prove that it is incorrect either. Thus it keeps searching and finally if
kept running for long enough, the tool will give an out of memory error. It is speculated
that this is the fault of the data structure. It is possible that accessing the neighbours
of a vertex in the current data structure is too complex for VerCors. When looping over
the neighbours of a vertex, like in line 17, 19, 21 and 23, the nested loop uses elements
of vertices as range, which means the tool first needs to read from vertices and
check that the thread has permission to do so. It is uncertain whether this is the cause
of the problem, but for the next attempt a new data structure is used to see if this helps.

16

Source code of initial attempt

1 invariant V > 0 && E > 0;
2 invariant source >= 0 && source < V;
3 invariant vertices != null;
4 invariant edges != null;
5 invariant costs != null;
6 invariant vertices.length == V + 1;
7 invariant edges.length == E;
8 invariant costs.length == V;
9 //Vertices

10 context (\forall* int i; 0 <= i && i <= V; Perm(vertices[i], read));
11 context (\forall int i; 0 <= i && i < V; vertices[i] >= 0 && vertices[i] < E);
12 context vertices[0] == 0;
13 context vertices[V] == E;
14 context (\forall int i; 0 <= i && i < V; vertices[i] <= vertices[i+1]);
15 //Edges
16 context (\forall* int i; 0 <= i && i < V;
17 (\forall* int j; vertices[i] <= j && j < vertices[i + 1]; Perm(edges[j], 1/2)));
18 context (\forall int i; 0 <= i && i < V;
19 (\forall int j; vertices[i] <= j && j < vertices[i + 1]; edges[j] >= 0 && edges[j] < V));
20 context (\forall int i; 0 <= i && i < V;
21 (\forall int j; vertices[i] <= j && j < vertices[i + 1]; i != edges[j])); // not self-loop
22 context (\forall int i; 0 <= i && i < V;
23 (\forall int j; vertices[i] <= j && j < vertices[i + 1] - 1; edges[j] < edges[j + 1])); // no double edges
24 //Costs
25 context (\forall* int i; 0 <= i && i < V; Perm(costs[i], write));
26 requires (\forall int i; 0 <= i && i < source; costs[i] == 1000000000); // initializations
27 context costs[source] == 0; // initializations
28 requires (\forall int i; source < i && i < V; costs[i] == 1000000000); // initializations
29 void Host_BFS(int V, int E, int[] vertices, int[] edges, int[] costs, int source) {
30 boolean continue = false;
31 loop_invariant (\forall* int i; 0 <= i && i <= V; Perm(vertices[i], read));
32 loop_invariant (\forall int i; 0 <= i && i < V; vertices[i] >= 0 && vertices[i] < E);
33 loop_invariant vertices[0] == 0;
34 loop_invariant vertices[V] == E;
35 loop_invariant (\forall int i; 0 <= i && i < V; vertices[i] <= vertices[i+1]);
36 loop_invariant (\forall* int i; 0 <= i && i < V;
37 (\forall* int j; vertices[i] <= j && j < vertices[i + 1]; Perm(edges[j], 1/2)));
38 loop_invariant (\forall int i; 0 <= i && i < V;
39 (\forall int j; vertices[i] <= j && j < vertices[i + 1]; edges[j] >= 0 && edges[j] < V));
40 loop_invariant (\forall int i; 0 <= i && i < V;
41 (\forall int j; vertices[i] <= j && j < vertices[i + 1]; i != edges[j])); // not self-loop
42 loop_invariant (\forall int i; 0 <= i && i < V;
43 (\forall int j; vertices[i] <= j && j < vertices[i + 1] - 1; edges[j] < edges[j + 1])); // no double

edges
44 loop_invariant (\forall* int i; 0 <= i && i < V; Perm(costs[i], write));
45 loop_invariant (\forall int i; 0 <= i && i < source; costs[i] > 0 && costs[i] <= 1000000000);
46 loop_invariant costs[source] == 0;
47 loop_invariant (\forall int i; source < i && i < V; costs[i] > 0 && costs[i] <= 1000000000);
48 while (continue) {
49 continue = true;
50 invariant inv((\forall* int i; 0 <= i && i < V; Perm(costs[i], write))
51 ** ((\forall int i; 0 <= i && i < source; costs[i] > 0 && costs[i] <= 1000000000)
52 && costs[source] == 0
53 && (\forall int i; source < i && i < V; costs[i] > 0 && costs[i] <= 1000000000))) {
54 par Device_BFS (int tid=0..V)
55 context Perm(vertices[tid], read) ** Perm(vertices[tid + 1], read);
56 context vertices[tid] >= 0 && vertices[tid] < A;
57 context tid != V - 1 ==> vertices[tid + 1] >= 0 && vertices[tid + 1] < A;
58 context tid == 0 ==> vertices[tid] == 0;
59 context tid == V - 1 ==> vertices[tid + 1] >= 0 && vertices[tid + 1] == A;
60 context vertices[tid] <= vertices[tid + 1];
61 context (\forall* int j; vertices[tid] <= j && j < vertices[tid + 1]; Perm(edges[j], 1/2));
62 context (\forall int j; vertices[tid] <= j && j < vertices[tid + 1]; edges[j] >= 0 && edges[j] < V);
63 context (\forall int j; vertices[tid] <= j && j < vertices[tid + 1]; tid != edges[j]);
64 context (\forall int j; vertices[tid] <= j && j < vertices[tid + 1] - 1; edges[j] != edges[j + 1]);
65 {
66 int start = vertices[tid];
67 int end = vertices[tid + 1];
68

69 loop_invariant start <= end;
70 loop_invariant tid >= 0 && tid < V;
71 loop_invariant Perm(vertices[tid], read) ** Perm(vertices[tid + 1], read);
72 loop_invariant vertices[tid] >= 0 && vertices[tid] < A;
73 loop_invariant tid != V - 1 ==> vertices[tid + 1] >= 0 && vertices[tid + 1] < A;
74 loop_invariant tid == 0 ==> vertices[tid] == 0;
75 loop_invariant tid == V - 1 ==> vertices[tid + 1] >= 0 && vertices[tid + 1] == A;
76 loop_invariant vertices[tid] <= vertices[tid + 1];

17

77 loop_invariant start >= vertices[tid] && start <= vertices[tid + 1];
78 loop_invariant end == vertices[tid + 1];
79 loop_invariant (\forall* int j; vertices[tid] <= j && j < vertices[tid + 1]; Perm(edges[j], 1/2));
80 loop_invariant (\forall int j; vertices[tid] <= j && j < vertices[tid + 1]; edges[j] >= 0 && edges[j

] < V);
81 loop_invariant (\forall int j; vertices[tid] <= j && j < vertices[tid + 1]; tid != edges[j]);
82 loop_invariant (\forall int j; vertices[tid] <= j && j < vertices[tid + 1] - 1; edges[j] < edges[j +

1]);
83 while (start < end) {
84 atomic(inv) {
85 if(costs[tid] + 1 < costs[edges[start]]) {
86 costs[edges[start]] = costs[tid] + 1;
87 continue = true;
88 }
89 }
90 start = start + 1;
91 }
92 }
93 }
94 }
95 }

18

4.2 Different Graph Data Structure

In order to try to help VerCors, a different data structure is used in the second approach
to verify data race freedom. Instead of the adjacency list structure described in chapter
3 now two arrays with a length equal to the number of edges is used, E1 and E2. Since
edges are directed, each edge has a tail and head, the vertex the edge comes from and
goes to respectively. E1 is used to hold the tails of all edges, whilst E2 holds all the
heads. The elements in the arrays correspond to vertex numbers. This way two elements
at the same index in E1 and E2 describe a single edge. Like figure 3.1, an example is
given.

Figure 4.1: Example of the Edge lists data structure

For example the edge between vertex 1 and 2 is stored at index 3 in both arrays. In
E1 the tail, vertex 1, is stored there, while in E1 the head, vertex 2 is stored there. The
order in which edges are stored in this data structure is random. This is done because
there is no advantage to any order, and there is no logical ordering in the first place.
With this new data structure the algorithm must also be modified. Finding all the
neighbours of a vertex now requires a searching process. Therefore, the algorithm should
no longer run one thread per vertex, but one thread per edge. That way every thread
can compare the costs of the tail vertex with the head vertex and act accordingly. The
costs array does not need to change for this. The source code for this approach can
be found on the next page. The overall structure is similar to the first attempt, but
modifications are made where the data structure is concerned. To ensure that there are
no self-loops there simply cannot be an index where E1 and E2 have the same vertex
number, line 14. Line 15-16 ensures there are no double edges. This is done with a
nested loop that states that if the tails of two edges are the same, the heads can only
be the same if it is the same edge. In other words, no two different edges must be the
same. Again only read permission is needed for E1 and E2. The outer while loop and
invariant block have mostly not changed. The parallel block now defines the integer tid
to range between 0 and E, ensuring every thread is linked to an edge using tid. In
the contract for the parallel block the double edges property is not repeated, because
it requires permission to read all elements of E1 and E2, but one thread only receives
access for one index. This does not pose a problem, since this property is also stated as
a loop invariant in line 32-33.
The body of the parallel block is now shorter, as there is no need to loop over all the
neighbours of a vertex. Instead the atomic operation compares the costs of the tail and
head of the concerned edge, and if the cost of the tail plus 1 is lower than the cost of the
head, the cost of the head is adjusted to the cost of the tail plus 1. Then the boolean
flag continue is set to true, which still functions like in the initial attempt.

19

Source code of second attempt

1 invariant V > 0 && E > 0;
2 invariant E1 != null;
3 invariant E2 != null;
4 invariant costs != null;
5 invariant source >= 0 && source < V;
6 invariant E1.length == E;
7 invariant E2.length == E;
8 invariant costs.length == V;
9 //Edges

10 context (\forall* int i; 0 <= i && i < E; Perm(E1[i], read));
11 context (\forall* int i; 0 <= i && i < E; Perm(E2[i], read));
12 context (\forall int i; 0 <= i && i < E; 0 <= E1[i] && E1[i] < V);
13 context (\forall int i; 0 <= i && i < E; 0 <= E2[i] && E2[i] < V);
14 context (\forall int i; 0 <= i && i < E; E1[i] != E2[i]); // no self-loops
15 context (\forall int i; 0 <= i && i < E; (
16 \forall int j; 0 <= j && j < E; i != j && E1[i] == E1[j] ==> E2[i] != E2[j])); // no double edges
17 //Costs
18 context (\forall* int i; 0 <= i && i < V; Perm(costs[i], write));
19 requires (\forall int i; 0 <= i && i < source; costs[i] == 1000000000);
20 context costs[source] == 0; // initializations
21 requires (\forall int i; source < i && i < V; costs[i] == 1000000000);
22 void Host_BFS(int V, int E, int[] E1, int[] E2, int[] costs, int source) {
23 boolean continue = true;
24

25 //Edges
26 loop_invariant (\forall* int i; 0 <= i && i < E; Perm(E1[i], read));
27 loop_invariant (\forall* int i; 0 <= i && i < E; Perm(E2[i], read));
28 loop_invariant (\forall int i; 0 <= i && i < E; 0 <= E1[i] && E1[i] < V);
29 loop_invariant (\forall int i; 0 <= i && i < E; 0 <= E2[i] && E2[i] < V);
30 loop_invariant (\forall int i; 0 <= i && i < E; E1[i] != E2[i]); // no self-loops
31 loop_invariant (\forall int i; 0 <= i && i < E; (
32 \forall int j; 0 <= j && j < E; i != j && E1[i] == E1[j] ==> E2[i] != E2[j])); // no double edges
33 //Costs
34 loop_invariant (\forall* int i; 0 <= i && i < V; Perm(costs[i], write));
35 loop_invariant (\forall int i; 0 <= i && i < source; 0 < costs[i] && costs[i] <= 1000000000);
36 loop_invariant costs[source] == 0;
37 loop_invariant (\forall int i; source < i && i < V; 0 < costs[i] && costs[i] <= 1000000000);
38 while (continue) {
39 continue = false;
40

41 invariant inv((\forall* int i; 0 <= i && i < V; Perm(costs[i], write))
42 ** ((\forall int i; 0 <= i && i < source; costs[i] > 0 && costs[i] <= 1000000000)
43 && costs[source] == 0
44 && (\forall int i; source < i && i < V; costs[i] > 0 && costs[i] <= 1000000000))) {
45

46 par Device_BFS (int tid = 0..E)
47

48 context Perm(E1[tid], read);
49 context Perm(E2[tid], read);
50 context 0 <= E1[tid] && E1[tid] < V;
51 context 0 <= E2[tid] && E2[tid] < V;
52 context E1[tid] != E2[tid]; // no self-loops
53 {
54 atomic(inv) {
55 if (costs[E1[tid]] + 1 < costs[E2[tid]]) {
56 costs[E2[tid]] = costs[E1[tid]] + 1;
57 continue = true;
58 }
59 }
60 }
61 }
62 }
63 }

20

The efficiency of this approach is better compared to using threads for vertices. Every
thread now has the same workload since only one comparison of costs is made per edge.
The total workload is now balanced and spread over more threads. This way the parallel
nature of a GPU is better utilised.
Contrary to the initial attempt, VerCors does verify this code. This could mean that
using the new data structure did help VerCors with verifying. Since functionally both
attempts are assumed to be the same, this means that the basic BFS algorithm is verified
to be data race free. Of course the functional correctness of this approach must still be
verified, which is attempted in chapter 5.
The remainder of this chapter focuses on adding flags to the verified algorithm. Doing
this will not increase efficiency, since every thread already has very little work to do and
there is no apparent bottleneck when it comes to the workload of all threads. In fact the
adding of flags could decrease performance because of the extra need to read and write
to memory for the flags. However this was realised only after they were already added.
For the sake of this work the results are still included here (and it is used in chapter 5).

4.3 Adding 1 Flag

First one flag is added. This flag will serve a similar purpose to the frontier flag described
in chapter 3. It will still be linked to a vertex, so that a thread for an edge will only
compare costs if the tail vertex has this flag enabled. Initially only the source vertex will
have the flag set to true, so in the first iteration all edges coming from the source vertex
will be active. In order to add this flag to the source code, it requires write permission
and needs to be initialised in the method contract to be false for all vertices except the
source vertex. Then the permission is carried into the while loop with a loop invariant.
The flag is set in the atomic block, so the permission to do so is also included in the
invariant block. Then the atomic block is modified to only compare costs if the flag of
tail of the edge is true. If the cost of the head vertex is adjusted, the flag for this vertex
is also set to true, so that in the next iteration the adjustment can be carried further.

The atomic operation using one flag

1 atomic(inv) {
2 if (flag[E1[tid]]) {
3 if (costs[E1[tid]] + 1 < costs[E2[tid]]) {
4 costs[E2[tid]] = costs[E1[tid]] + 1;
5 flag[E2[tid]] = true;
6 continue = true;
7 }
8 }
9 }

VerCors verifies the source code with this flag added. However, because a vertex can
have multiple outgoing edges, the flag for a vertex cannot be set to false again at the
end of the atomic operation. If this were to happen there exists a chance that the flag
is set to false before other outgoing edges that rely on the same flag can compare costs,
thus losing functionality. Therefore the flag must remain true for the rest of the runtime.

21

This means that once a thread has compared costs for the first time, it will continue
to do so in every iteration afterwards, despite the fact it is no longer necessary. Thus
the flags of all the vertices connected to the source will turn true, and afterwards the
algorithm terminates.

4.4 Adding 2 Flags

The problem with using only one flag is that both reading from the flag and writing to
the flag happens for the same variable. This problem can be solved by introducing a
second flag. Now the first flag can be used by threads to read from to see whether they
need to compare costs, whilst the second flag can be written to so that threads compare
costs in the next iteration. In this way the first flag can be seen as a representation of
the frontier flag in the current iteration, whilst the second flag contains the frontier flag
for the next iteration.
In order to use the data contained in the second flag in the next iteration, it must be
copied to the first flag beforehand. Then the second flag must be reset so that it can be
used in the next iteration to store the flags for the iterations after that. For this purpose
a second parallel block is introduced that runs after the first parallel block.

Parallel block to prepare the flags for the next iteration

1 par set_flags (int tid = 0..V)
2 invariant F0 != null;
3 invariant F0.length == V;
4 invariant F1 != null;
5 invariant F1.length == V;
6 context Perm(F0[tid], write);
7 context Perm(F1[tid], write);
8 {
9 F0[tid] = F1[tid];

10 F1[tid] = false;
11 }

Here F0 and F1 are the first and second flag accordingly. Both flags have a length equal
to V, so that is also the range used for the parallel block.

The atomic operation using two flags

1 atomic(inv) {
2 if (F0[E1[tid]]) {
3 if (costs[E1[tid]] + 1 < costs[E2[tid]]) {
4 costs[E2[tid]] = costs[E1[tid]] + 1;
5 F1[E2[tid]] = true;
6 continue = true;
7 }
8 }
9 }

The atomic block is very similar to the version with one flag, except now writing to the
flag happens for F1, whilst reading is done from F0. The permissions for both flags is
added similarly to the code as was done for the one flag. Write permission is required for
both flags since they need to be adjusted for each next iteration in the second parallel

22

block.
VerCors verifies the source code with two flags, so it is data race free. This version
seems more efficient than the one with only one flag, since the flags for threads can be
disabled again after comparison of costs. However the second parallel block does add an
inefficiency. As described in chapter 2, when a parallel block is executed, all necessary
data must be copied from the host to the device, a relatively slow process. With the
introduction of the second parallel block F0 and F1 must be copied to the memory of
the GPU a second time, which happens every iteration. This could cost more time than
is gained by using 2 flags instead of 1. A more efficient approach is possible with three
flags.

4.5 Adding 3 Flags

With the introduction of a third flag there is no need for a separate parallel block to
initialise flags for the next iteration. There are three stages for a flag. First it functions
as a read flag, so that threads can see whether they need to compare costs. Secondly
a flag can be written to so that it contains the data necessary for the next iteration.
Finally a flag can be reset, in other words all booleans are false. This happens after the
flag was written to and the data is copied to the read flag. These three stages can be
contained in three separate flags and with each iteration the function of each flag can
be rotated to the next. After three iterations each flag will perform the same function
again.

Figure 4.2: The rotational system of 3 flags

For this rotational system to work, there must be three parallel blocks where the

23

flags rotate functions inside one iteration of the outer while loop. Each parallel block
will then perform one iteration of BFS, so one iteration of the outer while loop will
perform 3 iterations compared to previous versions. In order to rotate functions, the
variable names are changed accordingly in each parallel block. These blocks can then
be contained within the body of the invariant block. For each flag write permission is
required, which is done in similar fashion as the code with two or one flags.

The atomic operation using three flags

1 atomic(inv) {
2 F2[E1[tid]] = false;
3 if (F0[E1[tid]] && costs[E1[tid]] + 1 < costs[E2[tid]]) {
4 costs[E2[tid]] = costs[E1[tid]] + 1;
5 F1[E2[tid]] = true;
6 continue = true;
7 }
8 }

First in the atomic blocks the elements in the reset flag are set to false, line 2. Then the
atomic blocks combine the checking of the read flag and the comparison of costs into one
if statement, line 3. This does not impede the efficiency, since the if statement requires
both conditions to be true and if the read flag is false the comparison no longer needs
to be checked. In line 5 the write flag is used. The actual flag number, F0, F1 or F2 is
changed for these lines in the other two atomic blocks.
VerCors also verifies this approach. There is no need to copy memory from the host to
the GPU in between execution of parallel blocks, as the data at the end of one block
equals the data at the start of the next block. Alternatively just one parallel block
could be used with barriers. The barriers function as points in the execution where all
threads synchronise again, so one can be added after each atomic block. With each
barrier specifications and permissions must then be reassigned. This approach has not
been verified in this project.

24

Chapter 5

Functional Correctness

5.1 Definitions

In order to verify functional correctness of the BFS algorithm, the version that was
verified by VerCors to be data race free in chapter 4, without flags, is used. This
means that the data structure depicted in figure 4.1 is used here as well. The first
step in verifying functional correctness is to formally write down several definitions in
the context of graphs. These are contained in pure methods that return a boolean to
indicate whether the arguments passed qualify for the definition. Sequences are used here
instead of arrays, as arrays always require permissions to use, and although sequences
cannot be edited, that is not necessary here.

5.1.1 Graph

First the definition of a graph itself is made, based on the data structure described in
figure 4.1. A graph should be directed, have no self-loops or double edges, and should
contain at least one vertex and edge.

Definition of a graph

1 pure boolean Graph(int V, int E, seq<int> E1, seq<int> E2) =
2 V > 0 && E > 0 && |E1| == E && |E2| == E &&
3 (\forall int i; 0 <= i && i < E; //loop over edges
4 (0 <= E1[i] && E1[i] < V) && //valid vertex numbers
5 (0 <= E2[i] && E2[i] < V) &&
6 E1[i] != E2[i] && // no self loops
7 (\forall int j; 0 <= j && j < E; (i != j && E1[i] == E1[j]) ==> E2[i] != E2[j])

); // no double edges

The arguments passed to this pure method are V, the number of vertices, E, the number
of edges and E1 and E2, that hold the data that describes the graph structure. In a
graph the length of E1 and E2 is equal to E. Note that to access the length of a sequence
in PVL, vertical bar characters are used, much like the cardinality of a set in set theory.
Elements in E1 and E2 are vertex numbers and therefore should fall between 0 and V.

25

The requirements for no self-loops and no double edges are copied from chapter 4. There
is no contract, as there are no pre- or postconditions that apply to the arguments.

5.1.2 Path

A path is defined as the possibility to travel or follow edges from vertex A to vertex B,
directly or indirectly. Since graphs are directed, paths are one-way. A path is stored as a
sequence of vertex numbers. The first number represents the starting vertex of the path.
The next number depicts a neighbour of the starting vertex that is used in the path.
The number after that is a neighbour of the previous number, etc. This repeats until
the last number which is the destination of the path. The definition of a path therefore
relies on the connection between elements in the sequence.

Definition of a path in the context of the graph structure

1 requires Graph(V, E, E1, E2);
2 pure boolean Path(int V, int E, seq<int> E1, seq<int> E2, seq<int> P) =
3 (|P| == 1 && 0 <= P[0] && P[0] < V)
4 ||
5 (|P| > 1 &&
6 (\forall int i; 0 <= i && i < |P|; 0 <= P[i] && P[i] < V) && //all numbers in P are

in bounds
7 (\forall int i; 0 <= i && i < |P|-1; //All vertices in P are connected
8 (\exists int j; 0 <= j && j < E; E1[j] == P[i] && E2[j] == P[i+1])) &&
9 (\forall int i; 0 <= i && i < |P|; //All vertices in P are unique / no revisiting

vertices in the path
10 (\forall int j; 0 <= j && j < |P|; i != j ==> P[i] != P[j])));

In order to check whether P is a path, the graph in which the path takes place must be
included. It is also required that this is a graph by definition. First the vertex numbers
in P must be between 0 and V. Next all vertices in the path must form a connected chain,
i.e. for every two consecutive elements there must exist an edge that connects them.
Lastly all vertices in the path must only occur once. This is done so that there exists a
finite number of paths between two vertices. Should there be a loop in the graph then a
path could use that to technically form an infinite number of unique new paths between
two vertices. This is prevented by this requirement. A path of length one is also allowed
as an edge case, provided that the vertex is valid.

5.1.3 Reachability

Once the definition of a path is done, reachability is not hard to define.

Definition of reachability

1 requires Graph(V, E, E1, E2);
2 requires 0 <= s && s < V;
3 requires 0 <= e && e < V;
4 pure boolean reachable(int V, int E, seq<int> E1, seq<int> E2, int s, int e) =
5 s == e || (\exists seq<int> P; Path(V, E, E1, E2, P); P[0] == s && P[|P|-1] == e);

A start vertex s and end vertex e are passed as arguments. The method returns true if
e is reachable from s. In other words, there should exist a path where the first element

26

is s and the last element is e. If s and e happen to be the same vertex, reachability is
trivially confirmed.

5.1.4 Neighbours

The next definition simply states whether two given vertices are neighbours.

1 requires Graph(V, E, E1, E2);
2 requires 0 <= s && s < V;
3 requires 0 <= e && e < V;
4 pure boolean isNeighbour(int V, int E, seq<int> E1, seq<int> E2, int s, int e) =
5 (\exists int i; 0 <= i && i < E; E1[i] == s && E2[i] == e);

Vertex e is a neighbour of vertex s if there exists an index for E1 and E2 where E1 is
equal to s and E2 to e. In other words, e is a neighbour of s if there exists and edge
from s to e.

5.2 Shortest Path Algorithm

The purpose of the BFS algorithm being verified is to determine the minimum number
of edges required to reach a vertex from the source vertex. Therefore, in order to verify
the functional correctness of the result, it must be proven that this is indeed the case.
Before ghost variables are introduced as described in chapter 2, this section tries to prove
this using paths. If all the possible paths from the source vertex to an arbitrary vertex x
can be found, then the shortest path from the source to x can be determined from that.
The length of the shortest path (read: number of edges contained in it) should equal the
final outcome of the BFS algorithm for vertex x. If that is the case it is proven that the
outcome of the algorithm is correct.
The approach taken here is to first create an algorithm to find all the paths between two
vertices. Then the shortest path is determined from this. This is then used to find the
shortest path between the source and all other vertices. The data race free verified BFS
algorithm with no flags from chapter 4 is used the results are compared to the found
shortest paths to determine functional correctness.

5.2.1 Recursive Algorithm

In order to find all paths between two vertices a recursive algorithm called explore
was created. There was an attempt to find the shortest path in a non-constructive way
using specifications, but this failed since VerCors deemed this not equal to the result of
BFS.

The method contract for ’explore’

1 requires Graph(V, E, E1, E2);
2 requires Path(V, E, E1, E2, P);
3 requires 0 <= e && e < V;
4 requires !(e in P);

27

5 requires (\forall int i; 0 <= i && i < |paths|; Path(V, E, E1, E2, paths[i]));
6 requires (\forall seq<int> path; path in paths; |path| > 1 && path[0] == P[0] && path[|

path|-1] == e);
7 requires (\forall int i; 0 <= i && i < |neighbours|; 0 <= neighbours[i] && neighbours[i

] < V);
8 requires (\forall int i; 0 <= i && i < |neighbours|; isNeighbour(V, E, E1, E2, P[|P

|-1], neighbours[i]));
9 ensures (\forall int i; 0 <= i && i < |\result|; Path(V, E, E1, E2, \result[i]));

10 ensures (\forall seq<int> path; path in \result; |path| > 1 && path[0] == P[0] && path
[|path|-1] == e);

The recursive algorithm ’explore’ to find all paths

1 seq<seq<int>> explore(int V, int E, seq<int> E1, seq<int> E2, int e, seq<seq<int>>
paths, seq<int> P, seq<int> neighbours) {

2 int current = P[|P|-1];
3 int j = 0;
4 loop_invariant 0 <= j && j <= |neighbours|;
5 loop_invariant (\forall int i; 0 <= i && i < |paths|; Path(V, E, E1, E2, paths[i]))

;
6 loop_invariant Path(V, E, E1, E2, P);
7 loop_invariant (\forall seq<int> path; path in paths; |path| > 1 && path[0] == P[0]

&& path[|path|-1] == e);
8 while (j < |neighbours|) {
9 int neighbour = neighbours[j];

10 if (neighbour == e) {
11 seq<int> found = addToPath(V, E, E1, E2, P, e);
12 paths = addToPaths(V, E, E1, E2, paths, found);
13 } else if (!(neighbour in P)) {
14 seq<int> next = addToPath(V, E, E1, E2, P, neighbour);
15 seq<int> nextNeighbours = getAllNeighbours(V, E, E1, E2, next[|next|-1]);
16 paths = explore(V, E, E1, E2, e, paths, next, nextNeighbours);
17 }
18 j = j + 1;
19 }
20 return paths;
21 }

This algorithm is a form of depth-first search and requires several arguments as input.
First a graph is passed. Second, a vertex e in that graph is given, which is the destination
of the paths and the vertex being sought for. paths is a sequence of integer sequences
that holds all the paths found so far that lead to e. P is a partial path to e originating
from the source vertex. Lastly a sequence of all the neighbouring vertices of the last
element in the path P is given.
Since the algorithm is recursive, many of the arguments are passed along to the next
level of recursion. Initially the algorithm must be called with an empty sequence for
paths, a path containing only the source vertex for P and the neighbours of the source
vertex in a sequence for neighbours.
The algorithm always focuses on the last element in P, and saves it as the current vertex
in line 2. Then a loop over the neighbours of current is defined in lines 8-19 preceded
by loop invariants. The purpose of the loop is to check whether any of the neighbours
are vertex e, which is done in line 10. If that is the case, then a new path from the
source to e has been found and is added to paths in line 12. If the neighbour is not

28

vertex e, then the neighbourhood of that vertex must also be searched by recursively
calling the algorithm. First the arguments for the recursive call are initialised. In line 14
a new path is defined by adding the neighbour to the end of P. In line 15 the sequence of
neighbours of that neighbour is retrieved. In line 16 the recursive call is made with these
variables. This process of checking is done for all neighbours of current. All found
paths to vertex e are stored in paths and passed along in the recursion until ultimately
it returns it. By then it will contain all possible paths starting from the source vertex
originally passed in P to e. Path P simply remembers the chain of vertices that has been
followed so far. The source vertex is not passed as argument directly, but is contained at
the front of P. In line 13 a condition ensures that any vertex that is added to P for the
next recursive call was not already contained in P. This is required for the definition of
a path, as is described earlier in this chapter. In lines 11, 12, 14 and 15 other methods
are called to add a vertex to a path, a paths to paths or to find all the neighbours of
a vertex. This is done in a separate method to have more control over the contract for
such an operation so that it can be proven that it performs its task correctly.
The operation of adding a vertex to a path simply does this by addition of the current
sequence and a new sequence containing only the concerned vertex. The contract ensures
that the resulting sequence is still a path using the path definition. A similar approach
is used to add a path to a sequence of paths.
Finding all the neighbours of a vertex is done by looping over E1 to see if any edges
start at the vertex. Then the head of any such edges is added to a sequence which in the
end is returned. The neighbour definition is used in the contract to ensure all elements
in the result are neighbours of the concerned vertex, and that no neighbours have been
omitted.
The contract of the algorithm itself both requires and ensures that all collected paths in
paths are in fact paths and that they start at the first element in P (the source vertex)
and end in e (line 5-6 and 9-10 of the method contract). Furthermore the neighbour
sequence is required to be valid, line 7-8 of the contract.

5.2.2 getMinCost

In order to use this algorithm, another method called getMinCost is defined.

Method getMinCost to call the recursive algorithm

1 requires Graph(V, E, E1, E2);
2 requires 0 <= s && s < V;
3 requires 0 <= e && e < V;
4 ensures 0 <= \result && \result <= 1000000000;
5 ensures s == e ==> \result == 0;
6 int getMinCost(int V, int E, seq<int> E1, seq<int> E2, int s, int e) {
7 if (s == e) {
8 return 0;
9 }

10 seq<seq<int>> paths = seq<seq<int>> {};
11 seq<int> P = seq<int> {s};
12 seq<int> neighbours = getAllNeighbours(V, E, E1, E2, s);
13 paths = explore(V, E, E1, E2, e, paths, P, neighbours);
14 int minimum = getSmallestPath(paths);

29

15 return minimum;
16 }

This method is called with the source vertex s, another vertex e and will return the
length of the shortest path between s and e. It does this by initialising the variables
needed to call explore in line 10-12. Then all paths are found between s and e using
explore. In line 14 operation getSmallestPath is called with paths. This will
return the length of the smallest path in the sequence. Should paths be empty infinity
is returned as vertex e is then unreachable. This minimum path length is then returned
to the caller of getMinCost. Lines 7-9 are used for the trivial case where s and e are
the same, so that the result is 0. The result will always be a number between or equal
to 0 and infinity.

5.2.3 BFS and Main

Next the BFS algorithm itself is included. It is equal to the implementation verified to
be data race free with no flags in chapter 4, except the cost labels of vertices are now
stored in a matrix of integers. Each column matches a vertex and each row represents
an iteration. The matrix is returned at the end of the algorithm. This way not only the
final result but all intermediate results are stored. This is done so that an important
loop invariant can be introduced for the outer while loop in the BFS algorithm. That
loop invariant states that the cost of every vertex at that time is always less than or
equal to the number of loop iterations that have passed, or equal to infinity. This was
added to prove this property formally and it could help VerCors when comparing the
results of getMinCost to the results of BFS.
The final method used is the main method. This will perform BFS and find the length
of the shortest path to each vertex from the source and compare both findings. If they
are equal then BFS works correctly.

Main method used to compare results

1 requires Graph(V, E, E1, E2);
2 requires 0 <= s && s < V;
3 requires |costs| == 1;
4 requires |costs[0]| == V;
5 requires (\forall int i; 0 <= i && i < s; costs[0][i] == 1000000000);
6 requires costs[0][s] == 0;
7 requires (\forall int i; s < i && i < V; costs[0][i] == 1000000000);
8 void main(int V, int E, seq<int> E1, seq<int> E2, int s, seq<seq<int>> costs) {
9 seq<seq<int>> outcome = runBFSSeq(V, E, E1, E2, s, costs); //run BFS

10 seq<int> finalCosts = outcome[|outcome|-1]; //The final result is the last element
in outcome

11 int i = 0;
12 loop_invariant 0 <= i && i <= V;
13 while (i < V) { // comparing the outcome of BFS and getMinCost
14 int minCost = getMinCost(V, E, E1, E2, s, i);
15 if (i != s) {
16 assert finalCosts[i] == minCost - 1;
17 } else {
18 assert finalCosts[i] == minCost;
19 }
20 i = i + 1;

30

21 }
22 }

The preconditions for this method are used to create and initialise all the variables that
are needed. Lines 3-7 initialise the costs matrix used for the modified BFS algorithm
which is performed in line 9. Line 10 extracts the final costs sequence from the matrix.
Then a loop is used to calculate the shortest path length and compare this to BFS for
each vertex. Line 16 performs this comparison with an assertion. Note that the BFS
result must equal minCost minus 1. This is because the number of edges in a path is
equal to the number of vertices used in a path minus 1. This property does not hold for
the case that the cost of the source vertex is compared since getMinCost then returns
0. Hence the if statement in line 15 and the comparison in line 18.

5.2.4 Result

When verifying all the methods above combined using VerCors the assertion in line 16
in main fails because it returns false. This means that this attempt to verify functional
correctness has failed. This is most likely caused by underspecification of the methods
used. The recursive algorithm explore should return all unique paths to a vertex,
but this property is never formally proven. Attempts to add this as a postcondition
were made but VerCors did not successfully verify them. Consequently the method
getMinCost is also underspecified. It can only guarantee that the length of the shortest
path is a value between 0 and infinity, which is rather trivial. Since the return value of
getMinCost is directly compared to the outcome of BFS, VerCors cannot prove that
these values should equal. However, the rest of the methods did verify correctly. This
means that the property added to BFS that the cost of a vertex is less than or equal
to the number of passed iterations, or is infinity, holds. In the next section a different
approach to verification of functional correctness is tried.

5.3 Reverse Strategy

Because of the negative result of the preceding code, a new approach is tried here using
ghost variables. In order to mimic the BFS algorithm more, a ’reverse’ algorithm is
made. This algorithm will consist of operations that will be able to perform an iteration
of BFS alongside the already data race free BFS algorithm with no flags. The major
difference is that a vertex X will inspect all vertices for which X is a neighbour instead.
These vertices are considered reverse neighbours of X. In a sense this approach looks
’backwards’ whilst the original BFS algorithm looks ’forward’. The verified algorithm is
modified to include ghost variables, which are then used with the operations and then
compared to the result of BFS to verify functional correctness.

5.3.1 Operations

This approach uses several operations to perform the ’backward’ operation. All these
operations are recursive. Since an operation is a pure method in code, only a simple task

31

can be performed. By recursively calling itself with different arguments an operation can
perform more complicated work. Another way to do this is by calling other operations.
The main operation used here is update_cost and does just that.

Main operation used for updating costs

1 requires Graph(V, E, E1, E2);
2 requires 0 <= i && i <= V;
3 requires |costs| == V;
4 requires (\forall int i; 0 <= i && i < |costs|; 0 <= costs[i] && costs[i] <= 1000000000);
5 ensures |\result| == V - i;
6 ensures (\forall int j; 0 <= j && j < |\result|; 0 <= \result[j] && \result[j] <= 1000000000);
7 ensures (\forall int j; 0 <= j && j < |\result|; \result[j] <= costs[i+j]);
8 ensures (\forall int j; 0 <= j && j < |\result|;
9 getMinCost(reverseNeighbours(V, E, E1, E2, j+i, 0), costs, 1000000000) + 1 < costs[j+i] ==>

10 \result[j] == getMinCost(reverseNeighbours(V, E, E1, E2, j+i, 0), costs, 1000000000) + 1);
11 ensures (\forall int j; 0 <= j && j < |\result|;
12 getMinCost(reverseNeighbours(V, E, E1, E2, j+i, 0), costs, 1000000000) + 1 >= costs[j+i] ==>
13 \result[j] == costs[j+i]);
14 pure seq<int> update_cost(int V, int E, seq<int> E1, seq<int> E2, seq<int> costs, int i) =
15 i < V ?
16 (getMinCost(reverseNeighbours(V, E, E1, E2, i, 0), costs, 1000000000) + 1 < costs[i] ? //The

comparison
17 seq<int> {getMinCost(reverseNeighbours(V, E, E1, E2, i, 0), costs, 1000000000) + 1} +

update_cost(V, E, E1, E2, costs, i+1)
18 : seq<int>{costs[i]} + update_cost(V, E, E1, E2, costs, i+1))
19 : seq<int>{};

The purpose of this operation is to perform an iteration of BFS, but by ’looking’ back-
wards instead of forwards. As arguments it receives a graph and a sequence of the
current costs as well as iterator i. i is used to indicate which vertex or element in
costs is currently being compared. It returns a sequence of integers that will be the
new cost values. When executing it is first checked that i is smaller than V in line 15,
if that is the case then in line 16 a comparison is made using other operations. First
all reverse neighbours of vertex i are retrieved using reverseNeighbours. Then the
return value of that is used in getMinCost, which will return the lowest cost amongst
the reverse neighbours. If this cost plus 1 is smaller than the cost of vertex i then much
like BFS in chapter 4 this becomes the new cost value for vertex i. This is done in
line 17 by creating a new sequence using that value and then adding that to the result
of the recursive call. This calls the pure method with the same arguments except i is
incremented by 1. This way the next vertex is checked. The idea is that this method is
initially called with i equal to zero after which all vertices are checked. Then when i
becomes larger than V an empty sequence is returned in line 19. Since this is a recursive
method, the return value will not be the same for each level of recursion. Furthermore
it is theoretically possible to call this method initially with a value higher than zero.
The method contract keeps this into account. For example line 5 describes a formula
for the length of the return sequence, V minus i. Line 8-13 describe the operation as a
postcondition for all elements in the result, to ensure that it works as intended.

The next operation is reverseNeighbours, which finds all the reverse neighbours
of a vertex.

Lemma for finding all reverse neighbours of a vertex

32

1 requires 0 <= i && i <= E;
2 requires Graph(V, E, E1, E2);
3 requires 0 <= vertex && vertex < V;
4 ensures (\forall int j; 0 <= j && j < |\result|; 0 <= \result[j] && \result[j] < V);
5 ensures (\forall int j; 0 <= j && j < |\result|; isNeighbour(V, E, E1, E2, \result[j],

vertex)); //verifies all found ARE reverse neighbours
6 ensures (\forall int j; i <= j && j < E && E2[j] == vertex; E1[j] in \result); //

verifies ALL reverse neighbours are found
7 pure seq<int> reverseNeighbours(int V, int E, seq<int> E1, seq<int> E2, int vertex, int

i) =
8 i < E ?
9 (E2[i] == vertex ?

10 seq<int> {E1[i]} + reverseNeighbours(V, E, E1, E2, vertex, i+1)
11 : reverseNeighbours(V, E, E1, E2, vertex, i+1))
12 : seq<int> {};

Much like update_cost this pure method uses recursion and i as an iterator. Here i
iterates over all edges in the provided graph. It checks for each edge whether the head
is equal to vertex, which would mean the tail is a reverse neighbour of vertex. If
found, the reverse neighbour is added to the resulting sequence. The method contract
uses the definition of a neighbour to check that all vertices found are reverse neighbours,
and another postcondition ensures that all possible reverse neighbours are found.

The next operation uses the result of reverseNeighbours to find the value of the
lowest cost amongst the found reverse neighbours.

Lemma used for finding cheapest reverse neighbour

1 requires 0 <= minimum && minimum <= 1000000000;
2 requires (\forall int i; 0 <= i && i < |reverse_neighbours|; 0 <= reverse_neighbours[i]

&& reverse_neighbours[i] < |costs|);
3 requires (\forall int i; 0 <= i && i < |costs|; 0 <= costs[i] && costs[i] <=

1000000000);
4 ensures \result <= minimum;
5 ensures |reverse_neighbours| > 0 ==> \result <= costs[head(reverse_neighbours)];
6 ensures (\forall int i; 0 <= i && i < |reverse_neighbours|; \result <= costs[

reverse_neighbours[i]]);
7 ensures \result >= 0;
8 pure int getMinCost(seq<int> reverse_neighbours, seq<int> costs, int minimum) =
9 |reverse_neighbours| > 0 ?

10 (costs[head(reverse_neighbours)] < minimum ?
11 getMinCost(tail(reverse_neighbours), costs, costs[head(reverse_neighbours)

]) :
12 getMinCost(tail(reverse_neighbours), costs, minimum))
13 : minimum;

Instead of using an iterator to go through the reverse neighbours, the sequence is made
shorter in each level of recursion, where in each level the head of the sequence is inspected.
An integer minimum is used to track the smallest cost value found so far. Initially this
value must be infinity. If a cost is found lower than minimum that value becomes the new
minimum in the next recursion level. In the end the final minimum is returned through
all levels of recursion back to the initial caller. The method contract uses line 6 to ensure
that the result is indeed the smallest cost value amongst the reverse neighbours.

33

5.3.2 BFS with Ghost Variables

The BFS version verified to be data race free with no flags from chapter 4 is used here.
The ghost variables are introduced in the method contract using the keyword given
and include two sequences to represent the graph like E1 and E2, a sequence to mimic
the array costs and finally a sequence matrix, a sequence of sequences, that is used to
keep track of all values of the costs sequence across iterations of the algorithm, just like
in the implementation of BFS in the first half of this chapter. The preconditions are
used to initialise these ghost variables to have the same values as the arrays they mimic.
The sequence matrix contains only the costs sequence at first.
After each iteration of BFS using the invariant and parallel block, the ghost variables
are used by calling the operation update_cost along with integers V and E to run an
iteration of the reverse strategy. The result of this is stored as the new value for the
costs sequence. This is then also added to the sequence matrix.
The loop invariants for the outer while loop are used to state properties that hold for
both the ghost variables and arrays after each iteration. First it is checked that the
ghost variables for the graph are still equal to E1 and E2. Next it is asserted that the
current values of both costs and the costs sequence are smaller than or equal to the
old values, that is the values before the last iteration. This says that the cost values are
always decreasing with each iteration. Then it is checked that the sequence matrix has
been correctly updated with the latest cost sequence. Finally it is checked whether the
values in costs are equal to the costs sequence. If this is the case then that means the
ghost variables successfully copied the results of the algorithm using the operations and
functional correctness is verified.

5.3.3 Initial Results

When verifying the operations together with the BFS algorithm with ghost variables
using VerCors everything passes except the loop invariant that states that the costs
sequence updated using the operation update_cost equals costs which is used in
BFS. Thus this attempt to verify functional correctness failed. The cause for this is
explained here. First of all there is an important difference between the BFS algorithm
and reverse strategy. The former focuses on edges and performs comparisons according
to an edge. The latter focuses on vertices and compares with all reverse neighbours for
a vertex. The order in which both algorithms compare costs is different and random.
For example in a graph which just consists of a chain of vertices it is possible based on
the order of execution that the cost of more than one vertex in the chain is updated in
a single iteration for one algorithm, whilst the other algorithm does not do this. This
way a difference is created between the ghost variable and costs array and thus their
values do not match. In an attempt to solve this the reverse algorithm can be modified
to also work with edges instead of vertices. This way both algorithms compare costs
in the same order. Then in the reverse algorithm all reverse neighbours of the head of
an edge are checked for costs. However, even then there are discrepancies between both
algorithms. An example of this problem is given here.

34

Figure 5.1: The critical difference between both algorithms

The red numbers next to edges indicate the order in which edges are executed.
The numbers in vertices indicate the cost label of that vertex. The discrepancy in this
example lies in the top right vertex. The edge with label 1 will be executed first, however
this will have no impact on the cost values as at that moment the costs of both tail and
head are infinity. The same goes for the edge labelled 2. It is not until edge 6 that
the cost of the top right vertex is updated. In the case of normal BFS the cost will be
set to 3, since the bottom right vertex has cost 2. This is incorrect now but will be
corrected in the next iteration. In the case of reverse BFS the cost is set correctly the
first time, because one of the reverse neighbours of the top right vertex already had cost
1. This is the fundamental difference between both algorithms. The normal BFS will
only compare the cost of the tail of the current edge, whilst reverse BFS will compare the
costs of all reverse neighbours of the head of the current edge. This problem can be fixed
by using flags. If two flags are used like in chapter 4, There is always a predetermined
number of edges that will be executed in an iteration. Then the operations used to
perform the reverse BFS need to also keep track of and update flags. Furthermore
the operation for finding the minimum cost among the reverse neighbours of a vertex,
getMinCost, should then also hold flags into account so that only reverse neighbours
with a flag enabled are considered. This way the example of figure 5.1 is prevented. This
modification is used in the next attempt.

35

5.3.4 Using Two Flags

In order to solve the issues found and described above reverse BFS is modified to use
two flags. Then the BFS algorithm using 2 flags from from chapter 4 is used with the
ghost variables. Two extra ghost variables are introduced to mimic the behaviour of the
two flag arrays present in that version. They are initialised using preconditions much
like the other ghost variables. Now the cost of a reverse neighbour is only considered if
the ghost flag for that vertex is set to true. In order to update the ghost flags alongside
updating the cost a new operation is introduced. This operation is used at the same
time as update_cost to update the read ghost flag F0 for the next iteration. Another
operation is used to reset the ghost variable for F1 to false.

Lemma used to update the ghost flag

1 requires Graph(V, E, E1, E2);
2 requires 0 <= counter && counter < V;
3 requires 0 <= i && i <= V;
4 requires |costs| == V;
5 requires |F0_seq| == V;
6 requires (\forall int i; 0 <= i && i < |costs|; 0 <= costs[i] && costs[i] <= 1000000000);
7 requires (\forall int j; 0 <= j && j < V; costs[j] <= counter || costs[j] == 1000000000);
8 ensures |\result| == V - i;
9 ensures (\forall int j; 0 <= j && j < |\result|;

10 readFlag(V, reverseNeighbours(V, E, E1, E2, j+i, 0), F0_seq, 0) && getMinCost(V,
reverseNeighbours(V, E, E1, E2, j+i, 0), costs, 1000000000, counter, 0, F0_seq) + 1 < costs[j+i]
==>

11 \result[j] == true);
12 ensures (\forall int j; 0 <= j && j < |\result|;
13 readFlag(V, reverseNeighbours(V, E, E1, E2, j+i, 0), F0_seq, 0) && getMinCost(V,

reverseNeighbours(V, E, E1, E2, j+i, 0), costs, 1000000000, counter, 0, F0_seq) + 1 >= costs[j+i
] ==>

14 \result[j] == false);
15 ensures (\forall int j; 0 <= j && j < |\result|; !readFlag(V, reverseNeighbours(V, E, E1, E2, j+i,

0), F0_seq, 0) ==> \result[j] == false);
16 ensures (\forall int j; 0 <= j && j < E && F0_seq[E1[j]];
17 (i <= E2[j] && E2[j] < V && (costs[E1[j]] + 1 < costs[E2[j]])) ==> \result[E2[j]-i] == true);
18 ensures (\forall int j; 0 <= j && j < E && F0_seq[E1[j]];
19 (i <= E2[j] && E2[j] < V && !(costs[E1[j]] + 1 < costs[E2[j]])) ==> \result[E2[j]-i] == false);
20 pure seq<boolean> update_flag(int V, int E, seq<int> E1, seq<int> E2, seq<boolean> F0_seq, seq<int>

costs, int i, int counter) =
21 i < V ?
22 (readFlag(V, reverseNeighbours(V, E, E1, E2, i, 0), F0_seq, 0) && getMinCost(V,

reverseNeighbours(V, E, E1, E2, i, 0), costs, 1000000000, counter, 0, F0_seq) + 1 < costs[i] ?
//The comparison

23 seq<boolean> {true} + update_flag(V, E, E1, E2, F0_seq, costs, i+1, counter)
24 : seq<boolean> {false} + update_flag(V, E, E1, E2, F0_seq, costs, i+1, counter))
25 : seq<boolean>{};

Like update_cost this operation makes the same comparison of costs by using the
reverse neighbours, but now instead of returning the new costs it returns a sequence of
booleans that is equal to the write flag or F1. When the cost of a vertex would have been
updated the flag is set to true, false otherwise. The method contract has been expanded.
Line 15 makes use of operation readFlag. This operation checks whether one of the
reverse neighbours of a vertex has its flag enabled and will return true then, otherwise
it returns false. Line 15 states that if none of the reverse neighbours of a vertex have

36

their flag enabled, then the resulting flag for that vertex should also be false. Line 16-19
are important. Line 16-17 check for all edges that if the flag is true for the tail vertex,
and the cost of the head would be updated, then the flag for that vertex should be true.
The logical inverse of that statement is written in line 18-19. What is special about
this postcondition is that it reasons like the normal BFS algorithm, and not in reverse.
Thus it is checked that the operation produces the same results as the normal algorithm
would have.
For the outer while loop in normal BFS new loop invariants are added. Most notably it is
checked that the ghost variables for the flags equal the flag arrays. This is an important
property that must hold in order for the update_cost operation to perform correctly
alongside BFS.
When verifying this approach with VerCors, several things go wrong. First of all lines
18-19 in update_flag fail. This means that there are cases where the normal BFS
algorithm would set the flag for a vertex false, but the operation does not do this.
Therefore the loop invariant that checks that the ghost variables for the flags matches
the flag arrays also fails, and if the flags do not match, neither will the costs. A cause
for this problem has not been found and further attempts to solve this have not been
made due to time constraints.

37

Chapter 6

Related Work

There are many publications surrounding the programming and verification of GPGPU
code for graph algorithms and in general.
Zhong et al [8] propose a general framework for performing graph algorithms on a
GPU in order to achieve higher performance. Amongst others they use an Edge-Vertex
model to solve the problems with mapping graph computations to hardware threads and
lightweight approximate sorting to tackle load imbalance between threads.
Kojima et al [9] present an automated verification method for functional correctness of
race free GPGPU programs in order to improve the efficiency of the verification process.
Che et al [10] have created a library of software building blocks for programming GPGPU
graph applications to ease the workload of developers and improve portability and cross-
platform performance. It is built on the OpenCL framework.
Dinneen et al [11] explore two different GPGPU implementation techniques for graph
algorithms. They use these to implement a BFS algorithm and compare the performance
on large graphs to other implementations, including Harish’s algorithm.
Xu et al [12] analysed the performance of graph algorithms for GPGPU, including BFS,
and compared it to non-graph programs to determine the bottlenecks on the hardware
level. The results indicate that graph algorithms use more kernel function calls, leading
to overuse of the PCI connection between GPU and CPU and ineffective use of caches.

38

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In order to perform algorithms on large graphs, GPGPU programming is used. The
highly parallel hardware of a GPU allows for many threads to perform an algorithm.
However when implementing such an algorithm special care must be taken that it is
done efficiently and does not contain data races. The functional correctness must be
proven afterwards to ensure the results produced are correct.
The goal of this project was to formally verify data race freedom and functional cor-
rectness for Harish’s algorithm, an implementation of breadth-first search for GPGPU
published in [1]. In chapter 3 this algorithm was extensively described and two data race
conditions were found in it. These were solved by introducing a comparison of costs and
making the operation atomic. This modified algorithm was then used in the first attempt
to formally verify data race freedom in chapter 4. The first attempt failed, possibly due
to the complex adjacency list data structure used originally in Harish’s algorithm. A
new data structure was created so that there would be a thread running for every edge
instead of vertex. This was verified to be data race free. Flags were also successfully
added to this. For functional correctness first an attempt was made using paths. BFS
should give the minimal number of edges to reach a vertex from the source, so if the
shortest path was found this should match the BFS result. An algorithm was created
to find the shortest path, but problems were encountered when trying to formally prove
that the shortest path is found. The next attempt used ghost variables alongside the
verified BFS algorithm. Operations were made that performed BFS in a backwards way,
and these were used with the ghost variables. The resulting ghost variables were then
compared with the results from BFS. Initially the differences between both approaches
was too great so 2 flags were added to synchronise. However this also failed and due to
time constraints no further attempts were made.
When it comes to efficiency the version of BFS with one thread for each edge and no
flags is most efficient. Using one thread per edge means that the parallel nature of the
GPU is better used and the total workload is more evenly divided over threads than
when using a thread per vertex. While it seemingly increases efficiency, adding flags

39

to this could only complicate the algorithm more with read and write operations for
these flags. Since the workload is already quite evenly divided the flags do not increase
efficiency.

7.2 Future Work

Since the verification of functional correctness has not been successful, finishing this
would be the first priority. There are several options to complete this. First the attempt
to do this using the operations and BFS algorithm using two flags can be completed.
More lemmas are needed to prove that the reverse strategy equals the normal BFS. A
first step in this direction has already been made with line 16-17 in update_flag.
These lines describe a postcondition that states that the result of the reverse strategy is
equal to the result when using the normal BFS strategy. This was verified using VerCors
and creates a first bridge in the gap between normal and reverse algorithms. Addition-
ally the definitions already created here can be used.
Secondly another approach to verify functional correctness could be to add postcondi-
tions to the data race free implementation with no flags from chapter 4. These post-
conditions must then captivate the desired functional outcome of the algorithm and be
verified by VerCors.
Alternatively another data structure can be used. Instead of two arrays with a length
equal to the number of edges, a singe variable contains all data. This would be a se-
quence of arrays. Every vertex number would correspond to an index in this sequence,
where an array of vertex numbers is stored. The array lists all the neighbours of the
concerning vertex. This way the length of the sequence would be equal to V, whilst
integer E becomes obsolete, as edges are not explicitly stored here. An example like
figure 3.1 and 4.1 is given.

Figure 7.1: Example of the single variable adjacency list data structure

The vertex numbers in the arrays should be sorted, so that the desired properties
of the graph, namely no self loops and no double edges, can easily be formulated into a
precondition, much like the data structure of figure 3.1. Before trying to verify functional

40

correctness using this it is necessary to first prove data race freedom. With this data
structure there will be one thread running per vertex again. Since the outer structure
is a sequence, only permissions for the arrays contained are necessary. A version with
read and write flags is recommended if a similar approach as was done here with lemmas
and ghost variables is used the definitions will also have to be adapted to the new data
structure.

41

Bibliography

[1] Harish, Pawan, and P. J. Narayanan. ”Accelerating large graph algorithms on
the GPU using CUDA.” International conference on high-performance computing.
Springer, Berlin, Heidelberg, 2007.

[2] Formal Methods and Tools (FMT), University of Twente. VerCors Verification
Toolset. https://github.com/utwente-fmt/vercors

[3] Formal Methods and Tools (FMT), University of Twente. Prototypal Verifica-
tion Language (PVL) Syntax. https://github.com/utwente-fmt/vercors/
wiki/PVL-Syntax

[4] Rafia Inam, An Introduction to GPGPU Programming - CUDA Architecture
Mälardalen Real-Time Research Centre, Mälardalen University, Väster̊as, Sweden

[5] Aziz, Adnan; Prakash, Amit (2010). ”4. Algorithms on Graphs”. Algorithms for
Interviews. p. 144. ISBN 978-1453792995.

[6] Blom, Stefan, Marieke Huisman, and Mihelcic Matej. 2014. ”Specification and Veri-
fication of GPGPU Programs.” Science of Computer Programming 95: 37688.

[7] Kim, Hyesoon. 2012. ”Performance Analysis and Tuning for General Purpose Graph-
ics Processing Units (Gpgpu)” Synthesis Lectures on Computer Architecture, #20.
San Rafael, Calif.: Morgan & Claypool.

[8] Zhong W, Sun J, Chen H, Xiao J, Chen Z, Cheng C, and Shi X. 2017. ”Optimizing
Graph Processing on GPUs” Ieee Transactions on Parallel and Distributed Systems
28 (4): 114962.

[9] Kojima, Kensuke, Akifumi Imanishi, and Atsushi Igarashi. 2018. ”Automated Verifi-
cation of Functional Correctness of Race-Free Gpu Programs.” Journal of Automated
Reasoning 60 (3): 27998.

[10] Che, Shuai, Bradford M Beckmann, and Steven K Reinhardt. 2017. ”Program-
ming GPGPU Graph Applications with Linear Algebra Building Blocks.” Interna-
tional Journal of Parallel Programming 45 (3): 65779.

[11] Michael J. Dinneen, Masoud Khosravani and Andrew Probert. 2011. ”Using
OpenCL for Implementing Simple Parallel Graph Algorithms” Department of Com-
puter Science, University of Auckland, Auckland, New Zealand

[12] Qiumin Xu, Hyeran Jeon and Murali Annavaram. 2014. ”Graph Processing on
GPUs: Where are the Bottlenecks?”. Ming Hsieh Department of Electrical Engi-
neering, University of Southern California Los Angeles, CA

42

https://github.com/utwente-fmt/vercors
https://github.com/utwente-fmt/vercors/wiki/PVL-Syntax
https://github.com/utwente-fmt/vercors/wiki/PVL-Syntax

	Introduction
	Motivation
	Contributions

	Background
	VerCors and PVL
	GPGPU
	Graphs
	Approach
	Glossary

	The Algorithm
	Workings
	Data Race
	Condition 1
	Condition 2

	Correction

	Data Race Freedom
	Initial attempt
	Different Graph Data Structure
	Adding 1 Flag
	Adding 2 Flags
	Adding 3 Flags

	Functional Correctness
	Definitions
	Graph
	Path
	Reachability
	Neighbours

	Shortest Path Algorithm
	Recursive Algorithm
	getMinCost
	BFS and Main
	Result

	Reverse Strategy
	Operations
	BFS with Ghost Variables
	Initial Results
	Using Two Flags

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

