
Solitor: Runtime Veri�cation of Smart Contracts
On the Ethereum network

Lars Stegeman

l.stegeman@student.utwente.nl

November 21, 2018

Master Thesis
Master of Computer Science

Methods and tools for veri�cation specialization

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science

Formal Methods and Tools research group

Supervisors
prof.dr. J.C. van de Pol, University of Twente
dr. M.H. Everts, University of Twente

1

Abstract

The Ethereum blockchain is often called a decentralized world computer. On this blockchain smart
contracts are deployed and executed. Smart contracts can control the platform's own currency
(ether) and data that is associated with a particular address. Changes can be made to the contract
internals by executing transactions on the set of functions that the smart contract o�ers. In this
thesis the background of the Ethereum network and how smart contracts execute on the blockchain
are explained. The di�erence with standard programs is important because smart contracts are
committed to the blockchain. This means that the contract code is public and unchangeable.
Which means that everybody can read this code and interact with it. Ensuring the contract
executed like intended is important because vulnerabilities can not be easily solved. A number of
real world vulnerabilities have been detected and exploited on smart contracts. This resulted in
the loss of several millions of ether to malicious users.

Many tools and solutions have been proposed to make it easier to develop secure smart contracts.
Contracts can be made more secure by providing test suites and execute many tests for contracts.
However this only proves that the contract is correct for that speci�c set of inputs. Other solutions
to improve security are veri�cation tools. Contracts are made more secure by analyzing them
with static analysis tools and detect patterns that are known to be vulnerable. Other tools let
users de�ne properties about the contract behaviour. These properties are then checked using a
model that tries to prove them correctly. These properties are then proven against all possible
inputs which means that smart contracts are more secure. However, giving a speci�cation that is
correct and proving it against all possible inputs is di�cult and su�ers from state explosion. Our
contribution is to design a method for the veri�cation of smart contracts.

This thesis introduces the tool Solitor. Solitor is short for Solidity (runtime) monitor, and
uses runtime veri�cation as a technique to make smart contracts more secure. It enables users to
specify the behaviour of a contract using annotations. It is a tool developed speci�cally for smart
contracts on the Ethereum network. We de�ne an annotation language to specify the requirements
on a smart contract. Solitor can parse and translate these annotations in Solidity contracts to
Solidity code which checks the annotation at runtime. Annotations can be used to check if certain
properties hold during execution of the smart contract. These can either be contract invariants
or pre and postconditions for methods. In general, annotations are logical expressions that can
reference contract variables and blockchain speci�c identi�ers. To recognize the annotations the
original Solidity grammar is extended and is similar to that of the Java Modelling Language (JML).
To evaluate and validate the tool, we also describe two case studies, where the tool is used to specify
correct behaviour or detect a vulnerability.

1

Contents

1 Introduction 4
1.1 Goal . 4
1.2 Research Questions . 4
1.3 Thesis Structure . 5

2 Background 6
2.1 The Ethereum blockchain . 6
2.2 Smart Contracts . 6
2.3 Smart contract bugs . 7

3 Solidity 8
3.1 Syntax . 8
3.2 Structure . 9
3.3 Blockchain speci�c variables . 10

4 Related Work 12
4.1 Smart Contract Veri�cation . 12

4.1.1 Static Analysis Tools . 12
4.1.2 Formal Veri�cation Tools . 12

4.2 Smart Contract Languages . 12
4.2.1 Bamboo . 13
4.2.2 Vyper . 13

4.3 Other related work . 13
4.3.1 ContractLARVA . 13
4.3.2 The Hydra Project . 15
4.3.3 FSolidM . 15
4.3.4 Quantitative Analysis of Smart Contracts 15

5 Solitor 16
5.1 Overview . 16

6 Annotation Language 17
6.1 Solidity Annotated . 17
6.2 Grammar De�nition . 17
6.3 Examples . 20

7 Annotation Type Checking 22
7.1 Design . 22
7.2 Implementation . 22
7.3 Example . 23

8 Generation of runtime monitoring code 25
8.1 Design . 25
8.2 Implementation . 26
8.3 Mappings . 27

9 Limitations 29

10 Case study 30
10.1 SimpleToken . 30

10.1.1 Annotation . 31
10.1.2 Generated Code . 31
10.1.3 Testing the contract . 33

10.2 Vulnerable Contract . 33
10.2.1 Annotation . 34
10.2.2 Generated Code . 34
10.2.3 Testing the contract . 35

2

11 Conclusion 36
11.1 Future work . 36

A Tool Usage 38
A.1 Getting Started . 38

A.1.1 Prerequisites . 38
A.1.2 Installing . 38

A.2 Using the tool . 38
A.2.1 Grammar examples . 38
A.2.2 Run the tool on other contracts . 38
A.2.3 Parameters . 38

3

1 Introduction

Ethereum is a decentralized platform that runs smart contracts. The platform is powered by a
blockchain that is shared between all connecting parties. This blockchain contains all the trans-
actions that these smart contracts use. The blockchain also stores the currency of Ethereum
called Ether. Compared to Bitcoin it is more focussed to be a smart contract platform. On this
platform applications will run without any trusted central party. This makes these applications
unstoppable and censorship resistant. Each day new smart contracts are deployed to the Ethereum
network. Smart contracts can be seen as decentralized application that can do computation and
store/retrieve information from the blockchain. Users can communicate with smart contracts using
transactions. These transactions are also stored in the blockchain which means they cannot be
refused or reversed. Smart contracts are written in a language called Solidity. Solidity can be seen
as a contract oriented programming language. It is high level and compiles to Ethereum Virtual
Machine (EVM) bytecode. This is the actual code that is deployed to the blockchain and executes
when a transaction is done. Some of these smart contracts control a large sum of ether. Since
this ether has real world value and the source code for smart contracts is in the open many peo-
ple are �nding vulnerabilities within contracts. Several high pro�le security bugs were found and
exploited [1, 2, 3, 4]. This sparked the interest in static analysis tools and formal veri�cation of
smart contracts. Many di�erent analysis tools have already been developed. Static analysis tools
can be executed on many contracts and detect mistakes by analyzing known vulnerable patterns.
Other tools which use formal veri�cation need a speci�cation to be able to guarantee a contract
behaves the correct way. These speci�cations are usually written in another language or de�ned
at the EVM level. This makes it hard to understand what properties are proven and what that
means for the contract. More examples of tools can be found in Section 4.

1.1 Goal

The goal of this research is to develop a tool that can do runtime veri�cation for smart contracts.
The annotations to check properties can be written at the level of Solidity. This will make it
easy for Solidity developers to use the tool. Furthermore the speci�cation does not have to be
complete and proven correctly against all possible combinations of inputs like in the case of formal
veri�cation tools. This makes it easy to check for certain properties without having to specify
all the behaviour. From the annotations Solidity code, that checks if the speci�cation holds, can
automatically be generated. The generated code will be Solidity which can be executed on the
blockchain like any normal contract. The tool will be made speci�cally for the language Solidity
and for the Ethereum blockchain. The bene�ts of this approach are:

• Explicitly writing a speci�cation helps understanding the problem. The code usually de-
scribes how a contract should behave and do calculations. While the speci�cation should
describe what the contract does and what properties should be satis�ed.

• Runtime exceptional state. While the contract is active on the main Ethereum network
properties can be checked at runtime. If a certain property fails due to an untested case, the
program can go into an exceptional state. In this state, functions can be deactivated or the
contract can be completely cleared. Some special form of governance can be coded in this
state which requires human intervention before the contract will continue.

• The annotations can be used by static analysis tools for other purposes. This can also work
in combination with the current runtime veri�cation. If a certain annotation can be proven
statically, it does not have to be checked at runtime. On the other hand annotations that
can not be proven statically can be checked at runtime.

1.2 Research Questions

A runtime veri�cation tool for smart contracts has to be usable in the environment it will be used.
The properties it can specify must be implementable in Solidity. The setting is very di�erent from
a general purpose programming language. For example the separation of storage and memory is
di�erent. Contracts have to be annotated with a certain syntax. This syntax has to be designed in
such a way that it is understandable and usable. Furthermore the usability of the tool as a whole

4

should be tested on a case study of a smart contract. More concretely the following questions are
answered in this thesis:

1. Property speci�cation/de�nition. The �rst step is to decide and analyse which proper-
ties should be able to be checked and speci�ed. Properties should make sense and should be
able to be checked within Solidity. This raises the question: What properties should the tool
be able to identify and specify?. Speci�cally the syntax has to be de�ned. And a parser has
to be written to decide if properties are according to the de�ned syntax.

2. Tool development. The next step is de�ning the output of the tool. In other words: What
can be generated from the speci�cation and smart contract source code?

3. Tool usage on smart contract. The last step is to test the tool on real world smart
contract. And see if it can detect vulnerabilities that would otherwise have not been found.
How can the tool be used to detect vulnerabilities in smart contracts?.

1.3 Thesis Structure

This thesis will answer the above questions and introduce the tool Solitor. Before that some
background information is given in Section 2. This introduces the setting in which these smart
contracts are executed. It explains the workings of the blockchain in combination of the executed
code. The network state and contract state is explained in detail. Next the language Solidity is
introduced in section 3. This is the programming language that is used to develop smart contracts
on the Ethereum network. It compiles to the EVM (Ethereum Virtual Machine) bytecode and
is speci�cally designed for developing contracts. The language is introduced so that the design
decisions for the tool can be understood. Section 5 discusses the tool in a high level overview.
The next sections 6-8 discuss the di�erent phases in the tool process. Some of the limitations
within Solitor are discussed in Section 9. The tool is tested on two case studies. The �rst case
study is a contract which models a subcurrency. This is called a token and many applications use
such contract. The contract SimpleToken is a simpli�ed version and a property is implemented
and checked at runtime. The second case study is a contract which contains a vulnerability.
The vulnerability is exposed using annotations. When executing the contract with annotations the
vulnerability becomes visible and execution of the transaction is stopped. This can be seen in detail
in Section 10. As said in the introduction many tools try to make smart contract development more
secure. There are many approaches each focussing on a speci�c aspect of secure smart contracts.
The di�erent approaches and vulnerabilities they detect are discussed in Section 4. Lastly the
conclusion of the thesis can be seen in Section 11. It brie�y answers the questions asked in this
introduction and discusses the results of Solitor.

5

2 Background

This section will discuss the background information that will be built upon further in the doc-
ument. First we will brie�y discuss the important parts of the Ethereum blockchain, which is
followed by a detailed discussion on smart contracts.

2.1 The Ethereum blockchain

The Ethereum platform is built upon a distributed public ledger. On this ledger the cryptocurrency
ether is stored. Ethereum has di�erent denominations of the unit ether. The smallest value or base
value is called wei, a single ether represents 1e18 wei. In contrast to Bitcoin, it is an account based
system and not based on unspent transaction outputs (UTXO). There are two types of accounts,
one is a default account in which a user controls the spending of funds through its private keys.
These accounts are called �Externally owned Accounts�. An account can be referenced by its
address which is a hashed version of the public key. Each address has a balance and a nonce.
The nonce is incremented each time the balance is updated with a transaction. The other option
is a �Contract Account�, which means that it is managed by code only. A contract account has
additional data stored on the blockchain. These include storage hash and a code �eld. The code
is set when the contract is constructed and initialized on the blockchain, and after that can never
be changed. The code that is included in contracts is called Ethereum Byte Code. This bytecode
is executed in a VM called the Ethereum Virtual Machine (EVM). Each contract has a persistent
storage which is also maintained on the blockchain. Contract accounts only execute code when
they are called from other contracts.

Transactions are created and sent to the network by creating a message and signing it with
the private key of an �Externally Owned Contract�. This contains information like the amount
of ether and the receiver of the transaction. Additionally it can contain so called call data. This
data is interpreted by the contract code and the correct function is executed. Transactions are
the only entity that make changes to the storage. At an higher level overview we could see
the Ethereum network as a large state machine in which changes to the state are controlled by
transactions. Transactions are grouped in blocks and these blocks are distributed over the network
and validated by each node.

The di�erent types of state and environments are also described more formally in the Ethereum
Yellow Paper [5]. The Yellow Paper states that there are three separate storages in each context.

• World state (σ): A mapping of Ethereum addresses to the accounts. Within each account
the balance, contract storage, contract code and nonce are stored. For �Externally Owned
Account� the contract code and storage are empty.

• Machine state (µ): State of the currently executing code from a transaction. This includes
program counter, contract memory and virtual machine.

• Execution Environment (I): Variables related to this transaction. For example caller address,
amount of ether send and call data.

Transactions can only be initiated from accounts. This means that the blockchain is global state
computer which changes each time a transaction is executed. Transactions can be seen as function
calls with additional information. This information includes the transaction sender, gas price and
amount of ether.

Blocks serve the purpose to group transactions and give them order. Because the ordering is
very important to the outcome of the transactions. The ordering is determined within a block and
should be deterministic and all nodes should agree on the global state. This securing of blocks is
done using a proof of work mechanism that is used by most cryptocurrencies. However each miner
also has to validate each transaction by executing the corresponding EVM code and adjusting the
global state. This is also done by each individual node to validate the block which includes all the
transactions.

2.2 Smart Contracts

Smart contracts are usually mentioned together with Ethereum. Other terms for smart contracts
are �autonomous agents� or �executable code on the blockchain�. It has many application domains

6

according to the Ethereum White Paper [6]. Examples of usage cases include token systems,
decentralized autonomous organizations (DAO), �nancial derivatives, identity/reputation systems
and decentralized �le storage. The idea is that these domains are perfect for the blockchain since
they replace the traditional trusted third party. Smart contracts can only operate on data within
the blockchain, this means that all information has to be included in the transactions that are send
from �externally owned accounts�. However in this thesis we will look at the functional capabilities
of smart contracts on the Ethereum network.

Smart Contracts on the Ethereum network consist of two parts. Each contract has a set of
functions and a storage. The contract set of functions is de�ned by the contract code that is
deployed with the contract creation. This contract code is EVM bytecode and is usually compiled
from a higher level programming language. When the contract is created the storage is initially
empty. Only the contract code can make changes and add data to the persistent storage, within
this storage the state of the contract is maintained. As explained before each transaction also has
a state. This is called memory, and is initially empty. It can also be used to store data and is
much cheaper in terms of gas cost. But this data is not persistent through transactions, it is only
persistent within the transaction. There are also so called �logs�, this storage can only be used to
store data and not retrieve. This storage is usually used to provide data for the external world
because it can be searched e�ciently.

Since the EVM is a turing complete language, any program can be expressed within the plat-
form. To mitigate the possibility of a Denial-of-Service attack (with for example an in�nite loop)
the principle of gas is introduced in Ethereum. Gas is used to limit the amount of complex code
that can be executed within a single transaction. The sender of a transaction has to specify the
maximum amount of gas it wants to spend and the amount of ether per unit gas. This way the
sender pays the network for executing the transaction. The gas cost of each EVM instruction
is de�ned in the protocol and can not be changed. Instructions that are more intensive for the
blockchain cost more gas. For example storing a value on the blockchain costs more gas then
storing it in memory. If an execution is terminated unexpectedly or runs out of gas the complete
transaction is reverted. This includes storage changes made before the exception. When a trans-
action is successful left over gas will be returned to the sender. In the case of an exception all
the remaining gas is consumed. Functions are only executed when they are called by external
contracts. For example if a fund is to be released after a certain amount of time (block number
higher then a certain amount). These funds will not be automatically transferred once the time
threshold is reached, they will only be released when the function is called again.

2.3 Smart contract bugs

Many smart contracts are deployed to the Ethereum main network every day. When a contract
is created on the blockchain the contract code is stored on the blockchain forever. This cannot
be changed afterwards. Because of this limitation bugs within smart contracts can be very costly.
In the past many vulnerabilities have been detected causing a loss of several million Ether. This
thesis will not enumerate all of them since many other articles do a good job of summarizing all
the found vulnerabilities. For a complete overview see [7] section 3, where each attack with its
corresponding vulnerability is explained in detail.

7

3 Solidity

The most used language to develop contracts on Ethereum is Solidity [8]. Solidity comes with
a compiler that compiles Solidity code into EVM bytecode. This bytecode is what is executed
and put on the blockchain. Solidity has features like control �ow, types and di�erent storage
constructions. Additionally it has some global variables that apply only to the blockchain setting.
In this section we will further introduce the language in detail.

3.1 Syntax

The syntax that is used by Solidity is heavily inspired by Javascript. In contrast to Javascript,
Solidity is strongly typed and it o�ers the common types in traditional programming languages:
booleans, integers, strings, �xed point numbers. Since each contract is stored on the blockchain,
storage is extremely costly in terms of gas cost. This is why many di�erent sizes for integers exist:
uint8, int8, uint16, until uint256 and int256.

Solidity o�ers a number of di�erent options for more complex types. These complex types have
an extra annotation that de�nes their storage location. This can either be storage or memory.

• Structs are a form to create new types in Solidity. Structs can contain any type including
mappings except itself. For example a struct type A cannot contain a member of type A (no
recursive de�nition).

• Arrays can be de�ned in memory or storage. Storage arrays can hold arbitrary types, mem-
ory arrays can not contain mappings. Storage arrays can be dynamically increased in size,
however memory arrays are always �xed length.

• Mappings can only be de�ned in storage. They map a key of a certain type to a value
of another type. They can be compared to hash tables in normal programming languages.
However the key set of a mapping is not stored, this makes mappings not iterable.

The code snippet below shows how all these constructions can be used within a contract.

pragma s o l i d i t y ^0 . 4 . 2 3 ;

contract C {
// State variables are always stored in storage

uint256 public number ;
uint [] x ;
mapping(address => uint256) myMap;
// Definition of type myStruct

struct myStruct{
uint256 a ;
address b ;

}

// the data location of memoryArray is memory

function f (uint [] memoryArray) public {
x = memoryArray ; // works, copies the whole array to storage

var y = x ; // works, assigns a pointer, data location of y is storage

y [7] ; // fine, returns the 8th element

y . length = 2 ; // fine, modifies x through y

delete x ; // fine, clears the array, also modifies y

// The following does not work; it would need to create a new temporary /

// unnamed array in storage, but storage is "statically" allocated:

// y = memoryArray;

// This does not work either, since it would "reset" the pointer, but there

// is no sensible location it could point to.

// delete y;

g (x) ; // calls g, handing over a reference to x

h(x) ; // calls h and creates an independent , temporary copy in memory

8

// Declaring a mapping in memory is not allowed

// mapping(address => uint256) memory temp_map;

myStruct memory a ; // declares a variable of type struct in memory

myStruct b ; // default of complex types is storage

b . a = 100 ; // will assign 100 to the variable number!

}

function g (uint [] storage storageArray) internal {}
function h(uint [] memoryArray) public {}

}

3.2 Structure

In Solidity, contracts are treated like objects in Object Oriented Programming languages. Contracts
can contain state variables and functions and inheritance is supported between multiple contracts.
A contract can have a constructor which will be called upon creation of the contract on the
blockchain. In the code example below a simple contract is shown with the basic structure.

pragma s o l i d i t y ^0 . 4 . 2 3 ;

contract SimpleStorage {
uint public storedData ; // State variable

//Constructor will be called upon creation on blockchain.

con s t ruc to r (uint data){
storedData = data ;

}

function setData (uint data) public{
storedData = data ;

}
function () payable{

//Unnamed function will be called if no function signature matches

}
}

Solidity also has di�erent visibility keywords. Their behaviour is a bit di�erent from normal
programming languages since it is executed on a blockchain setting. Visibility can be de�ned for
functions and variables.

• external: External can only be used by functions and means that they can not be called
from internal functions. They can be called from other contracts.

• public: Public can be used for functions and state variables. For functions it means that it
can be called both internal and external. For state variables it means that a getter function
is automatically generated.

• internal: Internal functions and state variables can only be accessed internally from within
the current contract and derived contracts.

• private: Private functions and state variables are only visible to the contract they are
de�ned in.

The extra keywords are used because di�erent functionality can be desired by contracts. Also
note that private variables can be read outside of the EVM by inspecting the storage of the smart
contract 1

Solidity also gives the possibility to de�ne function modi�ers. These are usually used to check
a condition before execution of a function. Modi�ers can be inherited from other contracts and

1For example with the web3.js interface with the call web3.eth.getStorageAt(addressHexString, position)

9

reused in functions on that contract. As explained in the previous section the Ethereum blockchain
has another type of storage called �logs�. Logs are read only and can be written to using Events.
Events have to be de�ned in the contract itself and can be inherited, events can have speci�ed
parameters to emit the correct information. Below is a Solidity code snippet showing the basic
behaviour of both constructions.

pragma s o l i d i t y ^0 . 4 . 2 3 ;

contract myContract {
uint public data ;

//Event declaration

event dataIncreased (address sender , uint amount) ;

//Modifier declaration

modifier on l yPo s i t i v e (uint number){
require (number > 0) ;
_;

}

//Before function call check modifier onlyPositive

function increment (uint number) on l yPo s i t i v e (number) public{
data += number ;
//Emit event dataIncreased

emit data Increased (msg . sender , number) ;
}

}

The function increment has a modi�er that will be executed when the function is called. The
modi�er onlyPositive checks the number and requires the number to be greater then zero. The
�_;� indicates the rest of the body of the function. This way function modi�ers can be used
to add code before and after the normal function body. If the assumption fails the require will
throw an exception and the transaction will stop executing. This means that all state changes
made during the transactions are reverted and the transaction is marked as failed. There are
two types of constructions that can be used to detect undesired behaviour one is require() the
other is assert(). Both function will throw an exception when the statement is false, but assert
will consume all remaining gas while require will not consume any more gas. This means that in
practice require is used to check and validate user input, and assert is used to test invariants
and internal error checking. Both functions will create an exception that will bubble up to through
the call structure. At this point exceptions can not be caught.

3.3 Blockchain speci�c variables

What makes Solidity special in terms of programming languages is that it compiles to EVM
bytecode which is executed on the blockchain. All code is executed because of the transactions
that are being sent to the network. These transactions can be seen as rich function calls with extra
information. This extra information is available in special constructed variables which are globally
accessible during execution of the contract.

There are two objects that contain information about the blockchain these are: block and msg.
The block object contains variables like block.number, block.timestamp, block.difficulty and
block.coinbase (current block miner address). The information in block is the block where the
current transaction is mined in. The object msg contains information about the current transaction.
These are found in variables like: msg.gas (remaining gas), msg.value (value sent in wei) and
msg.sender (address of the sender). The address object is used for communication between
contracts. This makes it possible to execute code of multiple contracts within a single transaction.
The keyword this refers to the address object of the current contract. This also contains the
balance of the contract under the variable <address>.balance. There are �ve di�erent �avors of
calling other contracts.

• <address>.transfer(uint256 amount): forwards given amount in wei to address, throws

10

on failure. The function sends 2300 gas with the transfer.

• <address>.send(uint256 amount) returns (bool): same behaviour as transfer but re-
turns false on failure.

• <address>.call(...) returns (bool): forwards all gas to function call. Returns false
on failure.

• <address>.delegatecall(...) returns (bool): same behaviour as call but storage and
state variables of original contract are used. This makes it possible to create library function-
ality within the blockchain. The library contract can contain functions that do not require
access to state variables. That means that they must rely on their input. Or the library con-
tract has to have to exactly the same state variables declared in order to be used in functions
of the library contract.

• <address>.callcode(...) returns (bool): older version of delegatecall. Usage is dis-
couraged and will be removed in the future.

All these transfer functions can be sent to �Externally Owned Contracts�, but also on �Contract
Accounts�. This means that arbitrary code can be executed when invoking one of these methods.
To limit the amount of code that can be executed by a remote function call it is important to
specify the amount of gas to be sent with the transfer. Exceptions can not be caught within
contracts, they bubble up through the call tree. Exceptions can be caught when using the send

function because then this will return false instead of re-throwing/passing on the exception which
is what the transfer method does.

11

4 Related Work

There is a lot of work related to this topic. Ethereum is not the only blockchain platform that
supports the deployment of smart contracts, but this section will focus on the development and
research for the Ethereum blockchain speci�cally. There are papers discussing the veri�cation
of smart contracts. They can be further categorized as static analysis or formal veri�cation.
Additionally other contract languages have been proposed to help writing secure smart contracts.
The last subsection discusses some other related work.

4.1 Smart Contract Veri�cation

Due to the recent exploits that were found on the Ethereum blockchain this research area has
seen a lot of attention. Especially in the �eld of formal veri�cation. There are many proposals of
veri�cation tools that will help to write secure smart contracts. The security of smart contracts
is important because if the bytecode of a contract is committed to the blockchain it cannot be
changed afterwards. This means that testing and veri�cation of the code before committing it to
the network is important. The e�orts can be categorized in two groups; static analysis and formal
veri�cation. The �rst class are tools that analyse the EVM code or a higher level code and check
for patterns. Patterns that are known to be vulnerable get reported by the static analysis tool. The
code is not actually executed, only symbolically. The second group is formal veri�cation. These
tools work by giving a speci�cation for a given program. The tool then proves that the program
is correct for all possible inputs with respect to the given speci�cation. Some tools fully automate
this process, some work with a proof assistant. Note that the Solidity code is usually translated
to EVM or some intermediate language in which the proofs can be more easily automated.

Solitor uses runtime monitoring as a technique to improve the security of smart contracts.
Annotations can be used to specify the correct behaviour of a contract. These annotations are
checked during execution of a transaction on the contract. Bene�t of this approach is that the
speci�cation does not have to be complete which is the case with the other formal veri�cation
tools. The drawback of this approach is that a vulnerability is only found when the correct input
is given. Other formal veri�cation tools do not lack this since they test a speci�cation correct
against all possible inputs.

4.1.1 Static Analysis Tools

There are many tools that are de�ned in this area. Most of the tools have the same functionality.
You can analyse contracts using the Solidity Code or EVM bytecode. These contracts can be
analysed locally or from an online provider (Ethereum mainnet or one of the test nets). Examples
of such tools are Mythril [9], Securify [10] and Oyente [11]. The Oyente tool also o�ers the
possibility to analyse all the contracts on the whole blockchain. Their tool is not only available
on Github but also has a paper which describes the choices made fo the analysis tool. The tools
under this category do not test for errors in business logic. For example if a function returns too
much ether on a speci�c input, this will not be detected by static analysis tools.

4.1.2 Formal Veri�cation Tools

To verify a contract a speci�cation has to be written. The speci�cation gives meaning to what
the contract should do. However, because Solidity is not �t for this most tools are de�ned at the
EVM bytecode level, or introduce an intermediate contract language. These programs are then
proven correct considering all possible inputs with respect to the given speci�cation. KEVM [12],
a formalization of the EVM in F* [13] and eth-isabelle [14] are very similar. All three tools are able
to execute a large set of the o�cial ethereum test suite and are able to proof speci�cations correct
for certain contracts. Other approaches use an intermediate language over which properties can
be proven correct. Lolisa [15] and Scilla [16] also fall under this category.

4.2 Smart Contract Languages

Smart contracts are usually written in a high level language that compiles to EVM (Ethereum
Virtual Machine) bytecode. Currently the best known and most used language is Solidity (as

12

described in detail in section 3). But there are other options available that also compile to EVM
bytecode. They di�er in their syntax and in�uences by other languages.

Solitor uses Solidity as the base language and extends it with annotations. Solitor is designed
to be easy to use for smart contract developers, and Solidity is the most used language to create
smart contracts. Another reason is that Solidity is much more mature then the other smart contract
languages. The documentation is much more complete and the syntax is more stable. Solitor could
be extended to support other languages as well. The Annotation syntax could remain the same.
The di�erence however is how contract variables are declared in the other languages and how the
annotations should reference them.

4.2.1 Bamboo

Bamboo is a smart contract language where state transitions are a core part of the language design.
This makes the state transitions in smart contracts explicit. This way it avoids re-entrancy by
default. Each function is declared within a state and executing a function causes a state transition.
This way there should be less surprises in the execution of smart contracts. The project is located
in a repository at https://github.com/pirapira/bamboo. As an example the smart contract for
a crowd funding is used. The crowd funding usually has several stages in which di�erent things can
happen. In Solidity these stages are usually modeled using boolean variables and enforced using
modifiers. With this approach it is hard to keep track which functions are enabled at which state.
In Bamboo this is not the case since functions are declared within a state and functions modify
the signature of the smart contract.

4.2.2 Vyper

Vyper is a new and experimental smart contract programming language. It is maintained by
the Ethereum Foundation at https://github.com/ethereum/vyper. The idea is to limit certain
functions and aspects that are possible in Solidity to make writing smart contracts less error prone.
It also tries to make smart contracts more human readable to make it simpler to see what will
happen when a function is called. For example modifiers, inline assembly and class inheritance
is not allowed in Vyper as opposed to Solidity.

4.3 Other related work

A number of other proposals have been published which try to make smart contracts more secure.
They do not belong to a certain category but are related to the current work. Some projects only
have source code available and do not have documentation or a paper.

4.3.1 ContractLARVA

ContractLARVA can be found on github at https://github.com/gordonpace/contractLarva.
Following the instructions on the README you can write a speci�cation and a contract in So-
lidity. The compiler will combine these two and output a new Solidity contract with the runtime
veri�cation checks in place. Properties have to be speci�ed using dynamic event automata (DEA)
[17]. The tool is based on a similar tool called LARVA for Java.

For example consider the following Solidity contract. In this contract we would like to monitor
the variable number, it should always be positive.

pragma s o l i d i t y ^0 . 4 . 2 3 ;

contract myContract {

uint public number ;

function setNumber (uint amount) public{
number = amount ;

}
}

The monitor has to be de�ned in DEA syntax.

13

https://github.com/pirapira/bamboo
https://github.com/ethereum/vyper
https://github.com/gordonpace/contractLarva

monitor myContract{
DEA testMonitor {

s t a t e s {
State : i n i t i a l ;

}
t r a n s i t i o n s {

State −[number@(number > 0)]−> State ;
}

}
}

The speci�cation and contract are combined into a new contract with the added behaviour. The
output of the tool can be seen below.

pragma s o l i d i t y ^0 . 4 . 2 3 ;
contract LARVA_myContract {
modifier LARVA_DEA_1_handle_after_assignment_number {
_;
i f ((LARVA_STATE_1 == 0) && (number > 0)) {
LARVA_STATE_1 = 0 ;

} else {
}

}
int8 LARVA_STATE_1 = 0 ;
function LARVA_set_number_pre (uint _number)
LARVA_DEA_1_handle_after_assignment_number public returns (uint) {
LARVA_previous_number = number ;
number = _number ;
return LARVA_previous_number ;

}
function LARVA_set_number_post (uint _number)
LARVA_DEA_1_handle_after_assignment_number public returns (uint) {
LARVA_previous_number = number ;
number = _number ;
return number ;

}
uint private LARVA_previous_number ;
function LARVA_myContract () public {
}
function LARVA_reparation () private {
}
function LARVA_satisfaction () private {
}
enum LARVA_STATUS {NOT_STARTED, READY, RUNNING, STOPPED}
LARVA_STATUS private LARVA_Status = LARVA_STATUS.NOT_STARTED;
function LARVA_EnableContract () private {

LARVA_Status = (LARVA_Status == LARVA_STATUS.NOT_STARTED) ?
LARVA_STATUS.READY:LARVA_STATUS.RUNNING;

}
function LARVA_DisableContract () private {

LARVA_Status = (LARVA_Status == LARVA_STATUS.READY) ?LARVA_STATUS.
NOT_STARTED:LARVA_STATUS.STOPPED;

}
modifier LARVA_ContractIsEnabled {
require (LARVA_Status == LARVA_STATUS.RUNNING) ;
_;

}
modifier LARVA_Constructor {
require (LARVA_Status == LARVA_STATUS.READY) ;

14

LARVA_Status = LARVA_STATUS.RUNNING;
_;

}
uint private number ;
function setNumber (uint amount) LARVA_ContractIsEnabled public {

LARVA_set_number_post(amount) ;
}

}

The above example is a contract that can be deployed to a local testnet. However all calls to
the function setNumber will fail because the code is not initialized correctly. The LARVA_Status

is never set to running thus the modi�er LARVA_ContractIsEnabled will throw an exception.
This problem occurs to all contracts without a constructor. The approach of ContractLarva has
several limitations, for example monitors can only be added with state transitions. Even if the
contract does not represent a state machine. The states are represented as int8 in the generated
contract code, which cost extra gas. States have to be initialized in the beginning. This means
that the generated contract has to have a constructor and potentially call the original constructor.
This changes the contract interface and thus could limit the testing of the contract because other
applications could depend on it. To test a certain speci�cation on previous values the variable is
stored to a storage location. This causes a lot of extra gas cost where should be possible to store
in in memory. In the previous example see the variable LARVA_previous_number.

Solitor does not use state transitions as a way to declare monitors. Using the Solitor approach
the interface of the contract does not change. That is, the publicly callable functions and their
arguments does not change. This means that the front-end can still communicate with a runtime
monitored contract created by Solitor. Also there are no extra declared states in Solitor, which
saves the gas cost of the extra variables needed to keep track of the state.

4.3.2 The Hydra Project

The Hydra Framework is a project for smart contracts on the Ethereum network. It tries to make
smart contracts more secure by making multiple implementations of the same contract. They call
this N-of-N-version programming. The di�erent implementations are controlled by a meta contract
which forwards the incoming calls to all the implementations. If the implementations do not agree
on a single answer, the meta contract will be able to react on this. When such a vulnerability is
found a bounty is given to the person who exploited the vulnerability. They call this principle the
exploit gap, this means that a hacker should claim the bounty instead of exploiting the vulnerability.
More information can be found in their paper [18].

4.3.3 FSolidM

FSolidM [19] is a fully functional tool which helps developing secure smart contracts. It provides
a GUI to specify contracts using �nite state machines (FSM). These FSMs are then translated to
secure solidity contract code. This tool helps creating secure smart contracts since the semantics
of the FSM is well de�ned. The tool comes with a code generator for generating Solidity code, and
also the possibility to de�ne plugins. These plugins can be used to de�ne certain patterns that
implement common design patterns or include security constraints.

4.3.4 Quantitative Analysis of Smart Contracts

Chatterjee et al. [20] analyse the utility (expected payout) for smart contracts. It does so by using
game theory and incentives to analyse a stateful game. It uses a simpli�ed contract language and
translates these contracts to state-based games. These games can then be analysed by the tool for
their expected payout. The functions in the games are assumed to be executed at distinct timeslots.
This is however not the case for Ethereum since one can always write a speci�c contract to call all
functions within the same transaction. Also calls to other contracts are not considered while this
is where most of the complexity and vulnerabilities are discovered in real world contracts.

15

Figure 1: Overview of the tool Solitor

5 Solitor

The following sections introduce the tool Solitor. The tool can parse smart contracts written in
Solidity which have extra annotations in them. These annotations will be translated to Solidity
code which can be checked at runtime. This way assumptions about the contract state can be
expressed and tested. Using this tool the security of smart contracts can be improved.

5.1 Overview

In Figure 1 the complete overview of the tool Solitor can be seen. Within the dashed square the
implemented parts are visible. The arrows indicate the �ow of the contract code throughout the
program.

First contract code has to be annotated according to a speci�ed grammar. Section 6 explains
the grammar in more detail and gives some example annotations. The tool ANTLR [21] is used
to generate code for the lexer and parser. The grammar has to be expressed in the language that
is recognized by the ANTLR tool. The automatically generated parser is used to parse Solidity
contract code and annotations into a parse tree. The parse tree makes it possible to walk the
complete contract code and do analysis on speci�c parts of the contract. This parse tree is used
in later stages of the tool.

The next step is type checking the annotations. This uses the parse tree to examine the
annotations and check if they are valid. The type checking is done bottom up and works in two
phases. The �rst phase collects all the relevant variables. This includes state variables and function
de�nitions (function name, arguments and return values). The next phase uses this information
to do the actual type checking of the annotations. This is explained in more detail in Section 7.

The result of the type checker phase are type-checked annotations. In practice these are parse
tree objects in which the types correspond to the operators used and the identi�ers that are used
are also de�ned in the contract. This is used as input for the generation phase. The generation
phase will operate on the information that is created during the type checker phase. For each
annotation it will generate the code that is needed to check it during runtime. This happens in a
single pass of the complete parse tree. Details on this phase can be found in Section 8.

The output of the type checker phase can also be used for static analysis tools. The bene�t of
using the tool to validate the annotations is that the result is a type checked parse tree that can
be parsed and traversed in various ways to be useful for static veri�cation methods.

16

6 Annotation Language

The �rst step is de�ning an annotation syntax, and formally write this down using a grammar. The
parser generator that we use is ANTLR [21]. Using the grammar de�nition the lexer and parser
will be automatically generated. The output of this phase is a parse tree that can be used in later
stages of the tool. We use the parser generator ANTLR, mostly for two reasons. The �rst reason
is that there already exists a actively maintained grammar de�nition for the complete Solidity
language [22]. The second reason is the grammar inheritance capabilities of ANTLR. This is done
by inheritance over the original grammar 2. It functions much like object oriented inheritance.
The main grammar inherits all rules, token speci�cations and named actions from the imported
grammar. Rules in the main grammar override rules in the imported grammar. We will use this
principle to extend the grammar of Solidity to recognize the special annotations that will later be
used in the tool. In this case the imported grammar is the original Solidity grammar. The `new'
main grammar is de�ned further below and is called SolidityAnnotated. The advantage of this
approach is that changes to the original Solidity grammar can easily be updated in the tool. This
only holds for small changes to the language, if grammar rules change that the tool makes use of
the SolidityAnnotated grammar also has to be updated.

6.1 Solidity Annotated

The original Solidity grammar has to be extended to recognize the annotations that will be de�ned.
The annotations have certain requirements that can be summarized in the following way. Later
each requirement is discussed in detail.

• Annotations can be speci�ed at the top level of the contract.

• Annotations should be able to reference all variables used in the contract.

• Basic math operations can be used within annotations.

• Annotations can not have side e�ects.

• The type should be boolean at the highest level (that way they can be veri�ed).

• There are three types of annotations: invariants and pre- or postconditions to a function.

The annotation syntax is heavily inspired from the JML annotation syntax [23]. But has a
lot less built-in keywords since the setting is easier and the tool is less complex. Only top-level
annotations are necessary because they are used for runtime generation. Inline annotations are
usually used for loop-invariants or to help the veri�cation engine in other annotation languages.
Since Solidity is a contract-oriented language, the functions, variables and structs are all de�ned
within the contract. All annotations should be able to make use of them. Variables are either
de�ned in the contract as a global variable, or used as function parameters. The annotations
themselves should contain logic to check a certain property that is de�ned by the annotation.
These properties are built from basic math operations and variables and should result in a boolean
at the highest level. The boolean is needed because in the runtime veri�cation the annotation is
actually checked when the contract code is executed. The three types of annotation that are de�ned
are invariant, precondition and postcondition. This is su�cient since no other contract can make
changes to the internals of the contract memory or storage. This means that all access from the
contract is from the functions that are de�ned. This way having preconditions to check annotations
before a certain function, and postconditions to check them after is enough for individual functions.
Invariants are de�ned for contracts, they make sure a property holds at all times. The only time
these could change is when a function is executed. In practice this means that for each invariant
it has to be checked at the end of every function.

6.2 Grammar De�nition

The following section explains what these requirements mean for the grammar de�nition. The
original Solidity grammar is extended in such a way that annotations can only be de�ned on the
top level. The relevant parts of the original Solidity grammar can be seen in the snippet below.

2This principle is explained in detail here https://github.com/antlr/antlr4/blob/master/doc/grammars.md

17

https://github.com/antlr/antlr4/blob/master/doc/grammars.md

This does not include the full grammar speci�cation but only the parts that are relevant for the
annotation syntax.

grammar Solidity;

sourceUnit

: (pragmaDirective | importDirective | contractDefinition)* EOF ;

contractDefinition

: ('contract ' | 'interface ' | 'library ') identifier

('is ' inheritanceSpecifier (',' inheritanceSpecifier)*)?

'{' contractPart* '}' ;

contractPart

: stateVariableDeclaration

| usingForDeclaration

| structDefinition

| constructorDefinition

| modifierDefinition

| functionDefinition

| eventDefinition

| enumDefinition ;

In the original grammar the de�nition of contractPart is what de�nes the declaration of variables
and the de�nitions for structs and functions. This is where the extra annotations have to be added
to the grammar. The snippet below shows the basic de�nition of an annotation. This is not the
complete grammar: some of the tokens are omitted from this snippet, since they are not required
to understand the grammar de�nition.

grammar SolidityAnnotated;

import Solidity;

@header {package generated ;}

// Added annotationDefinition. This enables annotations to be on the

top level only.

contractPart

: stateVariableDeclaration

| usingForDeclaration

| structDefinition

| constructorDefinition

| modifierDefinition

| functionDefinition

| eventDefinition

| enumDefinition

| annotationDefinition ;

annotationDefinition

: AnnotationStart AnnotationKind annotationExpression;

// Same as the expression rule except it does not include

assignments , only comparisons

annotationExpression

: '(' annotationExpression ')'

| '!'annotationExpression

| ('\\forall ' | '\\exists ') '(' identifier 'in' identifier ':'

annotationExpression ')'

| annotationExpression integerOpInteger annotationExpression

| annotationExpression integerOpBoolean annotationExpression

| annotationExpression compareOp annotationExpression

18

| annotationExpression booleanOp annotationExpression

| primaryAnnotationExpression;

primaryAnnotationExpression

: primaryExpression

| primaryAnnotationExpression '.' identifier

| primaryAnnotationExpression '[' primaryAnnotationExpression ']'

| '\\old ' '(' primaryAnnotationExpression ')';

// Annotation Tokens

AnnotationStart

: '//@';

AnnotationKind

: 'inv '| 'pre '| 'post ';

// Added '->' for then.

booleanOp

: '&&' | '||' | '->';

compareOp

: '==' | '!=';

integerOpBoolean

: ('>'|'>='|'<'|'<=');

integerOpInteger

: '+' | '-';

// Remove '@' from first position of LINE_COMMENT token.

LINE_COMMENT

: '//' ~[@] ~[\r\n]* -> channel(HIDDEN);

// Send whitespace to channel hidden.

WS

: [\t\r\n\u000C]+ -> channel(HIDDEN);

An AnnotationDe�nition is composed of multiple components. It consists of AnnotationStart,
AnnotationKind and annotationExpression components. The AnnotationStart token is used
to signal that an annotation de�nition is coming next. This is de�ned as `//@' making it a line
comment to other solidity compilers. This makes annotated solidity code still compilable by normal
Solidity compilers. For the grammar to accept this notation the LINE_COMMENT token has to be
adjusted to not accept `@' as a second character. Otherwise all annotation comments would be
recognized as a LINE_COMMENT making it unusable.

There are three types of annotations that are de�ned by the token AnnotationKind. They can
either be an invariant or a pre- or post-condition of a function. Invariants are de�ned per contract,
and should hold at any point during the execution of the contract. Pre- or post-conditions are de-
�ned for a speci�c method. They are checked before and after execution of the method. Each anno-
tation has an expression which has to be evaluated called annotationExpression. The expression
parser rules are separated between annotationExpression and primaryAnnotationExpression.
This is needed to keep the hierarchy in parsing and prevent using complex expressions within
primary de�nitions. For example using the keyword `\old' before parenthesis. The annotation
expressions use a di�erent parser rules than the expression rules that are used within the original
Solidity grammar. The annotationExpression does not allow syntax like expression + `++'

and to distinguish these a new parser rule was introduced for annotations only.
The order in which the di�erent subrules are de�ned in the annotationExpression is impor-

tant. The order indicates the priority which the subrules are given. This means that parentheses
bind stronger then any other rule, followed by the negation rule with the expression ! and so
on. The annotationExpression construction contains all the logical operators that can be used
within annotations. In general they are of the form expression - <operand> - expression.

19

The expressions are de�ned recursively thus making it able to form longer expressions with mul-
tiple operands. The parser rules in primaryAnnotationExpression are used as leaves in the
expression. primaryExpression reverts to di�erent kinds of literals that are used in Solidity.
The other rules deal with complex types of Solidity and the possibility to reference an old vari-
able. primaryExpression and identifier are parser rules that are de�ned in the original So-
lidity grammar. The annotation expressions make use of these rules so that they do not have
to be de�ned again. These rules do not include assignments and are without side e�ects. The
primaryExpression parser rule includes all the literals that can be used within Solidity. The
parser rule identifier is used for all kinds of identi�ers such as function identi�ers and variable
identi�ers. Function calls are not allowed within annotations, for more details see Section 9.

6.3 Examples

In this section a couple of annotation examples will be given for example contracts. First a contract
snippet is shown and later the meaning of this annotation is explained.

uint256 nr1 ;
uint256 nr2 ;
//@ inv nr1 >= nr2

De�nes an invariant that will be checked at the start and end of every function. nr1 and nr2 are
global contract variables. nr1 should always be bigger than nr2.

address owner ;
//@ post \old(owner) == owner

function doSomething () public{
// ...

}

De�nes a post condition on the function doSomething(). Checks if the owner is not changed
during execution of the function.

uint256 [] a ;
//@ inv \forall(x in a: a[x] > 0)

De�nes an invariant that will check if all elements in array a are positive.

uint256 b ;
//@ post (msg.sender == owner) -> (\old(b) != b)

function changeSomething () public{
// ...

}

Postcondition for the function changeSomething(). If the sender of this transaction is equal to
the owner (msg.sender), variable b must be di�erent from the start of the function.

mapping(address => uint256) myMap;
address public adr ;
//@ inv myMap[adr] == 5

Example of a mapping that maps address to uint256. The invariant checks the key adr in the
map and checks if it is equal to 5.

20

A few example of expressions that do not parse correctly:

uint256 a = 5 ;
//@ inv getNumber() == a

function getNumber () returns (uint256){
//...

}

Functions are not recognized in annotations. This is because some functions could have side e�ects.
This can be checked in typechecker but is not implemented yet.

//@ post old(_a + _b) == _a + _b

function doSomething (uint256 _a, uint256 _b){
//...

}

The construction \old() can only reference primary expression and not complex expressions.

These examples are small and will not compile because there is no contract code wrapping
them. They only show the possibilities of the annotation language. Later on larger examples will
be shown which include complete annotated contracts and are able to compile.

21

7 Annotation Type Checking

With the annotation language de�ned, the next step in the process is validating annotations. The
annotations will be parsed and the type of each identi�er will be checked. The types of these
identi�ers should match to the context, and the identi�ers should be de�ned. This is important
for the annotations since they will be transformed to Solidity code in later phases of the tool.

7.1 Design

Annotations have to be validated on certain aspects for them to be meaningful. These aspects
have to be veri�ed �rst for the annotations to be useful in the next generation phase. The parser
ensures annotations are syntactically correct. However, there are more properties that have to be
checked. The typecheck phase will consist of two passes that walk the complete parse tree. The
�rst walk will collect all the variables and de�ned structures and store these in an information
object. The second walk will type check each annotation individually. During this type checking
the type of each identi�er is looked up using the collected information from the �rst walk.

7.2 Implementation

During the �rst phase all the variables, structs and function de�nitions are stored in an object.
This object is later used by the second phase to retrieve information.

public class Val idat i on In fo rmat ion {
ArrayList<So l i d i t yVar i ab l e > i d e n t i f i e r s ;
ArrayList<So l id i tyFunct ion> func t i on s ;
ArrayList<So l i d i t yS t ru c t > s t r u c t s ;

. . .
}

• SolidityVariable is an object which has a name (the identi�er) and a type. These model state
variables in a contract.

• SolidityFunction is an object which represent a function and stores the name and arguments.
The arguments are of type SolidityVariable.

• SolidityStruct is an object that represents struct de�nitions in a solidity contract. It stores
the name and elements. Elements are again of type SolidityVariable.

As mentioned in Section 3 Solidity has many types. To make generation and typechecking easier the
types are reduced to 8 base types (uint256, uint128 etc are all regarded as INTEGER). These are
all represented in the enumeration SolidityType, and all the internal representations of contract
code make use of it. The internal representations must deal with nested constructions. For example
consider the following solidity code:

struct A {
B b ;

}
struct B {

uint256 nr ;
}
A var1 ;

For this Solidity code the typechecker would create two SolidityStruct objects, A and B. Struct B
contains a variable nr of type INTEGER, struct A contains a variable b of type STRUCT with reference
to B. There also is a global variable var1 with type STRUCT with reference to A.

The next phase will only parse the annotation part of the contract code. This means that the
entire parse tree of the original Solidity contract code will be ignored. The actual typechecking
happens in this phase. It works bottom up, getting the type of each identi�er and veri�es the
types of each step. The top level of each annotation should result in the type BOOLEAN. An extra
type UNDEFINED was added to the SolidityType object to deal with cases where the identi�er

22

was not found and to produce a result without crashing the program. For the rest of the parse
rules/operators the following type system is used:

• Base case: expression is a primaryAnnotationExpression. This could mean a identi�er
where the type is found through the SolidityVariable or a literal of some type. The type
can just be passed on to the higher level.

• ' !' expression: Type checker veri�es the nested expression and validates this results in
BOOLEAN. Result of this step is always BOOLEAN.

• \forall | exists(identi�er in identi�er: expression): There are multiple things that have to
be veri�ed. First the second identifier should be of type MAPPING or ARRAY. Secondly the
nested expression is typechecked, this is within a special scope since expressions can make use
of the �rst identi�er. This expression should result in BOOLEAN. This result is also returned
for the higher level expression.

• expression ('+' | '-') expression: Both subexpressions should return INTEGER. Result of
the current expression is INTEGER as well.

• expression ('>'|'>='|'<'|'<=') expression: Both sub-expressions should return INTEGER.
Result of the current expression is BOOLEAN.

• expression ('==' | ' !=') expression: The types of the sub-expressions should match. The
result of this is BOOLEAN.

• expression ('&&' | '||' | '->') expression: Both sub-expressions should return BOOLEAN.
Result of this is BOOLEAN as well.

If any of the types do not correspond to the expected value a validation error is reported and
logged.

In case complex types are used such as structs, the additional information is retrieved from
the corresponding object. This information can be retrieved from the object that is referenced.
For example consider an identi�er a.b. This would mean that the type of a must be a struct and
that in the de�nition of the struct the type of the identi�er b must be retrieved. Additionally
annotations can make use of function arguments and reference them. This is solved by looking up
the SolidityFunction object that the annotation was declared above. This makes it possible to
retrieve the types of function arguments and use them within the annotation.

7.3 Example

There are annotations which are valid according to parser rules, however they contain an error
when type checking them. A type error can occur when types do not match the logical operator
that is being used. An other possibility is that an identi�er that is used is not de�ned in the
contract. A small example contract is given below.

pragma s o l i d i t y ^0 . 4 . 2 4 ;

contract TypeError {
uint256 a = 5 ;
//@ inv a == b

address a1 ;
address a2 ;
//@ inv a1 + a2 > 5

}

When type checking the contract Solitor will output error messages. Firstly the identi�er b is not
de�ned, thus the type cannot be retrieved. The second error message is because the type defaults
to UNDEFINED when the type is not found. This makes the comparison operator fail because the
types do not match. The third error message is because both identi�er reference to an address,
and these can not be used with the add operator. Solitor will output the following error messages,
when it is called with the contract above:

23

Line 5 :17 − I d e n t i f i e r b in annotat ion not de f ined as va r i a b l e
Line 5 :12 − Expected type to match at a==b but i s INTEGER, UNDEFINED
Line 9 :12 − Expected types to be i n t e g e r s at a1+a2 but i s ADDRESS, ADDRESS

24

8 Generation of runtime monitoring code

After type checking annotations, the generation phase starts. In this phase the annotations are
transformed to Solidity code and added to the contract. The functions of the contract will not
change, but extra code is added which only checks certain properties. Since the interface does not
change, the front-end can communicate to the runtime monitored contract like it is the original
contract. Most of the constructions used in annotations can be directly translated to Solidity code.
However mappings cause problems because the key set is unknown. To solve this, extra code is
added to the contract to store this information. This is discussed in detail in Section 8.3

8.1 Design

The important requirement for this phase is that the interface of the contract does not change.
That is, the publicly callable functions and their arguments should not change. Therefore we
will wrap the original function in a new function that calls the original function. The functional
behaviour of the contract should remain the same and the added code only performs extra checks.
For each added annotation three steps have to be performed:

1. Generate a function for each annotation that checks the expression. This function should
have the correct number of arguments that are used within the annotation. Arguments are
variables that are not reachable from the global scope and used in the expression. These are
old variables and function variables. The only variables that are available within a function
with no arguments are the globally de�ned variables. These do not have to be given as an
argument since then you have two variables de�ned with the same name. Other variables
have to be given as an argument to the function. This includes function arguments, these
are arguments that the original function has where this annotation is de�ned for. This is
empty by construction for invariants since they do not reference a function. Additionally
pre- and postconditions can use the \old() construction on a variable. With this expression
the value before the function execution is referenced. The same value also has to be given as
an argument to the annotation function.

2. For each original function of the contract: Create a wrapper function with the old name
which calls the original function body.

3. Add all annotations that should be checked to the wrapper function. All variables that should
be stored before the function call should be stored in memory before executing the function
body. This means that all variables that are reference in an annotation with the keyword
\old() have to be stored in a variable with name `variable + _old'.

To illustrate the steps consider the small example below. Some details are abstracted away since
they do not add information to the example. The expression �invariant_expression� is not valid
syntax, but can be replaced with any arbitrary expression. The same holds for �post_expression�.
Furthermore the parameters of the method annotation1 are replaced with �argument� since it is
unknown which parameters should be included. In the implementation section it will be explained
which argument variables are copied and which are not.

//@ inv 'invariant_expression'

//@ post 'post_expression'

function t e s tFunct ion () public{
//...

}

At the end of the generation phase this will be the generated code:

//@ inv 'invariant_expression'

function annotat ion0 () {
//check 'invariant_expression'

}

//@ post 'post_expression'

function annotat ion1 ('argument') {

25

// check 'post_expression'

}

function t e s tFunct ion () public{
//stored variables in memory, i.e. copy all variables in 'argument'

annotat ion0 () ;
testFunction_body () ;
annotat ion1 ('argument') ;
annotat ion0 () ;

}

function testFunction_body () private{
//...

}

8.2 Implementation

During the typechecking phase the object AnnotationInformation is created for each annotation
it parses. This object contains the following information:

public class Annotat ionInformation {
ParserRuleContext node ;
private St r ing name ;
private Map<So l i d i t yVar i ab l e , Boolean> va r i a b l e s ;
private St r ing type ;
private St r ing func t i on ;

. . .
}

• Reference to the node in the parser tree.

• A unique name for the annotation. This name is generated and is `annotation' + a number.

• A list of arguments used in the method. The boolean indicates if it should be included as an
argument for the method. As explained in the Design section. These are all arguments that
cannot be reached from the global scope.

• Type of the annotation. Invariant, Pre or Post-condition. This indicates where it should be
added to the wrapper function.

• Function the annotation is declared above. Null in case this is an invariant.

When parsing the tree the correct AnnotationInformation object is retrieved using the parse tree
node. The function declaration is constructed using the name and arguments from this object.
The body of this function can be constructed from the expression that is within the parse tree
object. In most of the cases the code can directly be printed but in some cases the expression has
to be altered:

• The expressions \forall and \exists have to be replaced with a loop, that checks the
expression for all the elements of the collection.

• The usage of \old has to be replaced with the variable that was created and initialized
before the function execution. This means rewriting the variable \old(identifier) to
identifier_old. In case of structs this is a bit more works since \old(a.b) should be
replaced with a_old.b.

• Boolean operator a->b which can be used in annotations is not valid Solidity code, and has
to be replaced with !a||b

26

Since the annotations have been type-checked the generated code will always be valid. The result
of an annotation is always a boolean value. The actual testing of this value is done using an assert

statement. If the value is false it means that the transaction will be reverted and all gas will be
consumed. The actual test of the boolean value could be changed, to for example the triggering
of an event. The di�erence in approach is important for the result of an transaction when the
annotation is not satis�ed. Assert will revert the entire transaction. A possible vulnerability that
triggers the assertion will not go through as the assertion stops the execution. The vulnerability
can not be exploited. In the case of changing this to an event the vulnerability can be exploited,
but it will be registered because of the emitted event. Other behaviour can be speci�ed here, for
example calling a function that halts all the functionality of a contract except for a special function
that only the admin of the contract can execute.

When the parser encounters a function it will check if annotations have to be added. This means
searching through all AnnotationInformation objects and see if any of them reference the current
function or are null (invariant). The original function will be transformed to a private function
and renamed to �functionName�+ _body. The new wrapper function will call this function. The
wrapper function does two other things that are important that is saving the current state of
variables that are later to be used in annotations. It will only do this for variables that are
referenced within \old(identifier). The second thing it does is add function calls to annotations
before and after executing the original body. Annotations of type invariant are added before and
after, preconditions only before and postconditions only after.

The actual printing of the contract code works with a TokenStreamRewriter3, which is part of
the ANTLR framework. The problem with printing the contract code is that the parse tree skips all
whitespace. This means that the whitespace is lost in the parsing process. Including the whitespace
in the parser rules would complicate the grammar because they have to be added to every rule. The
ANTLR book also has an example on a similar case like this 4. The idea is that the lexer gives all
tokens a number in order, but the tokens are split between two channels. The parse tree only parses
tokens on the �rst channel and ignores the others. The TokenStreamRewriter has the information
of both channels. The token positions are still known and this way the TokenStreamRewriter

can replace/insert text based on parser rule nodes positions. The tool uses the rewriter to insert
the annotation blocks and function body in the correct places while preserving whitespace of the
original contract code.

8.3 Mappings

The above section holds for all constructions except for mappings. A mapping cannot be stored in
memory and is not iterable since the key set is not known. This gives problems 1) when storing
the variable for \old() and 2) checking a expression for all elements in a mapping.

This is solved by using an iterable mapping 5. This works by wrapping the mapping de�nition
within a struct. This struct contains the mapping and an array. The array stores the indexes
which are used. Since the indexes are in an array these can be iterated. The key and value can be
retrieved using the index. The value can also be retrieved using the key. In order for this to work
extra code has to be added to the contract.

• Import the library at the beginning of the contract.

import "./itMapsLib.sol" ;

• Use library function when doing operations on the struct.

using itMaps for itMaps . itMapUintUint ;
using itMaps for itMaps . itMapAddressUint ;
using itMaps for itMaps . itMapUintAddress ;

• Replace declaration of mapping with iterable mapping.

//mapping(address => uint256) a;

itMaps . itMapAddressUint a ;

3https://www.antlr.org/api/Java/org/antlr/v4/runtime/TokenStreamRewriter.html
4Source code can be found here: https://pragprog.com/titles/tpantlr2/source_code. The example is in

lexmagic/ShiftVarComments.java
5https://github.com/szerintedmi/solidity-itMapsLib

27

https://www.antlr.org/api/Java/org/antlr/v4/runtime/TokenStreamRewriter.html
https://pragprog.com/titles/tpantlr2/source_code
https://github.com/szerintedmi/solidity-itMapsLib

• Create mapping_old for annotation purposes. Only when the mapping is used within a
\old() expression.

itMaps . itMapAddressUint a_old ;

• Replace each mapping reference with .get(...) or .set(...) depending on the context.

//uint256 b = a[0x0];

uint256 b = a . get (0 x0) ;
//a[0x1] = 1;

a . s e t (0x1 , 1) ;

Adding these constructions to the contract is costly. Firstly because the keyset must be stored
in the storage of the contract which costs gas. Secondly because a second iterable mapping must
be used to store the old values of the mapping.

The most important change is that the contract storage changes because of this construction.
A change in storage is necessary because the keyset must be stored in order for this to work.
Another solution would be to store a separate keyset array within the contract and not use an
iterable mapping construction. The keyset has to be updated on every access of the original
mapping. This keyset would be used to construct the old mapping which can then be done in
memory. However using this approach a lot of custom Solidity code has to be generated which is
not implemented in Solitor. These limitations are discussed more in detail in the next section.

28

9 Limitations

There are some limitations of Solitor that are present in the current version of the implementation.
Some of the limitations are in the annotation language and some of them are because of the
generated Solidity code. The annotation language and parser only work on a single scope level.
This means each declared variable can only be used once. However in Solidity contract inheritance
is supported. This makes it possible to de�ne small contracts and inherit from these contracts. This
makes development of smart contracts modular and scalable. The tool currently does not support
inheritance. This means that the tool only parses the main contract and does not look in the
inheritance tree. Annotations can only make use of de�nitions that are declared within the current
contract. To solve this problem the tool would have to be extended with a scope mechanism.
Di�erent variables are declared in di�erent contracts and thus have a di�erent scope. Annotations
should be able to reference inherited properties and make use of the variables. This requires some
changes to the parser structure, but not the annotation language. Because the syntax to reference
to variables of inherited contracts is the same as accessing a variable from a struct. The parser
should look up all the inheritance statements and parse all contracts that are referenced by import

statements. These contracts can be declared in separate �les.
Since mappings are not iterable in Solidity these are replaced by iterable mappings as explained

in Section 8.3. However iterable mappings are only replaced for a few types of mappings. These are
mappings which maps uint ⇒ address, address ⇒ uint, uint ⇒ uint, all other combinations
are not supported. This is because the library that is used does not yet implement other mapping
combinations. Also nested mappings are excluded from the generation. The iterable mapping
solution that is used in the current version of the tool uses a global variable to store the \old state
of the mapping. Using another function within a function which uses an annotation would overwrite
the global variable, making it unusable to check the annotation expression. This limitation is only
due to the generation of Solidity code for the annotation. The annotation syntax can handle these
nested mappings and other declared mappings.

29

10 Case study

In this section we present two case studies of smart contracts. These smart contracts will be an-
notated and the tool will generate the contract code with extra checks added to the code. The
generated contracts are then tested using the Tru�e framework [24]. This framework makes it
possible to generate transactions and execute them on a local temporary blockchain. A few trans-
actions will be used to detect the vulnerability or show that contract behaves correctly. The �rst
example is a minimal token implementation. The second example is a contract with a vulnerability
which we will show can be detected with the correct annotations.

10.1 SimpleToken

In this example we will use the contract SimpleToken. The contract code can be found on the
Ethereum Foundation website6. It models a minimum viable token. To keep the state of the
contract a mapping is used that maps address to uint. This mapping is kept in the contract's
internal storage and is stored on the blockchain. It indicates the amount of tokens each address
holds token and changes every time the transfer function is called. The transfer function
requires two parameters an address (_to) and an uint(_value) which speci�es the amount to
be sent. The from address is determined from the global variable msg which is present in each
transaction. The require statements in the transfer function will check if the sender has enough
balance to send the amount speci�ed in _value, and test for over�ows in the balance of the receiver.
If one of the two fails an exception will be thrown and the changes this transaction made will be
reverted.

When the contract is created the constructor will be called. In this constructor the initialSupply
is given as a parameter. All the initial supply is given to the contract creator (msg.sender). The
totalSupply value is assigned and cannot be changed after initialization.

Note that this contract is not ERC20 compliant7. ERC20 is the interface that most tokens
use to implement the desired functionality. This interface is de�ned in order for all wallets and
exchanges to be able to handle di�erent tokens. The main di�erence is that this contract does
not have an approve mapping which lets users approve a certain transfer of tokens. Also this
SimpleToken does not allow minting or burning of tokens, in other words the total supply is
�xed. Below we can see the Solidity source code of the contract SimpleToken.

pragma s o l i d i t y ^0 . 4 . 2 3 ;

contract SimpleToken {
/* This creates an array with all balances */

mapping (address => uint256) public balanceOf ;
/* TotalSupply is fixed for this token, and does not change. */

/* It is assigned in the constructor */

uint256 to ta lSupp ly ;

/* Initializes contract with initial supply tokens to the creator of

the contract */

function SimpleToken (uint256 i n i t i a l S upp l y) public {
// Give the creator all initial tokens

balanceOf [msg . sender] = i n i t i a l S upp l y ;
to ta lSupp ly = i n i t i a l S upp l y ;

}

/* Send coins */

function transfer (address _to , uint256 _value) public {
// Check if the sender has enough

require (balanceOf [msg . sender] >= _value) ;
// Check for overflows

require (balanceOf [_to] + _value >= balanceOf [_to]) ;

6https://www.ethereum.org/token
7https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

30

https://www.ethereum.org/token
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

// Subtract from the sender

balanceOf [msg . sender] −= _value ;
// Add the same to the recipient

balanceOf [_to] += _value ;
}

}

10.1.1 Annotation

The above section describes the implementation of the token contract. However there is also a
speci�cation given in words as to what the contract should do. A few properties of this speci�ca-
tion can be declared explicitly using pre and post-conditions or invariants. These properties are
important to the functionality of the contract. The �rst property is that when a transfer function
is executed the balance of the _to address is incremented with the _value. And the balance of
the sender is decreased with the same value. The rest of the balances remains the same. This
property should be checked after the execution of the transfer function. Using the correct syntax
the annotation will look:

//@ post

(balanceOf[_to] == (\old(balanceOf[_to]) + _value)

&& balanceOf[msg.sender] == (\old(balanceOf[msg.sender]) - _value)

&& \forall(x in balanceOf: (x != _to && x != msg.sender) ->

balanceOf[x] == \old(balanceOf[x])))

|| (msg.sender == _to && \forall(x in balanceOf: balanceOf[x] ==

\old(balanceOf[x])))

Going over it line by line:

1. Indicate that this is an annotation and not a comment. And this is of type post condition.

2. Balance of _to gets incremented by _value

3. Balance of msg.sender gets decremented by _value

4. Rest of the balances does not change.

5. This makes the annotation also valid for the special case where _to is equal to msg.sender.
In this case none of the balances change.

10.1.2 Generated Code

When the tool gets executed with the above contract as input including the annotation, the tool
will parse the annotation and output generated solidity code with extra checks. Note that the
functionality of this contract is exactly the same as the previous code but with extra checks. This
means that this approach is only feasible for development purposes. Since the gas cost of executing
the previous contract is much lower then that of the runtime monitored contract. Also the more
addresses that get added to the iterable map the more gas the transaction will consume. The
complete generated code can be seen below.

pragma s o l i d i t y ^0 . 4 . 2 3 ;

import "./itMapsLib.sol" ;

contract SimpleToken {
/* This creates an array with all balances */

using itMaps for itMaps . itMapUintUint ;
using itMaps for itMaps . itMapAddressUint ;
using itMaps for itMaps . itMapUintAddress ;
itMaps . itMapAddressUint balanceOf ;
itMaps . itMapAddressUint balanceOf_old ;
/* TotalSupply is fixed for this token, and does not change. */

/* It is assigned in the constructor */

31

uint256 to ta lSupp ly ;

/* Initializes contract with initial supply tokens to the creator of

the contract */

function SimpleToken (uint256 i n i t i a l S u pp l y) public {
// Give the creator all initial tokens

balanceOf . i n s e r t (msg . sender , i n i t i a l S upp l y) ;
to ta lSupp ly = i n i t i a l S upp l y ;

}

/* Send coins */

//@ post (balanceOf[_to] == (\old(balanceOf[_to]) + _value) &&

balanceOf[msg.sender] == (\old(balanceOf[msg.sender]) - _value)

&& \forall(x in balanceOf: (x != _to && x != msg.sender) ->

balanceOf[x] == \old(balanceOf[x]))) || (msg.sender == _to && \

forall(y in balanceOf: balanceOf[y] == \old(balanceOf[y])))

function annotat ion0 (address _to , uint256 _value) view private{
bool expre s s i on0= true ;
for (uint256 i 0 =0; i0<balanceOf . s i z e () &&expre s s i on0 ; i 0++){
var x= balanceOf . getKeyByIndex (i 0) ;
expr e s s i on0 =!(x!=_to&&x!=msg . sender) | | balanceOf . get (x)==

balanceOf_old . get (x) ;
}
bool expre s s i on1= true ;
for (uint256 i 1 =0; i1<balanceOf . s i z e () &&expre s s i on1 ; i 1++){
var y= balanceOf . getKeyByIndex (i 1) ;
expr e s s i on1=balanceOf . get (y)==balanceOf_old . get (y) ;

}
assert ((balanceOf . get (_to)==(balanceOf_old . get (_to)+_value)&&
balanceOf . get (msg . sender)==(balanceOf_old . get (msg . sender)−_value)&&
expre s s i on0) | | (msg . sender==_to&&expre s s i on1)) ;

}

function transfer (address _to , uint256 _value) public {
balanceOf_old . des t roy () ;
for (uint256 mapcopy=0; mapcopy < balanceOf . s i z e () ; mapcopy++){

balanceOf_old . i n s e r t (balanceOf . getKeyByIndex (mapcopy) , balanceOf .
getValueByIndex (mapcopy)) ;
}

transfer_body (_to , _value) ;
annotat ion0 (_to , _value) ;

}
function transfer_body (address _to , uint256 _value) private {

// Check if the sender has enough

require (balanceOf . get (msg . sender) >= _value) ;
// Check for overflows

require (balanceOf . get (_to) + _value >= balanceOf . get (_to)) ;
// Subtract from the sender

balanceOf . i n s e r t (msg . sender , balanceOf . get (msg . sender)−_value) ;
// Add the same to the recipient

balanceOf . i n s e r t (_to , balanceOf . get (_to)+_value) ;
}

}

32

10.1.3 Testing the contract

To execute the transactions on the contract you need the tru�e test suite. The test cases are
located in test_SimpleToken_generated.js. The test transactions do the following in this order:

1. Create contract, constructor is called with 1000 initial supply and gets assigned to creator
account.

2. Send 100 tokens from account 1 to account 2.

3. Send 10 tokens from account 1 to account 3.

4. Send 100 tokens from account 2 to account 1.

5. Send 100 tokens from account 1 to account 1 (transfer to self).

6. Send 1000 tokens from account 1 to account 3. This should fail since the balance of account
1 is lower then 1000.

The test cases can be executed with the command truffle test. Since this uses the runtime
monitored contract code, each time the annotations are checked as well. This ensures that the rest
of the balances does not change when a transfer is done between account 1 and 2. The test are
executed and all succeed.

10.2 Vulnerable Contract

The next example is a simple contract with a vulnerability. The vulnerability will not be easily
visible when reading the contract, but with extra annotations added this is visible. This contract
is not actually in use but is based on a CryptoRoulette contract 8. Most of the contract code is
omitted for this example. The idea is that the contract keeps a list of messages, for each message
the sender and the message are saved. Only the address admin has extra privileges to possibly
delete messages or delete the contract (these functions are not in the snippet).

pragma s o l i d i t y ^0 . 4 . 2 3 ;

contract LogContract {

address public admin ;
uint256 public nrOfMessages ;
Message [] public messages ;

struct Message {
address sender ;
string msg ;

}

con s t ruc to r () public{
admin = msg . sender ;

}
//@ post admin == \old(admin) && (nrOfMessages == (\old(nrOfMessages)

+ 1))

function logMessage (string _msg) public{
Message message ;
message . sender = msg . sender ;
message .msg = _msg ;
messages .push(message) ;
nrOfMessages++;

}

}

8https://github.com/misterch0c/Solidlity-Vulnerable/blob/master/honeypots/CryptoRoulette.sol

33

https://github.com/LarsStegeman/EthereumRuntimeMonitoring/blob/master/src/test/test_SimpleToken_generated.js

10.2.1 Annotation

The annotation that is added to the function logMessage checks the basic behaviour of the function.
The address admin should not be changed, and the number of messages should be increased by
one. This should be checked after the function is executed. The admin address is set once by the
constructor of the contract. No other function changes the values of this address variable, thus it
makes sense to add this as an annotation.

//@ post admin == \old(admin) && (nrOfMessages == (\old(

nrOfMessages) + 1))

10.2.2 Generated Code

The code that is generated stores the original variables in memory before calling the function body.
After the function is executed the old variables will be compared to the current state variables.
Every call to the function logMessage will report an error since each time the state variables
admin and nrOfMessages are changed. These are changed because the struct message within the
function body defaults to storage.

pragma s o l i d i t y ^0 . 4 . 2 3 ;

contract LogContract {

address public admin ;
uint256 public nrOfMessages ;
Message [] public messages ;

struct Message {
address sender ;
string msg ;

}

con s t ruc to r () {
admin = msg . sender ;

}
//@ post admin == \old(admin) && (nrOfMessages == (\old(nrOfMessages)

+ 1))

function annotat ion0 (address admin_old , uint256 nrOfMessages_old)
view private{
assert (admin==admin_old&&(nrOfMessages==(nrOfMessages_old+1))) ;

}

function logMessage (string _msg) public{
address admin_old = admin ;
uint256 nrOfMessages_old = nrOfMessages ;
logMessage_body (_msg) ;
annotat ion0 (admin_old , nrOfMessages_old) ;

}
function logMessage_body (string _msg) private{

Message message ;
message . sender = msg . sender ;
message .msg = _msg ;
messages .push(message) ;
nrOfMessages++;

}

}

34

10.2.3 Testing the contract

To execute the transactions on the contract you need the tru�e test suite. The test cases are
located in test_VulnerableContract_generated.js. The test transactions do the following in this
order:

1. Create contract, admin set to the creator of the contract.

2. Send transaction to log function with message �test�.

The test cases can be executed with the command truffle test. Since this uses the runtime
monitored contract code, each time the annotations are checked as well. This ensures that when
executing the function log the address of the admin does not change, and that the number of stored
messages gets increased by one. However we know that this contract contains a vulnerability and
the admin address will change because of the function call. This causes the transaction to revert
because the assertion in the annotation will fail. This error is caught by the test, and thus this
test succeeds.

35

https://github.com/LarsStegeman/EthereumRuntimeMonitoring/blob/master/src/test/test_VulnerableContract_generated.js

11 Conclusion

Security is an important aspect for developing smart contracts. Solitor helps the programmer write
more secure Solidity code for the EVM. Many tools try to improve security of smart contract each
developed for a speci�c vulnerability. Solitor works by de�ning annotations at the level of Solidity
code. This makes it easy to understand for developers. The usability of the tool is shown in two
case studies of small smart contracts. Using the annotations a vulnerability was exposed and thus
can not be exploited. The environment of smart contract code is di�erent from that of normal
executable code. Vulnerabilities cannot be solved because the code is committed to the blockchain.
The generated code that Solitor adds not only costs extra computational time, it also costs extra
gas. This means that transactions will cost more for runtime monitored smart contracts. Solitor is
thus best used in beta versions of the smart contract. It could be deployed on a test net in order to
detect vulnerabilities. Later in the main net version these vulnerabilities that are detected could
be patched and then deployed.

The annotation language was inspired from the syntax of JML (Java Modeling Language). JML
is designed speci�cally for Java and has a lot more keywords built in. However these keywords do
not apply to the blockchain setting. Settings that do apply to the blockchain like global transactions
variables have been added to the tool in order for the parser to recognize these variables. There are
two types of annotations, invariants must always hold and are de�ned for the complete contract.
Pre- and postconditions are de�ned for contract methods. These are checked before and after
execution of the function.

The annotation expression is checked at runtime. Solidity code is generated according to the
expression that is given in the annotation. Expressions can also be speci�ed for a collection
(mapping or array in Solidity), in that case the generation will generate the loops to check this
expression for all elements in the collection. Mappings are not iterable by default in Solidity,
since the key set is not known. To solve this and be able to check expressions at runtime iterable
mappings are used. These iterable mappings store the key in a separate array and wrap the
construction in a struct.

Solitor is publicly available on Github for every developer to use. For instructions see Appendix
A. Annotations are comments to a normal Solidity compiler, so they still can be compiled to EVM
bytecode. The interface of a runtime monitored smart contract does not change. This makes
Solitor easy to use and replace the normal contract with the runtime monitored contract.

11.1 Future work

There are a few aspects of future work that could help improve the tool:

• The tool should be able to handle contract inheritance.

• Implement a generic iterable construction, that can be stored in memory.

• The tool should have a mechanism for exposing the parse tree for other programs after
validation.

• The tool could be used in so called bounty programs

• The tool could be used in combination with a fuzzer, to generate better test cases.

The �rst point is really important for this tool to be useful for larger decentralized applications.
Because most of these applications use a structure of smaller contracts which the main contract
inherits from. For example see the secure smart contract repository of OpenZeppelin 9. To imple-
ment this functionality a di�erent level of scope has to be added. This is not that di�cult since
Solitor uses a SolidityVariable to store each variable. Each variable should be kept in a map
which only contains the variables of that scope. Annotations should be able to make use of vari-
ables declared from inherited contracts. Smaller contract could also have annotations themselves
and should also be considered when parsing the main contract. The point that requires the most
work is actually �nding the contracts and parsing them. It would mean that the parser needs to
do a prerun of the inheritance structure and �nd all corresponding contract code. This could also
be present in imported contracts, which can be at di�erent locations.

9https://github.com/OpenZeppelin/openzeppelin-solidity

36

https://github.com/OpenZeppelin/openzeppelin-solidity

Currently only mappings of speci�c types are able to be used in generated code. A generic
iterable construction would solve this issue. To implement this each mapping has to be parsed
and checked which types it used. For each key (this can recursive) an array must be created which
stores them. This way the keyset of each mapping is known. Each addition and deletion from
this mapping should be changed in order for the key array to keep up with the mapping, the same
way it does for the iterable mappings that are used now. When the mapping is referenced in an
annotation the complete mapping should be stored in an array of structs. The elements of the
structs have to be determined from the elements of the mapping. This means that each mapping
would require an additional struct de�nition to store the data. The bene�t of this approach is
that for an array of structs it is possible to store it in memory, which is not possible in the current
implementation. This involves a lot of extra parsing (of each mapping) and generation (struct
de�nitions) and is not implemented in the current version of the tool.

One of the bene�ts of this approach is that annotations could be used by other analysis tools
as well. Currently there is no way to use the annotations that are parsed by this tool in other
programs. This, however, could be easily implemented by having an extra command line option
to only parse the annotations and not go in the generation phase.

A recent trend with smart contract deployment is a bounty program. The smart contract is
deployed on a testnet and when a vulnerability is found the user is rewarded with some Ether.
With the correct annotations, Solitor can be used to de�ne the bounty criteria and automatically
generate such a contract. For example when a certain property should always hold during contract
execution, this property can be de�ned as an invariant. Solitor will automatically generate a check
for this property, and insert it before and after each function. When such property fails to satisfy
the transaction will be reverted because the property is wrapped in an assert statement. However,
this could also be changed to return a certain amount worth of ether when such property fails.

Fuzzing or fuzz-testing is a technique used in software development to test pieces of software.
For smart contracts this can also be used to test smart contracts against various inputs. This
technique could be used in combination with Solitor. The main issue with runtime monitoring is
that it requires a lot of test input to test if the contract functions correctly. For Solidity there
exists a fuzzer called Echidna [25] that could be helpful in combination with annotation.

37

A Tool Usage

The code of the tool is publicly available on the repository https://github.com/LarsStegeman/

EthereumRuntimeMonitoring. Instructions on how to use the tool on other contracts can be seen
in the README.

A.1 Getting Started

A.1.1 Prerequisites

• Java 1.8

• Maven 3.5.3

• ANTLR 4 (Maven will get this automatically when installing)

A.1.2 Installing

To install this tool perform the following steps
Clone this repository

git clone https://github.com/LarsStegeman/EthereumRuntimeMonitoring

Build the tool using maven

mvn package

Run the tool with basic example

mvn exec:java

This should output the �le basicAnnotations_generated.sol.

A.2 Using the tool

A.2.1 Grammar examples

For example annotations see Section 6. The grammar for the annotation language can be found in
the �le SolidityAnnotation.g4. More example annotations can be found in the test directory.

A.2.2 Run the tool on other contracts

When the tool is built, a jar �le is also generated to use the tool on other contracts. The jar �le
is located in the target directory. Use the tool on other contracts using the command

java -jar .\target\Ethereum-RuntimeVerification-1.0.jar <my-annotated-contract.sol>

This will generate a �le my-annotated-contract_generated.sol

A.2.3 Parameters

For debugging and testing the tool has two parameters which can be switched on. They can be
found in Parameters.java. The boolean DEBUG enables extra print statements to be printed while
parsing. The boolean STOPONERROR makes it so that the tool does not stop on the �rst error it
encounters.

38

https://github.com/LarsStegeman/EthereumRuntimeMonitoring
https://github.com/LarsStegeman/EthereumRuntimeMonitoring
https://github.com/LarsStegeman/EthereumRuntimeMonitoring/blob/master/src/main/antlr4/SolidityAnnotated.g4
https://github.com/LarsStegeman/EthereumRuntimeMonitoring/tree/master/src/test/contracts
https://github.com/LarsStegeman/EthereumRuntimeMonitoring/blob/master/src/main/java/utils/Parameters.java

References

[1] S. Palladino, �The Parity wallet hack explained,� https://blog.zeppelin.solutions/
on-the-parity-wallet-multisig-hack-405a8c12e8f7.

[2] A. Hertig, �Ethereum client bug freezes user funds as fallout remains uncertain,� https://www.
coindesk.com/ethereum-client-bug-freezes-user-funds-fallout-remains-uncertain/.

[3] �Ether.camps hkg token has a bug and needs to be reissued,� https://www.ethnews.com/
ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued.

[4] P. Daian, �Analysis of the DAO exploit,� http://hackingdistributed.com/2016/06/18/
analysis-of-the-dao-exploit/.

[5] G. Wood, �Ethereum yellow paper,� http://yellowpaper.io, 2014 (Accessed in 2018).

[6] V. Buterin et al., �Ethereum white paper,� GitHub repository, 2013.

[7] A. Dika, �Ethereum smart contracts: Security vulnerabilities and security tools,� Master's
thesis, NTNU, 2017.

[8] �Solidity documentation,� http://solidity.readthedocs.io/en/v0.4.23.

[9] �Mythril,� https://github.com/ConsenSys/mythril.

[10] �Securify,� https://securify.ch/.

[11] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, �Making smart contracts smarter,�
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 254�269.

[12] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth, and G. Rosu, �KEVM:
A complete semantics of the Ethereum virtual machine,� Tech. Rep., 2017.

[13] I. Grishchenko, M. Ma�ei, and C. Schneidewind, �A semantic framework for the security
analysis of ethereum smart contracts,� in International Conference on Principles of Security
and Trust. Springer, 2018, pp. 243�269.

[14] Y. Hirai, �De�ning the ethereum virtual machine for interactive theorem provers,� in In-
ternational Conference on Financial Cryptography and Data Security. Springer, 2017, pp.
520�535.

[15] Z. Yang and H. Lei, �Lolisa: Formal syntax and semantics for a subset of the solidity pro-
gramming language,� arXiv preprint arXiv:1803.09885, 2018.

[16] I. Sergey, A. Kumar, and A. Hobor, �Scilla: a smart contract intermediate-level language,�
arXiv preprint arXiv:1801.00687, 2018.

[17] C. Colombo, G. J. Pace, and G. Schneider, �Dynamic event-based runtime monitoring of real-
time and contextual properties,� in Formal Methods for Industrial Critical Systems (FMICS),
ser. Lecture Notes in Computer Science, vol. 5596, L'Aquila, Italy, 2008, pp. 135�149.

[18] L. Breidenbach, P. Daian, F. Tramer, and A. Juels, �Enter the hydra: Towards principled bug
bounties and exploit-resistant smart contracts.�

[19] A. Mavridou and A. Laszka, �Tool demonstration: Fsolidm for designing secure ethereum
smart contracts,� in International Conference on Principles of Security and Trust. Springer,
2018, pp. 270�277.

[20] K. Chatterjee, A. K. Goharshady, and Y. Velner, �Quantitative analysis of smart contracts,�
arXiv preprint arXiv:1801.03367, 2018.

[21] T. Parr, The de�nitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[22] �Solidity grammar for ANTLR 4,� https://github.com/solidityj/solidity-antlr4.

39

 https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
 https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
 https://www.coindesk.com/ethereum-client-bug-freezes-user-funds-fallout-remains-uncertain/
 https://www.coindesk.com/ethereum-client-bug-freezes-user-funds-fallout-remains-uncertain/
 https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued.
 https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued.
 http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
 http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://yellowpaper.io
http://solidity.readthedocs.io/en/v0.4.23
https://github.com/ConsenSys/mythril
https://securify.ch/
https://github.com/solidityj/solidity-antlr4

[23] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry, P. Chalin,
D. M. Zimmerman et al., �Jml reference manual,� 2008.

[24] �Tru�e framework,� https://tru�eframework.com/.

[25] �Echidna,� https://github.com/trailofbits/echidna.

40

https://truffleframework.com/
https://github.com/trailofbits/echidna

	Introduction
	Goal
	Research Questions
	Thesis Structure

	Background
	The Ethereum blockchain
	Smart Contracts
	Smart contract bugs

	Solidity
	Syntax
	Structure
	Blockchain specific variables

	Related Work
	Smart Contract Verification
	Static Analysis Tools
	Formal Verification Tools

	Smart Contract Languages
	Bamboo
	Vyper

	Other related work
	ContractLARVA
	The Hydra Project
	FSolidM
	Quantitative Analysis of Smart Contracts

	Solitor
	Overview

	Annotation Language
	Solidity Annotated
	Grammar Definition
	Examples

	Annotation Type Checking
	Design
	Implementation
	Example

	Generation of runtime monitoring code
	Design
	Implementation
	Mappings

	Limitations
	Case study
	SimpleToken
	Annotation
	Generated Code
	Testing the contract

	Vulnerable Contract
	Annotation
	Generated Code
	Testing the contract

	Conclusion
	Future work

	Tool Usage
	Getting Started
	Prerequisites
	Installing

	Using the tool
	Grammar examples
	Run the tool on other contracts
	Parameters

