
Monotonicity in Markov Chains

Jip Spel

s0 s1 s2

s3 s4
p

1− p

q

1− q

q

1− q

q

1− q q

1− q

Formal Methods and Tools

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente

In cooperation with:
Chair for Software Modeling and Verification

RWTH Aachen University

Supervisors:
Prof. Dr. Ir. Joost-Pieter Katoen
Prof. Dr. Marielle Stoelinga
Sebastian Junges M.Sc.

Location:
Enschede & Aachen

Time Frame:
November 2017– May 2018

Jip Spel: Monotonicity in Markov Chains © November 2017– May 2018

If you weren’t you, then we’d all be
a bit less we
— Piglet, Winnie the Pooh

Dedicated to and in loving memory of Judith Wijnhoven

1964 – 2017

Abstract

Markov chains (MCs) are an excellent formalism to capture the behaviour of
systems that are governed by randomized behaviour. They are used in computer
science, engineering, mathematics, and biology. MCs require fixed distributions,
but often these probabilities are not precisely known.

Parametric MCs (pMCs) allow for changing specific sets of distributions in the
MC. One way to find the values for parameters is parameter synthesis. Based
on the pMC and the specification, the parameter values for which the system
meets these requirements are needed to be calculated. We investigate the effect
of changing the parameter values. In particular, we observe that parameters
often have a monotone effect on the probability that a given system state is
reached.

We want to exploit this monotone effect to improve the analysis on the behaviour
of systems. To that end, we provide a formal framework to verify efficiently
whether these systems are monotone. The framework consists of two layers: the
foundation, and the top layer. In the foundation we define a set of monotone
pMCs through the composition of predefined building blocks. In the top layer,
we show that structures in high level descriptions of systems naturally map to
the building blocks of the foundation.

iv

If you don’t know anything about computers,
just remember that they are machines that

do exactly what you tell them
but often surprise you in the result

— Richard Dawkins [1]

Acknowledgements

I would first like to thank my supervisors Sebastian, Joost-Pieter and Marielle
for their time reading (and re-reading) my earlier versions of this master’s thesis.
Especially I thank Sebastian, the door to his office was always open whenever I
had a question about my research or writing.

Next, I thank everyone at the Chair for Software Modeling and Verification
at RWTH Aachen University for their support and all the social events, in
particular the hours we spent playing kicker.

I would also like to acknowledge Sybe and Meike for their time to proof-read
this thesis and their advice.

Finally, I must express my gratitude to my family, my boyfriend, Leonie, study
friends, and Skeuvel for their support through the process of researching and
writing this thesis. This accomplishment would not have been possible without
you.

v

Contents

Part I Background

1 Introduction 2
1.1 Motivation . 3

1.1.1 Problem statement . 4
1.2 Contribution . 4
1.3 Structure . 5

2 Preliminaries 6
2.1 Markov Chains . 6
2.2 Markov Decision Process . 9
2.3 Parameter Lifting . 10
2.4 Functions . 12
2.5 While Language . 16

3 Related Work 19
3.1 Parameter Synthesis . 19
3.2 Tools for probabilistic model checking 20

4 Problem Description and Approach 21
4.1 Problem Description . 21

4.1.1 Formalisation of the problems 21
4.1.2 Observations . 22
4.1.3 Problem statement . 24

4.2 Approach . 24

Part II Framework: Foundation

5 Mapping process algebra to pMC 26
5.1 Process algebra . 26
5.2 From process to pMC . 28
5.3 Building Blocks . 30

5.3.1 Cycles . 31

vi

CONTENTS vii

6 Monotonicity in pMCs 33
6.1 Acyclic composition . 34

6.1.1 General Composition . 34
6.1.2 Composition of building blocks with the same function . . 37
6.1.3 Composition of building blocks with different functions . 42

6.2 Cyclic composition . 44
6.3 Monotonicity and turning points 45

Part III Framework: Application

7 Mapping pWhile to process algebra 48
7.1 Restrictions on pWhile . 49
7.2 Probabilistic While language and PA 49

7.2.1 Reducing the process of a program 52
7.2.2 Examples on loops . 54

7.3 Equivalence probabilistic choice and if statement 57

8 Monotonic pWhile programs 59
8.1 General Considerations . 61
8.2 Boolean expressions . 65
8.3 Program statements . 68

8.3.1 Empty statement and variable assignment 68
8.3.2 Probabilistic choice and if statement 69
8.3.3 While loops . 70
8.3.4 Sequential composition . 73

9 Case Studies 76
9.1 BRP . 76
9.2 Zeroconf . 83
9.3 Load-unload . 84
9.4 Grids . 86

9.4.1 Reach a goal in at most k steps 86
9.4.2 Probability of reaching good before reaching bad 88

9.5 Crowds . 90
9.5.1 Using Theory of Chapter 8 90
9.5.2 Using Theory of Chapter 6 91
9.5.3 Adaptation of crowds . 93

9.6 NAND Multiplexing . 94

Part IV

10 Conclusion 96
10.1 Summary . 96
10.2 Future work . 97

Bibliography 98

Appendix: Proof of Lemma 6.9 101

List of Tables

5.1 Structural operational semantics of PA 29
5.2 Process terms for the building blocks of Figure 5.2 31

6.1 Monotonicity of solM given f↑p 38

9.1 Results for the case studies . 77
9.2 Values of the program variables at different states 92

viii

List of Figures

1.1 DTMC D of tossing two different biased coins 3
1.2 pMC M of tossing two different parametric coins 4

2.1 Example of a DTMC D . 7
2.2 Example of a pMC and an induced pMC 8
2.3 Example of a MDP and MC of this MDP induced by a scheduler σ 10
2.4 Region r of intervals I(p) = [0.3, 0.7] and I(q) = [0.2, 0.4] 11
2.5 Example on relaxation and substitution 12
2.6 Critical points of univariate functions 14
2.7 Multivariate functions . 15

4.1 Region r of intervals I(p) = [0.3, 0.7] and I(q) = [0.2, 0.4] 22
4.2 pMC D monotone in p . 23
4.3 Subsets on pMCs . 23
4.4 Structures of the While language 24

5.1 pMC M for process P in Listing 5.1 29
5.2 The building blocks for constructing pMCs 30
5.3 pMC M for the process term uf ? l1f : b1f 31
5.4 Cycles in pMCs . 32

6.1 pMC M = uf?ug : uh . 36
6.2 pMC M = uf?(lif?)m : (bif :)n 41
6.3 pMC M = uf ? l1g : b1h . 44

9.1 pMC of brp for N = 2 and MAX = 2 79
9.2 pMC of Zeroconf with MAX = 2 84
9.3 Part of the pMC of Crowds [2] 92
9.4 Part of the pMC of Crowds [3] 93

ix

Listings

2.1 The While language . 16
2.2 Example of a program Prog . 17
5.1 Example of a process P . 28

5.2 Process terms for g uf . 32

5.3 Process terms for g uf . 32
7.1 Example of a pWhile program Prog 51
7.2 Process P of program Prog in Listing 7.1 51
7.3 Program Prog obtained from program statement S and Boolean

expression b. 52
7.4 Process terms of P in Listing 7.2 after steps replace and remove . 53
7.5 Process Pred of process P in Listing 7.2 54

7.6 Program of which the process is equivalent to process g P(S). 55

7.7 Process of the pWhile program of g uf 56

7.8 Program of which the process is equivalent to process g P(S). 57
7.9 Probabilistic choice with Pr

(
ηpost |= Jstate=1K

)
= f 57

7.10 If then else with Pr
(
ηpost |= Jstate=1K

)
= f 58

8.1 While loop . 70
8.2 Example of a while loop . 71
9.1 ProgBRP, BRP in pWhile . 79
9.2 Zeroconf in pWhile . 83
9.3 Load and unload in at most k steps 85
9.4 Grid in which the goal is to reach a given state in at most k steps. 87
9.5 Grid in which the goal is to reach a good state before a bad state. 89
9.6 Crowds [3] in pWhile . 91
9.7 Crowds [3] in pWhile after looking at the associated pMC . . . 93

x

Acronyms and Notation

DTMC discrete-time Markov chain

MC Markov chain

MDP Markov decision process

PA Process algebra

pMC parametric Markov chain

pWhile Probabilistic While language

↑p Monotone increasing in p

↑ Monotone increasing in any parameter

↓p Monotone decreasing in p

↓ Monotone decreasing in any parameter

7p Not monotone in p

7 Not monotone in any parameter

?p Do not know if monotone in p

? Do not know if monotone in any parameter

xi

Part I

Background

1

Chapter 1

Introduction

Probabilistic behaviour occurs in several kinds of systems. For instance systems
containing randomized algorithms and communication protocols have proba-
bilistic state changes. Moreover, the unreliable or unpredictable behaviour in
computer networks is viewed as probabilistic behaviour. The occurrence of
probabilistic behaviour has led to research on formal methods for the speci-
fication and verification of probabilistic systems. For instance, the bounded
re-transmission protocol [4] (BRP) could be analyzed through formal methods.
BRP is meant to transfer a file in a reliable manner, properties such as “the
probability that the file is transferred correctly if messages are lost with a prob-
ability 0.05” could be analyzed through formal methods.

Markov chains (MCs) are often used to describe probabilistic models. If all
transitions between states are probabilistic, the system can be modeled with
discrete-time Markov chains (DTMCs).

Example 1.1
We consider someone tossing two biased coins. Let the first coin toss head with
probability 1

4 and the second coin toss head with probability 1
3 . Figure 1.1 shows

the associated DTMC, in which the person first tosses the first biased coin, and
then tosses the second biased coin. At state s2, tails is thrown twice, at state
s4 and s5 heads is thrown once and tails is thrown once. At state s6, heads is
thrown twice. ∗

Parametric MCs (pMCs) are used when probabilities of a probabilistic model
aren’t known in advance, they generalize DTMCs by allowing parametric prob-
abilities instead of fixed probabilities. E.g. in biochemical reaction networks
[5] in which the rates of the reactions are either unknown or estimated with a
possible measurement error. In these biochemical reaction networks, one still
wants to show the robustness of the chemical network.

2

Introduction 3

s0

s3

s1

s6

s4 s5

s2

1
4

3
4

1
3

2
3

1
3

2
3

1

1

1

1

Figure 1.1: DTMC D of tossing two different biased coins

1.1 Motivation

For many properties, reachability analysis is the key procedure [6]. This reach-
ability probability is often monotone in one or more parameters. When it is
monotone increasing, this means that increasing the value of a parameter will
always either increase the reachability probability or not change the reachability
probability. An example of a reachability problem is: “find any valuation of the
parameter values, for which the model full fills a reachability property.”

Also in the Model Repair problem [7], pMCs are used. A general formulation for
the Model Repair problem is: given a probabilistic systemM and a probabilistic
temporal logic formula φ such that M fails to satisfy φ, the Model Repair
problem is to find a M′ that satisfies φ and differs only from M by having
transition probabilities being tuned with parameters. This tuning means that
these probabilities can be changed, and transitions can be added or removed,
but the state space remains the same. The tuning should be done such that the
cost of modifying M, such that it satisfies φ, should be minimized.

Example 1.2
Recall the DTMC D in Figure 1.1 of a person tossing two biased coins. When
the tossing distributions of the coins are not known in advance, we can replace
the probabilities by parameters p and q. Figure 1.2 on the next page shows the
pMC we obtain by replacing the probabilities through parameters. ∗

There are two main ways to find parameters meeting a given probabilistic tem-
poral logic formula. The first way to find parameters is by fitting [8], whereby
with the use of experiments the parameters are estimated. However, when e.g.
a system component randomly fails, fitting isn’t applicable, since too many ex-
periments are required to get a proper estimate of the parameter values. Also

4 1.2. Contribution

s0

s3

s1

s6

s4 s5

s2

p

1− p

q

1− q

q

1− q

1

1

1

1

Figure 1.2: pMC M of tossing two different parametric coins

in the example of biochemical reaction networks, fitting is problematic, because
of the included measurement errors. Also to answer questions “What is the
maximal tolerable failure probability of component X while ensuring that the
specifications hold?”, fitting isn’t suitable.

Another way to find the parameters is parameter synthesis. Based on the pMC
and the requirements, the parameters for which the system meets these re-
quirements are needed to be calculated. This is either done with the use state
elimination to find the range of parameter values for which a system meets a
given requirement or with parameter lifting. With parameter lifting, regions of
parameter values are checked with the reachability property.

We observe that many pMCs are monotone in one or more of their parameters.
This monotonicity can be used to solve reachability problems. Furthermore,
we observe that for small pMCs, monotonicity can easily be determined. Our
hypothesis is that a pMC which is known to be monotone in one or more of its
parameters, can be constructed from simple, clearly monotone, pMCs.

1.1.1 Problem statement

We want to find monotonicity in pMCs without analyzing the whole rational
function and apply this on structures in high level descriptions.

1.2 Contribution

The thesis gives a formal framework to deduce monotonicty of MCs. The frame-
work consists of two layers. The first layer is the foundation and defines a set
of monotonic pMCs as a composition of predefined building blocks. The second
layer, the top layer, shows that common structures in high level description map

Introduction 5

naturally to the building blocks in the foundation.

In the foundation, we show how to obtain monotonicity from the structure of
pMCs. To this end, we provide the following:

� A mapping from a process in PA to a pMC.

� Theorems on monotonicity in pMCs.

The theorems in the foundation are proven by function calculus.

In the top layer, we show how the results of the foundation are used to obtain
monotonicity from the structure of a pWhile program. We show the following
results:

� A mapping from a pWhile program to a process in PA.

� Theorems on monotone structures in pWhile.

The theorems are proven using the mapping from pWhile program to a process,
the mapping from a process to a pMC, and the theorems in the foundation.

We rewrite several case studies to be in pWhile and show how the obtained
results are used to deduce monotonicity for these case studies.

1.3 Structure

First, Chapter 2 recaps important notions and fixed notation. Chapter 3, de-
scribes relevant work related to pMCs and parameter synthesis. In Chapter 4
we elaborate on the problem description and approach in this research. After
this, in Part II, we describe the foundation on monotonic pMCs. Part III lifts
the results to pMCs constructed from pWhile. Finally, we conclude this thesis
in Part IV by giving a summary and proposing future work.

Chapter 2

Preliminaries

In this section we introduce the definitions and notations on Markov chains and
Markov decision processes. Secondly, we introduce the theory of parameter lift-
ing. Thirdly, we introduce some notations on rational functions and monotone
functions. Finally, we introduce pWhile in which the case studies are written.

2.1 Markov Chains

A discrete-time Markov chain (DTMC) is a transition system in which tran-
sitions to successor states depend on probabilistic choices. Furthermore, the
probability of moving from one state to another, only depends on the current
state. This is known as the memoryless property. We describe DTMCs as a
directed graph where the nodes of the graph are the different states. The tran-
sitions are described by a probability matrix and states are labelled with the
atomic propositions which hold in that state.

Definition 2.1.1 (Discrete-time Markov Chain [9])
A discrete-time Markov Chain (DTMC) is a tuple D = (S, s0,P, AP, L) where

� S is a finite set of states

� s0 ∈ S is the initial state

� P : S × S 7→ [0, 1] is a probability matrix such that for all s ∈ S:∑
t∈S P(s, t) = 1

� AP is a set of atomic propositions

� L : S 7→ 2AP is a labelling function which gives the atomic propositions that
hold in a state. ∗

6

Preliminaries 7

Example 2.1
Figure 2.1 shows a DTMC with states {s0, s1, s2}. s0 is the initial state and
with probability 1

4 the DTMC evolves to state s1 and with 3
4 the DTMC evolves

to state s2. ∗

s0

s1

s2

s3

1
4

3
4

2
5

3
5

1

1

Figure 2.1: Example of a DTMC D

A finite path in D is a sequence of states π = s0s1 . . . sn ∈ Sn. The probability
of following a finite path π in a MC is the product of the probabilities of moving
from one state to the next along π. A finite path is called infeasbile when the
probability of following that path is 0.

Definition 2.1.2 (Probability of a path)
Let D = (S, sI ,P, L) be a DTMC. Given path π = s0s1 . . . sn ∈ Sn, the proba-
bility of taking this path π is given by:

P(π) = P(s0, s1) · P(s1, s2) · . . . · P(sn−1, sn) ∗

Example 2.2
Consider DTMC D from Figure 2.1. A possible finite path to follow in this
DTMC is:

π = s0s1s2
The probability of following this path is P = 1

4 ·
2
5 = 1

10 . Note that e.g. π =
s0s1s2s3 is an infeasible path, as s3 cannot be reached from s2, the probability
will be 0. ∗

In a parametric (discrete-time) MC (pMC) the entries of the probability matrix
are given by rational functions. A rational function f over a set of parameters

V = {x1, . . . , xn} is a fraction f(x1, . . . , xn) = g1(x1,...,xn)
g2(x1,...,xn)

of two polynomials

g1 and g2 over parameters V . Let QV = { g1g2 |g1, g2 ∈ Z[x1, . . . , xn] ∧ g2 6= 0}
denote the set of rational functions over V .

Definition 2.1.3 (Parametric Markov chain [10])
A parametric MC (pMC) is a tuple D = (S, s0,P, AP, L, V) where

� S, s0, AP and L are defined as in Definition 2.1.1

8 2.1. Markov Chains

� V = {x1, x2, . . . , xn} is a finite set of parameters on domain R

� P is the probability matrix S × S → QV . ∗

s0

s1

s2

s3

p

1− p

q

1− q
1

1

(a) pMC D

s0

s1

s2

s3

1
5

4
5

1
3

2
3

1

1

(b) induced pMC D{p→ 1
5
,q→ 1

3
}

Figure 2.2: Example of a pMC and an induced pMC

Example 2.3
Figure 2.2a shows a pMC D with parameter x. The probability of moving from
s0 to s1 is denoted by x, and the probability of moving from s0 to s2 by 1−x. ∗

A valuation u is a partial function u : V → R. Dom(u) denotes the domain of
u. Valuation u is total when Dom(u) = V . Given a rational function f , a set
of parameters X ⊆ V and valuation u, f [X/u] is the rational function obtained
from f by substituting every occurrence of x ∈ X∩Dom(u) with u(x). Applying
a valuation on the rational function in a pMC results in the following definition
of an induced pMC.

Definition 2.1.4 (Induced pMC [10])
Let D = (S, s0,P, AP, L, V) be a pMC. The pMC Du induced by a valuation u
is defined as Du = (S, s0,Pu, AP, L, Vu) where

� Vu = V \Dom(u)

� Pu : S × S → QV \Dom(u) is given by Pu(s, s′) = P(s, s′)[Dom(u)/u] ∗

Definition 2.1.5 (Well-defined valuation)
A total valuation u is well-defined for pMC D = (S, s0,P, AP, L, V) if for the
induced pMC Du = (Su, s0,Pu, AP, L) it holds that:

Pu : Su × Su → [0, 1] with for all s ∈ Su,
∑
t∈Su

P(s, t) = 1 ∗

Definition 2.1.6 (Graph preserving valuation)
A total valuation u for pMC D is called graph preserving if it is well-defined
and it holds that:

∀s, s′ ∈ S.P(s, s′) 6= 0→ P(s, s′)[u] > 0 ∗

Preliminaries 9

Example 2.4
Recall pMC D from Figure 2.2a on the preceding page. For D valuation
u : {p→ 1

5 , q →
1
3}, is a well-defined and graph preserving valuation. Figure 2.2b

shows the MC induced by u. ∗

2.2 Markov Decision Process

A Markov decision process (MDP) is a transition system in which transitions to
successor states are non-deterministic choices over probability distributions over
states, so it can be viewed as a MC extended with non-deterministic transitions.

Definition 2.2.1 (Markov decision process [11])
A Markov decision process (MDP) is a tuple M = (S, s0,P, AP, L,Act) where

� S, s0, AP and L are defined as in Definition 2.1.1

� Act is a finite set of actions

� P : S × Act × S 7→ Q ∩ [0, 1] where for all states s ∈ S and actions α ∈
Act:

∑
s′∈S P(s, α, s′) ∈ {0, 1} and Act(s) 6= ∅. (Act(s) = {α ∈ Act|∃s′ ∈

S.P(s, α, s′) 6= 0}) ∗

An action α is enabled in state s ∈ S when ∃s′ ∈ S.P(s, α, s′) 6= 0.

To reason about the probabilities in a MDP, we need a way to handle the non-
determinism. Therefore, schedulers are introduced, a scheduler chooses in each
state s ∈ S an enabled action α ∈ Act(s), which is performed.

Definition 2.2.2 (Scheduler)
A scheduler for MDP M = (S, s0,P, L,Act) is a function σ : S → Act with
σ(s) ∈ Act(s) for all s ∈ S. ∗

Imposing a scheduler σ on a MDP M resolves the non-determinism in M and
yields MC Mσ, in which the transition probabilities for a state s in Mσ equal
those of taking action σ(s) in state s in M.

Definition 2.2.3 (MC of an MDP induced by a scheduler [6])
Let M = (S, s0,P, AP, L,Act) a MDP and σ a scheduler for M. Markov
chain Mσ induced by applying scheduler σ on MDP M is given by Mσ =
(S, s0,Pσ, AP, L,Act) with

Pσ(s, s′) = P(s, σ(s), s′) for all s, s′ ∈ S ∗

Example 2.5
Figure 2.3a on the following page shows a MDPM in which at both state s0 and
s1 a non-deterministic choice occurs. One can either take the dashed or the non-
dashed transitions, which both have different transition probabilities. Taking

10 2.3. Parameter Lifting

scheduler σ, which takes the non-dashed transitions at state s0 and the dashed
transitions at state s1 yields into MCMσ which van be found in Figure 2.3b ∗

s0

s1

s2

s3

1
4

3
4

2
5

3
5

1

1

3
10

7
10

1
2

1
2

(a) MDP M

s0

s1

s2

s3

1
4

3
4

1

1

1
2

1
2

(b) MC Mσ

Figure 2.3: Example of a MDP and MC of this MDP induced by a scheduler σ

2.3 Parameter Lifting

Parameter lifting is introduced by Quatmann et al. [11]. The main idea of
parameter lifting is considering a specific region of the possible values of the
parameters. For this region one attempts to determine whether the whole region
can be considered safe or unsafe based on a given reachability property. A region
is well-defined when all valuations in the region are well-defined. To determine
whether a region is safe or unsafe, a sound over-approximation of the problem
is used.

Definition 2.3.1 (Region [11])
Given a set of parameters V = {x1, . . . , xn} and rational parameter bounds
B(xi) = {b1, b2}. The parameter bounds induce a parameter interval I(xi) =
[b1, b2] with b1 ≤ b2. The set of valuations {u|∀xi ∈ V.u(xi) ∈ I(xi)} is called a
region (for V). ∗

Example 2.6
Recall pMC D from Figure 2.2a on page 8. For this pMC V = {p, q}, and
p, q ∈ [0, 1]. A possible parameter bound is given by:

B(p) = {0.3, 0.7} and B(q) = {0.2, 0.4}
This yields intervals:

I(p) = [0.3, 0.7] and I(q) = [0.2, 0.4]
Figure 2.4 on the next page shows region r imposed by these intervals on the
parameters. ∗

First, all parameter dependencies in pMDPM are removed by relaxation. Sec-

Preliminaries 11

r

p

q

0 0.3 0.7 1
0

0.2

0.4

1

Figure 2.4: Region r of intervals I(p) = [0.3, 0.7] and I(q) = [0.2, 0.4]

ondly, the parameter transitions are substituted by non-deterministic choices on
the upper bound and lower bound of the valuations of the parameters in the
region. This results in a MDP on which different schedulers are used to obtain
the maximal and minimal reachability probabilities. With these reachability
probabilities we claim that a region is either safe, unsafe or unknown.

Definition 2.3.2 (Relaxation [11])
The relaxation of pMC D = (S, s0,P, AP, L, V) is the pMC
rel(D) = (S, s0,P ′, AP, L, relD(V)) with:

� relD(V) = {xsi |xi ∈ V, s ∈ S}

� P ′(s, s′) = P(s, s′)[x1, . . . , xn/x
s
1, . . . , x

s
n] ∗

Definition 2.3.3 (Substitution)
An MDP subr(M) = (S, s0,Psub, AP, L,Actsub) is the parameter-substitution
of a pMC M = (S, s0,P, AP, L, V) and a region r when:

� Actsub =
⋃
s∈S
{v : Vs → R|v(xi) ∈ B(xi)}

� Psub(s, v, s′) =

{
P(s, s′)[v] if v ∈ Actsub(s),
0 otherwise.

∗

Example 2.7
Figure 2.5a on the following page shows a pMC D with param p used both
on the transitions from s0 and the transitions from s1. Figure 2.5b shows the
relaxed pMC rel(D) in which parameter p is split in two seperate parameters
ps0 and ps1 . Figure 2.5c shows the parameter-substitution of rel(D) with region
r of intervals I(ps0) = [0.3, 0.7] and I(ps1) = [0.2, 0.4] ∗

12 2.4. Functions

s0

s1

s2

s3

p

1− p

p

1− p
1

1

(a) pMC D

s0

s1

s2

s3

ps0

1− ps0

ps1

1− ps1
1

1

(b) pMC rel(D)

s0

s1

s2

s3

0.3

0.7

0.2

0.8
1

1

0.7

0.3

0.4

0.6

(c) subr(rel(D))

Figure 2.5: Example on relaxation and substitution

2.4 Functions

This section introduces the notations on functions used throughout this thesis.
Given a function f , we denote by f↑ that f is monotone increasing and with f↓
that f is monotone decreasing, we denote by f↑p that f is monotone increasing
in p and with f↓p that f is monotone decreasing in p. We assume all functions
are continuous on the given domain.

All definitions of monotone decreasing functions are similar to the ones for
monotone increasing, however, ≤ will be replaced with ≥ and vice versa.

Monotone functions

A univariate function f : R → R is called monotone if and only if it is either
entirely non-increasing or entirely non-decreasing.

Definition 2.4.1 (Univariate monotone function)
Let f : R→ R: f is monotone when either f↑ or f↓. ∗

Definition 2.4.2 (Univariate monotone increasing function)
Let f : R→ R: f↑ ↔ ∀x, x′ ∈ R.(x ≤ x′ → f(x) ≤ f(x′)) ∗

From function theory we know that:
f↑ ↔ ∀x ∈ R.f ′(x) ≥ 0

A function f : Rn → R is called monotone in parameter xi if and only if it
is either entirely non-increasing or entirely non-decreasing in parameter xi. A
function f : Rn → R is called monotone if and only if it is either entirely non-
increasing or entirely non-decreasing in all of its parameters.

Preliminaries 13

Definition 2.4.3 (Multivariate monotone function)
Let f : Rn → R.

f is monotone in parameter xi ∈ R when either f↑xi
or ↓xi

f is monotone when either f↑ or f↓ ∗

From function theory we know that:
f↑xi

↔ ∀~x ∈ Rn. ∂∂xi
f(~x) ≥ 0

f↑ ↔ ∀i ∈ [1 . . . n].f↑xi

Critical Points and Turning Points

The critical points of univariate function f are the values within its the domain
in which the derivative of f is 0. These points can either be turning points or
inflection points. A local extreme value always occurs at a turning point. This
is tested with the second derivative test.

Remark. The second derivative test is inconclusive when the second derivative
is 0, in these cases a higher derivative test can be used.

Definition 2.4.4 (Critical points univariate function)
Let f : R→ R be continuous.

v ∈ R is a critical point for f ↔ f ′(v) = 0 ∗

Definition 2.4.5 (Second derivative test)
Given twice differentiable function f with critical point v. Then:

f ′′(v) < 0 =⇒ f has a local maximum at v

f ′′(v) > 0 =⇒ f has a local minimum at v

f ′′(v) = 0 =⇒ the test for f is inconclusive ∗

Example 2.8
Figure 2.6 shows the critical points of functions f1 and f2. f1 has a critical
point at x1. The second derivative test is for f1 however, inconclusive. f2 has a
critical point at x2 as well, for f2 the second derivative test shows us that f2 has
a local maximum at x1. The second derivative test for f2 at x2 is inconclusive
at this point. ∗

The critical points of multivariate functions are the values on the domain in
which the partial derivative is 0 for all parameters. Whether a critical point
is a local maximum or minimum is tested with the second derivative test for n
parameters. A multivariate function is monotone in a specific parameter if the
partial derivative in that parameter is 0 independent of the values of the other
parameters.

14 2.4. Functions

x

f(x)

f1(x) = x3f2(x) = x3 − x2
x1

x2

Figure 2.6: Critical points of univariate functions

Definition 2.4.6 (Critical points multivariate function)
Let f : Rn → R be continuous.

~v ∈ Rn is a critical point for f in vi ⇐⇒ fvi
′(~v) = 0

~v ∈ Rn is a critical point for f ⇐⇒ ∀i ∈ [1 . . . n].fvi
′(~v) = 0 ∗

Definition 2.4.7 (Second derivative test multivariate)
Suppose that the second partial derivatives of f : Rn → R are continuous on a
ball with center ~x, with ~x a critical point of f .

The Hessian matrix is the square matrix of the second-order partial derivatives.

For Hessian matrix h index (i, j) is given by hi,j =
∂2f

∂xi∂xj
.

Let h denote the Hessian matrix of second partial derivatives and for each
k = 1, 2, . . . , n let Dk denote the determinant of the Hessian in the parameters
x1, x2, . . . , xk. Assume that |H(~x)| 6= 0.

� If Dk(c) > 0 for all k = 1, 2, . . . , n then f has a local minimum at c~x

� if (−1)Dk(c) > 0 for all k = 1, 2, . . . , n then f has a local maximum at ~x

� otherwise f has a saddle point at ~x ∗

A saddle point is a critical point of a multivariate function which is not an
extremum.

Example 2.9
Figure 2.7 shows two different multivariate functions. Figure 2.7a contains the
plot of f(x, y) = x2+y2, this function has a local minimum at (0, 0). Figure 2.7b
shows function f(x, y) = x2 − y2, this function has a saddle point at (0, 0). ∗

Preliminaries 15

−1
−0.5

0
0.5

0

1

0

1

2

x

y

f(x, y) = x2 + y2

(a) A multivariate function with a turning point

−1 −0.5 0
0.5 1−1

0

1

−1

0

1

x

y

f
(x
,y

)

f(x, y) = x2 − y2

(b) A multivariate function with a saddle point

Figure 2.7: Multivariate functions

16 2.5. While Language

Monotonicity and turning points

For a univariate function f we know that given v is a local maximum, f↑ closely
to v and f↓ from v until another turning point or boundaries of the interval.
When v is a local minimum, it holds vice versa.

Definition 2.4.8 (Monotonicity around a local maximum of an
univariate function)
Let f : R → R with turning point v ∈ R and points v1, v2 ∈ R such that
v1 < v < v2 and f is monotone on (v1, v] and [v, v2).

v is a local maximum ↔ f ↑ on (v1, v] and f ↓ on [v, v2) ∗

For a multivariate function f we know that if ~v is a local maximum, f↑ to ~v
and f↓ from ~v until another turning point or boundary of the interval. When ~v
is a local minimum, it holds vice versa.

Definition 2.4.9 (Monotonicity around a local maximum of a
multivariate function)
Let f : Rn → R with turning point ~v ∈ Rn and points ~v1, ~v2 ∈ Rn such that
~v1 < ~v < ~v2 for all variables in ~v, ~v1 and ~v2 and f is monotone on (~v1, ~v] and
[~v, ~v2).

~v is a local maximum ↔ f ↑ on (~v1, ~v] and f ↓ on [~v, ~v2) ∗

Remark. When a multivariate function f has a critical point for parameter vi,
and this critical point is independent of the values of the other parameters, the
theory on the univariate functions is applicable.

2.5 While Language

The While language is a simple programming language, used in the theoretical
analysis of imperative programming language semantics. The While language
consists of arithmetic expressions, Boolean expressions and program statements.
Listing 2.1 gives the abstract syntax of the While language. In this listing, a is
an arithmetic expression, n is a natural number, b is a Boolean expression, and
S is the program statement.

a ::= n | x | a1 + a2 | a1 * a2 | a1 - a2
b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

S ::= x : =a | skip | S1;S2 | if b then S1 else S2 |
while b do S

Listing 2.1: The While language

To describe the case studies, we use a probabilistic version of the While language
(pWhile) as defined in Definition 2.5.1.

Preliminaries 17

Definition 2.5.1 (Program in pWhile)
The syntax of a program Prog written in pWhile is denoted by:

a ::= n | x | a1 + a2 | a1 * a2 | a1 - a2
b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

S ::= x := a | skip | S1;S2 | if b then S1 else S2 |
while b do S | S1 [f] S2

Prog ::= S; return;

where

� a is an arithmetic expression

� n is defined on a bounded integer interval (Zbound)

� b is a Boolean expression

� S is a program statement

� x∈ V arProg with V arProg the set of program variables of Prog

� f ∈ QV is a rational functions over the set of parameters V

� Prog is the program. ∗

Example 2.10
Listing 2.2 shows a program Prog in which a biased coin is flipped. With
probability p, state will be set to 0 and the program will terminate. With
probability 1−p, the program will set state to 1 and the while loop is entered.
The while loop is executed at most three times. ∗

state := 0 [p] state := 1;
count := 1;
while count <= 3 ∧ state = 1 do

state := 0 [p] state := 1;
count := count + 1;

return;

Listing 2.2: Example of a program Prog

Boolean variable assignment We write x := b instead of

if b then
x := 1;

else
x := 0;

for readability of the programs.

18 2.5. While Language

Booleans In pWhile only {=, <=, ¬ and ∧} are defined. Clearly,
{<, >=, >, 6= and ∨} are syntactic sugar for combinations of
{=, <=, ¬ and ∧}. In the remainder of this thesis we use in pWhile programs
both {=, <=, ¬ and ∧} and {<, >=, >, 6= and ∨}.

If then else For readability of the programs, we omit else skip in
if b then S else skip.

Chapter 3

Related Work

In this chapter we discuss the work related to parameter synthesis and different
tools developed for probabilistic model checking.

3.1 Parameter Synthesis

Daws [9] proposes a language-theoretical approach to determine the parametric
reachability probability of DTMCs. First of all, Daws converts the parametric
DTMC to a FSA. Secondly, a regular expression is computed with the help of
state elimination. This expression is then evaluated into a closed-form function
representing the reachability property. All parameters must be strictly positive
since a transition between two states is only present in the derived FSA when
it corresponds to a strictly positive probability.

Hahn et al. [10] investigate how Daws’s idea can be turned into an efficient
procedure. The bottleneck in Daws’s idea is the growth of the regular expression
relative to the number of states. To overcome this problem Hahn et al. intertwine
the regular expression computation with its evaluation. In this way an efficient
method is created which avoids a blow up in most practical cases. Although in
the worst case the size of the final rational function is still nO(logn), with n the
number of states.

Quatmann et al. [11] introduce parameter lifting, which is described in Sec-
tion 2.3.

Barnat et al. [12] apply LTL model checking procedures directly on a graph
representing the dynamics of all possible valuations of parameters. Barnat et al.
make use of parameterized Kripke structures to describe the models. The most
significant difference between Barnat et al. [12] and the work described before
is that the number of valuations of parameters in a parametric Kripke structure

19

20 3.2. Tools for probabilistic model checking

is finite, whereas with the pMCs, the parameters can have any well-defined
valuation in R.

3.2 Tools for probabilistic model checking

There are several tools developed for probabilistic model checking. IscasMc
[13] allows model checking on MCs and MDPs with LTL, PCTL and PCTL*
specifications. MRMC [14] supports PCTL and CSL model checking. LTSmin
[15] has developed into a model checker with multi-core algorithms for on-the-fly
LTL checking with partial-order reduction, and multi-core symbolic checking for
the modal µ-calculus, based on the multi-core decision diagram package Sylvan.
Through SCOOP [16], probabilistic models can be checked with LTSmin. Storm
[17] can model check both discrete- and continuous-time MCs and MDPs. Prob-
lem with these tools, and several other model checking tools, is that they don’t
allow for parametric model checking. HyTech analyses linear hybrid automa-
ton [18] which is a mathematical model for dynamical systems whose behaviour
exhibit both discrete and continuous changes. The tool can perform parameter
analysis for linear hybrid automaton with temporal logic requirements. Since
pMCs also contain non-linear functions, HyTech isn’t useful to further investi-
gate.

PRISM [19], PARAM [20], and PROPhESY [21] are all tools for analyzing
parametric MCs. Both PRISM and PARAM work with state elimination and
are based on the ideas of Daws [9] and Hahn et al. [10]. PROPhESY uses
PRISMs language as input language for the pMCs. Together with the use
of advanced gcd-computation on rational functions described by Jansen et al.
[22], PROPhESY searches for safe and unsafe regions. This is done either with
incremental parameter synthesis in a CEGAR manner or with parameter lifting.

To the best of our knowledge PRISM, PARAM and PROPhESY are the only
tools used for analyzing parametric MCs. All of these tools assume that the
structure of the pMCs won’t change, i.e. the probability of taking a transitions
won be zero and all valuations are well-defined.

Chapter 4

Problem Description and
Approach

In this chapter, we describe a set of problems which can be solved by formal
methods. Then, we elaborate on our approach in this research.

4.1 Problem Description

We consider reachability probabilities on MCs. Let PrDs (♦T) denote the proba-
bility of eventually reaching a state t ∈ T ⊆ S starting from a state s ∈ S, given
DTMC D. PrD(♦T) refers to this probability starting from initial state s0.

Let ϕreach = P≥λ(♦T) denote the reachability property asserting that eventually
a state in T is reached with at least probability λ ∈ (0, 1). We denoteD |= ϕreach
if and only if PrD(♦T) ≥ λ.

4.1.1 Formalisation of the problems

Given a pMC D = (S, s0,P, AP, L, V), set of target states T ⊆ S and reacha-
bility property ϕreach. Let SAT be {u|u is graph-preserving and Du |= ϕreach}.
In Problems 3 and 4 we assume SAT 6= ∅. We define the problems as follows:

1. SAT = ∅

2. Check if region r ⊆ SAT

3. Find any u ∈ SAT

4. Find u ∈ SAT such that PrDu(♦T) = maxu′∈SAT PrDu′ (♦T)

21

22 4.1. Problem Description

4.1.2 Observations

Given a pMC D = (S, s0,P, AP, L, V) with reachability probability PrD(♦T)
we first of all observe that when PrD(♦T) is monotone in a vi ∈ V , solving the
problems might become easier.

Assume V={p, q} with p, q ∈ [0, 1]. Given that PrD(♦T) is monotone increasing
in p. Then the problems described above can be simplified by:

1. SAT = ∅
To show SAT = ∅, it is sufficient to show that ∀q ∈ [0, 1] and p = 1
PrD(♦T) = 0.

2. Check if region r ⊆ SAT
Let region r consist of intervals I(p) = [0.3, 0.7] and I(q) = [0.2, 0.4], this
region is shown in Figure 4.1. Given the monotonicity in p, it is sufficient
to show that all points on the line from (0.3, 0.2) to (0.3, 1.6), described by
p = 0.3 and q ∈ [0.2, 0.4], are in SAT. These are all the points on the thick
line in Figure 4.1.

3. Find any u ∈ SAT
When it is known that PrD(♦T) is monotone increasing in p, we take p as
high as possible in u. When we know SAT 6= ∅, there will be an u ∈ SAT,
with this highest value of p. So we are left finding a value for q in u, such
that u ∈ SAT.

4. Find u ∈ SAT such that PrDu(♦T) = maxu′∈SAT

When it is known that PrD(♦T) is monotone increasing in p, we take p as
high as possible in u. So we are left with finding the value of q in u, such
that PrDu(♦T) = maxu′∈SAT.

r

p

q

0 0.3 0.7 1
0

0.2

0.4

1

Figure 4.1: Region r of intervals I(p) = [0.3, 0.7] and I(q) = [0.2, 0.4]

Problem Description and Approach 23

s0 s1 s2

s3 s4

p

1− p

1

q

1− q

q

1− q

q

1− q q

1− q

1

Figure 4.2: pMC D monotone in p

Example 4.1
Figure 4.2 shows a pMC, with T = { }. PrD(♦T) is monotone increasing in p.
Consider Problem 2, a possible region to consider while using parameter lifting
is build of I(p) = [0.3, 0.7] and I(q) = [0.2, 0.4]. Exploiting the monotonicity
in p, we only need to look at the lower bound on p, since increasing p will
increase the reachability probability. Therefore, we don’t need to split in p with
parameter lifting. ∗

Secondly, we observe for small pMCs it is easy to determine if Pr≥λ(♦T) is
monotone in parameters of V (the clearly monotone pMCs in Figure 4.3). We
can obtain the rational function and check, with basic function theory, if the
rational function is monotone. However, this is not possible for larger pMCs,
since the rational functions get too large.

(1) pMCs

(2) Monotone pMCs

(3) Clearly

monotone

pMCs

Figure 4.3: Subsets on pMCs

24 4.2. Approach

Our hypothesis is that pMCs which are known to be monotone in parameters
of V can be constructed from simple, clearly monotone, pMCs. So we can find
a subset of (2) in Figure 4.3, that includes (3). However, it may be hard to find
this construction. The risk is that it can be complicated in either time or space.

4.1.3 Problem statement

We want to find monotonicity in pMCs without analyzing the whole rational
function and apply this on structures in high level descriptions.

4.2 Approach

We provide a framework to deduce monotonicity of MCs. We describe in a
compositional way, a subset of pMCs which are guaranteed to be monotone in
one or more parameters. We provide proofs of the monotonicity of this subset
of pMCs. As it might be hard to find a way to compose larger monotone pMCs
from the small pMCs. We describe structures in pWhile, which map to a subset
of pMCs which are monotone. We then show how we transform case studies
which are monotone in one or more parameters into the monotone structures of
pWhile.

Less expressive More expressive
yx

Figure 4.4: Structures of the While language

Example 4.2
Figure 4.4 shows the difference in expressiveness of different structures of the
probabilistic While language. Everything on the left of point y is monotone in
one or more parameters. We try to find a point x, which is expressive enough
to use in our case studies and is guaranteed to be monotone in one or more
parameters. ∗

For this research the following questions must be answered.

1. Which subset of pMCs is monotone in one or more parameters?

2. Which structures in pWhile have an underlying pMC which is monotone in
one or more parameters?

3. Can improvement in the run time of parameter lifting be achieved by ex-
ploiting the monotonicity?

We answer the first question in Part II. The second question is answered in
Part III. As answering the first and second question took more time than ex-
pected, Question 3 is left as future work (Section 10.2).

Part II

Framework: Foundation

25

Chapter 5

Mapping process algebra to
pMC

We use processes in PA to describe both pMCs and pWhile programs. We make
use of processes, as this is a concise way to describe both pMCs and pWhile
programs. Theorems on monotonicity in pMCs (Chapter 6), are defined on
the process algebras of the pMCs. By mapping pWhile programs to process
algebras (Chapter 7), we obtain theorems on the monotonicity in structures in
pWhile (Chapter 8).

Process algebras are used for modelling and reasoning about the functional
aspects of concurrent processes. Jonsson et al. [23] introduce a probabilistic
process algebra (PCCS) for Markov decision processes. Our process algebra
(PA) is an adaptation to PCCS and yields probabilistic deterministic processes,
in which also Boolean expression may occur.

This chapter provides the introduction of the process algebra PA (Section 5.1)
and the mapping from PA to pMCs (Section 5.2). Furthermore, it provides the
PA notation of different building blocks of pMCs (Section 5.3), these blocks are
used in Chapter 6.

Notation. For any function f(p1, . . . , pn), we write f instead. We use this
notation throughout this thesis.

5.1 Process algebra

We give a formal definition of the syntax of a process term in PA (Defini-
tion 5.1.1). This allows us to define processes in PA as the pair of an initial
process term (Definition 5.1.2) and the set of process terms.

26

Mapping process algebra to pMC 27

Definition 5.1.1 (Syntax process term)
The syntax of a process term in PA is given by:
Proc ::= | |

∑n
i=1 fi. Proci | Proc1 ? Proc2 : Proc3

where:

� is a goal process term,

� is a zero process term,

�
∑n
i=1 fi.Proci is a probabilistic sum over process terms with n ≥ 1, fi ∈ QV

and
∑n
i=1 fi = 1, and

� Proc1 ? Proc2 : Proc3 is the composition of three process terms. ∗

Definition 5.1.2 (Process)
A process in PA is a pair P= (Proc0, {Proc0, . . . , Procn}) where

� Proc0 is the initial process term of P, and

� Proci is a process term for 0 ≤ i ≤ n. ∗

A process term can either be a goal process term (), a zero process term (), a
probabilistic sum of processes (

∑n
i=1 fi. Proci) or the composition of different

processes through an if then else statement (Proc1?Proc2:Proc3). In
the if then else statement, all occurrences of process term in Proc1 are
replaced by Proc2 and all occurrences of process term in Proc1 are replaced
by Proc3.

When the probabilistic sum consists of two elements, the binary sum, ⊕f is
used. So Proc1 ⊕f Proc2 is shorthand for f.Proc1 + (1− f).Proc2. It is
easy to see that every n-ary sum can be written as the composition of process
terms with the binary sum.

Example 5.1
An example process P is denoted in Listing 5.1. The initial process term of P is
Proc0. The set of process terms of P consists of 5 process terms, of which two
goal process terms and one zero process term. From the initial process term,
term Proc1 is taken with probability p, and Proc2 is taken with probability
1− p. ∗

28 5.2. From process to pMC

Initial process term: Proc0

Proc0 = Proc1 ⊕p Proc2

Proc1 =
Proc2 = Proc3 ⊕q Proc4

Proc3 =
Proc4 =

Listing 5.1: Example of a process P

5.2 From process to pMC

To describe the mapping from a process in PA to a pMC, we observe that every
process term of a process describes a state. This state can be mapped directly
to a state in the associated pMC. The mapping between a process in PA and a
pMC is formalized as follows.

Definition 5.2.1 (Mapping from a process in PA to a pMC)
Let process P= (Proc0, {Proc0, . . ., Procn}). The associated pMCM of P is
given by (S, s0,P, AP, L, V) where:

� the set of states S is {Proc0, . . ., Procn},

� the initial state s0 is Proc0,

� the probability matrix P is obtained by the structural operational semantics
in Table 5.1,

� the set of atomic propositions AP = { , },

� the labelling function L(s) =

{
if s =

if s =
, and

� the set of parameters V is the set of all parameters occurring in the process
terms. ∗

Remark. Rule 3 of Table 5.1 could be replaced by
Proc1

g−→ X

Proc1 ⊕f Proc2
f ·g−−→ X

.

A similar replacement for Rule 4 could be made. However, we choose not to
replace these rules, as the replacement makes that a directly mapping between
process terms and states is ommitted.

Example 5.2
Figure 5.1 shows the pMC M associated with process P as described in List-
ing 5.1. Each process term refers to a single state in M. ∗

Mapping process algebra to pMC 29

(1)
1−→

(2)
1−→

(3)

Proc1 ⊕f Proc2
f−→ Proc1

(4)

Proc1 ⊕f Proc2
1−f−−−→ Proc2

Proc1 /∈ { , } Proc1
f−→ X

(5)

Proc1 ? Proc2 : Proc3
f−→ X ? Proc2 : Proc3

Proc1= Proc2
f−→ X

(6)

Proc1 ? Proc2 : Proc3
f−→ X

Proc1= Proc3
f−→ X

(7)

Proc1 ? Proc2 : Proc3
f−→ X

Table 5.1: Structural operational semantics of PA

Remark. In Figure 5.1 we differentiate between the two states for readability.
However, these two states are equal, just like process terms Proc1 and Proc4

in Listing 5.1.

Proc0

Proc2

p

1− p

q

1− q

1

1

1

Figure 5.1: pMC M for process P in Listing 5.1

Above we define the translation from a process in PA to a pMC, with this
definition we can define equivalence of processes. This definition is used in the
proofs in Chapter 8.

30 5.3. Building Blocks

Definition 5.2.2 (Equivalence of processes)
Let M1 be the pMC of process P, and M2 be the pMC of process Q.

Processes P and Q are equivalent⇐⇒
PrM1(♦) = PrM2(♦) and PrM1(♦) = PrM2(♦)

∗

Remark. If every finite path in pMCsM1 andM2 can be extended such that
it visits finitely many states, and almost surely reaches or , then Pr(♦) +
Pr(♦) = 1. To show equivalence between P and Q it is sufficient to show
PrM1(♦) = PrM2(♦).

5.3 Building Blocks

In this section, we describe the different building blocks we use to describe
monotonicity in pMCs in Chapter 6 on page 33. Figure 5.2 shows the pMCs
of these building blocks. For readability, we place the states at the right
side, and the states at the bottom of the figures. The subscript f denotes a
function with f ∈ QV (see also Section 2.1). Table 5.2 on the next page shows
the process of the building blocks.

Remark. In Table 5.2 we use an inline notation of processes. Clearly, it can be
rewritten into process terms.

s0
f

1− f

1

1

(a) pMC uf

s0

s1

f

1− f

1− f

f

1

1

1

(b) pMC l1f

s0

s1

1− f

f

f

1− f

1

1

1

(c) pMC l2f

s0 s1
f

1− f

1− f

f

1 1

1

(d) pMC b1f

s0 s1
1− f

f

f

1− f

1 1

1

(e) pMC b2f

Figure 5.2: The building blocks for constructing pMCs

Mapping process algebra to pMC 31

Building block Process term

uf ⊕f

l1f ⊕f (⊕f)

l2f (⊕f)⊕f

b1f (⊕f)⊕f

b2f ⊕f (⊕f)

Table 5.2: Process terms for the building blocks of Figure 5.2

Example 5.3
Figure 5.3 shows pMC M composed from uf , l1f , and b1f through
Proc1 ? Proc2 : Proc3.
Let Proc1 = uf , Proc2 = l1f , and Proc3 = b1f . Through the composition,
the states of Proc1 are replaced by Proc3, and the states of Proc1 are
replaced by Proc2. ∗

s0 l0

l1

f

1− f

1− f

f

1

1

1

b0 b1
f

1− f

1− f

f

1 1

1

f

1− f

Figure 5.3: pMC M for the process term uf ? l1f : b1f

5.3.1 Cycles

The building blocks only consider acyclic pMCs. However, cycles may occur in
a pMC. In the case studies we consider, all cyclic transitions loop to the same

state. Therefore, we introduce the notation of g and g .

32 5.3. Building Blocks

� g P: Replace the states of process P with a process in which we go
with probability g to and with probability 1− g to the initial process term
of P.

� g P: Replace the states of process P with a process in which we go
with probability g to and with probability 1− g to the initial process term
of P.

Proc0 = Proc1 ⊕f Proc2

Proc1 = Proc3 ⊕g Proc0

Proc2 =
Proc3 =

Listing 5.2: Process terms for g uf

Proc0 = Proc3 ⊕f Proc1

Proc1 = Proc3 ⊕g Proc0

Proc2 =
Proc3 =

Listing 5.3: Process terms for g uf

Example 5.4

Figure 5.4a shows the pMC M1 of g uf and Figure 5.4b shows the pMC

M2 of g uf . Listing 5.2 shows the process terms for g uf and Listing 5.3

shows the process terms for g uf . The processes of g uf and g uf
both have initial process term Proc0. ∗

s0 s1

f
1− f

g
1− g

1

1

(a) pMC M1 for process term g uf

s0

s1

1− f

f

g

1− g

1

1

(b) pMCM2 for process term g uf

Figure 5.4: Cycles in pMCs

Chapter 6

Monotonicity in pMCs

The previous chapter defines a process algebra (PA) for expressing pMCs. In
this chapter, we consider monotonicity in the parameters of the probability
functions of pMCs. A possible way to find monotonicity in the probability
function of eventually reaching a state in a pMC, is to obtain a rational
function symbolically expressing the reachability probability and check if this
function is monotone for a given parameter. We discuss how monotonicity in
pMCs can be obtained from the structure of the pMC without analyzing the
rational function. This chapter presents the following results:

� For acyclic composition through uf?ug : uh, Theorems 6.3, 6.5, 6.6, 6.8
and 6.11 provide cases in which either monotonicity occurs, or the pMC is
not monotone.

� For cyclic composition through f2 uf1 , Theorems 6.13 and 6.14 provide
cases in which monotonicity occurs.

We start with the acyclic composition of pMCs through uf?ug : uh (Section 6.1)

and continue with cyclic composition trough f2 uf1 (Section 6.2). In most
theorems we assume f↑p for any graph-preserving valuation and prove that
solM↑p. In a similar manner, theorems for f↓p and claims on solM can be
obtained. In Section 6.3, we show that for some sub-domains of graph-preserving
valuations f↑p might hold, and show that the theorems defined in Sections 6.1
and 6.2 can also be applied on these sub-domains.

Notation. Let solM be the function describing the probability of reaching state
s in pMCM with L(s) = . Let ↑p and ↓p be as defined before, 7p denote that
solM is not monotone in p and ?p denote that we do not know whether solM
is monotone or not in p. Furthermore, we replace subscript 1 and 2 with i
in building blocks b1 and b2 and building blocks l1 and l2 (Section 5.3). We

33

34 6.1. Acyclic composition

write f continuous for pi, instead of for: any graph-preserving valuation u with
u = {p0, . . . , pn}, in which pj is fixed for i 6= j, f is continuous.

Assumptions. In the theorems we only consider functions f for which:

� ∂
∂pf exists.

� Any total valuation u ∈ Dom(f) is well-defined (Definition 2.1.5).

When we either consider composition with cyclic pMCs, or composition with not
monotone structures, we additionally assume all total valuations u ∈ Dom(f)
are graph-preserving (Definition 2.1.6).

We observe that when a parameter p does not occur in function f , f is both
monotonically increasing and decreasing in p; Lemma 6.1 formalizes this obser-
vation.

Lemma 6.1
If f is constant in parameter p, then f↑p and f↓p. ∗

Proof of Lemma 6.1
∂
∂pf = 0 as p does not occur in f . Therefore, ∂

∂pf ≥ 0 and ∂
∂pf ≤ 0. ∗

Lemma 6.2
Let pMC M = uf , then: f↑p ⇐⇒ solM↑p ∗

Proof of Lemma 6.2
We obtain the following equalities:

solM = f

∂

∂p
solM =

∂

∂p
f

As the derivatives are equal, we obtain ∂
∂psolM ≥ 0 if and only if ∂

∂pf ≥ 0. ∗

6.1 Acyclic composition

In this section we look at monotonicity of solM in parameter p through the
composition of pMCs with M = uf?ug : uh.

6.1.1 General Composition

Our first goal is to find monotonic structures while composing different pMCs.
Theorem 6.3 provides two cases in which solM is monotone. Corollaries 6.4.a
and 6.4.b follow from Theorem 6.3. Theorem 6.5 on page 36 provides cases in
which solM is not monotone.

Monotonicity in pMCs 35

Theorem 6.3 (General composition)
Let pMC M be described by uf?ug : uh. Then:

1. (f↑p and g ≥ h and g↑p and h↑p) =⇒ solM↑p

2. (f↑p and g ≤ h and g↓p and h↓p) =⇒ solM↓p ∗

Proof of Theorem 6.3
We provide the proof for Case 1; the proof of Case 2 is obtained in a similar
manner. Let solM be the function describing the probability of eventually
reaching a state s with L(s) = in pMC M = uf?ug : uh. So:

solM = f · g + (1− f) · h

By the definition of monotonicity (Definition 2.4.3 on page 13), to obtain solM↑p
we need to show: ∂

∂psolM ≥ 0. With the product rule we obtain:

∂

∂p
solM =

∂

∂p
f · g − ∂

∂p
f · h+

∂

∂p
g · f +

∂

∂p
h · (1− f)

By assumption, ∂
∂pf , ∂

∂pg and ∂
∂ph exist. Furthermore, f↑p, so ∂

∂pf ≥ 0.

To prove ∂
∂psolM ≥ 0, it is sufficient to show that all of the following holds:

∂

∂p
f · g − ∂

∂p
f · h ≥ 0 (6.1)

∂

∂p
g · f ≥ 0 (6.2)

∂

∂p
h · (1− f) ≥ 0 (6.3)

We observe the following:

� By assumption ∂
∂pf ≥ 0, so g ≥ h implies (6.1) holds.

� g↑p implies ∂
∂pg ≥ 0. Therefore, (6.2) holds.

� h↑p implies ∂
∂ph ≥ 0. Therefore, (6.3) holds.

Thus we obtain ∂
∂psolM ≥ 0. ∗

36 6.1. Acyclic composition

Example 6.1
Let M = uf?ug : uh as in Figure 6.1. Assume f = p, g = p + (1 − p) · p and
h = 1

9 · p. Take e.g. p ∈ [0, 1] then g ≥ h. Furthermore, f↑p, g↑p and h↑p.
Therefore, by Theorem 6.3 Case 1 we obtain solM↑p. ∗

s0

s2

s1
f

1− f

g

1− g

h

1− h

Figure 6.1: pMC M = uf?ug : uh

As sol = 1 and sol = 0, we obtain Corollaries 6.4.a and 6.4.b by combining
Lemma 6.1 and Theorem 6.3.

Corollary 6.4

a. Let pMC M = uf?ug : . Then:

f↑p and g↑p =⇒ solM↑p

b. Let pMC M = uf? : uh. Then:

f↑p and h↑p =⇒ solM↑p ∗

Theorem 6.5 (Not monotone)
Let pMC M be described by uf?ug : uh. Then:

1. ∂
∂pf = 0 and ∂

∂pg = 0 and h7p =⇒ solM7p

2. ∂
∂pf = 0 and ∂

∂ph = 0 and g7p =⇒ solM7p

3. g 6= h and ∂
∂pg = 0 and ∂

∂ph = 0 and f7p =⇒ solM7p ∗

Monotonicity in pMCs 37

Proof of Theorem 6.5
We provide the proof for Case 1, the proofs of Cases 2 and 3 are obtained in a
similar manner. For Case 1, we have the following functions:

solM = f · g + (1− f) · h
∂

∂p
solM =

∂

∂p
f · (g − h) +

∂

∂p
g · f +

∂

∂p
h · (1− f)

As ∂
∂pf = 0 and ∂

∂pg = 0, we obtain:

∂

∂p
solM = 0 · (g − h) + 0 · f +

∂

∂p
h · (1− f)

=
∂

∂p
h · (1− f)

As we only consider graph-preserving valuations (1 − f) > 0. So, from h7p,
solM7p follows. ∗

6.1.2 Composition of building blocks with the same function

In this section, we treat composition through uf?ug : uh, in which f , g and h
might not be monotone. Let uf , ug, and uh be one of the building blocks (see
Section 5.3 on page 30), and assume that these building blocks are all build with
the same function f . Theorem 6.6 provides the results for the following pMCs:

� uf?ug : uh with ug, uh ∈ { , , uf , lif , bif},

� lif?ug : uh with ug, uh ∈ { , , uf}, and

� bif?ug : uh with ug, uh ∈ { , , uf}.

Remark. Tables 6.1b and 6.1c show symmetry, this is caused by the symmetry
of lif and bif .

Theorem 6.6 (Composition of building blocks)
For any function f , with f↑p: solM in Table 6.1 is either 0, 1, ↑p, ↓p or ?p. ∗

Remark. Theorem 6.6 is an extension to Theorem 6.3 on page 35. In Theo-
rem 6.6 we do not require uf , ug and uh to be monotone in all cases, where in
Theorem 6.3 we require this monotonicity.

Proof of Theorem 6.6
We provide the proof for uf? : lif in Table 6.1a. All other proofs are obtained
in a similar manner.

38 6.1. Acyclic composition

uh

uf lif bif

u
g

1 ↑p ↑p ?p ↑p

↓p 0 ?p ↓p ?p

uf ?p ↑p ↑p ?p ↑p

lif ?p ↑p ↑p ?p ↑p

bif ↓p ?p ?p ↓p ?p

(a) M = uf?ug : uh

uh

uf

u
g

1 ?p ?p

?p 0 ?p

uf ↑p ↑p ↑p

(b) M = lif?ug : uh

uh

uf

u
g

1 ?p ↑p

?p 0 ↑p

uf ?p ?p ↑p

(c) M = bif?ug : uh

Table 6.1: Monotonicity of solM given f↑p

Monotonicity in pMCs 39

Note that:

� If for all states s ∈ S: L(s) 6= , then solM = 1.

� If for all states s ∈ S: L(s) 6= , then solM = 0.

For M = uf? : lif , we obtain the following functions:

solM = f + (1− f) · (f + (1− f)2)

= −f3 + 2 · f2 − f + 1

∂

∂p
solM = −3 · ∂

∂p
f · f2 + 2 · ∂

∂p
f · 2 · f − ∂

∂p
f

=
∂

∂p
f · (−3 · f2 + 4 · f − 1)

As ∂
∂pf ≥ 0, we need to show either (−3·f2+4·f−1) ≥ 0 or (−3·f2+4·f−1) ≤ 0.

Therefore, we need to know when:

− 3 · f2 + 4 · f − 1 = 0 (6.4)

We obtain that Equation (6.4) holds when f =
−4±

√
4

−6
. As −3 · f2 + 4 · f − 1

is concave we have:

− 3 · f2 + 4 · f − 1

> 0 if 1

3 < f < 1

= 0 if f = 1
3 or f = 1

< 0 otherwise

(6.5)

By assumption, f ∈ [0, 1], however, it might be that f ∈ [a, b] with 0 ≤ a ≤ b ≤
1. Therefore, we can’t claim anything about ∂

∂psolM, so, solM?p. ∗

Although in general, solM?p, there are special cases for which solM7p can be
derived. Recall the definition of turning points (Definitions 2.4.8 and 2.4.9 on
page 16). We observe that for an entry in Table 6.1: solM?p, then there might
be a turning point x, in solM, which is in the domain of f . If this is the case,
then solM7p.

Example 6.2
Let M = uf? : lif , with f = p, we obtain the following functions:

solM = −p3 + 2 · p2 − p+ 1

∂

∂p
solM = −3 · p2 + 4 · p− 1

By replacing f with p in Equation (6.5), we obtain that p = 1
3 is a turning point

of solM. Therefore, solM7p. ∗

40 6.1. Acyclic composition

Theorem 6.7
Let fmin be the minimal value of f and fmax the maximal value of f . If
fmin ∈ [0, 13) and fmax ∈ (2

3 , 1], then all occurrences of ?p in Table 6.1 are
replaced by 7p. ∗

Proof of Theorem 6.7
As f is a probability function, f ∈ [0, 1]. For all solM?p in Table 6.1, we obtain
that solM has a turning point within [13 ,

2
3]. This is proven in a similar way as

for Theorem 6.6. So, for any function f with fmin ∈ [0, 13) and fmax ∈ (2
3 , 1] we

obtain solM7p. ∗

Example 6.3
Recall pMC M in Figure 5.3 on page 31, where ug and uh are denoted by
lif and bif , respectively. Although both sollif 7p and solbif 7p, we obtain from
Theorem 6.6 (Table 6.1a) that for M = uf?lif : bif :

solM↑p ∗

Notation. Let (lif?)m be shorthand for (lif? : (lif? : . . .))︸ ︷︷ ︸
m times lif

in which we nest

lif m times, and let (bif :)n be shorthand for (bif?(bif? . . . :) :)︸ ︷︷ ︸
n times bif

in which we

nest bif n times. If m = 0, then (lif?)m = , and if n = 0, then (bif :)n = .

Theorem 6.8
Let M = uf?(lif?)m : (bif :)n. For any m,n ∈ N, it holds that:

f↑p =⇒ solM↑p ∗

Example 6.4
Figure 6.2 shows the pMC M = uf?(lif?)m : (bif :)n. Assume f = p, from
Theorem 6.8 it follows that solM↑p. ∗

Lemmas 6.9 and 6.10 will be used to prove Theorem 6.8. Lemma 6.9 provides
the case for m ∈ N and n = 0, where Lemma 6.10 provides the case for n ∈ N
and m = 0.

Lemma 6.9
Let M = uf?(lif?)m : . For any m ∈ N:

f↑p =⇒ solM↑p ∗

Monotonicity in pMCs 41

s0

b1 b2 b3 . . . b6 b7 l2

l1

l3

. . .

l6

l7

1− f

f f

1− f

1− f

f

f

1− f

f

f

1− f

m times lif

1− f

f

f

1− f

1− f

f

1− f

1− f

f

n times bif

Figure 6.2: pMC M = uf?(lif?)m : (bif :)n

Lemma 6.10
Let M = uf? : (bif :)n. For any n ∈ N:

f↑p =⇒ solM↑p ∗

Proofsketch of Lemma 6.9
We make the following observations:

� solM = 1− (1− f)− f · (f · (1− f))m = f · (1− (f · (1− f))m)

�
∂

∂p
solM ≥ 0 if and only if

(f · (1− f))m−1 · (f · (1− f) + (1− 2f) ·m · f) ≤ 1

� As −1 ≤ (1− 2f) ≤ 1, there are two cases: f ∈ [0, 12] and f ∈ (1
2 , 1].

1. If f ∈ (1
2 , 1] then Lemma 6.9 holds. This proof is similar to the proof

Theorem 6.3.

2. If f ∈ [0, 12] then Lemma 6.9 holds. This is proven by induction on m.

By Cases 1 and 2 we obtain that Lemma 6.9 holds for any m ∈ N. A technical
proof can be found in the Appendix. ∗

42 6.1. Acyclic composition

Proof of Lemma 6.10
The proof is obtained in a similar manner as the proof of Lemma 6.9. ∗

These results now bring us in a position to prove Theorem 6.8.

Proof of Theorem 6.8
The reachability probability in M is given by:

solM = f · (1− (f · (1− f))m) + (1− f) · (f · (1− f))n

We need to show solM↑p, given f↑p for any m,n ∈ N. This is done by simulta-
neous induction on m and n.

� Base case: m = 0, n = 0
This case maps to uf? : , solM↑p follows from Theorem 6.3.

� Induction
Assume solM↑p for m ≤ k, n ≤ l. We need to show that for both m = k+1,
n = l and m = k, n = l + 1, solM↑p.
– m = k + 1, n = l

Similar to the proof of Lemma 6.9 with induction hypothesis solM↑p
until m ∈ [0, k], n ∈ [0, l].

– m = k, n = l + 1
Similar to the proof of Lemma 6.10 with induction hypothesis solM↑p
until m ∈ [0, k], n ∈ [0, l].

By induction on m and n we obtain: f↑p =⇒ solM↑p for any m,n ∈ N. ∗

6.1.3 Composition of building blocks with different functions

In the previous section, we introduced the composition of building blocks with
the same function f . In this section we extend this to the composition of building
blocks with different functions; we obtain Proposition 6.11 and Corollaries 6.12.a
and 6.12.b.

Remark. The comparison with 1
2 is introduced by the derivatives of sollig and

solbih , which need to be ≥ 0 to have monotonicity in solM.

Theorem 6.11
Let pMC M = uf?lig : bih, and let f↑p, g↑p and h↑p. If

1. ((g + (1− g)2) ≥ h · (1− h), and

2. ∂
∂pg = 0 or g ≥ 1

2 , and

3. ∂
∂ph = 0 or h ≤ 1

2

then solM↑p ∗

Monotonicity in pMCs 43

Proof of Proposition 6.11
Let solM be the function describing the probability of eventually reaching a
state in pMC M = uf?lig : bih. This function is given by:

solM = f · (g + (1− g)2) + (1− f) · h · (1− h)

Its derivative is given by:

∂

∂p
solM =

∂

∂p
f · ((g + (1− g)2)− h · (1− h))

+
∂

∂p
g · f · (2g − 1))

+
∂

∂p
h · (1− f) · (1− 2h)

We make the following observations:

� If ((g + (1− g)2) ≥ h · (1− h) then

∂

∂p
f · ((g + (1− g)2)− h · (1− h)) ≥ 0

� If either ∂
∂pg = 0 or g ≥ 1

2 then

∂

∂p
g · f · (2g − 1)) ≥ 0

� If either ∂
∂ph = 0 or h ≤ 1

2 then

∂

∂p
h · (1− f) · (1− 2h) ≥ 0

By these observations, we obtain ∂
∂psolM ≥ 0. ∗

Example 6.5
Figure 6.3 shows the pMC for M = uf?l1g : b1h. Assume f = p, g = 1

2 · p
2 + 1

2
and h = 1

4 · q. By Proposition 6.11, it follows that solM↑p. Furthermore, from

Theorem 6.5 we obtain solM 7q, as ∂
∂qf = 0, ∂

∂q soll1g = 0 and solb1h 7q. ∗

As sol = 1 and sol = 0, we obtain Corollaries 6.12.a and 6.12.b by combining
Lemma 6.1 and Proposition 6.11.

44 6.2. Cyclic composition

Corollary 6.12
a. Let pMC M = uf?lig : , f↑p and g↑p:

∂

∂p
g = 0 or g ≥ 1

2
=⇒ solM↑p

b. Let pMC M be given by uf? : bih, f↑p and g↑p:

∂

∂p
h = 0 or h ≤ 1

2
=⇒ solM↑p ∗

s0 l0

l1

g

1− g

1− g

g

1

1

1

b0 b1
h

1− h

1− h

h

1 1

1

f

1− f

Figure 6.3: pMC M = uf ? l1g : b1h

6.2 Cyclic composition

In this section, we consider monotonicity in pMCs through the composition with

g uf . Theorems 6.13 and 6.13 provide claims on the monotonicity for cyclic

uni-variate pMCs. Note that g uf = (1−g u1−f))? : . Theorems for

g uf can be deduced by combining Theorems 6.6, 6.13 and 6.14.

Example 6.6

Recall pMC M1 of g uf in Figure 5.4a. We observe that if f↑p and g↑p,
then solM1↑p. Also if f = 1− g and f↑p, then solM1↑p. From this observation
we obtain Theorem 6.13. ∗

Monotonicity in pMCs 45

Theorem 6.13
Let M = g uf , then:

1. if f↑p and g↑p then solM↑p

2. if g = 1− c · f , c ∈ (0, 1] and f ↑p then solM↑p ∗

Example 6.7

Recall M = g uf from Figure 5.4a. Assume f = p and g = 1 − p, from
Theorem 6.13 Case 2, we obtain solM↑p. ∗

Theorem 6.14
Let M = 1−g (g uf), then:

1. if f↑p and g↑p and g ≤ 1
2 then solM↑p

2. if f↑p and g↓p and g ≥ 1
2 then solM↑p ∗

Proof of Theorems 6.13 and 6.14
We provide the proof for Theorem 6.13 Case 1, the proofs of Theorem 6.13 Case 2
and Theorem 6.14 are obtained in a similar manner. Let solM denote the
probability of reaching in g uf , f↑p and g↑p). We need to show solM↑p.

solM =

∞∑
i=0

f · g · (f · (1− g))i

= f · g · 1

1− f · (1− g)

∂

∂p
solM =

∂
∂pf · g + ∂

∂pg · (1− f) · f
(1− f(1− g))2

We make the following observations:

� (1− f(1− g))2 > 0, and

� if both f↑p and g↑p, then ∂
∂pf · g + ∂

∂pg · (1− f) · f ≥ 0

By these observations we obtain ∂
∂psolM ≥ 0. ∗

6.3 Monotonicity and turning points

In Sections 6.1 and 6.2, we considered monotonicity on the whole function do-
main. Recall, that by calculating the critical points of a function f (Defini-
tion 2.4.4 and 2.4.6 on pages 13–14) we can obtain the turning points (Defi-
nitions 2.4.5 and 2.4.7 on pages 13–14). When we look at the turning points

46 6.3. Monotonicity and turning points

of a function, we obtain sub-domains at which a function is monotone (Defini-
tions 2.4.8 and 2.4.9 on page 16). Theorem 6.15 states that for any sub-domain
of p, we can apply the Theorems introduced in this Chapter.

Theorem 6.15
For any subdomain domsub(f) ⊆ dom(f), we can apply Lemmas 6.1 and 6.2
and Theorems 6.3-6.14. ∗

Example 6.8
Let pMC M = uf?ug : uh with f = p and g = 1 and h = 1− p+ p2.

solM = 1− p+ 2p2 − p3

A turning point of h is p = 1
2 . So if p ≥ 1

2 then h↑p. From Theorem 6.3 Case 1
and Theorem 6.15, we obtain:

if p ∈ [
1

2
, 1], then solM↑p ∗

Proof of Theorem 6.15
The proofs are similar as those of the associated theorems, however, we now
only consider a subdomain for f ∗

Part III

Framework: Application

47

Chapter 7

Mapping pWhile to process
algebra

In Chapter 5, we introduced the process algebra PA and used this notion to
describe pMCs. Recall that we make use of processes, as this is a concise way
to describe both pMCs and pWhile programs. The subset of pMCs which
are guaranteed to be monotone in some of their parameters is described in
Chapter 6. As it might be hard to find a way to compose larger monotone
pMCs from the simple pMCs, the aim of this chapter is to find substructures in
pWhile, which map to the subset of pMCs which are monotone. To this end,
we map pWhile to process algebras, and obtain theorems on the monotonicity
in structures of pWhile (Chapter 8).

This chapter presents the following results:

� Restrictions on the pWhile programs, which are needed for the mapping
from pWhile programs to a process in PA.

� The mapping from a pWhile program to a process in PA.

� Equivalence of statements S1 [f] S2 and if b then S1 else S2.

In this chapter, we describe how the process algebra PA is used to describe
certain programs in pWhile. First of all, we introduce two restrictions on
pWhile (Section 5.2). Secondly, we provide a mapping from pWhile pro-
grams to processes in PA (Section 7.2). For this mapping, we assume the
pWhile programs to satisfy the restrictions. The mapping is used, together
with the Theorems of Chapter 6, to prove the theorems of Chapter 8. Finally,
we show equivalence of the probabilistic choice (S1 [f] S2) and the if state-
ment (if b then S1 else S2.) in Section 7.3. For this equivalence, we

48

Mapping pWhile to process algebra 49

require both the probabilistic choice, and the probability that b holds before
executing the if statement, to have the same probability function f .

7.1 Restrictions on pWhile

To define the mapping from a pWhile program to a PA process, we define two
restrictions on the programs:

1. The keyword state is reserved for a program variable to track whether
the program is in a good (state = 1) or bad (state = 0) state. In
the associated process the good and bad state are denoted by and ,
respectively.

2. At the end of a program, state should either contain 0 or 1.

We observe that when a program Prog does not satisfy these restrictions, we can
modify Prog to meet them. We need a Boolean expression b over the program
variables, which states whether or not the program is in a state. The value of
state will be 1 if b holds, and 0 otherwise. Let Prog ::= S; return;, the
modified program Prog′ is denoted by: S; state := b; return;.

7.2 Probabilistic While language and PA

Recall the syntax of a program written in pWhile, as denoted in Definition 2.5.1
on page 17. In this section, we provide the mapping from pWhile programs
and to processes in PA. We observe that every valuation of program variables
together with the program statements (which still need to be executed) maps
to a process term. This mapping is formalized as follows:

Definition 7.2.1 (Mapping from pWhile to PA)
Given a pWhile program Prog and the variable valuation η. Let the function

Proc:(V arProg → Zbound)× pWhile→ PA

for program Prog be defined as follows:

� Proc(η, return;)=

{
if η |= Jstate=1K
if η |= Jstate=0K

� Proc(η, x := a; P)=1.Proc(η{x← a}, P)

� Proc(η, skip; P)=1.Proc(η, P)

� Proc(η, (if b then S1 else S2); P)

=

{
1.Proc(η, S1; P) if η |= JbK
1.Proc(η, S2; P) otherwise

50 7.2. Probabilistic While language and PA

� Proc(η, (while b do S1); P)

=

{
1.Proc(η, (S1; while b do S1); P) if η |= JbK
1.Proc(η, P) otherwise

� Proc(η, (S1 [f] S2); P)
= Proc(η, S1; P) ⊕f Proc(η, S2; P)

With:

� η: V arProg → Zbound ∪ {⊥} the valuation function of V arProg,

� V arProg the set of program variables occurring in Prog, and

� ⊥ the initial value of any variable in V arProg. ∗

Remark. For valuation of the program variables η: V arProg, let ηpre{S} be
the valuation of the program variables after executing program statement S,
given current valuation ηpre. Furthermore, let for arithmetic expression a (Def-
inition 2.5.1), η(a) be the value of a after replacing all program variables by
their value in η.

In the definition above, we inductively define the mapping from a pWhile
program to a process term. The process of a pWhile program is formalized as
follows:

Definition 7.2.2 (Process of a program)
The process P in PA of program Prog in pWhile is defined by:

P(Prog) = Proc(V arProg →⊥ , Prog) ∗

Example 7.1
Consider the pWhile program Prog in Listing 7.1. In each iteration of the while
loop, a coin is flipped. This coin determines if we enter the while loop again, or
we continue the rest of the program. When the while loop is executed an even
number of times, the program will terminate with state = 1. Otherwise,
it terminates with state = 0. The associated process P can be found in
Listing 7.2 on the next page, in which Pi-j denotes the program statements
contained by line-numbers i to j.

Remark. Some process terms are not defined for all variable valuations, as
it might not be possible to enter a part of the code for this valuation. E.g.
in Listing 7.1, the term Proc({1,1}, P4-5; P3-6) is not defined. With
variable valuation {state = 1, c = 1}, it is not possible to enter the while
loop. ∗

For processes we defined the equivalence in Definition 5.2.2. In a similar manner,
we can define the equivalence of programs.

Mapping pWhile to process algebra 51

1 state := 0;
2 c := 0 [p] c := 1;
3 while c = 0 do
4 c := 0 [p] c := 1;
5 state := ¬ state;
6 return;

Listing 7.1: Example of a pWhile program Prog

Initial process term: Proc({⊥,⊥}, P1-9)

Proc({⊥,⊥}, P1-6) = 1.Proc({0,⊥}, P2-6)

Proc({0,⊥}, P2-9)
= Proc({0,⊥}, c := 0; P3-6)
⊕p Proc({0,⊥}, c := 1; P3-6)

Proc({0,⊥}, c := 0; P3-6) = 1.Proc({0,0}, P3-6)
Proc({0,⊥}, c := 1; P3-6) = 1.Proc({0,1}, P3-6)

Proc({0,0}, P3-6) = 1.Proc({0,0}, P4-5; P3-6)
Proc({0,1}, P3-6) = 1.Proc({0,1}, P6)
Proc({1,0}, P3-6) = 1.Proc({1,0}, P4-5; P3-6)
Proc({1,1}, P3-6) = 1.Proc({1,1}, P6)

Proc({0,0}, P4-5; P3-6)
= Proc({0,0}, c := 0; P5; P3-6)
⊕p Proc({0,0}, c := 1; P5; P3-6)

Proc({1,0}, P4-5; P3-6)
= Proc({1,0}, c := 0; P5; P3-6)
⊕p Proc({1,0}, c := 1; P5; P3-6)

Proc({0,0}, c := 0; P5; P3-6) = 1.Proc({0,0}, P5; P3-)
Proc({0,0}, c := 1; P5; P3-6) = 1.Proc({0,1}, P5; P3-6)
Proc({1,0}, c := 0; P5; P3-6) = 1.Proc({1,0}, P5; P3-6)
Proc({1,0}, c := 1; P5; P3-6) = 1.Proc({1,1}, P5; P3-6)

Proc({0,0}, P5; P3-6) = 1.Proc({1,0}, P3-9)
Proc({0,1}, P5; P3-6) = 1.Proc({1,1}, P3-9)
Proc({1,0}, P5; P3-6) = 1.Proc({0,0}, P3-9)
Proc({1,1}, P5; P3-6) = 1.Proc({0,1}, P3-9)

Proc({0,1}, P9) =
Proc({1,1}, P9) =

Listing 7.2: Process P of program Prog in Listing 7.1

52 7.2. Probabilistic While language and PA

Definition 7.2.3 (Equivalence of programs)
Programs Prog1 and Prog2 are equivalent if and only if their processes
P(Prog1) and P(Prog2) are equivalent (Definition 5.2.2). ∗

So far, we have shown how to obtain the process of a program. When proving
theorems for conditions for monotonicity of pWhile programs, we need to know
the process of a program statement S. Therefore, we need to know the goal,
denoted by Boolean expression b, we want to achieve after executing S. When
b holds after executing S we set state to 1. Otherwise, we set state to 0.
We formalize this in Definition 7.2.4.

Definition 7.2.4 (Process of a program statement)
The process of program statement S, with Boolean expression b over S, is given
by the process of the program Prog in Listing 7.3.

S;
state := ¬b;
return;

Listing 7.3: Program Prog obtained from program statement S and Boolean
expression b.

∗

7.2.1 Reducing the process of a program

Process P of a pWhile program can often be rewritten to obtain less process
terms. A process Q that is equivalent to P, and Q has less process terms than P
is called a reduced process of P. In this section, we provide an example in which
we obtain a reduced process Pred.

Example 7.2
Process P of Listing 7.2 can be reduced to process Pred in Listing 7.5. This can
be done in the following manner:

1. Replace all occurrences of Proc1 = 1.Proc2 and Proc2 = Proc3 by
Proc1 = Proc3.

2. Remove all superfluous process terms.

3. Merge similar process terms.

Remark. The reducement does not necessarily lead to an unique minimal pro-
gram, as this is not the goal of the reducement. Furthermore, we observe that
one could also reduce the pMC instead of the process. However, we choose to
reduce the process, as we use the processes to proof Theorems in Chapter 8.

Mapping pWhile to process algebra 53

Proc({⊥,⊥}, P1-9)
= Proc({1,⊥}, c := 0; P3-9)
⊕p Proc({1,⊥}, c := 1; P3-9)

Proc({1,⊥}, c := 0; P3-9)
= Proc({1,0}, c := 0; P5-8; P3-9)
⊕p Proc({1,0}, c := 1; P5-8; P3-9)

Proc({1,⊥}, c := 1; P3-9) =
Proc({0,0}, P3-9)

= Proc({0,0}, c := 0; P5-8; P3-9)
⊕p Proc({0,0}, c := 1; P5-8; P3-9)

Proc({1,0}, P3-9)
= Proc({1,0}, c := 0; P5-8; P3-9)

⊕p Proc({1,0}, c := 1; P5-8; P3-9

Proc({0,0}, c := 0; P5-8; P3-9)
= Proc({1,0}, c := 0; P5-8; P3-9)

⊕p Proc({1,0}, c := 1; P5-8; P3-9

Proc({0,0}, c := 1; P5-8; P3-9) =
Proc({1,0}, c := 0; P5-8; P3-9)

= Proc({0,0}, c := 0; P5-8; P3-9)
⊕p Proc({0,0}, c := 1; P5-8; P3-9)

Proc({1,0}, c := 1; P5-8; P3-9) =

Listing 7.4: Process terms of P in Listing 7.2 after steps replace and remove

54 7.2. Probabilistic While language and PA

Initial process term: Proc0

Proc0 = Proc1 ⊕p Proc2

Proc1 = Proc0 ⊕p Proc4

Proc2 =
Proc4 =

Listing 7.5: Process Pred of process P in Listing 7.2

In the first step we can replace in P:

Proc(\{⊥,⊥\}, P1-9) = 1.Proc(\{1,⊥\}, P2-9)

by:

Proc({⊥,⊥}, P1-9)
= Proc({1,⊥}, c := 0; P3-9)
⊕p Proc({1,⊥}, c := 1; P3-9)

By the replacement, Proc({1,⊥}, P2-9) has become superfluous and can
be removed from P.

After applying the first two steps on all process terms in P, we obtain the process
in Listing 7.4. In this Listing,

Proc({1, ⊥ }, c := 1; P3-9)and

Proc({0,0}, c := 1; P5-8; P3-9)

refer to the same process . Therefore, they can be merged. By merging all
similar processes terms, and renaming them, we obtain Pred as in Listing 7.5.
This reduced process consists of four different process terms. ∗

7.2.2 Examples on loops

In this part we provide the pWhile programs associated with processes g P

and g P. Let S be a program statement of which the process in PA is
equivalent to process P.

Example 7.3
Let pWhile program Prog be the program in Listing 7.6. Assume S is given
by: state := 1 [f] state := 0.

The process P(Prog), is denoted in Listing 7.7. In the same manner as in Sec-
tion 7.2.1, P can be reduced. We observe that the reduced process of P(Prog)
is equivalent to the process in Listing 5.2 on page 32.

Mapping pWhile to process algebra 55

1 S;
2 c := 0 [g] c := 1;
3 while state = 1 ∧ c = 1 do
4 S;
5 c := 0 [g] c := 1;
6 return;

Listing 7.6: Program of which the process is equivalent to process g P(S).

Remark. In Listing 7.7 we use ∗ as a wild-card for either 0, 1, or ⊥.

In a similar manner the process for the pWhile program in Listing 7.8, with
S given by state := 1 [f] state := 0, can be obtained, this process is
equivalent to the one of Listing 5.3 on page 32.

Remark. Note that the program in Listing 7.6 with Prog as defined above, is
equivalent to Zeroconf [24] with MAX=1. ∗

56 7.2. Probabilistic While language and PA

Initial process term: Proc({⊥,⊥}, P1-6)

Proc({⊥,⊥}, P1-6)
= Proc({⊥,⊥}, state := 1; P2-6)

⊕f Proc({⊥,⊥}, state := 0; P2-6)

Proc({⊥,⊥}, state := 0; P2-6) = 1.Proc({0,⊥}, P2-6)
Proc({⊥,⊥}, state := 1; P2-6) = 1.Proc({1,⊥}, P2-6)

Proc({∗,⊥}, P2-6)
= Proc({∗,⊥}, c := 0; P3-6)

⊕g Proc({∗,⊥}, c := 1; P3-6)

Proc({∗,⊥}, c := 0; P3-6) = 1.Proc({∗,0}, P3-6)
Proc({∗,⊥}, c := 1; P3-6) = 1.Proc({∗,1}, P3-6)

Proc({0,0}, P3-6) = 1.Proc({0,0}, P6)
Proc({0,1}, P3-6) = 1.Proc({0,1}, P6)
Proc({1,0}, P3-6) = 1.Proc({1,0}, P6)
Proc({1,1}, P3-6) = 1.Proc({1,1}, P4-5; P3-6)

Proc({1,1}, P4-5; P3-6)
= Proc({1,1}, state := 0; P5; P3-6)
⊕f Proc({1,1}, state := 1; P5; P3-6)

Proc({1,1}, state := 0; P5; P3-6) = 1.Proc({0,1}, P5; P3-6)
Proc({1,1}, state := 1; P5; P3-6) = 1.Proc({1,1}, P5; P3-6)

Proc({∗,1}, P5; P3-6)
= Proc({∗,1}, c := 0; P3-6)
⊕g Proc({∗,1}, c := 1; P3-6)

Proc({∗,1}, c := 0; P3-6) = 1.Proc({∗,0}, P3-6)
Proc({∗,1}, c := 1; P3-6) = 1.Proc({∗,1}, P3-6)

Proc({0,∗}, P6) =
Proc({1,∗}, P6) =

Listing 7.7: Process of the pWhile program of g uf

Mapping pWhile to process algebra 57

1 S;
2 c := 0 [g] c := 1;
3 while state = 0 ∧ c = 0 do
4 S;
5 c := 0 [g] c := 1;
6 return;

Listing 7.8: Program of which the process is equivalent to process g P(S).

7.3 Equivalence probabilistic choice and if statement

We observe that program statements

� S1 [f] S2, and

� if b then S1 else S2

are equivalent given that Prb = f . We use this equivalence in Chapter 8.

Example 7.4
Let S1 and S2 be the program statements in Listing 7.9 and 7.10, respectively.
Let Boolean expression c given by state = 1. For S1, it is clear that:

Pr
(
ηS1
post |= JcK

)
= f

Let Boolean expression d be given by a = 0. For S2, we observe that:

Pr
(
ηS2
post |= JdK

)
= f

So, Pr
(
ηpost |= JcK

)
= Pr

(
ηS2
post |= JdK

)
.

Furthermore, Pr
(
ηS2
post |= JcK

)
= Pr

(
ηS2
post |= JdK

)
. Therefore, we obtain that

for goal c given by state = 1 these program statements are equivalent (Def-
inition 7.2.3).

Remark. Pr
(
ηSi
post |= JbK

)
is the probability that after executing Si, Boolean

statement b holds. More information on the notation Pr
(
ηipost |= JbK

)
can be

found in Chapter 8. ∗

state := 1 [f] state := 0;

Listing 7.9: Probabilistic choice with Pr
(
ηpost |= Jstate=1K

)
= f

58 7.3. Equivalence probabilistic choice and if statement

a := 0 [f] a := 1;
state := a = 0;

Listing 7.10: If then else with Pr
(
ηpost |= Jstate=1K

)
= f

Lemma 7.1
Let S3 and S4 be program statements, and let:

� program statement S1 be given by S3 [f] S4,

� program statement S2 be given by if b then S3 else S4, and

� f = PrS2
b (η) for variable valuation η.

Then S1 and S2 are equivalent. ∗

Proof of Lemma 7.1
We obtain that by Definition 7.2.4 with goal b both the process of S1 and S2 are
equivalent to uf . By Definition 7.2.3 we obtain that S1 and S2 are equivalent. ∗

Chapter 8

Monotonic pWhile
programs

In Chapter 6, we discusses how monotonicity in pMCs can be concluded from
the structure of the pMC. As it may be hard to find a way to compose larger
monotone pMCs from simple pMCs, our aim is to be able to identify monotonic
pMC structures at a higher level of abstraction. To that end, this chapter
presents results enabling to decide (non-) monotonicity of pWhile programs
by a purely syntactic analysis. In our pWhile programs, the goal is to reach
state = 1 at the end of the program. The probability of reaching this state
might be monotone in one or more parameters. By the theorems of Chapter 6,
and the mapping from pWhile programs to processes in Chapter 7, we deduce
conditions for monotonicity in pWhile programs.

This chapter presents conditions for monotonicity in the probability of reaching
a specific variable valuation in:

� the effect of the assignment of program variables (x := a),

� Boolean expressions, and

� program statements:

– skip,

– x := a,

– S1 [f] S2,

– if b then S1 else S2,

– while b do S, and

– S1;S2.

59

60

First of all, we make some general observations on the influence of a program
statement on the value of a program variable (Section 8.1). More precisely, we
consider the probability that x increases or decreases. We show under which
conditions this influence on x is monotone. Secondly, we show in Section 8.2
under which conditions the probability that a Boolean expression holds is mono-
tone. Finally, we provide theorems on the conditions for monotonicity in the
program statements of pWhile (Section 8.3).

Notation. We use the following notation:

� Let Pr(η |= b) be the probability that Boolean expression b holds given
valuation η: V ar → Zbound.

� For program Prog, let ηpre be the valuation of the program variables before
executing Prog, and ηpost = ηpre{Prog} be the valuation of the program
variables after executing Prog.

� For program statement S, let ηpre be the valuation of the program variables
before executing S, and ηpost = ηpre{S} be the valuation of the program
variables after executing S.

� Let Si−j denote the statements on Lines i-j of a program or program state-
ment.

Let η
Si−j

post =

{
ηpre{Si−j} if i = 1

η
1−(i−1)
post {Si−j} otherwise

� Let n be the number of lines in program Prog. Let program statement S1

end at line i < n of Prog and program statement S2 start at line i+ 1 the
following holds:

ηipost = ηi+1
pre

Furthermore, ηnpost = ηpost.

� As in Chapter 7, let denote state = 1, and denote state = 0.

Assumptions. We make the following assumptions:

� All program runs of program Prog visit finitely many states, and almost
surely reach or . Therefore, for the pMC of process P(Prog): Pr(♦) +
Pr(♦) = 1.

� Before executing program Prog, all program variables x have valuation
η(x) = 0. Without this assumption, e.g. x ≤ 1 is not defined when η(x) =⊥.

� Program statement S is executed given current valuation ηpre

� We only consider functions f for which:

– ∂
∂pf exists, and

– every total valuation u ∈ Dom(f) is well-defined (Definition 2.1.5).

Monotonic pWhile programs 61

If while b do S is part of the program statement (e.g. in Section 8.3.3),
then we assume all total valuations u ∈ Dom(f) are graph-preserving (Def-
inition 2.1.6).

We need these assumptions, to be able to apply the theorems of Chapter 6.

Remark. In most theorems we show Pr
(
ηpost |= JbK

)
↑p. As Pr

(
ηpost |= JbK

)
↓p

is an analogous statement, we omit this.

8.1 General Considerations

In this section, we consider the influence of a program statement on the value
of program variable x. Recall from Definition 2.5.1 that any program variable
is defined on a bounded integer interval Zbound. We use Nbound as the set of
non-negative integers in Zbound.

We consider two different effects of program statement S on the value of program
variable x. The effects are as follows:

1. ηpre(x) ≤ ηpost(x): that is x increases or remains the same (x↗).

2. ηpre(x) > ηpost(x): that is x decreases (x↙).

Similar to Definition 7.2.4, we obtain the process of a program statement S, of
which the goal is to either obtain x↗ or x↙.

Definition 8.1.1 (Process of a program statement with goal x↙ or x↗)
Let S be a program statement. The process of S, with goal x↗, is given by the
process of the following program:

x_old := x;
S;
state := x >= x_old;
return;

The process of S, with goal x↙, is given by the process of the following program:

x_old := x;
S;
state := x < x_old;
return; ∗

Example 8.1
Let program statement S be x := x + 1. S increments x. For any valuation
ηpre, ηpre(x) ≤ ηpost(x), so x↗ follows from S. ∗

As ¬(ηpre(x) > ηpost(x)) is equivalent to: ηpre(x) ≤ ηpost(x). We observe that
if x↗ follows from S, then ¬(x↙) follows from S.

62 8.1. General Considerations

Corollary 8.1
For any program variable x, it holds that:

� ¬(x↗) = x↙, and

� ¬(x↙) = x↗ ∗

We consider the influence of a program statement S, when program variable x
does not occur in S. Clearly, x remains the same during execution of S. From
this observation we obtain Proposition 8.2.

Proposition 8.2
For every program statement S: x /∈ V arS =⇒ Pr

(
ηpre(x) ≤ ηpost(x)

)
= 1 ∗

As x↙ is the complement of x↗, it immediately follows:

x /∈ V arS =⇒ Pr
(
ηpre(x) > ηpost(x)

)
= 0

Proof of Proposition 8.2
If x /∈ V arS, then S does not change x. So, for goal x↗, we obtain for S that
the associated process is equivalent to . Therefore, we have:

Pr
(
ηpre(x) ≤ ηpost(x)

)
= 1 ∗

We now look at the influence of the executing program statement S.

Example 8.2
Let S be the following program statement:

x := 3 [f] x := -3

Suppose in the current valuation ηpre, ηpre(x) = 0. So, if x := 3 is exe-
cuted, then x↗, otherwise, x↙. Let b := x = 3, we observe for S, that
Pr
(
ηpost |= JbK

)
= f . Furthermore, Pr

(
ηpost |= JbK

)
directly influences

Pr
(
ηpre(x) ≤ ηpost(x)

)
and Pr

(
ηpre(x) > ηpost(x)

)
.

Remark. In Section 8.2, we provide theorems on the monotonicity in the prob-
ability that a given Boolean expression holds.

∗

Monotonic pWhile programs 63

Theorem 8.3
Let b := x = a be a Boolean expression. For every program statement S,
it holds that:

� Pr
(
ηpost |= JbK

)
↑p and η(x)≤ η(a) =⇒ Pr

(
ηpre(x) ≤ ηpost(x)

)
|= b)↑p

� Pr
(
ηpost |= JbK

)
↑p and η(x)> η(a) =⇒ Pr

(
ηpre(x) > ηpost(x)

)
↑p ∗

Proof of Theorem 8.3
We provide the proof of Case 1; the proof of Case 2 is obtained in a similar
manner.

Let Pr
(
ηpost |= JbK

)
= f . Assume f↑p. If η(x) ≤ η(a), with probability f , S

either increases x, or leaves x unchanged. By Definition 7.2.4 and reducing the
obtained process, we deduce that the process of S with the goal of reaching x↗,
is equivalent to uf . From Lemma 6.2, Pr

(
ηpre(x) ≤ ηpost(x)

)
↑p follows. ∗

Since x ∈ Zbound (Definition 2.5.1), there is always an implicit upper and lower
bound on x. We omit this for the sake of readability. Furthermore, the program
may induce other upper and lower bounds on x. We consider programs in
which an if statement induces a bound on the value of program variable. Let
min(x, MAX) and max(x, MIN) be syntactic sugar for these bounds, with
MIN,MAX ∈ Zbound fixed constants. We observe that, also in a while loop a
bound on the value of a program variable can be induced. Propositions for this
are obtained in a similar manner.

Example 8.3
Let program statement S be

x := x + 1;
x := min(x, 10);

S increases x with 1, at the same time, it induces an upper bound on x of
10. ∗

We observe that if we execute program statement S with current valuation ηpre,
and ηpre(x) ≤ ηpost(x), then x↗ follows from S. Otherwise, x↙ follows from S.
This observation leads to Proposition 8.4.

Proposition 8.4
Let MAX ∈ Zbound, and let program statement S be:

1 S1;
2 x := min(x, MAX);

We distinguish two cases:

64 8.1. General Considerations

1. If η(x) ≤ MAX, then:

Pr
(
ηpre(1) ≤ ηpost(1)

)
↑p ⇐⇒ Pr

(
ηpre(x) ≤ ηpost(x)

)
↑p

2. If η(x) > MAX, then:

Pr
(
ηpre(x) > ηpost(x)

)
= 1 ∗

Proof of Proposition 8.4
First consider Case 1; let η(x) ≤ MAX, and let f = Pr

(
ηpre(1) ≤ ηpost(1)

)
.

We want to show: Pr
(
ηpre(1) ≤ ηpost(1)

)
↑p ⇐⇒ Pr

(
ηpre(x) ≤ ηpost(x)

)
↑p. For

goal x↗, we obtain that the process of S is equivalent to uf . By Lemma 6.2,
we obtain:

Pr
(
ηpre(1) ≤ ηpost(1)

)
↑p ⇐⇒ Pr

(
ηpre(x) ≤ ηpost(x)

)
↑p

Secondly, consider Case 2; let η(x) > MAX.
We want to show: Pr

(
ηpre(x) > ηpost(x)

)
= 1. For goal, x↙, we obtain for S

that the associated process is equivalent to . Therefore, we have:

Pr
(
ηpre(x) > ηpost(x)

)
= 1 ∗

Above we provide a proposition for variable assignment with an upper bound.
In a similar manner we obtain a proposition for variable assignment with a lower
bound.

Proposition 8.5
Let MIN ∈ Zbound, and let program statement S be:

1 S1;
2 x := max(x, MIN);

We distinguish two cases:

1. If η(x) > MIN, then:

Pr
(
η1pre(x) > η1post(x)

)
↑p ⇐⇒ Pr

(
ηpre(x) > ηpost(x)

)
↑p

2. If η(x) ≤ MIN, then:

Pr
(
ηpre(x) ≤ ηpost(x)

)
= 1 ∗

The proof of Proposition 8.5 is similar to the proof of Proposition 8.4.

Monotonic pWhile programs 65

8.2 Boolean expressions

In Section 8.1, we introduced monotonicity obtained from the assignment of
program variables. We considered two different cases:

1. x increases or remains the same (x↗).

2. x decreases (x↙).

In this section, we show how monotonicity in the probability that a Boolean
expression b holds is obtained from the assignment of program variables. We
provide propositions for {=, <=, ¬, and ∧}. Propositions for
{<, >=, >, 6=, and ∨} are obtained in a similar manner.

First of all, we consider the assignment of a program variable and Boolean
expressions x = a and x <= a. For both x↗ and x↙ we provide two propo-
sitions:

Proposition 8.6
Consider statement S.

a. Let b be a Boolean expression denoted by x = MAX, and let ηpre(x) ≤ MAX.
Then:

Pr
(
ηpre(x) ≤ ηpost(x)

)
↑p =⇒ Pr

(
ηpost |= JbK

)
↑p

b. Let b be a Boolean expression denoted by x <= a. Then:

Pr
(
ηpre(x) ≤ ηpost(x)

)
↑p =⇒ Pr

(
ηpost |= JbK

)
↓p ∗

Proof of Proposition 8.6
We provide the proof for Proposition 8.6.a. The other proof is obtained in a
similar manner.

Let f = Pr
(
ηpre(x) ≤ ηpost(x)

)
. If ηpost |= JbK then the associated process is

equivalent to uf , thus Pr
(
ηpre(x) ≤ ηpost(x)

)
↑p =⇒ Pr

(
ηpost |= JbK

)
↑p follows.

If ηpost 6|= JbK then Pr
(
ηpost |= JbK

)
= 0, the associated process is equivalent to

, by Lemma 6.1 Pr
(
ηpost |= JbK

)
↑p. ∗

Example 8.4
Let program Prog be the program in which S is executed n times. Assume we
need to execute S n times to obtain:

ηnpost |= JbK

The associated process is equivalent to:

uf
n = uf?(uf? . . . :) :

66 8.2. Boolean expressions

By Corollary 6.4.a we obtain:

Pr
(
ηpre(x) ≤ ηpost(x)

)
↑p =⇒ Pr

(
ηnpost |= JbK

)
↑p

Note that this also follows by Proposition 8.6 and Theorem 8.19. ∗

Proposition 8.7
Consider statement S.

a. Let b be a Boolean expression denoted by x = MIN, and let ηpost(x) > MIN.
Then:

Pr
(
ηpre(x) > ηpost(x)

)
↑p =⇒ Pr

(
ηpost |= JbK

)
↑p

b. Let b be a Boolean expression denoted by x <= a. Then:

Pr
(
ηpre(x) > ηpost(x)

)
↑p =⇒ Pr

(
ηpost |= JbK

)
↑p ∗

The proof of Proposition 8.7 is obtained in a similar manner as the proof of
Proposition 8.6.

We have now defined propositions for x = a and x <= a. Next, we define a
proposition for the negation of a Boolean expression. We observe that if b holds
with probability f , ¬b holds with probability 1− f .

Proposition 8.8
Consider program statement S. Let b be a Boolean expression on the program
variables in η. Then:

Pr
(
ηpost |= JbK

)
↑p ⇐⇒ Pr

(
ηpost |= J¬bK

)
(η)↓p ∗

Proof of Proposition 8.8
We proof the =⇒ direction; in a similar manner ⇐= is obtained.

The associated process of S, with the goal that b holds after executing S, is
equivalent to uf with f = Pr

(
ηpost |= JbK

)
. As by assumption every process

almost surely terminates, the probability of reaching , is given by 1 − f . At
, ¬b holds, so when the goal is to reach , this is equivalent to the process P

denoted by uf? : . If f↑p, then we obtain from Theorem 6.6 for the underlying
pMC M of P: solM↓p. So:

Pr
(
ηpost |= JbK

)
↑p =⇒ Pr

(
ηpost |= J¬bK

)
(η)↓p ∗

Furthermore, we consider the conjunction of two Boolean expressions.

Proposition 8.9
Consider program statement S. Let b1 and b2 be Boolean expressions. Then:

Pr
(
ηpost |= Jb1K

)
↑p and Pr

(
ηpost |= Jb2K

)
↑p =⇒ Pr

(
ηpost |= Jb1 ∧ b2K

)
↑p ∗

Monotonic pWhile programs 67

Proof of Proposition 8.9
Let f = Pr

(
ηpost |= Jb1K

)
and g = Pr

(
ηpost |= Jb2K

)
. As b1 and b2 are expres-

sions, f and g are independent. So, the process of S with goal b, is equivalent
to uf?ug : , then from Corollary 6.4.a it follows that Pr

(
ηpost |= Jb1 ∧ b2K

)
↑p.

So:

Pr
(
ηpost |= Jb1K

)
↑p and Pr

(
ηpost |= Jb2K

)
↑p =⇒ Pr

(
ηpost |= Jb1 ∧ b2K

)
↑p ∗

Above we defined the influence of program statement S on the probability that
a Boolean expression holds, it might also be possible that this probability is
constant in parameter p. Similar to Lemma 6.1, we obtain Proposition 8.10.
Let V arb denote the program variables occurring in Boolean expression b.

Proposition 8.10
Consider program statement S. Let b be a Boolean expression. Then:

Pr
(
ηpost |= JbK

)
is constant in p

=⇒ Pr
(
ηpost |= JbK

)
↑p and Pr

(
ηpost |= JbK

)
↓p ∗

The proof of Proposition 8.10 follows directly from Lemma 6.1.

At the end of Section 8.1 we consider the influence on x↗ and x↙, given that
program variable x does not occur. This results in Proposition 8.2. Similarly,
variables in a Boolean expression might not occur in a program statement, we
obtain in a similar manner. Proposition 8.11.

Proposition 8.11
Consider program statement S. Let b be a Boolean expression. Then:

(∀x ∈ V arb.x /∈ V arS) =⇒ Pr
(
ηpost |= JbK

)
= Pr

(
ηpre |= JbK

)
∗

Proof of Proposition 8.11
If ∀x ∈ V arb.x /∈ V arS, then ∀x ∈ V arb.ηpre(x) = ηpost(x).
So, Pr

(
ηpost |= JbK

)
= Pr

(
ηpre |= JbK

)
. ∗

From Propositions 8.10 and 8.2 follows:

Corollary 8.12
Consider program statement S. Let b be a Boolean expression. Then:

∀(x ∈ V arb.x /∈ V arS) and Pr
(
ηpre |= JbK

)
= c, c ∈ [0, 1]

=⇒ Pr
(
ηpost |= JbK

)
↑p and Pr

(
ηpost |= JbK

)
↓p ∗

68 8.3. Program statements

8.3 Program statements

In this section, we provide conditions for monotonicity of the program state-
ments:

� skip,

� x := a,

� S1 [f] S2,

� if b then S1 else S2,

� while b do S, and

� S1;S2.

8.3.1 Empty statement and variable assignment

In this section, we consider the empty statement (skip) and the variable as-
signment (x := a). First of all, we consider statement skip. Clearly, skip
does not influence the values of the program variables. Proposition 8.11 yields
Corollary 8.13.

Corollary 8.13 (Monotonicity of the empty statement)
Consider program statement S = skip. Let b be a Boolean expression.
Then:

Pr
(
ηpost |= JbK

)
↑p and Pr

(
ηpost |= JbK

)
↓p ∗

Secondly, we consider the direct assignment of program variables. Recall that
in Section 8.1, we consider the influence of this assignment.

Proposition 8.14 (Monotonicity of variable assignment)
Consider program statement S given by x := a. Let Boolean expression b be
denoted by x := a. Then:

Pr
(
ηpost |= JbK

)
= 1 ∗

Proof of Proposition 8.14
Let program statement S be x := a. The process of S, with as goal x = a is
equivalent to . Clearly, in , Pr(♦) = 1. So,

Pr
(
ηpost |= JbK

)
= 1 ∗

Monotonic pWhile programs 69

8.3.2 Probabilistic choice and if statement

In this section we consider the probabilistic choice and the if statement.

Example 8.5
Consider the following program statement S:

x := x + 2 [f] x := x - 3;

In S, with probability f , x := x + 2 is executed, and with probability 1 −
f , x := x - 3 is executed. Let b be given by x >= 10. We observe the
following:

� If ηpre(x) ≥ 10, then ηpre |= JbK. If x := x + 2 is executed, x does not
decrease, ηpost |= JbK. However, when x := x - 3 is executed, x might
become smaller than 10, so it may be that ηpost 6|= JbK.

� If η(x) < 10, then η 6|= JbK hold. If x := x + 2 is executed, x might
become larger than 10, so it may be that ηpre |= JbK. When x := x - 3
is executed, x does not increase, so ηpre 6|= JbK.

Pr
(
ηpost |= JbK

)
is directly influenced by f . Therefore,

if f↑p, then Pr
(
ηpost |= JbK

)
↑p ∗

Theorem 8.15 (Monotonicity of probabilistic choice)
Consider program statement S = S1 [f] S2, with f↑p. Let b be a Boolean
expression. Then:

Pr
(
ηS1
post |= JbK

)
↑p and Pr

(
ηS2
post |= JbK

)
↑p

and Pr
(
ηS1
post |= JbK

)
≥ Pr

(
ηS2
post |= JbK

)
=⇒ Pr

(
ηpost |= JbK

)
↑p ∗

Proof of Theorem 8.15
Let g = Pr

(
ηS1
post |= JbK

)
and h = Pr

(
ηS2
post |= JbK

)
. Then, the process of

S1 [f] S2 is equivalent to uf?ug : uh, the result follows directly from Theo-
rem 6.3. ∗

Corollary 8.16 follows directly from Lemma 7.1 and Theorem 8.15.

Corollary 8.16 (Monotonicity of if statements)
Consider program statement S = if b1 then S1 else S2.

70 8.3. Program statements

Let f = Pr
(
ηpre |= Jb1K

)
, let f↑p, and let b a Boolean expression. Then:

Pr
(
ηS1
post |= JbK

)
↑p and Pr

(
ηS2
post |= JbK

)
↑p

and Pr
(
ηS1
post |= JbK

)
≥ Pr

(
ηS2
post |= JbK

)
=⇒ Pr

(
ηpost |= JbK

)
↑p ∗

8.3.3 While loops

In this subsection, we consider the while loop with the following structure:

while counter < MAX ∧ b do
S1;

Listing 8.1: While loop

Recall that by assumption all valuations of functions occurring in a while loop
are graph-preserving valuations (Definition 2.1.6).

Example 8.6
Consider program statement S in Listing 8.2. In this program a coin is flipped,
and either the state is set to 0, or 1. When the state equals 0, or the counter
reached a maximum, we exit the while loop. The goal is, to eventually reach
process term in the process of a program. Therefore, we prefer to exit the
while loop with state = 1. We make the following observations:

� Influence of counter:

– counter is increased in every loop iteration. This increase is indepen-
dent of any parameter.

– As we want ηpost |= Jstate = 1K, we want to exit the while loop with
counter >= MAX.

� Relation x = 0 and state = 1:

– The probability that x := 0 is executed equals f .

– When we look at the body of the while loop, we observe that x = 0
must hold, to obtain state = 1. So, probability f should be as high
as possible.

As counter is not influenced by any parameter, we obtain from the observa-
tions: if f↑p, then Pr

(
η |= Jstate=1K

)
↑p. ∗

Monotonic pWhile programs 71

while counter < MAX ∧ state = 1 do
counter := counter + 1;
x := 0 [f] x := 1;
state := x = 0;

Listing 8.2: Example of a while loop

In Example 8.6, we observe that if in the ith loop iteration:

Pr
(
ηprei(counter) ≤ ηposti(counter)

)
↑p and Pr

(
ηposti |= Jstate=1K

)
↑p

then
Pr
(
ηpost |= Jstate=1K

)
↑p

We generalize this observation in Theorems 8.17 and 8.18.

Theorem 8.17 (Monotonicity While loop)
Consider program statement S:

while counter < MAX ∧ b do
S1;

Let:

� ηpre(counter) = 0,

� i denote the ith loop iteration,

� fi = Pr
(
ηposti |= JbK

)
,

� gi = Pr
(
ηprei(counter) + 1 = ηposti(counter)

)
, and

� Pr
(
ηprei(counter) + 1 = ηposti(counter)

)
+ Pr

(
ηposti |= Jcounter=0K

)
= 1

Then:

1. ∀i.fi↑p and gi↑p =⇒ Pr
(
ηpost |= JbK

)
↑p

2. ∀i.fi↑p and gi = 1− c · fi, c ∈ (0, 1] =⇒ Pr
(
ηpost |= JbK

)
↑p

3. ∀i.fi↓p and gi↓p =⇒ Pr
(
ηpost |= JbK

)
↓p

4. ∀i.fi↓p and gi = 1− c · fi, c ∈ (0, 1] =⇒ Pr
(
ηpost |= JbK

)
↑p ∗

72 8.3. Program statements

Proof of Theorem 8.17
We provide the proof of Case 1 for statement S in Listing 8.1; the proof of
Case 2 is obtained in a similar manner.

Let m be the number of times the while loop is executed.

As ηpre(counter) = 0, we can write the process of S as follows:

P(S) = Proc(m)

Proc(0) =

{
if ηpre |= JbK
if ηpre 6|= JbK

Proc(m) =

{
g uf1 if m = 1

g (Proc(m− 1)?ufm :) otherwise

Let pMC M be the pMC of P(S). We show for each value of m, solM↑p. The
proof is by induction on m.

� m = 0:

Proc(0) is either or . Since, Pr
(
ηpost |= JbK

)
=

{
1 if η |= JbK
0 otherwise

By Lemma 6.1, Pr
(
ηpost |= JbK

)
↑p, Pr

(
ηpost |= JbK

)
↓p, Pr

(
ηpost |= J¬bK

)
↑p,

and Pr
(
ηpost |= J¬bK

)
↓p hold. So, solM↑p for m = 0.

� m = 1:
Proc(1) is g uf1 , since f1↑p and g1↑p, From Theorem 6.13, solM↑p
follows for m = 1.

� m > 1:
We assume solM↑p for some fixed m = k ≥ 1.

Proc(k) = g (Proc(k − 1)?ufk :)↑p (IH)

We need to show for k + 1: solM↑p. We observe that:

Proc(k + 1) = g (Proc(k)?ufk+1
:)

= g ((g (Proc(k − 1)?ufk :))?ufk+1
:)

By (IH) we obtain: g (Proc(k − 1)?ufk :)↑p. Therefore, we can replace

g (Proc(k − 1)?ufk :) by uh with h↑p.

Proc(k + 1) = g (uh?ufk+1
:)

As fk+1↑p and h↑p we deduce from Corollary 6.4.a, (uh?ufk+1
:)↑p. By

Theorem 6.13, we now obtain Proc(k + 1)↑p.

Monotonic pWhile programs 73

Clearly, if solM↑p, then Pr
(
ηpost |= JbK

)
↑p. As we have proven by induction on

m the first hold, Pr
(
ηpost |= JbK

)
↑p holds as well. ∗

In Theorem 8.17, we look at the probability that counter is incremented by 1,
and the probability that counter is reset to 0. In some case studies, counter
is not reset to 0, but remains the same. Therefore, we obtain Theorem 8.18.

Theorem 8.18
Let S, i, fi and gi as in Theorem 8.17, and let:

� ηpre(counter) = 0,

� Pr
(
ηprei(counter) + 1 = ηposti(counter)

)
+Pr

(
ηprei(counter) = ηposti(counter)

)
= 1

Then:

1. ∀i.fi↑p and gi↑p =⇒ Pr
(
ηpost |= JbK

)
↑p

2. ∀i.fi↑p and gi = 1− c · fi, c ∈ (0, 1] =⇒ Pr
(
ηpost |= JbK

)
↑p

3. ∀i.fi↓p and gi↓p =⇒ Pr
(
ηpost |= JbK

)
↓p

4. ∀i.fi↓p and gi = 1− c · fi, c ∈ (0, 1] =⇒ Pr
(
ηpost |= JbK

)
↑p ∗

Proof of Theorem 8.18
The proof is obtained in a similar manner as the proof of Theorem 8.17. Note
that the process of S for Case 1 is given as follows:

P(S) = Proc(m)

Proc(m) =

if m = 0 and η |= JbK
if m = 0 and η |= J¬bK

g uf1 if m = 1

Proc(m− 1)? g ufm : otherwise

∗

8.3.4 Sequential composition

In the previous subsections, we provide theorems for conditions for monotonicity
in all program statements of Definition 2.5.1 on page 17 except composition of
program statements (S1;S2). In this subsection, we provide conditions for
monotonicity in the probability that b holds after executing S1;S2.

74 8.3. Program statements

Example 8.7
Consider the following program statements:

S1: x := x + 2 [f] x := x - 3;
S2: x := x + 1 [g] x := x - 2;

Let S be the composition of S1 and S2 (S1;S2), and let b be given by x >= 10.
By assumption, η(x) = 0. So, from Theorem 8.15 it follows that:

� f↑p =⇒ Pr
(
ηS1
post |= JbK

)
↑p

� g↑p =⇒ Pr
(
ηS2
post |= JbK

)
↑p

Now for S, we observe that if both f↑p and g↑p, then Pr
(
ηpost |= JbK

)
↑p. ∗

Theorem 8.19 (Monotonicity of sequential composition)
Consider program statement S = S1;S2. Let b be a Boolean expression.
Then:

Pr
(
ηS1
post |= JbK

)
↑p and Pr

(
ηS2
post |= JbK

)
↑p =⇒ Pr

(
ηpost |= JbK

)
↑p ∗

Proof of Theorem 8.19
We distinguish two cases:

1. ηpre |= JbK, and

2. ηpre 6|= JbK.

We make the following observations:

1. If ηpre |= JbK and Pr
(
η1post |= JbK

)
↑p, then η1post |= JbK

2. If η1post |= JbK and Pr
(
η2post |= JbK

)
↑p, then η2post |= JbK

Let Pr
(
η1post |= JbK

)
= f and Pr

(
η2post |= JbK

)
= g. By the observations we

obtain:

� Case 1: the associated process is equivalent to
If ηpre |= JbK, and f↑p, and g↑p, then by Observations 1 and 2 we obtain:
η2pre |= JbK. Therefore, Pr

(
ηpost |= JbK

)
= 1, and the associated process is

equivalent to . We obtain from Lemma 6.1: Pr
(
ηpost |= JbK

)
↑p.

� Case 2: the associated process is equivalent to uf? : ug
We obtain from Corollary 6.4.b: Pr

(
ηpost |= JbK

)
↑p. Therefore,

Pr
(
ηS1
post |= JbK

)
↑p and PrS2

b (η1pre)↑p =⇒ Pr
(
ηpost |= JbK

)
↑p ∗

Monotonic pWhile programs 75

Theorem 8.20 (Not monotone)
Consider program statement S = S1;S2. Let b be a Boolean expression, with
ηpre 6|= JbK. The following holds:

1. Pr
(
ηS1
post |= JbK

)
7p and

∂

∂p
Pr
(
ηS2
post |= JbK

)
= 0

and Pr
(
ηS2
post |= JbK

)
< 1

=⇒ Pr
(
ηpost |= JbK

)
7p for S1;S2

2. Pr
(
ηS2
post |= JbK

)
7p and

∂

∂p
Pr
(
ηS1
post |= JbK

)
= 0

and Pr
(
ηS1
post |= JbK

)
< 1

=⇒ Pr
(
ηpost |= JbK

)
7p for S1;S2 ∗

Example 8.8
Let program statement S = S1;S2 with:

S1: x := 0 [p·(1-p)] x := 1;
S2: y := 4;

Let b be x = 0. We observe that Pr
(
ηS1
post |= JbK

)
= p · (1 − p), which is not

monotone. Furthermore, S2 does not change x, we observe the following:

� ∂
∂pPr

(
ηS2
post |= JbK

)
= 0.

� As the probability that η{S1} |= JbK is less than 1: Pr
(
ηS2
post |= JbK

)
< 1.

By Theorem 8.20 we obtain: Pr
(
ηpost |= JbK

)
7p. ∗

Proof of Theorem 8.20
Let Pr

(
ηS1
post |= JbK

)
= f and Pr

(
ηS2
post |= JbK

)
= h. As η |= J¬bK, the associated

process is equivalent to uf? : uh. Clearly, is equivalent to ug, with g = 1,
and ∂

∂pg = 0.

The results now follow directly from Theorem 6.5 Cases 3 and 1. ∗

Chapter 9

Case Studies

In this chapter, we apply the results from Chapter 8 on several existing bench-
marks for parameter synthesis from the literature.

An overview of the results for the benchmarks is provided in Table 9.1. The
column Case Study denotes which case study we consider. The column Type
indicates whether the underlying pMC of the case study is acyclic or cyclic.
The column Parameters denotes how many parameters occur in the case study,
and the column Monotone parameters denotes how many of the parameters are
monotone. The column Successfully found indicates how many of the monotone
parameters we found by applying the results of Chapter 8.

For each of the case studies we elaborate on the results in separate sections be-
low. In each section, we first describe the case study and provide their modeling
by a pWhile program. Subsequently, we show how monotone substructures oc-
cur and how we apply the theorems of Chapter 8.

Notation. We let Si−j denote the statements of a program on Lines i-j.

9.1 BRP

The bounded retransmission protocol [4] (BRP) aims to send a file in a reliable
manner. The sender and receiver communicate over two lossy unidirectional
channels. Parameters p and q denote their reliability. The first channel (reli-
ability p) is used for communication from the sender to the receiver and the
second for communication from the receiver to the sender. The file is divided
into N chunks. Iteratively, the sender sends a chunk and waits for an acknowl-
edgement. If the acknowledgement is not received, then the sender re-transmits
the chunk. For each chunk the number of retransmissions of the chunk and
acknowledgements at most MAX times. So, for each chunk the following routine

76

Case Studies 77

C
a
se

st
u
d
y

T
y
p
e

P
a
r
a
m

e
te

r
s

M
o
n
o
to

n
e

p
a
r
a
m

e
te

r
s

S
u
c
c
e
ss
fu

ll
y

fo
u
n
d

R
e
m

a
r
k
s

B
R
P

a
cy

cl
ic

2
2

2
T
h
eo

re
m
s
C
h
a
p
te
r
8

Z
er
o
co

n
f

cy
cl
ic

2
2

2
T
h
eo

re
m
s
C
h
a
p
te
r
8

L
o
a
d
-u
n
lo
a
d

a
cy

cl
ic

2
2

2
T
h
eo

re
m
s
C
h
a
p
te
r
8

G
ri
d
s
9
.4
.1

a
cy

cl
ic

2
1

1
T
h
eo

re
m
s

C
h
a
p
te
r

8
,
g
iv
en

a
ss
u
m
p
-

ti
o
n
s
a
s
in

S
ec
ti
o
n
9
.4
.1

G
ri
d
s
9
.4
.2

cy
cl
ic

2
1

1
T
h
eo

re
m
s

C
h
a
p
te
r

8
,
g
iv
en

a
ss
u
m
p
-

ti
o
n
s
a
s
in

S
ec
ti
o
n
9
.4
.2

C
ro
w
d
s
[3
]

cy
cl
ic

2
2

0
T
h
eo

re
m
s
C
h
a
p
te
r
8

2
T
h
eo

re
m
s
C
h
a
p
te
r
6

C
ro
w
d
s
[2
]

cy
cl
ic

2
2

0
T
h
eo

re
m
s
C
h
a
p
te
r
8

2
T
h
eo

re
m
s
C
h
a
p
te
r
6

N
A
N
D

M
u
lt
ip
le
x
in
g

a
cy

cl
ic

2
2

0
A
ss
o
ci
a
te
d

p
W
h
i
l
e

p
ro
g
ra
m

is
to
o

la
rg
e
to

a
n
a
ly
ze

T
a
b

le
9
.1

:
R

es
u
lt

s
fo

r
th

e
ca

se
st

u
d

ie
s

78 9.1. BRP

is executed, as long as the retransmission bound has not been reached:

1. Send chunk

� With probability p, it is received correctly, we move to step 2.

� With probability 1− p, sending failed, and we need to repeat step 1.

2. Send acknowledge message

� With probability q, the acknowledgment is received correctly, we move
to the next chunk.

� With probability 1−q, the acknowledgment failed, and we need to repeat
step 1.

The goal is to eventually reach the state in which all chunks are sent and ac-
knowledged successfully.

The pWhile program of BRP (ProgBRP) is given in Listing 9.1. At Lines 1
and 2, the program variables are assigned their initial value. Then a while
loop (Lines 3-13) is entered. In this while loop, first the chunk is sent, and
then, if the chunk is received properly (first = 1), an acknowledgement mes-
sage is sent. When this acknowledgement is received by the original sender
(second = 1), the number of sent chunks is increased, and the counter is re-
set. We observe that the while loop induces an upper bound of N on sent
(Observation 1). Furthermore, we observe that parametric changes occur at
Lines 4 and 6 (Observation 2). Also, we observe that in the body of the while
loop, count is either increased, or reset to 0 (Observation 3).

Finally, at Line 14, if sent = N , then state is set to 1. sent = N implies
that all chunks have been sent successfully. By Observation 1, we obtain that
sent <= N . Therefore, at Line 14 sent is at most N , thus sent = N is
equivalent to sent >= N (Observation 4).

Figure 9.1 on the facing page shows the pMC of BRP for N = 2 and MAX = 2.

Remark. The states with only one outgoing edge with probability 1 can be
eliminated. However, to make the model more understandable we keep these
states.

We first present the results and formally deduce them afterwards.

Results. Let η be the variable valuation before executing the given program
statement. We obtain the following results for the statements of ProgBRP in
Listing 9.1:

1. Statements on Lines 1 and 2:

Pr
(
η1−2post |= Jsent>=NK

)
↑ and Pr

(
η1−2post |= Jsent>=NK

)
↓ (1)

Case Studies 79

1 sent := 0;
2 count := 0;
3 while count < MAX ∧ sent < N do
4 first := 1 [p] first := 0;
5 if first = 1 then
6 second := 1 [q] second := 0;
7 if second = 1 then
8 sent := sent + 1;
9 count := 0;

10 else
11 count := count + 1;
12 else
13 count := count + 1;
14 state := sent = N;
15 return;

Listing 9.1: ProgBRP, BRP in pWhile

s0

1st

failed
send

1st

failed
ack

s1

s2

2nd

failed
send

2nd

failed
ack

s3 1st succesfull
transmission

p

1-p 1-q

q

1
1

p q

1-p 1-q

1
1

s4

1st

failed
send

1st

failed
ack

s5

s6

2nd

failed
send

2nd

failed
ack

s7 2nd succesfull
transmission

1

p

q

1-p 1-q

1
1

1

p q

1-p 1-q

1
1

Figure 9.1: pMC of brp for N = 2 and MAX = 2

80 9.1. BRP

2. Statements on Lines 3-13:

� We obtain for the body of the while loop for count:

Pr
(
η4−13pre (count) + 1 = η4−13post (count)

)
↓

.

� We obtain for the body of the while loop for sent:

Pr
(
η4−13post |= Jsent<NK

)
� We obtain for the while loop:

Pr
(
η3−13post |= Jsent<NK

)
↓ (2)

3. Statement on Line 14
We obtain:

Pr
(
η14post |= J¬(sent<N)K

)
= solBRP↑ (3)

Combining (1) and (2), we obtain through Theorem 8.19:

Pr
(
η1−13post |= Jsent<NK

)
↓

.

By Proposition 8.8, we obtain:

Pr
(
η1−13post |= Jsent>=NK

)
(η)↑

.

From this result combined with (3) we obtain from Theorem 8.19: solBRP↑.

Deduction. The results are formally obtained in the following manner:

Notation. Let solBRP denote the probability of eventually reaching in the
associated pMC of BRP, and let:

� b be given by sent < N .

� b1 be given by first = 1.

� b2 be given by second = 1.

� b3 be given by sent↗.

� b4 be given by count = 0.

We obtain the following results for the statements of ProgBRP in Listing 9.1:

Case Studies 81

1. Statements on Lines 1 and 2:
By Proposition 8.14 we obtain:

Pr
(
η1post |= Jsent=0K

)
= 1 and Pr

(
η2post |= Jcount=0K

)
= 1

By Observation 2 we obtain through Corollary 8.12 and Proposition 8.10 and
Theorem 8.19, for Lines 1 and 2 that for all Boolean expressions b defined
above:

Pr
(
η1−2post |= JbK

)
↑ and Pr

(
η1−2post |= JbK

)
↓ (1)

2. Statements on Lines 3-13:
First of all, we obtain the following:

� For all Lines i ∈ [3, 13] except Lines 4 and 6, we obtain from Corol-
lary 8.12 and Proposition 8.10 ∀∗ ∈ {b, b1, b2, b3, b4}:

�Pr
(
ηipost |= J∗K

)
↑

Pr
(
ηipost |= J∗K

)
↓

�Pr
(
ηipre(count) + 1 = ηipost(count)

)
↑

Pr
(
ηipre(count) + 1 = ηipost(count)

)
↓

(9.1)

� Line 4, Corrolary 8.12, Proposition 8.10, Proposition 8.14, and Theo-
rem 8.15:

�Pr
(
η4post |= Jb1K

)
↑p

�Pr
(
η4post |= Jb1K

)
↑q

Pr
(
η4post |= Jb1K

)
↓q

�Pr
(
η4pre(count) + 1 = η4post(count)

)
↑

Pr
(
η4pre(count) + 1 = η4post(count)

)
↓

� ∀∗ ∈ {b, b2, b3, b4}: Pr
(
η4post |= J∗K

)
↑ and Pr

(
η4post |= J∗K

)
↓

(9.2)

� Line 6, Corollary 8.12, Proposition 8.10, Proposition 8.14, and Theo-
rem 8.15:

�Pr
(
η6post |= Jb2K

)
↑q

�Pr
(
η6post |= Jb2K

)
↑p

Pr
(
η6post |= Jb2K

)
↓p

�Pr
(
η6pre(count) + 1 = η6post(count)

)
↑

Pr
(
η6pre(count) + 1 = η6post(count)

)
↓

� ∀∗ ∈ {b, b1, b3, b4}: Pr
(
η6post |= J∗K

)
↑ and Pr

(
η6post |= J∗K

)
↓

(9.3)

From these results we obtain:

82 9.1. BRP

� Corollary 8.16, Theorem 8.19, (9.1), and (9.3):

� if Pr
(
η6−11post |= Jb2K

)
↑q, then Pr

(
η6−11post |= Jb3K

)
↑q

� if Pr
(
η6−11post |= Jb2K

)
↑p, then Pr

(
η6−11post |= Jb3K

)
↑p

if Pr
(
η6−11post |= Jb2K

)
↓p, then Pr

(
η6−11post |= Jb3K

)
↓p

(9.4)

� Corollary 8.16, Theorem 8.19, (9.1), (9.2), and (9.4):

� if Pr
(
η4−13post |= Jb1K

)
↑p, then Pr

(
η4−13post |= Jb3K

)
↑p

� if Pr
(
η4−13post |= Jb1K

)
↑q, then Pr

(
η4−13post |= Jb3K

)
↑q

(9.5)

� By Observation 4, Proposition 8.6 and Proposition 8.8 we obtain

if Pr
(
η4−13post |= Jb3K

)
↑, then Pr

(
η4−13post |= JbK

)
↓ (9.6)

By combining (9.1)-(9.6) we obtain through Theorem 8.19 for the body of
the while loop: Pr

(
η4−13post |= JbK

)
↓.

� Similar to (9.4) and (9.5), we obtain:

if Pr
(
η4−13post |= Jb1K

)
↑ and Pr

(
η4−13post |= Jb2K

)
↑

then Pr
(
η4−13post |= Jb4K

)
(η)↑

(9.7)

� By Observation 3 and Proposition 8.8, we obtain:

Pr
(
η4−13post |= Jb4K

)
(η)↑
⇐⇒ Pr

(
η4−13pre (count) + 1 = η4−13post (count)

)
↓ (9.8)

By combining (9.1)-(9.3), and (9.7) and (9.8) we obtain through Theo-
rem 8.19 for the body of the while loop:

Pr
(
η4−13pre (count) + 1 = η4−13post (count)

)
(η)↓

Let Pr
(
η4−13post |= JbK

)
= f and Pr

(
η4−13pre (count) + 1 = η4−13post (count)

)
= g.

By Theorem 8.17 Case 3, it follows:

Pr
(
η3−13post |= JbK

)
↓ (2)

3. Statement on Line 14
We obtain from Observation 4 and Corollary 8.16:

Pr
(
η14post |= J¬bK

)
= solBRP(η)↑ (3)

Combining (1) and (2), we obtain through Theorem 8.19: Pr
(
η1−13post |= JbK

)
↓.

By Proposition 8.8, we obtain for Lines 1-13:

Pr
(
η1−13post |= J¬bK

)
↑ (9.9)

By Theorem 8.19 and (3) and (9.9) we obtain: solBRP(η)↑.

Case Studies 83

1 free := 1 [q] free := 0;
2 count := 0;
3 while count < MAX ∧ free = 0 do
4 answerReceived := 0 [p] answerReceived := 1;
5 if answerReceived = 1 then
6 free := 1 [q] free := 0;
7 count := 0;
8 else
9 count := count + 1;

10 state := free = 1;
11 return;

Listing 9.2: Zeroconf in pWhile

9.2 Zeroconf

Zeroconf [24] allows the installation and operation of a network. When a new
host joins the network, it randomly selects an address. There are K possible
addresses, so the possibility of a collision in a network in which m hosts already
joined the network is q(= m

K). To make sure the new host uses a free address
the following protocol is used to detect a collision:

1. The host picks randomly an address and asks the other host if this address
is in use:

� With probability q this is a free address

� With probability 1− q a collision occurs

2. If a collision occurs the host tries to detect this by waiting for an answer:

� With probability p the host get no answer, in which he repeats his ques-
tion and goes to step 2.

� With probability 1− p the host get the answer that the address is in use
and restarts from step 1.

If after MAX tries the host got no answer, then the host will erroneously consider
the chosen address as free. Figure 9.2 on the next page shows the associated
pMC for MAX = 2.

The pWhile program of Zeroconf is denoted in Listing 9.2.

Observations. As for BRP, we make some observations:

1. The only parametric changes occur at Lines 1, 4 and 6.

2. free is either 0 or 1.

84 9.3. Load-unload

q0

q1

q2

1-q

q

p

1-p

p

1-p

Figure 9.2: pMC of Zeroconf with MAX = 2

Notation. Let solZeroconf denote the probability of eventually reaching in the
associated pMC Zeroconf, and we let:

� b be given by free = 0.

Results. We obtain the following for Line 1 by Propositions 8.4, and 8.10,
Theorem 8.15:

� Pr
(
η1post |= JbK

)
↑p, Pr

(
η1post |= JbK

)
↓p and Pr

(
η1post |= JbK

)
↑q

All other results are deduced in a similar manner as for BRP. However, for
parameter q, we use Theorem 8.17 Case 1 instead of Theorem 8.17 Case 3.
Finally, we obtain solZeroconf↓p and solZeroconf↑q.

9.3 Load-unload

In the Load-unload case study, the first goal is to fully load a program, the
second goal is to totally unload it after it was fully loaded. In the first step, the
probability to load is given by p and to unload by 1− p, in the second step this
is denoted by q and 1 − q, respectively. The pWhile program of Load-unload
is denoted in Listing 9.3 on the next page we observe that there are two while
loops, in which the parametric state changes occur.

Notation. Let solLoad-unload denote the probability of eventually reaching in
the associated pMC of Load-unload.

We obtain solLoad-unload↑p and solLoad-unload↓q is a similar manner as for BRP
and Zeroconf.

Case Studies 85

1 loaded:=0;
2 counter:=1;
3 while counter < k ∧ loaded < N do
4 counter := counter + 1;
5 loaded := loaded + 1 [p] loaded := loaded - 1;
6 if loaded < 0 then
7 loaded := 0;
8 else
9 skip;

10 if loaded < N then
11 full = 0;
12 else
13 full = 1;
14 while counter < k ∧ loaded > 0 do
15 counter := counter + 1;
16 loaded := loaded + 1 [q] loaded := loaded - 1;
17 if loaded > N then
18 loaded := N;
19 else
20 skip;
21 state := loaded = 0 ∧ full = 1;
22 return;

Listing 9.3: Load and unload in at most k steps

86 9.4. Grids

9.4 Grids

In the Grids case study there is a N ×M grid. Let (0, 0) be the downleft corner
of the grid, and let pu, pr, pd and pl be the probabilities to move upwards, right,
downwards and left, respectively. Clearly, the sum of these probabilities must
be 1. In pWhile programs on Grids the initial position is given by (x, y).

Assumptions. We assume the grid is bounded by walls, therefore falling off
the grid is not possible. When we are at the border of the grid, and make a
movement out of the grid, we remain in our original position. Furthermore, we
assume:

� the initial value of x is X,

� the initial value of y is Y,

� pr + pu = q,

� pl + pd = 1− q, and

� pr
pr+pu

= pl
pl+pd

= r.

We define two possible goals for a pWhile program on Grids.

1. Reach (a, b) in at most k steps

2. Probability of reaching (a, b) before reaching (c, d)

For both goals we show how monotonicity is obtained from the structure of the
pWhile program.

9.4.1 Reach a goal in at most k steps

The goal of the program is to reach a given goal state (a, b) in at most k steps.
Listing 9.4 shows the associated pWhile program.

Results. We observe that, x is bounded on [0, N] and y is bounded on [0,M].
Analogous to BRP and Zeroconf we obtain:

� If (a, b) is given by (N,M), then sol↑q.

� If (a, b) is given by (0, 0), then sol↓q.

If we need to move in both the x and the y direction to reach a goal state, then
we obtain by analyzing the rational function for Lines 4-24: Pr

(
η4−24post |= JbK

)
7r.

Furthermore,

� Pr
(
η1−3post |= JbK

)
=

{
0 if η1−2post 6|= JbK
1 otherwise

, and

Case Studies 87

1 x := X; // initial x
2 y := Y; // initial y
3 counter := 0;
4 while counter <= k ∧ x = x_goal ∧ y = y_goal do
5 counter := counter + 1;
6 change_x := 1 [r] change_x := 0;
7 if change_x = 1 then
8 x := x + 1 [q] x := x - 1;
9 if x < 0 then

10 x := 0;
11 else
12 if x > N then
13 x := N;
14 else
15 skip;
16 else
17 y := y + 1 [q] y := y - 1;
18 if y < 0 then
19 y := 0;
20 else
21 if y > M then
22 y := M;
23 else
24 skip;
25 state := x = x_goal ∧ y = y_goal;
26 return;

Listing 9.4: Grid in which the goal is to reach a given state in at most k steps.

88 9.4. Grids

� Pr
(
η25−26post |= JbK

)
=

{
0 if η1−2post 6|= JbK
1 otherwise

By Theorem 8.20, we obtain sol7r.

Remark. When the goal state is not on either (N,M) or (0, 0), we cannot
obtain results from the theorems of Chapter 8. If the goal is either (0,M) or
(N, 0), then we obtain sol7q.

9.4.2 Probability of reaching good before reaching bad

The goal of the program is to reach a good state (a, b), before reaching a bad
state (c, d). We will only consider the case in which the good state is (N,M).
Listing 9.5 shows the associated pWhile program.

Results. By analyzing the rational function we obtain that if either c < X ≤ a
or d < Y ≤ b does not hold, then the probability of eventually reaching (a, b) 7q.
Note that there is no counter in the while loop. This is equivalent to a while
loop in which η(counter) < MAX and counter remains the same in all iterations
of the while loop (ηi(counter) = ηi−1(counter)).

In the same manner as for BRP and Zeroconf, we obtain that, if the good state
(a, b) is given by (N,M), and c < X ≤ a, and d < Y ≤ b, then sol↑q. Note that
we use Theorem 8.18 instead of Theorem 8.17.

In a similar manner as in Section 9.4.1, we obtain that if we need to move in
both the x and the y direction to reach a goal state, then sol7r.

Case Studies 89

1 x := X; // initial x
2 y := Y; // initial y
3
4 if x = a ∧ y = b then
5 finish := 1;
6 if x = c ∧ y = d then
7 finish := 1;
8 else
9 finish := 0;

10
11 while finish = 0 do
12 change_x := 1 [r] change_x := 0;
13 if change_x = 1 then
14 x := x + 1 [q] x := x - 1;
15 if x < 0 then
16 x := 0;
17 else
18 if x > N then
19 x := N;
20 else
21 skip;
22 else
23 y := y + 1 [q] y := y - 1;
24 if y < 0 then
25 y := 0;
26 else
27 if y > M then
28 y := M;
29 else
30 skip;
31 if x = a ∧ y = b then
32 finish := 1;
33
34 if x = c ∧ y = d then
35 finish := 1;
36 else
37 finish := 0;
38
39 state := x = c ∧ y = d;
40 return;

Listing 9.5: Grid in which the goal is to reach a good state before a bad state.

90 9.5. Crowds

9.5 Crowds

The goal of the Crowds protocol [3] is to protect the anonymity of users. There
is an initial sender i, and a final receiver r. Furthermore, there are N honest
members and M bad members. When i is seen MAX times by the same bad
member, i is not anonymous anymore. To protect the anonymity of sender i
the Crowds protocol works in the following manner:

1. i chooses a random Crowds member c (possibly itself) and sends the message
to c

2. c flips a biased coin and handles in the following manner:

� With probability p, c executes the Crowds protocol.

� With probability 1− p, c directly delivers the message to r.

The protocol is run each time the initial sender wants to establish a connection
to a webserver. We let R be the number of times initial sender i wants to
connect to the webserver.

The probability of sending the message to a bad member is q = M
N+M which

depends on both N and M . We consider q as a free variable. The goal of
this protocol is to get R sessions with the webserver without a bad member
identifying you.

The pWhile program of Crowds is denoted in Listing 9.6, in the program
we assume that bad members share their information on identified senders.
Therefore, bad keeps track of the number of times any badMember sees the
initial sender. Furthermore, we stay in the while loop, as long as both the
maximal number of identifications, and the total number of connections is not
yet reached.

Notation. Let solCrowds denote the probability of eventually reaching in the
associated pMC of Crowds, and let:

� b1 be given by bad < MAX

� b2 be given by connections < R

� b3 be given by connections >= R

� b4 be given by initial = 1

9.5.1 Using Theory of Chapter 8

Through the theorems of Chapter 8 we cannot find monotonicity in the param-
eters of Crowds. First of all, Pr

(
η4−14post |= Jb4K

)
↑p, so Pr

(
η4−14post |= Jb1K

)
(η)↓p.

At the same time Pr
(
η4−14post |= Jb2K

)
(η)↑p, so both Theorems 8.17 and 8.18 are

not applicable.

Case Studies 91

bad := 0;
connections := 0;
initial := 1;
while bad < MAX ∧ connections < R do

badMember := 1 [q] badMember := 0;
if badMember = 1 ∧ initial = 1 then

bad := bad + 1;

deliver := 0 [p] deliver := 1;
if deliver = 1 then

initial := 1;
connections := connections + 1;

else
initial := 1 [1

N+M] initial := 0;
state := bad < MAX ∧ connections >= R;
return;

Listing 9.6: Crowds [3] in pWhile

For q we obtain in a similar manner as for BRP and Zeroconf:

Pr
(
η15post |= Jb1K

)
↓q and Pr

(
η4−14post |= Jb2K

)
↓q

However, for Line 15, we cannot obtain monotonicity in q.

9.5.2 Using Theory of Chapter 6

As we cannot obtain monotonicity through the theorems of Chapter 8. We
try to obtain the monotonicity from the structure of the pMC given goals
connections ≥ R and bad < MAX. Figure 9.3, shows the sub-pMC of the
pMC of Crowds (MCrowds). MCrowds is build from this sub-pMC. Table 9.2
shows the values of the different program variables, ⊥ implies that initial is
either 0 or 1.

We observe that:

� If in state si bad ≥ MAX, then the si equals .

� If in state si bad < MAX and connections >= R, then si equals .

As long as s3, s6 and s7 do not equal to either or , the state is replaced by
the pMC of Figure 9.3. Eventually, s6 and s3 equal and s7 equals .

First of all, we look at Pr(♦(connections >= R)). Trough Theorem 6.3, we
obtain that Pr(♦(connections >= R))↓p, Pr(♦connections >= R)↓q.

Secondly, we look at Pr(♦(bad < MAX)). Trough Theorem 6.3, we obtain that

92 9.5. Crowds

state initial connections bad

s0 1 a1 a2

s1 ⊥ a1 a2 + 1

s2 ⊥ a1 a2 + 1

s3 1 a1 a2 + 1

s4 ⊥ a1 a2

s5 ⊥ a1 a2

s6 1 a1 + 1 a2 + 1

s7 1 a1 + 1 a2

Table 9.2: Values of the program variables at different states

s0

s4 s5

s7

s6

s1 s2 s3
q

1− q

p

1− p

p

1− p

1
N+M

N+M−1
N+M

1
N+M

N+M−1
N+M

Figure 9.3: Part of the pMC of Crowds [2]

Case Studies 93

bad := 0 [f] bad := MAX;
connections := 0 [g] connections := R;
state := bad < MAX ∧ connections >= R;
return;

Listing 9.7: Crowds [3] in pWhile after looking at the associated pMC

Pr(♦(bad < MAX))↓p, Pr(♦(bad < MAX))↓q.

Let:

� f be Pr(♦(bad < MAX)) in MCrowds, and

� g be Pr(♦(connections >= R)) in MCrowds

By construction of MCrowds and Corollary 6.4, we obtain f↓ and g↓. We now
obtain the program in Listing 9.7, which is equivalent to the program in List-
ing 9.6. For this program we obtain solCrowds↓.

9.5.3 Adaptation of crowds

Shmatikov [2] changes Crowds by letting a bad member deliver the message
directly, so the second step of the protocol is replaced by:

� if c is an honest member, then c flips a biased coin and then handles in the
following manner:

– With probability p, c executes the protocol.

– With probability 1− p, c directly delivers the message to r.

� if c is a bad member, then c directly delivers the message to r.

s0 s1

s4 s5

s7

s2
q

1− q

1

p

1− p

1
N+M

N+M−1
N+M

Figure 9.4: Part of the pMC of Crowds [3]

Figure 9.4 shows a part of the pMC of Crowds [2]. The difference between this

94 9.6. NAND Multiplexing

figure and Figure 9.3, is that from state s1 in Figure 9.4 a connection is created
directly. In a similar manner as for Crowds [3] we obtain through the theorems
of Chapter 6 monotonicity for parameter p and q.

9.6 NAND Multiplexing

The goal of NAND Multiplexing [25] is to construct a reliable computation from
unreliable devices. This is done by multiplexing through NAND gates. To trans-
form NAND Multiplexing into an pWhile program, we tried to transform its
PRISM model. However, we did not succeed as the program becomes too large
due to the case distinctions introduced by the NAND gate. Therefore, we have
not obtained for which parameters NAND Multiplexing is monotone. Further-
more, the pMC was too complex to analyze manually, as the identification of
the different building blocks was not clear.

Part IV

95

Chapter 10

Conclusion

10.1 Summary

This thesis presents a formal framework to deduce monotonicity of MCs. The
framework consists of two layers: the foundation, and the top-layer. The foun-
dation is described in Chapters 5 and 6. In Chapter 5, we describe the mapping
from a process in PA to a pMC. We use this mapping to describe pMCs in a more
consise manner. In Chapter 6, we provide theorems on monotone structures of
pMCs.

The top-layer consists of Chapters 7, 8 and 9. In Chapter 7, we provide the
mapping from a pWhile program to a process in PA. Chapter 8 provides the-
orems on monotone substructures in pWhile. Finally, Chapter 9 shows the
usability of the theorems for pWhile by applying them on case studies.

The case studies were originally described in the PRISM language, we rewrote
these into pWhile. For BRP, Zeroconf, Load-unload, and Grids, we success-
fully found monotonicity for all monotone parameters. For Crowds [3], we found
one monotone parameter by looking at the structure of its pWhile program.
When calculating the rational function, we could find both monotone parame-
ters. However, for the adaptation of Crowds [2] we could not find monotonicity
from the structure of its pWhile program. Again, by calculating the rational
function, we did obtain monotonicity. For NAND Multiplexing, we could not
find monotone parameters, as the transformation of NAND Multiplexing into
pWhile, yields into a large pWhile program, which was not easy to write
down.

96

Conclusion 97

10.2 Future work

As described above, we could not rewrite all case studies in pWhile. Further-
more, we have only shown that we can find monotonicity, but not what the
benefit of monotonicity is. Therefore, we see the following directions for future
work:

Extend The set of monotone structures in pWhile could be extended, such
that e.g. monotonicity in Crowds could be obtained.

Model language Most models of case studies are written in the input language
of PRISM. The framework could be extended to a broader class of languages.

Automatize Whether or not a model is monotone in some of its parameters
is obtained manually. We could try to automatically obtain monotonicity
from the input model.

Exploit The monotonicity could be exploit in e.g. parameter lifting in PROPh-
ESY.

Bibliography

[1] R. Dawkins, The blind Watchmaker. W W Norton; American ed. edition,
1986.

[2] V. Shmatikov, “Probabilistic analysis of an anonymity system,” J. Comput.
Secur., vol. 12, no. 3,4, pp. 355–377, May 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1297352.1297359

[3] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,”
ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, Nov. 1998. [Online].
Available: http://doi.acm.org/10.1145/290163.290168

[4] L. Helmink, M. Sellink, and F. Vaandrager, “Proof-checking a data link pro-
tocol,” in Proc. International Workshop on Types for Proofs and Pro-
grams (TYPES’93), ser. LNCS, H. Barendregt and T. Nipkow, Eds., vol. 806.
Springer, Berlin, Heidelberg, 1994, pp. 127–165.

[5] M. Češka, F. Dannenberg, M. Kwiatkowska, and N. Paoletti, “Precise parameter
synthesis for stochastic biochemical systems,” in Computational Methods in
Systems Biology (CMSB), ser. LNCS, P. Mendes, J. Dada, and K. Smallbone,
Eds., vol. 8859. Springer, Cham, 2014, pp. 86–98.

[6] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press,
2008.

[7] E. Bartocci, R. Grosu, P. Katsaros, C. Ramakrishnan, and S. Smolka, “Model
repair for probabilistic systems,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), ser.
LNCS, P. Abdulla and K. Leino, Eds., vol. 6605. Springer, Berlin, Heidelberg,
2011, pp. 326–340.

[8] G. Su and D. S. Rosenblum, “Asymptotic bounds for quantitative verification
of perturbed probabilistic systems,” in International Conference on Formal
Engineering Methods (ICFEM), ser. LNCS, L. Groves and J. Sun, Eds., vol.
8144. Springer, Berlin, Heidelberg, 2013, pp. 297–312.

[9] C. Daws, “Symbolic and parametric model checking of discrete-time markov
chains.” in Theoretical Aspects of Computing (ICTAC), ser. LNCS, Z. Liu
and K. Araki, Eds., vol. 3407. Springer, Berlin, Heidelberg, 2004, pp. 280–294.

98

http://dl.acm.org/citation.cfm?id=1297352.1297359
http://doi.acm.org/10.1145/290163.290168

BIBLIOGRAPHY 99

[10] E. M. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability for para-
metric markov models,” International Journal on Software Tools for Tech-
nology Transfer, vol. 13, no. 1, pp. 3–19, 2011.

[11] T. Quatmann, C. Dehnert, N. Jansen, S. Junges, and J.-P. Katoen, “Parameter
synthesis for markov models: Faster than ever,” in International Symposium
on Automated Technology for Verification and Analysis (ATVA), ser.
LNCS, C. Artho, A. Legay, and D. Peled, Eds., vol. 9938. Springer, Cham,
2016, pp. 50–67.

[12] J. Barnat, L. Brim, A. Krejci, A. Streck, D. Safranek, M. Vejnar, and T. Ve-
jpustek, “On parameter synthesis by parallel model checking,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 9, no. 3,
pp. 693–705, May 2012.

[13] E. M. Hahn, Y. Li, S. Schewe, A. Turrini, and L. Zhang, “Iscasmc: A web-
based probabilistic model checker,” in International Symposium on Formal
Methods (FM), ser. LNCS, C. Jones, P. Pihlajasaari, and J. Sun, Eds., vol.
8442. Springer, Cham, 2014, pp. 312–317.

[14] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen, “The ins and outs of the probabilistic model checker mrmc,”
Perform. Eval., vol. 68, no. 2, pp. 90–104, Feb. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.peva.2010.04.001

[15] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk,
“Ltsmin: high-performance language-independent model checking,” in Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), ser. LNCS, C. Baier and C. Tinelli, Eds., vol.
9035. Springer, Berlin, Heidelberg, 2015, pp. 692–707.

[16] M. Timmer, “Scoop: A tool for symbolic optimisations of probabilistic
processes,” in Proceedings of the 2011 Eighth International Conference
on Quantitative Evaluation of SysTems, ser. QEST ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 149–150. [Online]. Available:
https://doi.org/10.1109/QEST.2011.27

[17] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming: A mod-
ern probabilistic model checker,” in International Conference on Computer
Aided Verification (CAV), ser. LNCS, R. Majumdar and V. Kunc̆ak, Eds., vol.
10427. Springer, Cham, Jul. 2017, pp. 592–600.

[18] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model checker for hybrid
systems,” in International Conference on Computer Aided Verification
(CAV), ser. LNCS, O. Grumberg, Ed. Springer, Berlin, Heidelberg, 1997, pp.
460–463.

[19] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of proba-
bilistic real-time systems,” in International Conference on Computer Aided
Verification (CAV), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol.
6806. Springer, Berlin, Heidelberg, 2011, pp. 585–591.

http://dx.doi.org/10.1016/j.peva.2010.04.001
https://doi.org/10.1109/QEST.2011.27

100 Bibliography

[20] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “Param: A model checker
for parametric markov models,” in International Conference on Computer
Aided Verification (CAV), ser. LNCS, T. Touili, B. Cook, and P. Jackson,
Eds., vol. 6174. Springer, Berlin, Heidelberg, 2010, pp. 660–664.

[21] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P.
Katoen, and E. Ábrahám, “Prophesy: A probabilistic parameter synthesis tool,”
in International Conference on Computer Aided Verification (CAV), ser.
LNCS, D. Kroening and C. Păsăreanu, Eds., vol. 9206. Springer, Cham, 2015,
pp. 214–231.

[22] N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Ábrahám, J.-P. Katoen, and
B. Becker, “Accelerating parametric probabilistic verification,” in International
Conference on Quantitative Evaluation of Systems (QEST), ser. LNCS,
G. Norman and W. Sanders, Eds., vol. 8657. Springer, Cham, 2014, pp. 404–420.

[23] B. Jonsson, W. Yi, and K. G. Larsen, “Probabilistic extensions of process alge-
bras,” in Handbook of Process Algebra, J. A. Bergstra, A. Ponse, and S. A.
Smolka, Eds. Elsevier, 2001, ch. 11, pp. 685–710.

[24] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, “Performance
analysis of probabilistic timed automata using digital clocks,” Formal Methods
in System Design, vol. 29, no. 1, pp. 33–78, Jul 2006. [Online]. Available:
https://doi.org/10.1007/s10703-006-0005-2

[25] J. Han and P. Jonker, “A system architecture solution for unreliable nanoelec-
tronic devices,” IEEE Transactions on Nanotechnology, vol. 1, no. 4, pp.
201–208, Dec 2002.

https://doi.org/10.1007/s10703-006-0005-2

Appendix: Proof of
Lemma 6.9

In this Appendix, we provide the technical proof of Lemma 6.9.

Lemma 6.9
Let M = uf?(lif?)m : . For any m ∈ N:

f↑p =⇒ solM↑p ∗

Proof of Lemma 6.9
For M in Lemma 6.9 we obtain the following functions:

solM(m) = 1− (1− f)− f · (f · (1− f))m

= f − f · (f · (1− f))m

∂

∂p
solM(m) =

∂

∂p
f · (1− (f · (1− f))m − f ·m · (f(1− f))m−1 · (1− 2f))

=
∂

∂p
f · (1− ((f · (1− f))m−1(f · (1− f) + f ·m · (1− 2f)))

We want to prove: f↑p =⇒ solM↑p. We make the following observations:

�
∂
∂p

solM ≥ 0⇐⇒ (f · (1− f))m−1 · (f · (1− f) + (1− 2f) ·m · f) ≤ 1

We know ∂
∂p

f ≥ 0. Therefore we obtain:

∂

∂p
solM ≥ 0

↔ (1− ((f · (1− f))m−1(f · (1− f) + f ·m · (1− 2f))) ≥ 0

↔ ((f · (1− f))m−1(f · (1− f) + f ·m · (1− 2f)) ≤ 1

� Consider two cases: f ∈ [0, 1
2
] and f ∈ (1

2
, 1]

As f ∈ [0, 1] either 1−2f < 0 or 1−2f ≥ 0, therefore either f ∈ (1
2
, 1] or f ∈ [0, 1

2
].

By these observations we obtain that for both f ∈ [0, 1
2
] and f ∈ (1

2
, 1] we need to

prove:
(f · (1− f))m−1 · (f · (1− f) + (1− 2f) ·m · f) ≤ 1 (1)

101

102 Bibliography

1) f ∈ (1
2
, 1]

We want to show Equation (1) holds. We know:

� f ∈ (1
2
, 1] so 0 ≤ f(1− f) < 1

4
,

� (1− 2f) < 0, and

� m ≥ 0.

Therefore:

(f · (1− f))m−1 · (f · (1− f) + (1− 2f) ·m · f) ≤ (f · (1− f))m−1 · f · (1− f)

= (f · (1− f))m

Furthermore, 0 ≤ f(1− f) < 1
4
, we obtain:

(f · (1− f))m ≤ 1

4

m

≤ 1.

Thus for any m ∈ N, Equation (1) holds.

2) f ∈ [0, 1
2
]

We want to show Equation (1) holds. The proof is by induction on the number m
of nested lif .

� m = 0
(f · (1− f))0−1 · (f · (1− f) + (1− 2f) · 0 · f) = 1

� m = 1

(f · (1− f))1−1 · (f · (1− f) + (1− 2f) · 1 · f)

= f · ((1− f) + (1− 2f)) < 1 as f ∈ [0,
1

2
]

� m > 1
Recall we need to show:

(f · (1− f))m−1 · (f · (1− f) + (1− 2f) ·m · f) ≤ 1

We assume that the lemma is true for some fixed m = k ≥ 1 solM↑p, so

(f · (1− f))k−1 · (f · (1− f) + (1− 2f) · k · f) ≤ 1 (IH)

We want to show for m = k + 1: solM↑p, so:

(f · (1− f))k · (f · (1− f) + (1− 2f) · (k + 1) · f) ≤ 1

Because of (IH) it is sufficient to show:

(f · (1− f))k · (f · (1− f) + (1− 2f) · (k + 1) · f)

≤ (f · (1− f))k−1 · (f · (1− f) + (1− 2f) · k · f)

Dividing both sides by (f · (1− f))k−1 gives:

(f · (1− f)) · (f · (1− f) + (1− 2f) · (k + 1) · f)

≤ f · (1− f) + (1− 2f) · k · f

BIBLIOGRAPHY 103

Dividing both sides by f gives:

f · (1− f) · ((1− f) + (1− 2f) · (k + 1))

≤ (1− f) + (1− 2f) · k

As f ∈ [0, 1
2
], f · (1− f) is at most 1

4
:

1

4
· ((1− f) + (1− 2f) · (k + 1)) ≤ (1− f) + (1− 2f) · k

Clearly, 1
4
· (1− f) ≤ (1− f) when f ∈ [0, 1

2
]. Therefore, it suffices to show:

1

4
· (1− 2f) · (k + 1) ≤ (1− 2f) · k

1

4
· (k + 1) ≤ k, since (1− 2f) ≥ 0

1

4
≤ 3

4
k

Which holds as k ≥ 1.

We obtain for f ∈ [0, 1
2
]:

� For m = 0 Lemma 6.9 holds.

� For m = 1 and m = k and m = k + 1 Lemma 6.9 holds, so by induction on m,
Lemma 6.9 holds for any m ∈ N+.

So for f ∈ [0, 1
2

Lemma 6.9 holds for any m ∈ N.

By Cases 1 and 2 we obtain Lemma 6.9 holds for any m ∈ N. ∗

	Acknowledgements
	Part I Background
	Introduction
	Motivation
	Problem statement

	Contribution
	Structure

	Preliminaries
	Markov Chains
	Markov Decision Process
	Parameter Lifting
	Functions
	While Language

	Related Work
	Parameter Synthesis
	Tools for probabilistic model checking

	Problem Description and Approach
	Problem Description
	Formalisation of the problems
	Observations
	Problem statement

	Approach

	Part II Framework: Foundation
	Mapping process algebra to pMC
	Process algebra
	From process to pMC
	Building Blocks
	Cycles

	Monotonicity in pMCs
	Acyclic composition
	General Composition
	Composition of building blocks with the same function
	Composition of building blocks with different functions

	Cyclic composition
	Monotonicity and turning points

	Part III Framework: Application
	Mapping pWhile to process algebra
	Restrictions on pWhile
	Probabilistic While language and PA
	Reducing the process of a program
	Examples on loops

	Equivalence probabilistic choice and if statement

	Monotonic pWhile programs
	General Considerations
	Boolean expressions
	Program statements
	Empty statement and variable assignment
	Probabilistic choice and if statement
	While loops
	Sequential composition

	Case Studies
	BRP
	Zeroconf
	Load-unload
	Grids
	Reach a goal in at most k steps
	Probability of reaching good before reaching bad

	Crowds
	Using Theory of Chapter 8
	Using Theory of Chapter 6
	Adaptation of crowds

	NAND Multiplexing

	Part IV
	Conclusion
	Summary
	Future work

	Bibliography
	Appendix: Proof of Lemma 6.9

