Test automation in the alpha test of wafer scanners

Ivo de Jong
Roel Boumen
Asia van de Mortel-Fronczak
Koos Rooda
Contents

- Integration and testing at ASML
- The impact of test automation on time-to-market
- The method explained
 - System under test
 - Test process
 - Test sequence
 - Stop criteria
- Case: A test phase in the alpha test
- Results
- Conclusions
Integration and testing at ASML

- Tight specification
 - Many components (1000+)
 - Multi disciplinary components
 - Incomplete designs
- Time-to-market
 - Concurrent engineering
 - Incomplete test phases
- Problem characteristics
 - Large integration and test plans
 - Much rework while testing
The impact of test automation on time-to-market

- **Assumptions**
 - Test automation reduces individual test case durations
 - Other benefits of test automation not taken into account

- **Method**
 1. Model the system under test
 2. Determine the test process configuration
 3. Select a test sequence
 4. Determine the stop criterion
 5. Simulate the test execution
 6. Analyze the results
 Time, cost and quality (remaining risk)
The system under test: an example

- Possible inputs
 - FMEA/FMECA
 - Existing test sets
 - Known faulty components
 - Requirements
 - Operational profiles

<table>
<thead>
<tr>
<th></th>
<th>S \ T</th>
<th>t0</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
<th>t5</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>tT</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Static analysis of the model

- Un-covered faults
- Hard to diagnose

Determine the next best test case
The test process

Possible configurations:
- Test first, fix later
- Test and fix parallel
Selecting a test sequence

- Offline sequencing techniques
 - Risk based test sequencing
 - Random test sequencing
 - Result based test sequencing
 - Takes the test results into account

- Online test sequencing
 - Exploratory testing
 - Online risk based test selection
Test stop criteria

- In real life approximated by
 - Trends of reported problems
 - Test progress
 - Intuition…

- Simulation based stop criteria
 - Test duration
 - Test cost
 - Quality of the system (remaining risk in the system)
Case: A test phase in the alpha test

- System test model:
 - Test process configuration: parallel
 - Test sequence: random
 - Test stop criterion: no remaining risk

- Simulate 2000 test executions

- Faulty systems are randomly selected using the test model

- Two experiments: with and without test automation
 - Measure: total test duration

- Development/integration
 - Alpha test
 - Beta test
 - Customer introduction

- 71 fault states
 - 54 test cases
 - Average P=25.6%
 - Average TC=2.0
Simulation results – No test automation applied

Average: 90 [h]
Min: 53 [h]
Max: 154 [h]
Simulation results – Test automation applied
Each test case is executed **100** times faster

Average: 40 [h]
Min: 6 [h]
Max: 84 [h]
Lot production case – results

The benefit of test automation for the lot production case

<table>
<thead>
<tr>
<th>Decrease in test case duration due to test automation</th>
<th>Total test duration relative to the initial (non-automated) case</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Main bottleneck: diagnose-fix-apply fix loop
Simulation results – Faster diagnose and fix loop
No test automation

\[t_{D+F+AF} = 1.5 \ [h] \]
\[t_{D+F+AF} = 3 \ [h] \]
\[t_{D+F+AF} = 6 \ [h] \]
Lot production case – results

The benefit of test automation for the lot production case

Increase in test case duration due to test automation

- $\Phi_{t(D+F+AF)=6}$
- $\Phi_{t(D+F+AF)=3}$
- $\Phi_{t(D+F+AF)=1.5}$

Lot production case – results

- $\Phi_{t(D+F+AF)=6}$
- $\Phi_{t(D+F+AF)=3}$
- $\Phi_{t(D+F+AF)=1.5}$
Conclusions

- Methods, techniques and tools for modeling, simulation and analysis of test strategies are presented.

- A case has been performed using this method.

- In this case the test duration decreased by only a factor two.

- The main reason is the duration of the *fix-loop*.

- A combination of test automation and a decreased *fix-loop* duration is most beneficial in this case.
Test automation in the alpha test of wafer scanners

Ivo de Jong
Roel Boumen
Asia van de Mortel-Fronczak
Koos Rooda